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Abstract The paper presents a new semi-analytical technique for the propagation of near-
Earth satellite motion. The approach uses differential algebra techniques to compute the
high order expansion of the solution of the system’s ordinary differential equation for one
orbital revolution, referred to as the transfer map. Once computed, a single high order trans-
fer map (HOTM) can be reused to map an initial condition, or a set of initial conditions,
forward in time for many revolutions. The only limiting factor is that the mapped objects
must stay close to the reference orbit such that they remain within the region of validity of
the HOTM. The performance of the method is assessed through a set of test cases in which
both autonomous and non-autonomous perturbations are considered, including the case of
continuously propelled trajectories.

Keywords Orbit propagation · Perturbed Keplerian motion · Differential algebra ·
High-order transfer map method

1 Introduction

Near-Earth satellite orbit propagation requires several sources of orbit perturbations (e.g.
Earth non-sphericity, atmospheric drag, luni-solar perturbations, solar radiation pressure) to
be included when modeling the dynamics. The techniques developed thus far for the solution
of the perturbation problem fall into three broad categories: analytical, numerical, and semi-
analytical.
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Analytical theories use perturbation theories based on various series expansions (Brouwer
1959; Kozai 1962; Lyddane 1963; Aksnes 1970; Kinoshita 1977; Hoots and Roehrich 1980;
San-Juan 1994, 1998; Healy 2003) to transform the equations of motion such that closed
form solutions are obtained. The solutions are explicit functions of time, initial conditions,
and problem parameters; thus, the evaluation of an object’s position and velocity state at a
given time is reduced to the evaluation of explicitly known functions. Furthermore, analytical
solutions are valid for all or at least large ranges of initial conditions. However, simplifications
are necessary to obtain an analytical solution (e.g. simplified perturbation models and low-
order approximations) which has a direct impact on the accuracy of the obtained solution.

Numerical techniques employ numerical integration of the equations of motion including
all necessary perturbing accelerations.Numericalmethods can give very high accurate results,
as basically there are no restrictions on the details of the modeling of the perturbations. Thus,
the results obtained with numerical propagation are often assumed as the truth (Long et al.
1989). The price to pay for this accuracy is that simulations can require high computational
times due to the need of small integration step-sizes and must be repeated from the beginning
for each different initial condition.

Semi-analytical methods have been developed to combine the efficiency of analytical
methods and the accuracy of numerical integration. Within this approach, the highest fre-
quencies of the motion, which normally have small amplitudes, are filtered analytically
via averaging procedures. The averaged equations only depend on long period angles and,
therefore, are integrated numerically with very large step sizes. The short-period effects,
if required, can be recovered at any step of the integration by evaluation of the analytical
expressions of the averaging. The averaging can be performed directly over the variation of
parameters equations of motion using the generalized method of averaging (Bogoliuvov and
Mitropolski 1961; McClain 1977), or in the Hamiltonian formulation of the dynamics using
canonical perturbation theory (Hori 1966; Deprit 1969; Campbell and Jeffreys 1970; Métris
and Exertier 1995; Lara et al. 2012). Independently of the method used, the derivation of
the averaged equations is often a difficult and time consuming process: simplifications of the
perturbations may be necessary and the approach may depend on the specific perturbation
considered. Depending on the method, the type of perturbation that can be handled is limited,
e.g. to Hamiltonian perturbations only (which shares some similarity with themultirevolution
method by Graf and Bettis 1975)

We propose a new technique called high-order transfer map (HOTM) method. The tech-
nique, which appeared first in the field of particle accelerator physics (Berz 1987, 1999b),
is here adapted to orbital dynamics exploiting the quasi-periodicity of the perturbed Kep-
lerian motion. It is based on the automatic high order expansion of the solution of ordinary
differential equations (ODEs) through differential algebra (DA). We consider this method
semi-analytical in a broader sense as it, too, combines numerical and analytical techniques in
the samemethod. However, unlike traditional semi-analytical methods, our proposedmethod
reverses the order: first a HOTM is generated via a numerical integration of a single orbital
revolution in DA arithmetic, yielding an analytical high order approximation of the true
transfer map. It is then followed by its repeated analytical evaluation to advance the orbital
propagation by several orbital periods. As the HOTM is obtained by the DA-based numerical
integration of the equations of motion for a single revolution, the proposed method shares
the mathematical simplicity of numerical techniques. On the other hand, as the bulk of the
orbital propagation is achieved bymultiple evaluations of the HOTM,which is represented as
a high order Taylor polynomial, the method turns out to be numerically efficient like analyt-
ical methods. In addition, differently from other semi-analytical approaches, a HOTM is not
based on averaging techniques and thus the osculating parameters are propagated. Moreover,

123



High order transfer maps for perturbed Keplerian motion

the HOTM is valid in a neighborhood of the initial condition and therefore can be used to
very efficiently propagate sets of initial conditions.

Of course the approach is not free of weaknesses. Typical perturbations cause a long-term
drift in phase space. Due to this, the HOTM accuracy tends to degrade with the number of
revolutions. After a certain number of revolutions, a new map has to be computed centered
at the new state. Secondly, as a single orbital revolution is used to propagate the motion for
several revolutions, the presence of highly non-autonomous perturbations can cause a rapid
increase in approximation errors as the map converges only for a limited time range. Both
limitations are discussed in detail later in this paper.

The remainder of the paper is organized as follows. First a description of our implemen-
tation of the perturbed dynamics is given. This is followed by a brief introduction on DA
techniques and the explanation on how they enable the high-order expansion of the solu-
tion of ODEs with respect to both initial conditions and parameters. This is propaedeutical
to the detailed description of the HOTM computation in Sect. 4. Test cases to assess the
method’s performance in the presence of autonomous (including low-thrust propulsion) and
non-autonomous perturbations are presented in Sect. 5. Final remarks are made in Sect. 6.

2 Dynamical model

To avoid the singularities present in the equations of motion of the classical Keplerian
orbital elements, we instead work with the set of modified equinoctial elements x =
(p, f, g, h, k, L) (Walker et al. 1985; Walker 1986). The relationship between modified
equinoctial elements and classical Keplerian elements is given by

p = a(1 − e2), f = e cos(ω + �), g = e sin(ω + �),

h = tan(i/2) cos�, k = tan(i/2) sin�, L = � + ω + ϑ,
(1)

where a is the semi-major axis, e the eccentricity, i the inclination, � the right ascension of
the ascending node,ω the argument of perigee, and ϑ the true anomaly. In the set of modified
equinoctial elements p is known as the semi-parameter and L as true longitude.

