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Abstract 

 

The degradation of self-lubricant hard coatings applied in tools for high-speed cutting or 

dry drilling operations occurs by a combination of wear, oxidation and diffusion. The 

aim of this investigation was to study the effect of V additions on the diffusion 

processes and on the oxide scale formation during annealing of TiSiVN coatings. 

Relation of these results with those achieved for a reference Ti0.80Si0.15N coating with 

similar Si content is also presented. The structure evolution of the Ti0.65Si0.11V0.15N film 

was assessed by an in-situ hot-XRD device. A dual layer oxide was formed in the case 

of Ti0.80Si0.15N coating with a protective Si-O layer at an oxide/coating interface; 
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however, in zones of film defects a complex oxide structure was developed. V additions 

increased the oxidation rate of the coatings as a result of the V ions diffusion throughout 

the oxide scale, which inhibited the formation of a continuous protective silicon oxide 

layer. 

 

Keywords: TiSiVN system, structural evolution, oxidation, oxide scale, diffusion 

processes 

 

1. Introduction 

 

The reduction of the wear and friction coefficient of machining tools during in-

service conditions remains an important challenge today in order to increase their life-

time and performance. Traditionally, oils and other liquid lubricants have been used to 

reduce the friction between the cutting tool and piece primarily by shearing the oil 

molecules across the solid-liquid-solid interface. However, most of the liquid lubricants 

volatilize at high temperature, which leads to the dry sliding and consequent failure of 

the cutting tools resulting in the increasing machine down times, higher process 

instability, poor product quality and higher costs [1]. To face these problems, a wide 

range of solid lubricant coatings, such as WC/C, MoS2, diamond-like carbon (DLC), h-

BN as well as their combinations in nanocrystalline or multilayer structures, have been 

developed in the last decades and successfully applied in order to improve the 

tribological behaviour under dry machining conditions [2-5]. However, considerable 

degradation of the tribological effectiveness of these coatings at elevated temperature 

has been reported due to their low resistance to oxidation. To overcome this 

shortcoming, a new concept of high temperature lubrication has been proposed. Solid 
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lubricant coatings have been developed by combining the intrinsic properties of some 

binary or ternary films (TiN, CrN, CrAlN, TiAlN, YSZ, etc), which are very hard and 

resistant to oxidation, with specific elements (metals), which diffuse to the surface and 

form a low friction tribolayer (as a metal layer, e.g. Ag, Cu, Au, Pb and In, or a low-

friction oxide, e.g. V2O5, Ag2Mo2O7) [6-9]. Among these elements, particular attention 

has been given to the vanadium-containing coatings (Magnéli phases VnO2n−1), which 

showed interesting tribological properties in the temperature range 500–700◦C [2, 10-

15]. Dissimilar series of V-based hard coatings have been developed, such as ternary 

CrVN [16], (V,Ti)N [17], multilayer AlN/VN [18] and quaternary single layered or 

multilayered AlCrVN [19, 20] and TiAlVN [12, 21-23]. Independently of the 

configuration, the friction was decreased and the wear resistance improved; however, 

the oxidation resistance was degraded. For example, for ternary AlCrN and TiAlN 

coatings the onset point of oxidation decreased to 600 ºC with V incorporation [12, 24, 

25]. In the case of the TiAlN/VN films, signals of lubricious V2O5 were detected as 

soon as the oxidation started (600 ºC), while at high temperatures only AlVO4 and TiO2 

were identified [12]. For AlCrVN coatings, AlVO4, (Al, Cr, V)2O3 as well as V2O5 

oxides were observed for an annealing temperature of 700 ºC [25]. In these studies, the 

lower onset point of oxidation displayed by the V-containing coatings in relation to the 

host ones was explained by the reactions occurring between protective oxides and 

vanadium (such as formation of Al–V–O phases). Lower oxidation resistance of 

coatings due to V incorporation is not considered as a drawback from the tribological 

