
Noname manuscript No.
(will be inserted by the editor)

Unobstrusive human activity recognition using
smartphones and Hidden Markov Models

Adriana Wilde · Robert Streeting · Ed
Zaluska

Received: 12 June 2013 / Accepted: date

Abstract Accelerometer data is sufficient to compute human activity recog-
nition, even with only a single accelerometer in use. Such data can be used
for many pervasive computing applications, user activity being interpreted as
real-time contextual information. This paper investigates activity recognition
on smartphones, as they are a suitable platform for the implementation of
context-aware pervasive systems. Many machine learning algorithms are suit-
able for this purpose, but Hidden Markov Models (HMMs) are particularly
appropriate for their ability to exploit the sequential and temporal nature of
data. This paper evaluates HMMs in unobstrusive activity recognition with
the added restrictions resulting from the use of the smartphone platform.

Keywords Human activity recognition · accelerometer data · pervasive
computing · Hidden Markov Models.

1 Introduction

Pervasive (or ubiquitous) computing is a post-desktop computing model which
seeks to enrich user experience with technology supporting their everyday lives,
whilst doing it in an unobstrusive manner, i.e. “fading into the background”
[1]. It spans three main areas of concern: natural interfaces, context-aware
computing and automated capture/access of data [2]. Natural interfaces aims
to minimise the obtrusiveness of the interaction with devices, context-aware
computing aims to interpret the user’s context so that systems can adapt to
it, and automated capture/access of data aims to minimise human intervention
in the process.
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Smartphones are mobile devices which support significant processing power
together with a variety of sensors in addition to their communication capa-
bilities. As an example of their ability to be context-aware, many smartphone
applications use location to provide contextual information. Similarly, other
sensors commonly included in smartphones, such as accelerometers, could be
used to acquire aspects of user context. We have previously shown that using
data from a single tri-axial accelerometer can be used to recognise user ac-
tivities accurately [3]. However, the choice of the most suitable classification
algorithm suitable for smartphones still remains an open question.

Hidden Markov Models (HMMs) have been previously chosen for activity
recognition because their ability to exploit the sequential nature of activities.
An evaluation of HMMs both in terms of their suitability as activity recogni-
tion classifiers and the constraints on the smartphone platform is necessary to
assess their suitability for context-aware pervasive systems. In particular, the
additional constraints facing smartphone software (user interfaces aside) are
energy consumption and memory usage, in addition to the typical contraints
inherent to all pervasive computing applications. These include sensor con-
straints, such as the need to overcome the limited sensing capability available
(i.e. a single accelerometer) and the possibility that the orientation and posi-
tion of the device is not fixed. In addition to these smartphone-specific issues,
real-time processing is desirable, as contextual data may lose its relevance to a
software agent if it takes too long to process. Finally, the system should have
an acceptable classification accuracy.

We consider all of these issues in our evaluation of HMMs for activity
recognition in ubiquitous computing using smartphones, starting from a review
of HMM-based methods from the literature that tackle each of the individual
problems faced in this domain, together with some preliminary experiments.

Section 2 contains a brief introduction to HMMs. We then explore the
relevant issues to consider when using HMMs in this context, namely: energy
consumption (Section 3), memory usage (Section 4), accelerometer constraints
(Section 5) and real-time processing requirements (Section 6). Then, we eval-
uate classification accuracy (Section 7) across the literature. To complement
this review, Section 8 discusses preliminary experiments conducted in order to
investigate less obvious issues. Section 9 summarizes the feasibility of HMMs
in this context. Finally, Section 10 provides concluding remarks and directions
for further work.

2 Hidden Markov Models

Hidden Markov Models (HMMs) can be considered as a set of states which
are traversed in a sequence hidden to an observer. The only thing that is
visible is a sequence of observed symbols, emitted by each of the hidden states
whilst they are traversed. The model defines a probability of moving between
states (the transition probability) and the probability of each state emitting
each particular symbol (the emission probability). Using this model and an
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observed sequence of symbols, a system can determine three key things: the
probability of the observed symbol sequence, the most probable hidden state
sequence, and the parameters of the model that maximise the probability of
the observed symbol sequence [4]. The following algorithms are used to make
these inferences:

– Forward-Backward Algorithm - In this context this is used for deter-
mining the probability that an emission sequence was generated by a given
HMM. The forward pass computes the probability of being in a state at a
particular time given the observation sequence up to that time, so summing
over all states at the end is required.

