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Abstract

Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacte-
rial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction
resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB
immunopathology and their influx are associated with poor outcomes. We investigated neu-
trophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular
model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived
NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB
and caused matrix destruction both in vitro and in respiratory samples of TB patients. Colla-
gen destruction induced by TB infection was abolished by doxycycline, a licensed MMP
inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples
from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and
sputum MMP-8 concentrations reflected TB radiological and clinical disease severity.
AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils
from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neu-
trophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei.
These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathol-
ogy of TB and is a potential target for host-directed therapy in this infectious disease.
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Author Summary

Neutrophil infiltration is characteristic of immune-induced pathology in tuberculosis but
mechanisms whereby neutrophils cause tissue destruction are not fully understood. In this
study, we show that neutrophils secrete the collagenase MMP-8 in response to direct infec-
tion with Mycobacterium tuberculosis and via cellular networks. MMP-8 is up-regulated in
respiratory samples from TB patients, driving matrix destruction associated with neutro-
phil activation and reflects disease severity. Neutrophils are present adjacent to the wall of
TB cavities in human histology specimens. The metabolic pathway AMP-activated protein
kinase (AMPK) regulates neutrophil MMP-8 secretion with data supported by studies in
human neutrophils from AMPK-deficient patients. Host-directed therapy against neutro-
phil MMP-8 may reduce innate-immune mediated tissue damage in TB.

Introduction

The lung cavity is a hallmark of pulmonary tuberculosis, a globally important disease of man.
The cavity has high bacillary burden and is associated with spread of infection. Polymorphonu-
clear leukocytes or neutrophils are abundant in areas of TB lung cavities [1]. Excessive neutro-
phil recruitment associates with pathology in animal models [2, 3] and in man [4] but the
mechanism of how neutrophils drive pathology in human TB is not defined.

Zinc-containing matrix metalloproteinases (MMPs) have key roles in the inflammatory
immunopathology in a wide range of diseases including cancer and arthritis [5, 6]. On the
basis of diverse evidence, it has been shown that a matrix-degrading phenotype develops in TB
in which MMP activity is relatively unopposed by the specific tissue inhibitors of metallopro-
teinases (TIMPs) [7]. MMPs are crucial in granuloma formation in the zebrafish model of TB
[8] and may drive different stages of lung pathology. Collagenases, a subgroup of the MMPs,
are key in TB pathology since collagen is the main structural protein of the lung, the primary
site of infection. Patients with pulmonary TB have increased collagenases which correlate sig-
nificantly with radiological markers of tissue destruction [9, 10]. Neutrophils secrete MMP-8, a
potent collagenase, and increased neutrophil-derived MMPs associate with disease severity in
CNS-TB [11, 12], implicating neutrophils in the immunopathology of human TB.

The concept of metabolism regulating host immunity is only recently emerging [13]. Aden-
osine monophosphate-activated protein kinase (AMPK), a serine/threonine kinase is a central
regulator of metabolic responses acting as an activator of cellular catabolism [13]. In addition,
AMPK is known to have a role in immune responses determining the effector versus memory
fate of CD8 T-cells [14]. Inhibition of glucose uptake and AMPK inhibition impedes T cell che-
motaxis [15]. Dissecting the mechanism of how metabolism regulates immunity may be key to
understanding immunity in chronic infections such as TB.

We hypothesize that neutrophils drive tissue destruction in human pulmonary TB. Animal
models of infection such as murine strains which develop pulmonary necrosis and cavities are
useful in dissecting areas of the immune response in TB [16-18]. Murine models also demon-
strated the critical importance of IFN-y and TNF-a in the host defence against TB [19-21].
However, there are inherent differences between murine and human neutrophils with diver-
gences in cytokine secretion [22], peptides such as defensins [23], and intracellular signalling
pathways [24]. Therefore, in this study, we investigate the role of the neutrophil in MMP-de-
pendent tissue destruction in human pulmonary TB, a disease that affects man as the primary
host, and examine the signaling pathways regulating this process.
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First, we investigate the effect of neutrophil-derived collagenase MMP-8 in a human cellular
model and examine MMP-8 expression and collagenolytic activity in patients. Neutrophils se-
crete MMP-8 on direct M.tb infection and in M.tb-infected monocyte-dependent networks.
Neutrophil MMP-8 is expressed in TB patients’ biopsy specimens, with the secretion of MMP-
8 dependent on NF-kB. We found in a cohort of 108 TB patients and controls that increased
MMP-8 is closely associated with neutrophil markers and correlates with radiological and clini-
cal disease severity. Sputum MMP-8 from TB patients is functionally active, causing matrix
destruction, and patients with pulmonary cavities on chest radiographs have higher MMP-8
concentrations in their respiratory secretions. Gelatin degradation in the respiratory samples is
raised, but is not dependent on neutrophil gelatinase MMP-9. We demonstrate that AMPK
regulates MMP-8 dependent tissue destruction, both at the level of protein secretion and gene
expression, using data from a cellular model of infection and by investigating biopsy samples
from TB patients and immune responses in AMPK deficient patients. Taken together, our data
demonstrate that neutrophils cause tissue destruction in TB by an MMP-8-dependent process,
regulated by the pro-catabolic AMPK pathway.