The first-order system of differential equations describing the orbital motion in modified
equinoctial elements is given by the following expressions

⎧
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in which ẋ indicates the derivative of any modified equinoctial element x with respect to time
t , μ is the gravitational parameter of the Earth, q = 1+ f cos L + g sin L , s2 = 1+ h2 + k2,
and lastlyΔ = (Δr ,Δt ,Δn) is the vector of perturbations expressed in the radial, transverse,
and normal directions.

As the HOTM method is based on the numerical integration of a single orbital revolution
it is preferable to work with L as the independent variable. Since the equations of motion are
periodic with respect to L , this allows the straightforward computation of a one revolution
map (in the osculating elements) by integration from L = 0 to L = 2π . The resulting map
is also known as a Keplerian map.

Denoting by x ′ = dx

dL
the derivative of any modified equinoctial element x with respect to

L , we therefore apply the change of the independent variable according to ẋ = dx

dL

dL

dt
= x ′FL

in the dynamics in Eq. (2). Furthermore, the last equation is replaced by the derivative of
time t with respect to L , resulting in the new set of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′ = Fp/FL

f ′ = Ff /FL

g′ = Fg/FL

h′ = Fh/FL

k′ = Fk/FL

t ′ = 1/FL .

(3)

For the remainder of this paper the state vector is given by x = (p, f, g, h, k, t) and L is
the independent variable.

The spacecraft position and velocity vectors r and v in the Earth centered inertial reference
frame (ECI) are given by

r = r

s2

⎡

⎢
⎢
⎣

cos L + α2 cos L + 2hk sin L

sin L − α2 sin L + 2hk cos L

2(h sin L − k cos L)

⎤

⎥
⎥
⎦ (4)
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⎤

⎥
⎥
⎦ , (5)

in which q and s are as before and r = p/q and α2 = h2 − k2.
The unit vectors for the radial, transverse, and normal directions are then given by

r̂ = r

r
, n̂ = r × v

||r × v||, t̂ = n̂ × r̂, (6)

respectively. Together they define the radial, transverse, and normal reference frame (RTN).
The transformation from RTN to ECI is given by the rotation matrix T = [r̂, t̂, n̂].

In the examples presented in this work we will consider the contribution of different
sources of perturbation to demonstrate the capability of the HOTM method to efficiently
handle both non-autonomous and autonomous dynamics, as well as continuously propelled
arcs. A short description of the implementation of these perturbations is given in the following
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subsections. Note that simple perturbation models are adopted as the main goal of the work
is to demonstrate the HOTM concept rather than developing a complete orbital propagator.

2.1 Non-spherical Earth gravity

In this work only the contribution of the zonal harmonic J2 is taken into account. The
acceleration due to J2 is expressed directly in modified equinoctial elements in the RTN
reference frame as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(7)

in which RE is the equatorial radius of the Earth.

2.2 Third body perturbation

The contribution of accelerations due to third bodies in the ECI reference frame is given by

Δ3bEC I = −
n∑

j=1

μ j

(
d j

d3j
+ s j

s3j

)

, (8)

where μ j is the gravitational constant of each perturbing body, s j is the vector from the
primary body to the secondary body, and d j = r − s j is the position vector of the spacecraft
relative to the secondary body while s j and d j refer to their Euclidean norms. The expression
of the third body perturbation is inserted into Eq. (2) after rotation into the RTN reference
frame by the transformation

Δ3bRT N = TTΔ3bEC I . (9)

Simplified ephemerides, in which the orbital parameters of the gravitational bodies are
expressed as low order polynomials in time (maximum order 4) are used in this work. In the
test cases presented in this paper we also account for luni-solar perturbations.

2.3 Atmospheric drag

The radial, tangential, and normal accelerations due to aerodynamics drag are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔDr = −1

2
CD

A

m
ρvvr

ΔDt = −1

2
CD

A

m
ρvvt ,

ΔDn = 0,

(10)

where A and m are the satellite’s cross-sectional area and mass respectively, CD is the drag
coefficient, and v is the magnitude of the velocity. The radial and transversal components of
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the velocity, vr and vt , are given by

vr =
√

μ

p
( f sin L − g cos L), vt =

√
μ

p
(1 + f cos L + g sin L). (11)

The atmospheric density ρ is modeled as a function of the altitude h as

ρ(h) = exp(c0 + c1h + c2h
2 + c3h

3 + c4h
4), (12)

in which the coefficients ci are obtained by means of fitting the density obtained from the
Naval Research Laboratory’s Mass Spectrometer and Incoherent Scatter Radar of the year
2000 (NRLMSISE-00) model (Picone et al. 2002). The fit was performed at a fixed epoch, for
h ∈ [200, 1000]km, and averaging the results at different longitudes and latitudes. The values
thusly obtained and used for the test cases presented in this paper are c0 = −15.91, c1 =
−0.03884, c2 = 4.33 × 10−5, c3 = −4.097 × 10−8, and c4 = 1.858 × 10−11. The units of
these coefficients are such that the evaluation of Eq. 12 with h in km returns the atmospheric
density in kg/m3.

2.4 Solar radiation pressure

The contribution due to solar radiation pressure is approximated in the ECI reference frame
as

ΔSRPECI = PSCR
A

m

dS

dS3
, (13)

where, as for the third body perturbation, dS is the position vector of the satellite relative to
the Sun and dS its Euclidean norm. The solar pressure PS is obtained by dividing the flux
Φ ≈ 1367W/m2 at 1 AU, by the speed of light c = 299792458 m/s. Finally, the spacecraft
is modeled as a sphere and CR is the radiation pressure coefficient which accounts for the
mean reflectivity of its surface (Montenbruck and Gill 2000).

As for the third-body perturbation, the contribution of the solar radiation pressure pertur-
bation is inserted intoEq. (2) after rotation into theRTN reference frame by the transformation

ΔSRPRTN = TTΔSRPECI . (14)

In this first work on the topic, solar eclipses are not yet modeled.

