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Two extensions to Lighthill’s aeroacoustic analogy are presented. First, equivalent
sources due to initial conditions are derived that supplement those due to boundary
conditions, as given by Ffowcs Williams & Hawkings [Phil. Trans. Roy. Soc. A264,
321-342 (1969)]. The resulting exact inhomogeneous wave equation is then refor-
mulated with pressure rather than density as the wave variable, and the right-hand
side is rearranged using the energy equation with no additional assumptions. A
number of source terms emerge that are related to sound generation (or scattering)
by entropy inhomogeneities, thermal dissipation, and viscous dissipation.
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1. Introduction

The idea of replacing a region of unsteady fluid flow by a distribution of equivalent
sources that drive linear perturbations to a base flow has been extremely useful in
the field of acoustics. Rayleigh (1894) used equivalent sources to describe scattering
of sound in a non-uniform unbounded medium. Lighthill (1952) used the same idea
to develop his acoustic analogy in which the equations of fluid motion, expressing
conservation of mass and momentum, are rearranged into a linear wave equation
with nonlinear forcing terms. In both cases the ‘base flow’ is a uniform fluid at
rest. Provided the forcing terms can be estimated independently of the far-field
radiation, Lighthill’s equation can be said to describe the nonlinear generation of
sound by unsteady flows.

Subsequent extensions and variations of the acoustic analogy include:

1. The addition of equivalent source terms to allow for boundaries in flows that
occupy a finite region (Curle 1955, Ffowcs Williams & Hawkings 1969).

2. Various rearrangements of the source terms to highlight physical processes,
often accompanied by a change of wave variable, such as unsteady pressure
p (Morfey 1973; Lilley 1974, 1996), the quantity p + 1

3
ρu2 (Ffowcs Williams

1969, Kambe 1984), stagnation enthalpy h+ 1

2
u2 (Howe 1975), (P/P0)

1/γ − 1
(Goldstein 2001) etc.

3. The use of a different base flow (Lilley 1974, Goldstein 2003) to match the
characteristics of a particular situation, usually jet flow. Howe (1998) and
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Goldstein (2002, 2005) discuss a number of such extensions to the original
concept of Lighthill (1952).

In this paper we provide two further extensions, one in the first category and one
in the second. Both extensions involve use of the energy conservation equation, in
contrast to Lighthill (1952) and Ffowcs Williams & Hawkings (1969) who based
their development entirely on mass and momentum conservation. Although sev-
eral authors have subsequently introduced the energy equation in order to expand
the source terms in Lighthill’s analogy (Lilley 1974, 1996; Morfey 1973, 1976; Ober-
meier 1975, 1985; Kempton 1976, §§6,7; Kambe & Minota 1983, appendix A), these
formulations are restricted to flows without boundaries. Here we extend the Ffowcs
Williams & Hawkings (1969) treatment of bounded flows (referred to as FWH in
what follows) by showing how use of the energy equation leads to a significant
reinterpretation of the surface sources in that theory. Other distinctive features of
the present work are the use of p as the wave variable, and the use of generalized
functions to represent initial conditions as equivalent volume sources in the same
way that FWH represents boundary conditions as equivalent surface sources. As
with the surface sources, use of the energy equation leads to decisive advantages
in formulating the source terms. The base flow is a uniform ideal fluid at rest, but
viscous stresses and heat conduction are allowed for in the governing equations,
and no restriction is placed on the fluid’s equation of state.

The structure of the paper is as follows. [to be continued]

2. Notation and definitions

Let S be a moving closed surface in three dimensions that separates region V ′ from
an adjacent region V, as illustrated in figure 1. The idea is that V ′ may contain
solid boundaries; alternatively information on the flow in V ′ may be inaccessible. In
either case the aim of the acoustic analogy formulation is to describe the fluctuating
pressure or density field in V; no interest attaches to the field in V ′. Any acoustic
influence of V ′ will be accounted for by equivalent sources on S, and no use will
be made of the equations of fluid motion within V ′. Likewise no use will be made
of information for t < 0; the acoustic influence of events prior to t = 0 will be
accounted for by impulsive sources at t = 0, distributed throughout region V. Let
f(x, t) be a continuous indicator function such that f < 0 in V ′, f > 0 in V, and
let |∇f | = 1 on S. Smoothness of S is assumed, so that ∇f is single-valued†. Let
n be a local normal co-ordinate, defined for points near S by n = f ; then ∂/∂n
evaluated on S is the gradient operator normal to S, in the direction from V ′ to V.
Define the spatial and temporal Heaviside functions

H(n) =

{

1 in V and on S

0 in excluded region V ′;
(2.1)

Θ(t) =

{

1 for t ≥ 0

0 for t < 0,
(2.2)

† An extension of this description to cusped surfaces, such as a sharp-edged airfoil, has been
presented by Farassat & Myers (1990).
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Figure 1. Schematic diagram showing the complementary regions V ′ (about which no
knowledge is available) and V, and the interface S between them. In region V either the
equations of fluid motion apply for t > 0, as in §§ 3 & ??; or (alternatively) a scalar wave
equation is valid for t > 0. Region V may be exterior to S as in (a), or interior as in (b).
More generally, (c) shows that the excluded region V ′ may be multiply connected. In all
these cases, V ∪ V ′ fills the entire space. A further option, shown in (d), is to have V ∪ V ′

surrounded by a closed surface Σ, that lies in a region of linear acoustic disturbances to the
reference state (ρ0,c0), and represents an acoustically absorbing or scattering boundary.
Case (a) can be regarded as a limiting case of (d) in which Σ becomes a sphere of infinite
radius and the Sommerfeld radiation condition is applied.

which henceforth will be written without their arguments. From the definition of
the Heaviside function we have

