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Abstract:  

Data based scorecards, such as those used in credit scoring, age with time and need to be rebuilt or 

readjusted. Unlike the huge literature on modelling the replacement and maintenance of equipment 

there have been hardly any models which deal with this problem for scorecards. This paper identifies 

an effective way of describing the predictive ability of the scorecard and from this describes a simple 

model for how its predictive ability will develop.  Using a dynamic programming approach one is 

then able to find when it is optimal to rebuild and when to readjust a scorecard. Failing to readjust or 

rebuild a scorecard when they aged was one of the defects in credit scoring identified in the 

investigations into the sub-prime mortgage crisis. 
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1. Introduction 

Credit scoring has proved one of the most successful applications of Operations Research in the 

finance industry (Anderson, 2007; McNab and Wynn, 2000; Thomas, 2009; Finlay, 2008). It uses data 

on past borrowers to predict which consumer applicants and borrowers of consumer credit are likely 

to default within a given time period (be Bad) or not default (be Good). Almost all lenders of 

consumer credit now use scoring as part of their risk assessment. Its success has led to data-mining 

based scoring being used in a wide range of applications. These include direct marketing (Malthouse, 

2001), customer lifetime value (Glady et al., 2009), customer churn (Burez and van den Poel, 2009), 

intensive care assessment in hospitals (Arts et al., 2005), and parole decisions (Petersilia, 2009).  

 

Just as equipment deteriorates over time so does scorecard performance. This happens for several 

reasons – changes in the population who are being scored, changes in the economic and commercial 

environment, and changes in the operating policy of the lender. Yet though there has been a 

significant literature on modelling the optimal maintenance and replacement policies of deteriorating 

equipment, there has been hardly any work on when to readjust (essentially repair) and when to 

rebuild data based scoring systems. In credit scoring, this failure to model when a scorecard needs 

rebuilding was recognised as one of the causes of the sub-prime mortgage crisis of 2007-8. The US 

Securities and Exchange report (2008) identified that credit bureau scorecards had aged significantly 

over time. This is clear in the analysis by Demyanyk and van Hemert (2008), Ashcraft and 

Schuermann (2008) and Rona-Tas and Hiss (2008). The power of the score to predict delinquency or 

foreclosure dropped considerably between 2001 and 2006. Yet the same scorecard was in operation 

throughout and a new one was not introduced until 2008. 

 

The aim of this paper is to build a model which predicts when a scorecard will need to be rebuilt and 

when it needs readjusting. Such a model ensures improved scorecard performance but also indicates 

the likely workload on the analytics team involved in building and maintaining the scorecard. 

 

Traditionally it would take a team of analysts three to six months to build a new scorecard. Much of 

this effort is involved in acquiring and cleaning an appropriate data set (Anderson, 2007; Thomas, 

2009). Then they need to identify, analyse and develop the characteristics that relate most strongly to 

the Good/Bad status of the borrower at the end of the performance period. Finally a classification 

technique such as logistic regression is used to build the final scorecard. (Details can be found in 

Anderson (2007) and Thomas (2009)). Even with modern data mining tools this process still takes 

time.  

 

Even the simpler readjustment action is not without a cost. In application scorecards this adjustment is 

equivalent to moving the accept/reject decision for new borrowers. Such decisions involve analysis 
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and discussion between the marketing and risk departments to get some understanding of what is 

happening and why it is occurring.  

 

Behavioural scoring also assesses borrowers’ default risk for the Basel Accord regulations. These 

regulations require validation of the score to probability of default (being a Bad) relationship 

including recording and justifying any changes made in this relationship. The analysis involved in 

such justification means readjustment of a behavioural score is also not costless. 

