
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013 1369

High-Quality Statistical Test Compression With
Narrow ATE Interface

Vasileios Tenentes, Student Member, IEEE, and Xrysovalantis Kavousianos, Member, IEEE

Abstract—In this paper, we present a novel compression
method and a low-cost decompression architecture that combine
the advantages of both symbol-based and linear-based techniques
and offer a very attractive unified solution that removes the
barriers of existing test data compression techniques. Besides the
traditional goals of high compression and short test application
time, the proposed method also offers low shift switching activity
and high unmodeled defect coverage at the same time. In
addition, it favors multi-site testing as requires a very low pin-
count interface to the automatic test equipment. Finally, contrary
to existing techniques, it provides an integrated solution for
testing multi-core system on chips (SoCs) as it is suitable for
cores of both known and unknown structures that usually coexist
in SoCs.

Index Terms—Defect-oriented testing, design for testability, dft,
IP cores, low-power scan-based testing, multi-core SoC, selective
Huffman, test data compression, unmodeled defect coverage.

I. Introduction

THE MAIN objective of test data compression (TDC)
techniques is to compress large volumes of test data

to small test sets that fit in the memory of automatic test
equipment (ATE). In order to offer high compression, TDC
techniques usually exploit the following inherent properties of
test cubes (test cubes are vectors consisting of “0,” “1,” and x

values).

1. The correlation between the specified “0” and “1” values
that stem from the structural correlation of faults [1].

2. The large amounts of unspecified x values.

There are two mainstream TDC approaches: symbol based
and linear based. Symbol-based techniques first divide the
test data into several types of symbols and then they utilize
codewords to encode these symbols [2]–[15]. An attractive
technique is the selective Huffman code [3], [5] that offers
low-cost decompressors and high compression at the same
time. Symbol-based schemes are very effective in exploiting

Manuscript received November 25, 2012; revised January 27, 2013;
accepted March 03, 2013. Date of current version August 16, 2013. A
preliminary version of this work was presented in ICCAD 2011 with title
“Test-Data Volume and Scan-Power Reduction With Low ATE Interface for
Multi-Core SoCs.” This work was supported by a collaboration between
the European Union (European Social Fund ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF)—Research Funding
Program: Heracleitus II. Investing in knowledge society through the European
Social Fund.” This paper was recommended by Associate Editor X. Wen.

The authors are with the University of Ioannina, Ioannina 45221, Greece
(e-mail: kabousia@cs.uoi.gr; tenentes@cs.uoi.gr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2013.2256394

correlations in test cubes and they do not depend on the
automatic test pattern generation (ATPG) process used. Con-
sequently, they are very effective on precomputed (and usually
precompacted and densely specified) test sets for intellectual
property (IP) cores. However, they suffer from several serious
drawbacks that prohibit their use in industrial designs: they
do not exploit the low fill rate of test cubes; they impose long
testing times as they cannot exploit the large number of scan
chains; they require extensive interaction with the tester.

These shortcomings are tackled by linear compression meth-
ods. The most widely adopted linear compression method is
the reseeding of linear feedback shift registers (LFSRs) [16]–
[18]. LFSR reseeding exploits the low fill rate of test cubes.
In [19], ring generators were proposed as an alternative to
classical LFSRs and in [20], embedded deterministic test was
presented. Other well known techniques have been presented
in [21]–[28]. However, linear-based methods do not exploit the
high correlation between test cubes’ specified bits. In addition,
they are ineffective for testing IP cores which are usually
accompanied by precomputed and precompacted test sets.

A drawback of linear-based and symbol-based TDC tech-
niques is that they elevate a switching activity beyond ac-
ceptable levels and thus degrade production yield [29]. A few
symbol-based TDC techniques, such as [7]–[10], [15], inher-
ently offer low shift power but they are not suitable for cores
with multiple scan chains. Recently, linear decompressors that
offer a low switching activity during testing emerged [30]–
[32]. These techniques require additional data to control the
switching activity. Specifically, in [33], a shadow register is
utilized to offer low-power shift testing by repeating test data,
while in [34], selective scan enable deactivation is used for low
capture power. In [35], a TDC technique with narrow ATE-
bandwidth requirements is presented. Even though the method
proposed in [24] exploits similarities between test cubes, it is
expected to be less effective in the case of IP cores where the
test sets are highly compacted and test cubes usually exhibit
many differences. Moreover, it requires new generation ATEs
or imposes the use of circular buffers which result to large
hardware overhead.

Another important issue in the nanometer era is the new
types of defects that cause rapid growth of test data volume,
test time, and inevitable power dissipation. Targeting all kinds
of defects is a very difficult and costly solution, while there
will always exist defects that known fault models cannot ade-
quately cover. One solution for improving the defect coverage
of test data without increasing their volume is to exploit the
unspecified values (x) to increase the unmodeled defect cov-

0278-0070 c© 2013 IEEE

1370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

erage of the test vectors. However, this target contradicts the
main objective of TDC techniques, to exploit the unspecified
values for improving the test data volume. Even worse, low-
power TDC techniques consume all unspecified logic values to
decrease the power dissipation and introduce high correlation
in the decompressed test data which adversely affects the
unmodeled defect coverage of the generated test vectors.

Even though there are many TDC techniques that partially
target some of these objectives, to the best of our knowledge,
there is no method to concurrently target all these objectives.
In this paper, a novel unified approach is proposed that
accomplishes all the aforementioned objectives. The main
contributions of the proposed method are given below.

1) It exploits both the low fill rate and the correlations in
the specified bits of test cubes and thus outperforms both
symbol-based and linear-based encoding methods.

2) It offers low shift power during testing.
3) It supports very low pin–count interface as a single ATE

channel suffices for fast downloading test data on-chip.
4) It offers short test application times (TATs) as it exploits

the large number of scan chains of modern cores.
5) It does not require any kind of synchronization between

the ATE and the circuit under test.
6) It is decoupled from the ATPG process and offers high

compression even on highly compacted test sets of IP
cores.

7) It is suitable for both IP and non-IP cores of modern
system on chips (SoCs).

8) It exploits ATE’s repeat command (wherever available)
as an embedded feature of the encoding process to
further decrease test data volume.

In addition, we show that statistical codes introduce significant
correlation in the generated test vectors and thus offer low
unmodeled defect coverage. To this end, a new technique
is proposed that offers a tradeoff between test data volume
and unmodeled defect coverage. This objective has not been
targeted yet in the literature by any code-based TDC technique.

Finally, we present a low-cost decompression architecture
that can be shared among multiple cores without compromis-
ing compression. In particular, it offers the potential to share
hardware resources and test data, in order to cost effectively
test multiple cores with different characteristics. The proposed
decompressors can be shared even between IP and non-IP
cores and thus they offer an additional advantage to achieve
higher quality test solutions for SoCs at lower cost. Extensive
experiments with largest ISCAS and a subset of large IWLS
benchmark circuits [36] show the benefits of the proposed
method as compared to already existing TDC methods.

II. Motivation

The Huffman code [37] is a fixed-to-variable code that
uses short codewords to encode frequently occurring blocks
and long codewords for the less-frequent ones. The optimal
selective Huffman (OSH) code encodes only the m most
frequent blocks [3], while the rest of the blocks remain
unencoded and are distinguished by using an extra Huffman
codeword [5].

Fig. 1. Classical selective Huffman coding.

Let us assume a core with n scan chains of length r (we
assume a balanced scan structure where the shorter scan chains
are padded with x logic values). Each scan slice constitutes a
single block (we will remove this restriction later). Let T be
a set of test cubes and |T | be its size in bits. T is partitioned
into |T |/l data blocks of size l. Among these blocks, the m

most frequent distinct blocks, b1, b2, ..., bm, with frequencies
(probabilities) of occurrence f1 ≥ f2 ≥ · · · ≥ fm, respectively,
are stored in a dictionary and they are encoded using m

Huffman codewords. The rest of the blocks with an aggregate
frequency fun = fm+1 + fm+2 + · · · remain nonencoded and a
single codeword is used to precede them as (they are stored in
a raw form in the compressed test data [5]). A binary tree is
constructed beginning from the leaves and moving toward the
root. For every dictionary entry bi, a leaf node is generated
and a weight equal to fi is assigned to it. The pair of nodes
with the smallest weights is selected first and a parent node
is generated with a weight equal to the sum of the weights of
both nodes. This is repeated iteratively, until the root is left
unselected (each node can be selected only once). After the
tree is constructed, each leaf node is assigned a codeword as
follows: starting from the root, all nodes are visited once and
the logic “0” (“1”) value is assigned to each left (right)-child
edge. The codeword of block bi is the sequence of the logic
values of the edges on the path from the root to the leaf node
corresponding to bi.