point of view, since the V2O5 oxide formed at the surface is known to reduce the friction 

and wear rate of coatings. Thus, as the oxidation behaviour strongly affects the 

performance of the coatings, some studies were conducted with the aim of 

understanding the diffusion processes occurring during coatings annealing. Zhou et al. 
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[24] and Franz et al. [25] studied TiAlN/VN and AlCrVN films, respectively. Zhou et 

al. [24] reported that a duplex oxide structure was formed during annealing of 

TiAlN/VN coatings for temperatures higher than 600 ºC: an inner layer comprised a 

porous region of Ti rich and V rich nanocrystallites, while several phases were observed 

in the outer region, including V2O5, TiO2 and AlVO4. V2O5 phase was dominant in the 

outer surface at temperatures higher than 638ºC. The outward diffusion of V depended 

on the species presented: in the inner layer, V was presented as V
3+

 and V
4+

, whilst v
5+

 

was dominant in the outer layer. The porous inner layer was attributed to V ions 

diffusion to the surface to form V2O5. Franz et al. [25] also observed the formation of 

two different oxide layers during annealing of AlCrVN coatings. While vanadium 

diffusion led to a V-depleted inner oxide (mixed or nanocrystalline (Al,Cr,V)2O3), the 

outer oxide mainly contained V2O5 and small amounts of AlVO4. Despite of these 

investigations, very little knowledge is still available for the static oxidation of V rich 

coatings. 

Recently we have reported the effect of V incorporation on the structure, 

mechanical properties, oxidation resistance and tribological behaviour (at room 

temperature) of TiSiN films, deposited by DC reactive magnetron sputtering [26, 27]. 

TiSiN system exhibits similar level of oxidation resistance than AlCrN and TiAlN films 

[28, 29] (the only ternary films where the effect of V additions was studied); moreover, 

it can be deposited with much higher hardness depending on the structure and Si 

content. Lubricious vanadium oxides have been successfully detected on the oxidized 

surface and on the worn surface of these films, which decreased the wear rate and 

friction coefficient of coatings. However, as in the similar coating systems, a drop on 

the oxidation resistance of coatings was observed. In our specific case, the reaction of V 

with the protective oxide (Si-O) was not detected and therefore the decrease of the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 
 

oxidation resistance could not be attributed to such reactions. Present work provides a 

comprehensive understanding of the oxidation mechanism/diffusion processes occurring 

during TiSiVN films annealing. The effect of vanadium was studied in comparison to 

the diffusion processes occurring during annealing of a Ti0.80Si0.15N film, which were 

used as a reference. In addition, isothermal oxidation kinetics curves are included to 

provide a baseline. 

 

2. Experimental procedure 

 

TiSiN and TiSiVN coatings (labeled as Ti0.80Si0.15N and Ti0.65Si0.11V0.15N, 

respectively), with approximately the same silicon content and about 2.5 µm of total 

thickness, were deposited on alumina and FeCrAl alloy substrates in a d.c. reactive 

magnetron sputtering machine equipped with two rectangular, Ti (99.9%) and TiSi2 

(99.9%), magnetron cathodes working in unbalanced mode. V incorporation was 

achieved by inserting 8 pellets of vanadium into the erosion zone of Ti target. In both 

cases Ti-V (0.24 µm) and Ti-VN (0.45 µm) adhesion layers were deposited as bonding 

layers improving coating to substrate adhesion. The depositions were performed with a 

negative substrate bias of 50 V. In both depositions, the total working gas pressure was 

kept constant at 0.3 Pa, using approximately 30 sccm of Ar and 17 sccm of N2, and the 

deposition temperature was lower than 300 
º
C. These coatings were already 

characterized in our previous works [26, 27]. A summary of the deposition conditions 

and the main properties of the coatings are listed in Table 1. Temperature effect on the 

structure of the V rich coating was characterized in open air in-situ by hot-XRD device 

in the range of 500 ºC to 750 ºC, using a grazing incidence angle of 2º and Co Kα 

radiation (1.789010 Å). This range of temperature was selected based on the 
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thermogravimetric oxidation curves of films performed at a constant linear-temperature 

ramp (RT (room temperature) to 1200 ºC at 20 ºC/min) shown in Ref. [26]. Between 

each selected temperature a step of 10 min holding time was allowed for thermal 

stabilization and 30 min time acquisition was used. Oxidation of films was assessed by 

thermogravimetric analysis (TGA) using industrial air (99.99% purity). 

