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Abstract
Confidence intervals based on ordinary least squares may have poor coverages for regression param-
eters when the effect of sampling design is ignored. Standard confidence intervals based on design
variances may not have the right coverages when the sampling distribution is skewed. Berger and
De La Riva Torres (2012) proposed an empirical likelihood approach which can be used for point
estimation and to construct confidence intervals under complex sampling designs for a single pa-
rameter. We show that this approach can be extended to test the significance of a subset of model
parameters and to derive confidence intervals. The proposed approach is not a straightforward ex-
tension of Berger and De La Riva Torres (2012) approach, because we consider the situation when
the parameter is multidimensional and the parameter of interest is a subset of the parameter. This
requires profiling which is not covered by Berger and De La Riva Torres (2012). The proposed
approach intrinsically incorporates sampling weights, design variables, and auxiliary information.
It may yield to more accurate confidence intervals when the sampling distribution of the regression
parameters is not normal, the point estimator is biased, or the regression model is not linear. The
proposed approach is simple to implement and less computer intensive than bootstrap. The proposed
approach does not rely on re-sampling, linearisation, variance estimation, or design-effect.

Key Words: Design-based inference, estimating equations, empirical likelihood, regression pa-
rameters, unequal inclusion probabilities

1. Introduction

Regression models are widely used in social sciences, biological sciences, econometry and
finance. Models are usually fitted to survey data, which may be collected for samples
selected from finite populations. Sample units may be drawn from a complex sampling de-
sign which involves unequal inclusion probabilities, stratification and/or clustering. When
the sampling design is informative (e.g. Skinner 1994; Pfeffermann 1993; Pfeffermann
and Sverchkov 2009; Pfeffermann 2011), model-based estimators may be inconsistent and
produce invalid inferences (see Binder and Roberts 2009). The standard design-based ap-
proaches assume the normality of the point estimators (e.g. Binder 1983; Deville 1999;
Demnati and Rao 2004), which may not hold with moderate sample sizes or skewed data.

In this context, we propose to use an empirical likelihood approach to make inferences
about model parameters and/or functions of them under unequal probability sampling. This
is a non-parametric approach, where the sampling distribution is completely specified by
the sampling design. Berger and De La Riva Torres (2012) proposed an empirical likeli-
hood approach which can be used for point estimation and to construct confidence intervals
under complex sampling designs. We show that this approach can be extended to the mul-
tidimensional parameter case, in the sense that we can derive confidence intervals and test
the significance of a subset of model parameters while taking the sampling design into
account.
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2. Parameters of Interest and Estimating Functions

Let s be a random sample of size n which is selected from the finite population U of size
N with respect to a probability sampling design p(s). Let yi and xi be some variables of
interest. We assume that the values of yi and xi are known for all i ∈ s. Note that xi is
not necessarily a vector of auxiliary variables. The auxiliary variables will be denoted by
ξi (see Section 4). We assume that all the units in the sample are respondents. Consider
an unknown finite population parameter vector ψN , which is the solution of the following
population estimating equation.

G(ψ) =
∑
i∈U

gi(yi,xi,ψ) = 0,

where gi(yi,xi,ψ) is a vector of estimating functions. Most finite population parameters
can be formulated through estimating functions (e.g. Binder 1983; Binder and Patak 1994;
Qin and Lawless 1994; Godambe and Thompson 2009).

We assume that the parameter ψN converges to a model parameter ψ0. Let ψ̂ be a
design-consistent estimator of ψN based on the sample data. The estimator ψ̂ is also an
estimator of ψ0. When the sampling fraction is negligible (i.e. n/N → 0), the variability
of ψ̂ is driven by the sampling design. Hence, the confidence intervals proposed in this
paper can be viewed as confidence intervals of ψ0 or ψN .

The proposed empirical likelihood approach is valid under a sampling design with re-
placement selection (pps sampling). However, the πps sampling design with fixed sample
sizes is commonly used in practice. In this paper, we assume that the sampling fraction
is negligible. This allows to approximate the actual design by the pps sampling design.
Hence, the proposed approach is valid under the πps sampling as long as n/N → 0.

