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The mechanism of energy dissipation in mechanical
systems is often nonlinear. Even though there may be
other forms of nonlinearity in the dynamics, nonlinear
damping is the dominant source of nonlinearity in
a number of practical systems. The analysis of such
systems is simplified by the fact that they show no
jump or bifurcation behaviour, and indeed can often
be well represented by an equivalent linear system,
whose damping parameters depend on the form and
amplitude of the excitation, in a ‘quasi-linear’ model.
The diverse sources of nonlinear damping are first
reviewed in this paper, before some example systems
are analysed, initially for sinusoidal and then for
random excitation. For simplicity, it is assumed that
the system is stable and that the nonlinear damping
force depends on the nth power of the velocity. For
sinusoidal excitation, it is shown that the response
is often also almost sinusoidal, and methods for
calculating the amplitude are described based on the
harmonic balance method, which is closely related
to the describing function method used in control
engineering. For random excitation, several methods
of analysis are shown to be equivalent. In general,
iterative methods need to be used to calculate the
equivalent linear damper, since its value depends
on the system’s response, which itself depends on
the value of the equivalent linear damper. The
power dissipation of the equivalent linear damper,
for both sinusoidal and random cases, matches
that dissipated by the nonlinear damper, providing
both a firm theoretical basis for this modelling
approach and clear physical insight. Finally, practical
examples of nonlinear damping are discussed: in
microspeakers, vibration isolation, energy harvesting
and the mechanical response of the cochlea.
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1. Introduction
In a mechanical system, the damping force is a function of the system’s velocity. This function is
nonlinear in a number of mechanical systems and similar nonlinear damping behaviour is also
seen in many electrical, biological and other dynamic systems. Examples that will be discussed in
more detail below include the damping in aircraft structures, flow through orifices, damping in
nanoelectromechanical (NEM) systems and the vibration inside the cochlea.

In some applications, the stiffness of the system also changes to some extent with excitation
amplitude, as well as the damping. This nonlinear stiffness can complicate the dynamic response,
particularly if the nonlinearity in the stiffness is severe, and can give rise to jump and bifurcation
phenomena. In many cases, however, it is the damping that is the dominant source of nonlinearity,
and it is interesting and worthwhile to consider the behaviour of systems in which only the
damping is nonlinear. We will see that such systems do not exhibit the kinds of jump phenomena
seen in systems with nonlinear stiffness. In addition, their response for a given excitation can
often be approximated by that of an equivalent linear system, whose parameters depend on
the level of excitation. Such ‘quasi-linear’ models of a nonlinear system, which are implicit in
many methods of analysis, including equivalent linearization and the describing function, have
surprising generality and have been developed in several different fields. These quasi-linear
models are very useful in understanding the dynamic response of a number of engineering and
biological systems, despite their apparent simplicity.

The nonlinear damping force often increases with excitation level, so that the relative response
of the system, compared with the excitation level, is reduced. This is a mechanism for reducing
the range of the system’s response, compared with the range of the input, i.e. compressing its
dynamic response, which we will see is particularly important in the dynamics of the cochlea.

If there is some reason for the linear damping of a system to become negative, so that the
envelope of its linear response would otherwise increase exponentially, nonlinear damping can
provide a mechanism by which the output level is stabilized to a fixed level. Rayleigh [1], for
example, considers systems in which ‘vibration is maintained by wind (organ pipes, harmonium
reeds, Aeolian harps, etc.), by heat (singing flames, Rijke’s tube, etc.), by friction (violin strings,
finger glasses) and the slower vibration of clock pendulums and watch balance wheels’. He
goes on to say that ‘we may form an idea of the state of things’ by including a damping term
proportional to a higher power of velocity in the dynamic equation for a single-degree-of-freedom
system. He then considers the specific case of cubic damping, so that in the notation to be
used here

mẍ(t) + c1ẋ(t) + c3ẋ3(t) + kx(t) = 0, (1.1)

where x(t) is the displacement of the system, c1 and c3 are linear and cubic damping coefficients,
respectively, and m and k are the system’s mass and stiffness, respectively. If c1 is negative but
c3 is positive, then the system evolves into a steady oscillation, which we would now call a limit
cycle oscillation, that Rayleigh showed would have a small third harmonic component, but would
otherwise be approximately sinusoidal, at the system’s natural frequency, ω0, equal to

√
k/m. The

fundamental amplitude of the response, x(t), X, was also shown [1] to be given by the solution to
the equation

c1 + 3
4 c3ω

2
0X2 = 0, (1.2)

a result we will come back to later. More recently, the dynamics of such a ‘relaxation oscillator’
have often been described using the Van der Pol equation [2], whose interesting history is
discussed by Ginoux & Letellier [3]:

ÿ(t) − μ(1 − y2(t))ẏ(t) + y(t) = 0, (1.3)

in which the natural frequency is assumed to be unity and the linear damping coefficient is
assumed to be equal to −μ, where μ is a positive number. If, following [4,5], equation (1.1) is
differentiated with respect to time, and it is assumed that ẋ(t) is equal to y(t), then Van der Pol’s
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Figure 1. Variation of damping factor with amplitude of vibration for an aircraft wing section. (Replotted from the data in fig. 4
of Fearnow [7].)

equation, (1.3), can be obtained as a special case of the cubic damping equation, (1.1), under the
conditions that √

k
m

= 1, μ = − c1

m
and

3c3

c1
= 1.

Although we will mostly focus on stable systems in this paper, with positive values of both linear
and nonlinear damping, this connection with Van der Pol’s equations shows that even simple
models of systems with nonlinear damping can give rise to a rich variety of behaviour. We will
also focus on nonlinear dampers in which the force is a smooth function of velocity, as in equation
(1.1), rather than discontinuous forms of nonlinear damping, such as Coulomb friction, although
similar methods to those described below can still be used to analyse such nonlinearities.

The aim of this paper is first to review both the variety of mechanisms that give rise to
nonlinear damping and their effects. Second, the analysis of systems with nonlinear damping is
discussed, emphasizing the calculation of the dissipated power. This leads to a quasi-linear model,
for both tonal and random excitations, in which the power dissipation in the nonlinear damper
is matched by an equivalent linear damper. Finally, some practical applications are reviewed in
which nonlinear damping plays an important role in determining their performance.

2. Examples of nonlinear damping

(a) Aerospace structures
The dynamic response of aerospace structures, such as wings, is important in determining the
vibration levels in flight, and in the prediction of flutter [6]. Ground vibration testing is a common
way of measuring the dynamic response of such structures and, although many of the results are
commercially confidential, there are a number of studies that specifically address the changing
damping with excitation level. Fearnow [7], for example, discussed tests on wing and fuselage
sections of a Curtiss-Wright C-46D aircraft and showed a structural damping trend that increased
nonlinearly with amplitude, as shown in figure 1 [7].

Fellowes et al. [8] discussed the results of a series of free vibration tests on an Airbus partial
wing box and showed that the structural damping was also increased at higher amplitudes.
Fellowes et al. also note that the reduced response at higher amplitudes, due to the nonlinear
damping, can have significant benefits in reducing aircraft flight loads. Traditionally, the damping
used in flight load calculations has been based on ground vibration tests, conducted at relatively
low excitation amplitudes, and this damping will then be less than that experienced at the higher
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Figure 2. Nonlinear damping in nanotube resonators: resonance width as a function of gate voltage. (After Eichler et al. [9].)
(Online version in colour.)

levels of excitation in flight. A calculation of the flight loads using these lower values of damping
will then significantly over-predict the response in flight, which may be seen as providing a level
of robustness in the predictions.

(b) Damping in a nanoelectromechanical system
Eichler et al. [9] measured the mechanical response of nanotubes and graphene sheets intended
as components of NEM systems, such as atomic force microscopes. Eichler et al. showed that, for
components built of both materials, the width of the resonance curves (Res. width), whose natural
frequency was in the MHz region, increased with excitation amplitude (as indicated by the AC
drive voltage VAC), as shown in figure 2, for example. Nonlinear damping in these systems then
makes it possible to tune the quality factor Q of these resonators.