∂Θ

∂t
= δ(t),

∂Θ

∂xi
= 0,

∂H

∂n
= δ(n),

∂H

∂xi
= n̂iδ(n), (2.3)

where δ(·) is the Dirac delta function and n̂i = ∂n/∂xi, the unit normal to S. The
time derivative of H is found by noting that H is constant in a reference frame
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moving with the surface, so that

∂H

∂t
= −vi

∂H

∂xi
= −vin̂iδ(n) = −vδ(n). (2.4)

Here vi = vn̂i, with v the normal velocity of the surface S directed into V. The
material derivative of H is given by

DH

Dt
= (ui − vi)n̂iδ(n). (2.5)

where D/Dt = (∂/∂t + ui∂/∂xi).
In what follows, a line over any variable or quantity means that it is multiplied

by ΘH, thus windowing it in space and time. For consistency, generalized functions
are written at the end of a product, with spatial generalized functions preceding
temporal ones. Using the relations given above we can find the result of commut-
ing the windowing operation with differentiation with respect to space and time
respectively:

∂ξ

∂t
−

∂ξ

∂t
= ξ [vin̂iδ(n)Θ−H δ(t)] ,

∂ξ

∂xi
−

∂ξ

∂xi
= −ξn̂iδ(n)Θ . (2.6)

The identity
∂ξ

∂t
≡

Dξ

Dt
−

∂

∂xi
(ξui) + ξ∆, (2.7)

also holds wherever ui is defined; here ∆ = ∂ui/∂xi is the dilatation rate. An
important, but lengthy, derivation of the second time derivative of an arbitrary
windowed variable is given in Appendix A.

3. Initial–boundary value formulations for aeroacoustics

As a starting point for deriving a generalized statement of Lighthill’s acoustic anal-
ogy that incorporates both initial and boundary conditions, we take the windowed
equations of motion for a fluid occupying region V. Conservation of mass and mo-
mentum are expressed by

∂(ρ − ρ0)

∂t
+

∂

∂xi
(ρui) = 0,

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pij) = Gi. (3.1)

Here and throughout, subscript 0 denotes the properties of a uniform reference
medium, chosen to coincide with the actual flow in the acoustic far field. Without
loss of generality, we choose a frame of reference that makes the fluid velocity zero
at infinity. In (3.1), ρ denotes fluid density; ui is the fluid velocity in the xi direction;
pij = Pij − P0δij where P is absolute pressure and Pij is the compressive stress
in the fluid; δij is the Kronecker delta, and Gi is an applied body force per unit
volume. The quantities (ρ−ρ0), ρui, ρuiuj +pij , Gi in (3.1) all vanish in the far-field
region.

We wish to obtain an acoustic analogy in terms of windowed variables. Applying
equations (2.6) to the conservation equations (3.1) produces additional terms on
the right hand side:

∂(ρ − ρ0)

∂t
+

∂

∂xi
(ρui) = (ρ − ρ0)H δ(t) + [ρui − (ρ − ρ0)vi]n̂iδ(n)Θ (3.2)
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and

∂

∂t
(ρui)+

∂

∂xj
(ρuiuj + pij) = Gi +ρui H δ(t)+ [ρui(uj − vj)+pij ]n̂jδ(n)Θ . (3.3)

By eliminating ρui from (3.2) & (3.3) we obtain an expression for the second time
derivative of ρ − ρ0, the windowed density perturbation, that is valid for all (xi, t):

∂2(ρ − ρ0)

∂t2
=

∂

∂t
[(ρ − ρ0)H δ(t)] −

∂

∂xi
[ρui H δ(t)]

+
∂

∂t
{[ρui − (ρ − ρ0)vi] n̂iδ(n)Θ}

−
∂

∂xi
{[ρui(uj − vj) + pij ] n̂jδ(n)Θ}

−
∂Gi

∂xi
+

∂2

∂xi∂xj
( ρuiuj + pij ). (3.4)

(a) Density form of the acoustic analogy

Subtracting ∇2(ρ − ρ0) from (3.4) leads directly to

(

1

c2
0

∂2

∂t2
−∇2

)

[c2
0(ρ − ρ0)] =

∂

∂t
[(ρ − ρ0)H δ(t)] −

∂

∂xi
[ρui H δ(t)]

+
∂

∂t
[Jin̂iδ(n)Θ] −

∂

∂xi
[Lij n̂jδ(n)Θ]

−
∂Gi

∂xi
+

∂2Tij

∂xi∂xj
. (3.5)

Symbols Tij , Ji and Lij on the right of (3.5) stand for the Lighthill stress tensor

Tij = ρuiuj + pij − c2
0(ρ − ρ0)δij , (3.6)

the surface mass flux vector

Ji = ρui − (ρ − ρ0)vi = ρ(ui − vi) + ρ0vi, (3.7)

and the surface momentum flux tensor

Lij = ρui(uj − vj) + pij . (3.8)

The sources on the right hand side of (3.5) can be interpreted as follows:

1. The first two terms represent the impulsive addition of mass and momentum
needed to start the flow from its initial reference state.

2. The second line contains the usual FWH surface monopoles and dipoles, win-
dowed by Θ.

3. Volume source terms appear in the third line, with the body force Gi and the
Lighthill stress tensor Tij windowed spatially and temporally by ΘH.
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Equation (3.5) without the initial-value source terms is the standard FWH equa-
tion and has been widely used in computational aeroacoustics, where it provides a
means of extrapolation from the simulation domain to the acoustic far field†. How-
ever, in this context (3.5) is not well suited to applications involving heated flows,
or flows in which mixing occurs between different fluids (Shur et al. 2005, Spalart
et al. 2007). The reason is that the surface monopole and dipole distributions, Jin̂i

and Lij n̂j , depend on the local density; so fluctuations in these quantities occur
when local hot spots, or regions of different fluid composition, are advected across
the control surface S. Such advection has little to do with sound radiation.

