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Decadal variability is a notable feature of the Atlantic Ocean and the climate of the 13 

regions it influences. Prominently, this is manifested in the Atlantic Multidecadal 14 

Oscillation (AMO) in sea-surface temperatures (SSTs).  Positive (negative) phases of 15 

the AMO coincide with warmer (colder) North Atlantic SSTs. The AMO is linked 16 

with decadal climate fluctuations such as Indian and Sahel rainfall1, European 17 

summer precipitation2, Atlantic hurricanes3 and variations in global temperatures4. 18 

It is widely believed that ocean circulation drives the phase changes of the AMO by 19 

controlling ocean heat content5. However, there are no direct observations of ocean 20 

circulation of sufficient length to support this, leading to questions about whether 21 
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the AMO is controlled from another source6. Here we provide for the first time 22 

observational evidence of the widely hypothesized link between ocean circulation 23 

and the AMO. We take a new approach using sea level along the east coast of the 24 

United States to estimate ocean circulation on decadal timescales. We show that 25 

ocean circulation responds to the first mode of Atlantic atmospheric forcing, the 26 

North Atlantic Oscillation (NAO), through circulation changes between the 27 

subtropical and subpolar gyres—the intergyre region7. These circulation changes 28 

impact the decadal evolution of North Atlantic heat content and, consequently, the 29 

phases of the AMO. The Atlantic overturning circulation is declining8 and the AMO 30 

is moving to a negative phase. While this may offer brief respite from the persistent 31 

rise of global temperatures4, this link between circulation and sea-level implies that 32 

it is no coincidence that sea-level rise along the northeast coast of the United States 33 

is also accelerating9,10.  34 

 35 

The difficulty in linking ocean circulation changes to decadal climate variations lies in 36 

the fact that long observational records of ocean transports are rare. Measurements such 37 

as those of the Florida Current since 198211 and the Greenland-Scotland ridge transports12 38 

since the mid-1990s are some of the longest continuous ocean transport records available. 39 

Continuous, full-depth, basinwide measurements of the Atlantic overturning circulation 40 

only began in 2004 with the RAPID monitoring project at 26ºN13. None of these records 41 

are long enough to directly link ocean circulation with decadal climate variations such as 42 

the AMO.   43 

 44 
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Sea-level measurements from tide gauges provide an integrated measure of water column 45 

properties and offer timeseries of sufficient length (Ext. Data Fig. 1) to study decadal 46 

ocean circulation variations. Investigating ocean circulation using tide gauges is not new: 47 

the first attempt to estimate the Gulf Stream using tide gauges was made in 193814. The 48 

principle is based on geostrophic dynamics: on timescales longer than a few days, ocean 49 

circulation is in geostrophic balance so, looking downstream, the sea level is seen to 50 

increase from left to right in the northern hemisphere.  51 

 52 

Estimates of the Gulf Stream using tide gauges have focused on the use of gauges on the 53 

American east coast with an offshore estimate of sea level from either an island gauge15 54 

or a reconstructed sea level16. A weakness of this method is that the offshore 55 

measurement lies in the eddy-filled ocean where sea-level fluctuations at any one point 56 

are influenced by the mesoscale17 even on long timescales, increasing the difficulty of 57 

making estimates of ocean circulation that is coherent on large spatial scales. This is the 58 

case for sea level at Bermuda, whose decadal fluctuations can be reproduced by 59 

considering a Rossby wave response to wind forcing16. To make estimates of ocean 60 

circulation that capture the fluctuations in large-scale circulation and less eddy variability, 61 

measurements close to or on the western boundary are necessary18. We account for this 62 

by focusing on the gradient of sea level along the US east coast. The mean dynamic sea 63 

level decreases to the north along the east coast of the US (Fig. 1a) due to the transition 64 

from subtropical to subpolar gyres. This dynamic gradient reflects a circulation that 65 

contains elements not only of the Gulf Stream but also of cold, subpolar water from the 66 

north, primarily associated with the overturning circulation19. Indeed, in model 67 
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simulations, this meridional gradient of sea level along this coast responds strongly to 68 

declines in the Atlantic overturning circulation20. Ultimately, it is the heat transport that 69 

we are interested in. And while the overturning circulation carries about 90% of the heat 70 