– Baum-Welch Algorithm1 - Used for estimating transition and emission
probabilities of a HMM given an observation sequence and initial ”guesses”
for these values. As an expectation-maximisation algorithm, it uses an it-
erative search for the parameters with the highest likelihood.

– Viterbi Algorithm2 - Used to find the most likely sequence of hidden
states given a HMM and an observation sequence. It computes the recursive
likelihood of being in each state at the next time step until the end of the
sequence, at which point, the algorithm backtracks to give the most likely
state sequence.

3 Energy consumption

Due to the limited battery space available in a mobile device, reducing energy
consumption is one of the most important considerations when developing
smartphone software. It is therefore relevant to evaluate the feasibility of using
HMMs when energy usage has to be kept to a minimum.

Pathak et al. [6] give a taxonomy for what it labels as ebugs; bugs in soft-
ware that cause excessive energy drain. Although for evaluation purposes we
can assume that the HMM implementation would be bug-free, this taxonomy
does identify the leading causes of energy drain in mobile applications. Many
of the classes of ebugs presented relate to applications over-using hardware
components which use a significant amount of energy to run. Of particular
interest are no-sleep bugs, which involve keeping processes “awake” for longer
than they need to be, suggesting that long-running passive processes are likely
to be a problem. Unfortunately, pervasive agents need to be constantly active
to access contextual data and make decisions in real-time, regardless of the
machine learning technique being used to classify activities.

Boyd and Sundaram [7] present a conceptual framework for activity recog-
nition that claims to reduce energy usage. The framework defines a passive
sleep state where the system remains running but uses as little energy as
possible to listen for new activities, and then an active state where the activi-
ties are actually classified. New activities are found using transition detection,

1 The forward-backward algorithm is sometimes referred to as the Baum-Welch algorithm;
the term here is used as in Rabiner and Juang [4].

2 Viterbi decoding algorithm, not to be confused with the training algorithm.
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which simply looks for a change in activity. The research shows that this can
be achieved with a very low sample rate on the accelerometer, reducing the
amount of energy used. When a transition is detected the system enters the
active state, where HMMs are used to classify the activity at a high sample
rate. When the activity has been determined, the system goes back into a sleep
state.

Although HMMs are used for activity recognition in this particular ex-
ample, this method should apply to any machine learning algorithm because
the method of saving energy is independent of the machine learning technique
used. This result would suggest that HMMs are not significantly better or
worse than any other machine learning algorithm when it comes to energy
consumption, assuming this method were to be used. If there are differences,
they would be made insignificant by the amount of energy saved using the
sleep state, which effectively removes the need to run the algorithm continu-
ously and reduces the need to access the accelerometer.

4 Memory usage

Given the limited hardware available in a smartphone, reducing memory usage
as much as possible has a wide range of benefits. In order to analyse the
effectiveness of HMMs in this respect, the most relevant factor is the space
complexity.

The space complexity of the forward-backward and Viterbi algorithms are
both about O(NT ), where N is the number of states and T is the length of the
state sequence [8]. This can be confirmed intuitively by considering the storage
requirements for a HMM. In both algorithms, a matrix is built up that stores
the probability of either the state sequence or the observed sequence at each
state at each point in time. The columns of the matrix represent the time
steps in the sequence and the rows represent the states. This matrix therefore
contains N ∗ T elements, and so the space complexity of the algorithms is
O(NT ). This is about the same as the K-Nearest Neighbours algorithm (the
simplest of the effective algorithms explored in Wilde [3]), suggesting that
HMMs are as space conservative as possible for a machine learning algorithm.

