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Abstract

The mechanism of energy dissipation in mechanical systems is often nonlinear. Even though there may be other forms of nonlinearity in the dynamics, nonlinear damping is the dominant source of nonlinearity in a number of practical systems. The analysis of such systems is simplified by the fact that they show no jump or bifurcation behaviour, and indeed can often be well represented by an equivalent linear system, whose damping parameters depend on the form and amplitude of the excitation, in a “quasi-linear” model. The diverse sources of nonlinear damping are first reviewed in this paper, before some example systems are analysed, initially for sinusoidal and then for random excitation. For simplicity, it is assumed that the system is stable and that the nonlinear damping force depends on the n-th power of the velocity. For sinusoidal excitation, it is shown that the response is often also almost sinusoidal, and methods for calculating the amplitude are described based on the harmonic balance method, which is closely related to the describing function method used in control engineering. For random excitation, several methods of analysis are shown to be equivalent. In general, iterative methods need to be used to calculate the equivalent linear damper, since its value depends on the system’s response, which itself depends on the value of the equivalent linear damper. The power dissipation of the equivalent linear damper, for both sinusoidal and random cases, matches that dissipated of the nonlinear damper, proving both a firm theoretical basis for this modelling approach and clear physical insight. Finally, practical examples of nonlinear damping are discussed; in microspeakers, vibration isolation, energy harvesting, and the mechanical response of the cochlea.

1. Introduction
In a mechanical system, the damping force depends on the system’s velocity. In a number of mechanical systems, the damping force is a nonlinear function of velocity and similar nonlinear damping behaviour is also seen in many electrical, biological and other dynamic systems. Examples that will be discussed in more detail below include the damping in aircraft structures, flow through orifices, damping in nanoelectromechanical (NEM) systems and vibration inside the cochlea.
In some applications the stiffness of the system also changes to some extent with excitation amplitude, as well as the damping. This nonlinear stiffness can complicate the dynamic response, particularly if the nonlinearity in the stiffness is severe, and can give rise to jump and bifurcation phenomena. In many cases, however, it is the damping that is the dominant source of nonlinearity and it is interesting and worthwhile to consider the behaviour of systems in which only the damping is nonlinear.  We will see that such systems do not exhibit the kinds of jump phenomena seen in systems with nonlinear stiffness. Also, their response for a given excitation can often be approximated by that of an equivalent linear system, whose parameters depend on the level of excitation. Such “quasi-linear” models of a nonlinear system, which are implicit in many methods of analysis, including equivalent linearisation and the describing function, have surprisingly generality and have been developed in several different fields. These quasi-linear models are very useful in understanding the dynamic response of a number of engineering and biological systems, despite their apparent simplicity.
The nonlinear damping force often increases with excitation level, so that the relative response of the system, compared with the excitation level, is reduced. This is a mechanism for reducing the range of system’s response, compared with the range of the input, i.e. compressing its dynamic response, which we will see is particularly important in the dynamics of the cochlea.
Also, if there is some reason for the linear damping of a system to become negative, so that the envelope of its linear response would otherwise increase exponentially, nonlinear damping can provide a mechanism by which the output level is stabilised to a fixed level. Rayleigh [1], for example considers systems in which "vibration is maintained by wind (organ pipes, harmonium reads, Aeolian pipes etc.), by heat (singing flames, Rijke’s tube etc.), by friction (violin strings, finger glasses) and the slower vibration of clock pendulum's and watch balance wheels". He goes on to say that "we may form an idea of the state of things" by including a damping term proportional to a higher power of velocity in the dynamic equation for a single degree of freedom system.  He then considers the specific state of cubic damping, so that, in the notation to be used here,
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where is the displacement of the system, and  are linear and cubic damping coefficients and and are the system’s mass and stiffness. If  is negative but is positive, the system evolves into a steady oscillation, which we would now call a limit cycle oscillation,  that Rayleigh showed would have a small third harmonic component, but would otherwise be approximately sinusoidal, at the system’s natural frequency, , equal to . The fundamental amplitude of the response,, , was also shown [1] to be given by the solution to the equation,

 ,						(2)
a result we will come back to later. More recently, the dynamics of such a “relaxation oscillator” have often been described using the Van der Pol equation [2], whose interesting history is discussed by Ginoux and Letellier [3]:

             					(3) 







, in which the natural frequency is assumed to be unity and the linear damping coefficient is assumed to be equal to , where  is a positive number. If, following [4,5], equation (1) is differentiated with respect to time and it is assumed that is equal to , then Van der Pol’s equation, (3), can be obtained as a special case of the cubic damping equation,(1), under the conditions that, , and  .
Although we will mostly focus on stable systems in this paper, with positive values of both linear and nonlinear damping, this connection with Van der Pol’s equations shows that even simple models of systems with nonlinear damping can give rise to a rich variety of behaviour. We will also focus on nonlinear dampers in which the force is a smooth function of velocity, as in equation (1), rather than discontinuous forms of nonlinear damping, such as coulomb friction although similar methods to those described below can still be used to analyse such nonlinearities. 
The aim of this paper is first to review both the variety of mechanisms that give rise to nonlinear damping and their effects. Second, the analysis of systems with nonlinear damping is discussed, emphasising the calculation of the dissipated power. This leads to a quasi-linear model, for both tonal and random excitations, in which the power dissipation in the nonlinear damper is matched by an equivalent linear damper. Finally, some practical applications are reviewed in which nonlinear damping plays an important role in determining their performance.
2. Examples of nonlinear damping
2.1 Aerospace structures 

The dynamic response of aerospace structures, such as wings, is important in determining the vibration levels in flight, and in the prediction of flutter [6]. Ground vibration testing is a common way of measuring the dynamic response of such structures and although many of the results are commercially confidential, there are a number of studies that specifically address the changing damping with excitation level. Fearnow [7], for example, discusses tests on wing and fuselage sections of a Curtiss-Wright C-46D aircraft and showed a structural damping trend that increased nonlinearly with amplitude, as shown in Fig. 1 [7].
Fellows et al (IFASD 2011) [8] discusses the results of a series of free vibration tests on an Airbus partial wing box and showed that the structural damping was also increased at higher amplitudes.  Fellowes et al also note that the reduced response at higher amplitudes, due to the nonlinear damping, can have significant benefits in reducing aircraft flight loads. Traditionally, the damping used in flight load calculations have been based on ground vibration tests, conducted at relatively low excitation amplitudes, and this damping will then be less than those experienced at the higher levels of excitation in flight. A calculation of the flight loads using these lower values of damping will then significant over-predict the response in flight, which may be seen as providing a level of robustness in the predictions.
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Figure 1. Variation of damping factor with amplitude of vibration, after Fernow, 1952 [7].

