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Abstract

Background Early life environments induce long-term changes in neurocognitive
development and behaviour. In animal models, early environmental cues affect
neuropsychological phenotypes via epigenetic processes but, as yet, there is little direct
evidence for such mechanisms in humans.

Method We examined the relation between DNA methylation at birth and child neuro-
psychological outcomes in two culturally diverse populations using a genome-wide
methylation analysis and validation by pyrosequencing.
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Results Within the UK Southampton Women'’s Survey (SWS) we first identified 41 differ-
entially methylated regions of interest (DMROI) at birth associated with child’s full-scale
IQ at age 4 years. Associations between HES7 DMROI methylation and later cognitive
function were confirmed by pyrosequencing in 175 SWS children. Consistent with these
findings, higher HES1T1 methylation was associated with higher executive memory
function in a second independent group of 200 SWS 7-year-olds. Finally, we examined a
pathway for this relationship within a Singaporean cohort (n=108). Here, HES7 DMROI
methylation predicted differences in early infant behaviour, known to be associated with
academic success. In vitro, methylation of HES17 inhibited ETS transcription factor
binding, suggesting a functional role of this site.

Conclusions Thus, our findings suggest that perinatal epigenetic processes mark later neu-
rocognitive function and behaviour, providing support for a role of epigenetic processes in
mediating the long-term consequences of early life environment on cognitive development.
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Key Messages

in two independent groups of UK children.

functional role of this site.

on cognitive development.

¢ An association was found between umbilical cord methylation of CpG loci within the HES1 gene, a key regulator of
neuronal differentiation and brain patterning, with child’s full-scale IQ age 4 years and executive function at 7 years

* Methylation of the identified CpG loci within HEST in vitro inhibited ETS transcription factor binding, suggesting a

* Thus, our findings suggest that perinatal epigenetic processes mark later neurocognitive function and behaviour, pro-
viding support for a role of epigenetic processes in mediating the long-term consequences of early life environment

Introduction

There is now substantial evidence that the quality of the
early life environment both before and after birth is im-
portant for later cognitive function. Birthweight, "> mater-
nal® or childhood” stress and poor nutrition™® in early life
have all been linked to poorer neuro-behavioural and cog-
nitive function in later life, but to date the mechanisms
mediating these affects are largely unknown.

Experimental studies suggest that the developmental
environment can influence neuropsychological function
through alterations in epigenetic gene regulation.
Epigenetic processes such as DNA methylation can induce
changes in gene expression without a change in DNA base
sequence.” Such processes are involved in cell differenti-
ation and genomic imprinting, as well as the phenomenon
of developmental plasticity in response to environmental
influences.® Through these mechanisms, early life environ-
mental factors can affect the developmental trajectory,
with long-term effects on gene expression and phenotypic
outcome.” For example, in rodents maternal behaviour
induced stable changes in DNA methylation and histone
modifications in the hippocampal glucocorticoid receptor

(GR) gene promoter in the offspring, affecting stress re-
sponses throughout the life course.'® In humans, the evi-
dence for such processes is necessarily indirect. Adult
suicide victims abused as children had higher GR methyla-
tion in post-mortem hippocampal samples compared with
suicide victims with no such history.'* The hippocampus is
essential to both stress regulation and learning, raising the
possibility that methylation changes induced in early life
may affect behavioural and cognitive functioning.
However, to date there have been no longitudinal studies
showing that prenatal epigenetic processes are associated
with childhood neurocognitive development.

Whereas many DNA methylation patterns are tissue
specific, recent studies indicate that some epigenetic marks
show both inter-individual variation and some equivalence
between different tissue types.'*'* For example, a
relationship between childhood adversity and GR methyla-
tion has been reported in both the hippocampus and in
peripheral blood cells,"® suggesting that peripheral tis-
sues could be used to study developmentally induced epi-
genetic marks associated with later neuropsychological
function.
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To investigate whether developmentally induced
epigenetic processes relate to later cognitive function, we
employed an epigenome-wide approach to identify methy-
lation differences in umbilical cord genomic DNA that
were associated with child’s cognitive performance at age
4 years. We validated the association between perinatal
methylation levels of HES1, a gene with a pivotal role in
neuronal differentiation and the formation of organising

1617 and later cognitive function

centres within the brain,
in two culturally diverse populations, demonstrating that
epigenetics may mediate the long-term consequences of the

early life environment on cognitive development.

Methods

Southampton Women'’s Survey

The Southampton Women’s Survey (SWS) is a prospective
mother-offspring cohort.'® At age 4 years, a sub-sample of
participants had their full-scale IQ assessed [Wechsler Pre-
School and Primary Scale of Intelligence (WPPSI-III,
UK)]."” At 7 years, a different SWS sub-sample partici-
pated in the Cambridge Neuropsychological Test
Automated Battery [CANTAB Delayed Matching to
Subject (DMS), Intra-Extra Dimensional Set Shift (IED)
and Spatial Span (SSP)]*° tests. Further details are in
Supplementary Methods 1 and cohort characteristics are
shown in Supplementary Table 1, available as
Supplementary data at IJE online.

Growing Up in Singapore Towards Healthy
Outcomes (GUSTO)

In the GUSTO prospective mother-offspring cohort
study,”! socio-emotional data were available for 108
1-year-old infants for whom umbilical cord DNA had pre-
viously been collected. Socio-emotional behaviour was
assessed via maternal report using the Infant Toddler
Socio-Emotional Assessment (ITSEA).?* The Externalising
domain of this tool assesses early manifestations of socially
disruptive behaviour such as aggression and defiance,
linked with lower cognitive performance.*® Further details
are in Supplementary Methods 2 and cohort characteristics
are shown in Supplementary Table 2, available as
Supplementary data at IJE online.