Ti0.65Si0.11V0.15N and Ti0.80Si0.15N  films were isothermally tested at 600 ºC during 30 

min and 900 ºC during 1h, respectively. These temperatures represent main oxidation 

events observed in the previous thermal gravimetric oxidation curves performed at 

constant linear-temperature ramp [26]. After annealing, the cross section thin foils of 

oxidized films was prepared by focused ion beam (FIB) and analyzed by transmission 

electron microscope (TEM) equipped with an energy-dispersive x-ray (EDS) 

spectroscopy system. Bright field scan transmission electron microscopy STEM/EDX 

maps and elemental profiles along the cross section of the oxidized coatings were 

acquired to characterize the distribution of the main elements in the films (Ti0.80Si0.15N  

and Ti0.65Si0.11V0.15N) and in the oxide scales. 

 

3. Results and discussion 

 

3.1 Characterization of the as-deposited and oxidized coatings 

 

Firstly we will summarize the main characteristics and the oxidation resistance 

of Ti0.80Si0.15N  and Ti0.65Si0.11V0.15N coatings. The investigated coatings with chemical 

composition of Ti0.80Si0.15N and Ti0.65Si0.11V0.14N, showed a typical columnar 

morphology and fcc NaCl-type structure assigned to crystalline TiN with Si and V in 

solid solution [26]. V additions to the TiSiN coating significantly improved their 
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mechanical and tribological properties; however, their oxidation resistance was lowered. 

The improvement of the tribological properties was related to V-O formation in the 

sliding contact, which acted as a lubricious tribo-film decreasing the friction and 

protecting the coating from wear [27]. Figure 1 shows the weight gain during isothermal 

oxidation at three selected temperatures. Note that Ti0.80Si0.15N film was tested at higher 

temperature than V rich coating since no signals of oxidation were detected at lower 

temperature. On the other hand, the oxidation resistance of the V rich coating could not 

be studied at 900 ºC due to melting of V2O5 (~685 ºC) [7, 13, 24] and consequent 

degradation of the film [26]. Ti0.80Si0.15N  displayed a typical parabolic oxidation weight 

gain as a fuction of time, which indicates the presence of protective oxide scales. The 

isothermal curves of Ti0.65Si0.11V0.15N films tested at 550 ºC and 600 ºC showed two 

steps: they started with a linear increase in mass gain and then followed with a parabolic 

evolution. The surface morphologies of the oxidized coatings are shown in Fig. 1 b-c) 

for coatings Ti0.80Si0.15N tested at 900 ºC and Ti0.65Si0.11V0.15N oxidized at 600 ºC, 

respectively. The detailed description of the surface oxide constitution, based on XRD 

diffraction, Raman spectroscopy and SEM-EDS analyses, can be found in our previous 

study [26]. Here we will briefly summarize these results to support the investigation 

aimed at diffusion process. Annealed Ti0.80Si0.15N film (see Fig. 1b) exhibited two 

different surface features: white and dark gray islands evenly distributed on the surface. 

Raman analyses revealed that white phase was rutile (TiO2), while dark gray phase was 

a mixture of rutile and anatase. However, only rutile peaks were detected by XRD 

diffraction suggesting very limited amount of anatase in the dark gray islands. 