(c) Acoustic nonlinearity of an orifice
The acoustic flow through a number of different orifices, when excited by sound at different
amplitudes, was measured by Ingard & Ising [10]. The flow showed a complicated pattern at
very high amplitudes, when the flow becomes supersonic. At very low excitation amplitudes, the
acoustic resistance of such an orifice was found to be constant, since the flow was dominated by
the viscous loss in the fluid, but then begins to rise in proportion to the acoustic particle velocity
at higher amplitudes, owing to the generation of turbulence, as shown in figure 3. The pressure
across the orifice is then proportional to the square of the velocity, which is an example of the
quadratic dependence of drag force on velocity [11].

(d) Nonlinear suspension and isolation systems
The characteristics of the suspension system are important in determining the ride and handling
qualities of vehicles [12]. Part of the suspension system is the shock absorber, which provides both
stiffness and damping characteristics. The properties of the shock absorber are often described by
a ‘characteristic plot’, of force against velocity. An example of such a plot is shown in figure 4,
which shows an almost bilinear damping response, with a ‘rebound’ damping that is significantly
greater than the ‘compression’ damping [13]. Surace et al. [13] emphasize that the hysteretic
loops in this characteristic plot depend on the frequency of excitation and that a more complete
representation would plot the force against damper displacement as well as velocity. In this
application, equivalent linearization has been found not to provide an adequate model to predict
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Figure 3. Orifice resistance measurements as a function of velocity. (After Ingard & Ising [10].)
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Figure 4. Characteristic plot of force against velocity for a shock absorber. (After Surace et al. [13].) (Online version in colour.)

the vehicle dynamics, however, since it is the details of the waveform which are important, in
determining the contact force, for example.

Nonlinear damping has also been incorporated into vibration isolation systems to improve the
trade-off between the high-frequency isolation performance and that at resonance, as described
in more detail below.

(e) The cochlear amplifier
The mechanical damping in the examples considered above is entirely passive, so that the
nonlinear damping force opposes motion and can be considered as a form of negative feedback.
Increased damping with level thus requires an expanding nonlinear function, so that the damping
force is proportional to the cube of the velocity, for example.

In the cochlea, the mechanical response is amplified by a number of local positive feedback
loops (e.g. [14,15]). These loops are formed by the 12 000 or so outer hair cells, whose force
response is proportional to the velocity in the system, with a phase inversion, so that they
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Figure 5. The input–output relationship for the hair cells in the inner ear. (After Hudspeth & Corey [16].)

provide negative damping. These cells also include a saturating nonlinearity, owing to their
mechanoelectrical conduction channels, as shown in figure 5 [16]. At low excitation levels, the
response of this function is almost linear and the negative damping provided by the outer hair
cells enhances its response by about 40 dB. As the sound pressure, and thus the excitation of the
hair cells, increases, the nonlinearity begins to saturate, lowering the loop gain of the positive
feedback loop, reducing the active enhancement of the mechanical response and thus increasing
the effective damping. This provides a form of automatic gain control within the cochlea, as
discussed in more detail in §5d.

3. Response at single frequencies

(a) Theoretical approaches
The response of a nonlinear system to single-frequency excitation can, in general, be complicated
and involve harmonic and sub-harmonic generation and even chaos [17,18]. If the nonlinearity is
only in the system’s damping, however, the response is guaranteed to be at the driving frequency
and its harmonics, as will be discussed in more detail below. The response at higher harmonics
also tends to be smaller than the response at the fundamental driving frequency, and so, for many
purposes, only this fundamental response needs to be calculated. It is also important to note that
if a system is forced sinusoidally, but the velocity response contains a number of harmonics, the
power dissipated in the nonlinear damper, which is equal to the time average product of the force
multiplied by the velocity, depends only on the fundamental component of the velocity response,
because of the orthogonality of the Fourier series.

Several methods have been developed for calculating the response at the fundamental
frequency for such systems, including equivalent linearization, the describing function method
and harmonic balance. Although if only the fundamental component is retained in the harmonic
balance method, these solutions are equivalent [19,20].

In the following sections, the harmonic balance method will be used to derive the response at
the fundamental frequency, initially for a single-degree-of-freedom system having a nonlinear
damping described by a power law, and then for an example of a multi-degree-of-freedom
(MDOF) system.
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(b) Analysis of a single-degree-of-freedom system
The dynamic equation for a single-degree-of-freedom system with a general nonlinear damping
h(ẋ) can be written as

mẍ(t) + c1ẋ(t) + h(ẋ) + kx(t) = f (t), (3.1)

where m, c1 and k are the mass, linear damping and stiffness, respectively; x(t) is the response of
the system and f (t) is the input force excitation. If the nonlinear damping force is assumed to be
proportional to the nth power of the velocity, where n is assumed to be an integer here, we have

h(ẋ) = cn

∣∣∣ẋn−1(t)
∣∣∣ ẋ(t). (3.2)

For odd powers of n, the nonlinear damping in equation (3.2) can be replaced by

h(ẋ) = cnẋn(t) if n is odd, (3.3a)

and for even powers of n, equation (3.2) becomes

h(ẋ) = cnẋn(t)sign(ẋ(t)) if n is even, (3.3b)

where the sign function is equal to 1 when the velocity ẋ(t) is greater than zero and is equal to
−1 if ẋ(t) is less than zero. We will investigate the response of the system subject to harmonic
(single-frequency) excitation for odd and even power of nonlinear damping. The force excitation
is assumed to be sinusoidal and of the form

f (t) = F sin(ωt − θ ), (3.4)

where F is the amplitude of the sinusoidal excitation and θ is the phase shift necessary to ensure
that the fundamental component of the response, x(t), has no phase shift.

In the harmonic balance method, the response of a nonlinear system to a sinusoidal input is
analysed in terms of its Fourier series, but only a certain number of the output harmonics are
retained. Approximating the response at the fundamental frequency, ω, as

x(t) = X sin(ωt), (3.5)

and substituting equations (3.3a,b)–(3.5) into equation (3.1), yields

− mω2X sin(ωt) + c1ωX cos(ωt) + cnωnXn cosn(ωt) + kX sin(ωt)

= F sin(ωt − θ ) if n is odd (3.6a)

and

− mω2X sin(ωt) + c1ωX cos(ωt) + cnωnXn cosn(ωt)sign(Xω cos(ωt)) + kX sin(ωt)

= F sin(ωt − θ ) if n is even. (3.6b)

Trigonometric formulae can then be used in equation (3.6a),

cosn(ωt) = 2
2n

(n−1)/2∑
k=0

(
n
k

)
cos((n − 2k)ωt) if n is odd, (3.7)

where

(
n
k

)
= n!/(n − k)!k!. The Fourier series for sign(Xω cos(ωt)) in equation (3.6b) is the same as

that for a square wave, having the fundamental component of 4/π cos (ωt). Substituting this into
equation (3.6b) leads to an odd power of cos(ωt), so we can again use equation (3.7) to calculate
the fundamental component with (n − 1) now replacing n.
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Ignoring the higher order harmonics, the response at the fundamental frequency can be
obtained from

− mω2X sin(ωt) + c1ωX cos(ωt) + AncnωnXn cos(ωt) + kX sin(ωt)

= F(sin(ωt) cos θ − cos(ωt) sin θ ), (3.8)

where An is a constant coefficient, equal to

An =
(

2
2n

)
n!

((n − 1)/2)!((n + 1)/2)!
if n is odd (3.9a)

and

An =
(

4
π

)(
2

2n+1

)
(n + 1)!

(n/2 + 1)!(n/2)!
if n is even. (3.9b)

Partitioning the sine and cosine terms in equation (3.8), and adding the squares of these two
terms, yields

A2
nc2

nω2nX2n + 2Anc1cnωn+1Xn+1 + ((k − mω2)2 + (c1ω)2)X2 = F2. (3.10)

For a given power of nonlinear damping, the response of the nonlinear system, X, is given by
the solution to equation (3.10). Comparing equation (3.10) with the modulus squared response of
a linear system with total damping (c1 + ceqe), where ceqe is an equivalent linear damper for the
nonlinearity, shows that ceqe can be written as

ceqe = Ancnωn−1Xn−1. (3.11)

Defining Ẋ as the amplitude of the velocity, which is equal to ωX, where

Ẋ = F√
(k/ω − mω)2 + (c1 + ceqe)2

, (3.12)

leads to the following expression for the equivalent damping in terms of the velocity amplitude:

ceqe = AncnẊn−1. (3.13)

For n = 2, for example, the constant coefficient is A2 = 3/π , and the equivalent damping becomes

ceqe|n=2 = 3
π

c2Ẋ, (3.14)

where Ẋ is always positive, and for n = 3, the constant coefficient is A3 = 3/4, and the equivalent
damping becomes

ceqe|n=3 = 3
4 c3Ẋ2, (3.15)

which is the same expression derived in [21] and is equal to (3/4)c3ω
2X2.

