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Abstract. We investigate the stability of slowly smearing phase boundary that appears at the contact
of two miscible liquids. A hydrodynamic flow is imposed along the boundary. The aim is to find out
whether the slow diffusive smearing of a boundary can be overrun by faster mixing. The phase-field
approach is used to model the evolution of the binary mixture. The linear stability in respect to 2D
perturbations is studied. If the heavier liquid lies above the lighter liquid, the interface is unconditionally
unstable due to the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The imposed flow accelerates the
growth of the long-wave modes and suppresses the growth of the short-wave perturbations. Viscosity,
diffusivity and capillarity reduce the growth of perturbations. If the heavier liquid underlies the lighter
one, the interface can be stable. The stability boundaries are defined by the strength of gravity (density
contrast) and the intensity of the imposed flow. Thinner interfaces are usually characterised by larger zones
of instability. The thermodynamic instability, identified for the thicker interfaces with the thicknesses
greater than the thickness of a thermodynamically equilibrium phase boundary, makes such interfaces
unconditionally unstable. The zones of instability are enlarged by diffusive and capillary terms. Viscosity
plays its stabilising role.

PACS. 47.20.-k Flow instabilities – 47.20.Ft Instability of shear flows – 68.05.-n Liquid-liquid interfaces
– 64.70.Ja Liquid-liquid transitions

1 Introduction

We investigate the dynamics of mixing initiated by a con-
tact of two miscible liquids. The miscible liquids are rep-
resented by the components of an off-equilibrium binary
mixture. The process mixing involves hydrodynamic flows
near the phase boundary, but, ultimately, the the equili-
bration of the binary mixture occurs though the interfacial
diffusion.

The mixing rate is obviously increased by enlargement
of the interfacial contact area due to disintegration of
the phase boundary. For instance, the classical Rayleigh-
Taylor instability develops if the lighter liquid underlies
the heavier one. The linear stability of such an interface
was studied in ref. [1], where it was shown that the in-
terfacial diffusion slows down the development of hydro-
dynamic modes. From the other hand, in [1], it was also
shown that thick interfaces, with the thicknesses exceeding
the thickness of a thermodynamically equilibrium phase
boundary, are prone to the new thermodynamic instabil-
ity. Thus, the thick interface would be thermodynamically
unstable, and development of the instability would in-
evitably be accompanied by hydrodynamic motion, even if
the lighter liquid lies over the heavier liquid. In the present
work, the results of ref. [1] are extended by examining the

effects introduced by a shearing motion imposed along the
phase boundary.

Understanding of the mixing dynamics is obviously im-
portant for accurate modelling of various natural phenom-
ena, such as atmospheric and ocean mixing, and for mod-
elling of various processes in chemical engineering that
involve the mixing of chemicals, and also for modelling
such processes as the oil recovery [2], extraction of essen-
tial oils [3], etc. In addition, there is a growing interest
to model the flows in micro-cavities (micro chemical re-
actors), where the mixing between different substances is
sometimes desirable but is limited due to suppression of
hydrodynamic instabilities [4]. A recent review on pecu-
liarities of the mixing dynamics of two different liquids
can be found in ref. [5].

A shear flow in a homogeneous liquid is known to
be unconditionally unstable, with the most unstable per-
turbations having the form of 2D billows with the axes
perpendicular to the streamwise direction. This is known
as the Kelvin-Helmholtz instability [6,7]. The situation
becomes more complicated if the flow is imposed along
the interface separating two liquids of different densities.
In the case of gravitationally unstable configuration (the
heavier liquid superposes the lighter liquid) the Rayleigh-
Taylor and Kelvin-Helmholtz instabilities co-develop. These
two instabilities primarily affect the modes of different
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wavelengths, so they do not amplify each other, and, on
opposite, the imposed flow may even reduce the growth
of the modes with shorter wavelengths [8–10]. The co-
development of these instabilities was already studied for
smeared interfaces [11,12]. In particular, it was found that
interface smearing results in lower growth rates of the
short length modes, and in increased growth rates of the
modes with longer wavelengths.

A gravitationally stable configuration, with the heavier
liquid underlying the lighter one, may be stable or unsta-
ble, with the stability defined by the Richardson number,
that is introduced as the ratio between the gravitational
and kinetic energies. If the external flow is non-existent,
disturbances of an interface induce gravity-capillary waves
that decay due to viscous damping. The external shear
flow of sufficiently large amplitude makes the interface un-
stable through the Kelvin-Helmholtz and Holmboe insta-
bilities [6,13,7]. The growth of perturbations due to the
Kelvin-Helmholtz instability occurs monotonically with
zero phase speed. The Holmboe instability occurs in a
stratified layer through the growth of two travelling modes
(the modes with non-zero phase speeds). The boundaries
of the Kelvin-Helmholtz and Holmboe instabilities were
later determined for the various density and velocity pro-
files [14–19], including the non-symmetric profiles with
non-coincident central levels of the basic profiles of density
and velocity [20,21]. The effect of viscosity and diffusivity
on the stability of stably stratified shear flows was stud-
ied in ref. [22], where it was found that there is no simple
rule to hold about whether viscosity and diffusivity sta-
bilize or destabilize the flow. The effects of surface ten-
sion and larger density contrasts were also studied in refs.
[23,24]. Finally, the existence of both Kelvin-Helmholtz
and Holmboe instabilities were experimentally confirmed
in e.g. refs. [25–27]. The further non-linear stages of the
shear flow instability were examined in e.g. refs. [28,29].

In the current work we investigate the stability of a
phase boundary that separates two components of an isother-
mal binary mixture. The binary mixture is initially in a
state that is different from the state of thermodynamic
equilibrium. The thermo- and hydrodynamic evolution of
such a mixture is defined by the full Cahn-Hilliard-Navier-
Stokes equations [30], which set the so-called quasi-compressible
system of equations due to dependence of the mixture
density on concentration. The slow convective and diffu-
sive evolution of liquid/liquid systems is defined by the
reduced Boussinesq approximation [31]. The main differ-
ence of the current work from the above-cited studies, is
that the stability of a phase boundary is investigated for
the multiphase system with fully defined thermodynamics.
In other above-cited works, the instability of a smeared
density profile (a stratified layer) was studied, with the
diffusion defined by the classical Fick’s law.

