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Abstract. Online communities amass vast quantities of valuable knowledge and
thus generate major value to their owners. Where these communities are incorpo-
rated in a business as the main means of sharing ideas and issues regarding products
produced by the business, it is important that the value of this knowledge endures
and is easily recognized. For good management of such a business, risk analysis of
the integrated online community is required.

We choose to focus on the process of knowledge creation rather than the knowl-
edge gained from individual messages isolated from context. Consequently, we model
collections of messages, linked via tree-like structures; these message collections we
call threads. Here we suggest a risk framework aimed at managing micro-level thread
related risks. Specifically, we target the risk that there is no satisfactory response to
the original message after a period of time. Risks are considered as binary events;
the event can therefore be flagged when it is predicted to occur for the attention of
the community manager. To predict such a binary response, we use several meth-
ods, including a Bayesian probit regression estimated via Gibbs sampling; results
indicate this model to be suitable for classification tasks such as those considered.

1 Introduction

Online communities have evolved at an ever-increasing rate in the recent past
and continue to grow steadily. Their use is not limited to domestic domains,
being widespread in various business, scientific and public service domains.
Likewise, substantial economic value is no longer only generated by high profile
public communities, e.g. Twitter and Facebook, but also by business communi-
ties, such as the SAP Community Network (SCN) (http://scn.sap.com/) and
IBM’s Connections (http://www-03.ibm.com/software/products/us/en/conn).
Online communities are now pivotal elements in corporate management and
marketing, product support, customer relations management, product inno-
vation and targeted advertising. Members of such communities are connected
in a way that opinion, knowledge and ideas may be shared to facilitate col-
laboration.
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Each online community is a valuable ecosystem that is full of informa-
tion, the micro and macro dynamics (i.e. structure, behavior and economics)
of which are unclear. It is obvious that risks and overlooked emerging op-
portunities present threats to the health of such an ecosystem. Techniques
that enable the health in online communities to be measured, managed, an-
alyzed, protected and optimized are therefore invaluable. This paper outlines
tools utilized and developed to enable timely analysis and decision support of
micro-level risks and/or opportunities in the SCN.

In the following, we consider a classification prediction task based around
a thread-level opportunity relevant to managers of online communities (Sec-
tion 2). Anderson et al. (2012) study binary classification on thread-based
events; the set of features they used inspired and informed our choice (Sec-
tion 2.2). However, we consider a different and broader set of methods de-
scribed shortly in Section 3: Bayesian probit; generalized linear model with
probit link and with logit link; linear discriminant analysis. Finally, we discuss
results obtained (Section 4) and draw corresponding conclusions (Section 5).

2 The Online Community Considered and Problem
Definition

2.1 SCN: The SAP Community Network

SAPs community network (SCN) is a business community platform where any
uniquely registered person, referred to as user, may discuss and share their
ideas and issues regarding SAP products. This community mainly consists of
a number of fora, each relating to a unique product or topic. A user may post
a message in any forum and a collection of messages form a thread. The first
message in a thread is the parent message (i.e. ‘question’) and subsequent
messages are linked via a tree-like structure. As messages are linked, they
are given a time rank and wall clock, that is an arrival order and minutes
since thread creation. The user who posts the parent message, is known as
the original poster (OP). A user who makes a post in response to the parent
message is called a respondent. Within the tree-like message structure of a
thread, the most responded to message (MRTM) is that with greatest number
of messages posted in direct response. Similarly, the most responded to user
(MRTU) (including the OP) is the user to whom the greatest number of direct
responses is made of all users to post in the thread.

The OP is the only user capable of making certain actions with respect
to their thread. Each respondent may be awarded points by the OP based on
the quality of their response, see Table 1. The SCN places light restrictions
on the way an OP awards points in a thread such that only one 10 and two
6 point scores may be awarded. Consequently we define a thread to be solved
only if the OP has awarded a 10 point score to a response; the associated
respondent is known as the thread solver (TS). A more relaxed version of the
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TS is the highest point scorer (HPS). Where the HPS is not the TS, there
may be more than one HPS. In the SCN, points awarded are connected to
the corresponding respondents message allowing respondents to increase their
reputation. A user’s reputation is the total points accumulated over time. We
view respondent reputation to be forum-specific due to forum topic inhomo-
geneity. Assuming a thread has at least one respondent, the most reputable
respondent (MRR) is that with greatest lifetime reputation.

