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Abstract 

From observation, we find four different strategies to successfully enable structures to persist 

over extended periods of time. If functionally relevant features are very large compared to the 

changes that can be effectuated by entropy, the functional structure itself has a high enough 

probability to erode only slowly over time. If the functionally relevant features are protected from 

environmental influence by sacrificial layers that absorb the impinging of the environment, 

deterioration can be avoided or slowed. Loss of functionality can be delayed, even for complex 

systems, by keeping alternate options for all required components available. Biological systems 

also apply information processing to actively counter the impact of entropy. The latter strategy 

increases the overall persistence of living systems and enables them to maintain a highly 

complex functional organisation during their lifetime and over generations. In contrast to the 

other strategies, information processing has only low material overhead. While at present 

engineered technology is far from achieving the self-repair of evolved systems, the semibiotic 

combination of biological components with conventionally engineered systems may open a path 

to long-term persistence of functional devices in harsh environments. We review nature’s 

strategies for persistence, and consider early steps taken in the laboratory to import such 

capabilities into engineered architectures. 
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Introduction 

Designing systems that are required to function over long periods has been one of the key 

engineering challenges for the exploration of space and other extreme environments. If we 

review the history of engineering, the direct knowledge gained from archaeological artefacts is 

limited to ancient materials and methods. To employ more recent technologies one can, 

however, draw on general observations about objects that have persisted over extended 

periods of time and on strategies employed by biological systems. Four general strategies 

emerge (Fig. 1). 

    
Fig. 1. Engineering principles for persistent structures and systems. 

 

 

One strategy is simplicity: If all functionally relevant features are very large compared to the 

changes that can be effectuated by the environment, the system will erode only slowly over 

time. It is then possible to design a system in which the decay over the time period under 

consideration is negligible with regard to its function. Another strategy is isolation: If the 

functionally relevant features are protected from environmental influence by sacrificial layers 

that absorb the impinging of the environment, deterioration of the protected core can be avoided 

over the period of interest. Both simplicity and isolation are principles that aim to enhance 



C. Prothmann and K.-P. Zauner, Semibiotic Persistence, Journal of the British Interplanetary Society (JBIS), 2014, 
Volume 67, Number 7-9, pp. 314-321 (http://www.jbis.org.uk/paper.php?p=2014.67.314) 
 
 
 

 
 
 
  

4 

system resistance. The Temple Mount platform in Jerusalem and the Egyptian Pyramids could 

serve as examples of, respectively, simplicity and isolation. Arguably, the Chinese Wall requires 

more active maintenance and would be closer to resilience in Fig. 1, if manual repair is viewed 

as an integral part of the architecture. Redundancy of critical system modules has been applied 

to many modern engineering challenges, including nuclear reactors and space exploration 

devices, and is particularly useful if there is only a limited possibility of repair during operation 

[1–3]. Simplicity, isolation and redundancy are engineering principles, which have been 

successfully battling with system disturbances, however, only to a certain point. Historical 

examples of resistance engineering clearly demonstrate that these structures decay and that 

deterioration can only be counteracted by active restoration from outside of the system. 

Furthermore, structures and systems with a high level of resistance exhibit a very low overall 

functional complexity. Maintaining highly complex functional systems requires other strategies to 

ensure functional integrity. Although redundancy is certainly one option to address this 

challenge, an exclusive reliance on redundancy is an inefficient solution. 

 

All three principles discussed so far are not well suited for space-travel due to their inefficient 

use of resources and material. Long-term functionality can be also achieved by actively 

countering deterioration through using information processing. The system-inherent capability of 

repairing complex functional systems has only been observed in biological systems that use 

information processing to actively counter the impact of entropy [4–7]. Evolution has optimized 

biological systems to resist, respond, and recover from environmental disturbances [7, 8]. 