2.1 Example: Regression Parameters

A generic expression for estimating equation for unknown model parameter β0 can be
written as (e.g. Chen and Keilegom 2009)

∑
i∈U

∂(h(xi)
>β)

∂β

(yi − µ(h(xi)
>β))

vi
= 0, (1)

where µ(·) is a smooth function.
For a simple linear regression model, we have h(·) = xi, µ(·) = x>i β, and vi ∝ 1. In

this case, the estimating equation (1) reduces to the following.∑
i∈U

xi(yi − x>i β) = 0.

For generalised linear models, we have µ(x>i β) = f−1(x>i β), and vi = v(µ(x>i β)),
where f(·) is a link function. For example, the estimating equation for a logistic regression
model under homoscedasticity; that is, vi ∝ 1, is given by

∑
i∈U

xi

(
yi −

exp(x>i β)

1 + exp(x>i β)
)

)
= 0,

where the link function is f(µ) = logit(µ) = log(µ/(1−µ)) (see also Binder 1983, p.285;
Owen 2001, ch.4.7; Chaudhuri et al. 2008, p.322).
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2.2 Parameters of Interest and Nuisance Parameters

When dealing with regression, we are often interested in making inference about a subset
of parameters. Let ψN = (θ>N ,λ

>
N )> where θN is a p× 1 vector of parameters of interest

and λN is a q × 1 vector of parameters which are not of primary interest. The parameter
λN will be called as ‘nuisance’ in this paper. Under a parametric likelihood framework,
scale parameters are usually treated as nuisance (Kim and Zhou 2008). However, we call
any unknown parameters as nuisance if they are not of primary interest, but are necessary
to make inferences for the parameters of interest.

The parameter λN is assumed unknown and may need to be estimated in order to
make inferences about θN (e.g. Godambe and Thompson 1974; Binder and Patak 1994;
Godambe and Thompson 1999, 2009). Owen (1990) proposed an approach to deal with the
multidimensional parameters under an empirical likelihood framework. Qin and Lawless
(1994) formally defined a profile empirical likelihood ratio test statistics to test hypotheses
and to construct confidence intervals in the presence of a nuisance parameter. We propose
to extend Qin and Lawless (1994) work in the context of a design-based inference.

3. Empirical Likelihood Approach

We use the empirical log-likelihood function given by Berger and De La Riva Torres (2012).
It is defined as follows.

`(m) =
∑
i∈s

log (mi), (2)

where the mi are unknown scale loads. The empirical log-likelihood function in (2) can
be used for the sampling with replacement with unequal probability selection (i.e. pps
sampling) designs as shown by Hartley and Rao (1969).

The maximum empirical likelihood estimators m̂i maximise the empirical log-likeli-
hood in (2) with respect to the constraints mi ≥ 0 and∑

i∈s
mici = C, (3)

where the ci and C are vectors defined in Sections 3.1 and 4. We assume that ci and C
satisfy with a set of regularity conditions given by Berger and De La Riva Torres (2012)
and the following condition.

‖∂ci
∂λ
‖ = O(1), for all i ∈ s and λ ∈ Λ, (4)

where ‖·‖ denotes the Euclidean norm, O(·) defines the order of convergence, and Λ is a
neighbourhood around the true population value λN . The condition (4) implicitly implies
that the ci are differentiable with respect to λ in a neighbourhood of λN and the ‖∂ci/∂λ‖
is bounded in this neighbourhood (e.g. Godambe and Thompson 1974; Binder 1983; Qin
and Lawless 1994; Owen 2001).

The maximum empirical likelihood estimators m̂i can be found using the method of
Lagrange multipliers. Berger and De La Riva Torres (2012) showed that the solution of
this maximisation is given by

m̂i = (πi + η>ci)
−1,

where η is such that the constraint (3) is satisfied.
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3.1 Maximum Empirical Likelihood Estimator

Let `(m̂) be the maximum value of the empirical log-likelihood function `(m) under the
constraints mi ≥ 0 and (3) with ci = πi and C = n. This implies that m̂i = π−1i . Assume
that m̂∗i maximises `(m) subject to the constraints mi ≥ 0 and

∑
i∈smic

∗
i = C∗ with

c∗i = (ci, gi(yi,xi,ψ)>)> and C∗ = (C,0>)>, for a given vector ψ = (θ>,λ>)>. We
assume that the condition (4) holds when ci is substituted by c∗i in (4). The empirical
log-likelihood ratio function is defined by

r̂(ψ) = 2{`(π)− ` (m̂∗(ψ))}, (5)

where `(π) = −
∑

i∈s log(πi) is the maximum value of (2) under the constraint (3) when
ci = πi and C = n.