It is important to recognize that (3.5) remains valid for heated and inhomoge-
neous flows; the physically unrealistic surface sources described above are cancelled
by terms in the quadrupole distribution Tij . What this means is that neglect of the
volume quadrupoles Tij is not justified under such conditions. For wave extrapola-
tion purposes, therefore, there is a strong incentive to find alternative formulations
that cope better with advected density disturbances.

(b) Density-substituted forms of the acoustic analogy

Two formulations of the extended Lighthill analogy are presented below in which
the local density is absent, both form the surface monopole and dipole distributions,
and from the initial-value source terms. The first version applies to an arbitrary
fluid, and the second version applies to a particular class of fluids that includes
perfect gases.

Both version begin from the ∂2(ρ − ρ0)/∂t2 expression (3.4), and use the kine-
matic relation (A 4) for the second time derivative of an arbitrary windowed vari-
able, ξ, to replace ρ by a new variable ρ+ related to the local pressure. By defining

ξ = ρ − ρ+ (3.9)

and subtracting ∂2ξ/∂t2 from ∂2(ρ − ρ0)/∂t2, an equation for ∂2(ρ+ − ρ0)/∂t2 is
obtained that exhibits the properties mentioned above:

∂2(ρ+ − ρ0)

∂t2
=

∂

∂t

[

(ρ+ − ρ0)H δ(t)
]

−
∂

∂xi

[

ρ+ui H δ(t)
]

∂

∂t
[J+

i n̂iδ(n)Θ] −
∂

∂xi

[

L+

ij n̂jδ(n)Θ
]

+
∂Q+

∂t
−

∂

∂xi

[

Q+ui − (ρ − ρ+)
Dui

Dt
+ Gi

]

+
∂2

∂xi∂xj
(ρ+uiuj + pij). (3.10)

Here J+

i and Lij , are defined in the same way as Ji and Lij with ρ replaced by ρ+,
and Q+ is defined as

Q+ = −

[

D(ρ − ρ+)

Dt
+ (ρ − ρ+)∆

]

=
Dρ+

Dt
+ ρ+∆ (3.11)

where the second version follows from mass conservation.

† See §??d below.
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A ’generic acoustic analogy’ can then be written as

(

1

c2
0

∂2

∂t2
−∇2

)

[c2
0(ρ

+ − ρ0)] =
∂

∂t

[

(ρ+ − ρ0)H δ(t)
]

−
∂

∂xi

[

ρ+ui H δ(t)
]

∂

∂t
[J+

i n̂iδ(n)Θ] −
∂

∂xi

[

L+

ij n̂jδ(n)Θ
]

+
∂Q+

∂t
−

∂

∂xi

(

Q+ui +
ρ+

ρ
Gi +

ρ − ρ+

ρ

∂pij

∂xj

)

+
∂2T+

ij

∂xi∂xj
, (3.12)

where the penultimate term has been obtained by writing the equation of conser-
vation of momentum in the form

Dui

Dt
=

Gi

ρ
−

1

ρ

∂pij

∂xj
, (3.13)

which is valid throughout V, and where T+

ij is defined in the same way as Tij with

ρ replaced by ρ+.
Like (3.4), equation (??) is exact; it applies to bounded domains (f > 0, t > 0);

and no assumption has been made about the fluid equation of state. Its usefulness,
as the basis of an acoustic analogy, depends on the term ∂Q+/∂t being sufficiently
small that its contribution from any acoustic region can be neglected; we examine
this issue next, for two particular choices of the variable ρ+.

(c) Determination of Q+ from the energy equation

If we choose the substituted density variable ρ+ as the acoustic density ρ⋆,
defined by

ρ⋆ = ρ0 + c−2
0 p = ρ0(1 + K0p) (3.14)

where K is the isentropic compressibility 1/(ρc2), then the corresponding value of
Q+ is given by (3.11) as

Q⋆ = ρ0

[

∆ + K0

(

p∆ +
Dp

Dt

)]

. (3.15)

From the energy equation for a single-component† viscous heat-conducting fluid,
with heat input rate q̇ per unit volume, it follows that

−
1

ρ

Dρ

Dt
+ K

Dp

Dt
=

α

ρcp

(

Φ −
∂qi

∂xi
+ q̇

)

= ∆• (3.16)

where Φ is the viscous dissipation function

Φ = τij
∂ui

∂xj
, (3.17)

† For a mixture of two fluids a generalization of (3.15) is given in appendix II of Morfey (1976).
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8 C. L. Morfey & M. C. M. Wright

and qi is the heat flux vector; other symbols are α for the volumetric thermal
expansivity and cp for the constant-pressure specific heat. The quantity ∆• is the
difference between the actual dilatation rate and that due to isentropic compression;
we therefore refer to ∆• as the entropic dilatation rate. Alternative version of (3.15)
using ∆• are

Q⋆ = ρ0(1 + K0p)∆• − ρ0(K − K0 + K0Kp)
Dp

Dt
(3.18)

= ρ0(K0/K)∆• + ρ0(1 − K0/K + K0p)∆ (3.19)

It is clear from (3.18) that in a region where the only disturbances are sound
waves, Q⋆ is indeed small. Its inclusion in the acoustic analogy source term, in
equation (3.20) below, accounts for thermal attenuation of sound and for nonlinear
acoustic phenomena.