Example 1: In Fig. 1(a), the test cube T1 is presented that
is partitioned into r = 12 scan slices s1, s2, ..., s12. The scan
slice si is the part of T1 that simultaneously loads the n scan
chains SC1, SC2, ..., SCn at the clock cycle ci (the scan slices
are loaded from right to left, i.e., the scan slice s1 is loaded
first, s2 is loaded second, etc.). The number of scan chains
is n = 4 and the block size is l = 4 (each scan slice is
considered as a test data block). The test data blocks and
their numbers of occurrences are shown in the first column of
Fig. 1(b). As proposed in [3], the two most frequent compat-
ible blocks are merged (two blocks are compatible when they
do not differ at any bit position where they are both specified).
The merging provides a new block that has the same specified
bits with the two blocks at the same bit positions with them.
This is iteratively applied until no further merging of blocks is

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1371

Fig. 2. Selective Huffman coding with premerged blocks.

possible. Columns 2–4 of Fig. 1(b) present the merged blocks
generated after the most frequent blocks are merged each time
(next to each block, its frequency of occurrence is reported).
The final encoded distinct blocks are presented in the fourth
column of Fig. 1(b) and they constitute the dictionary of the
OSH. The Huffman tree that belongs to the dictionary example
of Fig. 1(a) is shown in Fig. 1(c). The codewords assigned to
entries “0101,” “x11x,” and “xx00” are “0,” “10,” and “11,”
respectively. The compressed test set has a size of 16 bits and
it is shown in the first row of the decompressed slices in Fig.
1(d) (one codeword per slice). The decompressed test data are
shown below that row. �

Despite the fact that there are many blocks in a test set
consisting mostly (or even entirely) of x values, each and every
one of them has to be encoded using a separate codeword.
However, the blocks corresponding to scan slices s1, s2, s3 of
the test cube are compatible and thus they can be merged
into a single block. Another block can be generated by merg-
ing scan slices s4, s5, s6, s7, s8 and another one by merging
s9, s10, s11, s12. If we encode these three blocks instead of the
blocks shown in the fourth column of Fig. 1(b), then we can
use the first block for loading the scan chains for the first
three cycles, the second block for the next five cycles, and
the third block for the last four cycles. This way, we use only
three codewords to encode the test cube. In order to know
during each scan-in cycle if the last block is repeated or not,
we need one control bit per block. If the next block is the
repetition of the previous one, this bit is set to logic value
“0”; otherwise, it is set to logic value “1.” The control bits of
all slices of a test cube comprise the control vector (CV). The
CV that corresponds to the merging of scan slices s1 . . . s3,
s4 . . . s8, and s9 . . . s12 is CV = 000100001001 (the rightmost
bit corresponds to s1 and the leftmost to s12). This CV indicates
that 1) blocks s1 . . . s3, s4 . . . s8, and s9 . . . s12 are merged, 2)
the resulting blocks are loaded at the first, fourth, and ninth
clock cycles and they are repeated for another two, four, and
three clock cycles, respectively. The test cube formed after
merging its blocks according to CV is called CV-merged.

The storage of CV along with the two codewords results
to worse compression than the original encoding shown in
Example 1. However, for sparsely specified test cubes (i.e.,

test cubes with many x), there are many different CVs that
can be used. Even for the test cube at hand, which consists of
33.3% specified bits and is rather densely specified, there are
many CVs that can be used, like for example 000100001001,
000100000011, 000100100101, etc. (as shown in many studies
[20], [25], the vast majority of test cubes of industrial designs
consists of less than 5% of specified test bits). Each different
CV implies a different merging process. We exploit this
property to generate pseudorandomly the CV vectors based on
probabilistic properties of test cubes. CVs are generated prior
to the encoding and thus apply a block pre-encoding merging
phase which minimizes the number of blocks which will be
encoded using OSH. This process can be better illustrated by
means of an example.

Example 2: Let us assume that for the test cube T1 of
Example 1 the CV = 000101001001 has been pseudorandomly
generated. Fig. 2(a) presents the CV-merged T1 for this CV.
There are four groups of merged blocks, while only the first
block of each group is encoded using OSH (these blocks are
shown in bold and correspond to the logic value “1” in CV).
The rest of the blocks are simply repeated versions of the
first block in each group. The CV constitutes the guide for
the encoding process as shown in Fig. 2(b). The number of
occurrences of the blocks is calculated based on the number
of times each block has to be encoded (note that only the
blocks corresponding to logic values “1” in the CV, i.e., the
first one of each group, are encoded and thus the number of
occurrences of each block is equal to 1). The generated code
and its tree are presented in Fig. 2(c). Finally, Fig. 2(d) shows
the codeword used for each block corresponding to the logic
value “1” in the vector CV, as well as the decompressed blocks
loaded in the scan chains. It is obvious, since CV is not stored,
that only six bits are needed to compress the given test cube.�

The compressed bits in the above example are much less
than the specified bits of the test cube. Linear methods cannot
reduce the size of the compressed test set below the volume
of its specified bits unless methods like [24] are employed.
At the same time, the unspecified values of test cubes are
compressed adequately. In addition, the encoding of the most
frequently occurring blocks decreases the size of the encoded
test data and thus exploits the correlation between specified
test bits. Moreover, loading the same values in successive
scan slices reduces also the shift power during scan-in (and
consequently the scan-out shift power as shown in [38]).
Further optimization can be achieved by employing techniques
like [24] on top of the proposed technique.

The idea of grouping scan slices for the purpose of low-
power shift-in has been proposed earlier in [30] and [31]. This
grouping requires the encoding of additional control data and
specifically one bit per test slice. Every control bit is encoded
together with the test data bits. Depending on the number of
scan chains, the volume of control bits can be high compared
to the average number of specified bits for a test set. Assume
that the 10K scan cells of the largest circuit in our suite, the
ethernet, are organized into 100 scan chains (100 test slices
per vector), 100 control bits must be encoded for any test cube.
For an average fill rate of 1% (i.e., 100 specified bits per test
cube), along with the 100 specified bits for each test cube, we

1372 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

need to encode additional 100 control bits. In this paper, we
show that control data can be completely avoided and can still
achieve very high shift power reduction.

III. Encoding Method

A. Generation of CV

The encoding method and the generation of the pseudoran-
dom vector CV are strongly interdependent processes. Each
CV implies a specific merging of the blocks of test cubes.
Some of the test cubes will have their respective blocks
compatible and thus they can be generated using this particular
CV (we call hereafter those test cubes CV-mergeable, or
mergeable for the CV). The probability that a given CV can
be used to premerge a given test set depends on two factors.

1) The volume of “0” logic values of CV: a large volume
of “0” logic values imposes extensive compatibility
restrictions between successive test slices of test cubes
and decreases the possibility of an arbitrary test cube t

to be mergeable for this CV. The opposite happens when
the CV consists of many “1” logic values. For example,
every test cube is mergeable for the all-ones CV as every
slice is encoded independently of the rest of the slices.

2) The volume of x values of test cubes: the higher is
this volume, the higher is expected to be the number
of compatible slices of the test cubes and thus a larger
population of CVs can be used for such test cubes.

CVs with many “0” values can be used for merging sparsely
specified test cubes, while CVs with many “1” values are
needed for the densely specified test cubes. However, from the
compression and power perspective, CVs with large volumes
of “0” values are more effective than CVs with large volumes
of “1” values (in the first case, less blocks are encoded and
less transitions occur during the scan-in as more blocks are
repeated versions of their preceding blocks). A good practice
is to begin from CVs with a small volume of “0” values to
merge sparsely specified test cubes and then gradually increase
this volume to merge the remaining densely specified cubes.

A vector CV is generated pseudorandomly as a signal that
is set to a logic value “1” with a probability PCV. PCV is
set equal to various discrete probability values p1, p2, . . . , pb

(0 ≤ p1 < p2 < · · · < pb = 1). PCV is initially set to p1 and
then it is gradually increased to p2, p3, etc. For each value of
PCV, many CVs are generated and each one is used to load
one test vector in the scan chains. Every CV is generated by a
pseudorandom unit which will be described in the next section.
This unit is synthesized prior to the encoding process and
thus the exact CV sequences are known during the encoding.
Note that if we set PCV = 1 throughout the whole encoding
process, then all blocks are encoded using traditional OSH [5].
Therefore, this approach is a generalization of OSH.

In order to show the effectiveness of pseudorandomly
generated CVs to encode large test sets, we performed an
experiment using the ethernet circuit of the IWLS suite [36].
This circuit consists of more than 10 000 scan cells, so it
is more representative of realistic industrial designs than the
rest of the IWLS benchmark circuits. Fig. 3 depicts the
percentage of test cubes that are mergeable for various CVs

Fig. 3. Percentage of mergeable test cubes for ethernet.

generated pseudorandomly (note that the generated test cubes
achieve 100% coverage of stuck-at faults). The x-axis presents
PCV values used in this experiment for generating CVs. For
each PCV value, 100 different CVs were generated and the
percentage of test cubes which are mergeable for at least
one of them is reported by means of bars. As the value PCV

increases, more test cubes become mergeable for the generated
CVs. The curve shows the test cubes which remain nonmerged
at the end of each step (test cubes which are mergeable for
any CV generated are immediately dropped in this case).
Note that more than 80% of the test cubes are mergeable for
CVs consisting of less than 25% logic values “1.” Also, less
than 2% of the test cubes require CVs with 50–75% of the
logic values being equal to “1.” As a result, the vast majority
of blocks do not have to be encoded at all (for the above
experiment, more than 70% of blocks are generated as repeated
versions of other encoded blocks and thus they require no test
data). In conclusion, the effectiveness of CV depends on the
fill rate of test sets, which is fairly low in large circuits, and not
on the size or amount of test cubes. Therefore, the proposed
method is scalable to very large test sets.