Furthermore, strong signals of Si were detected on dark zone by EDS. However, the 

signals of silicon oxide were neither detected by XRD nor by Raman spectroscopy 

indicating amorphous character, which corroborates previous reports [30, 31]. Silicon 
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oxide was positioned below Ti-O rich layer. Different morphology and oxide phases 

were detected on the oxidized surface of Ti0.65Si0.11V0.15N coating. At 600 ºC, the film 

displayed a floret-like structure formed by light and dark gray phases. XRD diffraction 

showed the presence of α-V2O5 and Ti(V)O2 oxides. Although EDS analysis revealed 

similar spectra for both phases, the much less intensity of the V peak on the light gray 

phase, and its conjugation with Raman analysis allowed identifying dark and light gray 

phases as α-V2O5 and Ti(V)O2 oxides, respectively. Similarly to Ti0.80Si0.15N coating, 

signals from Si-O where neither detected by XRD nor by Raman spectroscopy. 

However, according to the EDS analyses this oxide should coexist with the Ti(V)O2 

phase as strong signals of Si coming from the sub-surface layer (light phase in Fig. 1 

c)). Similar phases were detected at 550 ºC by XRD; however, only small dark gray 

areas were observed at the surface. 

 

3.2 Phase evolution during annealing of Ti0.65Si0.11V0.15N (in situ) and growing 

mechanism of the V2O5 phase 

 

Fig. 2 plots the high temperature in-situ XRD spectra evolution for 

Ti0.65Si0.11V0.15N coating together with as deposited and cooled state. The first signs of 

oxides were detected at 500 ºC and identified as rutile type phase with V in solid 

solution, the Ti(V)O2 (ICDD card 77-0332). Further increase in temperature to 550 ºC 

led to an increase of the Ti(V)O2 peaks intensity and the appearance of a new phase: the 

α-V2O5 (ICDD card 41-1426) oxide with orthorhombic symmetry (peak at 23.6º). At 

600 ºC a strong increase in intensity of the α-V2O5 oxide peaks with a strong preferred 

orientation following the (001) plane was observed. Moreover, a metastable phase was 

formed, β-V2O5, as a result of oxygen loss from α-V2O5 due to a reduction process [32]. 
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It should be also pointed out that the higher intensity of V2O5 peaks in relation to other 

peaks suggests higher quantity on the oxidized volume. The temperature increase to 650 

ºC led to suppression of TiN peaks suggesting the formation of a thick oxide scale. At 

675 ºC, the peaks associated with the V2O5 phases disappeared, which was in a good 

agreement with the melting point of V2O5 oxide [7, 13, 24]. On the other hand, peaks 

related to a V3O5 phase, which resulted from the α-V2O5 reduction, were found. In fact, 

in case of oxygen deficiency, a shift to lower valence state leads to the formation of 

reduced oxides, such as V3O5 identified in the current XRD pattern. Further increase in 

temperature resulted mostly in the increase of V3O5 peaks intensities due to continuous 

reduction of liquid V2O5 phase. Ti(V)O2, V3O5, V2O3 and VO reduced phases were 

found after annealing, as well as a new polymorph V2O5 oxide: γ’- V2O5 (ICDD card 

85-2422). This oxide has an orthorhombic structure as α-V2O5 phase, but with different 

diffraction planes. These changes could be attributed to distortions on the structure 

motivated by the cooling of liquid-phase. Double chains exist in both phases, but VO5 

pyramids alternate up and down individually for γ’- V2O5, whereas they alternate by 

pairs for normal α-V2O5 phase [33]. These results are in a good agreement with the 

oxide phases previously identified on the oxidized surface of the film. 

