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Abstract

This paper describes a polynomial transformation for a class of unit-demand vehicle routing problems,
named node-balanced routing problems (BRP), where the number of nodes on each route is restricted to
be in an interval such that the workload across the routes is balanced. The transformation is general in
that it can be applied to single or multiple depot, homogeneous or heterogeneous fleet BRPs, and any
combination thereof. At the heart of the procedure lies transforming the BRP into a generalized traveling
salesman problem (GTSP), which can then be transformed into a traveling salesman problem (TSP). The
transformed graph exhibits special properties which can be exploited to significantly reduce the number
of arcs, and used to construct a formulation for the resulting TSP that amounts to no more than that of a
constrained assignment problem. Computational results on a number of instances are presented.
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1 Introduction

Much ink has been spilt on describing transformations of routing problems into the traveling salesman
problem (TSP) in the earlier days, starting with the work of Bellmore and Hong (1977); Hong and Padberg
(1977); Jonker and Volgenant (1988) and Rao (1980) for the multiple TSP (mTSP), but only intermittently
continued by others for extensions of such problems (see, e.g., GuoXing, 1995; Behzad and Modarres, 2002;
Benavent and Martinez-Sykora, 2007). The principle behind these transformations is to exploit the state-of-
the-art solution techniques available for the resulting problem after transformation (e.g., the TSP), in order
to solve the problem to be transformed (e.g., the mTSP). For further details on transformations of the mTSP,
see Bektaş (2006). With the development of problem-specific solution algorithms, however, these transfor-
mations have not seen a large take-up. This paper aims to resurrect this line of research by describing a
non-intuitive transformation for a problem that has practical significance.

What we name here as the node-balanced routing problem (BRP) is a vehicle routing problem (VRP) with unit
demands, where the number of nodes visited on each route is bounded by an interval. This is in contrast to
the classical setting of the VRP wherein a lower bound, in addition to the generally imposed upper bound
(often prescribed to indicate capacity limits on the vehicles), appears as a constraint. If the workload on
a route is defined by the number of customers visited on that route, then balancing the workload across
the routes can be achieved by tightening the lower and the upper bound. Here, we differentiate between
the BRP with single or multiple depots, and with homogeneous or heterogeneous fleet, where the latter
differentiation is made with respect to the lower and upper bounds individually imposed on each vehicle.
If these bounds are uniform across the fleet, then it is said to be homogeneous. Otherwise the fleet is
heterogeneous.

1Corresponding author.
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This problem finds applications in settings where the times spent at customer nodes is significantly more
than that of travel, for example home installations or repairs. One real-world application of the BRP is
described by Okonjo-Adigwe (1988), which arises in transporting 38 passengers, three of which are wheel-
chair users, by using four vehicles one of which is an ambulance and the only vehicle that can carry the
wheel-chair users. The vehicles have different capacities, giving way to a heterogeneous BRP. The aim of
the problem is to improve the distribution of workload amongst drivers, for which reason a lower bound
on the number of capacity usage of each vehicle has been introduced, so that tours carrying very few
passengers are avoided in a solution to the problem. A particular and interesting application arises in meter-
reading for utility companies, namely the balanced billing cycle vehicle routing problem studied by Groër et al.
(2009), where, in addition to the primary goal of reducing the total length of the routes, a secondary goal
of balancing the routes both in terms of length and the number of visits was considered. The authors solve
the problem using a combination of heuristics and integer programming. A more recent and relevant work
is by Kritikos and Ioannou (2010), who present a balanced cargo vehicle routing problem with time windows,
the objective of which is to minimize the number of vehicles, the total distance traveled and to balance the
load carried by the vehicles. The latter objective has been modeled by minimizing the sum of the absolute
value of the load of each vehicle from an estimated average load. An industrial application of the problem
has been presented, which includes 1943 customers and a fleet of 72 vehicles, and which has been solved
using a heuristic algorithm. This problem is a generalized version of the BRP in that the loads are general
(as opposed to unit) and there are time window restrictions in place.

The BRP is also relevant in routing problems where vehicle or driver utilization is of concern. Impos-
ing a lower bound can avoid solutions where some routes are heavily under-utilized with respect to their
capacity. For example, Calvete et al. (2007) study a multi-objective vehicle routing problem with soft time
windows where one of the objectives is to minimize the difference between a vehicle’s capacity and the total
load it carries. We find it pertinent here to quote the following statement, which recognizes the importance
of balanced problems and the lack of studies devoted to it:

“Any company that employs multiple drivers to read meters or deliver goods would like each driver to
individually work near capacity on each day, implying some degree of balance across the work days.
Despite the simplicity and necessity of this objective in a wide variety of scenarios, it appears that only a
handful of papers have considered the issue of balance in any detail (Groër et al., 2009).”

Indeed, while traveling salesman and vehicle routing problems have been widely studied (for an excellent
introduction, see Laporte, 1992a,b; Toth and Vigo, 2002; Laporte, 2007; Cordeau et al., 2007), the BRP has
been much less so. Gouveia et al. (2013) studied the single-depot homogeneous fleet BRP by presenting an
integer programming formulation that uses so-called reverse, rounded reverse and enhanced reverse multi-
star inequalities, which are then used within a Branch-and-Cut algorithm devised to solve the problem. The
authors presented computational results for 46 BRP instances with changing bounds. Later, Gouveia and
Salazar-González (2013) presented a compact formulation that has the same LP relaxation value as the for-
mulation using enhanced reverse multistar inequalities and a separation algorithm for the same inequalities
that runs in polynomial time. Bektaş (2012) described alternative formulations and Benders Decomposition
algorithms for the multi-depot homogeneous fleet BRP. To the best of our knowledge, the heterogeneous
fleet extension of the problem, either with single or multiple depots, has not yet been investigated, although
real-life applications, such as those discussed above, involve such features.
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This paper takes a general approach to solve all four variants of the BRP by describing a “one-size-fits-all”
transformation of the problem into a Generalized Traveling Salesman Problem (GTSP). The resulting GTSP
can then be transformed into a TSP, which in itself poses challenges to solve in terms of the size of the
resulting instance. By identifying and exploiting special properties of the the transformation graph, we
show that the resulting TSP can be formulated as a constrained assignment problem, where the number of
additional constraints are no more than the number of clusters in the corresponding GTSP. We also present
computational results in solving a number of different types of BRP instances to show the efficiency of
transformation.

The rest of the paper is organized as follows. Section 2 first introduces the notation, then describes the
transformation for the variants of the problem. We present some special properties of the transformed
graph in Section 3. Computational results are presented in Section 4 and conclusions are given in Section 5.

2 Problem description and transformations

A formal description of the BRP is as follows. Let V = {1, . . . , n} be the set of nodes (customers) to be
visited, each with a demand for a single unit of a commodity. Let D = {d1, d2, . . . , dw} be the set of depots
where w is the total number of depots. There exist mk vehicles based at depot dk where k ∈ {1, . . . , w}.
G(V ′, A) is a graph with V ′ = V ∪ D as the set of nodes and A = {(i, j)|i ∈ V ′, j ∈ V ′} \ {(i, j)|di ∈
D, dj ∈ D} as the set of arcs. For each (i, j) ∈ A, cij denotes the cost of traveling from node i to node j. We
allow either a symmetric or an asymmetric structure on the costs. Let Qk,r

min and Qk,r
max be the minimum and

maximum number of customers to be served by vehicle r ∈ {1, . . . ,mk} of depot dk ∈ D, respectively. The
BRP consists of finding m routes all starting from and ending at their origin depots such that the number
of customers visited on each route is between the predefined lower and upper bounds, and each customer
is visited exactly once by any vehicle. The objective is to minimize the total cost of travel.

The procedure we propose and describe below transforms the BRP into the GTSP, which is a problem de-
fined on a graph where the set of its nodes is partitioned into clusters, and the problem seeks a minimum
cost Hamiltonian path which visits exactly one node from each cluster (Noon and Bean, 1993). In the ensu-
ing exposition, we start by illustrating the transformation for the single depot problem with homogeneous
fleet in Section 2.1. Sections 2.2 and 2.3 then show how the transformation applies to the cases with multiple
depots and a heterogeneous fleet of vehicles, respectively.