Results

Neutrophil MMP-8 is increased in TB and is expressed in neutrophils in
patients with pulmonary TB

First, we investigated MMP-8 secretion from primary human neutrophils stimulated by live,
virulent M.tb. Neutrophil MMP-8 secretion increased over time and in a dose-dependent
manner in response to higher M.tb multiplicity of infection (MOI) (Fig 1A and 1B). TIMP-1
and -2 are the MMP inhibitors secreted by neutrophils [25, 26]. TIMP-1 was not secreted in
response to stimulation by M.tb (S1A Fig). TIMP-2 concentrations increased significantly but
to a 20-fold lower concentration than MMP-8 (S1B Fig). We demonstrated that neutrophil
MMP-8 secretion was blocked by the NF-kB p65 subunit inhibitor Helenalin (ICs, 10-50 uM),
in a dose-dependent manner and the effect was maximal at 100 pM (S1C Fig, P<0.001). The
dose-dependent suppression of neutrophil MMP-8 was replicated with additional specific NF-
kB inhibitors caffeic acid phenethyl ester (CAPE) [27] (S1D Fig) and SN50 [28] (S1E Fig). Neu-
trophil viability was greater than 95% for all conditions by FACS staining with Annexin V and
live/dead dye (S2 Fig).

To determine the cellular source of MMP-8 in patients with TB, we analyzed lung biopsies
from patients who were diagnosed with pulmonary TB. Polymorphonuclear neutrophils were
observed along the entire circumference of the inner wall of cavities on H & E staining (Fig
1C). Neutrophil accumulation was confirmed by specific positive staining for neutrophil elas-
tase (Fig 1D). Neutrophils in the same location stained positive for MMP-8 (Fig 1E and 1F).
MMP-8 expression was also found in the central area of necrosis of granulomas (S3 Fig), sug-
gesting that MMP-8 may be associated with the process of necrosis.

To determine if other proteases from neutrophils were similarly up-regulated, we analyzed
MMP-9 (neutrophil gelatinase) secretion from M.tb infected neutrophils. M.tb caused a dose-
dependent increase of MMP-9 secretion (Fig 1G). Furthermore, MMP-9 staining of patient
lung biopsy specimens also showed presence of MMP-9 in neutrophils (Fig 1H).

M.tb infected and CoMTB-stimulated neutrophils degrade matrix

In addition to neutrophils, monocytes are among the early cells to be recruited in M.tb infec-
tion [29] and substantial cross-talk may occur between neutrophils and monocytes [30]. Using
conditioned media from monocytes infected by M.tb (CoMTB) to model intercellular
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Fig 1. Neutrophil MMP-8 and -9 are upregulated in human TB. (A) Neutrophils were infected with M.tb MOI
of 1. MMP-8 secretion was upregulated at 4h. (B) Increasing M.tb MOI caused greater neutrophil MMP-8,
analyzed at 4h. Bars represent mean + s.d. of experiments performed in triplicate and data are representative of
a minimum of 2 independent experiments. (C and D) Human TB lung biopsy specimens stained with H&E and
anti-neutrophil elastase shows neutrophil infiltration around the cavity wall. Both scale bars represent 5 mm.

n = 5. (E and F) Magnified H&E and MMP-8 stains from Fig 1C inset shows neutrophils immunoreactive for
MMP-8 around the cavity wall. Both scale bars represent 50 um. (G) MMP-9 concentrations increase in a dose-
dependent manner after M.tb infection at 4 hours. Bars represent mean + s.d. of experiments performed in
triplicate and data are representative of a minimum of 2 independent experiments. *** P<0.001 (H) Biopsy
proven M.tb infected human lung specimens were stained for MMP-9 (inset from Fig 1C). Neutrophils were
immunoreactive for MMP-9. Scale bar represents 50 pm. Statistical analysis was performed using two-way
ANOVA with Bonferroni post-test or One-way ANOVA with Tukey’s post-test. **P<0.01, ***P<0.001.

doi:10.1371/journal.ppat.1004917.9001

stimulation of neutrophils, we found significant up-regulation of MMP-8 secretion similar to
M.tb infection (Fig 2A). We assessed the functional consequences of MMP-8 activity on degra-
dation of Type I collagen, the main extracellular matrix fibril providing structural support in
human lung parenchyma [31]. Both M.tb-infected and CoMTB-stimulated neutrophils de-
grade DQ collagen as assessed by a quantitative fluorescence assay (Fig 2B). Confocal micros-
copy demonstrated collagen degradation at the neutrophil-collagen interface both in M.tb-
infected and CoMTB-stimulated neutrophils (Fig 2C and 2D). There was dose-dependent inhi-
bition of collagenase activity to baseline when neutrophil supernatants were treated with doxy-
cycline, an MMP inhibitor licensed in the USA for use in periodontal disease [32]. The effect
was maximal after treatment with 100 pM doxycyline (Fig 2E, P<0.001).