The first density-substituted acoustic form of the acoustic analogy is therefore
obtained by setting ρ+ = ρ⋆ in (3.12), which gives an equation with acoustic pres-
sure as the wave variable:

(

1

c2
0

∂2

∂t2
−∇2

)

p =
1

c2
0

∂

∂t
[pH δ(t)] −

∂

∂xi
[ρ⋆ui H δ(t)]

+
∂

∂t
[J⋆

i n̂iδ(n)Θ] −
∂

∂xi

[

L⋆
ij n̂jδ(n)Θ

]

+
∂Q⋆

∂t
−

∂

∂xi

(

Q⋆ui +
ρ⋆

ρ
Gi +

ρ − ρ⋆

ρ

∂pij

∂xj

)

+
∂2T ⋆

ij

∂xi∂xj
, (3.20)

where J⋆
i , L⋆

ij and T ⋆
ij are J+

i , L+

ij and T+

ij with ρ+ = ρ⋆, so

T ⋆
ij = ρ⋆uiuj + pij − c2

0(ρ
⋆ − ρ0)δij = ρ⋆uiuj − τij , (3.21)

where τij is the viscous stress such that pij = pδij − τij .
The presence of convected density inhomogeneities in the flow will make ρ 6=

ρ⋆, even in a non-conducting fluid. The dipole body force term then depends on
fluctuations in the body force per unit mass Gi/ρ rather than Gi, and an extra
dipole term appears (the term in pij on the last line of (3.20)). The pij term acts
like an additional body force applied to the reference medium; it is the generalization
to viscous flows of the dipole source term identified in Morfey (1973), Lilley (1974)
and Howe (1998).

The second density-substituted form of the acoustic analogy, suggested by Spalart
(private communication 2006, Spalart et al. 2007) uses ρ+ = ρ⋄ where

ρ⋄ = ρ0

(

1 +
p

P0

)1/γ

(3.22)

[why Q⋄ is quiet. . . ]
The corresponding acoustic analogy therefore has the same RHS as (3.20) with

⋆ replaced by ⋄ throughout, and LHS
(

1

c2
0

∂2

∂t2
−∇2

)

c2
0(ρ

⋄ − ρ).
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(d) Implications for computational aeroacoustics (CAA)

In CAA, a 2-stage procedure—called direct noise computation in the reviews by
Bailly & Bogey (2004) and Colonius & Lele (2004)—is used to calculate the far-field
sound radiated by a region of turbulent or unsteady flow. An accurate numerical
simulation is first performed to capture the unsteady flow in a limited domain D,
which is chosen to extend as far into the surrounding region of smaller-amplitude
unsteadiness as computational costs allow. Boundary conditions on D are chosen so
as to minimize the reflection of outgoing acoustic waves. The resulting simulation
in D is then extended to the far field by one of several methods that typically
involve linearized approximations to the flow equations and are less demanding
computationally (Colonius & Lele 2004).

Since the late 1980s, two popular choices for far-field extension of accurate near-
field simulations have been the analytically-based FWH method and the related
Kirchhoff method, both of which rely on the flow outside D approximating a uniform
acoustic medium with small-amplitude disturbances governed by the wave equation.
Brentner & Farassat (1998) have carried out a detailed comparison of the FWH and
Kirchhoff methods as applied to transonic rotor noise. By calculating the far-field
radiation with S taken progressively further from the rotor, they were able to show
that FWH converged more rapidly with increasing distance. A similar conclusion
was reached by Singer et al. (2000) who studied the sound field of a long rigid
cylinder in subsonic cross-flow (M = 0.2) with a turbulent wake. Since the FWH and
Kirchhoff formulations are both exact if all the terms are retained, these differences
must be due to the neglected volume terms being different. Specifically, since both
studies were for unheated, homogeneous-fluid flows with (ρ−ρ⋆)/ρ0 ∼ M2, they are
due to the quadrupole term ∂2Sij/∂xi∂xj being a weaker source of sound than the

windowed quadrupole term ∂2Sij/∂xi∂xj Since the far-field solution was obtained
with the free-field Green’s function in both cases and the radiating surface S was
compact with respect to the lower radiated frequencies, weaker radiation is expected
from the term in (iv).

For CAA calculations of jet noise, different problems arise with the FWH and
Kirchhoff techniques for far-field extrapolation, because jets of practical interest are
typically heated (as in aircraft gas turbine exhausts). The (ρ−ρ⋆) terms cannot be
neglected, and they decay slowly in the downstream direction. A recent review of
CAA results for turbulent jets (Shur et al. 2005) draws attention to this problem,
and offers a pragmatic solution: the authors recommend that in the FWH surface
terms ρ should be replaced by ρ⋆ = ρ0 + c−2

0 p. This change arises naturally in the
EDR formulation and provides evidence that the EDR formulation is better suited
to some CAA problems than FWH.

Since initial values are usually ignored in such calculations, as are the volume
sources, the equation to be used is, effectively

(

1

c2
0

∂2

∂t2
−∇2

)

p ≈
∂

∂t
[J⋆

i n̂iδ(n)Θ] −
∂

∂xi

[

L⋆
ij n̂jδ(n)Θ

]

(3.23)

with

J⋆
i = ρ0ui + c−2

0 p(ui − vi) and L⋆
ij = (ρ0 + c−2

0 p)ui(uj − vj) + pij (3.24)
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10 C. L. Morfey & M. C. M. Wright

or
(

1

c2
0

∂2

∂t2
−∇2

)

c2
o(ρ

⋄ − ρ0) ≈
∂

∂t
[J⋄

i n̂iδ(n)Θ] −
∂

∂xi

[

L⋄

ij n̂jδ(n)Θ
]

(3.25)

with the equivalent expressions for J⋄

i and L⋄

ij . Spalart et al. (2007) used both
equations to calculate the sound radiated from an LES-simulated jet and found the
difference to be negligible.