 

The dearth of replacement and maintenance models for data based scorecards is due to the lack of a 

compact description of the state of the scorecard and so to a model of the dynamics of such state 

movements. With scorecards the state of the system should reflect the accuracy of the scorecard’s 

prediction. Either the state description is too large like a ROC curve which is a function over a 

compact interval or it only partially describes the discrimination of the scorecard like the error 

functions at a specific cut-off. Scorecards are monitored every month using a number of performance 

measures (Anderson, 2007; McNab and Wynn, 2000) but these only describe the past performance of 

the scorecard and there is no forecast of what will happen in future periods. Thus the decisions about 

when to rebuild or repair a scorecard are static ones depending on how badly the scorecard performed 

in the previous periods. The objective of this paper is to show how one of the measures of 

performance – the log odds to score graph – gives an efficient description of the state of the scorecard. 

Its dynamics can then be represented by a simple diffusion model. This allows one to determine 

optimal rebuilding and readjusting strategies, which include forecasts of the future ageing of the 

scorecard. 

 

The literature on the replacement and maintenance of equipment and of complex systems is long and 

distinguished. The survey articles by McCall (1965), Pierskallar and Voelker (1976), Sherif and Smith 

(1981), Thomas (1986), Valdes-Flores and Feldman (1989), Sarkar et al. (2011) give an indication of 

the developments. Initially the systems were modelled as states of a Markov chain (Derman, 1963) 

with the dynamics given by the transition probabilities. Deciding when to repair and when to replace 

leads to a Markov decision process formulation. Subsequent models made the state the age of the 

system, or the mileage of the vehicle. Regular inspection led to replacement strategies based on 

condition monitoring (for example Liao et al. (2006)). Here the condition of the system is described 

by physical measures like temperature or vibration values. Other models combined the replacement 

and repair decision such as Lui et al. (1995). 

 

The main approach to modelling replacement and maintenance problems is dynamic programming, 

particularly Markov Decision Processes, White (1969), Puterman (1994), Buerle and Rieder (2011). 

This techniques optimizes a sequence of decisions when the state the system has stochastic dynamics. 
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There are many real applications of this approach (White, 1988; 1993). However nowhere in the 

literature are there models of when to rebuild or repair scorecards, even in books on dynamic 

programming and replacement modelling (Denardo, 1982; Bertsekas, 2012; Dohi and Nakagawa,  

2013). 

 

The literature on software maintenance looks at when existing software programmes need to be 

updated to deal with the new needs of the organisation. Xiong et al. (2011) model the problem as a 

continuous time Markov chain; Kulkarni et al. (2009) look at a queuing theory approach; while Feng 

et al. (2006) use dynamic programming. Krishnan et al (2004) derive a Markov decision process 

model where the decisions are: keep the system operating, introduce a minor patch release or a major 

upgrade. These models are based on the idea of software ageing because of fragmentation, resource 

leakage, numerical error accrual and data corruption (Grottke et al., 2008). However scorecards age 

for different reasons and the objective in maintaining credit scorecards is to improve the existing 

usage of the scorecards rather than to develop new applications. 

 

Crook et al. (1992) were one of the first to investigate how credit scorecards age. They looked at the 

difference in scorecards built on data which was just before and during an economic downturn. Varga 

(2009) modelled when one should build a new scorecard. In it the state of the scorecard was the 

percentage of defaults (Bads) and non-defaults (Goods) who were misclassified at a specific cut-off 

score. This approach does not allow one to adjust the cut-off score. So there is no opportunity for 

readjusting the scorecards, which is equivalent to changing this cut-off. The model in this paper has a 

more sophisticated description of the state of the scorecard which allows reclassification as well as 

rebuilding actions.  

 

In section two we define log odds scores, explain why are they important and how the scorecard 

performance can be described in terms of the log odds to score graph. In the following section we 

formulated a general discrete time Markov decision process model, based on the dynamics of this 

graph. This is used to determine the optimal rebuilding and readjusting strategies. Section four looks 

at aspects of this strategy including the optimal cut-off scores after rebuilding and readjusting the cut-

off scores and the control limit form of the rebuilding decision. In section five we model a specific 

form of the dynamics of the scorecard’s ageing and in section six we apply this to a case study 

describing the performance of a scorecard used by a portfolio of over 2,000,000 credit card accounts 

over two years 2002-2003. In the final section we draw some conclusions on the effectiveness of the 

model and its possible applications. 

