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Abstract

Many common diseases have a complex genetic basis in which large numbers

of genetic variations combine with environmental factors to determine risk.

However, quantifying such polygenic effects has been challenging. In order to

address these difficulties we developed a global measure of the information con-

tent of an individual’s genome relative to a reference population, which may be

used to assess differences in global genome structure between cases and appro-

priate controls. Informally this measure, which we call relative genome informa-

tion (RGI), quantifies the relative “disorder” of an individual’s genome. In

order to test its ability to predict disease risk we used RGI to compare single-

nucleotide polymorphism genotypes from two independent samples of women

with early-onset breast cancer with three independent sets of controls. We

found that RGI was significantly elevated in both sets of breast cancer cases in

comparison with all three sets of controls, with disease risk rising sharply with

RGI. Furthermore, these differences are not due to associations with common

variants at a small number of disease-associated loci, but rather are due to the

combined associations of thousands of markers distributed throughout the

genome. Our results indicate that the information content of an individual’s

genome may be used to measure the risk of a complex disease, and suggest that

early-onset breast cancer has a strongly polygenic component.

Introduction

Accumulating evidence suggests that many common dis-

eases have a polygenic basis, in which large numbers of

genetic variations combine with environmental and life-

style factors to determine risk (Khoury et al. 2013). While

genome-wide association studies (GWAS), and more

recently exome and whole-genome sequencing projects,

have found hundreds of genetic variants associated with

disease, the ability to predict susceptibility from these

associations is generally low because the contribution of

individual variants to risk is often very modest. In the

case of breast cancer, published GWAS have identified

markers (single-nucleotide polymorphisms, or SNPs) in

more than 70 independent regions (loci), the majority

with odd ratios less than 1.1 (Bogdanova et al. 2013).

Collectively these loci explain, in the statistical but not

causative sense, approximately 15% of the familial relative

risk which, when combined with the approximately 21%

attributed to moderate- to high-penetrance variants (typi-

cally very rare mutations) in a dozen or so susceptibility

genes, leaves almost two-thirds of the familial basis of the

disease unaccounted for (Antoniou and Easton 2006;

Bogdanova et al. 2013). It is likely that additional genes
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that explain a proportion of this missing heritability will

be found using both whole-exome/genome and candidate

gene sequencing of familial and young-onset cases, where

the genetic component of risk is likely to be greatest

(Hopper and Carlin 1992; Manolio et al. 2009; Park et al.

2012; Ruark et al. 2013; Akbari et al. 2014). Nevertheless,

our current understanding of the genetic basis of breast

cancer is still far from complete.

While most studies to date have focussed on individual

genes or gene mutations and their contribution to disease,

there has been limited effort to quantify the cumulative

effect of variation across the whole genome on disease risk.

This is partly due to the historical lack of sufficient data to

appropriately quantify normal genomic variation within

control populations, and the absence of the statistical tech-

niques needed to analyze such large-scale variation. How-

ever, recent years have seen concerted effort to collect and

collate the large numbers of genomes (for example the UK

Department of Health’s 100K initiative http://www.ge-

nomicsengland.co.uk) and there is now a need to develop

the accompanying methodological tools to assess genomic

variation (Yang et al. 2011; Zhou et al. 2013).

In order to begin to address this issue we describe here

a measure of the extent to which a set of case genomes

differ from a set of control genomes in their global struc-

ture. Our method uses ideas from information theory to

provide a measure of the information content of an indi-

vidual’s genome with reference to a control population.

The procedure first uses the reference population to esti-

mate a probability measure on the space of all genomes,

and then uses the estimated probability measure to assess

how unusual an individual’s genome is with respect to

the reference population, as quantified by its self-informa-

tion (also known in information theory as “surprisal”)

(Cover and Thomas 1991). Formally, the resulting mea-

sure, which we refer to as the relative genome informa-

tion (RGI), is the amount of information, measured in

bits, required to specify the observed genome with respect

to the unique encoding that minimizes the expected num-

ber of bits required to specify the genome of an individ-

ual drawn at random from the reference population.

Informally, the RGI measures how unusual a genome is

with respect to the reference population or, since we con-

struct an information-theoretic measure closely related to

the Shannon entropy, how “disordered” it is. Thus, some-

one with a higher RGI has a more unusual genome, either

having less common alleles more often than expected, or

having some particularly rare alleles. By contrast a lower

RGI corresponds to having more common alleles more

often, and therefore a less surprising genome.

We hypothesized that global measures of genome varia-

tion, such as RGI, might quantify the polygenic basis of

complex diseases more completely than GWAS analyses

that seek to find statistically significant associations of

particular markers with disease. In order to test this

hypothesis we compared the RGI of two independent

samples of women with early-onset breast cancer geno-

typed for SNPs relative to three independent samples of

unaffected controls.

