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Abstract

Feri Farassat was one of the pioneers of the use of the Ffowcs Williams &

Hawkings formulation of Lighthill’s acoustic analogy as a way to extrapolate

radiated waves from simulations of unsteady flows. Current computational

limits mean that volume source terms are often neglected, causing inaccurate

acoustical predictions when entropy fluctuations or vorticity pass across the

extrapolation surface. The derivation of the Ffowcs Williams–Hawkings

equation is modified to allow the equivalent surface sources to be distributed

over a transition layer of finite thickness rather than being confined to a single

layer, in order to reduce the effect of vorticity exiting the computational domain.

1 Introduction

Aeroacoustics is often considered to have had two golden ages, the first inaugurated

by Lighthill’s 1952 formulation of his acoustic analogy, and the second arising

with the possibility of computing sound fields in the course of unsteady flow

simulations. Feri Farassat made many contributions to the subject, but one of the most

important was the application of a technique from the first golden age, the Ffowcs

1



Williams–Hawkings (FWH) form of the acoustic analogy, to the problems of the

second. Di Francescantonio showed in 1997 that an FWH surface could be used as an

extrapolation surface at an arbitrary location instead of at the surface of a solid

body (although Ffowcs Williams and Hawkings 1969 had presciently allowed the

possibility of flow through the surface, and this was maintained in Dowling & Ffowcs

Williams 1983) and other aeroacoustics researchers were close behind. But it was

Brentner and Farassat’s 1998 comparison of the FWH and Kirchhoff formulations that

established the FWH surface as the method of choice for extrapolating radiated sound

fields from unsteady flow simulations.

Since then it has become standard practice to neglect the contribution from

distributed volume sources so that only sources confined to the extrapolation

surface contribute to the sound field. For the density form of the FWH equation this

corresponds to neglecting quadrupole sources. This can be justified both by the

placement of the extrapolation surface outside the region in which these sources

are strong, and for low-Mach-number problems by the relative scaling of dipole

and quadrupole terms. The benefit of neglecting volume sources is computational;

less data needs to be stored and fewer source calculations need to be made. For jet

modelling, however, it may not be practical to close the extrapolation surface so

far downstream that vorticity and entropy fluctuations have decayed. In this case

neglecting the volume sources in the FWH formulation can produce considerable

spurious noise; spurious because the convection of entropy fluctuations and/or

vorticity should be silent. The problem arises because when a ‘hot spot’ or an eddy

passes through the extrapolation surface it generates both surface and volume sources

in the FWH formulation that cancel each other out. The spurious noise is due to the

absence of volume sources to cancel the surface sources.

Wang et al. (1996) proposed the first practical solution to the problem of spurious

sound generation by subsonic eddy structures as they convect out of the simulation

domain, as outlined in section 2.1 below. Shur et al. (2005) encountered both these

issues with hot jets and proposed solutions: changing to a pressure-like variable for
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the entropy fluctuations, and averaging over two or more closely-spaced FWH

surfaces for the vorticity. The effectiveness of this strategy, compared to a single

surface, was verified by Spalart & Shur (2009) and by Mendez et al. (2013).

In Morfey & Wright (2007) we derived an acoustic analogy in terms of pressure-

like variables (related to that used in Morfey 1973) and showed that additional volume

sources, not necessarily quadrupoles, arise. We deduced that this formulation should

produce less spurious entropy noise despite the neglect of all volume sources, as had

already been demonstrated numerically by Shur et al. (2005). In this article we shall

derive a form of the acoustic analogy equation in which the zero-thickness source

layer of the FWH formulation (Fig. 1, bottom–left) is replaced by similar sources

distributed over a finite-thickness transition region (Fig. 1, bottom–centre). The

purpose of this reformulation is that when an eddy passes through the transition

region its contribution to the sound field should fade out smoothly, thus minimizing

the spurious noise. We then show that the same general form can lead to an acoustic

analogy with multiple nested extrapolation surfaces (Fig. 1, bottom–right) of which

the averaging procedure of Shur et al. (2005) is a particular case. Whether an

optimized version of such a procedure would be better or worse than the alternative of

adding a correction term to account for vorticity convection across the boundary, as

originally proposed by Wang et al. (1996), remains to be determined by numerical

experiment.