Whole genome methylation analysis

Genomic DNA from SWS umbilical cord samples with later
neurocognitive data at age 4 years (7 =24, minimum and
maximum IQ for each group: Group 1 81-99, Group 2
101-107, Group 3 113-18 and Group 4 121-122) was ex-
tracted, sonicated and methylated DNA isolated using a
His-tagged MBD2b (methyl-binding domain of MeCP2)
protein according to the manufacturer’s instructions

(MethylCollector kit, Active Motif). After methyl capture,
the labelled methylated DNA and input DNA was
hybridised to the Agilent Human Promoter Whole-Genome
ChIP-on-chip array (G4489A; see Supplementary Methods
3, available as Supplementary data at IJE online) which con-
tains probes spanning the promoter regions of 25 000 genes
from —5.5kb of the TSS to 2.5 kb downstream.

Methylation array data analysis

The log2 of Cy5/Cy3 values was obtained for each probe
after background subtraction, and processed by the
Bayesian Tool for Methylation Analysis (BATMAN).*
Log?2 ratios of tiled probes and CpG densities in the probe
and 100 nt of flanking genomic sequence are assessed to cal-
culate likely percentage methylation value distributions. The
mode of the distribution for each 100 nt region returned by
BATMAN was used for further analysis. Examining the
frequency distribution of the BATMAN output as well as
the raw log2 ratios” revealed that most samples had a
frequency distribution close to a beta distribution, both
before and after BATMAN analysis. The peaks were
mapped to the probes/genes using the Agilent identifiers.

Identification of DMRs and DMROlIs

Differentially methylated regions (DMRs) and DMROIs
were identified using WPPSI data. SWS subjects were
grouped into four separate ordinal categories according to
WPPSI score, with Group 1 having the lowest scores and
Group 4 the highest. DMRs were defined as 100 nt regions
fulfilling the following criteria: (i) robust regression ana-
lysis P<0.02 (to correct for heteroscedasticity);*® (ii)
Mann-Whitney test between WPSSI Group 1 vs 4 giving
P<0.02 and P<0.01 for Mann-Whitney test between
WPSSI Group 1 vs 2, or Group 2 vs 3 or Group 3 vs 4; (iii)
MethOR <0.667 or MethOR > 1.5 for WPSSI Group 1 vs
4; (iv) absolute methylation differences between WPSSI
Groups 1 and 4 >20%. The Fisher Exact test was applied
to test if a Region of Interest (ROI) was enriched (i.e. num-
ber of DMRs within the ROI getting P-value <0.01)
against the background. We calculated the proportion of
DMRs with P-value less than 0.01 and compared it against
the background. The probability was calculated as below:

eIy
")

where a =# of DMR with P-value < 0.01 in the ROI, b=#
of DMR with P-value < 0.01 in the entire data set, c =# of
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DMR with P-value >0.01, d=# of DMR with P-value >
0.01 in the entire data set and 7 = total number of DMRs.

DMROIs were then defined as giving Fisher Exact tests
P <0.01 for 100 nucleotide regions and Mann-Whitney
P <0.02 between Group 1 vs 4 and containing at least one
DMR. The cut-offs used to select DMRs/DMROIs were
designed to be a stringent filter to prioritise genes for the
pathway analysis. Pathway enrichment analysis used the
MetaCoreTM network analysis suite (GeneGo Inc),>” with
the design of the array set as the background in the
pathway analysis.

Pyrosequencing

Array methylation results were validated by sodium bisul-
phite pyrosequencing. Briefly, pyrosequencing assays were
designed to sequence the individual CpG dinucleotides
within the DMROI (primers are listed in Supplementary
Table 3, available as Supplementary data at IJE online)
using Pyromark Assay Design Software 2.0 (Qiagen,
Hilden, Germany); assays were analysed (PSQ 96MA ma-
chine; Biotage, Uppsala, Sweden) and percentage methyla-
tion calculated using Pyro Q-CpG software (Biotage). The
sequenced region for HES1 encompassed only 9 of 15
CpGs in the 920 bp BATMAN DMROI, due to sequence
design constraints.

Electrophoretic mobility shift assays

Electrophoretic mobility shift assays were carried out*®
using 5 pg of IMR32 nuclear extract (sc-2148, Santa Cruz
Biotechnology, USA). Supplementary Table 3 shows oligo-
nucleotide sequences, available as Supplementary data at
IJE online.

Statistical analysis of pyrosequencing data

Statistical analysis used Stata (Statacorp) versions 11.2/
12.1. Pyrosequencer methylation measurements did not
approximate a Normal distribution and were transformed
using Fisher-Yates Normal scores with mean of zero and
standard deviation (SD) of one. Regression models were
built using the child’s neuropsychological measure [at 1
(GUSTO), 4 or 7 (SWS) years] as the outcome and methy-
lation of the nine CpGs measured as the predictor, adjusted
for sex and then further adjusted for sex and either moth-
er’s IQ (4-year WPPSI) or mother’s highest educational at-
tainment (7-year CANTAB, 1-year ITSEA) as available;
our previous studies found little additional influence of
socioeconomic status after controlling for mother’s 1Q.*’
Subsequently, age at assessment, birthweight, maternal
smoking, BMI and parity were included as covariates.
Results presented are regression coefficients (),

representing the change in neurodevelopmental outcome
per SD change in percentage methylation, and associated
P-values.