If c1 were negative, the system would begin to go unstable at the natural frequency, ω0,
but would be stabilized when the power dissipated in the equivalent damper was equal to the
power generated by the negative linear damper. The system would thus settle into a limit cycle
oscillation with an amplitude X such that (3/4)c3ω

2X2 was equal to −c1, as in equation (1.2) in the
Introduction.

In the case of the forced response of a system, the equivalent linear damper is dependent on
the velocity response of the system, which is itself dependent on the equivalent linear damper.
Figure 6, for example, shows the dependence of the equivalent linear damper, ceqe, on the velocity
response, Ẋ, in the case of cubic damping (equation (3.15)), with the numerical values given by
the specific case considered in the next section. Also shown in this figure is the inverse of the
dependence of the response on the equivalent linear damper, when driven at resonance, as in
equation (3.16). The two equations are, clearly, both satisfied when the two curves cross. In the
case of cubic damping, the crossing point can be calculated analytically, as below, but for higher
orders of nonlinear damping, numerical methods need to be used to calculate the solution.
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Since the response of the system at the fundamental frequency, Ẋ, is given by the solution to the
polynomial equation (3.10), where only one of the possible solutions is real and thus physically
realistic, the equivalent damping can, in principle, be calculated directly from this equation. For
low powers of nonlinear damping, for example for (n = 3), a closed-form analytical solution for
the response at resonance can be obtained. The damping force at resonance can be written as

(c1 + ceqe)Ẋ = F. (3.16)

Substituting equation (3.15) into equation (3.16), yields a cubic polynomial in Ẋ,

Ẋ3 + 4c1

3c3
Ẋ − 4

3c3
F = 0. (3.17)

If 4c1Ẋ/3c3 � Ẋ3, then the amplitude of the velocity response is given by F/c1 and changes linearly
with the input amplitude. If, however, Ẋ3 � 4c1Ẋ/3c3, the amplitude of the velocity response is
given by

Ẋ =
(

4F
3c3

)1/3
, (3.18)

so that the level curve, of 20 log10 Ẋ against 20 log10 F, has the slope of 1/3 dB/dB, meaning that
the velocity response increases by 1/3 dB for every dB increase in the amplitude of the excitation.
The transition in the slope of the level curve, from 1 dB/dB at low levels to 1/3 dB/dB at higher
levels, occurs when Ẋ is equal to (4c1/3c3)1/2.

Since the discriminant of equation (3.17) is negative, this equation has only one real root and
the other solutions are complex conjugate roots (http://en.wikipedia.org/wiki/Cubic_function).
The analytical solution for Ẋ can then be obtained, in a more general form, from

Ẋ = u − 4c1

9c3u
, (3.19)

where

u = 3

√√√√ (4/3c3)F
2

−
√

((4/3c3)F)2

4
+ (4c1/3c3)3

27
, (3.20)

and hence ceqe can be calculated by substituting the value of Ẋ into equation (3.15).

http://en.wikipedia.org/wiki/Cubic_function
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of excitation frequency,ω, at different excitation levels marked with blue dashed line (F = 0.1 N), red solid line (F = 1 N) and
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(c) Numerical simulation for a single-degree-of-freedom system
In practice, for higher order forms of nonlinear damping, deriving an analytical expression for the
response becomes more difficult, but direct time domain simulations can still be used to calculate
the result. The analytic result for the fundamental component of the response of the system with
a cubic damper, derived above, is compared here with the results of a numerical simulation for
a particular case. We consider a system with parameters, m = 1 kg, c1 = 0.1 Ns m−1, k = 1 N m−1

and c3 = 0.1 Ns3 m−3. Figure 7a,b shows the normalized amplitude Ẋmω0/F and the phase of
the fundamental component of the velocity, plotted as a function of the excitation frequency,
ω, calculated when the input amplitude is F = 0.1, 1 and 5 N, using both the harmonic balance
method described in §3 and time domain simulation using Matlab ode45. Figure 7c shows the
variation of the equivalent linear damping ratio, ζeqe = c0/(2mω0), as a function of the excitation
frequency, ω, for this example at different excitation levels. Since the velocity response is small
for excitation frequencies well below or well above the resonance frequency, the equivalent
linear damping is, according to equation (3.15), also small at these frequencies, only rising as the
excitation frequency approaches resonance and the velocity response becomes more significant.
This is because, when the system is driven off resonance, the response is mainly controlled by
either the linear stiffness, at low frequencies, or the linear mass, at high frequencies, and the
damping plays little part in determining the response. Near the resonance, the analytic and
numerical results are very similar, although the response is controlled by the nonlinear damper.
The response at the resonance frequency is much greater than at three times the resonance
frequency, so that the harmonics at this frequency and the higher harmonics are filtered out by the
dynamics of the system to leave a largely sinusoidal response. Figure 7d shows the normalized
mean square harmonic distortion (MSD) obtained by analysing the time domain simulations,
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which is defined as

MSD =
∑∞

n=2 Ẋ2
n

Ẋ2
1

× 100%, (3.21)

where Ẋn is the amplitude of the nth harmonic of the velocity response. This is equal to the square
of the ‘total harmonic distortion’, which is normally defined as the ratio of the RMS quantities.
The MSD is chosen here for comparison with the ratio of the non-coherent to coherent power,
calculated for the case of random excitation in §4c. The MSD is only about 2% for the largest
excitation force in these simulations at resonance, so that all the waveforms obtained from these
time domain simulations are close to being sinusoidal.

Figure 8a shows the relationship between the level of the velocity response and the level of
the input force at resonance, ω = 1 rad s−1, for a linear system, with c3 = 0, and for the nonlinear
system defined above. Nonlinear damping has the effect of limiting the displacement response
at high excitation amplitudes, giving rise to the change of slope, from 1 dB/dB at low levels to
1/3 dB/dB at higher levels, predicted in §3b. The equivalent linear damping ratio for the cubic
damper at resonance is also plotted in figure 8b, for different levels of input force excitation, which
increases with the input amplitude.

(d) Generalization to multi-degrees of freedom
The method of harmonic balance can be extended to the general MDOF system. The dynamic
equation, including the nonlinear damping, can be written as

Mq̈(t) + Cq̇(t) + H(q̇(t)) + Kq(t) = f(t), (3.22)

where q(t) is the displacement vector and f(t) is the forcing vector (both of size N × 1 for an
N degree-of-freedom model), M, K and C are the linear mass, stiffness and damping matrices,
respectively, and H(q̇(t)) are the nonlinear damping forces.

Backbone curves are plots of undamped natural frequency against excitation amplitude, and
their shape can indicate the presence of jump phenomena or bifurcation in the forced response
[22]. The backbone curves are derived by solving the differential equations for the undamped
forced system. The backbone curves are straight vertical lines for linear systems, but in the
presence of stiffness nonlinearities, such as hardening (or softening) nonlinearities, the backbone
curves bend to the right (or left). Assuming that all the nonlinearities are in the damping matrix,
however, so that the mass and stiffness matrices are constant with amplitude, the backbone
curves would remain as straight lines, and so the system is guaranteed to have no jump or
bifurcation behaviour. This may be a significant advantage of implementing nonlinear damping
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Figure 9. Two-degrees-of-freedom system with nonlinear damper c21(q̇2 − q̇1) + c23(q̇2 − q̇1)3.

as in some applications the jump phenomenon is undesirable, since it may be required to have a
response that is independent of the previous excitation of the system, for example. To demonstrate
the harmonic balance method for MDOF systems, we have assumed a special case where the
nonlinear damping matrix is diagonal, so that hj is a function of only q̇j. This assumption is
adopted in order to simply illustrate the method, but is not necessary, since the method can still
be applied in the more general case of non-diagonal damping. If an equivalent linear damping
matrix is now assumed to replace the nonlinear function, then the equivalent linear system is

Mq̈ + (C + Ceqe)q̇ + Kq = f(t). (3.23)

Assuming nth power law damping and that the responses are at the fundamental driving
frequency ω, the elements of the matrix Ceqe can be obtained from the harmonic balance method
as described above for each nonlinear term

ceqej
= Ancnω(n−1)q(n−1)

j , (3.24)

where An is calculated from equation (3.9) and qj is the amplitude of the displacement for the
jth degree of freedom. For harmonic excitation, the velocity vector q̇(ω) of the equivalent linear
system is given by

q̇(ω) = (iω)(−ω2M + iω(C + Ceqe) + K)−1f(ω). (3.25)

For MDOF systems, even for low powers of nonlinear damping, it is difficult to obtain a closed-
form solution for the equivalent damping, owing to the coupling between the degrees of freedom,
and hence iterative methods are required. An iterative method that can be used to obtain the
equivalent linear damping for the nonlinear damping first involves calculating the response of
the linear system, including linear damping C and considering Ceqe = 0. The velocity amplitudes
are then calculated from equation (3.25), and these amplitudes are substituted into equation (3.24)
to obtain the elements of an equivalent damping matrix Ceqe. The updated damping matrix is
then used to generate the next response amplitudes. This procedure continues until convergence
is achieved.