We investigate the influence of the shear flow imposed
along the horizontal interface on the interface stability,
assuming that the inflection points for both density and
velocity profiles coincide.

The paper is organised as follows. The mathematical
model is defined in sect. 2. In the same sect. we develop the

2D linear stability theory for the introduced basic profiles
of density and velocity. In the next two sects. 3 and 4, we
discuss the stability results. In sect. 3, the stability of a
smeared interface between two immiscible liquids is exam-
ined, i.e. in this sect. we assume infinite value for Peclet
number. In sect. 4, the role of diffusivity on the stability
is investigated. Both sects. 3 and 4 contain the discussions
of the instabilities developing in the gravitationally-stable
and gravitationally-unstable configurations. The conclu-
sions are summarised in sect. 5.

2 Mathematical model

2.0.1 Governing equation

When pure components of a binary mixture are brought
into contact, the molecules of the neighbouring liquids
inter-diffuse, so the binary mixture changes its state to
thermodynamic equilibrium. Typically this transition is
very slow (takes hours). The final equilibrium states of a
mixture are usually defined by a phase diagram [32]. We
focus on the binary mixtures with the upper critical so-
lution temperature. For such a mixture, the equilibrium
state can be heterogeneous or homogeneous (dependent
on the mean concentration) if the mixture temperature is
below the critical value. And the mixture is always ho-
mogeneous in equilibrium at the temperatures above the
critical point. Some binary systems has no critical point,
and they are miscible under all temperatures, e.g. water
and glycerol or hexane and soybean oil [33]. We presume
that the behaviour of such mixtures is similar to the be-
haviour of the mixtures with the upper critical solution
temperatures in the supercritical conditions.

The evolution of the heterogeneous binary mixture is
modelled on the basis of the phase-field approach. This ap-
proach was first suggested in the works of van der Waals
and Cahn and Hilliard who proposed to model a multi-
phase system as a continuous medium and also to define
the free energy as a function of concentration and concen-
tration gradient (if the system is isothermal),

f = f0(C) +
ϵ

2
(∇C)2. (1)

Here f0 is the classical part of the free energy, and the
second term takes into account the capillary effects. The
amplitude of the second term is defined by the so-called
capillary parameter ϵ, which is so small that the second
term can be neglected everywhere except at the interface,
positioned at the places of large concentration gradients.
The concentration field C is defined as the mass fraction
of one of the liquids in a mixture.

The classical part of the free energy function should
define the possible states of the binary mixture. We study
the dissolution of an initially heterogeneous mixture, and
the classical Landau expression is then convenient to de-
fine f0,

f0(C) = a(C − Cc)
2 + b(C − Cc)

4. (2)
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This expression was proposed as an approximation for a
near critical system, however, it is used for systems both
near and far from the critical point. Thus we treat expres-
sion (2) as a model for a binary mixture with homogeneous
and heterogeneous states with two phenomenological pa-
rameters a and b. It can be shown that parameter a is
proportional to (T − Tc): this parameter is negative for
the temperatures below the critical point and positive for
T > Tc. The second parameter, b, is always positive.

For further discussion, it will be convenient to change
the reference point for the concentration field, as (C −
Cc) → C. The so re-defined concentration will be used in
the rest of the paper.

The full Cahn-Hilliard-Navier-Stokes equations that
describe the thermo- and hydrodynamic evolution of bi-
nary mixtures were first derived by Lowengrub and Truski-
novsky [30]. One of the main features of these equations
is the quasi-compressibility: even to describe the evolution
of two incompressible liquids one needs to use the full con-
tinuity equation due to dependence of mixture density on
concentration. This feature makes the full set of equations
hardly feasible for numerical treatment. It was later shown
that the full Cahn-Hilliard-Navier-Stokes equations could
however be simplified on the basis of the multiple-scale
method by separating fast quasi-acoustic processes and
slow diffusive and convective processes [31]. It was shown
that the slow evolution of binary mixtures is defined by
the Boussinesq approximation, which is used in the cur-
rent work.

The governing equations include the balances of mass,
momentum and species,

∇ · u = 0, (3)

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u

−Ca∇2C∇C +GrCγ, (4)

∂C

∂t
+ (u · ∇)C =

1

Pe
∇2µ, (5)

µ = −Gr(γ · r) + 2AC + 4C3 − Ca∇2C. (6)

Here p, u, and µ are the fields of pressure, velocity and
chemical potential; and γ is the unit vector defined as
g = −gγ, with g being the gravity acceleration.

The equations written in the Boussinesq approxima-
tion are fully incompressible. The diffusive mass transport
is defined through the gradient of chemical potential, and
includes the effects of barodiffusion. The momentum equa-
tion includes the so-called Korteweg force that models the
effect of the surface tension on the interface morphology.

The simplest relation between the mixture density and
concentration is given for “a simple mixture”, when the
change in volume upon mixing of two different liquids can
be neglected. In addition, we assume that the difference
between densities of two pure liquids is small, which is
typical for all liquid/liquid mixtures. In such a case, the
density is given by

ρ = 1− ϕC, ϕ ≡ ρ1 − ρ2
ρ1

. (7)

The equations (3)-(6) are written in non-dimensional
form. For time, velocity, pressure, and specific free energy,
we choose the following scales:

τ∗ =
L∗

V∗
, V∗ = µ

1/2
∗ , p∗ = ρ∗µ∗, f∗ = µ∗. (8)

In these formulae, L∗ stands for the typical length scale,
ρ∗ is the typical density, e.g. ρ1 that is the density of the
first component, µ∗ is the typical value of the chemical
potential, e.g. µ∗ = b.

The non-dimensional parameters entering the above
equations are the Peclet number,

Pe =
ρ∗L∗

αµ
1/2
∗

; (9)

the capillary number,1

Ca =
ϵ

µ∗L2
∗
; (10)

the Reynolds number,

Re =
ρ∗µ

1/2
∗ L∗

η∗
; (11)

and the Grashof number,

Gr = ϕ
gL∗

µ∗
. (12)

Parameter
A =

a

µ∗
(13)

defines the equilibrium states of the binary system (if A is
negative the system can be homogeneous or heterogeneous
in equilibrium, for positive A the binary mixture is always
homogeneous in its equilibrium).