Organisms exemplify a range of solutions, combining structural resistance, redundancy, and the 

ability to actively self-repair, to achieve persistence and maintain functionality [7]. Over the past 

six decades, design principles derived from biological systems have found their way into 

engineering, material sciences and architecture. Biomimetics [9] has become a growing field 

that focuses on studying mechanisms, processes and structures of biological systems with the 

goal of imitating solutions optimized over evolutionary time scales [10]. Biomimicry-inspired 

applications include biomaterials [10, 11], biomechanics and robotics [12], and architecture [13, 

14], as well as algorithms for machine learning [15] and optimization [16]. Practical experience 

with these application domains has, however, demonstrated that biomimetic approaches - while 
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in some areas competitive with existing engineering methods - in many instances do not live up 

to the expectations generated by the performance of organisms. Obstacles that stand in the way 

of more successful biomimetic architectures arise from two sources. Firstly, the limitations in 

fabricating specialised materials, such as nature produces in the form of customised 

macromolecules. And, secondly, from the limited integration density of manufacturing processes 

compared to the developmental processes available to nature. A case in point is the integration 

of electronic circuits that has seen exponential advancement over the past half century. Even 

after its astonishing progress, a connection density comparable to that achieved by natural 

neuronal networks - where the average number of inputs received by a single neuron in the 

mouse cortex is around 8000 [17] - is not in sight.  

It appears unlikely that in the near term the gap between synthetic and natural materials and 

functional systems will significantly narrow. As a consequence, it is attractive to make use of the 

materials and systems available in nature by integrating them with conventionally engineered 

components and devices into hybrid biosystems [18, 19]. Such semibiotic architectures 

incorporate biological components into a technical setting to transfer some of the desirable 

qualities of biosystems to the resulting architecture [20]. In-situ replenishment of complex 

components that have degraded, dynamic reallocation of material and energy resources, and 

self-repair following damage are typical examples of what can be achieved in semibiotic 

architectures - but what is currently out of reach for conventional engineering. 

The developments at the interface between engineering and biology are summarized in Fig. 2. 

Biology, on the one hand, supplies ideas for solutions to engineering problems, giving rise to the 

field of biomimetic engineering. In this field, the concepts inspired by biology are implemented 

with conventional fabrication methods and materials. Both, methods and materials fall far short 

of what nature has available. For example, growth processes and self-assembly allow for 

biological systems with high interconnection density, and macromolecules with customized 

functionality enable high integration density in organisms. In contrast, the limitations of the 

materials and fabrication methods available in engineering hamper biomimetic engineering. 

However, the interfacing between conventionally engineered systems and biomimetically 

engineered systems is typically not difficult. Biology, on the other hand, acts as a source of 

components for hybrid devices developed in the field of semibiotic engineering. Here the key 
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challenges are the lack of direct control over the autonomously acting biological subsystem and 

the development of suitable interfaces between biological and conventionally engineered 

subsystems. 

At present, most of the interface development falls on the side of the conventionally engineered 

subsystems. However, initial steps to reengineer organisms to optimise the interface from the 

biological side have also been taken [21]. The engineered adaptation of organisms specifically 

for integration with conventional architectures is becoming increasingly feasible as the field of 

synthetic biology progresses, and future semibiotic architectures are likely to comprise 

engineered biosystems rather than components extracted from nature. Before we consider the 

contribution that information processing can make to the persistence of semibiotic systems, it 

will be instructive to consider examples of resilience in biological systems.   

 

 
Fig. 2. Engineering approaches. 
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Persistence Strategies of Biological Systems  

Biological systems have developed strategies and mechanisms of persistence - resistance and 

resilience - on a molecular, cellular and organismic level. All of these strategies differ in their 

metabolic cost, which has led to the evolution of different mechanisms or combinations of 

mechanisms employed by individual species [7]. Information processing, which is at the core of 

all life, enables biological systems to maintain their state by mechanisms such as self-repair on 

all levels of organization [4, 6, 7, 22]. Cells of single and multi-cellular organisms are constantly 

exposed to exogenous (environmental) as well as endogenous challenges to their structural, 

functional and informational integrity. Damaging agents, which impair DNA and protein function, 

include metabolic by-products (such as free radicals), chemicals, and high-energy radiation [23]. 

DNA, which is the repository of genetic information, is under constant self-repair by a range of 

mechanisms present in prokaryotic and eukaryotic life forms. DNA repair, which involves 

multiple and overlapping processes (partial redundancy), relies on proteins that can be 

inactivated by chemicals or oxidative radicals formed by radiation [24]. Organisms with high 

radiation tolerance have a highly developed antioxidant system, which actively protects proteins 

from oxidative damage, efficient DNA repair mechanisms, and processes to recognize and 

degrade damaged proteins [25]. Components of these processes are further induced after 

radiation exposure to increase cellular protection and allow for fast recovery from damage [26]. 