2.1 Single depot and homogenous fleet

This section concerns the BRP with a single depot, i.e., w = 1. To simplify the notation, we omit the
indices and denote the depot by d and the total number of routes by m. As the fleet is homogeneous,
we use Qmin and Qmax to denote to the minimum and maximum number of customers allowed on each
route, respectively. We use the notation BRP(G,m,Qmin, Qmax) to refer the corresponding balanced routing
problem defined on graph G(V ′, A).
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We first note that the BRP(G,m,Qmin, Qmax) has a feasible solution if the following condition holds:⌈
n

Qmax

⌉
≤ m ≤

⌊
n

Qmin

⌋
. (2.1)

In (2.1),
⌈

n
Qmax

⌉
(
⌊

n
Qmin

⌋
) provides the minimum (maximum) number of vehicles needed to visit all the

customers. We assume that the lower and upper bounds on the number of customer per route are tight,
i.e., Qmin ≥ n − (m − 1)Qmax and Qmax ≤ n − (m − 1)Qmin. If either of these inequalities is not satisfied,
say Qmin < n − (m − 1)Qmax, then, this implies m − 1 routes are used at maximum capacity and there
remain at least Qmin customers to be served on remaining route. In this case, Qmin can be tightened as
n− (m− 1)Qmax.

The transformation of the BRP(G,m,Qmin, Qmax) into a GTSP that we propose here results in a graph
GG(VG, AG), which has the following set of nodes and arcs:

1. Clusters and Nodes: The set of nodes VG is formed by three sets of clusters, as explained below:

• 2m copies of the depot d, denoted by {d1, . . . , d2m}, each node in itself forming a (singleton)
cluster,

• A dummy “sink” node t connected to the first (d1) and the last (d2m) copies of the depot, which
is in itself a (singleton) cluster and serves as the main depot of the GTSP, and

• n clusters, each holding mQmax copies of node j ∈ {1, . . . , n}, and is denoted by the set below:

V j
G = {j11 , . . . , jm1 , j12 , . . . , j

m
2 , . . . , j1Qmax

, . . . , jmQmax
}.

In this representation, the superscript denotes the number of the route in the BRP solution that
node j belongs to, and the subscript denotes its position on the route. In other words, jrq is a
copy of node j ∈ V that appears in the qth position on route r = 1, . . . ,m. Each cluster V j

G in
the transformed graph is constructed in such a way so as to be able to identify the route and the
position on the route on which node j is visited in the corresponding BRP solution.

The above construction results in a total of |VG| = 2m+1+Qmaxmn nodes and in 2m+n+1 clusters
in the transformed graph. Figure 1 depicts the structure of the resulting graph.

2. Arcs and Arc Costs: The transformation results in a graph that is defined with respect to a subset of the
whole set of arcs, where the arcs and arc costs are defined as follows. For every r = 1, . . . ,m, there
is an arc from node d2r−1 to node ir1 for each i ∈ V in the original graph, and there is an arc from
each node irQmin

, . . . , irQmax
to node d2r. From each node d2r originates an arc, leading to node d2r+1

if r = 1, . . . ,m− 1 or to node t if r = m. Finally, the transformed graph includes arcs (irs, jrs+1) for all
s = 1, . . . , Qmin − 1 and r = 1, . . . ,m.

In line with the above definitions, all arc costs, except for those that are defined below, are set to∞.
In the below, ha denotes the cost of an arc a ∈ AG. For every r ∈ {1, . . . ,m}, q ∈ {1, . . . , Qmax}, we
also define Sr

q = {1rq, . . . , nr
q} to represent subsets of node copies that are allowed to be visited in the

qth position of route r.
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Figure 1: Nodes and clusters of the GTSP after the transformation of a BRP(G,m,Qmin, Qmax).

• Costs between copies of the depot and other nodes are defined as follows. Arcs (t, d1) and (d2m, t)

have a cost equal to 0. The cost of an arc connecting a copy of a depot and a copy of a customer
node is defined as follows,

hd2r−1,j =

{
cdj′ if j ∈ Sr

1

∞ otherwise

hj,d2r =

{
cj′d if j ∈

⋃Qmax

q=Qmin
Sr
q

∞ otherwise,

where r ∈ {1, . . . ,m} denotes the index of a route, j′ is a customer node of the BRP and j is one
of its copies in the GTSP graph. Finally, in order to be able to connect the routes, the cost of arc
(d2r, d2r+1) is set equal to 0 for all r = 1, . . . ,m− 1.

• Intra-customer costs are defined as follows:

hj,i =

{
cj′i′ if j ∈ Sr

q , r ∈ Sr
q+1, j

′ 6= i′, r ∈ {1, . . . ,m} and q ∈ {1, . . . , Qmax − 1}
∞ otherwise,

where j′ (i′) is the customer in the BRP and j (i) one of its copies in the GTSP.

The resulting GTSP after the transformation is denoted by GTSP(GG). In what follows we define a corre-
spondence between the BRP(G,m,Qmin, Qmax) and GTSP(GG).

Lemma 2.1 A feasible solution sB of the BRP(G,m,Qmin, Qmax) corresponds to m! solutions of the GTSP(GG)

with the same cost.

Proof Let Rr = {d, vr1, . . . , vrzr , d} be a given route of sB , defined for each r = {1, . . . ,m}, where each route
starts and ends at the depot and the number of customers zr = |Rr| − 2 visited on this route is such that
Qmin ≤ zr ≤ Qmax and

∑m
i=r zr = n. We will show that route Rr can be represented in the graph GG in m

different ways. This is done by observing that the routes in the GTSP start from node dj , j ∈ {1, . . . , 2m}
with j odd. There are therefore m possibilities to represent route Rr using a path in the GTSP. In the
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transformation graph, we assign the number j+1
2 to a route that originates at node dj and ends at dj+1 for

some j ∈ {1, . . . , 2m}, with j odd. For example, route R1 could originate at node d1 and end at node d2,
similarly for route R2 starting at node d3 and ending at node d4, and more generally route Rr starting at
node d2r−1 and ending at node d2r. Then, route R j+1

2
in sB can be mapped to a path PGTSP

j+1
2

in the GTSP as
follows:

PGTSP
j+1
2

= {dj , vr,
j+1
2

1,1 , . . . , v
r, j+1

2
zr,zr , d

j+1}, (2.2)

where the path j+1
2 specifies the succession of the nodes visited on this route, on which v

i, j+1
2

1,1 is the first

copy of customer vr1 and v
i, j+1

2
zr,zr denotes the zth

r copy of customer vrzr and so on. Then, by construction, route
Rr will have the same cost of the cost of path PGTSP

j+1
2

in the GTSP.

We use this procedure to map each one of the m routes of sB , which results in m paths in the GTSP in such
a way that the total cost of these paths has the same cost as sB . In order to complete the main route of the
GTSP, the m paths are connected using the following arcs:

• Connections between routes use arcs (dj , dj+1) for all j ∈ 2, . . . , 2m− 2 with j even,

• Connections with the sink cluster t use arcs (t, d1) and (d2m, t).

Note that the two sets of arcs above always appear in an optimal solution of the transformed GTSP. Since
the m routes used in sB of the BRP are disjoint, i.e., no customer appears on two different routes, a solution
is obtained for the GTSP with the same cost as sB , where each route of sB corresponds to path PGTSP

r for
some r = 1, . . . ,m. The fact that r can take m different values corresponding to the odd numbers between
1 and 2m− 1, yields the result that there exist m! solutions of the GTSP corresponding to sB .

Let us denote by zBRP the cost of the optimal solution of a BRP instance. The proof of Lemma 2.1 implies
the following result.

Corollary 2.2 zBRP ≥ zGTSP , where zGTSP is the cost of the optimal solution of the transformed GTSP solution.

We now present a new lemma establishing the relationship between the cost of the BRP instance and the
cost of the GTSP.

Lemma 2.3 zBRP = zGTSP .

Proof Let us consider an optimal solution sG of the transformed GTSP. We first observe that this solution
uses arcs (t, d1), (d2m, t) and arcs (dr, dr+1) for r = 2, . . . , 2m − 2 with r even, since these are the only arcs
visiting such nodes with cost less than ∞. If these arcs are removed from the solution sG, the remaining
arcs form m paths, each one starting from a node dr and ending at node dr+1, for r ∈ {1, . . . , 2m− 1} with
r′ odd. We now build a route Rr for each r ∈ {1, . . . , 2m− 1}, r odd, as follows:

1. From copy dr of the depot, the route in the GTSP must visit copy ir1 of any customer i′ ∈ {1, . . . , n}.
Therefore, i′ is the first customer visited by route Rr.