2.5 Thrust

The action of a low-thrust propulsive system is modeled as

ΔPRT N = ΔPRT N p̂, (15)

where ΔPRT N is the thrust acceleration magnitude and p̂ its direction in the RTN reference
frame. Both thrust direction and magnitude can be arbitrary functions of the state vector. In
this paper, we model the thrust direction as either fixed in the RTN reference frame (i.e., p̂ is
constant), or aligned with the velocity vector whose RTN components are given by Eq. (11).
The thrust magnitude ΔPRT N is considered constant during each orbital revolution.
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Fig. 1 Analogy between the
floating point representation of
real numbers in a computer
environment (left) and the
introduction of the algebra of
Taylor polynomials in the
differential algebraic framework
(right)

3 Notes on differential algebra

Differential Algebra techniques were devised to attempt solving analytical problems through
an algebraic approach (Berz 1999b). Historically, the treatment of functions in numerics has
been based on the treatment of numbers, and the classical numerical algorithms are based
on the mere evaluation of functions at specific points. DA techniques rely on the observation
that it is possible to extract more information on a function rather than its mere values.
The basic idea is to bring the treatment of functions and the operations on them to computer
environment in a similarmanner as the treatment of real numbers. Referring to Fig. 1, consider
two real numbers a and b. Their transformation into the floating point representation, a and
b respectively, is performed to operate on them in a computer environment. Then, given
any operation ∗ in the set of real numbers, an adjoint operation � is defined in the set of
floating point (FP) numbers so that the diagram in Fig. 1 commutes. (The diagram commutes
approximately in practice due to truncation errors). Consequently, transforming the real
numbers a and b into their FP representation and operating on them in the set of FP numbers
returns the same result as carrying out the operation in the set of real numbers and then
transforming the achieved result in its FP representation. In a similar way, let us suppose two
k differentiable functions f and g in n variables are given. In the framework of differential
algebra, the computer operates on them using their k-th order Taylor expansions, F and
G respectively. Therefore, the transformation of real numbers in their FP representation is
now substituted by the extraction of the k-th order Taylor expansions of f and g. For each
operation in the space of k differentiable functions, an adjoint operation in the space of
Taylor polynomials is defined so that the corresponding diagram commutes; i.e., extracting
the Taylor expansions of f and g and operating on them in the space of Taylor polynomials
(labeled as k Dn ) returns the same result as operating on f and g in the original space and
then extracting the Taylor expansion of the resulting function.

The straightforward implementation of differential algebra in a computer allows com-
putation of the Taylor coefficients of a function up to a specified order k, along with the
function evaluation, with a fixed amount of effort. The Taylor coefficients of order n for
sums and products of functions, as well as scalar products with reals, can be computed from
those of summands and factors; therefore, the set of equivalence classes of functions can
be endowed with well-defined operations, leading to the so-called truncated power series
algebra (Berz 1986, 1987). Similarly to the algorithms for floating point arithmetic, the algo-
rithms for functions followed, including methods to perform composition of functions, to
invert them, to solve nonlinear systems explicitly, and to treat common elementary functions
(Berz 1999a, b). In addition to these algebraic operations, the DA framework is endowed
with differentiation and integration operators, therefore finalizing the definition of the DA
structure. The DA sketched in this section was implemented by Berz and Makino in the
software COSY INFINITY (Berz and Makino 2006).
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3.1 High-order expansion of the solution of an ODE

Differential algebra allows the derivatives of any function f of n variables to be computed up
to an arbitrary order k, along with the function evaluation. This has an important consequence
when the numerical integration of an ODE is performed by means of an arbitrary integration
scheme. Any integration scheme is based on algebraic operations, involving the evaluation
of the ODE right hand side at several integration points. Therefore, carrying out all the
evaluations in the DA framework allows differential algebra to compute the arbitrary order
expansion of the flow of a general ODE with respect to the initial condition.

Without loss of generality, consider the scalar initial value problem (IVP)
{
ẋ = f (x, t)
x(t0) = x0

. (16)

We now want to show that, starting from the DA representation of the initial condition x0,
differential algebra allows us to compute the Taylor expansion of the IVP with respect to the
initial condition at the final time t f .

Replace the point initial condition x0 by the DA representative of its identity function up
to order k, which is a (k + 1)-tuple of Taylor coefficients. As only the first two coefficients,
corresponding to the constant part and the first derivative respectively, are non zeros, we can
write the DA variable [x0] as x0 + δx0, in which x0 is the reference point for the expansion.
If all the operations of the numerical integration scheme are carried out in the framework of
differential algebra, the solution xi is approximated, at each fixed time step ti , as a Taylor
expansion in x0.

For the sake of clarity, consider the forward Euler’s scheme

xi = xi−1 + f (xi−1)Δt (17)

and substitute the initial value with the DA identity [x0] = x0 + δx0. At the first time step
we have

[x1] = [x0] + f ([x0]) · Δt. (18)

If the function f is evaluated in the DA framework, the output of the first step, [x1], is the k-th
order Taylor expansion of the solution of the IVP in x0 at t = t1. Note that, as a result of the
DA evaluation of f ([x0]), the (k + 1)-tuple [x1] may include several non zeros coefficients
corresponding to high-order terms in δx0. The previous procedure can be inferred through the
subsequent steps. The result of the final step is the k-th order Taylor expansion of the solution
in x0 at the final time t f . Thus, the solution of the IVP can be approximated, at each time step
ti , as a k-th order Taylor expansion in x0 in a fixed amount of effort. In the reminder of the
paper we will express this result as [xi ] = Mx0(δx0), in which the square brackets reminds
that the output is a DA variable,M indicates a Taylor map or polynomial, the subscript that
the variables of the Taylor expansion, and the δ remind that the Taylor expansion is function
of the variation with respect to the reference values.

Note that the expansion of the solution of the IVP can be easily obtained also with respect
to any parameter q that appears in the dynamics model. In this case also the parameter p
has to be initialized as a DA variable, i.e. [q] = q + δq , and the solution at time ti is
[xi ] = Mx0,q(δx0, δq).

The conversion of standard integration schemes to theirDAcounterparts is straightforward
for explicit solvers, substituting operations between real numberswith those onDAobjects. In
addition, whenever the integration scheme involves step size control, an appropriate measure
of the accuracy of the Taylor expansion of the flow needs to be included.

123



High order transfer maps for perturbed Keplerian motion

The main advantage of the DA-based approach is that there is no need to write and
integrate variational equations in order to obtain high order expansions of the flow. This
result is basically obtained by the substitution of operations between real numbers with those
on DA numbers, and therefore the method is ODE independent. Furthermore, the efficient
implementation of the differential algebra in COSY-Infinity allows us to obtain high order
expansions with limited computational time.

In previous applications by the authors (Valli et al. 2013; Morselli et al. 2014) the map
[xi ] = Mx0,q(δx0, δq) has been used to efficiently propagate set of initial conditions by
replacing intensive Monte Carlo simulations (based on multiple integration of ODE) with
multiple evaluations of the Taylor map. In this work the availability of the Taylor map,
combinedwith the quasi-periodicity of perturbedKeplerianmotion, is exploited to implement
an efficient method for orbital propagation.

4 HOTM method

The HOTM method is applicable to a wide variety of semi-periodic systems. In partic-
ular, it can be applied to the dynamics introduced in Sect. 2 with both autonomous and
non-autonomous perturbations. For the sake of clarity, we will fist briefly introduce the
mathematical foundation of the HOTM method in general, and then discuss the particular
application of the method to orbit propagation with both autonomous and non-autonomous
perturbations.

