Testing the Cenozoic multisite composite ?18O and ?13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207)


Sexton, Philip F., Wilson, Paul A. and Norris, Richard D. (2006) Testing the Cenozoic multisite composite ?18O and ?13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207) Paleoceanography, 21, (2), PA2019. (doi:10.1029/2005PA001253).

Download

[img] PDF Sexton_Wilson_Norris.pdf - Version of Record
Restricted to Registered users only

Download (2MB)

Description/Abstract

Until recently, very few high-quality deep ocean sedimentary sections of Eocene age have been available. Consequently, our understanding of Eocene paleoceanography has become heavily reliant on “composite” records patched together from multiple sites in different ocean basins and generated using multiple taxa (potential sources of “local” noise in the global signal). Here we test the reliability of the early to middle Eocene composite ?18O and ?13C stratigraphies (Zachos et al., 2001) by generating new monospecific records in benthic foraminiferal calcite from a single locality, Demerara Rise, in the tropical western Atlantic (Ocean Drilling Program Leg 207). We present new stable isotope correction factors for commonly used Eocene benthic foraminiferal species. We find that interspecies isotopic offsets are constant across the isotopic range, supporting the notion that the inconstant intertaxa offsets reported elsewhere result from mixing species within genera. In general, the ?18O stratigraphy from Demerara Rise supports the validity of the Eocene ?18O composite, while revealing a temporary warming punctuating middle Eocene cooling. This warming may correspond to the so-called “Middle Eocene Climatic Optimum” previously documented in the Southern Ocean. The composite and Demerara Rise records for ?13C differ substantially. By removing the intersite and intertaxa sources of uncertainty in ?13C, we obtain a clearer picture of carbon cycling during the Eocene. Secular change in interocean ?13C gradients through the Eocene reveals that intervals of climatic warmth (especially the early Eocene) are associated with very small water mass ageing gradients.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1029/2005PA001253
ISSNs: 0883-8305 (print)
Keywords: benthic foraminifera, Eocene, stable isotopes, warm climates, Ocean Drilling Program, Demerara Rise
Subjects:
ePrint ID: 37748
Date :
Date Event
2006Published
Date Deposited: 26 May 2006
Last Modified: 16 Apr 2017 22:02
Further Information:Google Scholar
URI: http://eprints.soton.ac.uk/id/eprint/37748

Actions (login required)

View Item View Item