Results

Characteristics of the cohorts

The SWS cohort subjects (n7=175) with 4-year cognitive
measurements (median 4.4 years) had a median birth-
weight of 3.5kg (Supplementary Table 1, available as
Supplementary data at IJE online). The 200 children from
the SWS cohort with 7-year cognitive measurements (me-
dian 7.0 years) had a similar birthweight distribution with
a median birthweight of 3.4kg (Supplementary Table 1,
available as Supplementary data at IJE online). The me-
dian maternal age at birth of the child and pre-pregnancy
body mass index were similar in the SWS 4- and 7-year
subjects (30.4 vs 32.2 years and 24.5 vs 24.3kg/m?, re-
spectively). The 108 children from the GUSTO cohort had
a median age of 0.99 years and a birthweight of 3.09 kg
(SupplementaryTable 2, available as Supplementary data
at IJE online). The median maternal age at birth and pre-
pregnancy body mass index were also similar in the
GUSTO cohort (31.7 years and 25.1 kg/m?, respectively).

Identification of differentially methylated regions
of interest at birth associated with later cognitive
performance

Genomic umbilical cord DNA from 24 SWS children was
screened using the MBD array for differences in DNA
methylation at birth associated with WPPSI IQ age 4 years
(Figure 1). The subjects selected were representative of the
range of WPPSI IQ measurements within the whole cohort.
Statistical analysis of the data identified 41 DMROIs asso-
ciated with 1Q at age 4 years (Supplementary Table 4,
available as Supplementary data at IJE online; Figure 2a).

The diencephalon development process was
significantly enriched for DMROls

The top pathway enriched for DMROIs in the GO process
category was diencephalon development (4/71 genes,
P=0.000044; Supplementary Table 5, available as
Supplementary data at IJE online), which is important for
the integration of cognitive function.?® Figure 2b shows a
sub-network created by direct interactions between genes
contained within the diencephalon development GO pro-
cess and includes four genes: HES1, NR4A2 (also known
as NURR1), ETS1 and TCF4 which contained DMROIs.
Methylation at birth within the HEST DMROI, as
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Stratified 24 umbilical cord samples into 4 distinct cognitive groups using 4 year IQ

!

Extracted and enriched for methylated DNA, hybridised to Agilent Human Promoter Array to identify differentially
methylated regions of interest (DMROIs) associated with 4 year IQ

!

| Pathway and network analysis on DMROIs |

| Validation of methylation of one candidate vs. 4 year IQ in 175 subjects (including 24 discovery samples) |

'\

Related to working memory capacity in a further

200 subjects at age 7 years

Related to externalising behaviour at age 1 year in an
independent cohort of 108 infants

]

Figure 1. Overview of study.

estimated by BATMAN, was positively associated with
WPPSI 1Q at age 4 years (Figure 2¢). The associations for
NR4A2 and TCF4 were also positive whereas the ETST as-
sociation was negative.

Validation of HES7 DMROI

We chose to validate HES1 since it has been shown to play
an essential role in the generation of organising centres
within the brain of the appropriate size, shape and specifi-
cation by controlling the timing of cell differentiation
within the CNS.'® Moreover, the region of HEST identified
as a DMROI was located 4.8 kb upstream of the transcrip-
tion start site (TSS), in a region of HES1 that is evolutio-
narily conserved, suggesting that altered methylation of
this region of HES1 may have important functional conse-
quences for neuronal differentiation and function.
Methylation levels of nine CpGs within this region were
analysed by pyrosequencing in an extended sample of
175 SWS subjects (including the 24 samples used for the
MBD array) for which 4-year WPPSI data were available.
The concordance of methylation values with WPPSI scores
for the 100 bp region within the HEST ROI selected for
pyrosequencing validation can be seen in Figure 2d.
Consistent with these findings from the MBD array, associ-
ations were seen between the cord DNA methylation status
of individual CpGs within the DMROI of HESI and the
child’s 4-year WPPSI IQ (Figure 3a). Higher percentage
methylation of CpG2 associated with higher 4-year WPPSI
IQ (f=2.693, P=0.009) with a trend for CpGS
(f=1.951, P=0.072, Table 1). Adjusting for the mother’s
IQ strengthened associations between the percentage
methylation of CpGs 2 and 5 and child’s 1Q (f=3.192,
P=0.002; f=2.140, P=0.045, respectively; Table 1);

omitting the original 24 discovery samples from these ana-
lyses had little effect on the associations (e.g. for CpG 2
revised, f=3.179, P=0.005). Likewise, further adjustment
for maternal smoking, BMI and parity and the child’s birth-
weight and age at WPPSI measurement had little effect on
the magnitude and statistical significance of the association
with CpG2, but for CpGS there was an attenuation
(Supplementary Table 6, available as Supplementary data at
IJE online). The multivariate model combining HES1
CpG2, child’s IQ and maternal 1Q explained 15.7% of the
WPPSI variability; similar variability was explained by mod-
els replacing CpG2 with CpGS or CpG7 methylation. The
presence of SNPs at the identified CpG sites in HEST were
excluded by direct sequencing of this region.