Neutrophil MMP-8 is found on NETs

Next we showed that neutrophils generate NETs when stimulated with M.tb in vitro (S4A Fig),
and NETs were digested by DNAse (S4B and S4C Fig). Neutrophil extracellular traps (NETs)
are scaffolds containing DNA, histones and antimicrobial granule proteins. We demonstrated
for the first time that MMP-8 co-localizes with NETs (Fig 3A and 3B). Next, we evaluated
NETs in induced sputum from TB patients and healthy controls from a clinical study [33] (S1
Table). Sputum from TB patients had increased NET concentrations of 1548 mg/ml (+ stan-
dard error 256 mg/ml) compared to controls at 372 mg/ml (+ S.E. 150mg/ml) (Fig 3C,
P<0.001). Citrulline H3, an established marker of NETs [34, 35] was detected in induced spu-
tum of TB patients and not in healthy controls (Fig 3D). This was not due to dead or dying
cells since these neutrophils do not contain citrulline H3 (S4D Fig).

MMP-8 in induced sputum of TB patients is closely associated with
neutrophil markers and drives matrix degradation

MMP-8 is substantially elevated in the induced sputum of TB patients compared to other
MMPs [33]. To determine if MMP-8 was neutrophil derived, we analyzed two established
markers of neutrophil activation, myeloperoxidase (MPO) and neutrophil gelatinase associated
lipocalin (NGAL) [36, 37] in induced sputum. In a cohort of 51 TB patients and 57 healthy
controls randomly selected from our previously reported study of 137 patients [33], MPO

and NGAL concentrations were increased in induced sputum of TB patients compared to
controls (Fig 4A and 4B). Both sputum MPO and NGAL concentrations correlated strongly
with MMP-8 (r = 0.83, P<0.0001 and r = 0.68, P<0.0001 respectively) (Fig 4C and 4D), indi-
cating that MMP-8 in induced sputum of TB patients is likely to be principally derived from
neutrophils.
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Fig 2. M.tb and CoMTB-stimulated neutrophils degrade collagen. (A) Neutrophils were stimulated with
either M.tb MOI of 10, CoMCont or CoMTB for 4 hours. M.tb and CoMTB up-regulated MMP-8 secretion
analyzed by ELISA. (B) Cell-free supernatants from (A) were incubated with Type | DQ collagen. Bars
represent mean * s.d. of experiments performed in triplicate and are representative of a minimum of 2
independent experiments. (C) COMTB caused increased collagen breakdown by neutrophils, resulting in
greater fluorescence of DQ collagen. (D) Neutrophils were infected with M.tb MOI 10, fixed and M.tb stained
with anti-M.tb Ab. Infected cells degraded DQ collagen, increasing fluorescence. (E) Cell-free supernatants
from neutrophils infected with M.tb at MOI 10 were added with doxycyline to Type | DQ collagen. Doxycycline
suppressed collagenase activity in a dose-responsive manner. Bars represent mean * s.d of an experiment
performed in biological triplicates and represents 2—3 independent experiments. Analysis performed using
One-way ANOVA with Tukey’s post-test. ** P<0.01, ***P<0.001.

doi:10.1371/journal.ppat.1004917.9002

Next, we demonstrated that induced sputum from TB patients had increased collagenase ac-
tivity compared to healthy controls using the DQ collagen degradation assay (Fig 4E, P = 0.02),
confirmed on confocal microscopy (Fig 4F). Sputum MMP-8 concentrations strongly correlat-
ed with collagenase activity (r = 0.7, P = 0.0004) (Fig 4G) and MMP-8 neutralization decreased
collagenase activity in respiratory secretions of TB patients (P = 0.01) (Fig 4H). When the co-
hort was stratified according to the presence or absence of lung cavities, patients with pulmo-
nary cavitation secreted a median of 5-fold higher MMP-8 concentration than those without
cavities. (P<0.028, Fig 4I). In addition, MMP-8 sputum concentrations positively correlated
with the TB score (r = 0.56 for n = 108; P<0.0001), a clinical marker of disease severity. The
other major neutrophil-derived MMP, MMP-9, had a much weaker although statistically sig-
nificant correlation with TB score (r = 0.3453 for n = 108; P = 0.003). Analyzing CXR consoli-
dation score as a radiological marker of tissue destruction demonstrated a similar strong
MMP-8 correlation (r = 0.52 for n = 74; P<0.0001) and a weaker MMP-9 correlation with pa-
thology (r = 0.31 for n = 74; P = 0.0077).

To determine if MMP-9 contributes to matrix destruction in TB patients, we assessed the
gelatinase activity of the respiratory secretions. Induced sputum from TB patients showed an
increased gelatinase activity (P<0.0001; S5A Fig). However, MMP-9 neutralization with an in-
hibitory antibody at 10 ug/ml which completely suppresses gelatinase activity from MMP-9
[38], did not decrease gelatinase activity in the respiratory secretions (S5B Fig).

AMP-activated protein kinase regulates neutrophil MMP-8 secretion in
TBin vitro

To investigate the key regulatory pathways of neutrophil MMP-8 secretion, we performed a
screening human phosphokinase array and observed that the AMP-activated protein kinase
(AMPK) pathway was consistently activated in M.tb-infected neutrophils, especially AMPKo:2
(T172) (Fig 5A). This activation was confirmed by immunoblotting (Fig 5B). Components of
the MAP-kinase, STAT pathways, p53 and Src family of kinases were also activated consistent
with previous data [39-41] (S6A, S6B and S6C Fig). AMPK is considered a master regulator of
cellular energy homeostasis, existing as a heterotrimeric complex comprising catalytic a-sub-
units and regulatory B- and y-subunits [13]. Its activation sets off a cascade of catabolic path-
ways including glycolysis and ketogenesis which can lead to the wasting which is characteristic
in TB patients. We demonstrated that AMPKo was activated by phosphorylation in neutro-
phils directly infected with M.tb (Fig 5C).