4.1 Mathematical foundation of the HOTM

The basic idea of the method is to replace numerical integration by the repeated evaluation
of a discrete map representing the dynamics of the system, exploiting the periodicity of the
dynamics.

Consider a dynamical system defined by the ODE

dx
dy

= f (x, y), (19)

where the right hand side f (x, y) is periodic in y with period P , i.e.

f (x, y) = f (x, y + P) (20)

for all x and y and f is at least Lipschitz continuous in x and continuous in y over the domain
of interest. A typical case for such a dynamical system is a system parametrized by an angle
such as, for example, the system in (3).

Let ϕx(y) be the solution of (19) such that ϕx(0) = x. From the periodicity condition
(20) it follows that g(y) = ϕx(y + P) is a solution of (19) satisfying g(0) = ϕx(P). By the
Picard–Lindelöf theorem we have uniqueness of the solution and hence

ϕx(y + P) = g(y) = ϕϕx (P)(y). (21)

Given an initial state x0, consider now the sequence xi defined by

xi = ϕx0(i · P), (22)

which represents the final state of x0 after i periods of y. By (21) we can rewrite (22) in
recursive form as

xi+1 = ϕxi (P).
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Fig. 2 Illustration of the map Φ

for the case of x ∈ R
2. Snapshots

of the phase space are shown at
y = 0, y = P , and y = 2P ,
along with the continuous
trajectory x(y). Neighboring
snapshots are related by the map
Φ : R2 → R

2

It is this sequence of states xi we want to compute when we perform orbit propagation.
Thus, introducing the function

Φ(x) = ϕx(P)

the problem is now to find an efficient method to calculate Φ. Once we have this, we can use
it to compute all iterates xi directly. The situation is illustrated in Fig. 2. Note that Φ(x) is
simply the solution of the ODE at y = P for the initial condition x at y = 0.

In practice, the difficulty lies in the actual computation of the map Φ. Only in specific
simple cases is it possible to calculate an analytic expression for Φ. The most common
approach to computing it in the general case is numerical integration. Unfortunately, while
this allows the pointwise evaluation of Φ, it requires a computationally intensive numerical
integration to be carried out for every single evaluation.

Instead, in our method we use DA to compute a computer representation of the function
Φ as a high-order polynomial expansion Mx0 around x0 such that

Mx0(δx0) = Φ(x0 + δx0). (23)

This is done by initializing the initial condition as a DA variable [x0] = x0 + δx0 and
performing the integration from y = 0 to y = P using a DA based integration scheme (see
Sect. 3.1). This process yields a DA expansion [x1] = Mx0(δx0) in terms of δx0 around the
reference orbit x0.

The specific integration scheme selected to perform the numerical integrations in this work
is a DA implementation of a standard Dormand-Prince 7/8 integrator of the Runge–Kutta
family with an 8-th order solution for propagation and 7-th order solution used for step size
control.

We call (23) a high order transfer map (HOTM). The HOTM Mx0 is a computer repre-
sentation of the function Φ(x). The initial computation of M using DA is typically much
more computationally expensive than the numerical integration of a single initial condition
for one orbital revolution. However, once computed it is represented as a polynomial, and
the repeated evaluation of the map becomes trivial. In particular, there is no need for further
integrations to evaluate Mx0 . We also note that this greatly reduces the requirements on
the computational environment, as polynomial evaluation requires only multiplication and
addition. It can therefore be easily implemented even on very restricted hardware.

We can nowuse this fact to efficiently compute approximations x̃1, x̃2, . . . to the sequence
x1, x2, . . . given by

x̃i = Mx0 (̃xi−1 − x0). (24)
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Fig. 3 Illustration of the action
of the map Φ in the case of
unperturbed Keplerian motion (a)
and with small perturbations (b),
with the projection of the first
two iterates x1, x2 into the p − f
plane. In b also a radius of
convergence is shown

(a) (b)

Being a polynomial expansion of the true map expanded around a given initial state x0,
the HOTM M has some radius of convergence around the expansion point x0 within which
it will accurately represent the original map. The size of this radius depends strongly on the
dynamics and the period P , the expansion point, and the expansion order of the polynomial.
The problem of obtaining an estimate for radius of convergence is addressed in Sect. 4.5.

4.2 Autonomous perturbations

We now apply the HOTM method specifically to the dynamics defined in Eq. (3) with only
autonomous perturbations. As the equations of motion for p, f, g, h, k in Eq. (3) decouple
from the motion of t , for a first discussion we can consider only the reduced state vector
x = (p, f, g, h, k), while ignoring time evolution.

Since the variable L represents an angle in modified equinoctial elements, the dynamics
are periodic in L with period P = 2π as required by Eq. (20). The sequence xi defined in
Eq. (22) represents the state of the spacecraft after i revolutions in the osculating modified
equinoctial elements. That is

xi = x(L = 2π i).

In pure Keplerian motion the modified equinoctial elements p, f, g, h, k are constants of
motion. Thus for Δ = 0 in Eq. (3), the map Φ is represented by the identity

Φ(x) = x

and hence the HOTM M is given by

Mx0(δx0) = x0 + δx0.

This situation is illustrated in Fig. 3a.
We make the following observations:

1. Because Φ is a linear function (the identity), the polynomial expansion M is exact and
converges everywhere;

2. The iterates of xi stay close to x0, in fact xi = x0;
3. Since M is exact and has no truncation error, we have that x̃i = xi = x0.

As we move to perturbed Keplerian motion, all of these properties disappear. Φ becomes
non-linear, and the HOTMMx0 only converges in some neighborhood of x0. The xi are not
constant any more, and due to the truncation error inM in general x̃i �= xi . However, since
the perturbations Δ are small, it is reasonable to assume that the iterates xi remain close to
x0 for some number of revolutions, as illustrated in Fig. 3b. This ensures that the map iterates
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x̃i remain within the map’s radius of convergence, which in turn ensures that the sequence
x̃i , if not exact, is at least an accurate approximation of xi .

We now return to the question of time evolution and the full state vector x =
(p, f, g, h, k, t). Unfortunately, time of course is monotonously increasing with L , and thus
the time component ti of the iterates xi never stays close to t0. Fortunately, in the case of
autonomous perturbations this has absolutely no effect on the accuracy of the method as the
HOTM M converges for all t , as explained in the following.