In the above expressions, α is the mobility coefficient
proportional to the coefficient of diffusion [32]. We need
to notice that some new phenomenological parameters are
introduced within the phase-field approach, such as the
capillary and mobility coefficients. These parameters are
used instead of the traditional phenomenological param-
eters, such as the coefficients of surface tension and dif-
fusion. As a result, the non-dimensional parameters writ-
ten above have non-standard definitions, and cannot be
strictly called by their classical names, Peclet, Reynolds,
and Grashof numbers. We however continue to use the
classical names, as these parameters appear in front of

1 This parameter should not be mixed with another classical
parameter, defined as ηV/σ, with η, V , and σ being the typical
values of viscosity, velocity, and surface tension. This classical
parameter is also called the capillary number and is used in
the sharp-interface model to define the ratio between the vis-
cous and capillary forces. The introduced parameter is called
the capillary parameter to underline that is proportional to
the capillary constant, and hence defines the strengths of the
capillary effect. In some papers, an alternative name, the Cahn
number, is also used [30].
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Fig. 1. The basic state is shown for δ = 0.1, δu = 1, and
L = 3.

the corresponding terms of the governing equations (3-6),
and hence have similar meanings. For instance, the Peclet
number defines the ratio between the convective and dif-
fusive mass transport. The Grashof number defines the
intensity of the convective motion, and here, it is defined
as the ratio of the buoyancy and inertial terms (which is
slightly different from the classical definition that is the
ratio of the buoyancy and viscous forces, but such a num-
ber will be GrRe). In definition of the Reynolds number,
η∗ can be taken as 1

2 (η1 + η2) with η1 and η2 being the

viscosity coefficients of the pure mixture components. 2

The governing equations need to be supplemented with
the boundary conditions. In this work we consider the evo-
lution of a system of two semi-infinite liquid domains. It
is assumed that all perturbations should decay at large
distances from the interface, which is used to state the
boundary conditions for the problem. For numerical inte-
gration, the layer’s thickness was taken as 2L, and gradu-
ally increasing values of L were tested in order to find such
a value for which the boundary effects do not influence the
results.

2.1 The basic state and linearized equations

We consider the stability of a horizontal miscible interface
that is subjected to an externally driven shear flow. We
assume that the interface separates two semi-infinite liquid
domains. The basic profiles of concentration and velocity

2 The viscosities of mixture components are in general differ-
ent and hence the mixture viscosity is a function of concentra-
tion, which is disregarded in eqs. (3-6). Equations (3-6) were
derived in assumption that the state of the system is close to
the critical point. When the model (3-6) was derived, viscosity
was assumed to depend on concentration. All variables, in-
cluding concentration and viscosity, were expanded into series
of small parameter, and the leading terms of the full Cahn-
Hilliard-Navier-Stokes equations formed the model (3-6). The
resultant equations are characterised by a constant viscosity
coefficient, that can be defined as the average of the viscosities
of pure components. The fact that the viscosity can be a func-
tion of concentration may result in additional instability [34],
which however could not be considered within the framework
of eqs. (3-6).

are represented by the following functions,

C0 =
1

2
tanh

(y
δ

)
, (14)

Ux = U0 tanh

(
y

δu

)
. (15)

Thus, x-axis is directed along the interface, and y-axis
is perpendicular to the unperturbed interface. The basic
fluid flow has only one non-zero component, and U0 =
V0/V∗ is a non-dimensional parameter that defines the flow
amplitude (V0 is the dimensional amplitude of the basic
velocity). Two other non-dimensional parameters are the
y-widths of the concentration and velocity profiles, δ and
δu. For the most of our further results, the typical length
scale is taken to be equal to the width of the basic velocity
profile, i.e. δu = 1. Hence, δ becomes the ratio of the
widths of the concentration and velocity profiles. Owing
to the fact that a real phase boundary has the thickness of
just several molecular layers, the limit of a sharp interface
remains always important for the phase-field theory. Thus,
we will always assume that δ < 1, and will also investigate
how the stability results are transformed by reducing the
value of δ. The typical basic state is sketched in fig. 1.

We should also note that for A < 0 there is another
typical interface thickness, δ0 =

√
−Ca/A, the thickness

of a phase boundary for a binary mixture in the state
of thermodynamic equilibrium. In the current work, how-
ever, it is assumed that two pure liquids are just brought
into contact, and hence the mixture is not in the state
of the thermodynamic equilibrium yet. This means that δ
and Ca should be treated as two independent parameters.
This differs the current work from other studies where the
stability of an equilibrium phase boundary is studied [35].

Finally, the surface tension associated with the inter-
face, can be defined as

σ = Ca

∫ ∞

−∞

(
dC0

dy

)2

dy =
Ca

3δ
, (16)

i.e. proportional to the ratio of the capillary number over
the interface thickness.

In the current work we investigate the stability of the
basic state (14)-(15) in respect to 2D small-amplitude nor-
mal disturbances. For this, we split all variable into the
following sums of the basic states and perturbations,

ux(x, y, t) → Ux(y) + ux(y) exp(ikx− iωt), (17)

uy(x, y, t) → uy(y) exp(ikx− iωt), (18)

C(x, y, t) → C0(y) + C(y) exp(ikx− iωt), (19)

µ(x, y, t) → µ0(y) + µ(y) exp(ikx− iωt), (20)

p(x, y, t) → p0(y) + p(y) exp(ikx− iωt). (21)

Note that the same notations are used for the whole vari-
ables and for the amplitudes of the disturbances.

Next, we introduce the streamfunction, as ux = ∂ψ/∂y
and uy = −∂ψ/∂x, and exclude the pressure from the
governing equations. The resultant amplitude equations
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then read

−i(ω − kU0)(ψ
′′ − k2ψ)− ikU ′′

xψ =

1

Re
(ψiv − 2k2ψ′′ + k4ψ)

−ikCa
(
C ′′′

0 C − C ′
0(C

′′ − k2C)
)
− ikGrC, (22)

−i(ω − kUx)C − ikC ′
0ψ =

1

Pe
(µ′′ − k2µ), (23)

µ = (2A+ 12C2
0 )C − Ca(C ′′ − k2C). (24)

Here primes denote the differentiation in respect to y. The
eigenvalue problem is solved by using the shooting method
with addition of the Gram-Schmidt orthogonalization [36–
38]. The numerical procedure was based on the integra-
tion of the solutions by using the Runge-Kutta method
of the fourth order of accuracy with automatically con-
trolled step. The integration was carried out from the left
and right ends by using the asymptotic solutions that can
be obtained taking in mind that C0 = ±1/2, Ux = ±U0

and all derivatives of C0 and Ux are zero at some dis-
tance from the middle point [39–41]. The condition that
the eigenfunction needs to be continuous in the middle
point (y = 0) was used to determine the eigenvalue.