2. From each node irq , q = 1, . . . , Qmin − 1, the route must visit another copy lrq+1 of any customer l ∈
{1, . . . , n} for which corresponding customer node l ∈ V has not previously been visited. Otherwise,
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the cluster would be visited more than once and is not a feasible solution of the GTSP. The rest of the
arcs that originate from copies irq , q = 1, . . . , Qmin − 1 have an∞ cost and therefore will not appear
in an optimal solution. At this point, therefore, the first Qmin customers of route Rr will have been
identified. Let us now denote customer in position Qmin visited in Rr by i′′ ∈ V .

3. From each customer irq , q = Qmin, . . . , Qmax − 1 the route can visit either another copy lrq+1 of any
customer l ∈ {1, . . . , n} as before or the copy of the depot dr+1 where the GTSP path corresponding
to route Rr would end at.

4. From each customer irQmax
, the route must visit depot dr+1, as any other arc originating from node

irQmax
have an ∞ cost and would therefore not appear in sG. Note that with this cost structure we

guarantee that any path that is formed between copies of depots dr and dr+1 visits at most Qmax

copies of different customers. Let us denote by i′′′ ∈ V the last customer visited in Rj . Then, solu-
tion sG uses the arc (i

′′′r
q , dr+1) where q ∈ {Qmin, . . . , Qmax} so that route Rr is mapped onto path

{d, i′, . . . , i′′ , . . . , i′′′ , d}.

In conclusion, any solution of the GTSP with a cost lower than∞ can be transformed into a solution of the
BRP using the procedure defined above, which shows zBRP ≤ zGTSP . This result, combined with that of
Lemma 2.1, proves zBRP = zGTSP .

An illustrative example of the transformation is given in Figure 2, where the lower half shows a feasible
solution of a BRP instance defined on a graph with eight customers denoted by the node set {1, . . . , 8} and a
single depot d, on which three routes R1 = {d, 1, 4, d}, R2 = {d, 3, 2, d} and R3 = {d, 5, 7, 6, 8, d} are shown.
Using the procedure described above, six different solutions for the corresponding GTSP can be built, one
of which is shown in the upper half of Figure 2. In this instance, arcs (t, d1), (d2, d3), (d4, d5) and (d6, t) have
cost equal to 0.

2.2 Multiple depots

The multiple depot variant of the BRP is denoted as BRP(G,m1, . . . ,mw, Qmin, Qmax). Similar to the single
depot variant, an optimal solution seeks mi routes originating and returning to each depot di ∈ D =

{d1, . . . , dw} where the number of customers on each route is between Qmin and Qmax and each customer
is visited exactly once.

The transformation is fundamentally the same as in the single depot case and the transformed graph GG has
the same structure as defined above. In what follows we only point out the differences. We also omit any
illustrations here since the main idea remains the same. The number of copies of each customer depends
on the total number of routes mT =

∑w
i=1 mi and Qmax. Each cluster V k representing customer k consists

of mTQmax copies. As before, two copies of a depot are needed for each route of that depot, resulting in
a total of 2mT copies of depots denoted by d11, . . . , d

2m1
1 , d12, . . . , d

2m2
2 , . . . , d1w, . . . , d

2mw
w . Each copy of each

depot represents one cluster. The sink node t is again needed in order to construct a single route for the
GTSP.

The intra-cost arcs among the customers are the same as in the single depot case. In its general form, let
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r ∈ {1, . . . ,mi} be the index of a route based on depot di. Then:

hd2r−1
i ,j =

{
cdij′ if j ∈ Sr

1

∞ otherwise,

hj,d2r
i

=

{
cj′di

if j ∈
⋃Qmax

q=Qmin
Sr
q

∞ otherwise.

In order to connect the routes we consider a cost of 0 for arcs (d2ri , d2r+1
i ), r = 1, . . . ,m− 1 and (d2mi

i , d1i+1),
i = 1, . . . , w − 1. The last copy of the last depot d2mw

w is connected to the sink node t.

Similar results to what is presented in Lemmas 2.1 and 2.3 also apply in this case in that one can show
that the optimal value of the BRP(G,m1, . . . ,mw, Qmin, Qmax) is the same as the optimal value of the cor-
responding GTSP on the transformed graph.

2.3 Heterogenous fleet

This section shows the application of the transformation to the single depot BRP with a heterogenous fleet.
In the context of node-balancing, we define the heterogeneity of the fleet relevant to the lower and upper
bounds on the number of customers each vehicle is required to visit. In particular, these bounds are pre-
scribed as Qr

min and Qr
max, respectively, for each r ∈ {1, . . . ,m}. This variant of the problem is denoted

by BRP(G,m,Q1
min, . . . , Q

m
min, Q

1
max, . . . , Q

m
max), where the previously stated objective and the constraints

remain the same.

As before, the main structure of the transformation does not change here. In particular, the number of
copies made for each customer is

∑m
r=1 Q

r
max, which corresponds to the number of nodes in the cluster

representing the copies of that customer node. Then, the first Q1
max copies of one customer represent the

different Q1
max potential positions of the given customer in the first route R1 (i.e, the route associate to the

first vehicle). Similarly, copies Q1
max + 1 to Q2

max correspond to those visited by the second vehicle (route
R2), and so on. The total number of copies of depot d is 2m, i.e, two copies per route. The sink node t

also appears here and it has been defined previously. What is different in this case is the set of customers,
which requires redefining the cost of the arcs between customers, depots and the intra-customers costs. The
structure of the clusters in this case are modified as V i

G = {i11, . . . , i1Q1
max

, i21, . . . , i
2
Q2

max
, . . . , im1 , . . . , imQm

max
} for

each i = 1, . . . , n. The definition of Sr
q = {1rq, . . . , nr

q}, r ∈ {1, . . . ,m}, q ∈ {1, . . . , Qr
max} remains as before.

The following costs are defined for each route r ∈ {1, . . . ,m},

hd2r−1,j =

{
cdj′ if j ∈ Sr

1

∞ otherwise

hj,d2r =

{
cj′d if j ∈

⋃Qr
max

q=Qr
min

Sr
q

∞ otherwise.

The intra-cost arcs among the customers are the same as in the single depot and homogeneous fleet case.
After the above modifications, the resulting problem resembles the homogeneous version and the transfor-
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mation described in Section 2.1 can be applied. As before, the correspondence between the optimal value
of the BRP(G,m,Q1

min, . . . , Q
m
min, Q

1
max, . . . , Q

m
max) and the optimal value of the corresponding GTSP can

be shown in a way that is similar to Lemmas 2.1 and 2.3.

Using a combinations of the procedures defined in Sections 2.2 and 2.3, one can also address the fourth
variant of the BRP with multiple depots and heterogenous fleet, the details of which we do not present here.
In the next section we present some properties of the transformation graph and a further transformation to
the TSP.

3 Properties of the transformation graph

The transformation presented above results in a GTSP, which can then be transformed into the asymmetric
TSP. Consequently, any algorithm available for the TSP, exact or heuristic, can be used to solve the trans-
formed problem. However, the number of nodes in the transformed graph might render such an approach
impractical. In this section, we will make observations on the special structure that the transformation
graph exhibits and show how this particular structure can be exhibited to formulate the resulting TSP with
far less number of variables than what would normally be required, and only using a polynomial set of
constraints.

Whilst there exist a number of procedures proposed to transform the GTSP into the TSP (see, e.g., Noon
and Bean, 1993; Dimitrijević and Šarić, 1997; Laporte and Semet, 1999), we choose the one proposed by
Behzad and Modarres (2002) for the very reason that it is, to the best of our knowledge, the only one
which does not result in an increase in the number of nodes of the GTSP. As we will show in the below,
the original transformation graph GG already has a significantly large number of nodes, but one which is
highly sparse and with a special structure. We now provide more details about the Behzad and Modarres
(2002) transformation for the sake of completeness. The principle behind the transformation is to build
intra-cluster cycles for each cluster of the GTSP containing two or more nodes with a 0 cost. Let GATSP =

(VATSP , AATSP ) be the graph obtained after applying the Behzad and Modarres (2002) transformation. The
set of nodes is the same as in the GTSP, i.e, VATSP = VG. However, the set of arcs and the costs are modified
as follows:

• Clusters containing two or more nodes in GG are V i
G, i = 1, . . . , n. Successors of nodes irq , for q =

1, . . . , Qmax and r = 1, . . . ,m for the single-depot homogeneous BRP, for q = 1, . . . , Qr
max and r =

1, . . . ,m for the single-depot heterogeneous BRP, and for r = 1, . . . ,mT for the multiple depot BRPs,
are defined as follows:

– If q < Qmax (or if q < Qr
max in the case of heterogeneous fleet), then the successor is irq+1,

– If q = Qmax (or if q = Qr
max in the case of heterogeneous fleet) and r < m (or if r < mT in the

case of multiple depots), then the successor is ir+1
1 ,

– If q = Qmax (or if q = Qr
max in the case of heterogeneous fleet) and r = m (or if k = mT in the

case of multiple depots), then the successor is i11.