(e) Numerical simulation for a multi-degree-of-freedom system
Consider the two d.f. system shown in figure 9. A harmonic excitation f1(t) = F sin ωt acts on the
mass m1 with the forcing amplitude of F and excitation frequency of ω. The displacements of
the two masses are denoted by q1 and q2, respectively. A linear spring k1 and a linear damper
c11 are attached to the mass m1, whereas a linear spring k2 and a nonlinear damper connects the
two masses m1 and m2. The nonlinear damping force between the two masses is assumed to be
c21(q̇2 − q̇1) + c23(q̇2 − q̇1)3.

The dynamic equations in terms of the two coordinates q1 and q2 can be written in matrix form
as[

m1 0
0 m2

](
q̈1
q̈2

)
+
[

c11 + c21 −c21
−c21 c21

](
q̇1
q̇2

)
+
⎡
⎣−c23

(
q̇2 − q̇1

)3
c23

(
q̇2 − q̇1

)3
⎤
⎦+

[
k1 + k2 −k2

−k2 k2

](
q1
q2

)
=
(

f1(t)
0

)
.

(3.26)
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Since the nonlinear damping depends on the relative velocity between the two masses, it is
convenient to introduce the transformation

y1 = q1 and y2 = q2 − q1. (3.27)

Therefore, the dynamic equations can be rewritten as[
m1 0
m2 m2

](
ÿ1
ÿ2

)
+
[

c11 −c21
0 c21

](
ẏ1
ẏ2

)
+
[

0 −c23ẏ2
2

0 c23ẏ2
2

](
ẏ1
ẏ2

)
+
[

k1 −k2
0 k2

](
y1
y2

)
=
(

F sin(ωt)
0

)
.

(3.28)
So that

H(ẏ) =
[−c23ẏ3

2

c23ẏ3
2

]
. (3.29)

The equivalent damping matrix can be obtained using equation (3.24),

Ceqe =
[

0 − 3
4 c23Ẏ2

2

0 3
4 c23Ẏ2

2

]
. (3.30)

Therefore, the equivalent system matrix becomes[
m1 0
m2 m2

](
ÿ1
ÿ2

)
+
[

c11 −c2e

0 c2e

](
ẏ1
ẏ2

)
+
[

k1 −k2
0 k2

](
y1
y2

)
=
(

F sin ωt
0

)
, (3.31)

where c2e = c21 + (3/4)c23Ẏ2
2. The equations can be written in the normalized form, by dividing

the first equation by m1 and the second equation by m2 to give[
1 0
1 1

](
ÿ1
ÿ2

)
+
[

2ζ1ω1 −2μζ2eω2
0 2ζ2eω2

](
ẏ1
ẏ2

)
+
[
ω2

1 −μω2
2

0 ω2
2

](
y1
y2

)
=
(

F
m1

sin ωt
0

)
, (3.32)

where the parameters are

ω2
1 = k1

m1
, ω2

2 = k2

m2
, ζ1 = c1

2(k1m1)1/2 , ζ2e = c2e

2(k2m2)1/2 and μ = m2

m1
. (3.33)

To obtain the frequency response, an iterative method is used at every individual excitation
frequency. The amplitude of the velocities can be obtained from equation (3.32) at every iteration
and then be used to construct the equivalent damping matrix, which is used to recalculate
the response from equation (3.32). The iteration continues until convergence is achieved. For
numerical simulation, the following system parameters are used:

m1 = m2 = 10 kg, k1 = k2 = 10 N m−1, c11 = 1 Ns m−1,

c21 = 2 Ns m−1, c23 = 1 Ns3 m−3, F = 5N,

so that the natural frequencies of the system are 0.618 and 1.618 rad s−1. The amplitudes of the
resulting mobilities Ẏ1/F and Ẏ2/F are plotted in figure 10. A very good agreement is achieved
between the analytical approach, using the harmonic balance method (red solid line), and the
numerical approach, using time domain simulation (blue dashed line).

The equivalent damping ratio, ζ2eqe, at every iteration is plotted in figure 11a, for excitation at
the two undamped frequencies, which indicates a good convergence after about three iterations in
this case. In addition, the equivalent damping ratio c2eqe, after convergence, is plotted in figure 11b
as a function of the individual excitation frequencies ω. The equivalent damping ratio when the
system is driven at the natural frequencies is higher than at other frequencies, since the nonlinear
response is greater at resonances.

Figure 12a shows the response level curve for the first mass, in comparison with the linear
case. At high excitation amplitudes, the nonlinear response is again less than the linear response.
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The total equivalent damping is also obtained numerically at every excitation amplitude, as
shown in figure 12b, and again increases with excitation amplitude, as expected, but in a slightly
different way from that for the single-degree-of-freedom system, shown in figure 8b.

4. Response to random excitation

(a) Theoretical approaches
In this section, the response of systems with nonlinear damping subject to random excitation
will be considered. In practice, many engineering systems are subjected to loadings that are
random in nature and various methods to predict the response of nonlinear systems subject
to random excitation have been developed [23,24]. A probabilistic description of the random
process can be obtained from the statistical moments [25]. When the input is a Gaussian process
and the system is linear, it is well known that the response also has a Gaussian probability
density function (PDF). This enables closed-form solutions for the statistics of the response to be
calculated. However, in many engineering systems, owing to the nonlinear structural behaviour,
the response to a Gaussian input is non-Gaussian. For weakly nonlinear systems, however,
the response is still approximately Gaussian and the method of ‘equivalent linearization’ or
‘stochastic linearization’ can be used to approximate the response [23,24]. This method can only
predict the response moments up to second order with reasonable accuracy, however. To take
into account the non-Gaussian characteristic of the nonlinear response, the alternative method,
of equivalent nonlinearization, has been developed [25,26]. Equivalent nonlinearization is based
on replacing the nonlinear system with a simpler equivalent nonlinear model, which depends on
the energy level of the system. However, this method is restricted to single-degree-of-freedom
systems, as discussed in [24]. A different approach to random vibration problems is the use of
Fokker–Planck–Kolmogorov (FPK) theory, to obtain the state transition PDF. For white noise
excitations and for particular nonlinearities in the stiffness and damping, the method provides
a direct approach to obtain the exact response [27]. However, for general nonlinear systems,
numerical approaches are still required to solve the FPK equation [28].

Similar problems have been treated in a different way for communication systems, using the
invariance property of separable random process [29]. Nuttall [29] used the separable class of
random processes to prove their invariance under nonlinear transformations [29,30] and showed
that the cross-correlation function between the input and output of a single-valued nonlinearity
is proportional to the auto-correlation of the input. This invariance property allows the nonlinear
function to be replaced with a level-dependent linear gain. A number of different approaches to
analysing a single-degree-of-freedom system are compared in the next section and the links with
the cross-correlation approach are emphasized [31].