First, consider again the case of purely Keplerian motion. Here the time T for one full
revolution in ϑ (and since � and ω are constant equivalently in L = �+ω +ϑ) is given by

2π
√
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When computing the HOTM Mx0 , which is the Taylor expansion of Φ around x0, the
non-trivial dependence T (p, f, g) is automatically expanded as a Taylor series around the
reference values p0, f0, g0. As the dependence is non-polynomial, this expansion has a
limited radius of convergence around p0, f0, g0. As a result, while the non-time elements of
x̃i in the case of unperturbed motion are always propagated exactly, the time component t̃i
even in the unperturbed case, is accurate only if p, f, g are close to p0, f0, g0 respectively.

An important observation, however, is thatΦ is linear in the remaining elements, h, k, and
t , and thus the Taylor expansionM is exact for any value of h, k, t . In particular, this means
that the radius of convergence of M in t is infinite, i.e. the map converges for all t . As long
as pi , fi , gi are near p0, f0, g0 respectively, even if ti is already far from t0 the map iterate
t̃i+1 will still be an accurate approximation of ti+1. This situation is illustrated in Fig. 4a.

Moving from the unperturbed to autonomously perturbed dynamics does not change the
situation of time propagationmuch. Now that perturbations are included, the period T for one
revolution in L will not be just a function of p, f, g any more, but depend on all the non-time
elements p, f, g, h, k. However, as the dynamics are autonomous, the time t itself does not
influence the period T . This important observation means that only the time component of
Φ retains a (linear) dependence on t and hence M still converges for all t . This situation is
illustrated in Fig. 4b.

4.3 Non-autonomous perturbations

As has been demonstrated in the previous section, in the case of autonomous dynamics the
accuracy of the HOTM method is not affected by the times ti , or their distance from t0.
Unfortunately, once non-autonomous perturbations are considered this is not the case any
more. Once the perturbationsΔ depend explicitly on the time t , all components ofΦ have an
explicit, non-linear time dependence and thus also the HOTM Mx0 is nonlinear in t . Taken
by itself this is no problem, the HOTM Mx0 still represents a good approximation of Φ in
some neighborhood around x0. In particular, the map is accurate in some time interval t0±rt .
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Fig. 4 Illustration of the action
of the map Φ in the case of
unperturbed Keplerian motion (a)
and with small perturbations (b),
with the projection of the first
two iterates x1, x2 into the p − t
plane. In both cases also the
radius of convergence is shown,
which becomes a strip as the
radius of convergence in t is
infinite

(a) (b)

However, unlike the non-time elements, time is monotonously increasing and unbounded.
Thus for any dynamics there will be a number of revolutions Nmax such that ti − t0 > rt for
all i > Nmax, and consequently independently of the other elements the iterates x̃i can only
be accurate up to i = Nmax. Depending on the size of the radius of convergence rt as well as
the period T , this may significantly limit the number of revolutions the map can be used for.

The typical period T of an orbit around Earth is on the order of hours or at most days.
The size of the radius of convergence rt , on the other hand, is determined by the specific
time-dependence of the perturbation. If the time dependence is weak, that is the perturbation
only changes very little over one revolution, then the Taylor expansion of the perturbation
will converge well over large time spans.

This is the case, for example, with perturbations related to the Sun such as solar radiation
pressure or solar gravity. The period of the motion of the Earth around the Sun is one year, the
Taylor expansion of the Earth ephemeris therefore will converge well over many revolutions.
However, the situation is already different for the perturbation due to the Moon. The Moon’s
period is only about 28 days, and the perturbation due to the Moon position changes much
more quickly than that due to theSun. TheTaylor expansion of the lunar perturbation therefore
only converges over a smaller time range rt and may be the limiting factor in determining
the number of revolutions a map can be used for.

The main way to increase the time validity of the map is to increase the expansion order
of the HOTM. However, in order to save computational time, instead of computing the entire
map up to higher order in all variables, only the order of the time variable t is increased. The
effect is that the radius of convergence rt for time t increases, while the (already sufficient)
radius of convergence for the other variables remains unchanged. In the test case presented
in this work we select order 4 or 5 for spacial variables and order 12 for time. This choice is
motivated by the observations from the autonomous case and the technical restriction of the
COSY INFINITY DA implementation that requires weighted orders to be odd multiples of
each other.

As a last remark, it has to be stressed that the choice of the expansion point plays a key
role in maximizing the utility of a HOTM in the presence of non-autonomous perturbations.
Instead of expanding around the initial time t0, it is beneficial to expand around time t0 + rt .
The reason is that the convergence radius of a polynomial expansion is typically symmetric.
That is, the polynomial expansion around t∗ will converge in an interval of the form [t∗ −
rt , t∗ + rt ]. Choosing t∗ = t0, we therefore obtain a Taylor expansion converging on [t0 −
rt , t0 + rt ]. However since time is monotonously increasing, we will never evaluate the left
half of the interval [t0 − rt , t0] and the usable interval is limited to [t0, t0 + rt ]. If, on the
other hand, we choose t∗ = t0 + rt the interval in which the expansion converges becomes
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[t0 + rt − rt , t0 + rt + rt ] = [t0, t0 + 2rt ], thus doubling the time for which we can use the
map. Of course rt typically is not known exactly ahead of time, but a rough estimate can be
obtained as outlined in Sect. 4.5.

4.4 Advanced HOTM techniques

In this section we briefly introduce two advanced features, namely the capability of mapping
many initial conditions and of enabling sensitivity analyseswith respect to systemparameters,
that can contribute to widen the set of applications of the HOTM method.

4.4.1 Propagation of set of initial conditions

An important feature of the HOTM method, both for autonomous and non-autonomous
dynamics, is that there is no need to recompute the HOTMs if new initial conditions x j

0 (with

j = 1, . . . , M) need to be propagated. For each initial condition x̃ j
0 = x j

0, the associated
state after i orbital revolutions is obtained by the recursive definition

x̃ j
i = Mx0 (̃x

j
i−1 − x0). (25)

Thus, for any additional initial conditions the orbit propagation is reduced to the fast
evaluation of (25). As before, in order for the iterates x̃ j

i to be accurate it is necessary that

all iterates, and in particular the initial condition x̃ j
0, lie within the radius of convergence of

Mx0 . That is to say, the initial conditions x j
0 must be close to x0.

Consequently, this feature is particularly relevant when entire sets of similar initial con-
ditions need to be propagated, as is the case for sensitivity analysis, state estimation, or
debris-cloud evolution. As the examples in Sect. 5 show, the computational time to evaluate
the map Mx0 is negligible compared to numerical integration, allowing the propagation of
clouds of hundreds of thousands of points at virtually no computational cost.

4.4.2 Expansion with respect to parameters

When running sensitivity analysis it is often required to assess the sensitivity of a system not
only to initial condition, but also to model parameters, as for example atmospheric density.
Furthermore, in the study of debris-cloud evolution, each initial condition corresponds to a
different physical object, characterized for example by a different value of A/m. The HOTM
method can be easily adapted to efficiently deal with such situations.