• The set of arcs among clusters is the same as before. However, the costs are different. If hij is the cost

10



of arc (i, j) ∈ AG, then the cost c′(i, j) of arcs of an arc (i, j) ∈ AATSP is defined as follows:

c′(i, j) =

{
0 if nodes i andj belong to the same cluster and j succeeds i,
hjk +M ′ if i and j belong to different clusters and k succeeds j,

(3.1)

where M ′ >
∑

(i,j)∈Aatsp
c(i, j) is a sufficiently large constant used to make sure that exactly b =

2m+ 1 + n arcs in the single depot and b = 2mT + 1 + n arcs in the multiple depot problem are used
in the optimal solution of the transformed ATSP, which correspond to the number of clusters in the
GTSP. The optimal solution values are then related as zGTSP = zATSP −bM ′, where zGTSP and zATSP

represents the objective function value of an optimal solution of the GTSP and the ATSP, respectively.

Finally, the costs of arcs in the ATSP between singleton clusters and copies of the depot (or depots in case
of the multiple depot BRP) and sink node t will be the same as in the GTSP.

The following exposition will, for the sake of simplicity, work on the GTSP obtained from the single depot
and homogeneous fleet BRP denoted BRP(G,m,Qmin, Qmax) and use the notation defined in Section 2.1.
The transformation results in an ATSP with 2m+ 1 +Qmaxmn nodes. The graph of the ATSP transformed
from the illustrative instance shown in Figure 2 is presented in Figure 3.

Figure 3: The graph of the final ATSP for the example shown in Figure 2

3.1 An integer programming formulation

Since many arcs in the GTSP graph have an infinity cost, the resulting graph for the ATSP will be highly
sparse when such arcs are excluded from further consideration. In an integer programming (IP) formulation
of the ATSP, this has implications in significantly reducing the number of binary variables required to
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formulate the problem. This is one of our main motivations in proposing to use an integer programming
formulation to solve the resulting ATSP, using a binary variable xij , defined for each (i, j) ∈ AATSP , which
takes the value 1 if arc (i, j) appears in the solution. The formulation is described below and is named IP1:

Minimize
∑

(i,j)∈AATSP

c′(i, j)xij (3.2)

subject to ∑
j∈VATSP \{i}

xij = 1 ∀i ∈ VATSP (3.3)

∑
i∈VATSP \{j}

xij = 1 ∀j ∈ VATSP (3.4)

∑
j,j′∈V i

G

xjj′ = mQmax − 1 ∀i = 1, . . . , n (3.5)

xij ∈ {0, 1} ∀(i, j) ∈ AATSP . (3.6)

The objective function (3.2) minimizes the total cost. Constraints (3.3) and (3.4) guarantee that each node is
visited exactly once. Constraints (3.5) are defined for each cluster in the GTSP and avoid subtours, which
are tours that are disconnected from the depot, by stating the number of arcs each cluster should contain.
Finally, (3.6) forces to the variables to be binary.

Constraints (3.5) are different to other types of subtour elimination constraints found in the literature and
require further elaboration. Clusters V i

G defined by mQmax copies of each customer i = 1, . . . , n result in a
special structure on the transformed ATSP graph. In particular, there are only few arcs in each cluster V i

G

with cost equal to 0, the rest having a cost equal to∞. If the latter arcs are removed from the formulation,
then the only possibility for a subtour to form would be within arcs of cost 0. Equalities (3.5) serve to
eliminate such intra-cluster subtours by setting the total number of arcs that should be visited within each
cluster in a feasible solution to mQmax − 1, i.e., they force the formation of intra-cluster paths.

Note that since there are several arcs that would appear in our GTSP graph, the following binary variables
will take the value one in all the solutions of the ATSP with an optimal cost:

• xtd1 = 1 and xd2mt = 1,

• xd2rd2r+1 = 1, r = 1, . . . ,m− 1.

We now show that a solution obtained by the formulation IP1 does not contain any subtours.

Lemma 3.1 An optimal solution obtained by IP1 does not contain subtours formed between clusters and is therefore
an optimal solution of the corresponding ATSP.

Proof We first observe that, due to the sparsity of the graph GATSP , no subtour can be formed between
the singleton clusters defined by each node t, d1, . . . , d2m. Therefore, any possible subtour would only be
formed within the nodes corresponding to clusters V i

G or between copies of customers and depots. In the
below, we will first prove that any subtour in which node t appears must visit all the copies of the depots,
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and then show that no subtour can be formed within clusters V i
G, i = 1, . . . , n. All the nodes of the ATSP

will be visited in the same subtour, which will be the TSP tour itself.

Since xtd1 = 1 and xd2mt = 1 in any feasible solution, then d1 and d2m have to be in the same subtour
as node t. By construction, the only nodes reachable from node d1 are given by the set R(d1) = {i11 | i =
1 . . . , n}. All nodes reachable from any node i ∈ R(d1) are R(i) = {j12 | j = 1 . . . , n, j 6= i}. We denote by
R(ik1) = {j1k+1 | j = 1 . . . , n, j 6= i} where k = 1, . . . , Qmin − 1. From copy number iQ1

min
to copy number

i1Qmax−1 the set of reachable nodes is R(ik1) = {i1k+1 | i = 1 . . . , n} ∪ {d2}. In order to define the first route,
the only node reachable from nodes i1Qmax

, i = 1, . . . , n is the node d2. Therefore, the only arcs that can
be used to leave the nodes defining the first route, i1k, i = 1, . . . , n and k = 1, . . . , Qmax, have node d2 as
their destination. By construction of the graph, there do not exist arcs between any node i1k, i = 1, . . . , n,
k = 1, . . . , Qmax and any node ijk, i = 1, . . . , n, k = 1, . . . , Qmax and j = 1, . . . ,m, j 6= 1. Therefore, node
d2 must belong to the same subtour as node t. We now observe that as xd2rd2r+1 = 1, r = 1, . . . ,m − 1, d3

will succeed d2 in any solution, and d3 will be the starting node of the second path. By applying the same
procedure in an iterative fashion, it can be seen that all copies of the depots d1, . . . , d2m appear in the same
subtour in which the sink node t also appears.

We now assume that there exists a subtour between clusters V i
G, i = 1, . . . , n. Given the structure of the

graph, the only possibility for a subtour to appear would be within copies of customers belonging to the
same path in the GTSP. Let k ∈ {1, . . . ,m}. The only way to visit any customer of the set K1 = {i1k | i =
1, . . . , n} is by using an arc originating from node d2k−1, so no node from K1 would be included in the
subtour. In addition, nodes from K2 = {i2k | i = 1, . . . , n} can be visited by using only arcs whose prede-
cessor is a node from K1, so no node of K2 would be in the subtour. By proceeding in a similar and an
iterative fashion, it can be seen that no subtour between clusters V i

G, i = 1, . . . , n can be built, implying that
no subtour will appear in any solution of IP1.

The next property we present is used to reduce the number of binary variables in IP1.

Lemma 3.2 Let IP2 denote the formulation IP1 where constraints (3.6) are replaced by the following:

xi′j′ ∈ {0, 1} ∀(i′, j′) ∈ AATSP , i
′ ∈ V i

G, j
′ ∈ V j

G, i 6= j (3.7)

0 ≤ xi′j′ ≤ 1 ∀(i′, j′) ∈ AATSP , i′ ∈ V i
G, j
′ ∈ V j

G, i = j. (3.8)

Then, there is one-to-one correspondence between the set of integer solutions of formulations IP1 and IP2.