at subtropical latitudes21, at the latitude of the intergyre region, ocean heat transport 71 

consists of similar contributions from both overturning and gyre22. For this reason, we do 72 

not discuss separately overturning and gyre but only ocean circulation in this intergyre 73 

region, which contains elements of both mechanisms. 74 

 75 

Sea-level fluctuations from Florida to Boston divide into two coherent groups either side 76 

of Cape Hatteras23 (Ext. Data Fig. 2, 3). This large-scale coherence in sea level is driven 77 

by ocean circulation. North of Cape Hatteras, coherent sea-level fluctuations have been 78 

linked with fluctuations in the overturning circulation19,24. South of Cape Hatteras, 79 

fluctuations in the Gulf Stream from Florida to Cape Hatteras are reflected in sea-level 80 

fluctuations. As Cape Hatteras marks the boundary between the subtropical and subpolar 81 

gyres on this coastline (Fig. 1a), we can construct a single sea-level composite 82 

representative of the subtropical (subpolar) circulation by averaging sea-level from 83 

linearly detrended, deseasonalised tide gauges, with the inverse barometer effect removed, 84 

south (north) of the Cape (Fig. 1b, c). The difference, south minus north (Fig. 1d), 85 

represents our circulation index. This index projects onto observed surface velocities 86 

during the satellite era in the intergyre region, with a positive index associated with more 87 

northwards flow and a more northerly path of this circulation (Extended Data Fig. 4). 88 

Similarly, in a high resolution ocean model, over timescales that contain both the cool 89 

phase of the AMO in the 1970s25 and the warm phase of the 1990s 26, the sea-level index 90 
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projects onto a similar pattern of circulation, with a positive index associated with more 91 

northward heat transport (Ext. Data Fig. 5).  92 

 93 

Ocean circulation is proportional to heat transport at both subtropical and subpolar  94 

latitudes22. A number of recent studies (e.g. Bryden et al.27) have emphasized the 95 

dominant role of ocean heat transport in heat content changes, relating the accumulation 96 

(in time) of heat transport to heat content. This suggests that the accumulation of our sea-97 

level index across Cape Hatteras, as a proxy for ocean circulation, can be related to ocean 98 

heat content. The largest AMO signal is in the subpolar region (Fig. 1a), so we wish to 99 

show that, as a measure of ocean circulation, our sea-level index is related to heat 100 

transport into the subpolar gyre and consequently heat content changes there. Such a 101 

mechanism is supported by our model where the sea-level index leads the heat transport 102 

into the subpolar gyre at 40ºN and, consequently, the heat content changes there (Ext. 103 

Data Fig. 6).  104 

 105 

While we do not have observations of heat transport, we can relate our sea-level index 106 

directly to the heat content changes in the subpolar gyre since 1960. Fig. 2a shows the 107 

accumulated sea-level index and a direct estimate of the heat content in the area and 108 

depth weighted temperature anomaly in the top 500 m between 40ºN and 60ºN. Heat 109 

content trends are similar throughout the upper 1000 m of the Atlantic, below which they 110 

reverse due to the depth structure of the Atlantic overturning circulation. The cool 111 

subpolar upper ocean of the 1970s and 1980s and subsequent warming in the 1990s is 112 

captured by the accumulated sea-level index, observationally supporting the hypothesis 113 
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that circulation changes and not only air-sea fluxes were involved in these changes 28. For 114 

the purposes of statistical analyses, the timeseries have had a 7-year low-pass, Tukey 115 

filter applied to them, which is referred to with the prefix ‘7-year’ from here on. The 7-116 

year sea-level index leads the 7-year rate of heat content change by 2 years with a 117 

maximum correlation of 0.58 (significant at the 95% level). Why the accumulated sea-118 

level index leads the large rise in heat content from 40ºN to 60ºN in the early 1990s can 119 

be interpreted by looking at maps of the heat content anomaly evolution. Heat content 120 

builds downstream of the intergyre region from the mid-1980s to the mid-1990s (Fig. 2b). 121 

This heat content anomaly is then observed downstream in the subpolar gyre in the late 122 