(b) Analysis of a single-degree-of-freedom system
The equation of motion of a single-degree-of-freedom system with nonlinear damping that
depends only on the velocity has the general form

mẍ(t) + c1ẋ(t) + h(ẋ) + kx(t) = f (t), (4.1)

where the forcing f (t) is now considered to be a stationary random process. In order to perform
a quasi-linear analysis, the nonlinear damping that appears in equation (4.1) must be replaced
with a linear damping term that is optimal in some sense. There are three possible approaches to
determining the appropriate linear damping coefficient which all lead to the same mathematical
result: (i) error minimization, (ii) series truncation, and (iii) power balance. It is useful to consider
each of these approaches in turn, since taken together they provide a physical insight into
the nature of the approximation process. With the error minimization approach, the nonlinear
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damping function h(ẋ) is approximated by a linear function ceqeẋ, and the error involved in the
approximation of the nonlinear damping force is written as

ε = h(ẋ) − ceqeẋ. (4.2)

The coefficient ceqe is now found by minimizing the mean squared error, which yields

∂

∂ceqe
E[ε2] = E

[
ε

∂ε

∂ceqe

]
= 0, (4.3)

where E[] represents the ensemble average and ε is the error. Therefore, since ∂ε/∂ceqe = −ẋ, the
equivalent linear damping can be obtained by substituting this and equation (4.2) into equation
(4.3) and solving for ceqe to give

ceqe = E[h(ẋ)ẋ]
E[ẋ2]

. (4.4)

With the series truncation approach, the nonlinear damping force is written in the form

h(ẋ) =
∞∑

n=0

anGn(ẋ), (4.5)

where the functions Gn(ẋ) are a set of orthonormal polynomials (the nth function being of order
n) with weighting function an. Thus, by definition,

∫∞

−∞
Gn(ẋ)Gmp(ẋ)dẋ = δnm (4.6)

and

an =
∫∞

−∞
h(ẋ)Gn(ẋ)p(ẋ)dẋ = E(h(ẋ)Gn(ẋ)), (4.7)

where p(ẋ) is the PDF of the response and δnm is the Kronecker delta function, which is equal to 1
when n = m, and otherwise is zero. If the random response is stationary and the velocity has zero
mean, it can readily be deduced that the first two orthonormal polynomials are

G0(ẋ) = 1 (4.8)

and

G1(ẋ) = ẋ√
E[ẋ2]

. (4.9)

With this approach, the linearization of the system is achieved by retaining only the first two
terms in equation (4.6). Assuming that h(ẋ) has zero mean, it is readily shown from equations
(4.5)–(4.8) that

h(ẋ) =
(

E
[

h(ẋ)ẋ
E[ẋ2]

])
ẋ = ceqeẋ, (4.10)

so that the orthogonal series approach agrees with the error minimization approach. This is clearly
to be expected, since from equations (4.2), (4.5) and (4.6) the mean squared error can be written in
the form

E[ε2] = a2
0 + (a1 − ceqe)2 + a2

2 + a2
3 + · · · , (4.11)

so that ceqe = a1 is the optimal linear approximation. Equation (4.5) is often presented without
reference to the underlying orthonormal series, as in [32], where the method is referred to as
equivalent linearization. As an aside, it can be noted that if the nonlinear damping is a function
of the velocity, rather than an instantaneous, memory-less function, then equation (4.5) would be
replaced by a functional series which is analogous to the Wiener series [33], and equation (4.7)
would be replaced by a cross-correlation approach analogous to the Lee–Schetzen algorithm [30].
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The third and final approach to obtaining the quasi-linear damping coefficient is to note that
the power dissipation rates under linear and nonlinear damping are, respectively,

PL = ceqeẋ2 (4.12)

and
PNL = h(ẋ)ẋ. (4.13)

If the constant ceqe is chosen to equate the ensemble average of the two powers, E[PL] = E[PNL],
then the result is

ceqe = E[h(ẋ)ẋ]
E[ẋ2]

, (4.14)

which is in agreement with equation (4.4). Thus, the mathematical optimization technique leading
to equation (4.14) ensures that a quantity of great physical importance, the dissipated power, is
conserved. In the expression for ceqe, E[h(ẋ)ẋ] and E[ẋ2] can be interpreted as the cross-correlation
between the nonlinear damping force and the velocity and the auto-correlation function of the
squared velocity, both at zero lag, in agreement with Nuttall’s approach mentioned above.

If the nonlinearity were to be in the stiffness, rather than the damping, then the conserved
quantity, in the equivalent to equation (4.14), would be E[h(x)x], which does not have such
physical significance, thus suggesting that the quasi-linear approach can be expected to be more
effective for nonlinear damping than for nonlinear stiffness.

One key feature of the linearization approach represented by equation (4.14) is that the optimal
linearization constant ceqe depends on the statistics of the response: the PDF p(ẋ) is needed to
evaluate the expectations that appear in the equation. A common approximation is to assume
that the velocity is Gaussian, in which case it can be shown that equation (4.14) becomes

ceqe = E[h(ẋ)ẋ]
E[ẋ2]

= E
[

∂h(ẋ)
∂ ẋ

]
, (4.15)

which is called stochastic linearization [23,24]. The resulting expression for ceqe can be expressed
as a function of the standard deviation of the velocity.

The foregoing presentation of the quasi-linear technique could also have been employed for
the harmonic case presented in §3b. In that case, equation (4.5) would be replaced by a Fourier
series expansion of the nonlinear damping, and the ensemble average E[] would be replaced by a
time average. The assumption that the response is Gaussian is replaced by the assumption that the
response contains only the first harmonic of the excitation frequency, and the harmonic balance
approach ensures that (under the harmonic response assumption) the time average of the power
dissipated over a cycle of the excitation is preserved.

An analytical expression for ceqe can be obtained in some cases by substituting for h(ẋ) into
equation (4.15). With cubic damping, for example, the following analytical expression for ceqe can
be derived for white noise excitation having a velocity variance of σ 2

ẋẋ, as

ceqe = c3

σ 2
ẋẋ

∫∞

−∞
ẋ4eẋ2/2σ 2

ẋẋ , (4.16)

which can be solved using integration by parts, as shown in appendix A, to give ceqe = 3c3σ
2
ẋẋ.

The ‘total equivalent’ damping consists of the linear damping, c1, and the ‘equivalent linear
damping’, ceqe,

ce = c1 + ceqe = c1 + 3c3σ
2
ẋẋ. (4.17)

In a single-degree-of-freedom system, σ 2
ẋẋ can also be expressed as a function of ceqe, as described

in appendix A, to give a closed-form expression for ceqe, as

ceqe =
−c1 +

√
c2

1 + 6c3(Sff /m)

2
, (4.18)

where Sff is the uniform power spectral density of the random, white noise, excitation force.
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Figure 13. (a) The level of the mean square velocity response at resonance plotted as a function of the mean square excitation
level of the random force for the linear systemwith c3 = 0 (dashed line) and nonlinear system (solid line). (b) The relationship
between the equivalent linear damping ratio and the mean square random excitation, as given by equation (4.18). (Online
version in colour.)

Figure 13b shows the increase of the equivalent linear damping, calculated from equation
(4.18), as the power spectral density increases, for the numerical example considered in §4c. At
high levels of random excitation, the equivalent linear damping can be obtained by assuming that
c1 is negligible in equation (4.18), so that ceqe is equal to (3c3Sff /2m)1/2. The power spectral density
of the velocity at resonance, (ω0 =√

k/m), can also be obtained from

Sẋẋ(ω0) = |G(ω0)|2 Sff = Sff

(c1 + ceqe)2 . (4.19)

Substituting the equivalent linear damping, equation (4.18), into equation (4.19), yields

Sẋẋ(ω0) = 4Sff(
c1 +

√
c2

1 + 6c3(Sff /m)
)2 . (4.20)

For purely cubic nonlinear damping, (c1 = 0), the auto-power spectrum of the velocity at
resonance becomes 2 m/3c3, which is independent of the power spectral density of the random
excitation, Sff . Figure 13a shows the amplitude level of the auto-power spectrum of the velocity
response at resonance, for the numerical example above when plotted as 10 log10(Sẋẋ(ω0)) against
10 log10(Sff ). At low level of excitation, the slope is 1 dB/dB; however, at high levels of excitation
the slope changes until Sẋẋ(ω0) reaches the constant value of 2 m/3c3. The overall mean square
velocity, given by σ 2

ẋẋ, is provided using the results in appendix A as ceqe/3c3, so that for high
levels of forcing, when ceqe is given by (3c3Sff /2 m)1/2, then σ 2