4. Base-flow formulation

The Lilley–Goldstein analogy equation may be written in the compact form

L(π) =
D̃2σ

Dt2
+ Lj

(

σj −
∂σij

∂xi

)

+
D̃2

Dt2
[π H δ(t)] + Lj

[

(1 + π)u′

j H δ(t)
]

+
D̃2

Dt2
{[u′

i + π(ui − vi)]n̂iδ(n)Θ}

+ Lj

{

[c̃2πδij + (1 + π)(ui − vi)u
′

j ]n̂iδ(n)Θ
}

, (4.1)

where the operators L and Lj are defined in (??) & (??). The volume source
distributions σ (monopole), σj (dipole), and σij (quadrupole) are given by

σ = (1 + π)∆•, (4.2)

σj = −(c2)′
∂π

∂xj
+ (1 + π)gj + (1 + π)

(

u′

j∆
• +

1

ρ

∂πij

∂xi

)

, (4.3)

σij = (1 + π)u′

iu
′

j . (4.4)

Also c̃(x2, x3) is the base-flow sound speed, related to the base-flow density ρ̃(x2, x3)
by ρ̃c̃ = const., and (c2)′ is defined by

(c2)′ = c2 − c̃2. (4.5)

Note that the base-flow velocity ũ(x2, x3) appears in the derivative operator

D̃

Dt
≡

∂

∂t
+ ũ

∂

∂x1

, (4.6)

but is otherwise absent in explicit form from (4.1).

5. Interpretation of Q⋆ or Q⋄

The monopole density Q⋆ is non-zero in general. However in an ideal fluid its effect
is limited to the scattering of sound by sound (nonlinear acoustics), or to scattering
in an inhomogeneous medium by variations of compressibility (for example in a
bubbly liquid); whereas in real turbulent flows, fluctuations in Q⋆ also arise from
unsteady viscous or thermal dissipation.
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An exact expression for Q⋆ in perfect-gas flows that is convenient for computa-
tional studies follows from (3.16) and (3.19):

Q⋆ =
γ − 1

c2
0

(

Φ − p∆ −
∂qi

∂xi
+ q̇

)

, (5.1)

where γ is the specific-heat ratio.
To interpret Q⋆ for the general case of an arbitrary fluid, define the excess

compressibility Ke as

Ke = K − K0 −

(

∂K

∂P

)

s,0

p

= K − K0 + (2β0 − 1)K2
0p; (5.2)

the partial derivative (∂K/∂P )s is evaluated holding the specific entropy s constant
and β is the nonlinearity parameter c−1 (∂(ρc)/∂ρ)s. Then (3.18) gives

Q⋆ = ρ0(1 + K0p)

[

∆• − Ke
Dp

Dt
+ (β0 − 1)K2

0

Dp2

Dt

]

+ ρ0K
3
0p2 Dp

Dt

= ρ0

[

∆• − Ke
Dp

Dt
+ (β0 − 1)K2

0

Dp2

Dt

]

[1 + O(K0p)] . (5.3)

The three terms in the first bracket each have a physical interpretation.

1. The entropic dilatation rate ∆• is given by the energy equation (3.15). It
contains contributions

∆•

µ =
α

ρcp
Φ due to viscous dissipation; (5.4)

∆•

κ = −
α

ρcp

∂qi

∂xi
=

α

ρcp

∂

∂xi

(

κ
∂T

∂xi

)

due to heat conductivity κ; (5.5)

∆•

q =
α

ρcp
q̇ due to external heat sources. (5.6)

In an Euler equation model, only ∆•

q survives.

2. The −KeDp/Dt term is Rayleigh’s monopole scattering term (Rayleigh 1894).
It accounts for sound amplification and scattering by bubble clouds in liquids,
or by any variation in compressibility of the medium.

3. The nonlinear Dp2/Dt term combines with the quadrupole term in the last
line of (3.20) to produce the Westervelt source term of nonlinear acoustics
(Hamilton & Morfey 1997).

(a) Thermoacoustic sources

The monopole source term (∂Q⋆/∂t) in (3.20) is analysed further to show how
temperature gradients lead to thermoacoustic sources. For unsteady flows with
M2 ≪ 1,

∂Q⋆

∂t
= ρ0

∂∆•

∂t
+ O(M2). (5.7)
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12 C. L. Morfey & M. C. M. Wright

Here we have used (5.3), and we are assuming Ke/K0 is O(M2); in other words
any variations of fluid compressibility due to gradients of entropy or composition
are of the same order of magnitude as those due to pressure variations†. We further
assume that external heat sources are absent, so that q̇ = 0. Then in flows with
∆T/T = O(1), the dominant term in ∆• is due to heat conduction:

∆• = −
α

ρcp

∂qi

∂xi

[

1 + O(M2)
]

, (5.8)

giving (for Θ = 1) the following expression for ∆• in (5.7):

∆• H ≈ −
α

ρcp
H

∂qi

∂xi

=
α

ρcp
qin̂iδ(n) + qi

∂

∂xi

(

α

ρcp

)

H−
∂

∂xi

[

α

ρcp
qi H

]

. (5.9)

We shall call these terms ∆•

1, ∆•

2 and ∆•

3. The implications for compact thermoa-
coustic sources are now explored.

(i) Heat flux at a solid boundary

When boundaries are present and ∆•

1 is substituted in (5.7) the normal heat
flux at the boundary, qin̂i = qn (positive into the fluid), leads to a surface monopole
distribution of strength ρ0(α/ρcp)qn per unit area. This result holds for either fixed
or moving boundaries. An oscillating heat flux qn on S is thus acoustically equivalent
to vibrating an impermeable boundary with a normal velocity of (α/ρcp)qn, if terms
in q2

n are neglected.
This source of sound has been discussed by Landau & Lifshitz (1987) using

matched expansions; by Howe (1975, §8) by using volume sources in an acoustic
analogy; and by Kempton (1976, §2), who compared both these methods with a
surface heat flux formulation. The examples discussed by these authors all relate to
the small-amplitude case, with the solid boundary either an infinite plane surface,
or an acoustically compact body. The results from all three methods are equivalent
to the more general result stated here.