Proof Proof of Lemma 3.2 Since any cluster V i
G, i = 1, . . . , n is visited exactly once, then there exist only two

arcs incident to any node of the cluster. In the presence of equalities (3.5), there can only be mQmax−1 arcs in
the cluster, which enforces the formation of a path within a cluster. All arcs on the path will therefore attain
the value of 1 in the solution, regardless of whether there is integrality requirements on the corresponding
arc variables. Therefore, there exist no fractional solutions satisfying equalities (3.5).

An example to Lemma 3.2 is given in Figure 4, where the dashed arcs in Figure 4(a) show all available arcs
within a given cluster and Figure 4(b) shows the only possible path forming within the cluster if arcs a and
b are in the solution.
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Gi
G

a

b

(a) All available arcs within a clusterGi
G

a

b

(b) The only path forming within the cluster

Figure 4: Arcs in cluster Gi
G

The difference between IP1 and IP2 is that the integrality requirements on some binary variables of IP1
have been relaxed, yielding a formulation that has a smaller number of binary variables. The effect of the
reduction of the number of variables will be shown through computational experiments in the next section.

4 Computational experiments

This section presents the results of computational experiments conducted on the four variants of the BRP
and in solving the formulations IP1 and IP2 using CPLEX version 12.5.0.0 under a time limit of three hours.
We note that the performance of the formulation largely depends on the optimization package and the set-
tings used, the investigation of which is beyond the remit of this paper. Instead, the experiments presented
here are aimed at illustrating the generality of the transformation and are indicative of the performance
of the resulting formulation. For benchmarking purposes, we compare the results obtained by solving
formulations IP1 and IP2 with those obtained by solving a polynomial-size single commodity (based) for-
mulation, denoted by FF, defined for each of the four variants of the BRP. As these formulations are not
central to the paper, we present them in the appendix.

The BRP instances tested here have been derived from two symmetric TSPLIB instances and two asymmet-
ric instances available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/, namely
gr24 and eil51, 24-node and 51-node symmetric instances, respectively, and ftv35 and ftv64, 36-node and
65-node asymmetric instances respectively. We present the results separately for each variant of the BRP.
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4.1 Single depot and homogenous fleet

Sixteen symmetric and 14 asymmetric single depot and homogeneous fleet BRP instances were generated.
The format namen-r-Qmin-Qmax has been adopted in naming the BRP instances, where name is the name
of the generating TSPLIB instance, n is the number of nodes and r denotes the number of routes. The first
node of each generating TSP instance represents the depot in the resulting BRP.

In this variant of the problem, when all vehicles are given the same bounds and all the routes originate
from a single depot, the transformation graph exhibits a high degree of symmetry. In particular, any two
routes in an optimal solution can be swapped, resulting in an alternative optimal solution (see Lemma 2.1).
In order to prohibit such symmetries, and to improve the computational efficiency of the model, we have
explored two sets of what we call symmetry breaking inequalities, presented below.

We assume that the vehicles are sorted in an arbitrary order with respect to their index. The first set of
inequalities, denoted by BS1, forces the first vehicle to visit at least the same number of customers as the
second vehicle. A similar inequality can be written for the second and third vehicles. One can continue
iteratively in such a fashion, until an inequality with the penultimate and the last vehicle is written. The last
vehicle in the order will therefore be restricted to visit the lowest number of customers. These inequalities
in the can be written for the transformation graph as follows:∑

j,j′∈Tr

xjj′ ≥
∑

j,j′∈Tr+1

xjj′ , ∀r ∈ {1, . . . ,m− 1}, (4.1)

where Tr =
(⋃rQmax−1

i=(r−1)Qmax+1 S
r
i

)
∪Sr′

1 , r ∈ {1, . . . ,m}, and r′ being the successor route from r. We assume
that if r = m then r′ = 1. The second set of inequalities, denoted by BS2, restrict some of the customers
to be visited only by certain vehicles. Initially we force the first customer to be visited by the first vehicle,
i.e.,

∑
j,j′∈W 1

1
xjj′ ≤ Qmax − 1 where W r

i =
⋃

j∈VG
Sr
j . Since the second customer can be visited by the

first vehicle as well, we restrict the second customer to be visited by either the first or the second vehicle.
Continuing in an iterative fashion, we restrict customer t, where t ≤ m − 1, to be visited by the first t

vehicles. These inequalities can be written in a general way as follows, which take into account the number
of arcs in a subset of nodes (not in the cut).

t∑
i=1

t∑
i′=i

∑
j,j′∈W i′

i

xjj′ ≤ tQmax − 1, ∀t ∈ {1, . . . ,m− 1}. (4.2)

Table 1 presents the results. The second column shows the number of nodes in the resulting ATSP after the
transformation. The optimal value of the TSP for each instance is shown in the third column to serve as a
lower bound. Columns four and five show the final optimality gap and the solution time of FF. Columns
six to ten respectively show, for IP1, the final optimality gap (in percent), the value of an optimal or the best
known solution, computation time (in seconds), the number of binary variables in the formulation, and the
number of binary variables in IP1 as a percentage of what would be needed to model a full transformed
graph. Columns eleven to fifteen show the same information for IP2. The last four columns present similar
statistics for IP1 supplemented by BS1 or B2. We did not test IP2 combined with BS1 or BS2 as its perfor-
mance is generally dominated by IP1. The table also shows average gaps and times, and the number of
optimally solved instances (row #opt), separately for symmetric and asymmetric instances.
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Table 1 shows that all symmetric instances with 24 nodes are optimally solved by all formulations, where
IP1 and IP2 yield a similar performance. As for the symmetric instances with 51 nodes, FF was able to
optimally solve two instances with six routes and one with eight routes, whereas IP1, IP2 and BS1 have
been able to solve only four instances to optimality, three with six routes and one with eight routes. BS2 in
this case produces better results both in terms of the number of optimally solved instances, which is six, and
the overall optimality gap. Similar results hold for asymmetric instances, in particular, all instances with
36 nodes are solved to optimaly by all formulations, but most of the 65-node instances remain unsolved.
In particular, FF, IP1, IP2 and BS1 can only optimally solve one 65-node instance each. In this case, BS2
outperforms all other formulations by solving three 65-node instances to optimality and yielding the least
average optimality gap.

In general, the computational results obtained by both IP1 and IP2 are worse than the results obtained
by solving FF when the interval [Qmin Qmax] is wide. In addition, there is no improvement on using IP2
instead IP1. However, the computational efficiency of IP1 and IP2 becomes more apparent as the interval
tightens, i.e., when the problem is better balanced. In particular, IP1 or IP2 are more efficient in solving
instances with more nodes and more restrictive routes such as eil51-6-8-9, eil51-8-5-8, ftv64-9-5-11, either in
providing optimal solutions or a yielding a tighter optimality gap.

Table 1 also shows the impact of using inequalities BS1 and BS2 in IP1. Interestingly, inequalities BS1 do
not help in improving the computational times, and for some instances the performance worsens. This can
be explained by the density of the inequalities, which increase the complexity of solving the formulations,
leading to slower performance. In contrast, inequalities BS2 clearly improve the results, both with respect
to computational time and the number of instances solved to optimality.

4.2 Multiple depots and homogenous fleet

Eight BRP instances have been generated with w = 2 or w = 4 depots and a homogeneous fleet. The first
w nodes of the generating TSP instances serve as the depots. Table 2 describes the characteristics of these
instances in more detail. The second column of the table shows the number of depots in each instance.
Columns m1–m4 represent the number of vehicles at (and therefore the routes that originate from) depots
d1–d4, respectively. The last column shows the total number of routes.

Table 2: Properties of the instances generated for the multiple depot and homogeneous fleet BRP
Name of the instance w m1 m2 m3 m4 Total

gr24md 5 10 2 2 1 - - 3
gr24md 6 8 2 2 1 - - 3
gr24md 3 7 2 2 2 - - 4
gr24md 4 6 2 2 2 - - 4

eil51md 8 15 4 1 1 1 1 4
eil51md 10 13 4 1 1 1 1 4
eil51md 6 10 4 2 2 1 1 6
eil51md 7 9 4 2 2 1 1 6

Table 3 presents the computational results using the same format as Table 1.