2.2 Damping in a nanoelectromechanical (NEM) system

Eichler at al. [9] measured the mechanical response of nanotubes and graphine sheets intended as components of nanoelectromechanical systems, such as atomic force microscopes, for example. Eicher et al showed that, for components built for both materials, the width of the resonance curves (Res. width), whose natural frequency was in the MHz region, increased with excitation amplitude (as indicated by the ac drive voltage Vac), as shown in Fig. 2 for example. Nonlinear damping in these systems then makes it possible to tune the quality factor Q of these resonators.

2.3 Acoustic nonlinearity of an orifice

The acoustic flow through a number of different orifices, when excited by sound at different amplitudes, was measured by Ingard and Ising [10]. The flow showed a complicated pattern at very high amplitudes, when the flow becomes supersonic. At very low excitation amplitudes the acoustic resistance of such an orifice was found to be constant, since the flow was dominated by the viscous loss in the fluid, but then begins to rise in proportion to the acoustic particle velocity at higher amplitudes, due to the generation of turbulence, as shown in Fig. 3. The pressure across the orifice is then proportional to the square of the velocity, which is an example of the quadratic dependence of drag with velocity [11]. 
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	Figure 2. Nonlinear damping in nanotube resonators: resonance width as a function of gate voltage, after Eichler, et al 2011[9].
	Figure 3. Orifice-resistance data as a function of velocity, after Ingard and Ising, 1967[10].




2.4. Nonlinear suspension and isolation systems

The characteristics of the suspension system are important in determining the ride and handling qualities of vehicles [12]. Part of the suspension system is the shock absorber, which provides both stiffness and damping characteristics. The properties of the shock absorber are often described by a “characteristic plot”, of force against velocity. An example of such a plot is shown in Fig. 4, which shows an almost bilinear damping response, with a “rebound” damping that is significantly greater than the “compression” damping [13]. This characteristic helps to keep the wheels in contact with the ground and so improve road handling and safety. Surace et al (1992) emphasise that the hysteretic loops in this characteristic plot depend on the frequency of excitation and that a more complete representation would plot the force against damper displacement as well as velocity. In this application equivalent linearisation has been found not to provide an adequate model to predict the vehicle dynamics, however, since it is the details of the waveform which are important, in determining the contact force for example. 
Nonlinear damping has also been incorporated into vibration isolation systems to improve the trade-off between the high frequency isolation performance and that at resonance, as described in more detail below.

2.5 The cochlear amplifier

The mechanical damping in the examples considered above is entirely passive, so that the nonlinear damping force opposes motion and can be considered as a form of negative feedback. Increased damping with level thus requires an expanding nonlinear function, so that the damping force is proportional to the cube of the velocity for example.
In the cochlea, the mechanical response is amplified by a number of local positive feedback loops (see, for example, de Boer 1996 [14] and Shera 2013[15]). These loops are formed by the 12,000 or so outer hair cells, whose force response is proportional to the velocity in the system, with a phase inversion, so that they provide negative damping. These cells also include a saturating nonlinearity, due to their mechanoelectrical conduction channels, as shown in Fig. 5 [16]. At low excitation levels the response of this function is almost linear and the negative damping provided by the outer hair cells enhances its response by about 40dB.  As the sound pressure, and thus the excitation of the hair cells, increases, the nonlinearity begins to saturate, lowering the loop gain of the positive feedback loop, reducing the active enhancement of the mechanical response, and thus increasing the effective damping. This provides a form of automatic gain control within the cochlea, as discussed in more detail below.
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	Figure 4. Characteristic plot of force against velocity for a shock absorber, after Surace et al, 1992 [13].
	Figure 5. The input-output relationship for the hair cell, after Hudspeth and Corey, 1977 [16].



3. Response at single frequencies
3.1 Theoretical approaches

The response of a nonlinear system to single frequency excitation can, in general, be complicated, and involve harmonic and sub harmonic generation and even chaos [17, 18]. If the nonlinearity is only in the system’s damping, however, the response is guaranteed to be at the driving frequency and its harmonics, as will be discussed in the more detail below. The response at higher harmonics also tends to be smaller than the response at the fundamental driving frequency, and so, for many purposes, only this fundamental response needs to be calculated. It is also important to note that if a system is forced sinusoidally, but the velocity response contains a number of harmonics, the power dissipated in the nonlinear damper, which is equal to the time average product of the force multiplied by the velocity, depends only on the fundamental component of the velocity response, because of the orthogonality of the Fourier series.
Several methods have been developed for calculating the response at the fundamental frequency for such systems, including equivalent linearization, the describing function method and harmonic balance. Although if only the fundamental component is retained in the harmonic balance method, these solutions are equivalent [19, 20].
In the following sections the harmonic balance method will be used to derive the response at the fundamental frequency, initially for a single degree of freedom system having a nonlinear damping described by a power law, and then for an example of a multi-degree of freedom system.
3.2 	Analysis of a single degree of freedom system


The dynamic equation for a single degree-of-freedom system with a general nonlinear damping  can be written as,

					(4)






In this equation, ,  and  are the mass, linear damping and stiffness.  is the response of the system and  is the input force excitation. If the nonlinear damping force is assumed to be proportional to the -th power of the velocity, we have,

						 (5)

For odd power of , the nonlinear damping in Eq. (5) can be replaced by,


			if   is odd			 (6a)

and for even power of , Eq. (5) becomes,


		if   is even		 	 (6b)



,where function is equal to one when the velocity  is greater than zero and is equal to minus one if is less than zero. We will investigate the response of the system subject to harmonic (single-frequency) excitation for odd and even power of nonlinear damping. The force excitation is assumed to be sinusoidal and of the form,

 						   (7)



where  is the amplitude of the sinusoidal excitation and  is the phase shift necessary to ensure that the fundamental component of the response, , has  no phase shift.