The small-amplitude restriction means ∆•

2 → 0; while the other restrictions
make it unnecessary to consider ∆•

3, provided the thermal penetration depth in
the fluid, lκ = (2κ/ωρcp)

1/2, is small in comparison with the acoustic wavelength
λac = 2πc0/ω†. The radiated sound can then be expressed entirely in terms of the
∆•

1 surface source distribution. Note that recognition of the inclusion of ∆•

1 in the
acoustic analogy removes one of Tam’s objections to the latter as a description of
aeroacoustic sources (2002, example 2).

The remainder of this section is concerned with mechanisms of sound generation
where boundaries are not involved. The restriction to small-amplitude disturbances
will be removed, allowing ∆•

2 to become significant.

† In Howe (1998) §2.3.2 such variations are set equal to zero. An extreme case where this
assumption fails is a bubbly liquid. For gases the assumption is reasonable.

† In the case of the plane boundary, use of the Neumann Green’s function eliminates the
contribution of normal dipoles placed on or close to the boundary. The same applies to any solid
body whose radius of curvature is everywhere much greater than lκ, given lκ ≪ λac.
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Extensions of Lighthill’s acoustic analogy 13

(ii) Unbounded flows: perfect gas

In this case, α/ρcp = (γ−1)/γP , where γ is the constant ratio of specific heats.
From (5.2), Ke/K0 = p2/PP0, and either (5.1) or (5.3) lead directly to (5.9) for
flows with M2 ≪ 1. It follows that temperature gradients (as opposed to pressure
gradients) contribute to Q⋆ only through the ∆•

1 term in (5.9), and that

∆•

1 = −
∂

∂xi

[

α

ρcp
qi

]

≈
∂2

∂x2
i

F (T, P0) (5.10)

where the error is a divergence term, of relative order M2. Here

F (T, P0) =

∫ T

T0

(

κα

ρcp

)

T ′,P=P0

dT ′

=
γ − 1

γP0

∫ T

T0

κ(T ′, P0) dT ′. (5.11)

Thus
∂∆•

1

∂t
≈

(

γ − 1

γP0

)

∂2

∂x2
i

[

κ(T, P0)
∂T

∂t

]

. (5.12)

Equation (5.12) shows that in the absence of boundaries, temperature equilibra-
tion of hot spots in a heat-conducting perfect gas produces an equivalent source
distribution that is linear in ∂T/∂t, but is of quadrupole order. Combined with
the (γP0)

−1 = (ρ0c
2
0)

−1 coefficient, which introduces an additional M2 factor, this
makes the radiation extremely weak even if the quadrupole strength

∫

κ(T, P0)
∂T

∂t
dV (5.13)

is non-zero when the integral is evaluated over the entire source region.†

(iii) Unbounded flows: general fluid

Whenever the quantity

ǫ =
α

ρcp
=

(

∂V

∂h

)

P

(5.14)

(where h is the specific enthalpy and V = ρ−1) is a function ǫ(P ) of pressure alone,
the arguments given in (ii) above for a perfect gas remain valid and there is no
monopole source ∆•

2, other than an O(M2) contribution from the pressure depen-
dence of ǫ. However if α/ρcp = ǫ(T, P ), with a significant temperature dependence
at constant pressure (as in water, for example), (5.9) with H = 1 gives

∆•

2 ≈ qi
∂T

∂xi
ǫT = −κǫT

(

∂T

∂xi

)2

,

(

where ǫT =

(

∂ǫ

∂T

)

P

)

. (5.15)

† Note, however, that in the small perturbation limit the temperature Ts associated with the
entropy mode obeys

∂Ts

∂t
= ∇2

(

κ0

ρ0Cp,0

Ts

)

,

so a linearised estimate of (5.13) leads to the conclusion that thermal diffusion in a perfect gas is
at least a sextodecimopole (order 4) sound source. In fact its main effect is to cause attenuation
of sound.
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14 C. L. Morfey & M. C. M. Wright

This is a nonlinear contribution to ∆•, whose instantaneous volume integral does not
vanish. Fluctuations of this quantity (or, rather, its volume integral) in turbulent
mixing will act as a monopole source of sound, analogous to fluctuations in the
quantity ∆•

µ that measures the rate of thermal expansion due to unsteady viscous
dissipation (equation (5.4)).

Note that in a dilute (ideal) gas, ǫ = (γ − 1)/γP with γ = γ(T ), and in air the
equilibrium value of γ varies on account of the partially-excited vibrational degrees
of freedom of N2 and O2. There is an issue—first raised by Kempton (1976)—
as to how far the equilibrium partial excitation of energy is maintained in air at
audio frequencies. Thus although in principle the ∆•

2 term acts as a monopole
source of sound when hot and cold air mix in an unsteady manner, the situation is
more complicated than the present analysis (based on equilibrium thermodynamics)
indicates.

(iv) Reacting and diffusing mixtures

A monopole source term analogous to ∆•

2 is also present in general when un-
steady mixing occurs between two fluids of different composition; details are given in
Morfey (1976). Note, however, that isothermal mixing of two different ideal gases is
a special case, for which the monopole strength vanishes. A bursting helium balloon
makes no noise unless it is under pressure!