The specific AMPK inhibitor Compound C (Comp C) blocked neutrophil MMP-8 secretion
in a dose-dependent manner towards baseline levels (Fig 5D) and also suppressed gene expres-
sion of neutrophil MMP-8 (Fig 5E), confirming AMPK is functionally active in regulating neu-
trophil MMP-8 secretion. Since the AMPK pathway may be downstream of the Akt/PI3-kinase
pathway [42, 43] and the Akt/PI3-kinase pathway may drive tissue destruction in TB [44], we
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doi:10.1371/journal.ppat.1004917.9003

investigated whether this path regulates human neutrophil MMP-8 secretion. Neutrophil Akt
was phosphorylated in response to CoMTB (S7A Fig) but MMP-8 secretion was not sup-
pressed by either the Akt-inhibitor (Akt-i) or the broad-spectrum PI3-kinase inhibitor LY
294002 (S7B and S7C Fig). We also examined whether the mTOR/p70S6 kinase regulated neu-
trophil MMP-8 secretion as this is downstream of AMPK [45]. p70S6 kinase was phosphorylat-
ed in neutrophils stimulated by CoMTB (S7D Fig) but the mTOR inhibitor rapamycin did not

PLOS Pathogens | DOI:10.1371/journal.ppat.1004917 May 21, 2015 8/21
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antibody was added to activated induced sputum with Type | DQ collagen (n = 11). Box and whiskers represent 10-90™ percentile with comparison using
Wilcoxon-Sign rank test. (I) Induced sputum MMP-8 were higher in patients with pulmonary cavities than those without. * P< 0.05, **P<0.01, ****P<0.0001.

doi:10.1371/journal.ppat.1004917.9004

inhibit neutrophil MMP-8 secretion (S7E Fig), indicating that neutrophil MMP-8 secretion is
independent of this pathway.

AMPK regulates neutrophil MMP-8 secretion in TB in patients

Finally, we studied AMPK in vivo. In human TB lung specimens, AMPKo was phosphorylated
within the nuclei of neutrophils in TB cavities (Fig 6A and 6B), indicating a state of energy de-
pletion [46]. AMPK regulation of neutrophil MMP-8 was further investigated using neutro-
phils from a group of patients with defects in AMPK activation. Their clinical phenotype is
typically similar to those found in glycogen storage disorders [47]. Genotypically, these patients
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healthy donors and patients with AMPK deficiency were stimulated with M.tb MOI of 10, CoMCont or CoMTB for 30 minutes. In patients, AMPK is
constitutively phosphorylated, resulting in a functional deficiency. Blot representative of 6 healthy controls and AMPK patients. (D) Neutrophils from healthy
donors and patients with AMPK deficiency were stimulated with CoMTB. n = 3 both groups. Neutrophils derived from AMPK patients secreted less MMP-8
when stimulated than cells from healthy donors. Experiments were performed in biological triplicates and each point represents a sample. Analysis was
performed using one-way ANOVA or two-tailed t-test. ** P<0.01, ***P<0.001.

doi:10.1371/journal.ppat.1004917.9006

have an AMPKy2 mutation [48]. AMPKo mutations have not been described in man. In these
patients, AMPKo was phosphorylated in both unstimulated and stimulated neutrophils but
not in healthy donors, demonstrating increased basal phosphorylation of AMPKa. (Fig 6C).
Such increased basal AMPK activity reduces the sensitivity of the protein kinase to AMP, re-
sulting in functional AMPK deficiency [47]. MMP-8 secretion from AMPK-deficient neutro-
phils stimulated by CoMTB was significantly less than MMP-8 secreted by AMPK-replete
neutrophils (Fig 6D, P<0.01), implicating AMPK in the regulation of neutrophil MMP-8
secretion in man.

Discussion

Neutrophils are emerging as key mediators of TB-associated inflammation. They drive the
unique TB transcript signatures in man [39] and predominate in respiratory secretions of pa-
tients with pulmonary TB [1, 49]. We found sputum from TB patients had increased MMP-8
concentrations, neutrophil myeloperoxidase (MPO) and neutrophil gelatinase associated
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lipocalin (NGAL) compared to controls. MMP-8 was strongly associated with markers of neu-
trophil activation, MPO and NGAL, indicating that sputum MMP-8 is likely to be neutrophil-
derived. Neutrophils expressing MMP-8 were found in the inner walls of tuberculous cavities
and may further erode the lung matrix, extending previous findings that neutrophils are the
predominant phagocytic cells in the respiratory secretions of TB patients [1]. We also found
higher MMP-8 in TB patients with cavities on their chest radiographs than those without cavi-
tation. These findings are consistent with and extend our previous data in smaller groups of pa-
tients that demonstrated a trend to increased MMP-8 compared to patients with respiratory
symptoms [9, 10]. Furthermore, MMP-8 is significantly elevated in plasma samples of patients
with TB compared to respiratory symptomatics [50]. These observations underscore the im-
portance of collagenases, such as MMP-8 and MMP-1, which are the only enzymes capable of
degrading the collagen triple helix at neutral pH. The consistent elevation of MMP-8 across the
different patient cohorts implicates neutrophils as key players in tissue destruction in TB.