The growth mechanism of the V2O5 phase over the Ti(V)O2 oxide on the 

oxidized surface of the V rich film is shown in Fig. 3. SEM/EDS analyses revealed that 

nucleation points of V2O5 started being formed over the oxidized surface (see peak ID 

2), growing up by vanadium lateral diffusion as suggested by the EDS spectra obtained 

from the V depleted white and V rich black regions marked in the SEM micrograph 

(zones 3 and 4, respectively). In order to investigate the oxide scale growth, TEM cross-

sections were prepared by FIB from Ti0.65Si0.11V0.15N and Ti0.80Si0.15N  films annealed at 

600 and 900 ºC, respectively. It should be emphasized here that the different oxidation 
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isothermal temperatures were used due to dissimilarities in the oxidation resistance of 

coatings as referred to above. 

 

3.3 Cross section of oxidized surfaces by TEM and oxidation kinetics 

 

Fig. 4 and 5 displays the bright-field STEM images, associated elemental maps 

and scanning elemental profiles from cross section of oxidized Ti0.80Si0.15N and 

Ti0.65Si0.11V0.15N coatings. In the case of Ti0.80Si0.15N film a multilayer of oxides can be 

identified, being more complex close to the film defect (white zones) shown in Fig. 4a): 

(i) an outer Ti-rich layer comprised by shaped crystals with bigger size in the top of the 

film defect, zone corresponding to the white phase and, (ii) a Si-rich layer, which is 

itself divided in 3 layers on the zone around the defect, an intermediate layer containing 

Ti, sandwiched between two Ti-free layers, being the external porous and the internal 

one very compact. Far from the film defect (left zone of the micrograph), below to the 

TiO2 crystals only a homogeneous Si-rich layer was observed. The measured elemental 

cross-section depth profiles for two lines were plotted in Fig. 4b) and 4c), respectively. 

The profiles corroborated STEM/EDX elemental mapping showing in detail the 

composition of surface oxides. The surface layer formed exclusively of Ti-O was 

followed by a Si-rich layer with scattering in the signals intensity, in agreement with 

brightness intensity in figures 4 a). It is clear in Ti-signal a small increase in intensity in 

the zone of high-Si content. This variation is more intense in line 2 than in line 1, 

suggesting an influence of the film defect, which is closer to line 2. Continuous and 

compact Si-O layer at the oxide/coating interface acts as an efficient barrier against 

oxygen and metal ions diffusion and thus protecting the coating from further oxidation 

[30, 31]. 
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It is evident that Ti oxide forms first on the surface of the film due to the higher 

affinity of Ti for O than Si [30, 31] and then, with further increase in temperature, 

silicon oxide is formed due to the progressive segregation of Si. The oxidation process 

will then occur through the inwards diffusion of O
2-

 through the TiO2 layer and the 

outwards diffusion of Ti
4+

 through the Si-O layer [34]. Nevertheless, due to the 

presence of film defects, in the first stage of the oxidation process, a high amount of Ti 

ions will be supplied in that zone corresponding to the oxidation occurring in the defect 

walls. This process will promote the formation of a porous Si-O layer, with low 

diffusion barrier performance to the out diffusion of Ti
4+

 ions, leading to large TiO2 

crystals on the oxide scale surface. From the moment that a Si-O barrier layer is formed 

in the defect walls (see Si signal in figure 4 a)) the oxidation process will be controlled 

by the O
2-

 inward and Ti
4+

 outward ions diffusion trough the Si-O layer [34]. It should 

be remarked that this phenomenon should not influence significantly the global 

oxidation behaviour of the Ti-Si-N coating (which shows the parabolic behavior 

presented in Fig. 1 a), in agreement with literature [30, 31, 34]) since, on the one hand, 

it only occurs in a few defects in the films surface (see Fig. 1 b)) and, on the other, it 

should be more intense in the first stage of the oxidation, during heating up to the 900 

ºC isothermal oxidation temperature. 