Finally, it is necessary to mention that the basic state,
defined by (14) and (15), is in fact time-dependent, as
both concentration and velocity profiles slowly smear due
to diffusion and viscosity. Nevertheless, the diffusive and
viscous smearing would occur considerably slower in com-
parison with the exponential growth of perturbations, and
this allows us to study the evolution of perturbations on
the background of the “frozen” basic profiles.

3 Immiscible liquids

First, we will examine the stability of an interface sepa-
rating two immiscible liquids, i.e. for Pe = ∞. If both δ
and δu tend to zero, then the dispersion relation for small
perturbations reads [6]

ω2 =
Gr

2
k +

Ca

6δ
k3 − U2

0 k
2. (25)

Here, Ca also tends to zero, and the viscous force is ne-
glected.

From formula (25) one concludes that if Gr < 0 (the
heavier liquid is on top of the lighter one) the interface is
unstable owing to the Rayleigh-Taylor instability (the first
term), and, in the presence of the flow, the interface can
be additionally unstable owing to the Kelvin-Helmholtz
instability (the third term). The capillary effect (the sec-
ond term) suppresses the development of the short-wave
modes.

In the opposite gravitationally stable case, Gr > 0,
the perturbations result in development of the gravity-
capillary waves for higher Grashof number (weak flows).
The interface can however disintegrate due to the Kelvin-
Helmholtz instability if a sufficiently strong shear flow is
imposed.

These are the classical conclusions for infinitely thin
interfaces. A smeared interface is, in addition, prone to
the Holmboe instability (for Gr > 0) [13]. For the smeared
interface the amplitude equations (22)-(24), if simplified
by neglecting the capillary and viscous terms, are reduced
to the classical Taylor-Goldstein equation [17,24],

ψ′′ −
(
k2 − kU ′′

x

(ω − kUx)
+

k2J(y)

(ω − kUx)2

)
ψ = 0, (26)

where J(y) = C ′
0Gr is the squared Brunt-Vaisala fre-

quency.
The stability analysis of this equation was performed

for various density and velocity profiles. It was proven that
the layer is stable if the global Richardson number,

Ri(y) =
J(y)

[U ′
x]

2 =
C ′

0Gr

[U ′
x]

2 =
Grδ2u
2δ

cosh4(y/δu)

cosh2(y/δ)
, (27)

is everywhere greater than 1/4. If somewhere Ri(y) ≤ 1/4
then instability is likely to occur but this is not guaran-
teed, and the stability analysis is required for a definite
answer [17]. For the basic profiles (14) and (15) formula
(27) defines that the stability is determined by the Grashof
number and, in addition, by the ratio δ/δu. We generally
assume that δu > δ → 0. In this case, the instability is to
be expected for δ < δu/2 (δ < 1/2 if δu = 1), irrespectively
of the value of the Grashof number.

3.1 Gr < 0: the lighter liquid is superposed by the
heavier one

If Gr < 0, a horizontal phase boundary is always unsta-
ble due to the Rayleigh-Taylor instability. If, in addition,
the neighbouring liquids participate in a relative motion,
the Rayleigh-Taylor instability competes with the Kelvin-
Helmholtz instability. This is illustrated in fig. 2a, where
the increase in the intensity of the imposed flow leads to
a stronger growth of the modes with the longer wave-
lengths, and to a weaker growth of the modes with the
shorter wavelengths. Thus, the instabilities do not sum
up, as some modes develop slower, but this result agrees
well with the simple analytic formula (25) for sharp in-
terfaces and also with the earlier studies [8–10], in which
the stability of smeared interfaces was previously exam-
ined. Figure 2a also depicts the data for the inviscid and
viscous liquids, showing the dissipative role of the viscous
force.

Figures 2b,c show the growth rates for perturbations
developing at the interfaces of different thicknesses for the
cases of Ca = 0 (2b) and Ca = 0.001 (2c). The results
are similar to what we earlier observed for the case of the
pure Rayleigh-Taylor instability (see ref. [1]). Namely, for
Ca = 0, we notice that the curves converge to the limit
of sharp interface behaviour. If however the capillary ef-
fects are non-neglected, a simple reduction in the inter-
face thickness leads to the growth of the surface tension
(which is proportional to Ca/δ, see (16) and (25)) and to
the strong damping of the short wavelength modes. For
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Fig. 2. (a-c) The growth rates vs. the wavenumber are shown
for an immiscible interface that separates the heavier liquid
lying over the lighter liquid. The curves are plotted for Gr =
−1, δu = 1 and (a) Ca = 0.001, δ = 0.05, U0 = 0 (solid
lines), U0 = 1 (dashed lines), and U0 = 3 (dash-dot lines) for
three different Reynolds numbers, Re = ∞, Re = 100, and
Re = 10; (b) Ca = 0, Re = 25, U0 = 1, and δ = 0.001
(solid line), δ = 0.01 (dashed line), δ = 0.1 (dash-dot line),
and δ = 1 (dotted line); (c) Ca = 0.001, Re = 25, U0 = 1, and
different δ (lines as in (b)). (d) The eigenfunctions, namely the
moduli of the streamfunctions, are plotted for k = 3, Gr = −1,
Re = 25, U0 = 1, δ = 0.01, Ca = 0 (solid line) and Ca = 0.01
(dashed line). The eigenvalues are ω = (0, 0.750) for Ca = 0,
and ω = (0, 0.531) for Ca = 0.01.

the pure Rayleigh-Taylor instability it was shown, that
the sharp interface behaviour can be revealed by simul-
taneous decrease of the interface thickness and capillary
number. This dependency however was not reproduced for
the interface with the imposed shearing flow.