As explained in Sect. 4.1, the HOTM Mx0 is obtained with a DA integration of the
dynamics starting from the DA initial condition [x0] = x0 + δx0. Let us now consider the
problem of computing an approximation ofΦ(x, q), in which we have highlighted explicitly
the dependence of Φ on a vector of parameters q. In the HOTM approach the only necessary
adjustment in computing the approximation of Φ(x, q) is to perform the DA integration in
which also the parameters are initialized as DA variables, i.e. [q] = q + δq. The result
is the HOTM Mx0,q which can be now repeatedly evaluated to efficiently propagate, for
many orbital revolutions, different initial conditions with different values of the parameters
q.

In generalMx0,q is nonlinear in q and thus it represents a good approximation ofΦ(x, q)

in some neighborhood around x0 and q. Furthermore, as each iterate of the map is also a
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function of q, the evaluation of the map for values of the parameter far from the nominal one
can quickly reduce its accuracy.

4.5 HOTM accuracy estimation

The main feature of the HOTM method is to increase the efficiency of orbital propagation.
This is achieved by replacing computationally intensive numerical propagationswithmultiple
evaluations of the HOTMmapMx0 . The main limitation of the approach is that the map can
be used as long as it produces results with errors below an acceptable threshold εmax.

If we define the maximum error of the HOTM method after N iterates as

εN = max
i=1,...,N

||̃xi − xi ||,

the map Mx0 can be used as long as εN < εmax. Overall, we can say that the accuracy is
affected by the orbital regime, the perturbations included in (3) (which cause the deviation
from Keplerian dynamics), the expansion order, and the total number of iterates N . In order
for the HOTM method to be useful in practice it is required to obtain an estimate of the
maximum number of revolutions Nmax for which the map is sufficiently accurate, i.e. it is
necessary to estimate the radius of convergence of Mx0 .

In general it is difficult to a priori establish bounds on the radius of convergence. How-
ever, while computing the iterates x̃i there are relatively simple techniques to estimate the
polynomial truncation error based on the size of the contribution from the highest order terms
of M (Wittig et al. 2015). This method is based on the observation that in well converging
polynomial expansions the higher order terms must converge towards zero. By evaluating
only the highest order terms of the given expansion, and comparing their magnitude to that
of the other lower-order terms, an estimate on the size of the truncation error can be made.
A more sophisticated estimate involves the analysis of the size of the coefficients of each
order, and fitting an exponential curve to the resulting values (Wittig et al. 2015). From this,
a usually more accurate estimate of the truncation error and hence the convergence radius
along each expansion variable could be obtained also a priori.

In this work, however, we forgo a detailed theoretical analysis of the convergence radius
based on the analysis of the map M. Instead, a heuristic approach to estimate the radius of
convergence is adopted. This is based on running experiments for different orbital regimes,
perturbations, and relevant spacecraft properties (mainly A/m) for fixed expansion orders.
This allows us to define a look-up table with reasonable estimate of Nmax for a prescribed
accuracy. Our analysis is assessing the accuracy by comparing the results with fully numerical
propagations.

In the case of non-autonomous perturbations the determination of the radius of conver-
gence for the time variable, rt , warrants an additional observation. Considering that typical
non-autonomous perturbations, such as luni-solar perturbations, are sinusoidal perturbations
of different periods, estimating rt analytically is possible. As an example, a Taylor expansion
of the sine or cosine around 0 with expansion order 10 can cover approximately one period
from−π to π with an absolute error of less than 1×10−3. This means that for that accuracy,
in the best case rt is on the order of a half-period of the perturbing force. In practice, however,
rt is usually at least a factor of 2 smaller. This is due to the fact that the perturbing force
is not only a simple trigonometric function, but a combination of trigonometric functions
to describe the position of the body followed by further operations e.g. to compute inverse
distances, which negatively affect the convergence properties.

123



A. Wittig, R. Armellin

Table 1 Test case definitions Test case A B C
Reference mission QuickBird II ATV-5 ESC-A

(ARIANE)

Epoch (MJD2000) 5337.16 5337.23 5195.16

a (km) 6745.9 6792.3 24361.0

e (–) 0.001334 0.001877 0.7280

i (rad) 1.6936 0.9017 0.0517

� (rad) 5.0697 3.1683 5.9375

ω (rad) 2.6271 0.3751 3.0801

A/m(m2/kg) 0.0095 0.003 0.0115

CD (–) 2.2 2.2 2.2

5 Test cases

In the following section, we demonstrate the performance of the HOTM method by apply-
ing it to three different initial orbital conditions for which different perturbations become
predominant. We select as the reference initial conditions those of the QuickBird II mission
(labeled test case A), ATV-5 while in parking orbit (labeled test case B), and the ARIANE
5 upper stage ESC-A after the insertion of ASTRA 5B into a GTO (labeled test case C),
as reported in Table 1. With this selection we can show the performances of the HOTM
approach for a good range of orbital parameters (in particular for various semi-major axis,
inclination and eccentricity). We use each test case to analyze in detail a specific aspect of the
proposed method. In particular, test case A is used to study the performance of the approach
when J2 and drag perturbations are dominating. It also will be used to illustrate the effect
of the computation order on the performance. Additionally, in test case B we study HOTM
performances when considering continuously propelled low-thrust trajectories. Finally, the
main focus in test case C is to assess the capability of the method to treat non-autonomous
perturbations.

For each case, we first perform a full numerical integration of the system to establish
what we consider the true trajectory. Then we employ the HOTM method to propagate the
same initial condition. The results of the two methods are compared at the appropriate values
of L to compute the error after each revolution. For all test cases the HOTM is computed
to order 5 in each spatial variable. Order 12 is used for expansion in the time variable in
case of non-autonomous perturbations. For test case A also an analysis of the effect of the
computation order on the accuracy and computational time is presented. All simulations are
run on a MacBook Air with a 1.8GHz Intel i5 CPU and 4 GB RAM.

5.1 Test case A: autonomous perturbations

The reference orbit of test case A is a frozen, low-altitude, sun-synchronous orbit. The most
significant perturbations in this case are Earth’s oblateness J2 and atmospheric drag.