2 Altenative approaches to the outflow boundary problem

2.1 The frozen-eddy correction procedure

In order to illustrate the problem, Wang et al. (1996) used a 2D incompressible DNS

simulation of unsteady vortex shedding by an airfoil at incidence. The volume

and surface integrals required by Curle’s (1955) extension of Lighthill’s acoustic

analogy were evaluated using data extracted from the simulation. Because of the

finite computational box, volume quadrupole sources associated with the wake
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further downstream were not captured, leading to spurious additional sound radiation.

The effect is exactly the same as would be produced by a FWH permeable-surface

calculation that used DNS data on a control surface S , with S coinciding with the box

boundaries.

In both cases, neglect of quadrupoles in the wake downstream of S is responsible

for significant errors in the sound field. Wang et al. (1996) showed that in their

example, such errors could be greatly reduced by introducing a correction term based

on the assumption of frozen eddy convection across the exit boundary.

The correction-term idea of Wang et al. has been extended in subsequent studies,

notably in Avital et al. (1999) and Ikeda et al. (2013). Whereas the methods of Wang

et al. (1996) and Avital et al. (1999) are based on the acoustic analogy volume-source

representation, with data from a finite simulation domain providing volume source

terms as input to a far-field radiation integral, more recent work exemplified by Ikeda

et al. (2013) starts from the FWH porous-surface formulation. We emphasise that

whichever approach is used, the same truncation error will occur in the absence of any

correction procedure: the error arises from the omission of acoustic-analogy volume

sources that lie outside the integration domain D or control surface S.

2.2 Smoothing of the spatial integration window

Obrist & Kleiser (2007) pointed out, in the context of the volume-source representation,

that sharp spatial truncation of the physical source domain by a rectangular, or top-hat,

3D window is a source of spectral leakage in the wavenumber domain. The resultant

leakage of equivalent sources to low wavenumbers (specifically, to wavenumbers in

the acoustic range) has the effect of maximizing the truncation error discussed in

section 2.1. They therefore proposed using a smoothly-tapered spatial window in

order to evaluate the radiation integral. For a subsonic turbulent-jet simulation

similar to that of Freund (2001) they showed that window tapering, particularly at the

downstream domain boundary, produced significant beneficial effects.

As Obrist & Kleiser (2007) observed, use of the FWH permeable-surface
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formulation is exactly equivalent to use of a truncated volume-source integral,

provided the control surface S in the FWH formulation coincides with the top-hat

spatial window used for the volume integral. In both cases the error is due to omission

of a volume-source integral over the domain exterior to S . In what follows, we shall

use a similar smoothed-window approach to produce a modified version of the FWH

surface-source formulation.

Our aim is to retain the versatility of the FWH approach—in particular, its need to

apply the acoustic analogy only in a domain exterior to the main source region—while

minimizing the spectral leakage problem highlighted by Obrist & Kleiser (2007), and

at the same time avoiding the frozen-eddy hypothesis described in section 2.1.

3 Derivation

3.1 FWH form of windowed acoustic analogy

The FWH analogy arises, as does Lighthill’s, from the equations of conservation of

mass and momentum:

∂

∂ t
(ρ−ρ0)+

∂

∂xi
(ρui) = 0,

∂

∂ t
(ρui)+

∂

∂x j
(ρuiu j + pi j) = 0, (1)

where ρ is the density, ρ0 is its quiescent value in the acoustic far field and pi j is

the stress tensor due to pressure and viscosity (body forces have been ignored for

simplicity). In each case the quantity ρui is eliminated and the result manipulated

into the form of an inhomogeneous wave equation. If the wavespeed for that wave

equation is chosen to match the acoustic wavespeed in a region of fluid into which

sound propagates according to that wave equation, then the source terms can be used

to infer the sound field radiated by a region of unsteady flow embedded in that region.