Association of cord HES T methylation with
executive function at age 7 years

To determine whether the methylation status of HEST at
birth was also associated with cognitive function at 7 years
of age, methylation of the CpGs within the DMROI of
HEST was also measured in a further subset of SWS chil-
dren assessed for executive function using CANTAB. The
range and average methylation of CpGs within the DMROI
of HES1 were similar in the two groups of children assessed
at ages 4 and 7 years (Supplementary Table 7, available as
Supplementary data at IJE online) and the CpGs were
highly correlated for both age groups, with correlation coef-
ficients between 0.31 and 0.85 (Supplementary Table 8,
available as Supplementary data at IJE online). Higher
HES1 CpG 1, 5, 6 and 7 % methylation were associated
with enhanced executive function, indicated by greater SSP
span length (CpGS5, f=0.168, P=0.007; CpG6, f=0.135,
P=0.026; and CpG7, f=0.144, P=0.017; Table 2,
Figure 3b) and greater DMS 12s delay total correct
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Figure 2. Methylation of HES7DMR in cord at birth is associated with WPPSI 1Q at 4 years of age. a) Manhattan plot of epigenome-wide methylation
analysis. The X-axis indicates chromosomal position, the Y-axis the —log 10 P-value of the Fishers Exact test. The black dots represent DMROIs and
those associated with HES1, NR4A2, ETS1 and TCF4 are shown in red. b) Diencephalon development pathway. Genes contained in the diencephalon
development GO process were connected to each other by using the direct interactions algorithm in GeneGoMetacore™. Genes containing DMROIs
(HES1, NURR1, ETS1 and TCF4) are denoted by green circles (NR4A2 is denoted by its alternative name NURR1). This figure is generated in
Cytoscape. ¢) DMROI plot for HES1 (Chr 3: 193848528-193853872). X-axis shows chromosomal coordinates (hg19), Y-axis shows absolute % methyla-
tion difference between WPSSI Groups 1 and 4. Green and red circles represent start and end of each 100-nucleotide region returned from BATMAN,
respectively; 100 nucleotide regions in the dotted box were found to have >20% absolute methylation difference between WPSSI Groups 1 and 4 and
this region was selected for pyrosequencing in the extended sample set. The lower panel shows the positions of the HEST transcript and the
upstream DMROI. d) Concordance of methylation values with WPSSI scores for the 100-nt region within the HES 7 ROI selected for pyrosequencing
(containing CpGs 2-8), upstream of the HES 1 coding sequence. X-axis shows WPSSI scores and Y-axis shows % methylation as estimated by the
Bayesian algorithm BATMAN. Sample data points are coloured by WPSSI groups (red = Group 1, lowest WPSSI scores; blue = Group 2, low WPSSI
scores; green = Group 3, high WPSSI scores; yellow = Group 4, highest WPSSI scores). Chromosomal coordinates of the region are detailed above
the figure. WPPSI=Wechsler Pre-School and Primary Scale of Intelligence (full-scale 1Q).

(CpG1, f=0.196, P=0.028; CpG 5, f=0.285, P=0.002; and later cognitive function, we examined a mediating
CpGé6, p=0.174, P=0.043; and CpG7, B=0.167,  pathway for this relationship within the Singaporean
P=0.052; Table 2, Figure 3c). HEST CpG8 methylation GUSTO cohort and investigated whether methylation was

was associated with IED total errors (Stage 1). The related to socio-emotional difficulties at an earlier develop-
positive association seen between HEST methylation and mental stage, as socially disruptive behaviours have been
CANTAB measurements was in the same direction as linked with inattention and a reduced ability to learn. We

found between HEST methylation and child’s IQ at 4 years  specifically wanted to test the a priori hypothesis that the
of age. DMROI CpGs significantly associated with measures of
cognition in the SWS cohort were also associated with
measures of emotional regulation. We therefore examined
the methylation status of HES1 CpGs 2, 5 and 7 in relation
to externalising behaviour in the GUSTO cohort.

Association of cord HES 7 methylation and infant
externalising behaviour in the GUSTO cohort

Because of the strong associations found between methyla- Adjusting for the child’s sex and maternal educational at-
tion of specific CpGs within the promoter region of HES1 tainment, higher cord DNA HES1 CpG7 methylation was
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Figure 3. HES1 DMROI methylation at birth is associated with childhood neuropsychological function. a) Association between cord HES1 CpG2 and
CpG5 methylation and Wechsler Pre-School and Primary Scale of Intelligence (WPPSI 1Q) at age 4 years. b) Association between cord HES1 CpGb
and CpG7 methylation and spatial span length at 7 years of age. c) Association between cord HES7 CpG 5 methylation and delayed matching to sam-
ple (DMS) 12's delay total correct at 7 years of age. d) Association between cord HEST CpG7 methylation and infant externalising score. Methylation
has been divided into 4 equal groups according to rank; means and standard errors are plotted for each group. P-values are for regression of continu-

ous variables adjusting for gender and mother’s Q.
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Table 1. Association of umbilical cord HEST CpG methylation within the identified DMROI with 4-year WPPSI outcomes in 175

children
4-year WPPSI IQ, adjusted for child’s sex 4-year WPPSI IQ, adjusted for child’s sex and mother’s WASI

n B LCL UCL P-value n B LCL UCL P-value
HES1
CpG1 168 1.068 —-0.853 2.989 0.277 168 1.341 —0.563 3.244 0.169
CpG2 157 2.693 0.694 4.692 0.009%* 157 3.192 1.212 5.173 0.002%*
CpG3 154 0.260 —1.801 2.321 0.805 154 0.540 -1.510 2.589 0.606
CpG4 146 1.457 —0.582 3.495 0.164 146 1.571 —0.437 3.579 0.127
CpGS 139 1.951 —0.161 4.062 0.072*% 139 2.140 0.066 4.215 0.045%*
CpG6 170 0.936 —0.990 2.861 0.342 170 1.041 —0.863 2.945 0.285
CpG7 155 1.399 —0.623 3.421 0.177 155 1.719 —0.292 3.729 0.096*
CpG8 146 1.014 —1.027 3.054 0.332 146 1.501 —0.543 3.546 0.152
CpG9 138 0.928 -1.212 3.067 0.397 138 1.512 —0.661 3.684 0.175