In the harmonic balance method, the response of a nonlinear system to a sinusoidal input is analysed in terms of its Fourier series, but only certain of the output harmonics are retained. Approximating the response at the fundamental frequency , as,

 						   (8)
and substituting Eqs. (6a) ,(6b), (7) and (8) into Eq. (4), yields ,




        if   is odd		 	 	(9a)


										       if   is even				(9b)

The Fourier series for is the same as a square wave. Trigonometry formulae can then also be used in both Eqs. (9a) and (9b), 


     	         if is odd 		              	(10a)
and 


                   if is even	   	              (10b)

where, .  Substituting Eq. (10) into Eq. (9), and ignoring the higher order harmonics, leads to an equation for the response at the fundamental frequency,


 			 (11)


where  is a constant coefficient, equal to


     				    if   is odd  		              (12a)


and,			             	                  if   is even.   	                            (12b)
Partitioning the Sine and Cosine terms in Eq. (11), and adding the squares of these two terms yeilds,


			(13)




For a given power of nonlinear damping, the response of the nonlinear system, , is given by the solution to Eq. (13). Comparing Eq. (13) with the modulus squared response of a linear system with total damping  , where in an equivalent linear damper for the nonlinearity, shows that  can be written as,

			 			(14)


Defining  as the amplitude of the velocity, which is equal to , where

					(15)
leads to the following expression for the equivalent damping in terms of the velocity amplitude,

 						 	(16)


For , for example, the constant coefficient is, and the equivalent damping becomes,

,				 		 	(17)


and for , the constant coefficient is, and the equivalent damping becomes,

							(18)

which is the same expression derived in [21] and is equal to 







If were negative, the system would begin to go unstable at the natural frequency, , but would be stabilised when the power dissipated in the equivalent damper was equal to the power generated by the negative linear damper. The system would thus settle into a limit cycle oscillation with an amplitude such that  was equal to , as in Eq.(2) in the introduction. In the case of the forced response of a system, the equivalent linear damper is dependent on the velocity response of the system, which is itself dependent on the equivalent linear damper. Figure 6, for example, shows the dependence of the equivalent linear damper, , on the velocity response, , in the case of cubic damping, Eq.(18). Also shown in this figure is the inverse of the dependence of the response on the equivalent linear damper, when driven at resonance, as in Eq.(19), both with the numerical values given by the specific case considered in the next section. The two equations are, clearly, both satisfied when the two curves cross. In the case of cubic damping the crossing point can be calculated analytically, as below, but for higher orders of nonlinear damping, numerical methods need to be used to calculate the solution.


Since the response of the system at the fundamental frequency, , is given by the solution to the polynomial Eq.(13), where only one of the possible solutions is real and thus physically realistic, the equivalent damping can, in principle, be calculated directly from this equation. For low power of nonlinear damping, for example for  , a closed-form analytical solution for the response at resonance can be obtained. The damping force at resonance can be written as,

						(19)

Substituting Eq. (18) into Eq. (19), yields a cubic polynomial in ,  

					(20)

Since there is no power of two in  in Eq. (20), the discriminant becomes negative and the equation has only one real root and the other solutions are complex conjugate roots [22]. The solution for the real root is,

						(21)
where, 





, and so , which is equal to , and hence  can be calculated.						(22)
[image: ]
Figure 6. The relationship between the equivalent linear damper and the velocity for a cubic damper, as given by Eq. (18); solid line, and also the velocity response for a single degree of freedom system at resonance plotted, inversely, as a function of the equivalent linear damper, from Eq. (19), dashed line.

3.3 	Numerical simulation for a single degree of freedom system







In practice, for higher order forms of nonlinear damping, deriving an analytical expression for the response becomes more difficult, but direct time domain simulations can still be used to calculate the result. The analytic result for the fundamental component of the response of the system with a cubic damper, derived above, is compared here to the results of a numerical simulation for a particular case. We consider a system with parameters, ,,, and . The fundamental component of the velocity amplitude is plotted as a function of the individual excitation frequencies in Fig. 7(a) , calculated, when the input amplitude is ,   using both the harmonic balance method described in section 3 using Eq. (14) and time domain simulation using Matlab ode45 . The analytical result is in good agreement with time domain simulations, when the system is excited by a sinusoidal force at various frequencies, since the waveforms obtained from the time domain simulations are almost sinusoidal at each excitation frequency. This is because, when the system is driven off resonance, the response is mainly controlled by either the linear mass, at low frequencies, or the linear stiffness, at high frequencies. Near the resonance the analytic and numerical results are very similar since although the response is controlled by the nonlinear damper, the response at the resonance frequency is much greater than at three times the resonance frequency, so that the harmonics at this frequency, and the higher harmonics, are filtered out by the dynamics of the system to leave a largely sinusoidal response. Figure 7(b) shows the variation of the equivalent linear damping as a function of the excitation frequency,, for this example. Since the velocity response is small for excitation frequencies well below or well above the resonance frequency, the equivalent linear damping is, according to Eq. (18), also small at these frequencies, only rising as the excitation frequency approaches resonance and the velocity response becomes more significant.
 