CVs also affect static and/or dynamic compaction of test
cubes. Note that the term compaction refers to a different
process than encoding or compression. In particular, static
compaction is the process of merging all compatible test cubes
to be encoded later (static compaction precedes encoding),
while dynamic compaction is the process of merging test
cubes during the encoding (after encoding the first test cube,
additional compatible test cubes are encoded in the same
test vector generated by the decompressor). These processes,
applied during (or prior to) the encoding process, decrease
the volume of test vectors generated and offer additional
compression and test time benefits. Both types of compaction
can be applied in the proposed method. In fact, they can be
applied even more aggressively than in linear-based methods,
reducing the volume of applied vectors.

B. Pre-encoding Merge Process

The pre-encoding merge process is a step-by-step process
that is applied before the OSH encoding. The objective of this
process is to reduce the volume of test cubes to be encoded as
much as possible and thus decrease both the test data volume
(less test slices to be encoded) and the test sequence length
(TSL) (less test vectors to be generated). At the beginning,
all test cubes are appended in a set TS and the probability
value of CV is set to the minimum discrete value p1. Then,

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1373

Fig. 4. Premerging example.

an iterative process begins and at each iteration, a new CV is
generated based on the value of PCV (note that one CV is a
sequence of r logic values which are needed for loading one
test vector into the scan chains). Then, the test cubes of set
TS that are mergeable for the generated CV are identified and
are moved to an empty set MS. If no test cube is mergeable
for the current CV, then, the probability PCV is increased to
the next higher discrete value, and the iteration starts over by
generating a new CV. One test cube of set MS is selected and
is merged using the CV. Then, all test cubes of set MS that
cannot be statically compacted with t1 are removed from the
set MS and are appended again back to the set TS. Out of the
remaining test cubes in MS, one test cube is selected, let say t2,
and it is statically compacted with t1. This is iteratively applied
until the set MS becomes empty. While TS is not empty, the
process continues, until TS becomes empty, by generating the
next CV for the current PCV value.

At each iteration, among the test cubes of MS, we select first
the hardest-to-merge test cubes, i.e., those test cubes that are
less likely to be mergeable by CVs generated using low values
of PCV. This is done in order to increase the number of test
cubes that are merged at the early stages for low PCV values;
the ones that offer better compression and shift power than
higher PCV values. To this end, we rank the test cubes using a
measure which is representative of this likelihood. Let t be a
test cube and i ∈ [1, n] be a scan chain of the core. The volume
of incompatibilities, INC(t, i), of scan chain i for test cube t, is
the number of successive test slices of t with complementary
logic values at their positions corresponding to scan chain i.
Note that test cubes consist also of x logic values which affect
this measure based on the way they are filled. To alleviate this
problem we adopt an approximation according to which every
x logic value shifted into the scan chain is considered to be
equal to the last specified logic value “0” or “1” which was
encountered during the loading of this scan chain for cube
t. Note that the x values of test cubes are not actually filled
and thus test cubes remain unaffected by this process. For
example, for the test cube t of Fig. 1(a) we have INC(t, 1) =
0, INC(t, 2) = 0, INC(t, 3) = 2, and INC(t, 4) = 1. This
approximation is reasonable as the proposed method fills the x

values in a similar manner, therefore there is a high probability
that the x values will be eventually filled in this manner (e.g.,
this is the case for the cube when it is encoded as shown in
Fig. 2). Finally, we calculate the volume of incompatibilities
INC(t) of test cube t as the sum of the incompatibility values

INC(t, i) of all scan chains i ∈ [1, n]. The test cube with the
highest value of INC(t) is considered as the hardest-to-be-
merged test cube and it is always the first one selected from
set MS.

Example 3: Consider the test cube T1 of Example 1 and the
CV shown in Fig. 2, and assume that T1 along with test cubes
T2 and T3 form test set TS shown in Fig. 4 (T1 is omitted
in Fig. 4). T1, T2, T3 are all mergeable for the CV shown in
Fig. 2 and thus they are moved to set MS. The incompatibility
values are INC(T1) = 3, INC(T2) = 1, INC(T3) = 0 and thus
T1 is first selected to be encoded [the CV-merged version of
T1 was shown in Fig. 2(a)]. We can see that the the CV-
merged versions of T2, T3 (shown below T2, T3 in Fig. 4)
are both compatible with the CV-merged version of T1. Since
INC(T2) > INC(T3) cube T2 is selected next and the CV-
merged versions of T1, T2 are statically compacted as shown
at the right of Fig. 4. The CV-merged cube T3 is no longer
compatible with the resulting CV-merged test cube and thus
it is moved back to set TS to be encoded using a new CV. �

C. Slice Partitioning

So far, we have assumed that a whole slice is encoded as
a single Huffman block. This is realistic when the size of a
slice (and thus the volume of scan chains) is small (we remind
that OSH achieves good compression for relatively small sized
blocks [3], [5]). For cores with many scan chains, we partition
the set of scan chains into groups of equal size and each group
is encoded separately. Let l be the required block size and n

be the number of scan chains. Then, the set of scan chains is
partitioned into k = �n/l� groups G1, G2, . . . , Gk. Each group
is assigned its own CV1, CV2, . . . , CVk, which is generated by
its own properly selected probability PCVj

. This partitioning
process is applied before the merging phase and the same
groups are retained for the whole test period.

Scan chains with similar volumes of incompatibilities (as
they were calculated in the previous section) are appended
to the same group. Then, groups with low volume of in-
compatibilities are assigned lower initial probability PCV than
those groups with higher volume of incompatibilities. This
increases the probability of test cubes to be mergeable with
the generated CV s. In order to keep the encoding process
(and the decompression process) simple, each time that a set
CV1, CV2, . . . CVk fails to encode a test cube (i.e., no test
cube is mergeable for this set of CVs), then each one of the
probabilities PCV1 , PCV2 , . . . PCVk

is increased to its next higher

1374 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

Fig. 5. Encoding process.

discrete value until all of them reach the highest discrete values
(i.e., those that are equal to p1 are increased to p2, those that
are equal to p2 are increased to p3, etc.).

First, we present how the scan chains are partitioned into
disjoint groups of size l each. Let i be a scan chain. We define
the incompatibility load L(i) of scan chain i as the sum of the
INC(t, i) values of all test cubes t of test set T , i.e., L(i) =∑

t∈T INC(t, i). The incompatibility load of each scan chain
is then normalized by the worst load, i.e., the highest value
Lmax = max{L(i)} found for any scan chain i, using formula
NL(i) = L(i)/Lmax. Then, the n scan chain are appended in a
list of ascending order of their NL(i) values. The first l scan
chains of this list comprise the first group G1, the next l scan
chains comprise the next group G2, etc. Finally, we define the
normalized load NLG(j) of group Gj as the maximum NL(i)
value of its members i, with 0 ≤ NLG(1) ≤ NLG(2) ≤ · · · ≤
NLG(k) = 1.

After partitioning the scan chains into groups, the initial
probability PCVj

used for generating CVj for each group Gj

is determined. This probability depends on two factors: 1)
the relation between the normalized load values of different
groups and 2) the tradeoff between compression, power, and
TAT as set by the test engineer. The test engineer selects
the initial probability, let say a, for generating CVk that is
the CV of the group with the largest load. The rest of the
groups with lower load than Gk are automatically assigned
an initial probability which is lower than a proportionally to
their NLG value. Specifically, for each group Gj a probability
value pgj is calculated using the formula pgj = a × NLG(j)
(we remind that NLG(j) ≤ 1). In that way group Gk is
assigned the probability a (note that NLG(k) = 1) and the
rest of the groups are assigned lower probabilities. The higher
is the value of a, the lower is the TSL as many test cubes
are mergeable right from the beginning and higher levels of
static compaction can be reached. However, a large value of
a usually results to less compression and higher average shift
power. The opposite trend is observed when a small value of
a is used. The encoding process is shown in Fig. 5.

D. Repeat-Friendly Huffman Code

Even though Huffman is a very effective code, further
improvements can be achieved by exploiting certain ATE

Fig. 6. Swap procedure on node N1 for repeat-friendly (RF) code.

utilities, like the repeat command [39]. Using the repeat
command, multiple successive identical logic values can be
stored only once in the ATE-channel memory and they can
be repeatedly transmitted over the ATE channel in successive
cycles. Huffman code optimizes the length of the codewords,
but the codewords are not repeat friendly. For example, the
codewords “10” and “11” of Fig. 2(c) require 2 and 1 bits,
respectively, when the repeat command is used (note that the
first codeword has no identical successive logic values and
thus the repeat command has no effect, whereas the second
codeword has only one logic bit repeated two times and thus
the repeat command eliminates the need to store the last bit of
this codeword each time it is used). It is obvious that higher
gain can be achieved by assigning RF codewords to frequently
occurring blocks.

As noted in Section II, after the tree is constructed each
leaf node is assigned a codeword by assigning the logic value
“0” (“1”) to each left (right)-child edge. In order to provide
RF codewords, we propose a very simple modification of the
edge-assignment process. At the beginning, the edge to the
left (right) child of the root is arbitrarily assigned the logic
value “0” (“1”). Then we visit the rest of the nodes starting
from these two nodes and moving toward the leafs. Every
node is processed only when the edge connecting the node
to its parent has been assigned a logic value. Let node A be
one of these nodes. We find the child of A with the highest
weight and we assign at the edge connecting node A with
this child the same logic value that is assigned to the edge
connecting node A with its own parent. The opposite logic
value is assigned to the edge connecting node A to its other
child with the smallest weight. This way, the more frequently
occurring blocks are assigned more RF codewords.