The FWH equation generalizes Lighthill’s by multiplying the conservation

equations (1) with a generalized function that sets them to zero in the flow region but

leaves them unchanged outside that domain, namely H( f (xi, t)), a Heaviside function

of an indicator function f (xi, t) that is positive in some region V and negative in
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Figure 1: Sketches of W ( f ) (top row), W ′( f ) (middle) and the resulting wave

extrapolation configuration (bottom) for the three formulations described: Ffowcs

Williams–Hawkings (§3.3.1, left), smooth transition zone (§3.3.2, centre) and stepped

transition zone (§3.3.3, right). Vertical arrows indicate Dirac delta functions. Note that

for the stepped formulation the surfaces need not be concentric; their spacing depends

on f .
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its complement V ′ which it meets at surface S. The process can be thought of as

windowing the domain on V . The windowed equations are then manipulated into the

form of a wave equation in a windowed variable. Source terms now arise not only

from eliminating ρui as before, but also from replacing windowed derivatives by

derivatives of windowed quantities.

The terminology of windowing is borrowed from signal processing where it is

well-known that multiplying a time-domain signal by a window function affects

the spectrum of the signal; specifically it convolves the Fourier transform of the

unwindowed function with that of the window, and for that reason smooth window

functions are often preferred to those based on Heaviside functions. Obrist and

Kleiser (2007) used this reasoning to propose that when using Lighthill’s equation to

predict sound from a region of unsteady flow it would be preferable to use a smooth

spatial window rather than to simply truncate it. In what follows we derive a version

of the FWH equation that uses an arbitrary window function W ( f (xi, t)) in place of

H( f (xi, t)). If this window function is smooth then the sources that were restricted to

the surface S in the usual formulation will be distributed over a transition zone, whose

shape depends on both W and f .

The term contour is used below to refer to a three-dimensional level set. It is

assumed that the acoustic region into which waves are to be extrapolated is unbounded

and surrounds the region of unsteady flow that generates the sound; if this is not the

case the terms interior and exterior can be interchanged. The f contours that define

the transition zone can move but will here be limited to rigid translation, for use in

applications where the unsteady fluid motion is embedded in a uniform flow.

3.2 General form of windowed acoustic analogy

In the standard FWH derivation the indicator function f (xi, t) is only required to be

negative in the interior region, positive in the exterior region and zero on a smooth

contour that separates them. For a distributed source region we shall require f to be

negative in the interior region, increase in value with finite gradient from α to β (with
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α ≤ 0 and β > 0) moving outward through a transition region, and be greater than β

in the exterior region. The transition region should separate the interior and exterior

regions. We also require the spatial contours of f to be smooth and simply connected1.

The window function should satisfy

W ( f ) =


0 f < α

monotonically non-decreasing α < f < β

1 f > β

(2)

This differs from window functions that are commonly used in spectral analysis,

which are usually zero outside some finite range. In fact, the derivative of W takes the

form of such a window. Without loss of generality we can set α = 0 and β = 1 since

f can be adjusted to move the locations of the contours f = 0,1.

The windowed conservation equations are

W ( f )
∂

∂ t
(ρ−ρ0)+W ( f )

∂

∂xi
(ρui) = 0, (3)

W ( f )
∂

∂ t
(ρui)+W ( f )

∂

∂x j
(ρuiu j + pi j) = 0. (4)

These can be rewritten with the help of the following identities, obtained from the

chain rule,

W ( f )
∂ξ

∂ t
=

∂

∂ t
[ξW ( f )]−ξ

∂ f
∂ t

W ′( f ), (5)

W ( f )
∂ξ

∂xi
=

∂

∂xi
[ξW ( f )]−ξ

∂ f
∂xi

W ′( f ), (6)

which hold for any ξ (xi, t) and f (xi, t), to give

∂

∂ t
[(ρ−ρ0)W ( f )]+

∂

∂xi
[ρuiW ( f )] = (ρ−ρ0)

∂ f
∂ t

W ′( f )+ρui
∂ f
∂xi

W ′( f ), (7)

∂

∂ t
[ρuiW ( f )]+

∂

∂x j
[(ρuiu j + pi j)W ( f )] = ρui

∂ f
∂ t

W ′( f )+(ρuiu j + pi j)
∂ f
∂x j

W ′( f ).