ẋẋ becomes equal to (Sff /6c3m)1/2

and its level increases at 1/2 dB/dB compared with that of the force power spectral density.
More generally, an iterative technique can [24] be used to obtain the power spectrum of the

response, and hence ceqe. For the first iteration (j = 1), it is assumed that ceqe(1) = 0, and the auto-
power spectrum of the velocity is obtained from

Sẋẋ(j)(ω) = ∣∣G(j)(ω)
∣∣2 Sff , (4.21)

and the cross-power spectrum of the velocity and force can be obtained from

Sẋf (j)(ω) = G(j)(ω)Sff , (4.22)

where, in general,

G(j) = iω
−ω2m + iω(c1 + ceqe(j)) + k

(4.23)
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Figure 14. Equivalent damping and variance of the velocity, together with the cross- and auto-correlations, for various steps
in the iterative method. (Online version in colour.)

and ceqe(j) is the equivalent linear damping at the jth iteration. The variance of the velocity can
then be obtained from

σ 2
ẋẋ(j) =

∫∞

−∞
Sẋẋ(j)(ω)dω. (4.24)

The next iteration of the equivalent linear damping ceqe(2) for the nonlinear function can then be
calculated from

ceqe(j+1) = E(h(ẋ)ẋ(t))
E(ẋ(t)ẋ(t))

= 1

σ 2
ẋẋ

∫∞

−∞
ẋh(ẋ)p(ẋ) dẋ, (4.25)

where it is assumed that p(ẋ) is Gaussian at every iteration. This value is then used to obtain
the next power spectrum and the variance of the velocity. This iteration continues until the
convergence is achieved.

(c) Numerical simulation of a single-degree-of-freedom system
As an example of the iterative technique, consider a system with cubic damping having the same
parameters used in §3c, m = 1 kg, c1 = 0.1 Ns m−1, c3 = 0.1 Ns3 m−3, k = 1 N m−1 and an intensity
of input Sff = 1 N2. The values of E[h(ẋ)ẋ] and E[ẋ2] have been calculated at each iteration, as
described above, and the results used to calculate the equivalent damping and the variance of the
velocity, as shown in figure 14. The final value for the equivalent damping and the variance are
found to be ceqe = 0.344 Ns m−1 and σ 2

ẋẋ = 1.13, which are in close agreement with the theoretical
values obtained from equations (4.18) and (4.24). The iterative method converges to the closed-
form solution in this particular case of cubic damping, but if the power of damping is high, then
the analytical solution is difficult to obtain although the iterative method can still be used.

The amplitude and phase of the normalized H1 frequency response estimate, Sẋf mω0/Sff [34],
is plotted as a function of the frequency in figure 15a,b, for three power spectral densities of the
input excitation Sff = 0.1, 1 and 5 N2, using both the analytical method described in §4 and time
domain simulation using Matlab ode45. Simulations were performed with a Gaussian random
signal of 2 × 107 points, having a sampling frequency of 100 Hz, divided into 128 blocks for
averaging, and using a Hanning window with 50% overlap between each segment. The analytical
results are in good agreement with time domain simulations in figure 15a,b. The equivalent
damping is calculated for different power spectral densities, using equation (4.18), which agrees
well with that obtained from the simulation, and is plotted in figure 15c against frequency, for
comparison with figure 7c, even though it is independent of frequency in this case. Figure 15d
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Figure 15. The response of the nonlinear system with cubic damping subject to random excitation with different power
intensities of white noise, blue dashed line (Sff = 0.1 N2), red solid line (Sff = 1 N2) and black dashed-dotted line
(Sff = 5 N2): (a) the amplitude of Sẋf mω0/Sff (b) the phase of Sẋf mω0/Sff , (c) the equivalent linear damping ratio, ζeqe, and
(d) the non-coherent to coherent power obtained from numerical simulation. (Online version in colour.)

shows the ratio of the non-coherent to the coherent power (NCP) calculated as [35]

NCP(ω) = 1 − γ 2(ω)
γ 2(ω)

× 100%, (4.26)

where γ 2(ω) is the coherence function [35], calculated from the cross- and power spectral densities
obtained by analysing the results of the time domain simulation as

γ 2(ω) = |Sẋf (ω)|2
Sẋẋ(ω)Sff (ω)

. (4.27)

This NCP ratio for the velocity response is relatively independent of frequency for Sff = 5 N2

and has a value of about 5% at the resonant frequency, corresponding to a coherence, γ 2(ω),
which is also relatively independent of frequency, and has a value of about 0.95. The NCP can
be compared with the normalized MSD plotted in figure 7d for tonal excitation, where the MSD
changed significantly with excitation frequency in that case, as did the equivalent linear damping.

(d) Generalization to multi-degrees of freedom
For an MDOF system,

Mq̈ + Cq̇ + H(q̇) + Kq = f(t), (4.28)

the method of stochastic linearization can be used to obtain the response of the system to random
excitation having the power spectral density matrix of Sff (ω) = E[f(ω)fH(ω)].
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The equivalent linear system equation can be written as

Mq̈ + (C + Ceqe)q̇ + Kq = f(t). (4.29)

The elements of the matrix Ceqe can be obtained from

ceqe(i,j) = E

(
∂hi

∂ q̇j

)
. (4.30)

The spectral density matrix of the output, Sqq(ω) = E[q(ω)qH(ω)], is given by

Sqq(ω) = G(ω)Sff (ω)G(ω)H, (4.31)

where ()H denotes the Hermitian, complex conjugate transpose and

G(ω) = (−ω2M + iω(C + Ceqe) + K)−1. (4.32)

The cross-correlation of the responses can be calculated from

E(qi(t)qj(t)) =
∫∞

−∞
Sqiqj(ω)dω

. (4.33)

Consider the previous two-degrees-of-freedom system shown in figure 9. We again assume a
special case of nonlinear diagonal damping, in which the jth term of the nonlinear damping is a
function of the jth velocity. The force, which acts on the mass m1, is now considered to be random
white noise. A cubic nonlinear damping is considered between the two masses. Therefore,

h(ẏ) =
[−c23ẏ3

2

c23ẏ3
2

]
. (4.34)

The equivalent damping matrix can be obtained using equation (4.23),

Ceqe =
[

0 −3c23E(ẏ2
2)

0 3c23E(ẏ2
2)

]
. (4.35)

The total equivalent damping matrix Ce becomes

Ce = C + Ceqe =
[

c1 −c2e
0 c2e

]
, (4.36)

where c2e = c21 + 3c23σ
2
ẏ2

. To obtain the equivalent damping, we need to calculate σ 2
ẏ1

= E(y2
1). By

definition

σ 2
y1

=
∫∞

−∞
|G11(ω)|2 Suudω, (4.37)

where Suu is the spectral density of u(t) = f1(t)/m1 and G11 is the term in the first row and column
of G(ω) in equation (4.32). Similarly,

σ 2
ẏ2

=
∫∞

−∞
ω2 |G21(ω)|2Suudω, (4.38)

where G21 is in the second row and first column of G(ω). Substituting G11 and G21 into the
variance yields

σ 2
ẏ2

= Suu

∫∞

−∞
Π (ω)

Λ(iω)Λ(−iω)
dω, (4.39)

where Π (ω) and Λ(ω) are, respectively, the numerator and denominator polynomials of
ω2|G21(ω)|2. An analytical closed-form solution for the variance σ 2

y1
and σ 2

ẏ2
is provided in

appendix B. Since the two variances are dependent on the equivalent damping c2eqe, an iterative
approach is used to solve the equations. For the first iteration, the initial value of c2eqe = 0
is considered and initial estimates of σ 2

y1
and σ 2

ẏ2
are obtained. Then these values are used to
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update the equivalent damping c2eqe. The iteration continues until convergence is achieved. For
numerical simulation, the following system parameters are used:

m1 = m2 = 10 kg, k1 = k2 = 10 N m−1, c11 = 1 Ns m−1,

c21 = 2 Ns m−1, c23 = 1 Ns3 m−3, Sff = 1 N2 s.

The equivalent damping c2eqe and the two variances σ 2
y1

and σ 2
ẏ2

are plotted at each iteration in
figure 16. The results converge after about six iterations. The first iteration shows the values for
the linear system, when cubic damping c3 = 0.

The auto-spectrum Sẏ1ẏ1 and cross-spectrum Sẏ2f1 of velocities from the iterative analytical
method after convergence are plotted in figure 17 with the red solid line, and the results are
compared with time domain simulations of this system using Matlab ode45, denoted with the
blue dashed line. The analytical and numerical results are in good agreement.