The maximum empirical likelihood estimates ψ̂ of the population parametersψN is de-
fined by the vector which minimises the empirical log-likelihood ratio function (5) over ψ.
The minimum value of r̂(ψ) is obtained when r̂(ψ) = 0; that is, when m̂∗i = m̂i = π−1i .
Thus, the maximum empirical likelihood estimator of ψN is the solution of the following
sample estimating equations.

Ĝ(ψ) =
∑
i∈s
gi(yi,xi,ψ)π−1i = 0· (6)

3.1.1 Example: Simple Linear Regression

Consider a simple linear regression model with an intercept β1 and a slope term β2; that
is, µ(xi) = β1 + β2xi. The sample estimating equations (6) for β2 and β1 are respectively
given by ∑

i∈s
xi(yi − β1 − β2xi)π−1i = 0 and

∑
i∈s

(yi − β1 − β2xi)π−1i = 0· (7)

When solving the equations (7) for β1 and β2, we obtain the following point estimators.

β̂1 = yH − β̂2xH and β̂2 =

∑
i∈s (xi −xH)(yi −yH)π−1i∑

i∈s (xi −xH)2π−1i
,

where xH =
∑

i∈s x̆i/N̂ and yH =
∑

i∈s y̆i/N̂ , with x̆i = xiπ
−1
i , y̆i = yiπ

−1
i , and

N̂ =
∑

i∈s π
−1
i . The random variables yH and xH are the Hájek (1971) estimators of

the population means X =
∑

i∈U xi/N and Y =
∑

i∈U yi/N respectively. Under an
equal probability sampling design, the estimators β̂1 and β̂2 are the ordinary least square
estimators.

3.2 Hypothesis Testing

Hypothesis testing for regression parameters is necessary for model comparison. For ex-
ample, we may want to test if an additional regression parameter is significant.

Suppose we wish to test H0 : θN = θ0N . Consider the profile empirical log-likelihood
ratio function defined by

r̂(θ0N ) = 2

{
`(π)−max

λ
`
(
m̂∗(θ0N ,λ)

)}
, (8)

where the set of m̂∗i maximises `(m) subject to the constraints mi ≥ 0 and
∑

i∈smic
∗
i =

C∗ with c∗i = (πi, gi(yi,xi,θ
0
N ,λ)>)> and C∗ = (n,0>)>.
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Note that in (8), we maximise `(m̂∗(θ0N ,λ)) over the nuisance parameter λ for a given
value of θN = θ0N . The value of λ that maximises `(m(θ0N ,λ)) can be found by taking
the derivative of `(m̂∗(θ0N ,λ)) with respect to λ. Because (3) holds for m̂∗i , c

∗
i , and C∗,

we obtain the following set of equations.

˙̀(η,λ) =
∂`(m̂∗(θ0N ,λ))

∂λ
= η>

∑
i∈s

m̂i
∂c∗i
∂λ

= 0q, (9)

where q is the dimension of λ. The Lagrange coefficients η and λ satisfying
∑

i∈s m̂
∗
i c
∗
i =

C∗ and the equation (9) can be computed through an iterative procedure such as the
Levenberg-Marquardt algorithm (e.g. Levenberg 1944; Marquardt 1963).

UnderH0, it can be shown that the profile empirical log-likelihood ratio function r̂(θ0N )
given by (8) asymptotically follows a limited chi-squared distribution with a p degree of
freedom, where p is the dimension of the vector of parameters of interest θN . Thus, the
p-value is given by

p− value =

∫ ∞
r̂(θ0

N )
χ2
df=p(x) dx,

where χ2
df=p(·) is the density of a chi-squared distribution with a p degree of freedom. Note

that lack of fit would not affect the performance of the proposed empirical likelihood test
(e.g. Owen 2001).