1990s and early 2000s (Fig. 2c), indicating that the sea-level index could provide an early 123 

indication of subpolar heat content change. 124 

 125 

The first mode of atmospheric variability over the North Atlantic, the NAO forces both 126 

buoyancy and wind-driven ocean circulation7 and, we believe, is the major forcing of the 127 

circulation in the intergyre region. The 7-year NAO is significantly correlated with 128 

(r=0.71 at the 98% level) and leads the 7-year sea-level difference by approximately 1 129 

year over the period 1950 to 2012. On extending the time period to 1920-2012, the 130 

correlation drops slightly but is still significantly correlated (r=0.61 at the 98% level, Ext. 131 

Data Fig. 7).  The fact that the correlation between the sea-level difference and the NAO 132 

is higher and more significant than the correlation of the NAO with either the southern or 133 

northern sea-level (Fig. 1b, c) composites with the NAO (r=-0.5 at the 86% level for the 134 

southern composite; r=-0.43 at the 70% level for the northern) supports our hypothesis 135 

that the NAO forces the ocean circulation and consequently the ocean heat transport into 136 
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the subpolar gyre.  137 

 138 

In the past 90 years, the AMO has undergone three major transitions: warming in the 139 

mid-90s and 1920s, and a cooling in the 1960s. From the early-1920s, when the tide 140 

gauge network along the east coast of North America was developed, robust comparisons 141 

of our sea-level index to the AMO are possible (Fig. 3). The accumulated sea-level index 142 

and the accumulated NAO are linearly detrended and capture much of the multi-decadal 143 

variation. The 7-year sea-level index leads the 7-year rate of change of the AMO by 2 144 

years and is significantly correlated (r=0.51, significant at the 96% level, Ext. Data Fig. 145 

8). This lead time of 2 years remains consistent when the timeseries is broken into 60 146 

year blocks. In recent years, the sea-level index (Fig. 1d) indicates that the AMO is again 147 

transitioning to a negative phase, consistent with observations of a reduced overturning 148 

circulation8.  149 

 150 

Using the sea-level difference between subtropical and subpolar gyres, we have 151 

developed and validated a proxy for ocean circulation in the intergyre region. This 152 

represents a mechanism for ocean heat transport to the subpolar gyre and heat content 153 

changes there. When observations exist, heat content changes have coincided with the 154 

major phase transitions of the AMO, confirming that ocean circulation plays a key role in 155 

decadal Atlantic variability. The ocean responds to NAO forcing with changes in ocean 156 

circulation: on decadal timescales, the ocean integrates NAO forcing and returns it to the 157 

atmosphere as the AMO. This is implicitly the Bjerknes compensation that had 158 

previously been seen in air-sea fluxes29. The sea-level difference provides an indicator of 159 
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ocean circulation changes that precede phase changes in the AMO, thus explaining why, 160 

as the positive AMO declines4, sea-level rise is accelerating north of Cape Hatteras9,10. 161 

While Greenland ice sheet melt has been linked with accelerating sea-level rise in recent 162 

years, the period of accelerated sea-level rise from the 1950s to the 1970s10 as well as the 163 

current period coinciding with a declining AMO indicates that multi-decadal fluctuations 164 

in ocean circulation play a key role. In this framework,  sea-level rise along the US east 165 

coast becomes entwined with the climate impacts of the AMO. 166 

 167 
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Figure Legends 274 

 275 

Figure 1: Dynamic sea-level and circulation along the western Atlantic seaboard. (a) 276 

Negative (positive) mean dynamic topography contours (m) in blue (red) indicate 277 

cyclonic (anticyclonic) geostrophic streamlines. The zero contour (dark blue) marks the 278 

boundary between the subtropical and subpolar gyres. Hatched areas indicate warm SST 279 

anomalies of greater than 0.5ºC during the positive phase of the AMO from 1995-2004 280 

relative to from 1961-2012. Dynamic sea-level anomalies (b) north (sites 7—30, +200 281 

mm offset) and (c) south (sites 1—6, -200 mm offset) of Cape Hatteras, with averages in 282 

black. (d) The difference in sea-level, southern minus northern average, defines our sea-283 

level index for ocean circulation. 284 
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 285 

Figure 2: Relating the sea-level circulation index to heat content changes. (a) 286 