(8)

1This condition can be relaxed when, for example, there are multiple disjoint regions of sound-

generating flow, but is imposed for simplicity.
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Subtracting the divergence of the second from the time-derivative of the first gives

∂ 2

∂ t2 [(ρ−ρ0)W ( f )] =
∂

∂ t

[
(ρ−ρ0)

∂ f
∂ t

W ′( f )
]
+

∂

∂ t

[
ρui

∂ f
∂xi

W ′( f )
]

− ∂

∂xi

[
ρui

∂ f
∂ t

W ′( f )
]
− ∂

∂xi

[
(ρuiu j + pi j)

∂ f
∂xi

W ′( f )
]

− ∂ 2

∂xi∂x j
[(ρuiu j + pi j)W ( f )] .

(9)

The right hand side can be simplified by recognising that the contours of f at xi and t

will have normal velocity vi(x j, t) satisfying

∂ f
∂ t

+ vi
∂ f
∂xi

= 0 (10)

or equivalently
D f
Dt

= (ui− vi)
∂ f
∂xi

(11)

where ui− vi is the velocity with which fluid crosses a contour of f . Therefore

∂ 2

∂ t2 [(ρ−ρ0)W ( f )] =
∂

∂ t

{
[ρui− (ρ−ρ0)vi]

∂ f
∂xi

W ′( f )
}

− ∂

∂xi

{
[ρui(u j− v j)+ pi j]

∂ f
∂x j

W ′( f )
}

+
∂ 2

∂xi∂x j
[(ρuiu j + pi j)W ( f )] .

(12)

which can be used to form an acoustic analogy(
∂ 2

∂ t2 −∇
2
)[

c2
0(ρ−ρ0)W ( f )

]
=

∂

∂ t

{
[ρui− (ρ−ρ0)vi]

∂ f
∂xi

W ′( f )
}

− ∂

∂xi

{
[ρui(u j− v j)+ pi j]

∂ f
∂x j

W ′( f )
}

+
∂ 2

∂xi∂x j
[Ti jW ( f )]

(13)

where

Ti j = ρuiu j + pi j− c2
0(ρ−ρ0)δi j, (14)

is the Lighthill stress tensor. The use of Green’s functions to solve such equations is

discussed by Morfey et al. (2011).
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3.3 Particular forms of windowed acoustic analogy

By choosing a specific form for W ( f ), such as those sketched in the top row of Fig. 1,

a particular form of the acoustic analogy will be generated, whose suitability for wave

extrapolation can be considered.

3.3.1 Heaviside function

If we set W ( f ) = H( f ), and hence W ′( f ) = δ ( f ), and require |∂ f/∂xi|= 1 on S

then ∂ f/∂xi = n̂i becomes the unit normal to S and we recover the standard FWH

equations2.

The Ffowcs Williams–Hawkings formulation (and its generalization in Morfey

& Wright 2007) replaces information in an interior region f < 0 with a layer of

monopoles and dipoles on the surface f = 0 and a distribution of exterior volume

sources in the exterior region f > 0.

3.3.2 Smooth function

Setting, for example,

W ( f ) = f − sin(2π f )
2π

, (15)

gives

W ′( f ) = 1− cos(2π f ), (16)

which is a Hann function similar to that used by Obrist & Kleiser (2007), the discrete

form of which is widely used in spectral analysis. It has the advantage that W ′( f )

2It is instructive for the subsequent version to consider the result of instead having, say, |∂ f/∂xi|= 2

on S . Since f is independent of any physical quantities the resulting sources must be independent of the

choice of f . This can be seen to be the case by recalling that if a function q(x) has q(x0) = 0 and no

other zeros then δ (q) = (1/|q′(x0)|)δ (x), so that setting |∇ f |= 2 on S would double the effect of