3.3 Confidence Intervals

We can construct confidence intervals for each parameter individually by treating the other
parameters as nuisance. In this case, p = 1 and the vector θN is the scalar θN . Then,
based on the asymptotic chi-squared distribution of r̂(θ0N ) under the null hypothesis H0 :
θN = θ0N , the (1− α)% empirical likelihood Wilks (1938) type confidence interval for θN
is given by [

min
{
θ : r̂(θ) ≤ χ2

df=1(α)
}
, max

{
θ : r̂(θ) ≤ χ2

df=1(α)
}]
,

where χ2
df=1(α) is the upper α - quantile of the chi-squared distribution with one degree

of freedom. Note that r̂(θ) is a convex function of θ with a minimum value when θ is
the empirical maximum likelihood estimator. Based on this property, the bisection method
can be used to find the lower and upper bounds. This involves calculating r̂(θ) for several
values of θ.

4. Incorporating Population Level Information

The efficiency of the estimators can be increased by using population level information.
Handcock et al. (2000) and Chaudhuri et al. (2008) demonstrated that a large gain can be
obtained in the precision of the estimators of model parameters when an auxiliary informa-
tion is used in the estimation procedure. A population level information can be easily taken
into account with the proposed approach.

Let ξi be a vector of auxiliary variables. Let ϑN be a set of known population quan-
tities which are functions of those variables. For example, these quantities may be in
the form of means, totals, proportions, variances, quantiles, and/or distribution functions.
Suppose fi(ξi,ϑN ) be the vector of estimating functions which is used to define known
population parameters ϑN . That is, ϑN is the solution of the census estimating equa-
tion

∑
i∈U fi(ξi,ϑ) = 0. For example, if the ϑN are the population means, we use
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fi(ξi,ϑN ) = ξi − ϑN . In fact, fi(ξi,ϑN ) does not have to be differentiable with re-
spect to the nuisance parameter λ. Because, we assume that fi(ξi,ϑN ) does not depend on
λ. We also assume that ϑN is not subject to any uncertainty.

Let ci = (πi, fi(ξi,ϑN )>)> and C = (n,0>)>, where ϑN is the known population
value of ϑ. Then, the maximum value of `(m) is `(m̂) =

∑
i∈s log (m̂i), where the set

of m̂i maximises `(m) subject to m̂i ≥ 0 and
∑

i∈smici = C. Let m̂∗i maximise `(m)
under the constraints mi ≥ 0 and

∑
i∈smic

∗
i = C∗, with c∗i = (c>i , gi(yi,xi,ψ)>)> and

C∗ = (C>,0>)>. The empirical likelihood log-likelihood ratio function is defined by

r̂(ψ) = 2 {`(m̂(ϑN ))− ` (m̂∗(ψ,ϑN ))} · (10)

The maximum empirical likelihood estimate ψ̂ of ψN minimises (10). The minimum
value of r̂(ψ) is obtained when m̂∗i = m̂i such that r̂(ψ) = 0. Thus, the maximum em-
pirical likelihood estimator of ψN will be the solution of the following sample estimating
equations.

Ĝ(ψ) =
∑
i∈s

m̂i gi(yi,xi,ψ) = 0· (11)

It can be shown that Ĝ(ψ) can be approximated by

Ĝ(ψ) = Ĝreg(ψ) + op(Nn
−1/2),

where Ĝreg(ψ) is a regression estimator defined by

Ĝreg(ψ) = Ĝπ(ψ) + B̂
>
opt

(
f(ϑN )− f̂π(ϑN )

)
, (12)

where f̂π(ϑN ) =
∑

i∈s fi(ξi,ϑN )π−1i is the Horvitz-Thompson estimator of f(ϑN ) =∑
i∈U fi(ξi,ϑN ), Ĝπ(ψ) =

∑
i∈s gi(yi,xi,ψ)π−1i , and B̂opt is the regression coefficient

given by
B̂opt = v̂arpps(f̂π(ϑN ))−1ĉovpps(Ĝπ(ψ), f̂π(ϑN )),

where v̂arpps(·) and ĉovpps(·) are the variance and covariance estimators with respect to
the pps sampling design. Note that the variance and covariance estimators under the πps
sampling design can be approximated to v̂arpps(·) and ĉovpps(·) respectively when the
sampling fraction is negligible (e.g. Särndal et al. 1992, p.422). The estimator (12) is
asymptotically a design-optimal regression estimator under the pps sampling design (e.g.
Isaki and Fuller 1982; Montanari 1987; Rao 1994; Berger et al. 2003).