The OP in addition can change the status of a thread from the default
‘Unanswered’ to ‘Answered’. However, there are no restrictions on when an
OP may change the status of a thread. For example, a thread does not have
to be solved to have status ‘Answered’ - the converse also holds true.

Table 1. SCN’s point awarding system via the original poster.

Original poster’s view of respondent’s post Points awarded

Respondent ‘solved’ the issue of the parent post 10
Respondent was ‘very helpful’ towards the issue of the parent post 6
Respondent was ‘helpful’ towards the issue of the parent post 2

SAP made available a complete trace of actions of 95 fora (a third of
the total byte size of the SCN) from February 2004 to July 2011. We select
three fora showing variance in micro-level activity during the period analyzed:
forum 50 spiking; forum 142 staying mostly level; and forum 246 decreasing.

2.2 Problem Definition

Problem motivation arose after observing only 23.26% of threads created
within the dataset to be solved. Of the unsolved threads, approximately 12%
are never responded to. We consider a classification event which may be viewed
either as a risk or an opportunity. That is, after a time threshold, ts minutes,
of creation, the thread is solved (opportunity) or unsolved (risk).

Assuming the ith thread to be eventually solved, we note the wall clock
time (minutes since thread creation) of this event as wi. The default value of
wi is ∞. Thus the binary response observed, yi, for the ith thread, is

yi =

{
1 if 0 ≤ wi ≤ ts,
0 otherwise,

(1)

where i = 1, . . . , no and no is the number of threads observed within the
sample population.

Considering only those threads created at least one year prior to our last
observation and having at least one respondent, 13.76% are not responded to
within the first 24 hours and 0.56% are only responded to a year after thread
creation. This highlights that the vast majority of threads receive greatest
attention within the first 24 hours after creation. Of the threads responded to
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within the first 24 hours, 28.56% are subsequently solved and of these 74.57%
are solved within the first 24 hours. Within the threads solved in the first 24
hours, 62.64% are solved by the first response. In comparison, of the threads
responded to only after the initial 24 hour period, 15.18% are eventually
solved. However, within these latter solved threads, 64.77% are solved by the
first response. Thus, although a thread seems less likely to be solved if not
responded to within the first 24 hours of creation, it is still most likely to be
solved by the first respondent.

Figure 1 illustrates the percentage of threads solved across all fora, grouped
by year, over hours since thread creation. In all cases, the curve incline begins
to reduce six hours after thread creation and starts to level off 24 hours after
thread creation. We therefore take ts in (1) to be 1440 minutes (24 hours).

Hours since thread creation
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Fig. 1. Percentage of threads solved by hours since thread creation for all threads
within dataset created between 2008 and 2010.

Features available for prediction

The full set of features available for prediction following t minutes since thread
creation is given below. The choice of t affects feature inclusion. For t suffi-
ciently close to ts, one could argue prediction is made too closely to the occur-
rence of the event. In addition, for t close to zero (thread creation) there exist
uninformative features where all observations hold the same value. We trialled
t ∈ {30, 60, 180, 360} minutes; here we report on t = 30 minutes due to space
constraints and lack of improvement for larger t. Those features marked by
an asterisk are included in our feature space for modeling yi in (1) given t.

• OP features: OP reputation*; OP reputation in past year*; # thread OP
participated*; # thread OP created*; # thread OP created subsequently
solved; # thread OP solved*; # messages OP posted*; # messages OP
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posted in thread*; # days since OP registration (first appearance in rele-
vant forum)*.

• TS features: TS reputation; TS reputation in past year; # thread TS
participated; # thread TS created # messages TS posted in thread.