Accumulated sea-level index (nominally, in mm month) derived from accumulating the 287 

sea-level circulation index (blue), temperature anomaly in the upper 500 m of the 288 

subpolar North Atlantic from 40º to 60ºN (black) and accumulated NAO (red, dashed). 289 

(b) Average temperature anomaly in the top 500 m for the periods 1985-1994 relative to 290 

the average from 1958-2010. Contours of mean dynamic topography defined in Fig. 1a 291 

are overlaid for reference. (c) Same as (b) but for the period 1995-2004. 292 

 293 

Figure 3: Sea-level circulation indices, the NAO and the AMO on multi-decadal 294 

timescales. Accumulated sea-level index (blue), which is representative of subpolar heat 295 

content evolution, accumulated NAO (red, dashed) and AMO (black). The heat content 296 

proxy and the accumulated NAO have been normalised. All timeseries have been 7-year 297 
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low-pass filtered. The accumulated sea-level index and accumulated NAO have been 298 

detrended. 299 

 300 

Methods 301 

Data 302 

Monthly mean sea-level records were obtained from the Permanent Service for Mean 303 

Sea-level (www.psmsl.org) for tide gauges stretching from Florida to Boston (Locations 304 

1 to 30, Ext. Data Fig. 1). Linear trends were removed from each record. This removes 305 

the impact of Glacial Isostatic Adjustment and other land subsidence effects, which have 306 

time periods of thousands of years and are known to affect tide gauges along this 307 

coastline. A 12-month low-pass filter removed the seasonal cycle. Southern (northern) 308 

composites of sea level we calculated by averaging records 1-6 (7-30). The meridional 309 

coherence of sea-level fluctuations is such, that using just a single tide gauge results in an 310 

rms error of only 5 mm relative to the full composite. Finally, the sea-level index is 311 

simply the difference obtained by subtracting the northern from the southern sea-level 312 

composite. The high level of meridional coherence allows the interpretation of the sea-313 

level gradient as this simple index. 314 

 315 

Monthly NAO data from the National Center for Atmospheric Research "The Climate 316 

Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based)" 317 

( https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-318 

index-pc-based); monthly AMO index, based on the Kaplan SST dataset (from 319 

http://www.esrl.noaa.gov/psd/data/timeseries/AMO/); subsurface temperature data from 320 
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the EN3 product (http://www.metoffice.gov.uk/hadobs/en3/); geostrophic velocity 321 

anomalies, were produced and distributed by Aviso ( http://www.aviso.altimetry.fr/), as 322 

part of the Ssalto ground processing segment. CNES-CLS09 Mean Dynamic Topography 323 

(v1.1 release) for the period 1993-1999 was produced by the French Space Agency 324 

CNES. 325 

 326 

Model validation 327 

The multi-decadal oscillation of SSTs is most intense in the subpolar gyre (Fig. 1a). 328 

Modelling studies have shown that it is ocean heat transport into the subpolar gyre (here 329 

we choose 40ºN) that controls the heat content of the subpolar upper ocean and 330 

consequently the SST. The concept here is that circulation in the intergyre region reflects 331 

the balance between warm subtropical water entering the subpolar gyre and colder 332 

subpolar water being recirculated within the gyre. We show that the sea-level gradient 333 

along the US east coast is a good proxy for this circulation (Ext. Data Fig. 4 and 5). 334 

We can relate sea-level changes to ocean circulation in a reduced gravity 335 

geostrophic framework: 336 

𝐯 =   
𝐠′
𝒇 𝐤×𝛁h, 

where 𝐯 is geostrophic velocity, k is the unit vector in the vertical direction, h is sea 337 

level,  𝐠′ is reduced gravity and 𝒇 is the Coriolis parameter. To estimate the transport in 338 

the intergyre region, previous studies have considered the sea-level difference between an 339 

onshore tide gauge and an offshore tide gauge, such as Bermuda. Ezer (2013)24, for 340 

example, relates the sea-level difference between Atlantic City and Bermuda to the 341 

Atlantic overturning circulation. 342 
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 343 

However, Bermuda is in the eddy-filled ocean interior17, which can disrupt spatially-344 

coherent ocean transport signals. Our approach is to use sea-level estimates south of Cape 345 