Bacteria such as Deinococcus radiodurans, some fungi and animals, including some rotifers 

and tardigrades, show an extraordinary tolerance to radiation [26–30]. These organisms also 

demonstrate exceptional robustness towards other extreme environmental conditions and are 

referred to as extremotolerant or extremophiles, capable of surviving high radiation, desiccation, 

low temperatures, high pressure, and even vacuum. Tardigrades, which are animals below one 

millimetre in size and considered phylogenetically related to arthropods [31], are able to survive 

exposure to the vacuum of space and even solar radiation [32]. Studies carried out with other 

prokaryotic and eukaryotic organisms indicated that some bacterial spores, some microbial 

communities, and some forms of lichens have the ability to survive prolonged exposure to space 

conditions [33, 34].  
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Many extremophiles are capable of coping with highly challenging environmental conditions in a 

dormant as well as in a metabolic active state [35]. These life forms possess mechanisms to 

actively respond to extreme physical environments allowing them to transition into a protective 

dormant state, such as anhydrobiosis, which is characterized by a very low metabolic rate. The 

transition back into a metabolically more active state is carefully orchestrated to enable the 

repair of sustained damage, e.g. DNA repair, before the cells become fully metabolically active. 

Depending on the environmental extreme, dormant cells are not completely metabolically 

inactive. Studies of the metabolic rate of organisms in permafrost indicate that microorganisms 

can retain a very low metabolic rate, which could enable them to actively counteract degradation 

and repair damage [36, 37]. Extremophiles have evolved an extraordinary ability to limit the 

impact of environmental disturbances and to actively repair molecular damage at low and active 

metabolic rate. Several organisms have taken it even a step further and thrive in highly 

radioactive environments such as nuclear waste or power plants. Deinococcus radiodurans 

exhibits an unmatched level of resilience against multiple physically extreme environments, 

including high levels of radiation, which seems to be based on having up to 10 copies of its 

genome (redundancy) [38], highly developed mechanisms for actively protecting proteins from 

radiation-induced oxidation [39], and DNA repair (information processing) [40].  

Melanised fungi, which have been reported in places such as the Chernobyl nuclear reactor, not 

only survive when exposed to ionizing radiation, they have also been described to show 

increased growth and are therefore referred to as radiotrophic fungi. The molecular mechanisms 

that promote increased cell growth are still being elucidated, though data indicates that some 

melanised fungi are able to effectively protect themselves from ionizing radiation (isolation) and 

repair radiation-induced damage (information processing) while enhancing their growth rate [28, 

41, 42]. Some authors hypothesise that these fungi are able to utilize radiation as an additional 

energy source [41]. 

 

Biological systems have developed astounding molecular and cellular mechanisms to ensure 

survival in harsh environments. Although organisms exhibit a certain level of redundancy and 

employ protective measures, e.g. melanin in case of the radiotrophic fungi (isolation), to 

increase their environmental resistance, self-repair of cellular functions (information processing) 
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is a key mechanism for achieving resilience.  

Slime moulds are organisms that undergo a complex life cycle including a single-cellular/mono-

nucleated, a unicellular/multi-nucleated (plasmodium), and a multi-cellular differentiation stage 

ending in a fruiting body carrying spores [43]. The plasmodium of Physarum polycephalum can 

reach a size measured in square meters and is basically one very large cell with millions of 

nuclei [44, 45]. The mechanical fragmentation of the plasmodium leads to smaller 

microplasmodia, which are capable of either fusing back to a macroplasmodia or individually 

undergoing the full lifecycle of Physarum polycephalum (redundancy) [46]. True multicellular 

organisms with complex bodies have also developed mechanisms to maintain and restore their 

overall structural integrity and function. Complex organisms establish their morphological 

features, including different cell types, tissues and organs, as a result of a development process 

[47]. Injuries to tissues and body structure trigger response mechanisms that contain the 

damage and aim to compensate for the loss of structure and function. Repair may lead to some 

structural but only limited functional recovery, unless compensatory growth is possible. 

Regeneration is a self-repair process that leads to the reconstitution of most, if not all, of the lost 

structures and functions. Plants and many animal species display regenerative processes [48]. 

Animal regeneration has been most extensively studied in invertebrates such as hydra and in 

vertebrates such as various amphibians. Stem cells that are capable of differentiating into 

various tissues are key to regeneration and have been identified in animals ranging from 

primitive sponges to mammals [48].   

Sponges represent an interesting example for investigating the relationships between structural 

resistance, organizational complexity, regenerative self-repair, and overall persistence. 