∂ f/∂xi and halve the contribution from δ ( f ), leaving the final result unchanged as required. The

simplification afforded by choosing |∂ f/∂xi|= 1 on S was first recognised by Farassat (Brentner,

personal communication) and first used in Farassat & Myers (1987); it is now the standard procedure for

this derivation.
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is zero at f = 0,1. Substituting these into Eq. (13) generates an acoustic analogy

wherein the equivalent sources consist of a finite-thickness layer confined between the

surfaces f = 0 and f = 1, whose thickness may vary spatially according to the choice

of f . The resulting inhomogeneous wave equation differs from that of Obrist &

Kleiser; their formulation evaluates the quadrupoles Ti j throughout the interior region

and truncates them gradually rather than abruptly. The present formulation replaces

information from the interior region with a distribution of monopoles and dipoles in

the intermediate region 0 < f < 1, together with exterior volume sources3 in the

intermediate and exterior regions f > 0. Obrist & Kleiser also proposed an extension

of their formulation to the FWH analogy, but for spectral reasons rather than for

reduction of spurious vortex noise.

If all terms are retained then this formulation should give the same result as

the Ffowcs Williams–Hawkings step-function formulation. Given a sufficiently

extensive flow simulation the interior region could be made large enough that the field

outside it would be entirely acoustic. In this case the two formulations would still be

equivalent even after neglecting exterior volume sources, since the latter would

have zero strength outside the interior region. In practice, however, it will often be

necessary to extrapolate from a region whose exterior is not entirely acoustic, and we

conjecture that the formulation obtained with the form of W ( f ) given above will

reduce the effect of vorticity whose length scale is smaller than the width of the

intermediate region, when exterior volume sources are ignored. The advantage of a

smooth function over a merely continuous one, such as W ( f ) = f over 0 < f < 1, is

that any spurious vorticity contribution will be introduced more gradually. The

optimum shape for W ( f ) will depend on the statistical structure of the vorticity

moving through the transition zone.

As in the FWH equation above, the surface sources in (13) involve the gradient of

f . In many FWH computations the extrapolation surface has sharp corners where the

3With density as the wave variable these will be the quadrupoles Ti j , but if a pressure-like variable is

used instead, as in Morfey & Wright (2007), then additional exterior volume sources arise.
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gradient is undefined, although such surfaces were excluded from consideration

by Ffowcs Williams & Hawkings (1969). Farassat & Myers (1990) analysed the

contribution from such cusps arising from the Ti j contribution, but we are unaware of

a case when this has been applied to a wave extrapolation problem, since the cusp

term is usually neglected. In the present formulations, with exterior volume sources

neglected, it seems likely that contours of f could be given arbitrarily small radii of

curvature as long as the other requirements are met.

In practice the source distribution intermediate region will still need to be

discretized for computation. This can be formalised by the following intermediate

form.

3.3.3 Stepped function

For this formulation we set

W ( f ) =
N

∑
i=1

ai H( f − fi), (17)

with ∑
N
i=1 ai = 1 and fi+1 > fi for all i. We then have

W ′( f ) =
N

∑
i=1

aiδ ( f − fi). (18)

This gives a nested set of zero-thickness source layers with contributions weighted

according to ai, with the exterior volume source distribution between successive

layers i and i+1 given a stepwise increasing weight between 0 and 1 as i increases

(assuming all ai are positive).

The case with all ai = 1/N corresponds to averaging over N FWH surfaces, a

strategy shown to be effective when exterior volume sources are neglected by Shur et

al. (2005), Spalart & Shur (2009) and Mendez et al. (2013). As with the smooth

function the optimal distribution of ai values will depend on the statistics of the

vorticity.
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4 Conclusions

The general formulation of the acoustic analogy (13), or a similar version in terms of a

pressure-like variable can be used to obtain different wave extrapolation formulations.

These include the classical FWH formulation, a version with a smooth, finite-thickness

transition region over which the FWH sources are distributed, and a version with

multiple nested extrapolation surfaces. We predict that the second and third will

generate less spurious vortex noise than the first when vorticity leaves the interior

region. The relative effectiveness and efficiency of this and other proposed solutions

would best be tested by numerical examples. We close by remembering Feri Farassat’s

dedication to the subject of aeroacoustics, and to the community of those who study it.
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