Methods

Data sets and quality control

SNP genotypes obtained from blood samples from the

following three independent studies were considered: (i)

The Prospective study of Outcomes in Sporadic versus

Hereditary breast cancer (POSH) cohort (Eccles et al.

2007). The POSH cohort consists of approximately 3000

women aged 40 years or younger at breast cancer diagno-

sis from which 574 cases were genotyped on the Illumina

(San Diego, CA, USA) 660-Quad SNP array. Genotyping

was conducted in two batches at the Mayo Clinic,

Rochester, MN (274 samples) and the Genome Institute

of Singapore, National University of Singapore (300 sam-

ples). A total of 536 samples that passed quality control

filters were considered in this study (Rafiq et al. 2013).

(ii) The Wellcome Trust Case Control Consortium

(WTCCC, http://www.wtccc.org.uk/). The WTCCC con-

sists of two independent sets of disease-free controls: 2699

individuals from the 1958 British Birth Cohort and 2501

individuals from the UK National Blood Service (NBS)

Collection. Genotyping of both sets was conducted using

the Illumina 1.2M chip. (iii) The Australian Breast Cancer

Family Study (ABCFS) (McCredie et al. 1998; Dite et al.

2003). Cases were a subset of 204 of women aged

40 years or younger at breast cancer diagnosis from the

ABCFS; controls were 287 unaffected women aged

40 years and older from the Australian Mammographic

Density Twins and Sisters Study (Odefrey et al. 2010).

Genotyping was conducted at the Australian Genome

Research Facility using the Illumina 610-Quad SNP array.

A summary of all data sets is given in Table 1.

Only autosomes were considered and SNPs were

excluded from each data set if they failed any of the fol-

lowing quality control filters: minor allele frequencies

<1%; genotyping call rate <99%; significant deviation

from Hardy–Weinberg equilibrium (P < 0.0001). All

quality control filters were implemented using the soft-

ware package PLINK (Purcell et al. 2007). In total,

approximately 475,000 SNPs were genotyped in all five

data sets. When comparing data sets and computing RGI

only these shared SNPs were considered.

Individuals with evidence of ethnic admixture were

excluded by performing multi-dimensional scaling (MDS)

analysis. Firstly, linkage disequilibrium (LD)-based pruning
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(r2 > 0.5) of genotypes was undertaken using PLINK to

generate a reduced set of approximately independent

SNPs. In total there were approximately 133,000 LD-

pruned SNPs common to all samples. The HapMap data

for the African, Asian, and Caucasian populations (Gibbs

et al. 2003) were then used to provide reference popula-

tion genotypes against which the genotype data of the

cases and controls were compared (Fig. 1A). We identi-

fied eight POSH and ten ABCFS samples that showed evi-

dence of mixed ethnicity that did not cluster well with

the HapMap Caucasian population reference sample, and

these were excluded from further analysis. Since they only

form a small subset of the total samples considered, the

conclusions of our analysis do not differ without removal

of these samples. However, we expect that, in general, sig-

nificant ethnic variation within either the case or control

populations would confound the results of our method.

Quantifying relative genome information

Let L denote a set of locations in the genome (loci), and let

Λ = {A, C, G, T} be the alphabet of possible alleles at each

locus l 2 L. Let Πl(k, l) denote the likelihood of finding

the unordered allele pair (k, l) 2 Λ 9 Λ at locus l 2 L in

Table 1. Overview of case and control data sets.

Data set Size Size after QC Gender Ethnicity Genotyping platform

ABCFS cases 204 201 Female Caucasian1 Illumina 610-Quad SNP array

POSH cases 574 536 Female Caucasian1 Illumina 660-Quad SNP array

ABCFS control 287 280 Female Caucasian1 Illumina 610-Quad SNP array

NBS control 2501 2501 Both Caucasian Illumina 1.2M chip

1958 control 2699 2699 Both Caucasian Illumina 1.2M chip
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Figure 1. Breast cancer risk is associated with increased genome-wide disorder. (A) Multidimensional scaling plot of all samples and HapMap2

populations genotyped for ~133,000 SNPs. (B) Expected information per locus (EIL) for each of the different data sets. Median � 95% confidence

intervals are shown. (C) Matrix of FDR adjusted P-values for comparisons of medians (two-sided Wilcoxon rank-sum test). (D) Q-Q plot of EIL in

cases versus controls. P-value from a two-sample Kolmogorov–Smirnov test is shown. (E) Estimated odds ratio as a function of EIL. (F) Median

number of loci required to account for the differences in EIL observed between cases and controls by percentile. 95% confidence intervals are

within the markers, so are not shown.