Lee and Cho [9] argue that a hierarchical HMM reduces the computational
complexity of the process. This method involves classifying short segments
of accelerometer data using one layer of HMMs, then feeding the results of
these individual classifications into another high-level HMM which can classify
more complex activities as compositions of low-level ones. This divide-and-
conquer approach avoids having to deal with large amounts of state transitions
- if a single-layer HMM was used, multiplying many probabilities together
eventually results in arithmetic underflow which means that the data has to
be transformed using a log function. Instead, small and simple HMM sequences
are processed and none of these issues are present.

Although hierarchical HMMs do not improve the worst case space complex-
ity, they reduce the length of the sequence and the amount of hidden states
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due to the division of the problem. After the result for one level of HMMs
is obtained, the memory used to obtain that result can be cleared, meaning
that the amount of memory needed is only the amount needed by the most
complex sub-model.

The method described in Section 3 reduces energy consumption in two
ways: reducing the amount of access to the accelerometer and reducing the
amount of processing that has to be done. Therefore, it can also be applied
to memory consumption, and the conclusions made can be carried over; slight
differences in the memory used by different machine learning algorithms are
not significant next to the amount of memory freed by “switching off” the
algorithm when it is finished.

Overall, the conclusion is that HMMs are viable for use on smartphones in
terms of memory usage. Even before the application of extra techniques, they
have a relatively small space complexity.

5 Sensor constraints

5.1 “Near-static” and similar activities

As discussed by Quwaider and Biswas [10] and demonstrated by Kunze and
Lukowicz [11], accelerometer data struggles to classify accurately what are
termed “near-static postures” (e.g. standing or sitting); this is intuitive be-
cause the lack of movement means that the accelerometer signal remains very
similar over a range of static activities. This issue is not just limited to near-
static activities however; these can also become confused with other low-energy
activities (e.g. writing on a chalkboard). Additionally, similar dynamic activi-
ties can be also be confused (e.g. walking and going up stairs) [3][9][12][13]. Dis-
tinguishing between similar activities using accelerometer data is still clearly
a difficult issue to resolve.

Li et al. [14] presents a method that can solve this issue by making use of the
ability of the HMM to classify sequences. Activities are represented as hidden
states, discretised features obtained from the accelerometer signal are the ob-
served sequence of symbols. Given this sequence, it is possible to calculate the
most likely hidden state sequence (and therefore sequence of activities) using
the Viterbi algorithm. The actual algorithm used in this method is a slightly
modified version of this algorithm that caters for the fact that activities can
last for a long time.

As this method classifies sequences of activities rather than single activities,
that means that the transitions between activities are taken into account. This
allows static activities and similar activities to be classified with more accuracy
because the previous and following activities are considered; for example, if a
static activity comes after a walking activity, it can be inferred that it might be
a standing still activity. This ability to classify sequences is unique to HMMs
when compared to other common machine learning algorithms, so clearly they
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are well suited to activity recognition using just accelerometer data in this
respect.

5.2 Accelerometer positioning

In addition to limiting the amount of sensors available, using a smartphone
platform also means that certain assumptions can be made about the position
of the accelerometer on the body. For example, it may be assumed that most of
the time the device is kept at the hip. However, there are obvious exceptions to
this; users also may keep their mobile phone in a handbag or in a loose pocket
[15]. This means that no assumptions can be made about the orientation of
the device, which may change the accelerometer signal significantly enough
that activities become unclassifiable.

Kunze [16] provides a detailed analysis of this problem and suggests multi-
ple solutions for tackling its individual components. The main problem areas
are detecting whether the device is on the body at all and detecting where the
device is placed on the body. Over time, the system can also detect changes in
the orientation of the device and displacement of the device whilst remaining
on the same body part. Detecting where the device is placed on the body
and its orientation only requires the accelerometer, making it feasible for use
in modern smartphones. However, other parts of the solution require other
sensors such as a gyroscope.