	[image: ]
	[image: ]

	(a)
	(b)



Figure 7.  The response of the nonlinear system with cubic damping when driven by a single tone, as a function of excitation frequency,  : (a) the  amplitude of the receptance (b) the equivalent linear damping, red solid line (analytical using harmonic balance) and blue dashed line (numerical using time domain simulations)


Figure 8 (a) shows the relation between the input amplitude and the displacement amplitude at resonance, , for the linear system and for the nonlinear system, which has both linear and cubic damping force.  Nonlinear damping has the effect of limiting the displacement response at high excitation amplitudes, resulting in saturation. The equivalent damping at resonance is also plotted in Figure 8(b), for different levels of excitation, which increases with the excitation amplitude. Similar results are obtained for both the analytical solution (solid line) and the numerical simulations (dashed line).
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	(a)
	(b)
	


Figure 8.  (a) Comparison between the amplitude of the fundamental component of the single degree of freedom system, at resonance, when linear (blue dashed dotted line) and with cubic damping, (red solid line) and (b), the equivalent damping for the nonlinear damper at different excitation amplitudes (red solid line) compared with the numerical simulation (blue dashed line)

3.4 	Generalisation to multi degrees of freedom (MDOF)

The method of harmonic balance can be extended to the general MDOF system. The dynamic equation, including the nonlinear damping, can be written as,

 			 	(23)






where,  is the displacement vector and is the forcing vector (both of size for an N degree-of-freedom model), and  are the linear mass, stiffness, and damping matrices respectively, and  is the nonlinear damping force.


Backbone curves are plots of undamped natural frequency against excitation amplitude, and their shape can indicate the presence of jump phenomena or bifurcation in the forced response [23]. The backbone curves are derived by solving the differential equations for the undamped forced system. The backbone curves are straight lines for linear systems, but in the presence of stiffness nonlinearities, such as hardening (softening) nonlinearities, the backbone curves bend to the right (left). Assuming that all the nonlinearities are in the damping matrix, however, so that the mass and stiffness matrices are constant with amplitude, the backbone curves would remain as straight lines, and so the system is guaranteed to have no jump or bifurcation behaviour. This may be a significant advantage of implementing nonlinear damping, as in some applications the jump phenomenon is undesirable, since it is required to have a response that is independent of the previous excitation of the system, for example. To demonstrate the harmonic balance method for multi degree of freedom systems, we have assumed a special case where the nonlinear damping matrix is diagonal, so that is a function of only. This assumption is adopted in order to simply illustrate the method, but is not necessary, since the method can still be applied in the more general case of non-diagonal damping.   If an equivalent linear damping matrix is now assumed to replace the nonlinear function, then the equivalent linear system is,

					(24)



Assuming -th power law damping and that the responses are at the fundamental frequency , the elements of the matrix  can be obtained from the harmonic balance method as described above for each nonlinear term,

						(25)



whereis calculated from Eq. (12) and is the amplitude of the response for the j-th degree of freedom. For harmonic excitation, the velocity vector  of the equivalent linear system, is given by,

				(26)


[bookmark: OLE_LINK4][bookmark: OLE_LINK5]For multi-DOF system, even for low powers of nonlinear damping, it is difficult to obtain a closed-form solution for the equivalent damping, due to the coupling between the degrees of freedom, and hence iterative methods are required. An iterative method that can be used to obtain the equivalent damping for the nonlinear system first involves calculating the response of the linear system, with . The velocity amplitudes are then calculated from Eq. (26) and these amplitudes are substituted into Eq. (25) to obtain the elements of an equivalent damping matrix . The updated damping matrix is then used to generate the next response amplitudes. This procedure continues until the convergence is achieved. 

3.5 	Numerical simulation for a multi degree of freedom system














Consider the two dof system shown in Fig. 9. A harmonic excitation acts on the mass  with the forcing amplitude of and excitation frequency of  . The displacements of the two masses are denoted by  and  respectively. A linear spring  and  a linear damper are  attached to  the mass , whereas a linear spring  and a nonlinear damper connects the two masses  and . The nonlinear damping force between the two masses is therefore given by, . 
[image: ]

Figure 9. Two degree of freedom system with nonlinear damper 



The dynamic equations in terms of the two coordinates  and  can be written in the matrix from as,

   	(27)

Since, the nonlinear damping depends on the relative velocity between the two masses, it is convenient to introduce the transformation,


  and  					(28)
Therefore, the dynamic equations can be rewritten,

        		(29)

So that,  

.  					(30)
The equivalent damping matrix can be obtained using Eq. (25). 

					(31)				
Therefore, the equivalent system matrix becomes,

			(32)	



where  The equations can be written in the normalised form, by dividing the first equation by  and the second equation by  to give,

    	 	(33)	
where the parameters are:





                , , , , 			(34)
To obtain the frequency response, an iterative method is used at every individual excitation frequency. The amplitude of the velocities can be obtained from Eq. (33) at every iteration and then be used to construct the equivalent damping matrix, which is used to recalculate the response from Eq. (33). The iteration continues until the convergence is achieved. For numerical simulation, the following system parameters are used:






          , , , , , 




, so that the natural frequencies of the system are  and .  The amplitude of the resulting mobilities   and   are plotted in Fig. 10. A very good agreement is achieved between the analytical approach, using the harmonic balance method, red solid line, and the numerical approach, using time domain simulation, blue dashed line. 
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	(a)
	(b)





Figure 10. The response of the two degree of freedom system with cubic damping when driven by a single tone, as a function of excitation frequency,  , showing  (a) the amplitude of the point mobility  (b) the amplitude of the cross mobility , red solid line ( analytical using harmonic balance) and blue dashed line(numerical using time domain simulations)




The equivalent damping  at every iteration is plotted in Fig. (11a) for excitation at the two undamped frequencies, to indicate the good convergence after about three iterations in this case. In addition, the equivalent damping , after convergence, is plotted in Fig. 11(b) as a function of the  individual excitation frequencies  . The equivalent damping when the system is driven at the natural frequencies is higher compared to other frequencies, since the nonlinear response is greater at resonances.
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	(a)
	(b)




Figure 11.  Illustration of the iterative approach to obtain the equivalent damping for the nonlinear system (a) the convergence of the equivalent damping  , for example at the two natural frequencies (b) the equivalent damping  , after convergence, as a function of the excitation frequency



Figure 12 (a) shows a comparison between the behaviour of the linear and nonlinear system in terms of the variation of the velocity amplitude  as a function of the amplitude of the excitation force,  At high excitation amplitudes, the nonlinear response is again less than the linear response. The total equivalent damping is also obtained numerically at every excitation amplitude, as shown in Figure 12(b).
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	(a)
	(b)