Example 4: Fig. 6(a) presents the Huffman tree of Fig. 1(c)
enhanced with more realistic block frequencies. The memory
space required for storing the compressed test data using
the repeat command (ignoring logic-bit repetitions between
different codewords) is equal to 255×1+210×2+60×1 = 735
bits. The modified Huffman tree is shown in Fig. 6(b). Even
though codewords’ length are the same with Fig. 6(a), the leaf
nodes are assigned different codewords. In Fig. 6(b) the edge
connecting nodes N1 and N3 is assigned the logic value “1”
and the codeword for b2 is “11” instead of “10” that was in
Fig. 6(a) Huffman tree. Memory space required in this case is
255 × 1 + 210 × 1 + 60 × 2 = 585 bits, which is considerably
lower than that required by the encoding of Fig. 6(a). �

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1375

Fig. 7. Blocks replacement and candidates generated.

IV. Unmodeled Defect Coverage Improvement

The repetitive loading of identical test data into successive
slices and the biased encoding of the blocks toward the
most frequent blocks induces correlation, which adversely
impacts the unmodeled defect coverage of the generated test
vectors [40]. Unmodeled defect coverage can be improved by
decreasing the correlation between test vectors and also by
adopting effective quality metrics to assess the test quality of
each vector. The correlation of test vectors can be reduced by
relaxing the tight objective of the encoding process to use the
most frequent dictionary entries for encoding test data blocks.
The use of a small minority of test data blocks repeatedly
is responsible for biasing the generated test vectors toward
similar patterns of specified bits.

Test quality can be assessed using output deviations [41].
Test patterns with high output deviations tend to be more
effective for defect detection. Output deviations are probability
measures at primary outputs and pseudooutputs that reflect the
likelihood of error detection at these outputs. Intuitively, the
deviation for an input pattern is a measure of the likelihood
that the circuit outputs are incorrect for that pattern. An
efficient metric based on output deviations, which considers
also the structure of the core was proposed in [42]. The output-
deviation-based metric proposed in [43] further increases the
unmodeled defect coverage of the selected test vectors by
considering both timing-independent and timing-dependent
defects. In this section, we propose a cost-effective process
to generate candidate test vectors and evaluate them using the
output-deviation based metric proposed in [43]. Based on this
evaluation, the encoding process selects the best test vectors
in terms of unmodeled defect coverage.

The block substitution technique can be applied after step 14
of the encoding process (not shown in Fig. 5). Candidate test
vectors are generated by exploiting the potential of sparsely
specified test data blocks to be encoded using multiple dictio-
nary entries. Specifically, according to OSH, every test data
block is encoded using the most frequent dictionary entry in
order to be favored by the shortest possible codeword length.
If we remove the requirement of encoding at the minimum
cost, then sparsely specified blocks can be encoded using
compatible less-frequent dictionary entries.

Example 5: To understand how the blocks replacement
technique works let us again consider the Huffman code of
Fig. 2. We also consider the CV -merged test cube presented
in Fig. 7(a) that needs to be encoded using this code. Based
on the CV shown on the top of this test cube the blocks
to be encoded are the three blocks corresponding to slices
s1, s3, s6 and s9 shown in Fig. 7(a). The block xxx1 is

compatible with entries b1 and b2 of the dictionary (Fig.
2) and thus both codewords “0” and “10” can be used to
encode this block. In each case a different test vector will
be generated which is compatible to the encoded test cube
(note that these two encodings are actually two different ways
of filling some of the unspecified values of the test cube).
The two encodings are not equally effective in terms of test
data volume because codeword “10” is more expensive than
codeword “0.” The same can be done for the rest of the slices.
In Fig. 7(b) we present all possible compatibilities between
the slices s1, s3, s6, and s9 of Fig. 7(a) and dictionary entries
b1, b2, b3. Based on this table, we can generate all possible
candidates that are equal to 2 × 2 × 3 × 2 = 24 and are
shown in Fig. 7(c) in ascending order of test data volume (bold
entries correspond to the encoded blocks, nonbold to repeated
blocks). �

In most cases, the encoding cost is expected to increase
as we can only use less-frequent dictionary entries for each
block than those used by the original encoding. The highest
overhead is imposed by the extreme case: when an encoded by
a dictionary entry block is left unencoded and it is preceded
by the codeword corresponding to the unencoded blocks (OSH
provides this option [5]). Even though this is always an
available option for any block (any block can be simply left
unencoded), it is very expensive and should be wisely and
rather rarely used.

Block substitution changes the dictionary block frequencies
and thus codeword lengths generated for the initial frequencies
will not be any further optimal for the new frequencies. The
additional overhead can be moderated if the codewords are
regenerated to properly reflect the new frequencies of the
dictionary entries. To this end, the tree is generated again for
the new frequencies resulting after block substitution and a
new codeword is assigned to each dictionary entry. In order
to further reduce the additional overhead of this process, the
proposed method bounds the volume of the blocks that are
involved in this substitution process. This is achieved through
the use of a predetermined probability P , called hereafter as
probability of blocks change. For example, when P = 10%
only a 10% of randomly selected blocks will be encoded by
suboptimal entries. Higher values of P increase the test data
volume (TDV) cost but also the gain in unmodeled defect
coverage.

V. Decompression Architecture

The proposed decompression architecture is shown in
Fig. 8. It consists of four main units: the selective Huffman
decoder (SHD), the signal probabilities generation (SPG)

1376 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

unit, the CV generation (CVG) unit and scan-registers
SR1, SR2, . . . , SRk which load the scan chains. It operates
as follows: the SHD unit receives the compressed data from
ATE and decodes the codewords. It loads one scan register
at a time with the decoded block. This register is selected by
the unit CVG that generates the CVs CV1, . . . , CVk. When
CVi is asserted, scan register SRi is loaded with the block
decoded at the output of the SHD unit. Signals CV1, . . . , CVk

are generated from pseudorandom signals produced at the SPG
unit. When all registers SRi (which have their CVi signals
asserted) are loaded with new test data, the slice is shifted
into the scan chain and the decompression proceeds to the
next scan slice (the rest of the registers hold their contents).
Let us see each unit in detail.

The selective Huffman decoder unit (SHD) loads serially the
compressed test data from a single ATE channel and provides
the decoded blocks of size l each. It consist of a finite state
machine (FSM) which decodes the codewords and a small
dictionary which stores the distinct block encoded by each
codeword. It generates two signals namely DecodedBlock and
BlockReady. It asserts signal BlockReady when a new block
is available at the DecodedBlock output.

The scan registers unit (SR) consists of k, l-bit registers,
SR1, . . . , SRk which correspond to groups G1, . . . , Gk, re-
spectively. Each scan register SRi is controlled by signal Loadi

which is asserted whenever CVi is asserted and the respective
test data are available at the DecodedBlock output. When
Loadi is not asserted then the register holds its contents.

The signal probabilities generation unit (SPG) is shown in
Fig. 9. It consists of a small LFSR that is initially loaded with
a random seed, and a very small combinational logic which
generates pseudorandom signals of various probabilities in the
range of [0, 1]. The operation of this unit is very simple:
each LFSR output has probability of 50% to receive logic
value “1.” A 2-input AND gate driven by two signals with
probability 50% provides at its output a signal with probability
Pout = 25%. By using various combinational gates with various
numbers of inputs, signals with many discrete probabilities can
be generated. In the proposed scheme the eight probabilities
shown in Fig. 9 are implemented by just few 2–4 input
gates. Since an independent CV has to be generated for each
group, a different group of signals p1, . . . , p8 is needed for
each CV (p1

1, p
1
2, . . . p

1
8 are used for CV1, p2

1, p
2
2, . . . , p

2
8 for

CV2, etc). In order to eliminate correlations between signals
CV1, CV2, . . . , CVk phase shifters are inserted between the
LFSR and the combinational logic. SPG unit is controlled by
the CVG unit with signal SliceLoaded. This signal is asserted
whenever the scan chains are loaded with the current slice and
it enables the LFSR to move to its next state and to generate
signals p

j
1, p

j
2, . . . , p

j
8 (j = 1 . . . k) for the next slice.

The control vector generation unit (CVG) is respon-
sible for both vectors CV1, CV2, ..., CVk and signals
Load1, Load2, . . . , Loadk. For each CVj signal one multi-
plexer 8-to-1, namely P-MUXj , is used to select one of the
p

j
1, p

j
2, . . . , p

j
8 signals generated by SPG unit. p

j
1 is connected

to the first input of P-MUXj , p
j
2 is connected to the second

input, etc. The selection inputs of P-MUXj are connected to
counter GCj . This counter is initialized before decompression

Fig. 8. Proposed decompression architecture.