Using these solutions, it would be possible to classify the body part on
which the device was present and therefore use different HMMs based on this
information to improve the classification accuracy. Not only this, but the ac-
celerometer position can be used as further contextual information for activity
classification - for example, if the device is strapped to the wrist or arm, it
might be inferred that the user is more likely to be doing physical activity [16].
Orientation invariance can also be achieved by estimating the device’s orienta-
tion using the gravitational (’static’) acceleration from the accelerometer data,
as described further by Mizell [17].

Because the accelerometer position and orientation can be obtained from
the data separately to the current activity, this means that it causes no further
constraints on the activity recognition process. HMMs are therefore completely
feasible for the problem regardless of the accelerometer positioning issue, as-
suming that the accelerometer position is collected in this way.

5.3 Limited hardware

It has been shown that accelerometers positioned at different points on the
body provide different information. As discussed by Kunze [16], some ac-
tivities are associated with certain body parts, meaning some activities are
unclassifiable when the accelerometer is positioned in a particular place, re-
gardless of whether the accelerometer position is known or not. However, with
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multiple accelerometers in different places this problem can be overcome. Lim-
iting activity recognition systems down to the hardware commonly available
in smartphones, realistically only one accelerometer is available because other
sensors placed around the body are too obtrusive to be an effective pervasive
system [13][18].

However, it has been shown that a single accelerometer is enough to detect
a range of activities in various research, regardless of the machine learning
technique [3][18][9]. This suggests that this issue is non-existent for the ma-
jority of activities, meaning that HMMs are no better or worse than other
techniques in this regard. For the activities that are not classifiable, there
could be benefits for using different machine learning techniques.

As shown before, the main benefit of HMMs is their ability to analyse
sequences, and therefore compute the most likely activity occurring at a certain
time without having quality data for that activity. The technique discussed by
Li et al. [14] can be applied here in a similar way to the way it was applied for
static activities. If most of the activities in a sequence are classifiable, then the
unclassifiable gaps can be filled by looking at the most likely activity that fits
in the sequence. In this regard, HMMs have the potential to overcome this issue
where other machine learning algorithms may not be able to. However, there
are other issues with this approach which are discussed in the next section.

6 Real-time processing

In the context of pervasive systems, it is important for any contextual data to
be processed immediately as it may become irrelevant later on; for example, if
the goal is to detect an elderly person falling over to alert the health services,
it is important that this activity is classified when it happens as opposed to
later on. This suggests that real-time classification of activities is a required
ability of any machine learning algorithm that is being used for this purpose.

Although the method previously proposed by Li et al. [14] shows how
HMMs can be used to detect certain kinds of activities that cannot be de-
tected as easily by other methods, it is not ideal for real-time processing.
Since an entire observed sequence of activities is necessary before classifica-
tion can begin, by the time the activities have been recognised the data may
no longer be relevant [19]. The actual method used involves segmenting the
data into parts on which to apply the Viterbi algorithm separately; although
this is not exploited for real-time use in the research, it could make the la-
tency between data collection and classification shorter. A similar method in
principle is described in more detail by Eickeler and Rigoll [20]. However, the
shorter the sequence becomes, the less benefit the process receives from the
extra contextual data. The true nature of this trade-off is a subject for future
research.

Although real-time processing is ideal for a pervasive application and essen-
tial to many application areas, there are certain activities that do not have this
requirement. For example, Chang et al. [21] describes the use of the Viterbi ap-
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proach for tracking free-weight exercises at the gym after a workout, suggesting
that real-time processing would be beneficial in this case, but not necessary.
Yang [22] shows how the Viterbi approach can be useful as a post-processing
method to correct errors made by other classifiers, showing that it is possible
to allow for less accurate real-time classification in the short term and correct
any errors made later on.

An alternative method widely used with HMMs for activity recognition
makes use of the forward algorithm for determining the likelihood of the ob-
served sequence (the accelerometer data) [23][24][7][13]. A separate HMM is
trained for each individual activity (using the Baum-Welch algorithm) off-line
and the likelihood of the observed sequence of data for each activity is calcu-
lated in real-time. The activity that is chosen is the one represented by the
HMM that produced the highest likelihood for the given sequence of data. In
order to do this, the data has to be split into overlapping sliding windows;
each window is then classified individually as it is collected.