6. Conclusions

Appendix A. Second time-derivative of a windowed field

variable

The first step is to note that

∂2ξ

∂t2
=

∂

∂t
[ξ H δ(t)] +

∂

∂t

[

Θ
∂

∂t
(H ξ)

]

. (A 1)

The quantity (∂/∂t)(H ξ) can be rewritten in terms of the material derivative of ξ
by using the identity (2.7). Applying this to H ξ gives

∂

∂t
(H ξ) =

D

Dt
(H ξ) −

∂

∂xi
(ξui H) + H ξ∆

= ξ
DH

Dt
−

∂

∂xi
(ξui H) + H

(

Dξ

Dt
+ ξ∆

)

. (A 2)

When (A 2) is substituted in (A 1) a term containing (∂/∂t)(ξui H) appears. We
can rewrite this by again using (2.7):

∂

∂t
(ξui H) =

D

Dt
(ξui H) −

∂

∂xj
(ξuiuj H) + ξui H∆

= ξui
DH

Dt
−

∂

∂xj
(ξuiuj H) + H

(

Dξ

Dt
ui + ξ

Dui

Dt
+ ξui∆

)

. (A 3)
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Extensions of Lighthill’s acoustic analogy 15

We therefore have

∂2ξ

∂t2
=

∂

∂t
[ξ H δ(t)] −

∂

∂xi
[ξui H δ(t)] +

∂

∂t

(

ξ
DH

Dt
Θ

)

−
∂

∂xi

(

ξui
DH

Dt
Θ

)

+
∂

∂t

(

Dξ

Dt
+ ξ∆

)

−
∂

∂xi

[

ξ
Dui

Dt
+ ui

(

Dξ

Dt
+ ξ∆

)

]

+
∂2

∂xi∂xj

(

ξuiuj

)

.

(A 4)

Appendix B. Generalized Lilley–Goldstein equation

(a) The exact Goldstein analogy for an ideal fluid

Goldstein (2001) produced an exact acoustic analogy equation that is more
general than (3.20), in that the base flow is a parallel, steady, streamwise-uniform
shear flow:

ũi = U(x2, x3) δ1i, ρ̃ = ρ̃(x2, x3), c̃ = c̃(x2, x3). (B 1)

Here a tilde denotes base-flow variables†, and x1 is the streamwise direction. Gold-
stein’s equation has the form

L(π) = Q (B 2)

in which π (defined below) is a wave variable related to pressure, L is a modified
version of the Lilley–Goldstein convected wave operator (Lilley 1974, Goldstein
1976, Tester & Morfey 1976), and Q is a source term that is nonlinear in the
quantities

u′

i = ui − ũi, (c2)′ = c2 − c̃2, and π.

The advantage of Goldstein’s equation is that it is able to model both refraction
in strongly-sheared flows, and amplification of aerodynamic sound by velocity and
density gradients in the source region (Balsa 1977, Kempton 1977, Tester & Morfey
1976), as consequences of the linear wave operator L (rather than via additional
source terms Q). At the same time it is exact within the limitations of the fluid
model used, which are:

1. The isentropic compressibility 1/ρc2 = K is a function K(P ) of the pressure
alone, i.e. the fluid is barotropic with respect to K.‡

2. The fluid is inviscid and non-conducting.

Here we aim to show how Goldstein’s source term Q relates to the source identified
in (3.20) as

−
∂

∂xi

[

(ρ − ρ⋆)

ρ

∂p

∂xi

]

= −
∂Fi

∂xi
, say, (B 3)

where Fi is an equivalent body force (per unit volume) applied to a uniform ideal
fluid at rest. The corresponding term in Q (Goldstein 2001) is¶

−
D̃

Dt

(

∂f̂i

∂xi

)

+ 2
∂

∂x1

(

f̂j
∂U

∂xj

)

, f̂i = −(c2)′
∂π

∂xi
; (B 4)

† Overbars were used in Goldstein (2001) but could here be confused with windowed quantities.
‡ Goldstein (2001) actually assumed the fluid to be a perfect gas, which is a special case of

limitation 1.
¶ A sign error in Goldstein (2001) has been corrected
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16 C. L. Morfey & M. C. M. Wright

here f̂i is an equivalent body force (per unit mass) applied to the base flow, and

D̃/Dt ≡ ∂/∂t + U∂/∂x1. The f̂i expression in (B 4) refers to a perfect gas, but can
be generalized to the barotropic-fluid model of limitation 1 as follows.

(b) Generalized form of Goldstein’s analogy for a barotropic fluid

Given that
1

ρc2
≡

∂ln ρ

∂P

∣

∣

∣

∣

s

= K(P ) (B 5)

we define the isentropic density exponent θ and the isentropic density ρ⋄ as

θ =

∫ P

P0

K(P ′) dP ′ = θ(P ;P0), ρ⋄ = ρ0e
θ = ρ⋄(P ;P0, ρ0); (B 6)

here ρ0, P0 are constant reference values. The continuity and momentum equations
for an ideal fluid described by (B 5), subject to a body force gi per unit mass, are

∂ui

∂xi
= −

1

ρ⋄
Dρ⋄

Dt
, ρ⋄

Duj

Dt
= −c2 ∂ρ⋄

∂xj
+ ρ⋄gj , (B 7)

where D/Dt ≡ ∂/∂t + ui∂/∂xi; the usual fluid dynamic variables P , ρ are replaced
in (B 7) by ρ⋄, c2. These equations are exact, but can nevertheless be reduced to
the same form as the linearized Euler equations with an applied body force fi

by following the steps in Goldstein (2001). The result, expressed in terms of the
‘perturbation variables’

ρ⋄

ρ0

u′

i = mi and
ρ⋄

ρ0

− 1 = π (B 8)

(where π corresponds to Goldstein’s π defined for a perfect gas), is

D̃π

Dt
+

∂mi

∂xi
= 0,

D̃mj

Dt
+ mi

∂ũj

∂xi
+ c̃2 ∂π

∂xj
= fj (B 9)

with the applied body force fj given by

fj = (1 + π)gj − (c2)′
∂π

∂xj
−

∂

∂xi

[

(1 + π)u′

iu
′

j

]

. (B 10)

The second term on the right is the f̂j ‘temperature dipole’ found by Goldstein
(2001) and given in (B 4). Its equivalence to a body force driving small-amplitude
perturbations to the base flow is seen by comparing it with the first term.