Fig. 9. Signal probabilities generation unit.

process begins with the value corresponding to the initial PCVj

calculated at the beginning of the encoding process. Each time
PCVj

has to be increased to the next higher discrete value
counter GCj is triggered once to count up. This way it selects
the next input of P-MUXj which is already connected to the
pseudorandom signal with the next higher probability. When
BlockReady is asserted CVG unit loads the decoded block to
the first scan register that has its respective CV signal asserted
and waits until the next test data block is decoded. When all
scan registers with logic value “1” at their CVs for the current
slice are loaded then current slice is shifted into the scan chains
and decoding continues to the next slice.

All GC counters are simultaneously triggered during the
decoding process whenever PCV values are increased. This is
done at the most seven times as the minimum possible initial
value for PCV is equal to p1 and it can be potentially increased
up to p8. Each triggering has to be done at a specific vector
in the test sequence which is determined during the encoding
(Fig. 5). The whole vector sequence is controlled by the means
of a vector counter (not shown in Fig. 8 for simplicity). We
use seven registers (also not shown in Fig. 8) which are loaded
before the decompression process begins with the specific
vector-counter values that should trigger each time the GC
counters. Thus, each time the vector counter reaches the value
stored in any of these registers all the the GC counters are
triggered once.

The rate at which the blocks are decoded at the output of
the SHD unit depends on the length of the codewords (long
codewords need more cycles to be decoded). As a result, there
might be cases that the loading of the scan registers has to wait
for the next block to be decoded and vice versa. The first case
is handled by the CVG unit which controls the loading of
the shift registers and stalls both this loading and the scan-in
operation when it is necessary. For the second case there are
two solutions. First, a FIFO can be used at the output of the
SHD unit to hold all blocks which are decoded early (usually a

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1377

very small FIFO suffices to store all such blocks). The second
solution is to let the SHD hold the last decoded block and
ignore any additional test data sent by the ATE. If the repeat
command is available then it can be used to eliminate these
data by repeating the last useful bit for as many cycles as
needed without incurring additional overhead. When the ATE-
repeat command is not available both techniques can be used
at the same time to offer a tradeoff between hardware overhead
and test data storage. As a result, no handshaking is required
between the ATE and the decompressor.

The SHD unit of the proposed architecture is test set depen-
dent. SHD unit can be designed in a test-set-independent way
if 1) the dictionary is implemented using a small RAM that is
loaded from the ATE before the decompression process begins
and 2) the FSM is designed to be generic (similar to [44]
and [45])—provided of course that it decodes a predetermined
number of codewords (the exact codewords can be determined
at a later step of the design process). As it has been shown
in [3] and [5], a very low number of blocks, 8–16, suffices to
provide high compression efficiency. Even in the case that the
SHD is designed to be test set dependent, last minute design
changes are neither expected to affect the Huffman decoder nor
the dictionary entries (the same decompressor can be still used
even at the cost of a marginal reduction of the compression
achieved). Only in the case of extensive design modifications
(that cause also extensive changes on the test sets of the SoC’s
cores) the SHD must be redesigned to reflect these changes.

Multiple cores residing in the same SoC require in many
cases decompressors tuned to different parameter values. This
requires developing a dedicated decompressor for each core
which is an expensive approach. In order to tackle this issue we
propose the development of a low-cost reconfigurable decom-
pressor which can adjust its characteristics to the requirements
of multiple cores at the expense of a slight increase in test
data volume. This decompressor can be shared among multiple
cores for decreasing hardware cost, without sacrificing com-
pression. Specifically, we assume a single decompression unit
for multiple cores which uses a common FSM for the cores
but a separate dictionary for each one (note that the hardware
implementation of the dictionary can be also common if it
is implemented as a RAM that is loaded with the particular
contents of each core before it is tested). Using this technique,
the same codewords are used for the cores that share the
decompressor, but each codeword corresponds to a different
entry that is found at a separate dictionary for each core. In that
way, the FSM, which is the major contributor to the overhead
of the decompressor, is shared among multiple cores while
at the same time the dictionaries which occupy very limited
space and offer great compression benefits are dedicated and
optimized to the characteristics of each core.

The multi-core decompressor is presented in Fig. 10. To
account for different scan chain configurations among different
cores we use the same block size l for those cores that share
the decompressor, and we equip the decompressor with the
maximum number of SRs used by any of the cores (we remind
that each core requires a number of SRs that is equal to the
number of scan chains divided by the block size). While testing
each core only the necessary SRs are activated.

Fig. 10. Selective Huffman decoder.

The use of common codewords for a group of cores requires
proper adjustments of the encoding process. In particular,
the RF encoding (i.e., step 14 at Fig. 5) cannot be applied
for any core until the blocks corresponding to the dictionary
entries of every core are generated. The aggregate number
of occurrences of these blocks are used to generate common
Huffman codewords. Since in each core the most frequently
met block will be encoded using the shortest codeword, the
aggregation of the frequencies is done in such a way as to
bias the frequencies of the common codewords. In particular,
the number of occurrences of the most frequent blocks are
summed to provide the frequency of the most frequent code-
word of the group, and these blocks are stored in the first entry
of each dictionary. Then, the same process is applied to the
second most frequent block of each core, etc.

Example 6: Let us assume an SoC consisting of two cores
with four dictionary entries and number of occurrences (in
descending order) f 1

1 = 30, f 1
2 = 22, f 1

3 = 20, f 1
4 = 18

for the first core and f 2
1 = 20, f 2

2 = 15, f 2
3 = 10, f 2

4 = 9,
for the second core. The aggregate frequencies for both cores
become f 1+2

1 = 50, f 1+2
2 = 37, f 1+2

3 = 30, f 1+2
4 = 27. Based on

the aggregate frequencies a Huffman tree is constructed and
it is optimized with the repeat friendly optimization method
presented in Section III-D. The resulting codewords are used
to build a common FSM for the cores. �

By properly grouping cores and allocating one decompres-
sor at each group, the area cost can be retained low. In
addition, cores that share a common decompressor should
be located close in the floorplan to minimize the routing
overhead. Finally, the ability of the proposed decompressors to
work well with both IP and non-IP cores enables the sharing
of decompressors among both of these types of cores and
offers a further degree of freedom during the grouping process
and the allocation of decompressors to each group. Note that
scheduling techniques can be applied to further decrease the
TAT but they are out of the scope of this paper.

VI. Experimental Results

We implemented the proposed encoding scheme using the
C++ programming language and we synthesized the decom-
pression logic using commercial tools. The proposed method
was applied on the largest ISCAS’89 and a subset of the large
IWLS benchmark circuits [36]. We used a commercial tool
to generate test sets for 100% stuck-at fault coverage. Unless

1378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

TABLE I

Benchmarks Information

Circuit Gates PPI/PPO Scan cells n × r

s5378 4285 86 214 16 × 14
s9234 4190 77 247 16 × 16

s13207 10 103 154 700 32 × 22
s15850 11 919 103 611 32 × 20
s38417 30 460 136 1664 64 × 26
s38584 26 864 292 1464 48 × 31

ac97−ctrl 28 554 132 2253 32 × 71
mem−ctrl 11 440 267 1194 48 × 25
pci−bridge 45 055 369 3517 128 × 28

tv80 14 223 46 372 32 × 12
usb−funct 27 081 249 1858 32 × 59
ethernet 157 520 211 10 647 128 × 84

otherwise stated, the parameters used for the proposed method
were set equal to m = 8 codewords and l = 8 bits block
size. The running time for the largest circuit, the Ethernet,
was less than 3 min. Table I contains information on the
benchmarks and in particular the size in combinational gates,
the pseudorandom primary input/output pins count (PPI/PPO),
the scan cells count and scan structure represented as number
of scan chains (n) multiplied by the length of scan chains (r).

We implemented the state-of-the-art low-power dynamic
reseeding (LPDR) proposed in [46] using ring generators
with sizes in the range [40, 150]. In this case we used a
single shadow register to favor the TDV measurements of
this method. The shadow register was implemented using both
techniques proposed in [30] and [46] (internal XOR tap or
one additional ATE channel) and the best result is reported
in every case. In the case of LPDR, the repeat command was
utilized to further reduce the compressed test data. Moreover,
as suggested in [20] and [46] the unsolved variables were
filled in a RF way to improve further the TDC of LPDR.
Even though both the ATPG and fault simulation steps can
be straightforwardly embedded in both the LPDR method and
the proposed encoding, we omitted these steps as they cannot
be applied in the case of IP cores (their internal structure is
unknown). We also compare our method to various code-based
methods [5], [6], [47], and [25]. For all methods we use the
minimum number of ATE channels, that is one channel for the
proposed method and code-based methods, and two channels
for LPDR (a very small number of channels is highly desirable
in a multi-site test environment).

For evaluating the unmodeled defect coverage we used a
surrogate fault model, i.e., a fault model that is not targeted
by the generated test sets. That fault model is the transition
delay fault (TDF) model. For detecting transition faults each
test vector generated by the decompressors is applied on
the circuit using two capture cycles according to launch-on-
capture (LOC) technique. Note that similar approaches were
adopted in many techniques (e.g., [40], [41], [48]).

The measurements of average switching activity (ASA)
were done using the normalized weighted transitions metric
(WTM) [30].