Although this shows that HMMs promise to deliver in a real-time pervasive
system, there are a number of disadvantages to this approach. The clearest
issue is that classification of static/similar activities is no longer possible as it
was in the Viterbi approach, so it seems that the ability to classify these types
of activity and the ability to process in real-time are mutually exclusive in this
respect. This approach also uses multiple HMMs as opposed to just one, all
of which have to be run for each sliding window of data. This means that the
amount of processing required increases with the array of activities that need
to be recognised. Finally, the amount of hidden states needs to be decided,
and it is not immediately obvious how to do this; this is implicit with the
Viterbi approach because each state represents an activity, but the mapping
is not quite as direct in this context.

Processing in real-time also has many of its own inherent issues. As men-
tioned previously, long-running processes are a major cause of energy drain,
and constant processing can put an unnecessary load on memory. Boyd and
Sundaram [7] showed that these issues can be solved without the need for com-
promising the real-time ability of the system by a significant amount. Amma
et al. [24] also explored the benefits of attempting to “spot” useful data in the
feed before processing it with HMMs, and gives further evidence that this is
a feasible approach for processing data in real-time.

Overall, it is evident that there is a compromise between classification accu-
racy and scope, and feasibility of real-time processing. The segmented Viterbi
approach allows the classification of static and similar activities and arguably
increases the accuracy due to the consideration of inter-activity transitions,
but the larger the segments are the greater the latency between the activ-
ity and its classification. The HMM-per-activity approach allows the minimal
latency, but lacks the scope of the Viterbi approach. Therefore real-time clas-
sification with HMMs is a possibility, but a decision has to be made on how
far to sacrifice scope and accuracy of activity classification.
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7 Classification accuracy

Accuracy of classification is an important issue for all machine learning algo-
rithms, although it still needs to be considered alongside the domain-specific
issues with activity recognition on smartphones. The classification accuracy
is the proportion of correct classifications made by the system over the entire
data set. Although accuracy is a used as a standard measure of how well a
machine learning system is performing, it must be interpreted carefully. If the
test sample is too small or not comprised of unseen data, the accuracy can be
skewed up or down from the actual value.

Most of the methods presented so far have been practically tested and the
classification accuracy reported. These results are summarised in Table 1.

Overall, the research for all of the methods show impressive accuracy, with
most giving a 90%+ accuracy. However, many of the experiments carried
out also used very small sample sizes of participants from which to gather
data, which means the accuracy could be worse than it appears. Other issues
found included accelerometers placed in unconventional positions (the effects
of which are explored in Section 5.2), incomplete results (missing data), pa-
rameters that are chosen without any explanation (arbitrary parameters), and
use of extra sensors in the classification such as gyroscopes or additional ac-
celerometers. Only Lee and Cho [9] attempted to classify high-level activities
(such as riding a bus or going shopping), and it is assumed that this is the
reason for the reduced accuracy observed.

Despite the issues presented for each of the methods, overall HMMs ap-
pear to be a satisfactory solution in terms of the recognition accuracy alone,
with regard to low-level and high-level activities. However, Cao et al. [25] sug-
gests that HMMs may not be well suited to activity recognition in terms of
accuracy of recognition. Along with a non-sequential framework devised by
the researchers and Conditional Random Fields (a generalisation of HMMs),
HMMs are tested on three activity datasets, each of which have distinctive
features. The first contains data for 18 different activities, the second contains
data for these activities and a large amount of data for a null activity, and
the final dataset has four activities, which is more typical of the experiments
shown so far. Although the HMM performs fairly well on the final dataset,
it struggles with the other two, suggesting that the main issue is the large
amount of classes present. Even though the data considered is not limited to
accelerometer data, given the nature of the problem it appears that it may be
an inherent issue with the algorithm rather than the type of data. Unfortu-
nately the actual classification accuracy is left out of the results given, but it
can be seen that the non-sequential framework is clearly more accurate and
more robust in this case.