Figure 12.  (a) Comparison between linear and nonlinear system at the second natural frequency  , red solid line( nonlinear system) and blue dashed line(linear system), (b) the equivalent damping  at different excitation amplitudes 

4.	Response to random excitation
4.1 	Theoretical approaches

In this section, the response of the nonlinear single degree of freedom system will be considered, subject to random excitation.  In practice, many engineering systems are subjected to loadings that are random in nature and various methods to predict the response of nonlinear systems subject to random excitation have been developed [24, 25]. A probabilistic description of the random process can be obtained from the statistical moments [26].  When the input is a Gaussian process and the system is linear, it is well known that the response also has a Gaussian probability density function (PDF).  This enables closed-form solutions for the statistics of the response to be calculated.  However, in many engineering systems, due to the nonlinear structural behaviour, the response to a Gaussian input is non-Gaussian. For weakly nonlinear systems, however, the response is still approximately Gaussian and the method of “stochastic linearization” can be used to approximate the response [25]. This method can only predict the response moments up to second order with reasonable accuracy, however. To take into account the non-Gaussian characteristic of the nonlinear response, the alternative methods, of “equivalent nonlinearisation”, has been developed [26].  Equivalent nonlinearisation is based on replacing the nonlinear system with a simpler equivalent nonlinear model, which depends on the energy level of the system.  However, this method is restricted to single-degree-of-freedom systems, as discussed in [25]. A different approach to random vibration problems is the use of Fokker-Planck-Kolmogorov (FPK) theory, to obtain the state transition probability density function.  For white noise excitations and for particular nonlinearities in the stiffness and damping, the method provides a direct approach to obtain the exact response [27]. However, for general nonlinear systems, numerical approaches are still required to solve the FPK equation [28]. 
Similar problems have been treated in a different way for communication systems, using the invariance property of separable random process [29, 30]. Nuttall utilised the separable class of random processes to prove their invariance under nonlinear transformations [34], and showed that the cross-correlation function between the input and output of a single-valued nonlinearity is proportional to the auto-correlation of the input. This invariance property allows the nonlinear function to be replaced with a level-dependent linear gain. A number of different approaches to analysing a single degree of freedom system are compared in the next section and the links with the cross-correlation approach are emphasised [31].

4.2 	Analysis of a single degree of freedom system

The equation of motion of a single-degree-of-freedom system with nonlinear damping that depends only on the velocity has the general form

           				(35)



where the forcing is now considered to be a stationary random process.   In order to perform a quasi-linear analysis, the nonlinear damping that appears in Eq. (38) must be replaced with a linear damping term that is optimal in some sense.  There are three possible approaches to determining the appropriate linear damping coefficient which all lead to the same mathematical result: (i) error minimisation, (ii) series truncation, and (iii) power balance. It is useful to consider each of these approaches in turn, since taken together they provide a physical insight into the nature of the approximation process.  With the error minimisation approach, the nonlinear damping function  is approximated by a linear function, and the error involved in the approximation of the nonlinear damping force is written as, 

						(36)      

The coefficient is now found by minimising the mean squared error, which yields

                        			              (37)

where E[] represents the ensemble average and is the error.  Therefore, the equivalent linear damping can be obtained from,

					(38)
With the series truncation approach, the nonlinear damping force is written in the form

,                                                     		(39)




where the functions  are a set of orthonormal polynomials (the -th function being of order ) with weighting function . Thus, by definition,

,          	 				(40)
and,

                                    	(41)



,where   is the probability density function of the response and  is the Dirac delta function and is equal to one when , otherwise is zero. If the random response is stationary then the velocity must have zero mean, and it can readily be deduced that the first two orthonormal polynomials are


 ,      		      (42, 43)

With this approach the linearization of the system is achieved by retaining only the first two terms in Eq. (39). Assuming that  has zero mean, it is readily shown from Eqs. (42)-(43) that

    ,                              		   (44)
so that the orthogonal series approach agrees with the error minimisation approach.  This is clearly to be expected, since from Eqs. (36), (39) and (40) the mean squared error can be written in the form,

,                                   	 (45)

so that  is the optimal linear approximation.  Equation (38) is often presented without reference to the underlying orthonormal series, as in [32] where the method is referred to as equivalent linearization.  As an aside it can be noted that if the nonlinear damping is a functional of the velocity, rather than an instantaneous, memory-less function, then Eq. (39) would be replaced by a functional series which is analogous to the Wiener series [33], and Eq. (41) would be replaced by a cross-correlation approach analogous to the Lee-Schetzen algorithm [34].
	The third and final approach to obtaining the quasi-linear damping coefficient is to note that the power dissipation rates under linear and nonlinear damping are respectively


     .                                             	 (46, 47)


If the constant  is chosen to equate the ensemble average of the two powers, , then the result is

     ,              		       		              (48)



which is in agreement with Eq. (38).  Thus the mathematical optimisation technique leading to Eq. (48) ensures that a quantity of great physical importance, the dissipated power, is conserved. In the expression for ,  and  can be interpreted as the cross-correlation between the nonlinear damping force and the velocity and the auto-correlation function of the squared velocity, both at zero lag, in agreement with Nuttall’s approach mentioned above.

Were the nonlinearity in the stiffness, rather than the damping, then the conserved quantity, in the equivalent to Eq. (48), would be , which does not have such physical significance, thus suggesting that quasi-linearization can be expected to be more effective for nonlinear damping than for nonlinear stiffness. 


One key feature of the linearization approach represented by Eq. (48) is that the optimal linearization constant  depends on the statistics of the response: the probability density function  is needed to evaluate the expectations that appear in the equation. A common approximation is to assume that the velocity is Gaussian, in which case it can be shown that Eq. (48) becomes

                                                  	               (49)

, which is called stochastic linearisation [24, 25]. The resulting expression for  can be expressed as a function of the standard deviation of the velocity.
The foregoing presentation of the quasi-linearization technique could also have been employed for the harmonic case presented in section 3.2.  In that case Eq. (39) would be replaced by a Fourier series expansion of the nonlinear damping, and the ensemble average E[] would be replaced by a time average. The assumption that the response is Gaussian is replaced by the assumption that the response contains only the first harmonic of the excitation frequency, and the harmonic balance approach ensures that (under the harmonic response assumption) the time average of the power dissipated over a cycle of the excitation is preserved. 