A. Impact of Parameters a and l

In Fig. 11 we present the TDV, ASA, TSL, and TAT results
of the proposed method for the s13207 benchmark circuit

Fig. 11. Tradeoffs for a value for s13207.

for various values of the parameter a (a is used to generate
the starting signal probabilities of the CVs as shown in
Section III-C). It consists of two parts that are aligned on
a common x-axis (shown at the bottom) that presents the
selected values for parameter a. The top part presents the TDV
curve (1 kbit = 1000 bits) and the ASA measures (bars) of
the proposed method, while the bottom bar presents the TAT
(line) and the TSL measures (bars). The smaller is the value of
parameter a, the more sparse are the generated CVs in terms
of their “1” logic values and thus the more power efficient are
the generated test vectors (“0” logic values in the CVs load
the scan chains with the same test data and thus reduce the
shift power dissipation). Higher values of parameter a cause
the test vectors to become less power efficient as they increase
the number of update operations on the shadow register. At
the same time, as a increases the encoding process is less
constrained by the shift power objectives and thus more test
cubes are encoded into each test vector during the premerging
process. As a result TSL drops considerably but the shift power
(ASA) increases.

An interesting property of the proposed method is that TAT
is not affected by the value of a as much as TSL is affected.
TSL depends on the number of vectors applied to the core,
while TAT depends mostly on the codeword decoding process
and thus on the TDV which does not depend much on the value
of a. Note that the loading of the scan chains is done in parallel
with the decoding of incoming data from the ATE. When the
value of a is high many update operations occur in a short
time and the Load Generation Unit has to stall in these cases
for new test data to be decoded through the SHD. Even though
the TSL is low (and consequently the overall number of test
slices loaded into the scan chains is low), when the value of a

is high, there is a high number of update operations that render
the SHD unit the bottleneck of the test generation process. As
the value of a drops, the overall number of test slices loaded
into the scan chains increases (due to the increase of TSL)
but most of the additional test slices are repeated versions of
their previous ones and are generated without incurring any
additional decoding cost (no test data need to be decoded for
those slices). As a result, the load generation unit stalls less
frequently and the decoding process is very well parallelized
with loading the scan chains using mostly repeated test data.
Therefore, we conclude that a low value of a is more preferable
from both TDV and power perspectives, while the additional
test vectors applied due to the increased TSL in that case, can

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1379

Fig. 12. TDV, TAT, and ASA for various blocksize l values on s13207.

be exploited to increase the unmodeled defect coverage with
a very small impact on TAT.

Another important parameter that affects both the ASA and
the TAT of the proposed method is the block size. The larger
the block size is, the smaller is the number of scan chain
groups and thus the lower is the number of blocks that need
to be decoded for every scan slice. However, as the number
of scan chain groups decreases, the benefits on reducing shift
power reduces (the probability that a block can be repeatedly
loaded into the scan chains drops as the size of the block
increases). Fig. 12 presents results for TDV, TAT, and ASA
for various blocksize values on s13207 benchmark circuit. As
block size l increases, both TDV and TAT drop while ASA
increases. Beyond a certain block size (i.e., equal to 32 in
the case at hand) TAT increases again while TDV saturates.
Therefore, depending on the power budget of the design, an
optimal block size exists for every circuit which can be easily
found due to proposed method’s short CPU time.

B. Impact of Parameter P

The impact of parameter P effect is shown in Fig. 13 where
the lines correspond to TDF and the bars to TDV results.
We present results for the proposed defect-aware encoding
for a = 0.125 and various values of P labeled as P = 0.01,
P = 0.1, P = 0.5, and the proposed defect-unaware encoding
labeled as DU. We also present results for the LPDR method
labeled as LPDR. The x-axis presents the number of vector
pairs applied using the LOC scheme for all the methods and
the y-axis presents the TDF measures for each technique.
Although the proposed defect unaware (DU) technique is
superior in terms of TDV as compared to the LPDR method
(7.0 kbits over 20.8 kbits), it is inferior to LPDR in terms
of coverage on the surrogate transitions-delay faults. This is
the effect of the increased correlation of the test slices that
results from the biasing of the encoding process toward a small
number of frequently occurring test data blocks. However,
the defect aware proposed scheme improves considerably the
TDF coverage. Even for very small values of P (i.e., the case
labeled as P = 0.01) which correspond to the case that only a
very small percentage of blocks are substituted for increasing
test quality, TDF becomes 59.8% and almost reaches that of
LPDR, with only a slight increase of the test data (they become
7.8 kbits from 7.0 kbits). If we further increase P to the value
of P = 0.1 and P = 0.5 the TDF of the proposed technique
reaches higher values than that of LPDR.

C. Repeat-Friendly Huffman Code: TDV Improvement

We run 10 different experiments for each of the 11
benchmark circuits for the proposed method by varying the

Fig. 13. Tradeoffs for blocks substitution probability P on s13207.

blocks substitution probability P from the set of values
[0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 1]. In each case,
the TDV improvement TDVimpr offered by using the RF
version of the proposed method over the original not opti-
mized encoding (Orig) was calculated by using the formula
TDVImpr = (TDVOrig−TDVRF)/TDVOrig (we note that in both
RF and “Orig” cases the compressed test data were further
encoded using the ATE repeat command). In the 100 out of the
110 cases, the TDV improved using RF and the improvement
was as high as 17.5%. The average and median improvement
was 5% and 6.18%, respectively. In the rest five cases the TDV
slightly increased and the increment was in the range [0%–
2.3%]. We note that the repeat friendly encoding optimizes
the internal characteristics of codewords (intracodeword) but it
does not consider the sequence of codewords (inter-codeword)
which also affect the TDV. This may cause a slight reduction
of the TDV benefits and in those rare cases that the gains from
intra-codeword improvements are not high, it slightly increases
the overall TDV.

D. Comparisons

In Table II the TDV, TSL, and ASA comparisons of the
proposed method (labeled as “Prop.”) against LPDR and OSH
[5] are presented. For this comparison we used uncompacted
test sets because LPDR is very efficient with uncompacted
test sets. In all cases the proposed method offers the lowest
TDV among all methods. The improvement ranges between
1.5x and 4.3x as compared to the LPDR method and between
2.6x and 8.8x as compared to the OSH method. The TSL
of the proposed method is lower than that of the LPDR
method and higher than that of the OSH. We note that the
TSL greatly depends on the static and/or dynamic compaction
policy followed during the encoding (in our case this is the
premerge process and, as noted in Section III, it belongs to
the static compaction processes). Static and/or dynamic com-
paction in linear encoding methods is generally constrained by
the size of the linear decompressor, the number of variables
injected into the decompressor and the power constraints.
Specifically, the number of free variables available during
the encoding of every test cube must be higher than the
number of specified bits of the test cube. Since every additional
encoded test cube consumes variables for its encoding, it is
rather unlike that all compatible test cubes can be encoded
together at the same test vector using linear encoding, unless
a large number of variables are injected at each clock cycle.

1380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

TABLE II

Comparisons of TDV, TSL, and ASA

circuit TDV (in kbits) TSL (no. of vectors) ASA (WTM %)
LPDR OSH Prop. LPDR OSH Prop LPDR OSH Prop.

s5378 10.0 15.7 5.1 305 155 277 5.8 21.3 14.2
s9234 20.9 29.9 11.7 504 259 438 11.6 21.0 18
s13207 20.8 39.5 10.5 419 255 405 5.4 19.9 12.4
s15850 26.8 43.6 11.2 552 243 523 7.0 24.7 12.9
s38417 97.5 150.9 49.5 1548 267 1094 6.2 31.2 13.5
s38584 89.7 112.3 33.9 1179 245 591 7.0 32.4 13.2

ac97−ctrl 57.5 60.8 15.5 2161 77 206 1.3 34.4 11.1
mem−ctrl 115.5 205.7 37.7 2466 884 1581 5.0 14.7 7.4
pci−bridge 233.0 418.3 120.6 3435 654 1062 20.6 21.8 20.4

tv80 72.5 131.8 48.1 2330 1662 2115 10.8 35.8 19.0
usb−funct 98.2 156.6 49.9 2340 231 763 1.1 35.2 15.5
ethernet 612.4 1257.0 143.1 3115 1100 1811 2.7 10.4 15.4

TABLE III

Comparison of TDF

TSL TDV (in kbits) TDF (%)
circuit (no. of vectors) LPDR Proposed LPDR Proposed

LPDR Prop. DU ME He DU ME HE
s5378 305 277 10.0 4.3 4.9 5.1 62.0 60.2 62.4 63.4
s9234 504 438 20.9 10.1 11.2 11.7 49.8 45.6 49.1 49.9
s13207 419 405 20.8 7.0 13.7 17.8 61.3 56.2 63.5 66.2
s15850 552 523 26.8 10.5 11.2 13.7 54.7 54.3 56.4 57.2
s38417 1548 1629 97.5 53.0 64.5 77.2 87.8 83.2 86.3 87.9
s38584 1179 1130 89.7 44.1 44.1 45.2 67.0 65.4 68.2 68.4

ac97−ctrl 2161 2136 57.5 31.1 36.7 36.4 53.4 51.3 56.3 58.8
mem−ctrl 2469 2357 115.5 32.3 74.4 81.3 43.7 33.1 36.8 39.3
pci−bridge 3435 2774 233.0 105.3 169.7 230.7 81.9 65.5 81.0 83.2

tv80 2330 2426 72.5 45.2 54.7 74.9 59.9 55.2 60.4 62.3
usb−funct 2340 2379 98.2 52.6 75.8 94.9 72.7 61.8 71.5 72.9
ethernet 3115 1811 612.4 143.1 182.9 252.6 55.3 49.1 57.7 64.4

On the contrary, code-based decompressors (like for example
the Huffman decompressor in the OSH case) do not suffer
from this restriction and thus permit the application of very
aggressive static compaction processes before the compression
which reduce the TSL a lot. Even though this is also the case
for the proposed method, the power objectives implemented
through the use of CVs introduce additional constraints into
the static compaction process (premerging) that do not permit
the TSL to drop as much as it does in the OSH method.
However, due to the inherent property of the proposed method
to encode the vast majority of test slices using repeating test
data, the proposed method offers much lower TAT than the
OSH approach which counterbalances the increase in TSL.