 

2. Credit scorecards 

2.1 Building credit scorecards 
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Almost all credit scores are log odds scores (Thomas, 2009) or linear transformations of log odds 

scores. Scorecards built using logistic and linear regression, which are the most common ways of 

building scorecards, are of this form. Let )|( xBP  be the probability a borrower with characteristics x 

is “Bad” and defaults within a given time horizon, and let )|(1)|( xx BPGP  be the probability the 

borrower will be “Good” and not default. Then a log odds, )(xs satisfies 
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For a linearly transformed log odds score one has  
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Logistic regression produces a log odds score s  but this score is often linear transformed by 

( ) /s a b  to have an agreed marginal good:bad odds at some specific score and a doubling of the log 

odds for some specified increase in the score. 

 

To use such a scorecard in decision making one needs a cut-off score c, which will categorise the 

borrowers into two classes and hence can be used for a binary decision. For application scores, those 

above the cut-off are Accepted (because they are predicted as Good), while those below the cut-off 

are categorised as Rejected, (because they are predicted as Bad). For behavioural scores the cut-off 

might separate those for whom a credit limit increase is appropriate from those for whom it is not. 

Thus a log odds scoring decision system consists of three parameters (a,b,c). In practice a and b are 

fixed when the scorecard is built but vary because of the scorecard ageing while c is a decision by the 

lender when rebuilding or readjusting the scorecard. Currently users plot the score to log odds graph 

each month as a visual representation of the way the scorecard is performing. What is new in this 

paper is the realization that the three parameters (a,b,c)  give a concise and accurate description of the 

state of the scorecard and the current decision using it. Moreover by forecasting how a and b will 

change over time one can estimate when the scorecard should be rebuilt and what readjustment should 

be done. 

 

2.2 Readjusting scorecards 

Scorecards “age” over time for a number of reasons, including when changes in economic conditions 

affect the default rates so that the score to default rate relationship changes even though the 

relationship of the individual characteristics to the outcome is unchanged. As Thomas (2009) showed, 

Bayes theorem means that scores can be split into two components. One is the current log odds of 

non-defaults to defaults and the other is the weights of evidence of the characteristics of the individual 
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borrower. This means the score one would like to use is s*(x,t) the score of a borrower with 

characteristics x at time t. It is given by 

 

( | , ) (1 ( )) ( | , ) 1 ( )
*( , ) log log log ( , )

( | , ) ( ) ( | , ) ( )

P G t d t P G t d t
s t woe t

P B t d t P B t d t

      
        

     

x x
x x

x x
                       (3) 

 

where d(t) is the default rate of the whole population at time t while woe(x,t) is the weights of 

evidence of a borrower with characteristics x at time t (i.e. 
( | , )

( , ) log
( | , )
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x
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However the actual score that the scorecard produces is s(x,t) where if the scorecard was last rebuilt 

or readjust at time t0  and there has been no change in the weight of evidence term, this is 

 

0 0 0
0

0 0 0
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Thus one would like to adjust the score by the subtracting the second term in equation (4) from the 

score in order to deal with the ageing. This is akin to a changing. 

 

A second reason scorecards age is that the relationship between the characteristics and the Good/Bad 

status changes over time. So the weights of evidence term, ),( twoe x  may also change for certain 

characteristics. This can occur if there is a population drift, so that the new borrowers entering the 

portfolio are different from those who are leaving the portfolio. Thus it is reasonable to assume that 

the parameters (a,b) which describe the relationship between the score and the default probability will 

change over time, i.e. the scoring system at time t is described by (a(t),b(t),c(t)) where c(t) is the cut-

off  score in operation at time t.  