• MRR features: MRR reputation*; MRR reputation in past year*; #
messages MRR posted in thread*.

• HPS features: # HPSs*; mean HPS reputation*; # responses to HPS*.
• MRTM features: # MRTM*; # responses to MRTM*; mean MRTM

reputation*; mean MRTM points earned*.
• MRTU features: # MRTU*; # responses to MRTU*; mean MRTU rep-

utation*; mean MRTU points earned*; mean # thread MRTU solved;
mean # thread MRTU created*; mean # messages MRTU posted*.

• Temporal features: minutes till first reply*; mean minutes till respon-
dents first message*; mean minutes between messages*; median minutes
between messages*; minimum minutes between messages*; TS time rank;
TS wall clock; MRR time rank*; MRR wall clock*; mean HPS time rank*;
mean HPS wall clock*; minimum MRTM time rank*; minimum MRTM
wall clock*; minimum MRTU time rank*; minimum MRTU wall clock*.

• Thread summary features: indicator for TS is MRR; indicator of
thread status*; indicator of thread solved; # users to participate*; sum
points awarded*; # messages posted*; mean respondent reputation*; me-
dian respondent reputation*; mean respondent reputation in past year*.

3 Classification Methods Applied

We apply four linear methods for classification against the baseline model of
randomized prediction (RAND) informed by observed class proportion in the
training set. These models are: Bayesian probit (BP) model; generalized lin-
ear model with probit link (GLMP); generalized linear model with logit link
(GLML); and linear discriminant analysis (LDA). Here, only the first model
is non-standard, being taken from (Albert and Chib 1993), as such, some de-
tail is given below. Details of GLM and LDA methods fitted are described in
Venables and Ripley (2002) Chapters 7 and 12 respectively (function names
glm() and lda()). For a comprehensive guide to generalized linear models see
McCullagh and Nelder (1989). A more general introduction to linear models
for classification, including LDA, is provided by Hastie et al. (2011). In Sec-
tion 4 we compare quality characteristics of classification predictions made
with respect to the problem defined in Section 2.2.

First, we introduce some general notation. LetX be the normalized column
matrix with rows xTi = [xi,1, . . . , xi,p] where xi,j is the ith observation of the
jth feature; and i = 1, . . . , no, for no the number of observations (here the
number of threads) within the sample population. To avoid identifiability
or non-integrability issues later on, we assume that XTX is non-singular.
Given that X has full column-rank, this assumption is always satisfied. In
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addition let β be the corresponding p length vector of (elasticity) coefficients.
For all four methods considered, the ith binary response Yi is modeled via
the corresponding latent variable Zi; in the methods taking the probit link
function

Zi
i.d.∼ N

(
xTi β, σ

)
, (2)

Yi =

{
1 if Zi > 0,

0 if Zi ≤ 0.

Where “
i.d.∼ ” means “independently distributed” and N(µ, σ) denotes a Nor-

mal distribution with mean µ and variance σ. Note that we set σ = 1 in (2)
such that the distribution on the error terms is the standard normal.

Given a sample y = [y1, . . . , yno ]
T and an associated column matrix X,

a statistical inference problem about the coefficients β arises. Frequentist
treatment of the above model, assuming probit link, leads to the general-
ized linear model with probit link. Here, one maximizes the β-likelihood; in-
tegrating out the latent variables analytically to give L(β) =

∏
i:yi=1 P(Zi >

0)
∏
i:yi=0 P(Zi ≤ 0) =

∏
i:yi=1 Φ(xTi β)

∏
i:yi=0(1 − Φ(xTi β)), where Φ is the

standard normal (cumulative) distribution function. This can be similarly
shown for the generalized model with logit link.