As far as the ASA measures are concerned, the LPDR gives
the lowest WTM values. In most of the cases this is also
related to the long TSL of this technique, that is even 10 times
higher in one case than that of the proposed method, and that
permits higher repetition of the test data loaded into the scan
chains. However, the WTM values of the proposed method
are very low and much lower than those of OSH technique.
Note that, as it was shown in Fig. 11, ASA can be considerably
reduced by using lower values of α parameter, which constitute
a favorable selection for the proposed method.

In Table III, we present the unmodeled defect coverage
comparisons between the proposed method and LPDR. We
consider three different instances of the proposed method:
1) the DU instance where the test quality improvement tech-

TABLE IV

Comparisons With TDC Techniques (in kbits)

Circuit [6] [47] [25] [15] Proposed
s9234 12.8 30 – 20.6 10.2
s13207 14.6 21 74 28.9 6.3
s15850 16.6 25 26 25.1 10.5
s38417 58.7 85 45 59.0 44.2
s38584 55.4 57.1 74 74.9 24

TABLE V

Hardware Overhead Comparisons

n Dynamic Reseeding HO OSH Proposed HO
d=48 d=64 d=96 d=128 d=150∗ k=1 k=2 k=4 k=8 k=16

32 626 774 1072 1370 1574 344 560 622 746 994 1490
64 805 954 1251 1549 1754 417 633 695 819 1067 1563

128 1164 1313 1610 1908 2112 563 779 841 965 1213 1709
∗150 is the size of ring generator used for ethernet in Table II.

nique was not applied; 2) the defect aware encoding with
the values of parameter P selected from the range [0.1, 0.25]
denoted as medium effort (ME) encoding, and 3) the defect
aware encoding with the values of parameter P selected from
the range [0.5, 1] denoted as high effort (HE) encoding. We
have to note that the unmodeled defect coverage depends a
lot on the number of test vectors applied. Thus, for providing
a fair comparison, we applied restrictions on the premerging
phase of the proposed method to increase its TSL (note that the
proposed method offers considerably lower TSL than LPDR).
In the first two columns the TSL results are presented. The
next four columns present the TDV comparisons. Note that the
TDV of the proposed method is lower than that of LPDR for
all values of P in almost all cases (the best results are bolded).
The last four columns present the TDF comparisons (the
highest TDF entries are bolded). Note, that DU has relatively
low TDF that however is considerably improved by using the
proposed test quality improvement process. In all but one case,
when the effort for increasing defect coverage is set to high,
the proposed method offers the highest TDF, and still retains
lower TDV than LPDR. In the vast majority of the cases, the
proposed method offers higher TDF than LPDR even when
the effort is set to medium. So, we conclude that the proposed
method offers much lower TDV than LPDR and at the same
time it offers a trade-off between the TDV improvements and
the unmodeled defect coverage, yielding higher unmodeled
defect coverage than LPDR for higher values of P .

In Table IV, we compare the proposed method against some
of the best TDC techniques in the literature in terms of TDV.
The methods in [6], [47], and [25] focus on test time and TDV
optimization and method [15] is a TDC method that targets
average power reduction too. In the case of the proposed
method we set the value of parameters l = 8, P = 0, and
a = 0.0625. For this comparison we used compacted test sets
because these methods perform better with them. It is obvious
that the proposed method offers the lowest TDV.

In Table V, we present the area overhead of the decompres-
sors for LPDR, OSH and the proposed method for various
scan chain volumes n, ring generator sizes d, and number of
groups k. The hardware overhead is measured in terms of gate

TENENTES AND KAVOUSIANOS: HIGH-QUALITY STATISTICAL TEST COMPRESSION WITH NARROW ATE INTERFACE 1381

equivalents, where one gate equivalent corresponds to the area
of a 2-input NAND gate. The area overhead strongly depends
on the values of the parameters used and it is relatively low in
all methods. In general the hardware overhead of the proposed
method is larger than OSH but lower than dynamic reseeding.

We have to note that the hardware overhead of the proposed
decompressors does not depend on the size of the core under
test, but on the dictionary size, the number of codewords, the
block size, and the number of scan chains n and scan chain
groups k. As it was shown in previous studies (like [3] and
[5]) a relatively small block size in the range [8 − 16] and a
small number of codewords and dictionary entries in the range
[8–32] suffice for high compression. In addition, the value of
k is decided by the test engineer and it can be always in the
range [1–16] (the value of k = 16 is already very high). In
addition, the overhead increases linearly with k, n. Therefore,
the hardware overhead of the decompressors is not expected
to increase for even larger circuits than those reported in
Table V. In addition, as it is shown in Tables II and III the
largest circuit, the Ethernet, which is almost one order of
magnitude larger than most of the rest circuits, gives the best
results. Therefore the proposed encoding method is expected
to scale very well even for larger circuits.

E. IP-Cores and Multi-Core Experiments

In order to show the effectiveness of the proposed method
for precomputed test sets of IP cores, we applied it on a
precompacted test set of the largest circuit, the Ethernet. Note
that in the case of IP-cores, precomputed and most likely
precompacted test sets are provided to the test engineer of the
SoCThe size of the compacted test set was 11.6 Mbits (1 Mbit
= 106 bits) and after applying the proposed method the TDV
dropped by a factor higher than 50x and reached the value
of 221.7 kbits. The number of specified bits of the initially
generated (and highly compacted) test set is 263.8 kbits which
clearly show that the proposed method succeeded to reduce the
test data volume below this number which is a lower bound
for most of the compression techniques. The TSL was 1100
and the WTM value was 9.2% which are both very low. The
TDV of the OSH was found to be more than five times higher
than that of the proposed method, and specifically it is equal to
1246.7K. We note that the LPDR technique is not applicable
in this case as the large variation of the specified bits in the
test set requires the use of unrealistically large (in the range of
thousand of cells) ring generators. It is also worth noting that
despite the fact that this is a very compacted test set and thus
the proposed premerging process has no effect, the compressed
TDV of the proposed method is very close to that shown in
Table II which was computed using noncompacted test sets
that offer higher degrees of freedom in the encoding process.
So, we conclude that the proposed method is very efficient for
both IP and non-IP cores.

In the last experiment, we study the performance of the
proposed method in a multi-core SoC. To this end we synthe-
sized a hypothetical SoC consisting of all the cores presented
in Table II. For simplicity, we assume that all cores are
tested in a nonoverlapping manner while concurrency can
be straightforwardly applied if multiple decompressors are

available. In order to show the effectiveness of the proposed
technique even in the extreme case that only one decompres-
sion unit is available for the entire SoC, we used a single
decompression unit for all the cores and we kept the FSM of
the decompression architecture common in all cases, i.e., the
same codewords were used for all cores (note that any test
scenario with multiple decompressors will give an even better
solution in terms of compression and TAT). For each of the
cores we assumed a different dictionary which was optimized
to the particular characteristics of the core. The overall TDV is
equal to 529.9 kbits. The overhead in that case was found to be
less than 0.5% of the overhead of the SoC. In the case that a
different decompressor is used for every core (optimizing thus
the FSM and TDV for each particular core separately) the
hardware overhead increases to the 3% of the SoC. Therefore,
the shared decompressor offers very high TDV benefits at a
very small area cost, and thus offers a very compelling solution
for testing multi-core SoCs.

VII. Conclusion

In this paper, we presented a unified TDC approach for
very low pin-count interface of multi-core SoC that is very
effective for cores of both known and unknown structure as it
offers the combined advantages of symbol-based and linear-
based techniques. In addition, the proposed scheme offers
an effective low-cost solution (in terms of area overhead)
for testing multi-core SoCs. Therefore, we conclude that the
proposed method can serve as an attractive alternative to the
widely adopted solution of linear-based encoding.

References

[1] N. A. Touba, “Survey of test vector compression techniques,” IEEE Des.
Test, vol. 23, no. 4, pp. 294–303, Apr. 2006.

[2] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Trans. Comput.-Aided
Des., vol. 22, no. 6, pp. 783–796, Jun. 2003.

[3] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective Huffman coding,” IEEE
Trans. Comput.-Aided Des., vol. 22, no. 6, pp. 797–806, Jun. 2003.

[4] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel Huffman
coding: An efficient test-data compression method for IP cores,” IEEE
Trans. Comput.-Aided Des., vol. 26, no. 6, pp. 1070–1083, Jun. 2007.