184 ª 2015 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

Genetic Variants and Breast Cancer Risk C. Smyth et al.



the reference population and let Π be the product measure

of Πl over all l 2 L. Thus, K2L denotes the space of all pos-

sible genomes, and Π represents the probability measure

on K2L. Now let X 2 Λ2L be a genome with allele pair

Xt 2 Λ 9 Λ at locus l 2 L. We define the relative local

information (RLI) IlðXlÞ ¼ � log2 PlðXlÞ at each locus

l 2 L in the genome X and the RGI IðXÞ ¼ P
l�L IlðXlÞ for

each genome X of interest. For the purposes of comparison

it is also convenient to normalize the RGI by n, the number

of loci genotyped, to give the expected information per

locus (EIL), EnðIlÞ ¼ 1
n

P
l�L IlðXlÞ. When comparing

sequences of the same length the EIL and RGI are equiva-

lent up to a normalizing factor. However, by normalizing

by the number of loci sampled, the EIL allows comparison

of relative information content of sequences of different

lengths (for instance, comparison of relative information

content of different chromosomes). The RLI is the natural

information-theoretic measure of the “surprisal” of observ-

ing allele pair Xl 2 Λ 9 Λ at locus l 2 L given the proba-

bility measure Πl (Cover and Thomas 1991). Similarly, the

RGI is the natural information-theoretic measure of the

“surprisal” of observing the genome X, given the probabil-

ity measure Π.
In practice Π is not known a priori and must be esti-

mated from an appropriate reference sample of similar

ethnic background to that of the cases. Here, we esti-

mated Π using the WTCCC 1958 birth cohort since it

was the largest reference sample available. In all calcula-

tions, Πl was estimated for each locus l 2 L using all

available genotypes in the reference population at that

locus. Once Π had been estimated, the RGI was calculated

for each genome in each of the remaining four (test)

samples (POSH cases, ABCFS cases, ABCFS controls, NBS

controls). The two additional independent sets of controls

(ABCFS and NBS) were included in order to assess the

robustness of the approximation of the background prob-

ability measure Π from the 1958 control cohort alone.

For each of the four test samples, missing genotype data

at each locus l 2 L were assigned the expected value of Πl

(i.e., the Shannon entropy �P
Xl
PlðXlÞ log2 PlðXlÞ of

Πl). This method of imputation minimizes the influence

of missing data on the calculation of RGI. We also con-

ducted all calculations using only those loci for which

there were no missing readings in any of the data sets,

and results obtained with and without imputation did

not differ qualitatively. A brief worked example illustrat-

ing how Π was estimated, and the RLI and RGI were cal-

culated, is given in the Data S1. Estimation of RGI for N

case genomes takes O(n(m + N)) computational time,

where n is the number of loci and m is the number of

genomes in the control population, and can be conducted

on a desktop PC for moderate sample sizes (thousands of

samples and hundreds of thousands of genotyped loci).

Statistical analysis

All analysis was conducted in R and Matlab (Natick, MA,

USA) using custom written scripts. The association

between EIL and disease odds was estimated using a logis-

tic generalized additive model (Hastie et al. 2009). Tests

for significant differences between groups were assessed

using Wilcoxon rank-sum tests (two-sided tests were used

when testing the null hypothesis of no difference in EIL

between cases and controls against the alternative hypoth-

esis that EIL differs in cases and controls; one-sided tests

were used when testing the null hypothesis of no differ-

ence in EIL between cases and controls against the alter-

native hypothesis that EIL is raised in cases). All P-values

were false-discovery rate (FDR) adjusted using the Benja-

mini and Hochberg (1995) procedure.

Results

We did not observe any difference in EIL (RGI normal-

ized by the number of loci genotyped, EIL) between the

three different control sets (1958, NBS and ABCFS con-

trols) indicating that the background measure Π was reli-

ably estimated; similarly, no difference in EIL between

the POSH and ABCFS cases was observed (Fig. 1B and

C). However, EIL was significantly higher in both the

POSH and ABCFS cases than the three sets of reference

controls (FDR adjusted P < 0.01, two-sided Wilcoxon

rank-sum test) (Fig. 1B and C). Since significant differ-

ences within case and control sets were not observed, we

amalgamated samples to form one case set (consisting of

the ABCFS and POSH cases) and one control set (con-

sisting of the ABCFS, NBS and 1958 controls) for further

analysis. Comparison of the distribution of RGI in amal-

gamated case set and amalgamated control set revealed

significant differences in distribution structure

(P = 4.3 9 10�10, two-sample Kolmogorov–Smirnov test)