Figure 5 shows the results of orbital propagation when only J2 perturbation is accounted
for. In the figures where the evolution of orbital parameters is analyzed we indicate with a
grey line the results of the numerical integration, with a solid black line those of the same
numerical integration evaluated at L = 0, and finally a dashed line shows the results of the
the HOTM (at L = 0 by construction).
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Fig. 5 Test case A: propagation under J2 perturbation. a Semi-latus profile, b f profile, c g profile, d h
profile, e k profile, f accuracy analysis

As expected, Fig. 5a highlights that when only J2 perturbation is active there is no secular
variation in the semi-latus rectum. Figure 5 shows the absolute error in each orbital variable
as a function of the number of revolutions in logarithmic scale. As the physical meaning of
the modified elements p, f, g, h, k is not intuitively clear, the revolutions after which the
the error in position and velocity exceeds for the first time a given threshold is also marked.
The two pairs of thresholds chosen are 1km and 1m/s respectively, as well as 10 km and
10 m/s. These thresholds can be considered representative as this is the range of positional
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Table 2 Overview of the validity of each HOTM and computational time comparison in the various cases

Test case Perturbations Validity CPU sec (revs)

Days Revs HOTM Num

A J2 19.1–26.4 299–414 1.77 (500) 9.56 (500)

J2, drag 19.1–26.4 299–414 1.83 (500) 9.68 (500)

B J2, drag 7.8–10.6 122–165 1.73 (200) 3.90 (200)

Rad thrust Always Always 0.26 (4000) 25.01 (4000)

Tang thrust 143–152.4 1094–1121 0.24 (1100) 8.77 (1100)

J2, drag, rad thrust 7.8–10.6 122–165 1.78 (200) 4.02 (200)

J2, drag, tang thrust 5.3–7.4 81–112 1.79 (150) 2.99 (150)

C J2, drag 21–28.8 49–67 2.96 (80) 3.39 (80)

J2, drag, Sun 18.8–25.8 44–60 16.95 (80) 5.27 (80)

J2, drag, Sun, Moon 6.1–7.4 15–18 24.28 (20) 2.04 (20)

errors associated to two line elements when evaluated at their corresponding reference epoch
(Vallado et al. 2006).

These lines serve as an indication of the accuracy of the propagated orbit in real space. In
particular, Fig. 5f shows that the approximation error is lower than 1 km and 1 m/s for 299
revolutions (approximately 19.1 days), and lower than 10 km and 10 m/s for 414 revolutions
(approximately 26.4days), as summarized inTable 2.Note that in both cases thefirst threshold
to be violated is in the velocity while at that point the position error is still below the set
threshold. The main contribution to the error stems from the h and k variables, which exhibit
a total variation of ≈0.22 and ≈0.18 respectively over the first 299 revolutions. This gives a
first idea of the convergence radius of these two variables in this orbital regime.

The computational time to compute the HOTM M is 1.77 s and a negligible 0.031 s is
required for the propagation by evaluatingM for 500 revolutions. The computational time to
perform the same number of revolutions by numerical integration is 9.56 s, as summarize in
the Table 2. Note that the time forM evaluation is always negligible with respect to the time
for building themap itself. As a result we can state that forHOTMapproach the computational
time does not depend on the propagation window, whereas for numerical propagation the
computational time is proportional to the number of revolutions propagated. Thus, the more
turns the map is valid for, the larger are the savings in computational time with respect to
numerical propagation.

Figure 6 summarizes the most relevant changes to the results when also perturbation due
to drag is accounted for. As shown in Fig. 6a the semi-latus is now correctly characterized
by a secular decrease due to drag. It is interesting to note that the accuracy plot in Fig. 6b
is almost identical to that of Fig. 5f, and the validity of the HOTM method is exactly the
same. This is due to the fact that the introduction of drag does not directly affect the h and
k variables, as can be seen from Eq. 2. Thus, the error profiles for h and k are essentially
the same as in the drag-free case, and the error threshold is violated after exactly the same
number of orbital revolutions as in the previous case.

To illustrate the effect of the computation order on both the accuracy and the computational
efficiency of the method, we performed the analysis on the case of J2 perturbations only at
various computation orders. Figure 7 shows the validity of the map for the 1km, 1m/s and
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Fig. 6 Test case A: propagation under J2 and drag perturbations. a Semi-latus profile, b accuracy analysis

Fig. 7 Test case A: dependence
of HOTM validity and
computational time on
computation order
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10km, 10m/s accuracy bounds along with the computational time required to compute the
map as a function of the computation order.

It is evident that the computational time grows exponentially with the order, which is
expected as the number of coefficients in each polynomial grows exponentially with the
order. The validity of the map, meanwhile, in both cases increases about linearly with the
order. For this case, we identify computation order 5 as the optimal order from the plot,
where the trade-off between time to compute the map and the validity of the map is optimal.
Depending on the specific requirements, also order 4 (faster computation, shorter validity)
and order 6 (slower computation, longer validity) may be appropriate.

Going to higher orders becomes less efficient as the computational effort required to
compute the HOTM grows too large. For reference, also the computational time for a purely
numerical integration of the same orbit is shown. It is evident that around order 7 the break
even point is reached, where the numerical integration becomes faster than the HOTM for
the propagation of a single orbit. However, we remark that the HOTM, once computed, can
easily be used to propagate similar initial conditions without additional computational cost.

5.2 Test case B: low-thrust trajectories

The initial conditions of the second test case represent a quasi circular orbit with inclination
of 51.66deg, i.e. the orbital inclination of the International Space Station which is the final
target for the ATV-5 mission.

The first set of Fig. 8 shows the results of orbital propagation taking into account both
J2 and drag perturbations. Figure 8a clearly shows the secular decrease of the orbital energy
and hence the semi-latus due to drag, as is expected for a near circular orbit such as this. By
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comparing Fig. 8f with Fig. 6b it becomes apparent that the validity of the HOTM is reduced
from 299–414 to 122–165 revolutions (each pair of number corresponding to one of the two
thresholds). The main reason of this validity reduction lies in the different inclination of the
orbit which causes an increased variation of the h and k elements. In fact, considering their
variation instead of the number of revolutions, it is clear that the change of h of ≈ 0.1 and
that of k of ≈0.3 is of the same order as in test case A. Thus the convergence radius for
both variables remains effectively unchanged, however their rate of change per revolution is
now much larger and hence the number of revolutions is reduced. Also as in test case A, the
velocity limit is the first one to be reached.

The main focus of this second test case is to show the performance of the HOTMmethod
when continuously propelled trajectories are considered. Figure 9 shows the results when a
radial thrust, providing a constant acceleration of 3 × 10−4 m/s2, is the only active pertur-
bation. As expected from Eq. (2), the only orbital parameters affected by radial thrust are f
and g, while all remaining ones are constants of motion. After 4000 revolutions the accuracy
of the HOTM is of order 1 × 10−13 for both these variables, rendering the HOTM valid
for virtually any number of revolutions. Truncation errors of the HOTM representation in
this case are likely to be smaller than the numerical errors in the numerical integration and
evaluation of the map.