Hatteras instead of an offshore sea-level estimate. Dynamic topography along the US east 346 

coast also decreases to the north across the intergyre boundary at Cape Hatteras much as 347 

it decreases from Bermuda to Atlantic City. However, measurements on the coast do not 348 

suffer the same contamination due to eddies as mid-ocean measurements18. Hence we 349 

estimate the transport along the intergyre boundary as: 350 

𝑣ig   ≈   ℎ! − ℎ!, 

where the subscript ig refers to the intergyre region, s and n refer to south and north 351 

respectively. We can formulate the heat transport through a section straddling the 352 

intergyre boundary as: 353 

𝐻𝑇ig =   𝜌𝑐! Θ𝑣ig 𝑑𝐴, 

where 𝜌 is density, 𝑐! is specific heat capacity of seawater, Θ is conservative temperature 354 

and A is the area of the section considered. In this study we assume that the velocity 355 

fluctuations dominate the temperature fluctuations and so set the heat transport directly 356 

proportional to the intergyre velocity. This is an assumption that has proved true in direct 357 

heat transport estimates21. We note there is no dilemma in picking the location of the 358 

northern or southern points as the meridional coherence of sea level fluctuations allows 359 

us to use a simple average of all sea level records from Miami Beach to Cape Hatteras 360 

(Cape Hatteras to Boston)  for ℎ! (ℎ!). 361 

 In terms of upper ocean heat content, the heat transported in this intergyre region 362 

has a profound impact on the subpolar gyre. This is because warm water may be 363 
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transferred from the upper waters of the subtropics to the subpolar gyre whereas subpolar 364 

water can only enter the subtropics at depth (traditionally in the deep western boundary 365 

current). Therefore we relate the heat transport into the subpolar gyre and heat content of 366 

the upper waters of the subpolar gyre to the transport in the intergyre region:  367 

𝐻𝑇40ºN ≈ ℎ! − ℎ!. 

For exactly the reason that we need to use tide gauges as a proxy for heat 368 

transport, we cannot validate the conceptual model directly due to the lack of direct 369 

observations. However, a global eddy-permitting (1/4°) ocean model (ORCA-025) model 370 

provides the framework to investigate these balances. The heat transport into the subpolar 371 

gyre has previously been shown in this model to be the dominant factor in setting upper 372 

ocean temperature in the subpolar gyre22. Here, we reproduce this result, showing that the 373 

accumulated heat transport across 40ºN captures the major decadal fluctuations in heat 374 

content of the subpolar gyre (Ext. Data Fig. 6). We can use these heat transport 375 

measurements to validate our circulation index. At this resolution there are shortcomings 376 

in the representation of the Gulf Stream path: the Gulf Stream overshoots at Cape 377 

Hatteras and separates from the US coast too far north. However, we take account of this 378 

in choosing the northern and southern sea-level points so that they straddle the separation 379 

point. Also, despite the model being eddy-permitting rather than eddy-resolving, it does 380 

generate mesoscale variability. This is seen when including an offshore sea-level 381 

measurement (such as Bermuda) in a sea-level circulation index. Such an index fails to 382 

reflect the large scale circulation. This effect would be expected to be even larger in an 383 

eddy-resolving model. Ext. Data Fig. 5 shows that the model-derived sea-level index 384 

projects onto the intergyre velocities in a similar manner to the observed sea-level index. 385 
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Ext. Data Fig. 6 shows the accumulated sea-level difference compared with the 386 

accumulated heat transport across a section near 40ºN and the volume averaged 387 

temperature of the upper 500 m of the subpolar gyre (40ºN to 60ºN). The sea-level 388 

difference is significantly correlated with the heat transport into the subpolar gyre 389 

(r=0.62) and leads by 5 years (as in the main text, we report statistics on unaccumulated 390 

timeseries). 391 

 392 

Statistical analysis 393 

Cross-correlations are calculated using annually averaged data after first removing the 394 

mean and linear trend from each variable. Two approaches are used to quantify the 395 

uncertainty in the correlation.  Firstly, we calculated the parameter 396 

𝑇 = (𝑁 − 2)
𝑟

1− 𝑟!
, 

where r is the correlation and N is the number of samples.  The distribution of T is 397 

assumed to have a t-distribution with N-2 degrees of freedom when the samples are not 398 

autocorrelated.  This is used with a one-sided test to estimate the likelihood that the 399 

correlation has not occurred by chance (i.e. the certainty with which we can reject the 400 

null hypothesis).    Our data are autocorrelated and the number of independent samples 401 

(degrees of freedom) is therefore smaller than N.   To calculate the effective number of 402 

degrees of freedom we follow Bretherton et al.30 by evaluating the autocorrelation of each 403 

variable and the estimate N as 404 

𝑁eff = 𝑁obs
(1− 𝑎!𝑎!)
(1+ 𝑎!𝑎!)