[5] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective
Huffman coding for test-data compression,” IEEE Trans. Comput.,
vol. 56, no. 8, pp. 1146–1152, Aug. 2007.

[6] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test data compression
based on variable-to-variable Huffman encoding with codeword reusabil-
ity,” IEEE Trans. Comput.-Aided Des., vol. 27, no. 7, pp. 1333–1338,
Jul. 2008.

[7] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compres-
sion and decompression architectures based on Golomb codes,” IEEE
Trans. Comput.-Aided Des., vol. 20, no. 3, pp. 355–368, Mar. 2001.

[8] A. Chandra and K. Chakrabarty, “A unified approach to reduce soc test
data volume, scan power and testing time,” IEEE Trans. Comput.-Aided
Des., vol. 22, no. 3, pp. 352–363, Mar. 2003.

[9] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compres-
sion/decompression using statistical coding,” in Proc. VTS, 1999, pp.
114–120.

[10] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes,” IEEE Trans. Comput., vol. 52, no. 8, pp. 1076–
1088, Aug. 2003.

[11] A. H. El-Maleh and R. H. Al-Abaji, “Extended frequency-directed run-
length code with improved application to system-on-a-chip test data
compression,” in Proc. ICECS, 2002, pp. 449–452.

1382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2013

[12] M. H. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-coded
compression technique for testing embedded cores in SOCS,” IEEE
Trans. Very Large Scale Integr., vol. 13, no. 6, pp. 719–731, Jun.
2005.

[13] K. Basu and P. Mishra, “Test data compression using efficient bitmask
and dictionary selection methods,” IEEE Trans. Very Large Scale Integr.,
vol. 18, no. 9, pp. 1277–1286, Sep. 2010.

[14] G. Wolff and C. Papachristou, “Multiscan-based test compression and
hardware decompression using LZ77,” in Proc. ITC, 2002, pp. 331–339.

[15] M. Nourani and M. H. Tehranipour, “Rl-Huffman encoding for test
compression and power reduction in scan applications,” ACM Trans.
Des. Autom. Electr. Syst., vol. 10, pp. 91–115, Jan. 2005.

[16] B. Konemann, “LFSR-coded test patterns for scan designs,” in Proc.
ETC, 1991, pp. 237–242.

[17] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using
partial lfsr reseeding,” in Proc. ITC, 2001, pp. 885–893.

[18] C. V. Krishna, A. Jas, and N. A. Touba, “Achieving high encoding
efficiency with partial dynamic lfsr reseeding,” ACM Trans. Des. Autom.
Electr. Syst., vol. 9, no. 4, pp. 500–516, Oct. 2004.

[19] G. Mrugalski, J. Rajski, and J. Tyszer, “Ring generators—new devices
for embedded test applications,” IEEE Trans. Comput.-Aided Des.,
vol. 23, no. 9, pp. 1306–1320, Sep. 2004.

[20] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded determin-
istic test,” IEEE Trans. Comput.-Aided Des., vol. 23, no. 5, pp. 776–792,
May 2004.

[21] K. J. Balakrishnan and N. A. Touba, “Improving linear test data
compression,” IEEE Trans. Comput.-Aided Des., vol. 14, no. 11, pp.
1227–1237, Nov. 2006.

[22] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. DAC, 2001, pp.
151–155.

[23] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “On
compaction utilizing inter and intra-correlation of unknown states,” IEEE
Trans. Comput.-Aided Des., vol. 29, no. 1, pp. 117–126, Jan. 2010.

[24] D. Czysz, G. Mrugalski, N. Mukherjee, and J. R. J. Tyszer, “Compres-
sion based on deterministic test vector clustering of incompatible test
cubes,” in Proc. ITC, 2009, pp. 1–10.

[25] S. Reda and A. Orailoglu, “Reducing test application time through test
data mutation encoding,” in Proc. DATE, 2002, pp. 387–393.

[26] V. Tenentes, X. Kavousianos, and E. Kalligeros, “Single and variable-
state-skip LFSRS: Bridging the gap between test data compression and
test set embedding for IP cores,” IEEE Trans. Comput.-Aided Des.,
vol. 29, no. 10, pp. 1640–1644, Oct. 2010.

[27] G. Zeng and H. Ito, “Concurrent core test for SOC using shared test set
and scan chain disable,” in Proc. DATE, 2006, pp. 1–6.

[28] Q. Zhou and K. Balakrishnan, “Test cost reduction for SOC using a
combined approach to test data compression and test scheduling,” in
Proc. DATE, 2007, pp. 1–6.

[29] C. Shi and R. Kapur, “How power-aware test improves reliability and
yield,” EE Times EDA News Online, Sep. 15, 2004.

[30] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer,
“Low-power scan operation in test compression environment,” IEEE
Trans. Comput.-Aided Des., vol. 28, no. 11, pp. 1742–1755, Nov. 2009.

[31] D. Czysz, G. Mrugalski, J. Rajski, and J. Tyszer, “Low-power test data
application in EDT environment through decompressor freeze,” IEEE
Trans. Comput.-Aided Des., vol. 27, no. 7, pp. 1278–1290, Jul. 2008.

[32] J. Lee and N. A. Touba, “LFSR-reseeding scheme achieving low-power
dissipation during test,” IEEE Trans. Comput.-Aided Des., vol. 26, no. 2,
pp. 396–401, Feb. 2007.

[33] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P. Szczerbicki, and
J. Tyszer, “Low power compression of incompatible test cubes,” in Proc.
ITC, 2010, pp. 1–10.

[34] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P. Szczerbicki, and
J. Tyszer, “Deterministic clustering of incompatible test cubes for higher
power-aware EDT compression,” IEEE Trans. Comput.-Aided Des.,
vol. 30, no. 8, pp. 1225–1238, Aug. 2011.

[35] J. Tyszer, D. Czysz, G. Mrugalski, N. Mukherjee, and J. Rajski, “On
deploying scan chains for data storage in test compression environment,”
IEEE Des. Test, Early access article, Mar. 7, 2013.

[36] IWLS’05 Circts. (2005) [Online]. Available:
http://www.iwls.org/iwls2005/benchmarks.html

[37] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[38] A. Chandra and R. Kapur, “Bounded adjacent fill for low capture power
scan testing,” in Proc. VTS, 2008, pp. 131–138.

[39] H. Vranken, F. Hapke, S. Rogge, D. Chindamo, and E. Volkerink, “ATPG
padding and ATE vector repeat per port for reducing test data volume,”
in Proc. ITC, 2003, pp. 1069–1078.

[40] S. Balatsouka, V. Tenentes, X. Kavousianos, and K. Chakrabarty, “Defect
aware x-filling for low-power scan testing,” in Proc. DATE, 2010, pp.
873–878.

[41] Z. Wang and K. Chakrabarty, “Test-quality/cost optimization us-
ing output-deviation-based reordering of test patterns,” IEEE Trans.
Comput.-Aided Des., vol. 27, no. 2, pp. 352–365, Feb. 2008.

[42] X. Kavousianos and K. Chakrabarty, “Generation of compact test sets
with high defect coverage,” in Proc. DATE, 2009, pp. 1130–1135.

[43] X. Kavousianos, V. Tenentes, K. Chakrabarty, and E. Kalligeros,
“Defect-oriented lfsr reseeding to target unmodeled defects using stuck-
at test sets,” IEEE Trans. Very Large Scale Integr., vol. 19, no. 12, pp.
2330–2335, Dec. 2011.

[44] M. Rudberg and L. Wanhammar, “High speed pipelined parallel Huff-
man decoding,” in Proc. ISCAS, 1997, pp. 2080–2083.

[45] C.-H. Lin and C.-W. Jen, “Low power parallel Huffman decoding,”
Electron. Lett., vol. 34, no. 3, pp. 240–241, Feb. 1998.

[46] G. Mrugalski, J. Rajski, D. Czysz, and J. Tyszer, “New test data
decompressor for low power applications,” in Proc. DAC, 2007, pp.
539–544.

[47] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Efficient
space/time compression to reduce test data volume and testing time for
IP cores,” in Proc. ICVD, 2005, pp. 53–58.

[48] Z. Wang, H. Fang, K. Chakrabarty, and M. Bienek, “Deviation-based
lfsr reseeding for test-data compression,” IEEE Trans. Comput.-Aided
Des., vol. 28, no. 2, pp. 259–271, Feb. 2009.

Vasileios Tenentes (S’07) received the Bachelor
degree in computer science from the University of
Piraeus, Piraeus, Greece, in 2003, and the M.S.
degree from the Department of Computer Science,
University of Ioannina, Ioannina, Greece, in 2007.
He is currently pursuing the Ph.D. degree in embed-
ded testing architectures from the same university.

His current research interests include test data
compression, low-power architectures and testing,
interactive distributed optimization, and computa-
tional geometry algorithms.

Xrysovalantis Kavousianos (S’97–M’02) received
the Diploma from the Department of Computer
Engineering and Informatics, University of Patras,
Patras, Greece, in 1996, and the Ph.D. degree from
the same university in 2000.

He is currently an Assistant Professor of computer
science at the University of Ioannina, Ioannina,
Greece. His current research interests include test-
ing, design-for-testability of integrated circuits, low-
power design and testing, and on-line testing. He has
published over 65 papers in journals and refereed

conference proceedings.