The results presented in Table 3 show that all eight instances but one with 51 nodes are solved to optimality
within the allowed time limit by either IP1 or IP2. One interesting observation is that, although gr24md 6 8
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Table 3: Computational results for the multiple depot and homogeneous fleet BRP
FF IP1 IP2

Instances Nodes GAP Time(sec) GAP UB Time(sec) BV % GAP UB Time(sec) BV %

gr24md 5 10 667 0.00 101.35 0.00 1494 73.91 13600 3.06 0.00 1494 50.02 12940 2.91
gr24md 6 8 535 0.00 75.35 0.00 1508 59.55 10498 3.67 0.00 1508 20.20 9970 3.49
gr24md 3 7 625 0.00 313.73 0.00 1620 36.09 12237 3.14 0.00 1620 41.99 11621 2.98
gr24md 4 6 537 0.00 490.14 0.00 1620 5.74 10125 3.52 0.00 1620 8.64 9597 3.33

eil51md 8 15 2829 10.97 10800 2.54 444 10800 125589 1.57 2.54 444 10800 122649 1.53
eil51md 10 13 2453 17.29 10800 0.00 448 4585.68 107165 1.78 0.00 448 5652.87 104617 1.74
eil51md 6 10 2833 14.27 10800 0.00 486 2972.66 121267 1.51 0.00 486 1905.90 118327 1.47
eil51md 7 9 2551 18.79 10800 0.00 500 1825.66 107449 1.65 0.00 500 1586.51 104803 1.61

Average 7.67 5522.57 0.32 2544.91 0.32 2508.27
#opt 4 7 7

has tighter bounds than gr24md 5 10, it required less time to be solved to optimality, both with IP1 and IP2.
A similar behaviour can be observed between instances gr24md 3 7 and gr24md 4 6. These results once
again indicate that the transformation works better when the difference between Qmin and Qmax is small.
FF, on the other hand, failed to solve all instances with 51 nodes and has yielded optimality gaps that are
more than 10%. The transformation in this case leads to formulations which produce better results than FF.

Further to the results in Table 3, we have also solved some of the instances described in Bektaş (2012)
who describes a specialized decomposition algorithm, denoted BD, for this variant of the problem. The
comparison results are shown in Table 4 using the same format as before, with the exception of the last two
columns which show the optimal solution value (or the best upper bound) reported by Bektaş (2012) and
the computational time required by (or percentage optimality gap yielded by the best algorithm) within
three hours.

Table 4: Computational results for the multiple depots and homogeneous fleet BRP
FF IP1 IP2 BD

Instances Nodes GAP Time(sec) GAP UB Time (sec) BV % GAP UB Time (sec) BV % Opt/UB Best T/GAP

ftv33 1033 0.00 1427.01 0.00 1579.00 161.05 29061 2.73 0.00 1579.00 130.63 28069 2.63 1579.00 1507.05
ftv35 1369 0.00 1695.50 0.00 1669.00 121.28 42709 2.28 0.00 1669.00 78.53 41389 2.21 1669.00 75.87
ftv38 1489 0.00 319.34 0.00 1730.00 155.62 50177 2.26 0.00 1730.00 162.92 48737 2.20 1730.00 319.34

p43 2469 0.31 10800 62.59 5695.00 10800 96273 1.58 62.91 5702.00 10800 93813 1.54 5695.00 0.31%
ftv44 2589 0.00 738.18 0.00 1802.00 1149.34 105785 1.58 0.00 1802.00 1446.43 103265 1.54 1802.00 97.42
ftv47 3689 0.00 875.98 3.17 1975.00 10800 164133 1.21 3.75 1975.00 10800 160533 1.18 1975.00 167.53

ry48p 2769 0.00 8734.62 0.00 15864.00 1447.42 120893 1.58 0.00 15864.00 407.31 118133 1.54 15864.00 3481.26
ftv53 3069 0.00 1902.67 0.00 7396.00 5865.72 148109 1.57 5.20 7536.00 10800 145049 1.54 7396.00 1038.64
ftv55 3193 1.86 10800 0.00 2013.00 426.31 154237 1.51 0.00 2013.00 195.92 151117 1.48 2013.00 5664.32

Average 0.24 4143.70 7.31 3436.30 7.98 3869.08
#opt 7 7 6

As the results in Table 3 show, by using IP1 and IP2, the computational time to optimally solve instances
ftv33, ftv38, ry48p and ftv55 is considerably reduced. Only for one instance, namely ftv47, neither IP1 nor
IP2 were able to prove optimality within three hours; in this case the best solution obtained by BD is an
optimal solution.

4.3 Single depot and heterogeneous fleet

Sixteen single depot BRP instances with a heterogeneous fleet have been generated based on the same
four TSPLIB instances mentioned above, with the first node considered as the depot. Table 5 describes
the instances in more detail, where the second column nr shows the number of vehicles (routes), columns
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R1–R7 show the Qmin and Qmax values for routes 1–6, respectively, for each instance. The instances are
generated in such a way the second and the fourth instance generated from each instance type are more
restrictive than the first and the third instances respectively. Computational results for these instances are
presented in Table 6 in the same way as the previous tables.

Table 5: Properties of the instances generated for the single depot and heterogeneous fleet BRP
Name of the instance nr R1 R2 R3 R4 R5 R6 R7

gr24hf 1 2 6–10 13–17 - - - - -
gr24hf 2 2 7–9 14–16 - - - - -
gr24hf 3 3 4–7 6–10 8–12 - - - -
gr24hf 4 3 5–6 7–8 9–10 - - - -
eil51hf 1 5 3–5 11–15 8–10 11–13 13–13 - -
eil51hf 2 5 4–4 12–13 8–9 12–12 13–13 - -
eil51hf 3 6 4–6 3–5 7–11 10–12 11–13 12–14 -
eil51hf 4 6 5–5 4–5 7–9 10–11 11–11 12–12 -
ftv35hf-1 3 5–9 11–14 14–18 - - - -
ftv35hf-2 3 6–8 12–14 15–17 - - - -
ftv35hf-3 4 3–7 6–9 9–12 12–14 - - -
ftv35hf-4 4 4–6 6–8 10–12 12–14 - - -
ftv64hf-1 6 3–5 6–9 10–13 12–15 14–17 15–18 -
ftv64hf-2 6 4–5 6–7 10–11 12–13 15–15 15–16 -
ftv64hf-3 7 2–4 4–6 5–7 8–11 12–14 14–16 15–19
ftv64hf-4 7 2–3 4–5 5–5 10–10 12–12 15–15 15–16

Table 6: Computational results for the single depot and heterogeneous fleet BRP
FF IP1 IP2

Instances Nodes GAP Time(sec) GAP UB Time(sec) BV % GAP UB Time(sec) BV %
Symmetric instances
gr24hf 1 626 0.00 1.95 0.00 1448 30.00 13550 3.46 0.00 1448 26.73 12929 3.3
gr24hf 2 580 0.00 3.92 0.00 1448 10.15 12400 3.69 0.00 1448 8.38 11825 3.52
gr24hf 3 674 0.00 299.98 0.00 1756 40.99 14218 3.13 0.00 1756 40.67 13551 2.99
gr24hf 4 559 0.00 62.35 0.00 1788 13.09 11389 3.65 0.00 1788 10.87 10837 3.47
eil51hf 1 2811 -† 10800 0.00 518 3404.83 128250 1.62 0.00 518 2192.63 125951 1.56
eil51hf 2 2561 28.60 10800 0.00 525 3247.57 115350 1.76 0.00 525 975.42 113301 1.73
eil51hf 3 3013 22.93 10800 0.00 545 1414.12 135950 1.5 0.00 545 569.33 133551 1.47
eil51hf 4 2613 - 10800 0.00 556 1244.44 115450 1.7 0.00 556 567.46 113451 1.66
Average 8.59‡ 5446.03 0.00 1175.65 0.00 548.94

#opt 4 8 8
Asymmetric instances
ftv35hf 1 1442 0.00 47.68 0.00 1541 59.14 47040 2.26 0.00 1541 57.37 45816 2.2
ftv35hf 2 1372 0.00 26.76 0.00 1550 95.41 44415 2.36 0.00 1550 43.62 43261 2.3
ftv35hf 3 1479 0.00 224.74 0.00 1631 68.66 47110 2.16 0.00 1631 68.87 45921 2.1
ftv35hf 4 1409 0.00 122.39 0.00 1636 27.79 44520 2.24 0.00 1636 89.83 43401 2.19
ftv64hf 1 4941 3.11 10800 0.00 2156 3481.81 292288 1.2 0.00 2156 4279.93 288129 1.18
ftv64hf 2 4301 19.86 10800 0.00 2180 2230.37 250560 1.35 0.03 2180 10800 247041 1.34
ftv64hf 3 4943 - 10800 0.00 2205 2214.99 288256 1.18 0.00 2205 2281.81 284225 1.16
ftv64hf 4 4239 - 10800 0.00 2223 2334.30 242304 1.35 0.00 2223 2549.40 238977 1.33
Average 3.83‡ 5452.70 0.00 1314.06 0.00 2521.35

#opt 4 8 7
†: Feasible solution not found within the time limit.
‡: Average values calculated only over instances that are either solved to optimality or for which a feasible solution was found.