Suppose we wish to test H0 : θN = θ0N . Let the set of m̂∗i maximises `(m) subject to
the constraints mi ≥ 0 and

∑
i∈smic

∗
i = C∗, with c∗i = (c>i , gi(yi,xi,θ

0
N ,λ)>)> and

C∗ = (C>,0>)>, where ci = (πi, fi(ξi,ϑN )>)> andC = (n,0>)>. The profile empiri-
cal likelihood log-likelihood ratio function in the presence of population level information
is given by

r̂(θ0N ) = 2

{
`(m̂(ϑN ))−max

λ
`
(
m̂∗(θ0N ,λ,ϑN )

)}
· (13)

It can be shown that the profile empirical log-likelihood function (13) asymptotically
follows a chi-squared distribution with a p - degree of freedom under H0. This allows us
to test hypotheses and to construct confidence intervals using the approach described in
Sections 3.2 and 3.3.
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5. Simulation Study

In this §, we present some numerical results for a linear regression model with one intercept
and one slope. We generated the Hansen, Madow and Tepping (HMT) population (Hansen
et al. 1983). The population size is N = 10 000. The values xi are generated from a
gamma distribution with a shape parameter equal to two and a scale parameter equal to
five. Auxiliary variables are not considered in this section. We generate the yi from a
conditional gamma distribution with a shape parameter equal to 0.04x

−3/2
i (8 + 5xi)

2 and
a scale parameter equal to 1.25x

3/2
i (8 + 5xi)

−1; that is,

yi = 0.4 + 0.25xi + x
3/4
i ei,

where ei are independent and identically distributed random variables with a zero mean
and a standard deviation 0.25. We selected 1000 random samples of size n = 500 from
this population using the randomised systematic sampling. The πi are proportional to a
measure of size zi = 5+yi+xi+ εi, where εi ∼ exp(rate = 1)−1. The linear regression
model of interest is defined by

yi = β1 + β2xi + ui, with vi = x
3/2
i . (14)

The parameter of interest is the slope term β2. The intercept term β1 is treated as a nui-
sance parameter. We take into account the heteroskedasticity by introducing the variance
function, vi = x

3/2
i .

We compare the Monte-Carlo performance of the proposed empirical likelihood con-
fidence intervals for β2 with the Wald type of confidence interval and design-based con-
fidence intervals. For the latter, we used the Pseudo likelihood (e.g. Binder 1983; Binder
and Patak 1994; Godambe and Thompson 2009) and the rescaled bootstrap methods (Rao
et al. 1992). The Wald confidence intervals are based on the normality of the ordinary least
squares estimator of the slope parameter. We considered two Pseudo likelihood approaches.
With the ‘pseudo likelihood 1’, we substitute β2 with its design-based estimator β̂2 in the
variance term in the pivot given by Godambe and Thompson (2009, p.99) (see also Binder
and Patak 1994, p.1039). For a linear regression, this is equivalent to the method of lineari-
sation of estimating functions (e.g. Binder 1983; Deville 1999; Demnati and Rao 2004).
With the ‘pseudo likelihood 2’ approach, we solve the same pivot for β2 without substitut-
ing β2 with β̂2 in the variance expression. The percentile method was used to obtain the
rescaled bootstrap confidence intervals (e.g. Rao et al. 1992).

In Table 1, we compare several statistics regarding the performance of confidence inter-
vals. The standardised lengths are computed based on the expression given by Kovar et al.
(1988, p.32).