An analytical expression for can be obtained in some cases by substituting  into Eq. (49).  For cubic damping, for example, the following analytical expression for can be derived for white noise excitation with “power intensity” of ,

					(50)



,which can be solved using integration by parts, as shown in Appendix A, to give  .  The “total equivalent” damping consists of the linear damping, , and the “equivalent linear damping” .

				(51)



In this particular case,  can also be expressed as a function of  , as described in Appendix A, to give a closed form expression for  as,

					(52)



An iterative technique can also [25] be used to obtain the power spectrum of the response, and hence . For the first iteration , it is assumed that , and the auto power spectrum is obtained from,

 				              (53)

where, in general, . The variance of the velocity can then be obtained from,

 					              (54)

The next iteration of the equivalent linear damping  for the nonlinear function can then be calculated from,

			              (55)


,where it is assumed that  is Gaussian at every iteration. This value is then used to obtain the next power spectrum and the variance of the velocity. This iteration continues until the convergence is achieved.
  

4.3 	Numerical Simulation of a single degree of freedom system










[bookmark: OLE_LINK1]As an example of the iterative technique, consider a system with cubic damping having the parameters,,, , , and the intensity of input . The values of and have been calculated at each iteration, as described above, and the results used to calculate the equivalent damping and the variance of the velocity, as shown in Fig. 13. The final value for the total damping and the variance are found to be  and  , which are in close agreement with the theoretical values obtained from equations (52) and (55), described in [28]. 
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[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Figure 13. Equivalent damping and variance of the velocity, together with the cross and auto correlations, for various steps in the iterative method.


The predicted power spectrum of the response is plotted, in red, in Fig. 14(a) using the equivalent damping .  The results are compared with the power spectrum, in dashed blue, calculated from the time domain simulation using Matlab ode45.  The power spectra are in good agreement. The probability density function (PDF) of the velocity is also plotted in Fig. 14(b), calculated both numerically and analytically, and a good agreement is achieved, since in this case the PDF of the output is close to being Gaussian.
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Figure 14.  Comparison between the analytical approach using iterative linearization and the numerical approach using time domain simulation for cubic damping , red solid line (analytical) and blue dashed line (numerical)  (a) the auto-spectrum of the velocity, (b) the probability density function of the velocity. 

The iterative method converges to the closed-form solution in this particular case of cubic damping, but if the power of damping is high, then the analytical solution is difficult to obtain although iterative method can still be used.  
It should be noted that in the case of random excitation, the equivalent linear damping is a single number, rather than a function of excitation frequency as in section 3, although in both cases the equivalent linear damping will vary with excitation level.


4.4 	Generalisation to multi degrees of freedom


For a multi-dof system, the method of stochastic linearization is used to obtain the response of the system to random excitation with power spectra of . 

 					(56)
The equivalent linear system equation can be written as,


					(57)

The elements of the matrix  can be obtained from,

							(58)
The matrix spectral input-output relationship is,

        					(59)

where, denotes the Hermitian, complex conjugate transpose and,

				(60)
The cross-variance of the response can be calculated from,

					(61)



Consider the previous two dof system shown in Fig. 9. For simplicity, we have considered a special case of nonlinear diagonal damping, in which the -th term of the nonlinear damping is a function of the -th velocity, although the method can also be applied to systems with nondiagonal damping.  The force, which acts on the mass  is now considered to be random white noise. A cubic nonlinear damping is considered between the two masses. Therefore,  

.  						
The equivalent damping matrix can be obtained using Eq. (57). 

				               (62)

The total equivalent damping matrix  becomes,

		      		 (63)	


where, To obtain the equivalent damping, we need to calculate .  By definition, 

, 			               (64)		




where  is the spectral density of  and,  is the first row and column term of the in Eq. (60).  Similarly,

, 				(65)			




where,  is the second row and  first column of the . Substituting of  and  into the variance, yields,

				(66)










where, and are the numerator and denominator polynomials of  . An analytical closed-form solution for the variance  and   is provided in Appendix B.  Since, the two variances are dependent on the equivalent damping , an iterative approach is used to solve the equations. For the first iteration, the initial value of is considered and initial estimates of  and   are obtained. Then these values are used to update the equivalent damping . The iteration continues until convergence is achieved. For numerical simulation, the following system parameters are used:






, , , , ,  




The equivalent damping  and the two variances  and   are plotted at each iteration in Fig. 15. The results converge after about six iterations. The first iteration shows the values for the linear system, when cubic damping . 
[image: ]
Figure 15. Equivalent damping using iterative statistical linearization



The analytical auto-spectrum  and the cross-spectrum of velocities are plotted in Fig. 16 with red solid line, and the results are compared with time domain simulations of this system using Matlab ode45, denoted with blue dashed line.  The analytical and numerical results are in good agreement.
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Figure 16. Power spectrum of the velocity response (a) auto-spectrum ,  (b) cross-spectrum red solid line (analytical) and blue dashed line (numerical)


5.  Practical applications of  nonlinear damping
5.1 Microspeakers

The small loudspeakers that are required to reproduce speech and, increasingly, music in mobile phones are called microspeakers, and their construction is shown in Fig. 17(a). In general, the nonlinearity of most loudspeakers is due to an number of mechanisms, particularly the nonlinear stiffness of the diaphragm surround and the nonlinear coupling between the coil and the magnet [35]. In microspeakers, however, these sources of nonlinearity are not so important and the dominant nonlinearity is due to the nonlinear damping, as shown by the measurements of Klippel, reproduced in Fig. 17(b) [35].  This nonlinearity in the damping will reduce the response of the microspeaker at higher drive levels and so limit its throw and hence its distortion. Microspeakers are generally manufactured with small holes in the construction, as indicated by the airflow through the leak in Fig. 17(a), and the mechanism of nonlinear damping is probably due to the nonlinear flow through these holes, as discussed in Section 2.3.