Ti0.65Si0.11V0.15N coating exhibited, after annealing, two-layers oxide structure 

with a thick porous inner layer and an outer discontinuous layer of well-defined 

crystals. The elemental maps shown in Fig. 5a) suggested that the majority of vanadium 

was located in the outer crystal layer, whereas inner layer was Ti and Si rich. These 

results corroborates the detection of the rutile type compound Ti(V)O2 and V2O5 

indexed by XRD and Raman spectroscopy in the light and dark phases  in Fig. 1 c) [26], 

for the sub-surface and top oxide layer respectively. Further, the presence of Si-O at the 
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sub-surface is in agreement with the EDS results shown in our previous work [26]. 

Elemental lines shown in Fig. 5b) and 5c) showed that diffusion of V occurred 

exclusively within the oxidized volume, since V is almost completely depleted in the 

inner oxide layer whereas no V gradient is detected in the non oxidized coating, as 

shown by the constant V signal across this zone. In general, we observed a thicker non 

oxidized layer in the regions covered by V-O crystal phase. Furthermore, comparing 

either the V content integrated intensities of Fig. 5a) and b) or the brightness of V signal 

between the right and left part of Fig. 5 a), it can be concluded that V has to be diffused 

from the left to the right zone of this figure. Finally, it should be remarked that there is 

no indication of formation of any Si-rich layer, being Si signal uniformly distributed in 

both oxide scale and non-oxidized coating. Therefore, a dense compact protective 

silicon oxide layer localized in subsurface was not formed being Si-O randomly 

distributed in the Ti(V)O2 porous scale. 

Isothermal curve of Ti0.65Si0.11V0.15N coating oxidized at temperatures below the 

melting point of V2O5 started with a linear increase in mass gain obeying after that to a 

parabolic law. A strong correlation can be found between the microstructure of the 

oxide scale and the isothermal oxidation curve of Ti0.65Si0.11V0.15N coating. High 

temperature XRD patterns shown in Figure 2), revealed that the first oxide being 

formed is Ti(V)O2. At the very beginning of the oxidation process, due to the high Ti 

content, a TiO2 layer starts growing. The presence of V ions and its high solubility with 

Ti promote the formation of Ti(V)O2 solid solution, which comprises vanadium cations 

with lower oxidation states as V
3+

 ions [15, 35]. The substitution of Ti
4+

 by V
3+

 ions in 

the TiO2 lattice would increase the concentration of interstitial metallic Ti
4+

 ions and 

decrease the number of excess electrons and consequently increasing the oxidation rate. 

This justifies the initial rapid oxidation observed in the isothermal curve, in good 
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agreement to the work of Thongtem et al. [35] who studied the effect of V doping to Ti-

based alloys. At the same time that Ti(V)O2 oxide is being formed, Si ions are being 

supplied at the interface to form Si-O. However, due to V ions diffusion through the 

oxide scale to the surface, the formation of a protective and compact Si-O layer is 

inhibited, degrading the oxidation resistance of the coatings when compared to 

Ti0.80Si0.15N film. This agrees well with the elemental maps shown in Figure 5 a), where 

Si-O and Ti(V)O2 coexist in the inner porous layer, never showing a continuous 

agglomeration of Si-O necessary to protect the material from oxidation. Such 

observations are in accordance to literature works on diffusion processes of V rich 

coatings, where an inner porous layer was always formed due to V ions migration to the 

surface (Refs. [24, 25]). From the moment that vanadium cations, with lower oxidation 

states, (V
3+

 or V
4+

) arrive to the surface, they are further oxidized to V
5+

 combining with 

O ions and creating nucleation points for the V2O5 growth, which will expand and grow 

up by vanadium lateral diffusion, as evidenced in Fig. 3. With the ongoing oxidation, 

the oxide scale became thicker and the isothermal curve started to obey to a parabolic 

law due to a reduction of ions mobility through the oxide scale. The process develops 

leading to the formation of a porous rich inner Ti(V)O2 and Si-O layer and an outer 

most dispersed V2O5 one, that can comprise both α-V2O5 and β-V2O5 phases as 

evidenced in the XRD patterns at high temperature.  