Standardised Length =
Average Length

2zα/2
√

MSE
,

where MSE = (B − 1)−1
∑B

b=1(β̂2b − βN2 )2, where β̂2b is the point estimate of the popu-
lation parameter βN2 for the b-th sample, B = 1000, and zα/2 is the α/2 - quantile of the
standard normal distribution.

Ratio of average length (AL) is defined as the ratio of the average length of the empirical
likelihood confidence intervals to the average length of the confidence intervals produced
by other methods. Ratio of standard deviation (SD) of length is the ratio of the standard
deviation of length of the empirical likelihood confidence intervals to the standard deviation
of length of the confidence intervals produced by other methods.

Table 1 gives the observed coverages of the 95% confidence intervals constructed based
on different methods. Standard confidence intervals are based on the normality of the point
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estimator. However, when the sampling distribution is skewed, the normality assumption
may not hold. This explains the poor coverages of the Wald and the pseudo likelihood
1 approaches. The poor coverage of the Wald type of confidence intervals is also due to
the fact that this method ignores the sampling design. We have an overcoverage with the
rescaled bootstrap.

The coverage probabilities of the empirical likelihood and the pseudo likelihood 2 con-
fidence intervals are not significantly different from the nominal level (i.e. 95%). The pivot
of the pseudo likelihood 2 approach is closer to normality than the standard t-statistics that
is obtained from the pseudo likelihood 1 approach. However, for some samples, the pseudo
likelihood 2 does not produce two solutions for the confidence boundaries. This is an issue
that was pointed out by Godambe and Thompson (2009, p.92).

The least square estimators of the slope parameter and its standard error are not design-
unbiased. We observed an overestimation of the parameter of interest. This explains the
high level of lower tail error. The tail errors for all the methods, except the upper tail of the
pseudo likelihood 1 and the lower tail of the rescaled bootstrap, significantly differ from
the nominal level (i.e. 2.5%).

In terms of the standardised lengths, the rescaled bootstrap method has the largest con-
fidence intervals on average compared to the other methods. Although the empirical like-
lihood and the pseudo likelihood 2 confidence intervals have good coverage probabilities,
the former is more reliable than the latter with regards to the standard deviation of length
(see the last column of Table 1).

Table 1: Coverages of the 95% Confidence intervals for the slope parameter (βN2 ) of the
linear regression model in (14). The Hansen-Madow-Tepping population size is N=10 000.
The sample size is n = 500.

n = 500 Coverage
Probability

Lower
Error

Upper
Error

Standardised
Length

Ratio AL Ratio SD
Length

Wald 76.6* 23.8* 0.1* 0.632 0.96 0.53
Empirical Likelihood 94.8 3.1* 2.1* 0.980 1.00 1.00
Pseudo Likelihood 1 94.0* 3.5* 2.5 0.951 0.97 1.07
Pseudo Likelihood 2 94.8 3.3* 1.9* 0.973 0.99 1.09
Rescaled Bootstrap 96.5* 2.4 1.1* 1.030 1.05 0.91
* Significantly different from the nominal levels (95% and 2.5% for coverage probability and tail errors
respectively) at the 5% significance level (i.e. p− value ≤ 0.05).

6. Conclusion

We proposed an empirical likelihood approach which can be used to make inferences for
regression parameters. This approach takes the sampling design into account. It can be
applicable to generalised linear models (see Section 2.1). It is also possible to apply it to
quantile (robust) regression models (Huber 1981). In Section 3.2, we propose to profile
out the parameters which are not of primary interest. The resulting profile empirical log-
likelihood ratio function follows asymptotically a chi-squared distribution. Based on this
property, we can test hypotheses and construct confidence intervals.

In Section 4, we showed how the population level information can be incorporated
into the proposed approach. In addition, the empirical maximum likelihood estimator is
asympotically design optimal. Unlike the usual calibration approach (Deville and Särndal
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1992), the proposed approach can be used for testing and constructing confidence intervals.
Moreover, the auxiliary information does not have to be in the form of totals or means, and
empirical likelihood weights are always positive.

The proposed approach can be easily extended to stratified sampling designs by in-
corporating the strata information into the ci. It can also be used for two-stage sampling
designs when the sampling fraction of the primary sampling units are negligible. In this
case, primary sampling units play the role of units.
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