 

where 𝑁eff is the degrees of freedom, 𝑁obs is the number of observations and a1, a2 are the 405 
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values of the autocorrelations at a lag of one year.   We evaluated 𝑁eff  over the longest 406 

time for each variable and then used the lowest value for all correlations.  For the shorter 407 

time series Neff was reduced in proportion to the length of the series. Degrees of freedom 408 

are reported in Extended Data Table 1. 409 

 410 

In a second approach we applied the non-parametric method described by Ebisuzaki31. A 411 

large number (we used 10,000) of simulated time series are constructed from the Fourier 412 

transform of one of the original data series by preserving the modulus of each Fourier 413 

component but changing the phase to a random value between 0 and 2π.  The distribution 414 

of correlations between these random series and the second variable was then calculated.    415 

The percentage of simulated correlations that are less than the observed correlation 416 

indicates the confidence that the true correlation is greater than zero.   Because we are 417 

considering lagged correlations we modify the technique of Ebisuzaki 31 so that for each 418 

simulated time series we evaluate the maximum of cross-correlation across all lags rather 419 

than the correlation at zero lag only.  This provides a more stringent test of confidence.  420 

 421 

To estimate the uncertainty in the time lag of the maximum correlation we used the times 422 

at which the correlation was equal to the maximum value less the standard deviation of 423 

correlations derived from the simulated time series. The results are summarized in 424 

Extended Data Table 1. 425 

 426 

We have also evaluated the correlation over shorter periods to determine if the lag has 427 

remained constant over time. Results from three overlapping 60-year periods are shown 428 
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in Ext. Data Table 2.  For each the correlation is a maximum when sea-level difference 429 

leads the differentiated AMO by 2 to 3 years.    430 

 431 

The text refers to both accumulated and unaccumulated timeseries. Accumulation of zero 432 

mean timeseries constrains the beginning and end of the accumulated timeseries to zero. 433 

To avoid this arbitrary constraint, we report all our statistics on unaccumulated timeseries. 434 

As mentioned, for the purposes of statistical analyses, the timeseries have had a 7-year, 435 

Tukey filter applied to them, which is referred to in the text with the prefix ‘7-year’ in the 436 

text. 437 

 438 

Methods References 439 
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Climate 12, 1990—2009. 442 

31. Ebisuzaki, W. (1997) A method to estimate the statistical significance of a correlation 443 
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 445 

Extended Data Legends 446 

 447 

Extended Data Figure 1: Tide gauges used in this study. (a) Locations and (b) 448 

temporal coverage of the tide gauges used in this study. 449 
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 450 

Extended Data Figure 2: Dynamic sea-level anomalies from the 30 stations used in 451 

this study. Linear trends were removed from each record. This removes the impact of 452 

Glacial Isostatic Adjustment and other land subsidence effects, which have time periods 453 

of thousands of years and are known to affect tide gauges along this coastline. A seasonal 454 

cycle was removed using a 12-month boxcar filter. From 1920, there are multiple tide 455 

gauges both north and south of Cape Hatteras so this is when we begin our study. 456 
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 457 

Extended Data Figure 3: Correlation of tide gauges along the US east coast relative 458 

to one another. The dashed line indicates the location of Cape Hatteras. There is high 459 

correlation between tide gauges grouped north and south of Cape Hatteras. 460 
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 461 

Extended Data Figure 4: Surface velocity anomaly when the sea-level index is 462 

positive. (a) Magnitude (ms-1) and (b) zonally integrated meridional velocity anomalies 463 

(103 m2s-1) for the time period 1993 to 2011, corresponding to when (c) the sea-level 464 

index is positive. A positive sea-level index is associated with a more northerly 465 

circulation in the intergyre region and increased surface flow into the subpolar gyre. 466 
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Velocities are geostrophic surface velocities derived from satellite altimetry. 467 