The results presented in Table 6 are consistent with those presented earlier in that the efficiency of the
transformation increases as the width of the interval defined by [Qmin, Qmax] is reduced. All 24-node
instances and 36-node instances are solved by any of the three formulations, whereas FF failed to optimally
solve any of the 51-node and 65-node instances. In contrast, IP1 and IP2 optimally solved all the 51-node
instances, and IP1 additionally solved all the 65-node instances to optimality.
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4.4 Multiple depots and heterogeneous fleet

The last set of computational experiments we present here concern the most general variant of the BRP,
namely that with multiple depots and heterogeneous fleet. Sixteen representative instances have been
generated for this case, for which details are given in Table 7. The second column of this table shows
the number of depots for each instance, which in this case is set to two for all instances. The remaining
columns define Qmin and Qmax for each vehicle at each depot. For example, eil51c 4 requires three vehicles
to be dispatched from each of the two depots. The first vehicle (route) of the first depot needs to visit
between three and six customers, the second vehicle has to visit between seven and ten customers and the
last vehicle of the first depot has to visit between nine and twelve customers. The second depot has three
vehicles, for which the respective bounds are [6,8], [7,12] and [11,15] on routes R1, R2 and R3. Table 8 shows
the computational results obtained on these instances.

Table 7: Properties of the instances generated for the multiple depot and heterogeneous fleet BRP
d1 d2 d3

Name of the instance ndep routes R1 R2 R3 routes R1 R2 R3 routes R1 R2 R3

gr24c 1 2 1 5–9 - - 1 13–17 - - - - - -
gr24c 2 2 1 7–7 - - 1 15–15 - - - - - -
gr24c 3 2 2 4–6 6–8 - 2 4–6 6–8 - - - - -
gr24c 4 2 2 4–5 6–7 - 2 4–5 6–7 - - - - -

eil51c 1 2 2 6–10 10–14 - 2 8–12 15–20 - - - - -
eil51c 2 2 2 6–10 10–14 - 3 4–7 8–12 15–20 - - - -
eil51c 3 2 3 3–6 7–10 9–12 2 10–13 15–20 - - - - -
eil51c 4 2 3 3–6 7–10 9–12 3 6–8 7–12 11–15 - - - -
ftv35c 1 2 2 5–9 11–14 - 1 14–18 - - - - - -
ftv35c 2 2 2 6–8 11–13 - 1 14–16 - - - - - -
ftv35c 3 2 2 3–7 6–9 - 2 9–12 12–14 - - - - -
ftv35c 4 2 2 4–6 6–8 - 2 9–10 12–13 - - - - -
ftv64c 1 2 3 3–5 6–9 10–13 3 12–15 14–17 15–18 - - - -
ftv64c 2 2 3 4–5 6–7 10–11 3 12–13 14–14 15–16 - - - -
ftv64c 3 3 3 2–3 3–4 4–6 3 5–7 6–10 8–11 2 12–14 13–15 -
ftv64c 4 3 3 2–2 3–3 4–5 3 6–6 6–8 9–10 2 14–14 15–15 -

Table 8: Computational results for the multiple depots and heterogeneous fleet BRP
FF IP1 IP2

Instances Nodes GAP Time(sec) GAP UB Time(sec) BV % GAP UB Time(sec) BV %
Symmetric instances

gr24c 1 577 0.00 99.63 0.00 1308 44.02 11927 3.59 0.00 1308 28.26 11355 3.42
gr24c 2 489 0.00 113.09 0.00 1314 13.43 9815 4.11 0.00 1314 13.57 9331 3.91
gr24c 3 625 0.00 1941.76 0.00 1620 11.17 12061 3.09 0.00 1620 10.24 11473 2.94
gr24c 4 537 0.00 2002.81 0.00 1620 7.34 10037 3.49 0.00 1620 4.48 9533 3.31
eil51c 1 2753 -† 10800 3.71 473 10800 126278 1.67 6.05 483 10800 123702 1.63
eil51c 2 3098 73.95 10800 3.67 495 10800 140979 1.47 4.81 503 10800 138081 1.44
eil51c 3 3000 21.5 10800 0.00 494 6999.07 136030 1.51 0.00 494 7740.27 133285 1.48
eil51c 4 3100 - 10800 0.00 520 2000.95 138726 1.44 0.00 520 3203.59 135891 1.41

Average 15.91‡ 5919.66 0.92 3834.50 1.36 4075.05
#opt 4 6 6

Asymmetric instances
ftv35c 1 1401 0.00 1436.39 0.00 1516 29.73 44404 2.26 0.00 1516 36.04 43215 2.2
ftv35c 2 1231 0.00 907.31 0.00 1529 25.83 39610 2.62 0.00 1529 30.58 38557 2.55
ftv35c 3 1437 0.00 2942.61 0.00 1653 70.81 44472 2.16 0.00 1653 77.56 43317 2.1
ftv35c 4 1369 0.00 2543.42 0.00 1658 20.46 38488 2.06 0.00 1658 20.26 37503 2
ftv64c 1 4864 - 10800 0.00 2201 409.26 283248 1.20 0.00 2201 2345.17 280421 1.19
ftv64c 2 4171 - 10800 0.00 2234 2994.79 238833 1.37 0.00 2234 3711.76 235432 1.35
ftv64c 3 3425 - 10800 0.00 2291 6139.37 215946 1.84 0.00 2291 3584.4 198401 1.69
ftv64c 4 3921 - 10800 0.00 2291 6113.86 215946 1.40 0.00 2291 10710 212908 1.39
Average 0.00‡ 6378.72 0.00 1975.51 0.00 2564.47

#opt 4 8 8
†: Feasible solution not found within the time limit.
‡: Average values calculated only over instances that are either solved to optimality or for which a feasible solution was found.
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The results shown above parallel those presented earlier, particularly with respect the quality of the solu-
tions and the computational time. These results also indicate that, despite the increased difficulty of the
problem with the introduction of multiple depots and heterogeneous fleet, the transformed formulation
does not seem to be significantly more difficult to solve as compared to the other variants. As the results
in Table 8 show, FF was not able to optimally solve any of the 51-node symmetric and 65-node asymmetric
instances, and failed to provide feasible solutions for six. This can be explained by the increased complex-
ity of the problem and the size of the corresponding formulation. On the other hand, all instances with 24

nodes, two instances with 51 nodes, and all asymmetric instances with 36 or 65 nodes are solved to optimal-
ity by either IP1 or IP2 within the time limit of three hours. Similar to the previous case, although eil51c 3
and eil51c 4 have the same number and type of routes, the latter has proved easier to solve compared to
the former, despite having more restrictive bounds.

5 Conclusions

This paper described a polynomial transformation of the BRP, a unit-demand vehicle routing problem with
lower and upper bounds on the number of nodes visited on each route, first into a GTSP, then into a TSP.
The resulting TSP was formulated as an integer program in the space of the natural binary variables only,
and one which did not require the usual subtour elimination constraints, if supplemented by side con-
straints that are written for each cluster of the corresponding GTSP. The procedure described in the paper is
such that the BRP amounts to no more than solving a constrained assignment problem with a polynomial
number of constraints. The sparsity of the transformation graph also allows one to significantly reduce the
number of binary variables in the formulation (typically between 96–98%) which facilitates the solution of
the resulting formulation using off-the-shelf solvers.

In this paper, we have shown through computational experimentation that the proposed transformation
can be applied to the BRP symmetric and asymmetric costs, single or multiple depots, or homogeneous or
heterogenous fleet of vehicles, although the results presented in this paper suggest that the approach works
particularly and consistently well in the following two cases:

• The heterogeneous BRP: In this case, the integer programming model obtained as a result of the
transformation can solve more instances to optimality than the flow-based formulations tested in this
paper, and in much less computational time. In the heterogeneous case, this means being able to
optimally solve symmetric instances of up to 51 nodes and asymmetric instances of up to 65 nodes,
either with single or multiple depots.