WPPSI, Wechsler Pre-School and Primary Scale of Intelligence (full-scale 1Q); WASI, Wechsler Abbreviated Scale of Intelligence (full-scale 1Q); LCL, lower

95% confidence limit; UCL, upper 95% confidence limit.
*P-value < 0.1; **P-value <0.05.

associated with a lower infant externalising score at age
1 year (f=-0.068, P=0.02; Table 3, Figure 3d); CpGS5
methylation had no association with externalising score,
whereas higher CpG2 methylation had a borderline associ-
ation with higher externalising score (f=0.053, P=0.05;
Table 3).

Functional significance of altered CpG
methylation

To determine whether methylation of these CpG loci had
functional consequences by influencing transcription factor
binding to the HES1 promoter, electrophoretic mobility
shift assays (EMSAs) were used. In the human neuroblast-
oma cell line IMR32, one specific protein complex bound
to the HEST promoter —4706 to —4740 region, containing
CpG sites 2-5 (Figure 4a). In silico analysis of this region
of the HES1 promoter using the Predict transcription fac-
tor binding sites (PROMO) software®’ predicted that
CpGS was located within an ELK1 (part of the ETS family)
binding site. Multiplexed consensus competitor EMSAs>>
identified the transcription factor bound at this site as part
of the ETS transcription factor family. This was confirmed
by specific competitive binding with an ETS consensus se-
quence but not an oligonucleotide containing a mutated
core ‘GGAA’ ETS binding sequence (Figure 4b).
Moreover, wheras binding was substantially reduced in the
presence of 100-fold excess of unmethylated specific
competitor, it was unaffected in the presence of 100-fold
excess of a specific competitor sequence containing
methylated CpGS5 (Figure 4c¢). This suggests that ETS binds
preferentially to the unmethylated sequence upstream of

HES1 and methylation of CpGS inhibits ETS binding to
this locus.

Discussion

There has been much debate regarding the contribution of
fixed genetic sequences to variation in IQ in the popula-
tion, and genome-wide association studies have consist-
ently failed to detect specific SNPs which are associated
with a substantial effect.’®> Here we examined whether
perinatal epigenetic processes contribute to cognitive de-
velopment and function. We show for the first time that
methylation of CpG loci in umbilical cord DNA at birth is
associated with later neuropsychological outcomes.
This provides novel evidence for the importance of
developmental epigenetic processes in influencing later
cognitive function. Using an MBD array, we identified 41
DMROIs at birth associated with WPPSI IQ at age 4 years.
These DMROIs were associated with genes which have
been previously linked to cognitive development or
function such as TCF4 (transcription factor 4), a bHLH
transcription factor deleted in Pitt-Hopkins syndrome®*
where individuals exhibit severe motor dysfunction and
mental retardation; ILIRN (interleukin 1 receptor
antagonist) and MMP3 (matrix metallopeptidase 3), where
SNPs associated with these genes have been linked to
cognitive decline;****® and NFE2L2 (nuclear factor eryth-
roid 2-like 2) which is known to be decreased in the brain
during oxidative stress.’” Other genes containing DMROIs
such as FANK1 (fibronectin type III and ankyrin repeat
doman 1), FAM83F (family with sequence similarity 83
member F) and SERPINH1 (serpin peptidase inhibitor
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Table 2. Association of umbilical cord HES7 CpG methylation within the identified DMROI with 7 year CANTAB outcomes in 200
children