The Bayesian probit model takes a Bayesian approach to inference, fol-
lowing Albert and Chib (1993). We use the notation (β, Z) to denote the
(p + no)-dimensional random vector consisting of the elements of β and of
Z = [Z1, Z2, . . . , Zno ] and the symbol “∝” as “is proportional to”. Let β have
prior probability density function, π0(), then the posterior of (β, Z) is

π(β, Z) ∝ π0(β)

no∏
i=1

[1(yi = 1)1(Zi > 0) + 1(yi = 0)1(Zi ≤ 0)]× φ
(
Zi;x

T
i β
)

(3)

assuming this is integrable. In (3), φ
(
Zi;x

T
i β
)
∝ exp

(
−
(
Zi − xTi β

)2
/2
)

is

the normal (Gaussian) density with mean xTi β and variance 1; and 1() is the
indicator function. More concretely, letting x = (β, Z) and taking µ as the
(p + no)-dimensional Lebesgue measure, the function in (3) is (a version of)
the density of a probability measure on R(p+no) with respect to µ only where

C
def
=
∫
Rp+no π(x)µ(dx) is finite.

We take a flat prior for π0, meaning that all points in Rp are, essentially,
“equally likely”, as is later mentioned, other choices are available. As the
support is unbounded and the intended “density” is a positive constant, this
π0 does not give a probability measure on Rp and is hence improper. This
is not a problem where (3) defines a probability measure. Thus the target of
inference is the resulting β-marginal of (3). This target is denoted πβ .

The Bayesian probit method for binary response data as prescribed by
Albert and Chib (1993) utilizes Gibbs sampling. Gibbs sampling is a particular
method of Markov Chain Monte Carlo class and works by sampling from
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conditional distributions of the target probability measure, the (3) here. See
Casella and George (1992) for an introduction; for a thorough treatment,
see Chapters 9 and 10 of Robert and Casella (2004). Whilst the conditional
distributions of the target (3) are easy to sample from (Albert and Chib
(1993)), the level of ease depends on the choice of π0. For conditionals with
uniform π0 see Albert and Chib (1993). In addition, Albert and Chib (1993)
give integrable, that is proper, possibilities for the prior π0 which directly
enable Gibbs sampling. Given that we assume a uniform prior distribution
for the regression coefficients, related issues of the propriety of the posterior
distribution is studied by Chen and Shao (1999). In practice, the initial state of
the Markov chain for β is taken to be the maximum likelihood (ML) estimate,

β̃ML =
(
XTX

)−1
XT y.

Given the predictors xTi , the posterior mean of Yi is Pπβ (Yi = 1) =
Pπβ (Zi > 0) = Eπβ [Φ(xTi β)], where Pπβ and Eπβ denote the probability and
expected value with respect to πβ . Assuming certain conditions, a consis-
tent estimator of this mean is the corresponding sample average of the Gibbs
sample; whereby consistency we mean convergence with probability one as
the sample size tends to infinity (Robert and Casella (2004), Theorem 6.63;
Cappé et al. (2005), Theorem 14.2.53). Hence, given the sample {β(1), β(2),

. . ., β(M)}, with M sufficiently large, M−1
∑M
m=1 Φ(xTi β

(m)) is an appropriate
estimator of Pπβ (Yi = 1).

4 Results

We implement our methods in the language and environment R (version 3.0.1)
(R Core Team (2013)) on a stand-alone computer with 64-bit operating sys-
tem and 16 gigabytes of memory. With regard to the Bayesian probit model
(Section 3), ad-hoc experimentation led us to believe a “burn-in” period of
tb = 90, 000 and subsequent sample of tr = 10, 000 to result in estimates accu-
rate for our purpose. In all instances, we implement 10-fold cross-validation.

To assess the quality of our classification predictions, we consider the re-
ceiver operating characteristic (ROC). This characterizes true positive rate
(TPR) and false positive rate (FPR) as the discrimination threshold (d) is
varied; where ŷi = 1 if and only if the posterior probability P(Yi = 1) > d and

TPR =

∑no
i=1 1(ŷi = 1, yi = 1)∑no

i=1 1(yi = 1)
, FPR =

∑no
i=1 1(ŷi = 1, yi = 0)∑no

i=1 1(yi = 0)
(4)

(Fawcett (2006)). In (4), 1() is the indicator function, ŷi and yi are the pre-
dicted and observed classifications for the ith thread where i = 1, . . . , no. The
area under ROC curve (AUC) is used to summarize our observations of the
ROC curves, calculated using the R package ROCR (Sing et al. 2005).