Interestingly, sponges, which were in the past mainly harvested for their skeletons, have 

become of interest for biomimetic engineering due to composite-like biomaterials of their 

skeletons, which might guide the development of novel biomimetic materials [49]. Recently, the 

structural design of sponges also served as an inspiration for innovative architecture of 

skyscrapers [50]. Sponges are sessile, mostly filter-feeding aquatic organisms that represent 

one of the earliest multicellular forms of animals [51]. The body plan of sponges consists of an 

outer and an inner layer of cells with the mesohyl that functions as an endoskeleton in between. 
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Instead of tissues in the classical sense, sponges have a cellular grade organization consisting 

of specialised and unspecialised cells supported by an endoskeleton with mineral and organic 

components. Sponges grow in a variety of shapes, ranging in size from less than a centimetre 

to giants measured in meters [52]. Pores and a canal system - through which water is actively 

circulated by the movement of the flagella of the choanocytes to ensure the supply of oxygen 

and food - characterize the basic body plan of sponges (Fig. 3). The morphology of sponge 

species can differ and range from cup shape, branching, or tubular to globular and encrusting 

forms [53, 54]. 

   

Fig. 3. Basic sponge anatomy with cross section, adapted from [54]. 

Although sponges have no nervous system or muscle tissue, they are capable of coordination 

and reacting to environmental changes. Sponges can control their feeding circulation by 

mechanisms that involve electrical impulses in response to sediments in their filtration system 

[55]. Further, they have been reported to undergo contractions to remove waste from their body 

system, which shows that sponges have some sensory capacity and the ability to coordinate 

movements [56]. Despite the fact that sponges are considered sessile, except for their larvae, 

some sponge species have demonstrated the ability to move or crawl short distances [57, 58]. 

Marine sponges contain complex microbial communities and interact with microorganisms such 

as bacteria and fungi on multiple levels [59]. One of the well-studied symbiotic relationships is 
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the metabolic interaction with photosynthetic cyanobacteria [60]. Microorganisms can contribute 

more than 35% of sponge biomass [61] and are suggested to assist in a variety of host 

functions, including nutrition, chemical host defence [62], and antifouling response [63] - and 

might also contribute to the structural rigidity of some sponges [64]. Different species of 

sponges vary in the morphology and composition of their skeletal structure, making them more 

or less prone to damage from environmental disturbances (isolation) [65]. The structural 

simplicity of sponges is exemplified by the lack of tissue, a limited number of cell types, and a 

highly flexible cellular level of organization. Sponges have extraordinary reconstitutive abilities 

as shown by the formation of functional sponges from dissociated sponge cells (redundancy 

and information processing) [66]. The regenerative faculty of sponges is attributed to the 

presumably totipotent archaeocytes and possibly choanocytes in some sponge species [67]. 

Molecular markers indicate that archaeocytes resemble stem cells, which would explain the 

exceptional ability of sponges to reconstitute and recover from injuries [68]. Sponge species 

differ in their strategies for improving their overall persistence by applying a species-distinctive 

balance between their ability to resist damage and the ability to recover from damage [65]. This 

has been documented in a large study that compared the extent of hurricane damage sustained 

by sponges and their ability to recover after 5 weeks [65]. The study indicates that sponges with 

strong resistance based on sturdy skeletons were on average better protected against damage. 

However, when these sponges sustained significant damage, they had a more limited ability to 

recover. As a consequence, more sponges with sturdy skeletons perished after the storm, which 

led the authors to conclude that there is an inverse relationship and trade-off between the ability 

to resist damage and the ability to recover from damage. The giant barrel sponges of the 

species Xestospongia muta, which shows a balanced mix between damage resistance and 

recovery, are assumed to be the longest-lived animals known, with a life-span exceeding more 

than 2,000 years [65, 69]. 

Information processing lies at the core of living systems and enables the self-sustainability of life 

by responding to internal and external changes on a molecular, cellular, organismal and even 

ecological level to ensure propagation and persistence [4-6, 22, 70]. Evolutionary selection has 

optimized biological systems to develop and employ diverse mechanisms for persistence, 

including self-repair up to the point of full regeneration. Although most organisms come with a 
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similar basic set of persistence mechanisms, which are critical for the sustainability and 

perpetuation of life, they can exhibit varying degrees of resistance and resilience approaches to 

improve overall persistence [7]. The ability of self-repair, however, remains the central trait for 

achieving long-term sustainability and persistence, even in extreme environments. Next we will 

turn to the question of how resilience, and especially the information processing aspect of it, can 

guide the design of persistent semibiotic systems for the exploration of extreme environments 

such as space. 