with the case distribution having a substantially heavier

tail than the control distribution, indicating a greater

proportion of samples with higher EIL (Fig. 1D). To

investigate further we conducted regression using a logis-

tic generalized additive model (Hastie et al. 2009) in

order to estimate the relationship between disease odds

and EIL (Fig. 1E). Consistent with the heavy-tailed nat-

ure of the case distribution we observed a strong positive

association between odds ratio and EIL. In particular, the

odds ratio increased sharply for EIL above 1.75, with the

highest percentile EIL (above 1.183) having an odds ratio

greater than 12 by comparison with the lower 99%

(P < 1 9 10�16, Fisher’s exact test). These results

indicate that EIL is significantly elevated in breast cancer

cases, with the highest percentiles EIL conferring a

substantially increased risk.
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In order to investigate the genetic basis for these obser-

vations we sought to assess whether the differences

observed were associated with particular genomic loci or

SNP annotations. We began by estimating the number of

loci required to account for observed differences at each

percentile using random resampling with replacement

(1 9 104 times) from the case genomes until the required

difference was achieved. Differences in median EIL between

cases and controls were found to be due to contributions

from an estimated 327 distinct loci (median, 95% confi-

dence intervals [306, 349]) (Fig. 1F). The expected number

of loci required to account for differences between cases

and controls sharply increased with percentile, with differ-

ences in the 99th percentile (which conferred the greatest

disease risk) requiring an estimated 4954 loci (median,

95% confidence intervals [4921, 5000]) (Fig. 1F). These

results indicate that observed differences in EIL are not due

to high-penetrance variations at a small number of disease-

associated loci, but rather are due to widespread variation

at thousands of genomic loci.

In order to investigate this further we assessed the EIL

on individual chromosomes. We found that EIL was con-

sistently elevated in the cases by comparison with the

controls on 19 of 22 chromosomes (Fig. 2A), and signifi-

cantly so on 12 of 22 chromosomes (FDR adjusted

P < 0.05, one-sided Wilcoxon rank-sum test), indicating

that differences in EIL are distributed throughout the

genome. We also observed notable variations in EIL by

SNP annotation, with the lowest EIL (and therefore the

least variation within the samples) occurring in the 50/30

untranslated and exonic regions, and the highest EIL (and

therefore the greatest variation within the samples) occur-

ring in the intergenic regions (Fig. 2B). This is consistent

with previous assessment of relative mutation rates and

suggests that 50/30 UTRs and exonic regions are subject to

stronger negative selection than intergenic regions, in

accordance with their phenotypic importance (Ward and

Kellis 2012a,b; Khurana et al. 2013). In all annotation cat-

egories, we again observed a significant increase in EIL in

the cases (FDR adjusted P < 0.05, one-sided Wilcoxon

rank-sum test) (Fig. 2B). These results indicate observed

differences in EIL are not localized to distinct regions of

the genome (either chromosomes or SNP annotations)

but rather are due to widespread variation distributed

throughout the genome.

Discussion

Genetic factors that contribute to breast cancer risk

range from rare highly penetrant functionally deleterious
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mutations in genes like BRCA1 and BRCA2 to genetic

variants that are relatively frequently observed and are

associated with small increases in risk (Mavaddat et al.

2010). However, we do not yet have a complete under-

standing of the genetic basis of breast cancer. Much of

the missing heritability may be either very rare highly

penetrant genes not currently known or, more likely,

hundreds to thousands of rare genetic variants with

small effect sizes. Current approaches to discovering

low-penetrance genetic susceptibility alleles using GWAS

rely on risk alleles being relatively common in the pop-

ulation. Even with case–control studies involving hun-

dreds of thousands of individuals, identifying all the

genes responsible for susceptibility is likely to prove dif-

ficult if important effects relate to the accumulation of

rare low-penetrance alleles. By comparing individual

genetic sequences with that expected from a control

population our approach assesses the cumulative effect

of low-penetrance alleles on disease risk. Our results

suggest that such cumulative effects are a significant

component of the missing heritability in breast cancer.

Prior to analysis all genotyping data were subjected to

stringent quality assurance and we observed no associa-

tion between sex, sequencing platform, time/place of

sequencing and EIL, indicating that poor data quality

or variation in genotype due to ethnicity or sex are

unlikely to explain our results (Figs. 1B, C, and 2C).

Rather, changes in EIL appear to quantify statistically

significant differences in allele frequencies between

breast cancer cases and controls.

Taken together our analysis indicates that early-onset

breast cancer has a strongly polygenic component, involv-

ing variation at thousands of markers distributed

throughout the genome. Thus, along with assessment of

known risk-associated variants, the information content

of an individual’s genome is likely to be a useful predictor

of breast cancer susceptibility. Further analysis of the rela-

tionship between global genome structure and disease risk

may reveal a similarly polygenic basis for a variety of

other complex diseases.
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