Predictions for the event of Section 2 are made both for the entire thread
population and thread subpopulations, segregated by forum. As stated (Sec-
tion 2.1), we discuss here only three fora of the SCN. We started with our full
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feature set, described in Section 2.2, and performed classification with sub-
sets of these, partitioned by feature type (indicated in bold feature within the
feature list). The complete set of features is noted SAll; the subset of original
poster features, S1; the subset of MRR features, S2; the subset of HPS fea-
tures, S3; the subset of both MRTM and MRTU features, S4; and the subset
of temporal and thread summary features, S5.

Results for the application of the methods in Section 3 are reported in
Figure 2. Observe that the original poster features (S1) have good predictive
power across all fora. As expected, the most reputable respondent features
(S2) are very useful — increasing the AUC by almost 20 points and doubling
the TPR for BP, GLMP and GLML methods in every fora. The quality of the
LDA method classifications is greatly improved by including features for the
highest point scorer (S3). Here, the AUC improves for all methods, although
the TPR dips for those methods involving probit link. By including the fea-
tures regarding both the most responded to message and user (S4), very little
appears to be gained. When all features are included (SAll), the quality of
method classifications is high, both with regard to AUC and TPR measures.
The GLML method classification quality sees a substantial increase in TPR,
more than trebling with regard to all fora. However, the GLML method con-
sistently has lowest TPR of all methods across all fora (excluding the random
baseline method). On the other hand, considering only the AUC, the quality
of the classifications is lowest for the LDA method.

Thus we see that incorporating the rich micro-level community dynam-
ics surrounding an original post significantly aids in determining whether a
satisfactory response will be made in good time — no matter the method.
In addition, we stress that these features are extracted only 30 minutes after
the original post was made and are predicting whether a satisfactory response
will arrive during the subsequent 1410 minutes. We find it promising towards
real-time application that after a mere 30 minutes there is sufficient infor-
mation to predict, comparatively long-term, whether a thread will be solved.
In addition, that the main value is from those features which are not direct
evaluations of the original post.

5 Conclusion

Given the question-answer nature of the online community considered and the
ever increasing complexity of community dynamics, it is valuable to think of
each ‘question’ related set of messages as a series of connected information.
We have demonstrated how the rich structure of the SAP community network
can be used to identify important characteristics of linked messages such that
original posts needing additional help via the manager of the community can
be identified. In our ongoing work, we found Bayesian probit models to be
promising tools for predicting such binary classification risk events. We see
our approach to be promising for question-answer communities in general.
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Fig. 2. Classification quality characteristics, true positive rate with discrimina-
tion threshold 0.5 (top) and area under ROC curve (bottom), averaged over cross-
validation sets; given the event in Section 2.2 for fora 50, 142 and 246 (left to right)
with 13236, 35933 and 34102 unique threads respectively.

Our Bayesian probit model incorporating a Gibbs sampler does require
care when implementing. First, one must ensure that the multivariate Markov
chain for β has converged to the desired target, regardless of the initial state of
the chain. This typically involves verifying conditions of irreducibility, aperiod-
icity, positivity, and Harris recurrence; see Robert and Casella (2004), Chapter
6, for example. Second, selecting an appropriate burn-in and retained sample
size tends to be challenging; see Robert and Casella (2004), Chapter 12.

Further investigation into quality characteristics for comparing binary clas-
sifiers is required. This is motivated by the discussion in the literature on the
validity of AUC as a standalone measure of classification performance occur-
ring primarily between Flach and Hand (Berrar and Flach (2012)), (Flach
(2010)), (Hand 2009) and (Hand (2006)). Consequently, with increased au-
tomation, classifying streaming data would become more flexible.
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