 

Towards Semibiotic Persistence 

The long-term survival strategies described in the previous section are so far not replicable in 

engineered systems. Semibiotic engineering, however, provides a pathway for importing 

capabilities of biological systems, such as self-repair, into subsystems of purpose-built 

architectures. To clarify the mechanism of biological persistence, it will be useful to take an 

abstract perspective on the role of self-repair in biological systems.  

If disturbances from the environment impinge on a simple functional system, it will degrade over 

time (Fig. 4). Entropy from the environment drives changes in the system. Because the system 

in this case is assumed to be simple, many of these changes will not move the system out of the 

subset of states in which it remains functional. Over time, the system will reach states in which it 

is only marginally functional and from which further impact from the environment can push it into 

a set of states of degraded functionality. For simple systems, the latter set is typically large and 

it will on average take significant time until the accumulation of damage leads to the destruction 

of the system. Entropy acts on the system without direction and consequently the transition 

probabilities among the sets of states - and accordingly the lifetime of the system - are 

determined by the relative size of the sets of states that correspond to a functional, degraded, 

and destroyed system. The dominant transitions for a simple system are illustrated in Fig. 4. 

Any transition backwards is exceedingly unlikely, because the set of functional states is much 

smaller than the set of degraded states, and this in turn is far smaller than the set of states 

commensurate with the system being destroyed. The vast size of the latter is symbolised by its 
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dashed boundary in the figure. Transition pathways with negligible probability, such as the 

backwards transitions and the direct transition from functional states to destroyed, are not 

shown in this and the following transition graphs.  

     

Fig. 4. Simple System 
 

If we consider, in contrast to the simple system, the situation for a complex non-biological 

system (Fig. 5), we find that more detailed requirements for the organisation and functionality of 

the system restrict the set of possible system configurations, which are functional. Similarly, the 

interdependencies in a complex system restrict the set of states that exhibit degraded 

functionality rather than no functionality. As a result, the entropy from the environment impinging 

on the system is likely to degrade the system or may even destroy it directly if critical 

components or links are affected. The more sophisticated requirements for a complex system 

also result in a much more rapid transition from a degraded state to the full destruction of the 

system. The complex system is brittle in the sense that it deteriorates more rapidly along the 

path indicated by thick arrows - a consequence of the relatively small sets of states that are 

compatible with the requirements of the system. It is possible to reduce the transition 

probabilities along this path to some degree by introducing redundancy, a measure that in effect 

increases the sets of functional and of degraded states. In contemplating the complex system 

(Fig. 5), we have in essence equated complexity with a small number of functional and 
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degraded states. With the transition probability among these state sets being a direct 

consequence of their relative size, it may appear at first sight as if shielding from the 

environment is the only path to achieve a long lifetime for a complex system. However, the 

transition probability towards destruction is only determined directly by the relative size of the 

state sets if the transitions among states occur at random. That this does not necessarily have 

to be the case is exploited by organisms. All forms of life are highly complex systems but 

survive the impinging of environmental entropy over extended periods and do so by going 

beyond shielding or isolation. Crucial to this ability is the use of information processing in order 

to direct transitions from degraded states to functional states. 

 

     

Fig. 5. Complex System 
 

 
This scenario is depicted in Fig. 6. Biological systems are always complex systems and 

therefore the underlying situation is as in Fig. 5. The specialised requirements for a living state 

make state changes resulting in degraded functionality and further decay to destruction very 
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likely. But there is a new path that takes degraded systems back to a functional state.  

      
 

Fig. 6. Biological System. 
 

If the transition probability along this new path would be determined by the relative size of the 

state sets, this path would not exist. Instead, it is actively driven in the unlikely reverse direction. 