In a number of applications the practical effect of nonlinear damping can be understood by considering the relationship between the level of the output, in dB, as a function of the level of the input, in dB. This "level curve" for the microspeaker is shown by the solid line in Fig. 17(a), where the dashed line is the 1dB/dB response of an entirely linear system. If the microspeaker is driven at resonance and it is assumed to have both linear and cubic damping, the output level is less than that of the linear system above some limiting value of the driving signal beyond which the response level only rises by  for every dB increase in the drive level assuming that the nonlinear damping is cubic and so will be significantly restricted if the microspeaker is driven hard.
	


	


	(a)
	(b)


Figure 17. (a) Sectional view of a microspeaker and (b) Nonlinear mechanical resistance versus coil velocity of a microspeaker measured in air (solid curve and in vacuum (dashed curve), after Klippel, 2013 [35]


5.2 	Vibration isolation

The transmission of vibration from a source structure to a receiving structure is often controlled with vibration isolators. In its simplest form such an isolator consists of a spring and damper in parallel. If the damper is linear, there is a well-known trade-off between choosing a high damping coefficient, to control the response at resonance, and choosing a low damping coefficient, to reduce the vibration transmission well above resonance.  A number of methods of overcoming this problem have been suggested, including the use of cubic nonlinear dampers [36]. When driven one frequency at a time, cubic damping will produce a high equivalent linear damping value at resonance, when the response level is high, but a low equivalent linear damping value at excitation frequencies is well above resonance, where the response level is low, as required. Less advantage is gained for broadband excitation, however, since, as seen in section 4, the equivalent linear damper will then have a single value governed by the resonant response, resulting in only poor high frequency isolation. Experimental demonstrations of such system have been developed using an electromagnetic actuator and nonlinear velocity feedback [37].
The level curve for such a device, when driven by a single frequency at resonance, will look similar to that in Fig. 18(a), if the damper has both linear and cubic components, so that the transmitted vibration is significantly reduced for high-level excitation.

5.3 	Energy harvesting

Electrical energy may be harvested from ambient motion using an inertial system, in which the damping is provided by an electromechanical transducer attached to an electrical load. The scale of such systems can vary from miniaturised devices for low-power wireless sensors [38], to devices designed to harvest power from human motion [39], to large-scale devices powered by ocean waves [40, 41]. If driven at resonance, the harvested power is maximised if the electromechanical damping is very small, so that the motion of the inertial mass is very high [42], but the maximum extent of this motion, the maximum throw, is limited by practical construction constraints. Sufficient damping then needs to be introduced so that at the highest level of excitation, the response is within the maximum throw of the device.
In many applications, however, the excitation of such an energy harvester is not stationary, and the maximum throw is only experienced at higher levels of excitation than are experienced for the majority of the time. Under these conditions the use of a nonlinear electromechanical damper can increase the response of the harvester, and hence its power output, when it is driven at excitation levels less than those which would give the maximum throw [21]. Figure 18(b), for example, shows the level of power that can be harvested from such a device, solid curve, compared with that harvested using a linear damper (dashed line), where both devices are designed to have the same maximum throw, at the maximum excitation level. At this level of excitation the linear and nonlinear devices produce almost the same power output, since the power dissipated in the nonlinear device is the same as that in the equivalent linear damper. For levels of excitation below this maximum, the nonlinear harvester, which is assumed to have cubic electromechanical damping, can produce more output power than the linear device.
At very low levels of excitation the dynamics of such a harvester is, in practice, dominated by parasitic mechanical sources of damping. If this parasitic damping is linear, the slope of the level curve returns to 1dB/dB once the excitation level falls below a certain limit, as illustrated in Figure 18. If, however, if there are elements with coulomb friction in the parasitic damping, the motion of the harvester and hence the power output drops to zero at very low levels of excitation [43]. Despite these limitations, it is clear that the use of nonlinear electromechanical damping has the potential to increase the harvested power over a range of excitation levels.

5.4 	The mechanical response of the cochlear 

The cochlea is a coiled structure in the inner ear that converts sound into neural signals. It has remarkable sensitivity and selectivity and also has a huge dynamic range, of about 120 dB, compared with the operating dynamic range of the 3,000 or so inner hair cells that convert the internal motion of the cochlea into neural signals, which is only about 30dB. There are several mechanisms that provide the required compression in the dynamic range of hearing, the most important of which is probably the nonlinearity in the cochlear amplifier [44-46]. As noted above, the cochlear amplifier is driven by the 12,000 or so outer hair cells acting as local positive feedback loops.
Figure 18(c) shows an idealised level curve in this case, between the input sound pressure level and the resulting level of vibration at a point inside the cochlea. Similar level curves have been observed experimentally, using laser measurements of cochlear motion [47]. At low sound pressure levels the cochlear amplifier can provide about 40dB of enhancement to the vibration in the cochlea, as the positive feedback loop operates with a high gain over an almost linear part of the operating curve of the hair cell, which is shown in Fig. 5.
When the sound pressure level reaches about 30 dB, however, the nonlinearity on the operating curve starts to have an effect and the gain of the positive feedback loop is reduced, causing the enhancements in the response to be less than 40dB. For sound pressure levels above about 90dB, the motion inside the cochlea is much larger than the range of the operating curve shown in Fig. 5, and the cochlear amplifier is then completely saturated and can provide no enhancements to the motion. For sound pressure levels above 90dB the response is thus almost linear, as indicated by the dashed, 1dB/dB, line in Fig. 18(c). For sound pressure levels between about 30dB and 90dB, the slope of the level curve is about 1/3dB/dB.  A 60dB dynamic range of sound pressure level is thus converted to a 20dB dynamic range of cochlear motion, which can be faithfully converted into neural signals by the inner hair cells.
It is the outer hair cells which are mainly damaged by loud sounds or the ageing process, and this damage is one of the main causes of deafness. In the absence of these outer hair cells, the cochlear amplifier no longer functions and the level curve in Fig. 18(c) will revert to the dashed, linear, line. Not only will the low level amplification then be lost, which could be compensated for with a high-gain hearing aid, but the compression effect of the cochlear amplifier will also disappear, making a higher level sound feel uncomfortably loud if such a high-gain hearing aid is used.
Nonlinear damping thus plays an important role in the normal functioning of our sense of hearing, and has been used for some years to explain the dynamic behaviour of the cochlea [48, 49,5]. In fact the analysis of cochlear mechanics is more complicated than suggested above, since the dynaFmic response at each point along the cochlea is coupled with all the other points, due to the fluid motion in the cochlea fluid chambers. A full nonlinear analysis has to take account of this interaction, for example by iteratively taking a first approximation to the nonlinear local behaviour, linearly coupling each of these via the fluids and then obtaining a better approximation to the nonlinear local responses at each individual position along the cochlea. This iterative quasi-linear approach was originally developed for tonal excitation and for combinations of tones [50-51], but also has been used for broadband random excitation [52,53] using cross correlation methods with a theory that is similar to those discussed in section 5 above, which in this field is called the equivalent nonlinear or EQ-NL theorem [54]. Similar iterative methods have been used for other distributed nonlinear systems, such as the response of underwater structures and cables that are damped to different extents along their lengths due to the local flow velocity, which itself depends on the motion [55].
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Figure 18. Output level curves as a function of the input excitation: linear (solid line) and nonlinear (dashed line) for (a) microspeaker or vibration isolators (b) energy harvesters (c) cochlea
6. Conclusions