In animal models of TB, neutrophil influx is associated with poorer outcomes with higher
bacterial burden, earlier mortality and tissue inflammation [51-53]. However, the mechanisms
linking neutrophil excess and poor outcomes are unclear. In our human study, M.tb drove
neutrophil MMP-8 secretion, causing destruction of collagen, the main structural protein in
human lung, both in vitro and in TB patients. We showed neutrophil MMP-8 closely correlated
with sputum collagenase activity as well as clinical CXR score and TB severity score, implicat-
ing neutrophils in driving pathology in man by their collagenolytic activity. MMP-8 was also
associated with NETs in M.tb infection and NET components such as citrulline H3, which
were not present in dead neutrophils, were increased in the respiratory secretions of TB pa-
tients. This may further contribute to immunopathology since NET' are recognized to induce
cell death [54, 55]. It is likely that different MMPs predominate in different stages of disease in
TB immunopathology. There is good evidence that neutrophils are present not only during the
acute phases of TB infection with macrophages, but are also a dominant cell type at the site of
established infection of the cavity together with lymphocytes [1, 51, 52]. Such neutrophils con-
tain high concentration of pre-synthesized MMP-8 [56], and so can drive the later stages of TB
which leads to lung cavitation, morbidity and death

MMP-8 inhibition may be a target to abrogate excessive host tissue destruction. MMP-8 is a
critical mediator of lung parenchymal damage other lung diseases, such as COPD [57] and
ventilator-induced lung injury, and MMP-8 inhibition improves outcomes in a murine model
of lung injury [58]. We showed higher MMP-8 in the respiratory secretions of patients with
cavities than those without and MMP-8 neutralization decreased the matrix destruction in the
sputum of TB patients. Although neutrophil gelatinase MMP-9 is secreted in TB and expressed
in TB patients, neutralizing MMP-9 did not reduce gelatinase activity in TB patients. Neutro-
phil MMP-8 secretion in TB was inhibited by NF-kB inhibitors helenalin, CAPE and SN50
without altering neutrophil viability. Furthermore, doxycycline reduced neutrophil collagenase
activity to baseline and MMP-8 neutralizing antibody decreased collagen destruction ex vivo in
TB patients. Such immunomodulatory agents have potential to reduce tissue destruction in
TB.

For the first time in TB, we have shown that there is interaction between the metabolic
AMPK signaling pathway in the regulation of neutrophil MMP-8 secretion and innate-im-
mune mediated tissue destruction. AMPK activates catabolic pathways such as fatty acid oxida-
tion and glycolysis to generate ATP, while switching off energy-consuming processes including
protein and fatty-acid biosynthesis and cell-cycle progression. Two studies have shown that the
development of lung injury in murine models is dependent on the pro-catabolic AMPK path-
way [59, 60] with AMPK activation decreasing lung injury. This contrasted with our findings
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where AMPK inhibition decreased neutrophil MMP-8 secretion, and maybe due to AMPK
having divergent effects on different cells.

The AMPK pathway was up-regulated in our cellular model and drives neutrophil MMP-8
secretion and gene expression, which was inhibited by the AMPK inhibitor Compound C. This
finding was repeated in a small cohort of extremely rare patients with functional AMPK defi-
ciency from a y,-subunit mutation, where M.tb-driven neutrophil MMP-8 was decreased com-
pared to healthy volunteers. While this does not definitively prove that AMPK regulates MMP-
8 secretion as metabolic differences in neutrophils may cause divergent secretion, it implicates
AMPK in driving neutrophil-mediated pathology by MMPs in TB. This finding is in keeping
with a recent study where AMPKo:2 deficient mice had decreased MMP-2 and were found to
be resistant to developing abdominal aneurysms, a process which was demonstrated to be
MMP-dependent [61]. Recent data demonstrate that AMPK has the ability to shuttle through
the nucleus and contains both cytosolic components and nuclear components [46] with the
ability to control transcription [62]. We showed AMPKa was phosphorylated in M.tb-infected
neutrophils and adjacent to human TB lung cavities, with phospho-AMPKa located in the nu-
clei, signifying a state of energy depletion [46].

Together, our data from our human cellular model and in patients demonstrate that neutro-
phils drive MMP-8-dependent tissue destruction in TB, providing an insight as to how exces-
sive neutrophil infiltration exerts a detrimental effect on the host. This process is controlled by
the metabolic regulator AMPK as demonstrated in vitro and in AMPK deficient patients. This
study highlights a previously unappreciated connection between metabolic paths that directly
interact with innate immune responses causing immunopathology in human TB. Interventions
specifically targeting the intersection of metabolic and innate immune responses to decrease
tissue destruction may improve outcomes in TB and other inflammatory disorders.