CANTAB outcomes adjusted for sex and

CANTAB outcomes adjusted for sex mother’s educational attainment
n beta LCL UCL P-value n beta LCL UCL P-value
DMS total correct
HES1 CpG1 187 0.196 0.022 0.369 0.028** 186 0.205 0.028 0.382 0.024**
HES1 CpG2 180 0.121 —0.060 0.302 0.192 179 0.122 —0.063 0.306 0.198
HES1 CpG3 180 0.175 —0.007 0.357 0.061*% 179 0.171 —0.012 0.354 0.069%
HES1 CpG4 179 0.087 —0.098 0.271 0.359 178 0.095 —0.094 0.283 0.327
HES1 CpGS 179 0.285 0.111 0.459 0.002%* 178 0.289 0.111 0.467 0.002%*
HES1 CpGé6 200 0.174 0.007 0.342 0.043%* 199 0.175 0.005 0.345 0.045%*
HES1 CpG7 199 0.167 —0.001 0.334 0.052*% 198 0.164 —0.007 0.334 0.061*%
HES1 CpG8 197 0.151 -0.017 0.319 0.079% 196 0.152 —0.02 0.324 0.085%
HES1 CpG9 197 0.097 -0.072 0.266 0.261 196 0.097 —0.075 0.268 0.272
IED total errors (Stage 1)
HES1 CpG1 185 0.023 —0.150 0.196 0.797 184 0.024 -0.153 0.201 0.793
HES1 CpG2 178 0.143 —0.034 0.321 0.115 177 0.142 —0.039 0.322 0.125
HES1 CpG3 178 0.128 —0.051 0.308 0.163 177 0.123 —0.058 0.303 0.185
HES1 CpG4 177 0.155 -0.025 0.335 0.093* 176 0.165 —0.020 0.349 0.082*
HES1 CpGS 177 0.070 —0.106 0.245 0.437 176 0.063 —0.116 0.243 0.492
HES1 CpGé6 198 0.161 —0.007 0.330 0.062% 197 0.161 —0.010 0.332 0.066*
HES1 CpG7 197 0.095 —0.073 0.263 0.269 196 0.091 —0.080 0.263 0.298
HES1 CpG8 195 0.195 0.028 0.363 0.023%* 194 0.198 0.026 0.369 0.025%*
HES1 CpG9 195 0.149 —0.020 0.318 0.086* 194 0.148 —0.024 0.320 0.092*%
IED total errors (Stage 8)
HES1 CpG1 185 —0.007 -0.213 0.199 0.948 184 —0.013 —0.224 0.197 0.901
HES1 CpG2 178 —0.089 -0.296 0.118 0.402 177 —0.088 —0.299 0.122 0.412
HES1 CpG3 178 —0.092 —0.302 0.117 0.388 177 —0.087 -0.297 0.124 0.421
HES1 CpG4 177 0.134 -0.076 0.344 0.213 176 0.131 —0.084 0.346 0.234
HES1 CpGS 177 —0.106 -0.310 0.098 0.308 176 -0.103 —0.311 0.106 0.335
HES1 CpGé6 198 —0.098 —0.294 0.097 0.325 197 —0.098 —0.296 0.099 0.330
HES1 CpG7 197 —0.050 —0.244 0.143 0.611 196 —0.040 -0.237 0.156 0.687
HES1 CpG8 195 —0.050 —0.244 0.144 0.615 194 —0.045 —0.242 0.153 0.659
HES1 CpG9 195 —0.089 —0.284 0.105 0.370 194 —0.088 —0.284 0.109 0.382
IED pre-EDS errors
HES1 CpG1 185 —0.031 —0.100 0.037 0.372 184 —0.025 —0.095 0.045 0.477
HES1 CpG2 178 0.001 —0.070 0.071 0.980 177 0.004 —0.067 0.075 0.912
HES1 CpG3 178 0.014 -0.057 0.086 0.691 177 0.013 —0.058 0.084 0.720
HES1 CpG4 177 —0.028 —0.099 0.043 0.439 176 —0.020 —0.096 0.052 0.581
HES1 CpGS 177 —0.059 -0.127 0.010 0.094* 176 —0.060 -0.129 0.010 0.095*
HES1 CpGé 198 -0.019 —0.085 0.048 0.583 197 -0.016 —0.084 0.051 0.636
HES1 CpG7 197 -0.014 —0.080 0.052 0.678 196 -0.014 —0.081 0.053 0.685
HES1 CpG8 195 —0.047 —0.113 0.019 0.166 194 —0.046 —0.114 0.021 0.182
HES1 CpG9 195 —0.030 —0.097 0.037 0.381 194 —0.028 —0.095 0.040 0.420
SSP-span length
HES1 CpG1 179 0.086 —0.039 0.211 0.180 178 0.080 —0.047 0.206 0.218
HES1 CpG2 172 0.078 —0.046 0.202 0.221 171 0.066 —0.059 0.191 0.303
HES1 CpG3 172 0.043 —0.082 0.169 0.497 171 0.035 —0.090 0.159 0.584
HES1 CpG4 171 0.083 —0.041 0.207 0.190 170 0.079 —0.046 0.204 0.218
HES1 CpGS 171 0.168 0.048 0.287 0.007** 170 0.149 0.028 0.270 0.017%*
HES1 CpGé 192 0.135 0.017 0.253 0.026** 191 0.124 0.005 0.242 0.042%*
HES1 CpG7 191 0.144 0.027 0.262 0.017** 190 0.130 0.012 0.249 0.033%*
HES1 CpG8 189 0.111 —0.008 0.230 0.069* 188 0.094 —0.027 0.215 0.128
HES1 CpG9 189 0.103 -0.017 0.222 0.095% 188 0.092 —0.029 0.213 0.137

*P-value < 0.1; **P-value <0.05. CANTAB, Cambridge Neuropsychological Test Automated Battery; LC, lower 95% confidence limit; UCL, upper 95% con-
fidence limit
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Table 3. Association of umbilical cord HES 7 CpG methylation within the identified DMROI with 1-year externalising in 108 children

1 year externalising,adjusted
for child’s sex

1 year externalising, adjusted for child’s sex and
mother’s educational attainment

n B LCL UCL P-value n B LCL UCL P-value
HES1
CpG2 108 0.064 0.011 0.118 0.019* 95 0.053 0.000 0.110 0.050*
CpGS 107 0.025 —0.030 0.079 0.375 94 0.025 —0.031 0.081 0.381
CpG7 108 —0.063 —-0.119 —0.006 0.031* 96 —0.068 —0.124 —0.007 0.020*
LCL, lower 95% confidence limit; UC, upper 95% confidence limit.
*P-value <0.05.
(a) (b) (c)
Extract = 4 o Extract = = o F Extract - + + + + + -+
CpG 2-5 probe F o ok CpG 2-5 probe + + + - CpG 2-5 probe + + + + + + +
Specific competitor - = &+ - ETS competitor - - + - Specific competitor = = xS0 x100 xS00 — — —
Non-specific competitor — — — + ETS-mutated competitor — — — + Met CpG5 competitor = = = = = x5 xI100 x500

- -

Figure 4. Methylation of CpG5 blocks ETS transcription factor binding to the HES 7 promoter sequence. Results are typical of three analyses. (a) The
unmethylated biotin-labelled probe showed a strong shift upon incubation with nuclear extract from the human neuroblastoma cell line IMR32; this
shift was markedly reduced by co-incubating with 500-fold excess of the unlabelled specific competitor, but not with 500-fold excess of an unlabelled
non-specific competitor. (b) Binding to the probe was markedly diminished by co-incubation with 100-fold excess of an unlabelled oligonucleotide
containing the core consensus sequence for ETS (GGAA) but not with 100-fold excess of a mutated ETS core competitor (c) The unmethylated probe
was incubated with 50-, 100- and 500-fold excesses of the unmethylated or methylated competitor; binding to the unmethylated probe was competed
out with a 100-fold excess of the methylated competitor compared with a 500-fold excess of the unmethylated competitor.

clade H) have not previously been linked to cognitive
function.