Nonlinear damping arises due to a variety of mechanisms in engineering and biological systems and commonly acts to limit the resonant response at higher excitation amplitudes. It thus compresses the dynamic range of the response compared with the excitation. Although the focus of this paper is on systems with positive values of both linear and nonlinear damping, which are thus stable, it is noted that the amplitude response of an unstable systems, with negative linear damping, can be limited by nonlinear damping, as described by Rayleigh [1]. In fact, amplitude stabilisation of such instabilities occurs in the human cochlea, where the resulting limit cycle oscillations are known as spontaneous otoacoustic emissions [15]. Even though the stiffness of some physical systems, as well as the damping, can change with amplitude, it is interesting to consider the effect of nonlinear damping alone, since this can provide some clear physical insights and is useful in a number of practical applications. It is shown that if the nonlinearity of a system is confined to its damping, the backbone curves of such a system are vertical straight lines and so will not exhibit any jump or bifurcation phenomena. This significantly simplifies the analysis of such systems. The analysis of systems in which nonlinear damping is proportional to the nth power of velocity is considered, initially for sinusoidal and then for random excitation. In both cases the system is analysed in terms of an equivalent linear damper, whose value changes with excitation level.

For sinusoidal excitation, it is seen that such an equivalent linear damper can be obtained by retaining the fundamental term in a harmonic balance analysis, which is equivalent to the describing function approach used in control engineering. Closed form solutions for the equivalent linear damper can be obtained, in terms of the driving level, for a single degree of freedom system will low-order nonlinear damping, but iterative methods need to be used for higher order nonlinearities or in multi degree of freedom systems. For random excitation, it is shown that an error minimisation technique, a series truncation approach and an equivalent power method all give the same expression for the equivalent linear damper, which is equal to the cross-correlation between the damping force and the velocity, divided by the auto-correlation of the velocity, both at zero lag. Closed form solutions for the equivalent linear damper can again be obtained for single degree of freedom systems with low order nonlinear dampers, but iterative methods must be used in more complicated cases, in which case the assumption of a Gaussian response appears to be a reasonable one.

Applications of nonlinear damping in microspeakers, vibration isolation systems and vibration energy harvesters, illustrate the practical use of extending the dynamic range of these devices using this mechanism. The nonlinear damping in the mammalian cochlea has a rather different origin, since it is due to the saturation in the positive feedback provided by the outer hair cells that amplifier the mechanical motion, but once again this acts to limit the dynamic range of the response and provides a crucial aspect of our hearing.




The equivalent linear damper provides a very convenient quasi-linear model of systems with nonlinear damping. The idea also has strong theoretical support if the equivalent linear damper is arranged to dissipate the same power as the nonlinear damper, at the specified excitation level. Although similar linearisation techniques can be used for systems with nonlinear stiffness, the conserved quantity, which can be written as  in this case, where  is the nonlinear stiffness, does not have such a clear physical significance as the power, , which is the conserved quantity for systems with nonlinear dampers. The equivalent linearisation method is thus particularly well-suited to the analysis of nonlinear damping [25, 34].

Although the full behaviour of a system with nonlinear damping, such as the generation of harmonics or the non-Gaussianity of the random response, will not be completely captured by such an approach, it provides a very useful engineering tool for their first order analysis, since it reproduces the power dissipated at different points in the system. Clear physical insights can thus be brought to systems with nonlinear damping: as quasi-linear systems with equivalent linear dampers whose value depends on the local response.
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Appendix A. Equivalent Damping 



For cubic damping, the cross-correlation between the force and velocity at  is,

 										(A1)






Using integrating by parts, ,   ,  and   , and recalling  and ,  the cross-correlation between the force and velocity is:

					(A2)




A second integration by parts, ,   ,  and , yields,

				(A3)
Using invariance property, the equivalent damping is found to be,

						(A4)
Using the Fokker-Planck equation for the linear system, the velocity variance is,

							(A5)
Substituting Eq. (A5) into Eq. (A4), yields, 

					(A6)
which is the level dependent gain for the nonlinear damping. The equivalent damping can be obtained from solving, 

						(A7)
The equivalent damping is therefore,

											(A8)
Appendix B.  Closed-Form Solution for the Variance 

To calculate , where 

,									       (B1, B2)

,



and the parameters of the polynomials  and , are given by the equations,




,, , ,


, ,



,,   

						(B3)





To calculate , we again use Eq. (B3) , with the same denominator, but with a different numerator polynomial. The parameters for the numerator polynomial are  , , , . 
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