Finally, fig. 2d shows the shapes of the eigefunctions,
i.e. the y-profiles of the streamfunctions for two cases of
Ca = 0 and Ca = 0.001. In terms of the eigenfunctions,
the difference between the cases of zero and non-zero cap-
illary effects is not very strong. The eigenfunctions plotted
for the interfaces of different thicknesses were also found
to be almost coincident.

3.2 Gr > 0: the lighter liquid superposes the heavier
one

The configuration with the heavier liquid lying underneath
the lighter liquid would obviously be stable without exter-
nally imposed flow, and the flow could make this configu-
ration unstable towards the Kelvin-Helmhotz and Holm-
boe instabilities. The stability diagrams are depicted in
fig. 3. The Kelvin-Helmhotz instability is limited to the
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Fig. 3. The neutral curves defining the zones of the Kelvin-
Helmoltz (maked by “KHI”) and Holmboe (“HI”) instabilities.
The results are obtained for an immiscible (Pe = ∞) horizontal
interface separating two liquids with the heavier liquid at the
bottom. The parameters are (a) δ = 0.2, U0 = 1, Re = ∞, and
Ca = 0 (solid line), Ca = 0.0005 (dashed line), and Ca = 0.001
(dash-dot line); (b) Re = ∞, U0 = 1, and δ = 0.1 (solid line),
δ = 0.2 (dashed line), δ = 0.3 (dash-dot line), δ = 0.4 (dotted
line), and δ = 0.5 (dash-dot-dot line); (c) δ = 0.2, Re = 20,
and U0 = 1 (solid line), U0 = 2 (dashed line), and U0 = 4
(dash-dot line); (d) δ = 0.2, U0 = 1, and Re = ∞ (solid line),
Re = 50 (dashed line), and Re = 10 (dash-dot line). δu = 1 for
all plots.

lower Grashof numbers (smaller density contrasts), while
the evolution at the higher Grashof numbers is dominated
by the Holmboe instability. The zone of the Holmboe in-
stability is usually large (in comparison to the zone of the
Kelvin-Helmholtz instability), and even remains unclosed
from the top for immiscible interfaces between inviscid liq-
uids, when the growth of unstable modes is not stabilised
even by the strong gravity force. Similar stability diagrams
were earlier reported by other researchers [42,18].

Figure 3a shows the stability diagrams for the capil-
lary forces of different strengths. Surprisingly, the increase
in the surface tension does not make the layer more sta-
ble, and, on the contrary, the capillary forces extend the
range of the Kelvin-Helmholtz instability to the modes
with shorter wavelengths, and slightly widens the zone of
the Holmboe instability.

Figure 3b depicts the neutral curves for the interfaces
of different thicknesses. Thicker interfaces are more sen-
sitive to the Kelvin-Helmholtz instability. The range of
Holmboe instability is however decreased for such inter-
faces, and, for the case of Ca = 0 and U0 = 1, the Holmboe
modes cease to exist if δ > 0.417. In the opposite limit of
thinner thicknesses, the Kelvin-Helmholtz instability be-
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Fig. 4. (a,b) The eigenspectra for the perturbations devel-
oping at an immiscible (Pe = ∞) horizontal interface with
the heavier liquid underneath the lighter one. The curves are
shown for Gr = 0.1, Ca = 0, δ = 0.2, Re = ∞ (solid lines) and
Re = 50 (dashed lines). (a) shows ωr and (b) shows ωi. (c,d)
The eigenfunctions, namely, the real (solid lines) and imagi-
nary (dashed lines) parts of the streamfunction, are plotted for
k = 0.2,Gr = 0.1, Ca = 0, δ = 0.2, and (c) Re = ∞, the eigen-
value is ω = (0, 0.094); and (d) Re = 50, ω = (0.022, 0.05).
δu = 1 for all plots.

comes strongly suppressed and the instability is primarily
defined by the Holmboe modes.

Figure 3c shows how the increase in the amplitude of
the imposed flow affects the shapes of the neutral curves,
and, as expected, the zones of the both Kelvin-Helmholtz
and Holmboe instabilities grow. The curves are plotted
for the finite value of the Reynolds number, and, by mak-
ing comparison against fig. 3a, one notices that viscos-
ity makes the zones of the Holmboe instability closed up,
so the instability becomes suppressed by stronger gravity.
Figure 3d defines the stability diagrams for the different
strengths of the viscous forces, additionally illustrating
that viscosity reduces the range of unstable modes.

The typical eigenspectra are depicted in fig. 4a,b. The
results are shown for the parameters of fig. 3b, for Gr =
0.1, and for the inviscid and viscous cases. In these plots,
one sees that there is a short range of stable modes closer
to k = 0, then there is a range of unstable modes (for
which ωi is positive), and again the instability is reinstated
at larger wavenumbers. The Kelvin-Helmholtz modes have
zero wavespeeds (ωr = 0), and the Holmboe modes are
characterised by non-zero speeds (the positive branch of
ωr is only shown, and there is another symmetric branch
with negative ωr defining the wave travelling in the oppo-
site direction). The development of the Kelvin-Helmholtz
modes can be suppressed by viscosity (like shown in fig.

4b), nevertheless, the modes remain unstable in respect to
the Holmboe instability.

Figures 4c,d depict the typical shapes of eigenfunc-
tions. Figure 4c depicts the Holmboe mode and fig. 4d de-
picts the Kelvin-Helmholtz mode, the shapes of which are
however not substantially different. The eigenfunctions are
much wider in comparison to the similar functions plot-
ted for the gravitationally unstable configuration (fig. 2d).
In addition, there appears some non-symmetry about the
middle point.

4 Miscible liquids

4.1 Gr < 0: the lighter liquid is superposed by the
heavier one

For miscible liquids, the configuration with the heavier
liquid on top of the lighter liquid remains unconditionally
unstable. Figures 5, 6, and 7 show the growth rates as
functions of the wavenumber for various values of the non-
dimensional parameters. Figure 5 depicts the results ob-
tained for Ca = 0, and figs. 6 and 7 illustrate the changes
in the eigenspectra enforced by the capillary terms. In
general, we may conclude that the effect of capillarity is
mostly reduced to damping of the shortwave modes.