Gene ontology analysis of the DMROIs revealed that
the top GO process enriched among the DMROIs was di-
encephalon development. Four genes (ETS1, HES1, TCF4
and NR4A2) in the diencephalon network contained
DMROIs and were included in a direct interactors sub-
network. The diencephalon is a region of the brain that
functions as a crucial relay and integration centre and
modulates sensory, motor and cognitive functions.

Consistent with the findings from the MBD array, so-
dium bisulphite pyrosequencing in a larger number of SWS
subjects confirmed that higher perinatal methylation of
CpGs within the HEST DMROI correlated with higher 1Q
at 4 years; adjusting for maternal IQ strengthened the asso-
ciations between HEST methylation and child’s 1Q. Higher
methylation of HEST CpGs 1, 5, 6 and 7 was also associated
with higher executive function in an independent group of

SWS children at 7 years, including measures of a better vis-
ual working memory, greater working memory capacity
and increased proficiency in retaining selective attention
(assessed by CANTAB DMS and SSP); CANTAB IED
outcomes, assessing the ability to engage in deliberate,
goal-directed thought and action, were associated with
HES1 CpGS8 methylation and there were non-significant
trends observed between IED outcomes and methylation of
HES1 CpGs 4, 5, 6 and 9. However, there were differences
in the associations found within the WPPSI and CANTAB
measurements, for example the methylation of CpGs 5 and
7 was associated with both child’s WPPSI IQ at 4 years and
executive function at 7 years, whereas the methylation of
CpG2 was only associated with child’s IQ at 4 years and
not replicated in relation to executive function at 7 years of
age. These differences may reflect different CpG loci within
the DMORI having particular effects at different times dur-
ing development (the cognitive function tests were carried

GTOZ ‘92 Ae|A uo uoidureyinos jo AiseAIUN e /Biosfeulnolpioxoall//:dny wouy papeojumoq


http://ije.oxfordjournals.org/

International Journal of Epidemiology, 2015, Vol. 0, No. 0

1

out at different ages), or that the WPPSI and CANTAB tests
measure related but different aspects of cognitive function.
The DMROI of HES1 does span a region of over 200 bp
and it will be interesting to determine the precise role that
these different CpG sites play in the temporal and spatial
regulation of HES1 expression.

To explore the pathway linking HEST methylation to
later cognitive function, we also examined whether methy-
lation of HES1 was related to socio-emotional difficulties
at an earlier developmental stage, as socially disruptive be-
haviours have been linked with inattention and a reduced
ability to learn.’® Interestingly, higher HEST CpG7 methy-
lation was also associated with lower externalising scores
at age 1 year in the independent GUSTO cohort, suggesting
a possible mediating pathway between HEST methylation,
emotional regulation and eventual cognitive ability, with
the lower externalising scores reflecting a decrease in so-
cially disruptive behaviours, consistent with the associ-
ations seen between higher HEST methylation and
increased cognitive function at later ages. Alternatively,
HES1 methylation may impact on neural function to result
in both poor emotion regulation and accompanying exter-
nalising behaviour as well as cognitive difficulties. In con-
trast, we observed a borderline association between higher
CpG2 methylation and greater externalising. Further repli-
cation of the association between HESI methylation and
socio-emotional behaviour will be required to confirm the
direction of the association and whether there is a differen-
tial effect of methylation at the different CpG loci within
this region on behaviour. It would also be beneficial to
examine both externalising and cognitive function out-
comes in the same population of children, which may be
possible in the GUSTO cohort as the children get older, in
order to clarify the potential mediation by emotional regu-
lation on HES1 methylation and cognitive function.

HES] is an effector of the NOTCH signalling pathway
that is essential for neural development and function.®”
Disruption of Notch1 signalling in Drosophila blocks
memory consolidation.*®*! Moreover, mice with anti-
sense-reduced hippocampal Nozch1 mRNA and protein
levels fail to sustain long-term neural potentiation.*
HES1, which was originally isolated as a mammalian
homologue of hairy and Enbancer of Split, is an essential
mediator of Notch function.**™* Loss and gain of function
studies in mice show that Hes1 is crucial for generating the
correct numbers and full diversity of neurons and glial cells
by maintaining neural stem cells until later stages through
repression of proneural bHLH differentiation factors such
as Mash1 and Ngn2.***

The DMROI region in HES1 associated with later cog-
nitive function lies 4.8 kb upstream of the TSS in the HES1

gene; this is a region highly conserved between species.*®

DNasel hypersensitive sites and H3K27 acetylation have
also been localised to this region in both embryonic stem
cells and neuronal cell lines [http://www.genome.ucsc.edu/
ENCODE/], marks associated with active enhancer elem-
ents.*” Methylation of CpGs within the promoter or regu-
latory regions of genes is generally thought to block
transcription factor binding and/or lead to the recruitment
of methyl-binding proteins that in turn recruit histone
deacetylases to the DNA, silencing gene expression.’®!
We found that methylation of CpGS5, one of the CpGs
most strongly associated with later neuropsychological
function, blocked binding of an ETS transcription factor to
this region. The ETS family of transcription factors com-
prises 30 different members, which play key roles in onto-