 

4. Conclusion 

 

In this investigation, the effect of V additions on the oxidation and diffusion processes 

occurring during Ti0.65Si0.11V0.15N film annealing is studied and related to the behaviour 

of ternary Ti0.80Si0.15N system. In summary, we demonstrated that oxidation of 
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Ti0.80Si0.15N is controlled by the formation of a dense and compact silicon oxide acting 

as a diffusion barrier, which can be affected by defects in the as-deposited film. The 

presence of V cations with lower oxidation states in the TiO2 scale, during the oxidation 

of Ti0.65Si0.11V0.15N film, was responsible for a significant increase of the oxidation rate 

and the inability of formation of a Si-O protective oxide. 
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Figure Captions 

 

Figure 1 – a) Isothermal oxidation curves of Ti0.65Si0.11V0.15N coating tested at 600 ºC 

during 30 min and 550 ºC during 1h and Ti0.80Si0.15N coating tested at 900 ºC during 1h, 

b-c) typical surface morphologies of Ti0.80Si0.15N and Ti0.65Si0.11V0.15 coatings annealed 

at 900 ºC during 1h and 600 ºC during 30 min, respectively. 

 

Figure 2 – XRD spectra of Ti0.65Si0.11V0.15N film at different temperatures (upper) and 

position of main peaks of corresponding phases (lower). 

 

Figure 3 – a) Oxidized surface of Ti0.65Si0.11V0.15N coating isothermal tested at 550 ºC 

during 30 min, showing the growing mechanism of V2O5 phase. SEM/EDS spectra of: 

b) point 1, c) point 2, d zone 3, e) zone 4. 

 

Figure 4 – a) bright field STEM cross section and correspondent elemental maps of 

Ti0.80Si0.15N coating oxidized at 900 ºC during 1h. Elemental line scans along the cross 

section of the oxidized coating obtained from two places: b) line 1, c) line 2. 

 

Figure 5 – a) bright field STEM cross section and correspondent elemental maps of 

Ti0.65Si0.11V0.15N coating oxidized at 600 ºC during 30 min. Elemental line scans along 

the cross section of the oxidized coating obtained from two places: b) line 1, c) line 2. 
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Figure 4c 
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Table 1 - Designation, deposition conditions and main properties of the Ti0.80Si0.15N and 

Ti0.65Si0.11V0.15N coatings. 

Sample TiSiN TiSiVN 

Sample designation Ti0.80Si0.15N Ti0.65Si0.11V0.15N 

Base pressure (Pa) 8.7 × 10-4 

Working pressure (Pa) 0.3 Pa 

Target power density (W/cm2) Ti TiSi2 Ti TiSi2 

 
6 1.5 6 1.5 

Substrate temperature (ºC) < 300 ºC 

Ar and N2 gas flow (sccm) 35 and 17 

Coatings thickness (nm) 2.5 µm 

Chemical composition Ti Si V O N Ti Si V O N 

 

41.3 ± 

0.3 

6.68 ± 

0.03 
- 

0.55 ± 

0.06 

51.5 ± 

0.2 

33.6 ± 

0.3 

5.64 ± 

0.05 

7.6 ± 

0.2 

1.42 ± 

0.13 

51.71 ± 

0.14 

lattice parameter (nm) 0.422 0.421 

Grain size (nm) 24 20 

Hardness (Gpa) 27 ± 2 28 ± 2 

Young's Modulus (GPa) 307 ± 10 328 ± 7 

Residual stresses (GPa) 3.4 4.1 

Onset point of oxidation 900 ºC 500 ºC 

Friction coefficient (room 
temperature) against Al2O3 

1.07 0.51 
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Research highlights 

 

 

 V additions increased the oxidation rate of TiSiN films. 

 Oxidation of TiSiN films is controlled by ions diffusion though a Si-O layer. 

 In TiSiVN case, the Si-O layer growth is inhibited by V outward ions diffusion. 

 V2O5 phase formed over the oxidized surface grows by lateral V ions diffusion. 