Figure 5a shows that the diffusion slows down the
growth of perturbations. The viscosity also plays the dis-
sipating role, which is illustrated in figs. 5c and 7a.

Figures 5b and 6a,b show the growth rates for the
perturbations developing at interfaces of different thick-
nesses. In the case of negligible capillary effects (fig. 5b)
the results could be obtained for the very small values of
interface thickness, and convergence of the curves defin-
ing the sharp interface limit could be observed. If however
the capillarity is important (figs. 6a,b), then the curves
for much thicker interfaces could only be obtained, and
convergence to the sharp interface behaviour was not re-
vealed. In addition, we plotted the curves for the different
values of Ca and δ, so that their values are simultaneously
reduced (figs. 6c,d). In these plots, the limiting behaviour
of the sharp interface was not revealed either. As already
mentioned above, the ratio Ca/δ defines the surface ten-
sion coefficient, and the simultaneous changes in these two
parameters allowed us to obtain the behaviour of a sharp
interface in the case of the pure Rayleigh-Taylor instability
(U0 = 0). The flow imposed along the interface obviously
makes the dependence of the eigenspectrum on Ca and δ
more complex.

Figures 5d and 7c show how the flow amplitude af-
fects the eigenspectrum. Similar to the immiscible case,
the growth of the modes with long wavelengths is intensi-
fied, and the growth of the modes with the shorter wave-
lengths is reduced.

Figures 5e and 7d show that the value of the param-
eter A does not introduce any qualitative changes to the
eigenvalue spectrum. This parameter defines the effective
diffusion coefficient,D0 = 2A+12C2

0 , and hence, the larger
values of A correspond to stronger diffusion, and, conse-
quently, to stronger damping of the growth. Finally, fig.
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Fig. 5. The growth rates vs. the wavenumber are shown for a
miscible interface separating two liquids with the lighter liquid
at the bottom. The curves are plotted for Ca = 0, δu = 1
and (a) Gr = −1, δ = 0.1, Re = ∞, A = −0.5, U0 = 1,
and for Pe = ∞ (solid line), Pe = 250 (dashed line), and
Pe = 50 (dash-dot line); (b) Gr = −1, Pe = 20, Re = ∞,
A = 0.5, U0 = 1, and for δ = 0.001 (solid line), δ = 0.01
(dashed line), and δ = 0.1 (dash-dot line); (c) Gr = −0.5,
U0 = 1, δ = 0.1, Pe = 10 and Pe = 100 and Re = ∞ (solid
lines), Re = 50 (dashed lines), and Re = 25 (dash-dot lines),
(d) Gr = −1, δ = 0.01, Pe = 20, Re = ∞, and U0 = 1 (solid
line), U0 = 3 (dashed line), and U0 = 5 (dash-dot line), (e)
Gr = −1, δ = 0.01, Pe = 20, Re = 50, and A = −0.5 (solid
line), A = −0.25 (dashed line), A = 0.25 (dash-dot line), and
A = 0.5 (dotted line); (f) U0 = 1, Pe = 20, Re = 50, A = 0.5,
δ = 0.1, and Gr = 0 (solid line), Gr = −0.25 (dashed line),
Gr = −0.5 (dash-dot line), and Gr = −1 (dotted line).

5f shows the role of the gravity force on the growth rates.
In the presence of the flow, the instability is obviously ob-
served even for Gr = 0, when the phase boundary is sub-
ject to the pure Kelvin-Helmholtz instability. The range
of the unstable modes and the maximum growth rates are
increased if the Grashof number is increased and hence
the Rayleigh-Taylor instability is intensified.
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Fig. 6. The growth rates vs. the wavenumber are shown for
a miscible interface between two liquids with the lighter liquid
at the bottom. The curves are plotted for δu = 1, Gr = −1,
U0 = 1, Pe = 20, (a) Ca = 0.05, Re = ∞, A = −0.5, δ = 0.3
(solid line), δ = 0.5 (dashed line), and δ = 0.8 (dash-dot line);
(b) Re = ∞, Ca = 0.05, A = 0.5 and for different δ (lines
marked as in (a)); (c) Re = 20, A = −0.5, and Ca = δ = 0.05
(solid line), Ca = δ = 0.1 (dashed line), Ca = δ = 0.2 (dash-
dot line); (d) Re = 20, A = −0.5, and values of Ca and δ, and
lines as in (c).

Figure 8 depicts the typical shapes of the eigenfunc-
tions, namely, the moduli of concentration and stream-
function. The eigenfunctions are shown for two values of
parameter A and for two different thicknesses δ. The con-
centration profiles are noticeably narrower and become
even more narrower if the interface thickness is reduced.
The streamfunction profiles remain virtually unaffected
by the changes in A and δ, but we saw that the stream-
function profiles become narrower for lower values of the
Reynolds numbers (stronger viscosity).

4.2 Gr > 0: the lighter liquid above the heavier one

Figures 9, 11, and 12 depict the neutral curves that define
the zones of the Kelvin-Helmholtz and Holmboe instabil-
ities obtained for interfaces separating two miscible liq-
uids. Figure 9 shows the results for Ca = 0. Figures 9a,b
are obtained for rather thin interfaces with and without
interfacial diffusion. In the immiscible case, the zone of
the Kelvin-Helmholtz instability is small, but the layer is
almost unconditionally unstable to the Holmboe modes,
which agrees with the observations made from fig. 3b plot-
ted for the immiscible interfaces of different thicknesses.
An introduction of interfacial diffusion changes the stabil-
ity boundaries: the zone of the Kelvin-Helmholtz instabil-
ity gets enlarged, while the zone of the Holmboe instability
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Fig. 7. The growth rates vs. the wavenumber are shown for
a miscible interface between two liquids with the lighter liquid
at the bottom. The curves are plotted for Gr = −1, Pe = 20,
Ca = 0.05, δ = 0.3, δu = 1, (a) A = −0.5, U0 = 1, Re = ∞
(solid line), Re = 1000 (dashed line), Re = 100 (dash-dot line),
and Re = 10 (dotted line); (b) A = 0.5, U0 = 1, and different
Re (lines as in (a)); (c) Re = ∞, A = −0.5, U0 = 0 (solid
line), U0 = 1 (dashed line), U0 = 2 (dash-dot line), U0 = 4
(dotted line); and (d) U0 = 1, Re = ∞, A = −0.5 (solid
line), A = −0.25 (dashed line), A = 0.25 (dash-dot line), and
A = 0.5 (dotted line).

becomes narrower. Thus, in the case of strong interfacial
diffusion (figs. 9c,d), the thinner interfaces are more unsta-
ble. In these figures, the zones of the Holmboe instability
are unclosed, with the left boundaries virtually coincident
with the axis k = 0.