32 including the development of the

genic processes
diencephalon, as does HES1. Interestingly, the MBD array
also identified a DMROI within the ETS1 promoter that
was associated with later cognitive function, suggesting
that the interplay between these two factors may be im-
portant for cognitive development. The reciprocal relation-
ship between HES1/ETS methylation is consistent with the
results of the molecular studies showing that HEST methy-
lation blocks ETS binding at the HES1 promoter. ETS pro-
teins initially contact DNA as a monomeric factor, but
they can also form homo- or hetero-dimers with other ETS
proteins and/or interact with accessory proteins; dependent
upon these interactions they can act as activators or repres-
sors of gene expression.’” Thus the effect of inhibiting ETS
binding by methylation of specific CpGs within the pro-
moter of HEST is likely to be both cell type- and develop-
mental stage-specific. This demonstration that altered
methylation can affect transcription factor binding in vitro
does suggest that methylation at these CpG loci may
have functional consequences and potential implications
for neuronal development and function. However, a pre-
natal exposure may affect both HEST methylation and
neurocognitive outcomes through independent pathways,
and the methylation change observed may not directly lead
to altered neurocognitive function. Further work is
required to establish whether altered methylation of this
region of HEST is causally involved in neurocognitive
development.

To date, genome-wide association studies have identi-
fied mutations in HMGA?2 as having the largest impact on
IQ; sequence variation within HMGA2, however, only
alters IQ by 1.29 points.’® Here we find that a one SD
change in HEST methylation is associated with a difference
in IQ score of 3.2 points at age 4 years, after controlling
for the influences of gender and maternal IQ. These find-
ings suggest that the early life environment operating
through epigenetic mechanisms also makes an important
contribution to subsequent variation in IQ. It has been
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shown that the peak enrichment for the distance between
CpG and SNPs that are part of cis-acting methylation
quantitative trait loci (mQTLs) is 45 bp from the CpG site
in question.’* In our subjects, the presence of SNPs at the
identified CpG sites in HEST was excluded by direct
sequencing of this region, but without genome-wide ana-
lysis it is not possible to exclude a genetic effect of distant
SNPs which could influence the DNA methylation of a par-
ticular sequence.

There are a number of limitations to this study: first, in
terms of the methylome approach we used. We measured
methylation differences at birth using an MBD array.
This has some advantages over the Illumina
HumanMethylation450K BeadChip array in terms of
greater coverage of the CpG sites within the genome, but
MBD capture is biased towards heavily methylated CpG-
rich regions. Moreover as the methylated DNA was
hybridised to a Human Agilent promoter array, this limits
the analysis to CpG sites located within regions relatively
close to the TSS of a gene. Thus changes in DNA methyla-
tion outside this region will be missed. However, studies
from both animal and humans have shown that many en-
vironmentally modifiable CpGs sites are located within
the promoter regions of genes.”>* We also used a region-
centric approach to identify DMROIs; this increases the
likelihood of functionally relevant findings, but it comes at
the expense of minimising information from the smaller re-
gions of differential methylation. Stringent cut-offs were
used to select DMROISs in order to prioritise genes for the
pathway analysis, but nonetheless it is likely that the list
will include false-positives. The pathway analysis returned
a network at a significance level which survived correction
for multiple testing, suggesting it includes true-positives;
the functionally linked candidate HES1 picked from this
pathway went on to independently replicate. We also
measured methylation in cord tissue at birth and it is pos-
sible that differences in HEST methylation may reflect dif-
ferences in cellular heterogeneity within the cord tissue
but, even if this were the case, these studies still show that
altered methylation of cord HES1 at birth is an effective
marker of later neurocognitive function. Recent data have
shown that for some genomic regions methylation appears
largely independent of tissue of origin, whereas for others
there is a clear tissue-specific dependence.>” For instance,
differential GR methylation in relation to childhood adver-
sity was observed both in peripheral blood and the hippo-
campus.'' It would be interesting to determine whether
HEST methylation is associated with neurocognitive func-
tion in other perinatal tissues or in peripheral blood at later
ages, and whether the same assocation between HES1
methylation and cognitive function is observed also in
brain tissue. A further limitation arises from the challenges

in assessing neuropsychological function at different ages.
IQ cannot be measured in infants, and executive function
is widely recognised to be the most important measure of
neuropsychological function but cannot easily be assessed
in infants and very young children. As a consequence we
used different tests at different ages.

Conclusions

The associations between CpG methylation and neuropsy-
chological function were found in children whose birth-
weight lay within the normal range and in two culturally
diverse populations. The finding of a consistent association
between HEST methylation at birth and later measures of
neuropsychological function suggest that epigenetic proc-
esses are important in the regulation of genes and path-
ways involved in neuropsychological development.
However, our data are only correlative and can only imply
an association between HEST DMROI methylation at
birth and later cognitive function. Nevertheless, even if it
is a non-causal association, the differential methylation
of HES1 provides an objective marker of an altered
developmental trajectory at birth. This has important
implications for policy makers and health professionals
and strongly supports the growing emphasis on the qual-
ity of early life environment not only for optimal
short-term health outcomes but also for longer health and
well-being.

Supplementary Data

Supplementary data are available at IJE online.
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