• Better balanced BRP instances: In this case, the efficiency of the model obtained as a result of the
transformation improves as the interval [Qmin Qmax] gets tighter, which means the resulting instance
is better balanced. This is in contrast to the performance of the flow-based formulations, which be-
come increasingly more difficult to solve as the same interval is made narrower.
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Appendix

We present formulations for the four variants of the BRP discussed in the main body of text.

Single depot and homogeneous fleet

This formulation is presented in Gouveia et al. (2013). In this case, D = {d} (single depot), Qd,r
min = Qmin and Qd,r

max =

Qmax. The formulations uses two sets of variables, namely a binary variable xij which takes the value 1 if one vehicle
travels arc (i, j) and a continuous variable fij defining unit flows of a commodity from the depot in decreasing units.
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The formulation is presented below.

Minimize
∑

(i,j)∈A cijxij (5.1)

subject to
∑

j∈C∪D xij = 1, i ∈ C, (5.2)∑
j∈C∪D xji = 1, i ∈ C, (5.3)∑

j∈C∪D xdj = md, (5.4)∑
j∈C∪D xjd = md, (5.5)∑

j∈C\{i}∪D fij −
∑

j∈C\{i}∪D fji = 1, i ∈ C, (5.6)

Qminx1i ≤ f1j ≤ Qmaxx1i, i ∈ C, (5.7)

xij ≤ fij ≤ (Qmax − 1)xij , i, j ∈ C. (5.8)

Multiple depots with homogeneous fleet

This model is the multi-commodity formulation presented in Bektaş (2012). In this case Qd,r
min = Qd,t

min(= Qmin) and
Qd,r

max = Qd,t
max(= Qmax), 1 ≤ r < t ≤ md}. The formulation is defined on a slightly modified graph G = (D,C,D′, A)

in which a copy for each depot is added. The set D′ denotes the set of copies of the depots in D. For each i ∈ D, we
denote by ri ∈ D′ the corresponding copy. The set of arcs is A = {(i, j)|i ∈ D ∪ C, j ∈ C} ∪ {i, j)|i ∈ C, j ∈ D′}. The
set of commodities is shown by Q = {q1, . . . , q|D|}. This formulation uses a binary variable yij which takes the value 1

if one vehicle travels arc (i, j), and 0 otherwise, a continuous variable x
qd
ij denotes the amount of flow of commodity qd

on arc (i, j) and a continous variable f
qd
ij describes the flow of commodities to each customer.

Minimize
∑

(i,j)∈A cijyij (5.9)

subject to
∑

j∈C∪D′ x
qd
ij −

∑
j∈C∪VD

x
qd
ji

=


md, if i = d

−md, if i = rd

0, otherwise

, i ∈ C, qd ∈ Q, (5.10)

x
qd
ij ≤ yij , i ∈ C, qd ∈ Q (5.11)∑

j∈C∪D′ yij = 1, i ∈ C (5.12)∑
j∈C∪VD

yji = 1, i ∈ C (5.13)∑
j∈C yij = mi, i ∈ D (5.14)∑
j∈C yji = mi, i ∈ D′ (5.15)∑

j∈C∪D f i
ji −

∑
j∈C∪D′ f

i
ij = 1, i ∈ C, (5.16)∑

k∈C∪D f i
kj −

∑
k∈C∪D′ f

i
jk = 0, i, j ∈ C, (5.17)∑

k∈D,j∈C f i
kj = 1, i ∈ C, (5.18)

fk
ij ≤ yij , (i, j) ∈ A, k ∈ C, (5.19)∑

i∈C f i
kj ≥ Qminykj , k ∈ D, j ∈ C (5.20)∑

k∈C,k 6=i 6=j f
k
ij ≤ (Qmax − 1)yij , i ∈ C, j ∈ C ∪D′. (5.21)

Single depot with heterogeneous fleet

A formulation in Baldacci et al. (2008) can be found for the CVRP with heterogeneous fleet, of which we will consider
the unit demand version augment with the bounds Qd,r

min on the number of customers visited by each vehicle. The
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formulation below is therefore a combination of those presented in Baldacci et al. (2008) and Gouveia and Salazar-
González (2013). In this case, D = {d} (single depot). This formulation uses a binary variable xij equal to 1 if vehicle k

travels arc (i, j), and 0 otherwise, and a continous variable fij defining the flow of a single commodity.

Minimize
∑

(i,j)∈A

∑md
k=1 cijx

k
ij (5.22)

subject to
∑md

k=1

∑
j∈C∪D xk

ij = 1, i ∈ C, (5.23)∑md
k=1

∑
j∈C∪D xk

ji = 1, i ∈ C, (5.24)∑md
k=1

∑
j∈C∪D xk

dj = md, (5.25)∑md
k=1

∑
j∈C∪D xk

jd = md, (5.26)∑
j∈C∪D xk

ij =
∑

j∈C∪D xk
ji, i ∈ C, k ∈ {1, . . . ,md}, (5.27)∑

j∈C\{i}∪D fij −
∑

j∈C\{i}∪D fji = 1, i ∈ C, (5.28)

Qmin

∑md
k=1 x

k
1i ≤ f1j ≤ Qmax

∑md
k=1 x

k
1i, i ∈ C, (5.29)∑md

k=1 x
k
ij ≤ fij ≤ (Qmax − 1)

∑md
k=1 x

k
ij , i, j ∈ C. (5.30)

(5.31)

Multiple depots with heterogeneous fleet

This formulation a combination of the multi-commodity formulation presented in Bektaş (2012) and that by Baldacci
et al. (2008) for heterogeneous vehicle routing. The graph is again augmented as G = (D,C,D′, A), in which a copy
for each depot i ∈ D appears ri ∈ D′. The set of arcs is A = {(i, j)|i ∈ D ∪ C, j ∈ C} ∪ {i, j)|i ∈ C, j ∈ D′}. The set of
commodities is shown by Q = {q1, . . . , q|D|}. In this formulation, a binary variable yk,d

ij takes the value 1 if vehicle k of
depot d travels arc (i, j), and 0 otherwise, a continous variable x

qd
ij denotes the amount of flow of commodity qd on arc

(i, j), and a continous variable f
qd
ij describing commodity flows.

Minimize
∑|D|

d=1

∑md
k=1

∑
(i,j)∈A cijy

k,d
ij (5.32)

subject to
∑

j∈C∪D′ x
qd
ij −

∑
j∈C∪VD

x
qd
ji

=


md, if i = d

−md, if i = rd

0, otherwise

, i ∈ C, qd ∈ Q, (5.33)

x
qd
ij ≤ yij , i ∈ C, qd ∈ Q (5.34)∑|D|

d=1

∑md
k=1

∑
j∈C∪D′ y

k,d
ij = 1, i ∈ C (5.35)∑|D|

d=1

∑md
k=1

∑
j∈C∪VD

yk,d
ji = 1, i ∈ C (5.36)∑mi

k=1

∑
j∈C yk

ij = mi, i ∈ D (5.37)∑mi
k=1

∑
j∈C yk

ji = mi, i ∈ D′ (5.38)∑
j∈C∪VD

yk,d
ji =

∑
j∈C∪D′ y

k,d
ij , i ∈ C, d ∈ D, k ∈ {1, . . . ,md} (5.39)∑

j∈C∪D f i
ji −

∑
j∈C∪D′ f

i
ij = 1, i ∈ C, (5.40)∑

k∈C∪D f i
kj −

∑
k∈C∪D′ f

i
jk = 0, i, j ∈ C, (5.41)∑

k∈D,j∈C f i
kj = 1, i ∈ C, (5.42)

f t
ij ≤

∑|D|
d=1

∑md
k=1 y

k,d
ij , (i, j) ∈ A, t ∈ C, (5.43)∑

i∈C f i
tj ≥ Qmin

∑|D|
d=1

∑md
k=1 y

k,d
tj , t ∈ D, j ∈ C (5.44)∑

k∈C,k 6=i 6=j f
k
ij ≤ (Qmax − 1)

∑|D|
d=1

∑md
k=1 y

k,d
ij , i ∈ C, j ∈ C ∪D′. (5.45)
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