 468 

Extended Data Figure 5: Model-derived surface velocity anomaly magnitude when 469 

the model-based sea-level index is positive. Similar to observed velocities, positive 470 

indices are associated with more northerly circulation in the intergyre region. (a) Surface 471 

velocity magnitude (ms-1) and (b) percentage of meridional heat transport change (%) for 472 
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the time period 1958 to 2001, corresponding to when (c) the model-derived sea-level 473 

index is positive. Similar to the satellite observations, a positive sea-level index is 474 

associated with a more northerly circulation in the intergyre region. Meridional heat 475 

transport change in both subtropical and subpolar gyres is positive when the sea-level 476 

index is positive. 477 

 478 

Extended Data Figure 6: Model-derived sea-level index, heat transport and 479 

subpolar heat content. The accumulated sea-level index (blue, mm months) leads the 480 

accumulated heat transport into the full subpolar gyre across section approximately 40ºN 481 

(black, normalized units). The heat transport into the subpolar gyre dominates the top 500 482 

m temperature anomaly (green, ºC) in the subpolar gyre.  483 

1960 1965 1970 1975 1980 1985 1990 1995 2000
−5

0

5

m
m

 m
on

th
s

 

 

1960 1965 1970 1975 1980 1985 1990 1995 2000
−0.5

0

0.5

°  C

Year

Acc. SL diff Acc. HT40N Subpolar HCA



 28 

 484 

Extended Data Figure 7: Relationship between sea-level index and the NAO. (a) 7-485 

year sea level difference (blue, cm) and 7-year NAO (green, normalized units). (b) 486 

Lagged correlations between the two quantities. (c) Scrambled correlation tests. The 487 

histogram indicates the typical correlations that would be expected from randomly 488 

generated timeseries with similar spectral properties to the original timeseries. The red 489 

line indicates the maximum correlation between the two timeseries. 490 
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 491 

Extended Data Figure 8: Relationship between sea-level index and the rate of 492 

change of the AMO.  (a) 7-year sea level difference (blue) and rate of change of the 493 

AMO (green). (b) Lagged correlations between the two quantities. (c) Scrambled 494 

correlation tests. The histogram indicates the typical correlations that would be expected 495 

from randomly generated timeseries with similar spectral properties to the original 496 

timeseries. The red line indicates the maximum correlation between the two timeseries. 497 
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 499 

Var X Var Y Filt 
(yrs) 

Time 
interval 

DoF Corr Sig. % 
(t-stat) 

Sig. % 
(Scrm) 

RMS 
of rand 
corr 

Lag at 
max 
corr 
(yrs) 

Estimate
d range 
of lag 
(yrs) 

B-A Di HC 7 1950-2012 9 0.58 95 98 0.22 -2 -3 to 0 

B-A NAO 7 1950-2012 9 0.71 98 98 0.29 1 -1 to 2 

NAO Di HC 7 1950-2012 9 0.41 86 84 0.18 -2 -4 to -1 

B-A NAO 7 1920-2012 13 0.61 98 99 0.21 0 -1 to 2 

B NAO 7 1920-2012 13 -0.50 95 86 0.23 -11 -13 to 7 

A NAO 7 1920-2012 13 -0.43 91 70 0.22 1 -3 to 4 

B-A Di AMO 7 1920-2012 13 0.51 96 98 0.18 -2 -4 to -1 

NAO Di AMO 7 1920-2012 13 0.58 98 98 0.21 -4 -5 to -2 

 500 

Extended Data Table 1:  Correlation, lags and significance of sea-level, NAO and 501 

rates of change of the AMO. B (A) is the southern (northern) sea-level index. Di refers 502 

to the rate of change. HC refers to subpolar heat content from 40º to 60ºN.  503 

From To Correlation Lag (yrs) Lag range (yrs) 

1920 2012 0.5 -2 -4 to -1 

1920 1980 0.36 -1 -3 to 0 

1936 1995 0.46 -3 -4 to -1 

1952 2012 0.54 -2 -4 to 0 

 504 

Extended Data Table 2: Correlation, lags and lag range of sea-level index and the 505 

rate of change of the AMO over various time periods to investigate the consistency 506 

of the lags.  507 
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