Materials and Methods
Reagents and antibodies

Mouse anti-human beta-actin, rapamycin and doxycycline hyclate were from Sigma. Helena-
lin, SN50 and Compound C were from Merck Biochemicals. Caffeic acid phenethyl ester
(CAPE) was from Tocris (R&D Biosystems). Mouse anti-human MMP-8, mouse anti-human
MMP-9, rabbit anti-human GAPDH, rabbit anti-human histone 2B, rabbit anti-human phos-
pho-p70S6k (T229), rabbit anti-Mycobacterium tuberculosis, rabbit anti-human neutrophil
elastase, rabbit anti-human phospho-AMPK alpha 1 and 2 (T172), sheep anti-human histone
2B, rabbit anti-human histone H3 (citrulline 2 + 8 + 17), donkey anti-Sheep IgG DyLight 488,
goat anti-mouse DyLight 549, goat anti-rabbit IgG Cy5 were from Abcam. Rabbit anti-human
phospho-Akt, total-Akt, phospho-AMPKa1/2 (T172), total AMPKa, and goat anti-rabbit HRP
linked were from Cell Signalling Technology. Goat anti-mouse IgG (H+L) was from Jackson
Immunoresearch laboratories. Goat anti-human MMP-8 was from R&D Biosystems and
mouse anti-human MMP-9 was from Millipore. Rabbit anti-human MMP-8 was from Novus
Biologicals. Mouse anti-human neutrophil elastase was from Dako. Mouse anti-human MMP-
9 was from Millipore.

Recruitment of patients and controls

Ethics statement. For recruitment of TB patients and controls, the Institutional Review
Board from Universidad Peruana Cayetano Heredia and Direccion de Salud Lima Este (Lima,
Peru) approved this study and written informed consent was obtained from all participants.
For AMPK patients, the study received the Institutional Review Board approval from Central
London Research Ethics Committee and written informed consent was obtained from all

PLOS Pathogens | DOI:10.1371/journal.ppat.1004917 May 21, 2015 13/21



@’PLOS | PATHOGENS

AMPK Regulates Neutrophil-Driven Immunopathology

patients. For extraction of primary human neutrophils, ethical approval for obtaining healthy
human volunteer blood was provided by the Outer West London Research Ethics Committee
and written informed consent was obtained from individuals. Ethical consent for the study of
anonymized paraffin-embedded sections from histopathology was obtained from the Ham-
mersmith Hospitals Research Ethics Committee in accordance with The Human Tissue Act
2004 and written informed consent was obtained from subjects who donated their biopsy
specimens.

TB patients and controls. A subset of 51 TB and 57 control patients were analysed from
the original cohort of 137[33]. In brief, TB patients were recruited prior to starting TB therapy
and were microbiologically positive, aged over 18 years, had no prior history of TB or TB treat-
ment and were HIV negative. Healthy controls aged over 18 years had no symptoms associated
with TB, a normal chest radiograph and negative sputum TB culture. Induced sputum samples
of at least 3 mls was obtained from TB patients and healthy controls and were sterile filtered
using a 0.2um Durapore membrane (Millipore). Total protein concentrations were measured
using Bradford assay (Bio-Rad). Disease severity was assessed using an established clinical TB
Score [63]. This is a clinical score that evaluated the following: cough, hemoptysis, dyspnea,
chest pain, night sweats, conjunctival pallor, tachycardia, axillary temperature above 37°C,
body mass index and middle upper arm circumference (MUAC) with a total possible score of
13. Chest radiographs were scored for extent of pulmonary consolidation with Image J 1.43U
(NIH, USA) using the formula: (Area of TB consolidation/Total lung area) x (Mean absorbance
of TB consolidation/Mean lung absorbance) x 100% as before [33].

AMPK patients and controls. The cardiology specialty consultation service of The Heart
Hospital, University College London identified patients with cardiomyopathy, who were con-
firmed on genotyping to have an AMPKy2 mutation. Neutrophil isolation was performed con-
currently from each patient and from a healthy control with cells stimulated concurrently.

M.tb culture

M. tuberculosis H37Rv was cultured in supplemented Middlebrook 7H9 medium (BD Biosci-
ences). For infection experiments, mycobacteria were used at mid-logarithmic growth at an op-
tical density of 0.60 (Biowave cell density meter; WPA).

Cell culture and stimulation

Whole blood were drawn in preservative-free heparin and mixed with equal volumes of 3%
dextran saline to remove erythrocytes. Neutrophils were isolated from the resulting cell suspen-
sion using Ficoll-Paque density centrifugation and three rounds of hypotonic lysis. Neutrophil
purity was over 95% by FACS and viability >99% by trypan blue assay. In some experiments,
neutrophils were pre-incubated with specific inhibitors/agents as indicated for 30 minutes un-
less otherwise stated. In all experiments involving live M. tuberculosis H37Rv, tissue culture
medium was sterile filtered through 0.2 -pm Anopore membranes (Millipore) before removing
from the CL3 laboratory. All experiments were performed using 4 hour incubations unless
otherwise stated.

Primary human blood monocytes were prepared from donor leukocyte cones from healthy
donors (National Blood Transfusion Service, UK). After density gradient centrifugation (Ficoll
Paque) followed by adhesion purification, monocyte purity was over 95% by FACS analysis.
Monocytes were infected with M.tuberculosis at a multiplicity of infection (MOI) of 1. After in-
cubation at 37°C for 24 h, conditioned medium was harvested and was termed CoMTB. Media
from uninfected monocytes was termed CoMCont.
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ELISAs for TIMP-1/2, MPO and NGAL

TIMP-1 and 2 concentrations were measured using the Duoset ELISA Development System
(R&D Systems) and detected a minimum of 31.2 pg/ml for both. The human MPO Quantikine
ELISA kit (R&D Systems) was performed according to manufacturer’s instructions and the
lower limit for MPO detection was 0.1 ng/ml. NGAL was measured using the human NGAL
ELISA kit (Bioporto Diagnostics) which had minimum detection limit of 1.6 pg/ml.