It is straightforward to eliminate mi from (B 9) to obtain a Lilley–Goldstein
equation that is exact, given assumptions 1 & 2 above. Since ρ̃c̃2 is a constant
throughout the base flow, the π variable of (B 8) can be exchanged for a pressure-
like variable,

p+ = ρ̃c̃2π = ρ̃c̃2
(

eθ − 1
)

. (B 11)

In a region of small-amplitude pressure disturbances, where (p/ρ̃c̃2) = ζ ≪ 1,
p+ ≈ p. Specifically

p+ = p
[

1 + (β − 1)ζ + O(ζ2)
]

(B 12)
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Extensions of Lighthill’s acoustic analogy 17

where β is the coefficient of nonlinearity c−1 (∂(ρc)/∂ρ)s = 1

2
[1 − K ′(P )/K2(P )],

evaluated at P̃ = P0. The exact shear-flow analogy in terms of p+ is

L(p+) = ρ̃Q, Q = −
D̃

Dt

(

∂fi

∂xi

)

+ 2
∂

∂x1

(

fj
∂U

∂xj

)

(B 13)

where L is the Lilley–Goldstein operator:

L ≡
D̃

Dt

[

1

c̃2

D̃2

Dt2
− ρ̃

∂

∂xi

(

1

ρ̃

∂

∂xi

)

]

+ 2
∂

∂x1

(

∂U

∂xj

∂

∂xj

)

. (B 14)

The operator L is given here in the generalized form introduced by Tester & Morfey
(1976) for small perturbations to an arbitrary fluid in parallel shear flow; for 2D
or axisymmetric base flows it reduces to the Pridmore-Brown operator (in x2 or
r respectively), on Fourier transformation with respect to the other independent
variables.

(c) Comparison of dipole terms in Goldstein and Lighthill analogies

We now compare the (c2)′ term in (B 10), i.e. the equivalent body force per unit
mass

f̂i = −(c2)′
∂π

∂xi
, (B 15)

with its counterpart from (B 3), namely the force per unit volume

Fi =
(ρ − ρ⋆)

ρ

∂p

∂xi
. (B 16)

The squared sound speed in (B 15) is related to the isentropic compressibility by

c2 =
1

K(P )

1

ρ
. (B 17)

Because K is assumed to depend only on P (unlike ρ), we can expand c2(K, ρ) in
powers of α = K/K̃ − 1, where K̃ is the base-flow compressibility: thus

(c2)′ =
1

(1 + α)K̃ρ
−

1

K̃ρ̃

=
1

K̃
(V − Ṽ − αV )[1 + O(α2)], (α ∼ ζ ≪ 1). (B 18)

Here V = 1/ρ denotes the specific volume of the fluid. The gradient of π in (B 15)
is related to the gradient of p via (B 11, B 12); also α is related to ζ by

α = (1 − 2β)ζ + O(ζ2) (B 19)

for the present fluid model (B 5). Combining these results shows that Goldstein’s

f̂i temperature dipole in (B 15) is equivalent to an applied force per unit volume

ρ̃f̂i =
1

ρ

∂p

∂xi

{

̺e − 2(β − 1)ρ[ζ + O(ζ2)]
}

, (B 20)
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18 C. L. Morfey & M. C. M. Wright

with ̺e = ρ − ρ̃ − p/c̃2 defined by analogy with (B 16).
Even when the base flow is reduced to a uniform fluid at rest, i.e.

ρ̃ → ρ0 (= const.), c̃ → c0 (= const.), ũi → 0, −L →
∂

∂t
�

2, (B 21)

minor differences remain between the equivalent body force (B 20) in the exact
Goldstein analogy, and (B 16) obtained via the Lighthill analogy in §??. A possible
reason is the difference in wave variable, although p+ ≈ p in the acoustic far field.
In addition, the Goldstein source terms in (B 13) lack an explicit monopole compo-
nent corresponding to Q in (3.20) and (5.3). The latter expression reduces, under
the same conditions assumed in deriving the Goldstein analogy, to the nonlinear
monopole

QNL = (β − 1)ρ0K
2
0

Dp2

Dt
[1 + O(ζ)], (B 22)

whereas the Goldstein body force in (B 20) exceeds the Lighthill-analogy version
(B 16) by a nonlinear contribution

FNL
i = −(β − 1)K0

∂p2

∂xi
[1 + O(ζ)], (B 23)

when (B 21) is applied. Since the corresponding source terms in �
2p (or �

2p+) =
−q are ∂QNL/∂t (Lighthill) and −∂FNL

i /∂xi (Goldstein), the difference to leading
order is

∂QNL

∂t
+

∂FNL
i

∂xi
≈

β − 1

ρ0c2
0

�
2p2 ≈ �

2(p+ − p). (B 24)

Equation (B 24) shows that the apparent discrepancy between the dipole terms in
the two analogies is counteracted by an additional monopole term in the Lighthill
formulation, leaving a residual source term that represents the near-field difference
between p+ and p as in (B 12). Thus for purposes of far-field radiation the Goldstein
body force (B 15) effectively combines the dipole and monopole source terms given
by (3.20), given that the fluid is ideal with K = K(P ).

M. C. M. Wright was supported by an EPSRC Advanced Research Fellowship.
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