5. Practical applications of nonlinear damping

(a) Microspeakers
The small loudspeakers that are required to reproduce speech and, increasingly, music in mobile
phones are called microspeakers, and their construction is illustrated in figure 18a. In general, the
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nonlinearity of larger sized loudspeakers is due to the number of mechanisms, particularly the
nonlinear stiffness of the diaphragm surround and the nonlinear coupling between the coil and
the magnet [36]. In microspeakers, however, these sources of nonlinearity are not so important
and the dominant nonlinearity is due to the nonlinear damping, as shown by the measurements
of Klippel, reproduced in figure 18b [36]. This nonlinearity in the damping will reduce the
response of the microspeaker at higher drive levels and so limit its throw and hence its distortion.
Microspeakers generally have small holes in the construction, as indicated by the air flow through
the leak in figure 18a, and the mechanism of nonlinear damping is probably due to the nonlinear
flow through these holes, as discussed in §2c.

In a number of applications, the practical effect of nonlinear damping can be understood by
considering the relationship between the level of the output, in dB, as a function of the level of
the input, in dB. An idealized version of this level curve for a microspeaker is shown by the solid
line in figure 19a, where the dashed line is the 1 dB/dB response of an entirely linear system. If
the microspeaker is driven at resonance and it is assumed to have both linear and cubic damping,
then the output level is less than that of the linear system above some limiting value of the driving
signal, beyond which the response level only rises by 1/3 dB for every dB increase in the drive
level, as discussed in §3, and so will be significantly restricted if the microspeaker is driven hard.
For tonal excitation well away from the resonance frequency, the response is again dominated by
either the stiffness or mass, both of which are linear, so that the level curves always have a slope
of 1 dB/dB in this and the other cases discussed below.
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(b) Vibration isolation
The transmission of vibration from a source structure to a receiving structure is often controlled
with vibration isolators. In its simplest form, such an isolator consists of a spring and damper
in parallel. If the damper is linear, there is a well-known trade-off between choosing a high
damping coefficient, to control the response at resonance, and choosing a low damping coefficient,
to reduce the vibration transmission well above resonance [37]. A number of methods of
overcoming this problem have been suggested, including the use of cubic nonlinear dampers
[38]. When driven one frequency at a time, cubic damping will produce a high equivalent
linear damping value at resonance, when the response level is high, but a low equivalent
linear damping value at excitation frequencies well above resonance, where the response level
is low, as required. Less advantage is gained for broadband excitation, however, since, as seen
in §4, the equivalent linear damper will then have a single value, mainly governed by the
resonant response, resulting in poor high-frequency isolation. Experimental demonstrations of
such systems have been developed using an electromagnetic actuator and nonlinear velocity
feedback [39].

The level curve for such a device, when driven by a single frequency at resonance, will look
similar to that in figure 19a, if the damper has both linear and cubic components, so that the
transmitted vibration is significantly reduced for high-level excitation in this case.

(c) Energy harvesting
Electrical energy may be harvested from ambient motion using an inertial system, in which
the damping is provided by an electromechanical transducer attached to an electrical load. The
scale of such systems can vary from miniaturized devices for low-power wireless sensors [40],
to devices designed to harvest power from human motion [41], to large-scale devices powered
by ocean waves or large structures [42,43]. If driven at resonance, the harvested power is, in
principle, maximized if the electromechanical damping is very small, so that the motion of the
inertial mass is very high [44], but the maximum extent of this motion, the maximum throw,
is generally limited by practical construction constraints. Sufficient damping then needs to be
introduced so that, at the highest level of excitation, the response is within the maximum throw
of the device.

In many applications, however, the excitation of such an energy harvester is not stationary, and
the maximum throw is only observed at the highest levels of excitation, which are not experienced
for the majority of the time. Under these conditions, the use of a nonlinear electromechanical
damper can increase the response of the harvester, and hence its power output, when it is driven
at excitation levels less than those which would give the maximum throw [21]. Figure 19b, for
example, shows an idealized version of the level of power that can be harvested from such a
device (solid curve) compared with that harvested using a linear damper (dashed line), where
both devices are designed to have the same maximum throw at the maximum excitation level. At
this level of excitation, the linear and nonlinear devices produce almost the same power output,
since the power dissipated in the nonlinear device is the same as that in the equivalent linear
damper. For levels of excitation below this maximum, the power from the nonlinear harvester,
which is assumed to have cubic electromechanical damping, falls by 2/3 dB/dB [21] and can
produce more output power than the linear device.

At very low levels of excitation, the dynamics of such a harvester is, in practice, dominated
by parasitic mechanical sources of damping. If this parasitic damping is linear, the slope of the
level curve returns to 1 dB/dB once the excitation level falls below a certain limit, as illustrated in
figure 19b. If, however, if there are elements with Coulomb friction in the parasitic damping, the
motion of the harvester and hence the power output drops to zero at very low levels of excitation
[45]. Despite these limitations, it is clear that the use of nonlinear electromechanical damping has
the potential to increase the harvested power over a range of excitation levels.
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(d) The mechanical response of the cochlea
The cochlea is a coiled structure in the inner ear that converts sound into neural signals. It
has remarkable sensitivity and selectivity and also has a huge dynamic range, of about 120 dB,
compared with the operating dynamic range of the 3000 or so inner hair cells that convert the
internal motion of the cochlea into neural signals, which is only about 30 dB. There are several
mechanisms that provide the required compression in the dynamic range of hearing, the most
important of which is probably the nonlinearity in the cochlear amplifier [46–48]. As noted
above, the cochlear amplifier is driven by the 12 000 or so outer hair cells acting as local positive
feedback loops.

Figure 19c shows an idealized level curve in this case, between the input sound pressure
level and the resulting level of vibration at a point inside the cochlea. Similar level curves have
been observed experimentally, using laser measurements of cochlea motion [48,49]. At low sound
pressure levels, the cochlear amplifier can provide about 40 dB of enhancement to the vibration
in the cochlea, as the positive feedback loop operates with a high gain over an almost linear part
of the operating curve of the hair cell, which is shown in figure 5.

When the sound pressure level reaches about 30 dB, however, the nonlinearity on the operating
curve starts to have an effect and the gain of the positive feedback loop is reduced, causing
the enhancements in the response to be less than 40 dB. For sound pressure levels above about
90 dB, the motion inside the cochlea is much larger than the range of the operating curve
shown in figure 5, and the cochlear amplifier is then completely saturated and can provide no
enhancements to the motion. For sound pressure levels above 90 dB, the response is thus almost
linear, as indicated by the dashed, 1 dB/dB, line in figure 19c. For sound pressure levels between
about 30 and 90 dB, the slope of the level curve is about 1/3 dB/dB. A 60 dB dynamic range of
sound pressure level is thus converted to a 20 dB dynamic range of cochlear motion, which can
be faithfully converted into neural signals by the inner hair cells.

It is the outer hair cells that are mainly damaged by loud sounds or the ageing process, and
this damage is one of the main causes of hearing loss. In the absence of these outer hair cells, the
cochlear amplifier no longer functions and the level curve in figure 19c will revert to the dashed,
linear, line. Not only will the low-level amplification then be lost, which could be compensated
for with a high-gain hearing aid, but the compression effect of the cochlear amplifier will also
disappear, making a higher level sound feel uncomfortably loud if such a high-gain hearing aid
is used.

Nonlinear damping thus plays an important role in the normal functioning of our sense of
hearing and has been used for some years to explain the dynamic behaviour of the cochlea [5,50,
51]. In fact, the analysis of cochlear mechanics is more complicated than suggested above, since
the dynamic response at each point along the cochlea is coupled with all the other points, owing
to the fluid motion in the cochlea fluid chambers. A full nonlinear analysis has to take account
of this interaction, for example, by iteratively taking a first approximation to the nonlinear local
behaviour, linearly coupling each of these via the fluids and then obtaining a better approximation
to the nonlinear local responses at each individual position along the cochlea. This iterative quasi-
linear approach was originally developed for tonal excitation and for combinations of tones
[52,53] but has also been used for broadband random excitation [54,55], using cross-correlation
methods with a theory that is similar to those discussed in §5, which in this field is called the
equivalent nonlinear or EQ-NL theorem [56]. Similar iterative methods have been used for other
distributed nonlinear systems, such as the response of underwater structures and cables that are
damped to different extents along their lengths due to the local flow velocity, which itself depends
on the motion [57].