The driving force could be free-energy minimization, as in the case of molecular self-assembly, 

or provided through other energy sources. The effect of the new transition path is a reduced 

probability for a degraded system to be destroyed and a reduced time for the system to be in a 

degraded state. This requires the expenditure of energy to work against entropy and information 

processing to determine the direction of the preferred transitions. If the deviation from normal 

operation is slight, the active biasing of the transitions back to the fully functional state can be 

viewed as dynamic control or stabilisation. If it is severe, it will give rise to self-repair. In either 

case, information processing is key to preventing the complex organisation that underlies all life 

forms from deteriorating rapidly. As a consequence, life as a robust phenomenon cannot exist 

without information processing. This information processing is starkly different from conventional 
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computing and tightly coupled to the physical properties of the underlying material substrate that 

implements it. The course of computation is determined by free-energy minimisation rather than 

by enforcing - from a materials perspective, arbitrary - mathematical constraints. Whereas a 

computer follows a carefully arranged sequence of state transitions, natural information 

processing can be better pictured as a process of crystallisation. The consequence is twofold. 

Firstly, nature’s information processing is very energy efficient, because it does not need to be 

driven through a prescribed sequence of state changes. Secondly, in the present context even 

more importantly, it is more robust as it does not require the careful preparation of a starting 

state, because of the availability of a very large set of potential starting states, all of which are 

lead by energy minimisation to the solution [71]. 

 

 

Prototypical Semibiotic Systems 

At present, it is not possible to reproduce the fine-grained, robust, and energy efficient 

information processing that enables organisms to maintain their alive state with man-made 

technology. However, a number of laboratory prototypes have shown that one method of 

maintaining highly complex structures in engineered architectures is the integration of living 

cells as functional components into the system. By doing so, it is possible to import the self-

repair capability of the living cell at least for the most complex part of the architecture. For 

example, a cell can be used as a living biosensor that - in contrast to a conventionally 

engineered device - can replenish its receptors upon contamination or degradation and thus 

stay functional over a long period of time [21, 72]. Other prototypes have used living cells as 

mechanical actuators. Prokaryotic [73, 74] and eukaryotic cells [75] have been employed to 

pump fluids in microfluidic set-ups.  

Early steps to interface living cells as information processors have also been taken. A number of 

groups have interfaced neurons on chips (cf., e.g. [76]), but it is also possible to connect to 

more robust cells. The plasmodia of Physarum polycephalum discussed above can be 

integrated into electronic circuits and interfaced either optically [20] or with impedance 
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measurements [77]. An interesting aspect of integrating plasmodia enclosed in microfluidic 

chips with electronic circuits (Fig. 7) is that they can be stored for several months in a dormant 

(sclerotia) state and activated within 1.5 h upon water contact. Plasmodia and sclerotia have a 

very large number of redundant copies of their genetic information and can therefore withstand 

significant damage between periods of self-repair. It is conceivable that in the future such 

devices could be employed to withstand periods of high radiation without requirement for heavy 

shielding, by relying on the combination of the genetic redundancy provided by millions of nuclei 

in combination with self-repair. These prototypes point towards the development of bio-hybrid 

devices with components that are alive.  Such future living devices are attractive in the context 

of space technology, because of their potential to enable self-repair and self-reconfiguration, as 

well as efficiency with regard to both material and energy [78]. 

 

 

  

Fig. 7. Physarum polycephalum on microfluidic chips for integration with electronic circuit. 
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Conclusions 
Biological systems achieve persistence through a combination of resistance and resilience 

mechanisms - however, with a greater reliance on the latter by exploiting both redundancy and 

information processing. The combination of both is a necessity, since information and the ability 

of information processing are required for directing self-repair and other persistence measures. 

Organisms evolved and apply varying degrees of resistance and resilience mechanisms 

depending on the extremity of environmental disturbances. While redundancy is commonly 

applied for mission-critical components in engineered persistence, the low-level physical 

information processing required for self-repair is not easily duplicated in conventionally 

engineered systems. A potential solution to the challenge of building light, persistent devices of 

high complexity may be provided by semibiotic architectures that defer the burden of 

maintaining the most complex components to biological systems. Such a strategy can be 

viewed as an intermediate solution that is closer to realisation than completely artificial systems 

capable of self-repair. This solution has its own challenges, such as the risk of contamination 

and in case of living components, the potential of evolving away from the functionality required 

by the host architecture. Among the challenges of making semibiotic persistence a useful 

technology is the requirement to integrate biological components with conventional engineering. 

There is rapid progress in the development and miniaturization of suitable interfaces, but it will 

also be necessary to develop design strategies capable of coping with autonomous components 

that cannot be characterized by rigid specifications. In fact, the need to adapt the prescriptive 

control of present engineering approaches to architectural designs that are more suitable for 

living matter, may be the largest obstacle to overcome on the path to semibiotic persistence.   
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