If it is assumed that HMMs are limited to a small number of activities,
there are ways to improve the classification accuracy even further. Mannil et
al. [19] provides a method for reducing the false positives given by attempting
to eliminate data containing activities that were not seen in the training phase.
This achieves a similar result to the “spotting” stage seen in Amma et al. [24]
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Table 1 Experimental conditions and accuracy of existing HMMs
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Hip-mounted sensor - X X - - X
Missing data - X - - - -
Small participant sample size - X - - X -
Arbitrary parameters - X - - X -
Use of gyroscopes - - - X - X
Multiple accelerometers - - - - - X
High-level activity detection - - - - X -
Experimented with smartphone - - - - X -

Recognition accuracy(%) 99.6 99 98.7 94.4 83.5 94

but with the purpose of reducing false positives in dense activity data rather
than identifying classifiable data amongst meaningless background data. The
main algorithm is based on a segmented Viterbi approach like Li et al. [14],
but implements an additional “sanity check” after each second of data. At the
beginning, a threshold is calculated using sample data that is used during the
sanity check to decide whether data relates to a known activity or an unknown
activity, and if unknown the data is classified as such. This prevents the Viterbi
process from trying to classify it and prevents false context from arising in the
sequence, thereby improving the accuracy all round. The paper also gives a
method for dealing with varying length activities, which simply normalises the
probability based on the duration of the activity. The reason this is necessary
is due to the nature of the Viterbi process, which causes shorter sequences to
have higher probabilities.

Overall it appears that HMMs can provide a good classification accuracy
for a small set of target activities, but it is likely that this does not scale well
when the amount of activities increases. This result does not necessarily rule
out HMMs entirely; many applications may only have the need to recognise
specific events (for example, detecting an elderly person falling or an athlete
starting a run). There are also ways to improve the accuracy of HMMs given
“real-world” data. Small sample sizes were common within the surveyed liter-
ature. This could have artificially increased the classification accuracy beyond
levels that could be expected for a real audience. However, there are ways to
improve the accuracy if necessary [19], although solutions are not scalable with
the number of activities to classify, which appears to be an inherent problem
with using HMMs in this context [25].
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8 Experimentation

We performed preliminary experiments using Matlab, implementing HMM
classification on features extracted from the COSAR data set [3,5]. This al-
lowed the identification of further issues on the use of HMMs for accelerometer
data.

Firstly, HMMs are designed to deal with discrete observation data, but
accelerometer data is inherently continuous. Therefore, either the data must
be discretised or the model must be altered to process continuous data. On
the one hand, discretising the data is simple, however, the precision is lost
and determining the thresholds for discretisation to minimise errors can prove
problematic.

On the other hand, continuous density HMMs (CDHMMs) extend HMMs
to allow output of continuous symbols. Rather than having an emission proba-
bility for each of a set of discrete symbols, the emission probability is described
as a mixture model (commonly a Gaussian mixture model). Although this
method avoids the loss of precision, it can be more computationally intensive
due to the added complexity.

Not emphasised in the literature is that using a large number of features
can be detrimental to the performance. As HMMs only deal with one emission
per time step, features must be combined into one emission symbol. When
many features are used, the space of possible emissions becomes very large.
The training data rarely covers this whole space, meaning that during training
the probability of emitting many of these symbols is zero. If one of these
symbols appears in the test sequence, the probability of the whole sequence
becomes zero. This becomes less of an issue with CDHMMs due to the nature of
the emission probabilities, making CDHMMs a much more attractive solution
where multiple features need to be considered.

The choice between continuous and discrete HMMs is only one of the many
choices to be made. For example, HMMs can be ergodic (any state can tran-
sition to any other state at any time) or left-to-right (after leaving a state,
it can never be returned to). This choice is mainly based on the complexity
of the activity - for example, an activity such as walking that has no grand
structure may suit an ergodic HMM. However, an activity such as brushing
teeth may benefit better from a left-to-right HMM, with states representing
picking up the toothbrush, brushing, spitting etc. which happen in a particular
order. The number of distinct hidden states to have is also a key decision.