6. Conclusion
Nonlinear damping arises due to a variety of mechanisms in engineering and biological systems
and commonly acts to limit the resonant response at higher excitation amplitudes. It thus
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compresses the dynamic range of the response compared with that of a linear system. Even
though the stiffness of some physical systems, as well as the damping, can change with amplitude,
it is interesting to consider the effect of nonlinear damping alone, since this can provide some
clear physical insights and is useful in a number of practical applications. It is shown that, if
the nonlinearity of a system is confined to its damping, the backbone curves of such a system
are vertical straight lines and so the system will not exhibit any jump or bifurcation phenomena.
This significantly simplifies their analysis. The analysis of systems in which nonlinear damping
is proportional to the nth power of velocity is considered, initially for sinusoidal and then for
random excitation. In both cases, the system is analysed in terms of an equivalent linear damper,
whose value changes with excitation level. Although the focus of this paper is on systems with
positive values of both linear and nonlinear damping, which are thus stable, it is noted that
the amplitude response of an unstable system, with negative linear damping, can be limited by
positive nonlinear damping, as described by Rayleigh [1]. In fact, amplitude stabilization of such
instabilities occurs in the human cochlea, where the resulting limit cycle oscillations are known
as spontaneous otoacoustic emissions [15].

For sinusoidal excitation, it is seen that such an equivalent linear damper can be obtained
by retaining the fundamental term in a harmonic balance analysis, which is equivalent to
the describing function approach used in control engineering. Closed-form solutions for the
equivalent linear damper can be obtained, in terms of the driving level, for a single-degree-of-
freedom system will low-order nonlinear damping, but iterative methods need to be used for
higher order nonlinearities or in MDOF systems. For random excitation, it is shown that an error
minimization technique, a series truncation approach and an equivalent power method all give
the same expression for the equivalent linear damper, which is equal to the cross-correlation
between the damping force and the velocity, divided by the auto-correlation of the velocity, both
at zero lag. Closed-form solutions for the equivalent linear damper can again be obtained for
single-degree-of-freedom systems with low-order nonlinear dampers, but iterative methods must
be used in more complicated cases, in which case the assumption of a Gaussian response appears
to be a reasonable one. The quasi-linear method using equivalent linear damping has been shown
to accurately predict the responses from time domain simulations of a single-degree-of-freedom
system with cubic damping at different levels of forcing, for both sinusoidal (figure 7) and random
excitation (figure 15). Also shown in these figures are the low levels of mean square distortion in
the responses.

The use of nonlinear damping in microspeakers, vibration isolation systems and vibration
energy harvesters illustrates its practical application in extending the dynamic range of these
devices using this mechanism. The nonlinear damping in the mammalian cochlea has a rather
different origin, since it is due to the saturation in the positive feedback provided by the outer
hair cells that amplify the mechanical motion, but once again this acts to compress the dynamic
range of the response and provides a crucial aspect of our hearing.

The equivalent linear damper provides a very convenient quasi-linear model of systems with
nonlinear damping. The idea also has strong theoretical support if the equivalent linear damper
is arranged to dissipate the same power as the nonlinear damper, at the specified excitation level.
Although similar linearization techniques can be used for systems with nonlinear stiffness, the
conserved quantity, which can be written as E[h(x)x] in this case, where h(x) is the nonlinear
stiffness, does not have such a clear physical significance as the power, E[h(ẋ)ẋ], which is the
conserved quantity for systems with nonlinear dampers. The equivalent linearization method is
thus particularly well suited to the analysis of nonlinear damping [23,24,30].

Although the full behaviour of a system with nonlinear damping, such as the generation
of harmonics or the non-Gaussianity of the random response, will not be completely captured
by such a quasi-linear approach, it does provide a very useful engineering tool for their first-
order analysis, since it reproduces the power dissipated at different points in the system.
Clear physical insights can thus be brought to systems with nonlinear damping: as quasi-
linear systems with equivalent linear dampers whose value depends on the local velocity
response.
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Appendix A. Equivalent damping
For cubic damping h(ẋ) = c3ẋ3, the cross-correlation between the force and velocity at τ = 0 is

E(ẋh(ẋ)) = Ac3

∫∞

−∞
ẋ4e−ẋ2/2σ 2

ẋẋ dẋ. (A 1)

Using integrating by parts, u = ẋ3, du = 3ẋ2dẋ, dv = Ac3ẋeẋ2/2σ 2
ẋẋ dẋ, and v = −Ac3σ

2
ẋẋe−ẋ2/2σ 2

ẋẋ , and

recalling σ 2
ẋẋ = A

∫∞
−∞ ẋ2e−ẋ2/2σ 2

ẋẋ dẋ and A
∫∞

−∞ Xe−ẋ2/2σ 2
ẋẋ dẋ = 1, the cross-correlation between the

force and velocity is

E(ẋh(ẋ)) =
∫∞

−∞
3Ac3σ

2
ẋẋeẋ2/2σ 2

ẋẋ ẋ2dẋ. (A 2)

A second integration by parts, u = ẋ, du = dẋ, dv = 3Ac3σ
2
ẋẋe−ẋ2/2σ 2

ẋẋ ẋdẋ and v = −3Ac3σ
4
ẋẋe−ẋ2/2σ 2

ẋẋ ,
yields

E(ẋh(ẋ)) =
∫∞

−∞
3Ac3σ

4
ẋẋeẋ2/2σ 2

ẋẋ dẋ = 3c3σ
4
ẋẋ. (A 3)

Using the invariance property, the equivalent damping is found to be

ceqe = E(ẋh(ẋ))

σ 2
ẋẋ

= 3c3σ
2
ẋẋ. (A 4)

Using the Fokker–Planck equation for a single-degree-of-freedom linear system, the velocity
variance is

σ 2
ẋẋ = Sff

2mce
. (A 5)

Substituting equation (A 5) into equation (A 4) yields

ceqe = E(ẋh(ẋ))

σ 2
ẋẋ

= 3c3
Sff

2m(c1 + ceqe)
, (A 6)

which is the level-dependent equivalent linear damping. The equivalent damping can be obtained
from solving

c2
eqe + c1ceqe − 3c3Sff

2m
= 0. (A 7)

The equivalent damping is therefore

ceqe =
−c1 +

√
c2

1 + 6(c3Sff /m)

2
. (A 8)
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Appendix B. Closed-form solution for the variance
To calculate σ 2

y1
= Suu

∫∞
−∞ |H11|2dω = Suu

∫∞
−∞ Π (ω)/Λ(iω)Λ(−iω)dω, where

Π (ω) = γ6ω
6 + γ4ω

4 + γ2ω
2 + γ0 (B 1)

and

Λ(iω) = λ4(iω)4 + λ3(iω)3 + λ2(iω)2 + λ1(iω) + λ0, (B 2)

and the parameters of the polynomials Π (ω) and Λ(iω) are given by the equations

γ6 = 0, γ4 = 1, γ2 = −2ω2
2 − 4ζ 2

2eω
2
2, γ0 = ω4

2,

λ4 = −1, λ3 = −2ω1ζ1 − 2ω2ζ2e − 2μω2ζ2e,

λ2 = −ω2
1 − ω2

2 − μω2
2 − 4ω1ω2ζ1ζ2e,

λ1 = −2ω1ω
2
2ζ1 − 2ω2

1ω2ζ2e, λ0 = −ω2
1ω

2
2

and σ 2
y1

= Suu

πλ4

∣∣∣∣∣∣∣∣∣

γ6 γ4 γ2 γ0
−λ4 λ2 −λ0 0

0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ3 −λ1 0 0
−λ4 λ2 −λ0 0

0 −λ3 λ1 0
0 λ4 −λ2 λ0

∣∣∣∣∣∣∣∣∣

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

To calculate σ 2
ẏ2

= Suu
∫∞

−∞ ω2|H21|2dω = Suu
∫∞

−∞(Π (ω)/Λ(iω)Λ(−iω)) dω, we again use equation
(B 3), with the same denominator, but with a different numerator polynomial. The parameters for
the numerator polynomial are γ6 = 1, γ4 = 1, γ2 = 0, γ0 = 0.
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