Luminex array

MMP-8 and -9 concentrations were analyzed by Fluorokine multianalyte profiling kit accord-
ing to the manufacturer’s protocol (R&D Systems) on the Luminex platform (Bio-Rad). The
minimum level of detection for MMP-8 and -9 was 110 pg/ml and 65 pg/ml respectively.
Cytokine concentrations were analyzed using a human 30-plex panel (Invitrogen).

Human phosphokinase array

The Proteome Profiler Human Phospho-kinase array kit (R&D Systems) which detects 45
phosphorylated proteins was performed according to the manufacturer’s protocol and devel-
oped with the ECL system (Amersham Biosciences). Thirty minutes after neutrophils were
stimulated with CoMTB, the cells were pelleted and lysed in lysis buffer. Equal amounts of
total protein were loaded on to each array. Densitometric analysis of arrays was performed
using Scion Image version Beta.4.0.2.

DQ collagen and gelatin degradation assays

Type I collagen and gelatin degradation was assessed using the EnzChek Gelatinase/Collage-
nase Assay kits (Molecular Probes). Samples were activated with 2 mM of 4-amino-phenyl
mercuric acetate (APMA) for 1 hour at 37°C. 80uL of reaction buffer or inhibitor (doxycyline
hyclate, Goat anti-human MMP-8 or Mouse anti-human MMP-9) were added with 20pL of
either DQ collagen or gelatin (Invitrogen) at a final concentration of 25ug/ml. Activated sam-
ples were subsequently added, and activity detected at specified times using a fluorometer
(FLUOstar Galaxy).

Isolation and quantification of neutrophil extracellular traps (NETS)

Human neutrophils were infected with M.tb at an MOI of 10 and 20 nM PMA was used as a
positive control. 5 U/ml of micrococcal nuclease (Fermentas) was added in each well for

10 minutes at 37°C, after which EDTA was used to halt the reaction. Supernatants were collect-
ed, sterile filtered and stored at 4°C. NET's were quantified using QuantiT PicoGreen (Invitro-
gen) according to manufacturer’s instructions.

Immunoblotting

Pelleted neutrophils infected with M.tb or stimulated with CoMTB were mixed with SDS lysis
buffer. Samples were run on the NuPAGE 4-12% Bis-Tris gels with SDS Running buffer
(Invitrogen). Protein was transferred onto a nitrocellulose membrane (GE Healthcare). Prima-
ry antibody was diluted in 5% BSA/0.1% Tween and incubated overnight at 4°C with agitation.
Secondary antibody was added diluted in blocking buffer. Luminescence was demonstrated
with ECL Substrate Reagent (Amersham Science) according to manufacturer’s instructions
and exposing the membrane to Hyperfilm ECL. Densitometric analysis was performed using
Image J 1.43U (NIH, USA).
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Real-time PCR

Total RNA was extracted from 2 x 10 ® neutrophils using the RNeasy Mini Kit (Qiagen). Quan-
titative real-time RT-PCR was performed using the OneStep RT- PCR master mix (Qiagen) ac-
cording to the manufacturer’s instruction on a Stratagene Mx3000P platform using 5-10 ug
per sample. MMP-8 primer and probe mixes were obtained from Applied Biosystems.
GAPDH (Forward primer 5- CGCTTCGCTCTCTGCTCCT-3’, reverse primer 5- CGAC
CAAATCCGTTGACTCC-3’, probe 5-HEX-CGTCGCCAGCCGAGCCACAT-TAMRA-3)
was analyzed in parallel. To accurately determine the quantitative change in RNA, standard
curves were prepared from plasmids subjected to real-time PCR as above. MMP-8 data were
normalized to GAPDH detected in the same sample.

Flow cytometry

Cell viability was assessed by staining neutrophils with Annexin V-FITC apoptosis detection
kit (eBioscience, Affymetrix, California, USA) and live/dead fixable dead cell stain kit (Invitro-
gen). Neutrophils were stimulated with 200 ng/ml staurosporine to induce apoptosis and this
was used as a positive control for all experiments. Annexin V was detected on the FL-1 channel
and live/dead dye on FL-3. A total of 50,000 events were gated and analysed on BD FACSCali-
bur flow cytometer using CellQuest. Data was analysed using FlowJo 7.6.5 (Tree Star).

Immunofluorescence microscopy

Permanox chamber slides (Nunc Labtech) were coated with 0.1 mg/ml fibrinogen with or with-
out 25 pg/ml of DQ collagen for 30 minutes. For experiments involving NETs, 10 U/ml DNase
(Fermentas) was added for 20 minutes at room temperature at the end of the experiment. Sam-
ples were then fixed with 4% paraformaldehyde for 30 minutes and permeabilized with 0.5%
saponin for 10 minutes. Cells were washed before blocking with 10% human AB serum with
2.5% BSA and 0.05% saponin. Primary antibodies were added overnight. Chamber slides were
washed prior to the addition of secondary antibodies. The chambers were subsequently re-
moved from the slide, and Fluoroshield Mouting medium with DAPI (Abcam) was added. Im-
ages were captured using Leica confocal microscope (Leica TCS SP5) and processed using
Leica LAS AF Lite 2.6.0 (Leica Microsystems, Germany) and Image J 1.43U (NIH, USA).