In summary, there are implementation details that make HMMs less well
suited to accelerometer data than other machine learning algorithms. However,
for all of these limitations there are also unique advantages to using HMMs,
which are presented in the following section.
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9 Discussion

With regards to the large majority of issues presented, HMMs appear offer a
satisfactory solution on the whole. The smartphone platform does not seem to
introduce problems that could reduce the feasibility of HMMs, and it appears
likely that they may actually be ideal with respect to memory usage and clas-
sifying near-static activities using a single accelerometer. However, in order to
work effectively in real-time, the classification scope needs to be compromised
partly, but the true nature of this trade-off is not clear at present. Even so,
the Viterbi approach (that allows the classification of static/similar activities)
can be used as a post-processing method to classify activities that failed to be
classified in real-time [22], making it attractive for pervasive computing. It is
also difficult to assess the generalisation ability of the system without assess-
ing the classification accuracy on a larger sample of users. Given the research
that has been conducted however, the results are promising and indicate that
HMMs perform well on real data. The particular machine learning algorithm
used is often irrelevant; methods in the literature that reduce power consump-
tion and provide smartphone position/orientation invariance are independent
of the algorithm used. In some cases, the HMM is particularly well suited;
it has a relatively low space complexity making it ideal for reducing mem-
ory consumption, and use of the Viterbi algorithm allows the classification of
static/similar activities that would be near-impossible for most other machine
learning algorithms. However, these gains have to be sacrificed somewhat in
order to process the accelerometer data in real-time. Which of these is more
important depends mainly on the particular application domain.

Although HMMs have been shown as suitable for activity recognition, there
are nevertheless some limitations. The literature suggests that HMMs may fail
when a large number of activities are classified, being more appropriate to
applications where only a small set are to be classified. Other considerations
include the choice between continuous and discrete HMMs and the need for
scalar emissions.

10 Conclusion and Future Work

As noted previously, HMMs are suitable for activity recognition using ac-
celerometer data on smartphones [26], however a number of other issues, such
as energy consumption, memory usage and sensor constraints are also impor-
tant. HMMs have a relatively low space complexity compared to other machine
learning algorithms. In addition to this, there are methods aiming to reduce
energy consumption which also reduce memory usage.

The constraints imposed by using the smartphone as a platform are mainly
the limited hardware and accelerometer positioning. Smartphones today typ-
ically include only one accelerometer, which may impair the discrimination
between similar activities (e.g. sitting versus standing still) using traditional
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machine learning methods. The Viterbi algorithm can be more effective in dis-
criminating these activities due to its ability to exploit the sequential context.

This presents a strong argument for using HMMs for activity recognition
in preference to other machine learning techniques. However, since the Viterbi
algorithm requires a sequence of observations, at least two activities must
take place before the algorithm can begin classification, degrading the real-
time capability of the system. The forward-backward algorithm can be used
to maximise the real-time capability of the system, but the ability to classify
static activities is lost. Ultimately there is a trade-off between real-time ca-
pability and classification scope; the decision of which is more important is
entirely dependent on the application domain.

With regards to the accelerometer positioning, there is evidence that it
is possible to obtain the position of the accelerometer on the body and its
orientation using only one accelerometer, suggesting that these issues could be
solved in pre-processing (before any classification takes place).

Although the focus of this research is to evaluate the use of HMMs with
respect to the smartphone platform, more general issues in pervasive comput-
ing and activity recognition were also investigated as it is still important that
the system performs well in these areas.

Overall, we have established cogent arguments for the use of HMMs in ac-
tivity recognition – its unique features provide a number of benefits over other
machine learning algorithms. This explains its adoption in previous research
and also shows that it is a promising contender for use in future pervasive
smartphone applications. It has also exposed some of the limitations of HMMs,
which will be useful when considering such developments.

However, several unanswered questions remain. Areas of future work in-
clude the relationship between the length of the data sequence adopted and
the classification accuracy of static/similar activities. This will make it easier
to decide whether to use the Viterbi algorithm or the HMM-per-activity ap-
proach when designing future applications. The capability of discrete HMMs
versus continuous HMMs in this context is also be a valuable subject for future
research.
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