Figure 10 depicts the typical eigenspectra. Both the
real and imaginary parts of the eigenvalues are plotted.
The imaginary part defines the growth or decay rates of
perturbations, so that its positive values signify the insta-
bility. One may notice a thin region near k = 0, where the
perturbations decay, then, there is a region of the Kelvin-
Helmholtz (ωr = 0) or Holmboe (ωr ̸= 0) instabilities, and
the shortwave modes decay again. The results are shown
for the viscous and inviscid cases, and one sees that the
instability region is reduced with the added viscous effect.
In addition, the Kelvin-Helmholtz instability can be ob-
served for higher values of Re numbers, but it ceases to
exist at such a level of the Grashof number if the viscosity
is stronger.

Figures 11 and 12 show the neutral curves for miscible
interfaces with the full account of the capillary terms. As
expected, the interface is stable for higher Grashof num-
bers. At lower values of the Grashof number the interface
is subject to either the Kelvin-Helmhotz or Holmboe insta-
bilities. The effect of interfacial diffusion on the interface
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Fig. 8. The eigenfunctions, namely the moduli of the concen-
tration (a,c) and streamfunction (b,d) are shown for k = 1,
Gr = −1, Pe = 20, Ca = 0.05, δu = 1, U0 = 1, Re = ∞,
δ = 0.3 (solid lines) and δ = 0.8 (dashed lines). The results are
plotted for A = −0.5 (a,b) and A = 0.5 (c,d). The eigenvalues
are (a,b) ωi = 0.607 (δ = 0.3), ωi = 0.469 (δ = 0.8) and (c,d)
ωi = 0.487 (δ = 0.3), ωi = 0.341 (δ = 0.8).

stability is illustrated by figs. 11a,b. The influence of dif-
fusivity is different for the negative and positive values of
parameter A. If A < 0, then diffusion through the inter-
face suppresses the development of the Kelvin-Helmoltz
instability, but the zone of the Holmboe instability gets
even larger. The Holmboe instability does not exist for
the cases of weak diffusivity (large Pe numbers). If A > 0,
the range of Gr for which the instability can be observed
is much larger. The presence of interfacial diffusion does
not significantly change the zone of the Kelvin-Helmholtz
instability until diffusion is too strong (Pe = 10), see fig.
11b. The increase in diffusivity makes the region of the
Holmboe instability smaller, and the Holmboe instability
is not observed for low Peclet numbers (e.g. Pe = 10).

Figures 11c,d show the neutral curves for the inter-
faces of various thicknesses. Similar to fig. 9c,d thinner
interfaces are more prone to the Kelvin-Helmholtz insta-
bility. In ref. [1], it was shown that the configuration with
the heavier liquid below the lighter one is thermodynam-
ically unstable with the exponential growth of perturba-
tions for the interfaces thicker than the equilibrium value
δ0 ≡

√
−Ca/A). This result is confirmed in the current

work and is illustrated in fig. 11c, where the neutral curve
for δ = 2δ0 splits the plot into two parts: the longwave
modes are thermodynamically unstable (almost indepen-
dent on the value of the Grashof number), and the short-
wave modes are stable. We did not observe the conver-
gence in the results to the sharp interface behaviour for
the limit of zero interface thicknesses.
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Fig. 9. The neutral curves are plotted for a miscible inter-
face between two inviscid liquids (Re = ∞) with the heavier
liquid underneath the lighter one. The capillary effects are dis-
regarded (Ca = 0). Other parameters are δu = 1, U0 = 1, (a)
A = −0.5, δ = 0.01, Pe = ∞ (solid line), Pe = 1000 (dashed
line), Pe = 400 (dash-dot line), and Pe = 200 (dotted line);
(b) A = 0.5, δ = 0.01, Pe = ∞ (solid line), Pe = 2500 (dashed
line), Pe = 100 (dash-dot line); (c) Pe = 20, A = −0.5,
δ = 0.001 (solid line), δ = 0.005 (dashed line), δ = 0.01 (dash-
dot line); (d) Pe = 10, A = 0.5, δ = 0.05 (solid line), δ = 0.1
(dashed line), and δ = 0.2 (dash-dot line).

Figures 11e,f show that viscosity introduces additional
damping thus reducing the range of unstable modes.

Figure 12a depicts the neutral curves for different A.
The more positive values of A (stronger diffusion) corre-
spond to larger zone of the Kelvin-Helmholtz instability,
which agrees with figs. 11a,b. Correspondingly, at negative
A, the zones of instability are significantly reduced. Figure
12b illustrates that the capillary terms enlarge the zones
of instability, similar to the immiscible case (fig. 3a). Fig-
ures 12c,d show the neutral curves for the imposed flows
of different amplitudes. Obviously, the increase in the flow
intensity expands the zones of the Kelvin-Helmholtz and
Holmboe instabilities.

Finally, fig. 13 depicts the eigenfunctions plotted for
the parameters of fig. 11d, for k = 0.2, for two different
levels of Grashof numbers that correspond to the Kelvin-
Helmoltz and Holmboe disturbances. The streamfunction
profiles look very similar to the curves plotted in fig. 4c,d
for the immiscible results. In the miscible case, the con-
centration profiles are added. The concentration profiles
are much narrower, with the width similar to the case of
Gr < 0 (fig. 8a,c).
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Fig. 10. The eigenspectra are shown for the perturbations
developing at a miscible interface that separates two liquids
with the heavier liquid underneath. The two sets of curves are
plotted for Re = 20 (dashed lines) and Re = ∞ (solid lines).
Other parameters are Gr = 0.1, δ = 0.01, δu = 1, U0 = 1,
and (a,b) A = −0.5, Pe = 1000 and Pe = ∞ (lines marked
by ◦ symbols); (c,d) A = 0.5, Pe = 2500 and Pe = ∞ (lines
marked by ◦ symbols).