Immunohistochemistry

Five non immunosuppressed patients with biopsy proven pulmonary M.tb infection were
analysed. The positive controls colon tumours (AMPK) from 10 patients and inflammed ap-
pendix (MMP-8). Negative controls were performed using the appropriate isotype control anti-
bodies. Sections were immunostained for MMP-8 and phospho-AMPK alpha 1 and 2 (T172);
neutrophil elastase with epitope retrieval performed by enzyme digestion using Bond Enzyme
Pretreatment Kit. All antibodies were incubated for 15 minutes at room temperature. All
immunohistochemistry was performed using the Leica Bond-III automated platform and asso-
ciated ancillary reagents (all Leica Biosystems). The antibodies were detected using the Bond
Polymer Refine Detection System and Bond DAB Enhancer according the

manufacturer’s instructions.

Statistical analyses

Data were analyzed using GraphPad Prism (version 5.04, GraphPad Software). Data are ex-
pressed as mean =+ s.d. unless stated otherwise. All experiments are performed in biological
triplicates on at least 2 separate occasions. Multiple intervention experiments are compared
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with one-way ANOV A followed by Tukey’s post-test correction, while continuous variables
between 2 sets of data are assessed using two-tailed Mann-Whitney-U test. Spearman’s rank
correlation tests are used for correlation analyses. P values of less than 0.05 are taken as statisti-
cally significant.

Supporting Information

S1 Table. Demographic data of healthy controls and TB patients.
(DOCX)

S1 Fig. (A) TIMP-1 secretion is not increased with M.tb multiplicity of infection (MOI) at
4 hours. (B) TIMP-2 concentrations increase in a dose-dependent manner with M.tb MOI at
4 hours. (C) NF-kB inhibition suppresses neutrophil MMP-8 secretion driven by M.tb infec-
tion. Neutrophils were preincubated with p65 unit inhibitor Helenalin for 30 minutes and
stimulated with M.tb MOI of 10 for 4 hours. (D and E) NF-kB inhibition suppresses neutrophil
MMP-8 secretion driven by M.tb infection. Neutrophils were pre-incubated with caffeic acid
phenethyl ester (CAPE) or SN50 for 30 minutes and stimulated with M.tb MOI of 10 for 4
hours. Bars represent mean = s.d. of experiments performed in biological triplicates and is rep-
resentative of at least 2 experiments. Analysis done by one-way ANOVA. ** P<0.01, ***
P<0.001.

(TIF)

S2 Fig. NF-kB inhibition does not affect cell viability. Neutrophil viability of conditions for
Fig 1D and 1E by FACS staining with Annexin V and live/dead dye. 50,000 events were gated.
FACS plots representative of 2 donors.

(TIF)

S3 Fig. Necrotic centre of granuloma is positive for MMP-8. Biopsy proven M.tb infected
human lung specimens were stained for MMP-8 and matched isotype control antibody.
(TTF)

S4 Fig. M.tb induces NETs. (A) Neutrophils were stimulated with M.tb MOI of 10 or 20nM
PMA for 4 hours and NET's quantified using Picogreen QuantIT. All bars represent mean + s.
d. of experiments done in biological triplicates and are representative of a minimum of 2 inde-
pendent experiments. (B and C) M.tb induced neutrophil extracellular traps are associated
with MMP-8. Neutrophils were stimulated with PMA or infected with M.tb MOI 10 for 4
hours. DNAse was added into selected conditions. (D) Citrulline H3 is not associated with
dead neutrophils. Neutrophils were either stimulated with PMA or lysed with Triton-X. 10ug
of protein from cell-free supernatant were acetone precipitated and immunoblotted.

(TIF)

S5 Fig. Gelatinase degradation of respiratory secretions from healthy controls and TB pa-
tients. (A) TB patients have increased gelatinase activity in their induced sputum samples.

(n =11 both groups). ****P<0.0001. (B) Anti-MMP-9 neutralizing antibody at final concentra-
tion of 10 pg/ml does not decrease gelatinase activity in the induced sputum of TB patients
(n=11).

(TIF)

S6 Fig. Densitometric analysis from human protein kinase phosphoarray. Neutrophils were
stimulated with CoMCont or COMTB for 30 minutes. (A) Components of the MAP-kinase
pathway. (B) Components of the STAT pathway. (C) Components of other signalling path-
ways. Protein kinase dots were normalized to control dots on each membrane. Bars represent
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mean from arrays of 4 human donors.
(TIF)

S7 Fig. Neutrophil MMP secretion is independent of Akt/PI3 kinase and mTOR/p70S6K
pathway. (A, D) Neutrophils were stimulated with CoMCont or CoMTB and lysed at specified
time points. (B, C and E) Neutrophils were pre-incubated with Akt-inhibitor, LY 294002 or
rapamycin prior to stimulation with CoMTB. P = NS. Bars represent mean + s.d. of an experi-
ment done in biological triplicates and is representative of a minimum of 2 independent
experiments.

(TIF)
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