In Fig. 10 the case with pure tangential thrust, with the same acceleration as for the radial
case, is examined. The main effect of the thrust is to increase the orbital energy, as shown by
Fig. 10a. It is remarkable how a single HOTM can accurately propagate a spiral trajectory for
more than 140 days. The reason the errors increase after 1100 revolutions is not related to the
HOTM method itself, but to the fact that at this point the dynamics for L become singular.
Figure 10b also shows that in this case the variable p is responsible for reaching the HOTM
validity limit. In fact note that the HOTM is considered valid until the error on p reaches the
thresholds of 1 and 10km respectively.

Using the technique described in Sect. 4.4.2, the HOTM can be computed with the thrust
magnitude as a variable parameter. This provides us with an analytical approximation of the
dependence of the orbital parameters on the thrustmagnitude. Such aHOTMcan be profitably
used to design orbit raising phases. In addition, the HOTM approach can be easily modified
to include thrust laws that are anomaly dependent, thus further increasing the versatility of
the method in mission design phases.

Finally, in Fig. 11 J2 and drag perturbations along with either radial and tangential thrust
are considered. By comparing Fig. 11a with 8f it is clear that the introduction of radial thrust
has no impact on map validity, which is driven by the change in h and k variables. On the
other hand, the tangential thrust contributes to reduce the validity of the map from 122 to
165 revolutions to 81–112, due to the increased errors in the p variable.

5.3 Test case C: non-autonomous perturbations

The goal of the third test case is to assess the performances of the HOTM method in the
presence of non-autonomous perturbations. For this reason aGTO, characterized by both high
eccentricity and semimajor axis aswell as low inclination, is selected. A full dynamicalmodel
is considered in this case, including the effect of J2, drag, luni-solar gravitation perturbation,
and solar radiation pressure. This represents the most critical dynamical framework for the
HOTM method as time expansion is necessary to treat the non-autonomous perturbations.

In Fig. 12 the results achieved in terms of orbital parameters evolution and accuracy are
depicted. As indicated by Fig. 12f the validity of the HOTM is only 15 orbital revolutions,
which corresponds anyway to more than 6 days, due to the larger orbital periods compared
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Fig. 8 Test Case B: propagation under J2 and drag perturbations. a Semi-latus profile, b f profile, c g profile,
d h profile, e k profile, f accuracy analysis

to test cases A and B. We remark that by choosing the time expansion point not at the initial
time, as done here, but at the estimated radius of convergence as described in Sect. 4.5, the
validity of the HOTM can essentially be doubled.

A validity of 6 days corresponds to a little under 1/4 period of the Moon, which is the
main factor in determining the radius of convergence in time for this map. Figure 13 serves
to further support this analysis. When the perturbation of the Moon is neglected, and only
solar perturbations are modeled, the validity of the HOTM jumps from 15 to 18 revolutions
to 44–60 as shown in Fig. 13a. If we finally also neglect the perturbations associated to
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Fig. 9 Test case B: propagation with radial thrust only. a f profile under radial thrust, b g profile under radial
thrust
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Fig. 10 Test case B: propagation with tangential thrust only. a p profile under tangential thrust,
b accuracy analysis under tangential thrust

the Sun, the validity of the HOTM extends to 49–67 revolutions. These findings confirm
our previous analysis that in case of non-autonomous perturbations the time frequency of
the perturbation is the key factor. The region of validity decreases drastically when non-
autonomous perturbations with relatively high frequencies compared to the orbital period
are included. Slow perturbations such as the Sun, on the other hand, have only a small impact
on the validity of the HOTM.

As indicated in Table 2, when the full set of orbital perturbations is considered the compu-
tational time to propagate 20 revolutions with the HOTM method is 24.28 s. This is mainly
due to the need to expand the time variable up to order 12. The computational time to perform
the same number of revolutions by numerical integration is only 2.04 s. As can be seen, in this
case the map method for propagating a single initial condition is not able to recuperate the
extra time spent in computing the high order time expansion compared to direct integration.
However, the difference between both methods is only about a factor of 10. Thus propagating
a set of initial conditions (as required in many astrodynamics applications when uncertainties
have to be taken into account) consisting of only 10 points already reaches the break-even
point between both methods. Typically, the number of samples necessary to produce mean-
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Fig. 11 Test caseB: propagation under J2, drag, and low-thrust perturbations. aSemi-latus profile under radial
thrust,
b accuracy analysis under radial thrust, c semi-latus profile under tangential thrust, d accuracy analy-
sis under tangential thrust

ingful statistical analysis are of course much larger, thus giving the advantage to the HOTM
method in those cases.

6 Conclusion

The HOTMmethod introduced in this paper is a powerful tool for efficient orbit propagation
in various orbital regimes subject to different perturbations. In many cases, particularly those
with autonomous perturbations, the HOTM method is several times more efficient than the
direct integration of the same dynamics even in the propagation of just a single orbit. Readers
familiar with other works on DA methods will recognize that this is a remarkable result, as
usually DA methods show their true potential only when used on a large number of initial
conditions.

In the case of typical autonomous perturbations, the HOTM is valid for very long times,
allowing the accurate propagation of orbits for hundreds if not thousands of revolutions. This
includes the case of constant thrust both in radial and tangential direction. We demonstrated
that the technique is still applicable to non-autonomous systems, as long as the frequency
of the time-dependent perturbation is lower than the frequency of the quasi-periodic motion.
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Fig. 12 Test case C: propagation in full dynamical model. a Semi-latus profile, b f profile, c g profile, d h
profile, e k profile, f accuracy analysis

This includes typical non-autonomous perturbations such as luni-solar gravity as well as solar
radiation pressure.

The examples shown in this work give an idea of the validity of the HOTM for different
perturbations and orbital regimes. Table 2 gives an overview of the number of revolutions
and the time for which the HOTM in each of the examples is valid.

Since the HOTM is only computed one single time by DA integration over one revolution,
subsequent propagation of orbits reduces to the simple and fast evaluation of a polynomial
map. Due to this, the time for even just the propagation of a single orbit is comparable to the
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Fig. 13 Test case C: impact of the non-autonomous perturbations on HOTM validity. a Accuracy analysis
under J2, drag, and Sun perturbations, b accuracy analysis under J2 and drag

time of direct numerical integration of the same single orbit. Considering the ability of the
HOTM to propagate tens of thousands of initial conditions at once, e.g. in the propagation of
a debris cloud, the transfer map method shows its true potential as the cost of the additional
propagations is nearly zero. In such constellations, the method greatly outperforms pointwise
integration as well as naive integration using DA for the full number of revolutions.
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