5 Conclusions

The stability of a phase boundary separating two misci-
ble liquids is studied. The liquids are two components of
a non-equilibrium binary mixture, with the phase bound-
ary modelled by a sharp transition in concentration. The
shear flow is imposed along the interface, represented by
a similar transition in velocity, but with a different thick-
ness. Both basic concentration and velocity profiles do not
represent the equilibrium solutions, and thus both pro-
files experience slow smearing due to diffusivity and vis-
cosity. From the governing equations (3-6), it could be
understood that the smearing rates are proportional to
(t/Pe)1/2 and (t/Re)1/2 (the convective and diffusive time
scales are assumed to be comparable within this work).
The aim was to understand whether a faster and more
complex mixing can overrun the simple interface smear-
ing.

We used the phase-field approach to investigate the
linear stability of a horizontal interface. The base pro-
files were perturbed with normal disturbances. One un-
derstands that both the diffusive spreading of the base
state and the growth of the perturbations are defined by
the similar time scales. Nevertheless, the spreading occurs
considerably slower due to different time-dependencies:
the spreading occurs as t1/2, while the perturbations grow
exponentially. This allowed us to consider the evolution
of perturbations on the background of the “frozen base
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Fig. 11. The neutral curves are plotted for a miscible inter-
face between two liquids with the heavier one underneath. The
curves are obtained for U0 = 1, δu = 1 and (a) Re = 25,
δ = 0.3, A = −0.5, Ca = 0.05, Pe = ∞ (solid line), Pe = 1000
(dashed lines), Pe = 100 (dash-dot lines), and Pe = 10 (dotted
lines); (b) A = 0.5, other parameters and lines as in (a); (c)
Pe = 20, Re = 100, A = −0.5, Ca = 0.05, δ = δ0/2 ≈ 0.158
(solid lines), δ = δ0 ≈ 0.316 (dashed lines), δ = 2δ0 ≈ 0.632
(dash-dot line); (d) Pe = 100, Re = 25, A = 0.5, Ca = 0.05,
δ = 0.1 (solid lines), δ = 0.3 (dashed lines), and δ = 0.6 (dash-
dot lines); (e) Pe = 100, δ = 0.3, A = −0.5, Ca = 0.05,
Re = ∞ (solid lines), Re = 250 (dashed lines), and Re = 25
(dash-dot lines); (f) A = 0.5, Ca = 0.08, other parameters and
lines as in (e).

state”, which is the general approach commonly used for
solving the eigenvalue problems with slowly variable co-
efficients. The obtained results were validated against the
data available for immiscible interfaces that are subject to
either the Rayleigh-Taylor, or Kelvin-Helmholtz, or Holm-
boe instabilities.

The results are obviously different for the gravitation-
ally stable and unstable configurations. In the case of the
heavier liquid lying above the lighter liquid, the inter-
face is unconditionally unstable. The addition of the flow
does not make the interface more unstable, in sense, that
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Fig. 12. The neutral curves are plotted for a miscible interface
between two liquids with the heavier liquid underneath. The
curves are obtained for δu = 1, Pe = 100, (a) Re = 25, δ = 0.3,
Ca = 0.05, A = −0.5 (solid lines), A = −0.3 (dashed lines),
A = 0.3 (dash-dot lines), and A = 0.5 (dotted lines); (b)
Re = 25, δ = 0.3, A = 0.5, Ca = 0 (solid lines), Ca = 0.05
(dashed lines), and Ca = 0.1 (dash-dot lines); (c,d) Re = 10,
Ca = 0.05, δ = 0.05, U0 = 1 (solid lines), U0 = 2 (dashed
lines), and U0 = 3 (dash-dot lines), and A = −0.5 (c) and
A = 0.5 (d).

some of the modes (with longer wavelengths) start growing
faster in the presence of the flows, but the growth of short
wave modes is slowed down. Diffusivity introduces addi-
tional mechanism of dissipation, and its action is similar to
the influence of the viscous force. Capillarity reduces the
growth rates, primarily affecting the development of the
modes of shorter wavelengths. If the capillary forces are
neglected, then the gradual decrease of the interface thick-
ness can reveal the sharp-interface behaviour. If however
the capillary terms are non-negligible, then the decrease in
the interface thickness does not produce the convergence
to any limiting curve. When Ca and δ were both simulta-
neously decreased at the same rate, the limiting behaviour
was not revealed either.

The configuration with the heavier liquid placed un-
derneath the lighter one is stable if no flow is imposed.
The flow driven along the interface surface destabilises the
interface by introducing the Kelvin-Helmholtz and Holm-
boe instabilities. The interface would remain stable at
very high Grashof numbers, but at low Grashof numbers
the flow makes the interface unstable. Usually, both the
zones of the Kelvin-Helmholtz and Holmboe instabilities
can be identified. The zone of the Kelvin-Helmholtz insta-
bility lies at lower Grashof numbers, and the zone of the
Holmboe instability is attached to the zone of the Kelvin-
Helmholtz instability and usually extends to significantly
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Fig. 13. The eigenfunctions, namely the profiles of streamfunc-
tion (a,c) and concentration (b,d) are shown for perturbations
developing at a miscible interface that separates two liquids
with the heavier liquid underneath. The functions are plotted
for k = 0.2, Pe = 100, Ca = 0.05, δ = 0.1, Re = 25, A = 0.5
and for (a,b) Gr = 0.1 (the range of the Kelvin-Helmholtz
instability) and (c,d) Gr = 1 (the range of Holmboe instabil-
ity). The solid lines depict the real parts, and the dashed lines
show the imaginary parts. The eigenvalues are ω = (0, 0.087)
(for a,b) and ω = (0.283, 0.011) (for c,d).

higher Grashof numbers. As expected, the zones of insta-
bility are significantly enlarged for the flows with higher
amplitudes. Surprisingly, we found that interfacial diffu-
sion also expands the zones of instability. The interface is
also more unstable if its thickness is small. However, in the
case of A < 0, very thick interfaces, with thicknesses ex-
ceeding the equilibrium value δ0, become unconditionally
unstable due to the thermodynamic instability. In addi-
tion, the instability zones are increased if the capillary
effects are added. Viscosity however suppresses the insta-
bility reducing the range of unstable modes.
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