 

3. Model Formulation 

Scorecards age and need rebuilding if for example the score to log odds relationship in (2) flattens so 

the gradient b tended to zero. Then the score is not discriminating well between the Goods and the 

Bads. Rebuilding will cost B and results in a new scorecard, which is scaled so that its score to log 

odds relationship is given by the parameters aB and bB and the cut off score is set at cB .  

 

A less severe change to the existing scorecard is to adjust the cut-off score, which is equivalent to 

readjusting the scorecard by adding or subtracting the same constant to each borrower’s score. As (4) 

shows this would be an effective way of dealing with changes in the underlying population default 

rate. With application scores most lenders change the cut-offs and keep the score as is. With 
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behavioural scores they do the same for credit limit changes. Changing a and keeping c fixed which is 

what happens if behavioural scores are used for Basel Accord purposes, is equivalent to keeping a 

fixed and changing c. For consistency we take “recalibrating or readjustment” to be readjusting the 

cut-off score both for application and behaviour scorecards.  Readjusting involves some analysis and 

so its cost, R, is not negligible, even if lower than the rebuilding cost. 

 

If there is no rebuilding or readjustment we assume the “ageing” of the scorecard is given by a 

discrete time Markov process, t=1,2,… with transitions given by a conditional density function 

))(),(|)1(),1(( tbtatbtap  . The process is discrete time because the borrower’s score and default 

status is only recalculated at monthly intervals. 

 

The state of the scorecard at any time t is (a(t),b(t),c(t)) where A(t) and B(t) are the random variables 

whose values for the parameters in the score to log odds linear relationship (2). C(t) is the variable 

whose value c(t) is the current cut-off score. In application scoring, the profit is the difference of two 

terms. Good borrowers who are accepted and then repay produce a profit of L. Bad borrowers who are 

accepted and then default cost the lender D. If the state of the system is (a,b,c) the profit from N 

applicants in a period is given by Q(a,b,c)  and its expectation by E(Q(a,b,c)) 

 

( ( , , )) ( | ) ( ) ( | ) ( )

( ) ( )

1 1

c c

a bs

a bs a bs
c c

E Q a b c N D P B s f s ds L P G s f s ds

e f s f s
N D ds L ds

e e

 

  

   

 
   

 
 

     

 

 
     (5) 

 

Implicit in (5) is that the score distribution f(s) is stationary over time. This is the case for the 

application score of a given vintage segment of the portfolio. If there is churn in the portfolio then the 

simplest assumption is that the new borrowers have the same distribution as those who are leaving. 

The non-stationary assumption can be relaxed but one must then estimate how the score distribution 

varies over time. Also the resultant optimal policy will be non-stationary and hence difficult to 

implement. In this paper we therefore concentrate on the case when the score distribution is stationary. 

 

We are now in a position to build the Markov Decision Process model. Let V(a,b,c) be the future 

optimal expected discounted profit of operating, rebuilding and readjusting such a scorecard system 

over an infinite time horizon given the current scorecard is in state (a,b,c). The profits and costs are 

discounted by a monthly discount factor .  V(a,b,c) satisfies the optimality equation 
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( , , ) ( , , ) ( , | , )

( , , ) max max ( ( , , ( , ))

max ( ( , , )
R
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c R

c B B B

E a b c V x y c p x y a b dxdy

V a b c R V a b c a b

B V a b c
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  
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
    (6) 

 

The first expression on the right hand side corresponds to continuing with the existing scorecard; the 

second expression to readjusting the scorecard by changing the cut-off score c; the third corresponds 

to building a new scorecard where the slope of the score – log odds curve is given by bB , its intercept 

is aB and the cut-off chosen is cB . 

 

4. Properties of the Optimal Policy 

This section comments on the optimal cut-offs if the scorecard is readjusted or rebuilt. It then proves 

the optimal rebuilding policy is a control limit one, under reasonable conditions on the dynamics of 

the log odds to score graph, 

 

The profitability of the portfolio should be the dominant objective of a lender. If the scorecard is in 

state (a,b,.) profitability is maximisd by a cut-off  cM(a,b) which accepts all those who are currently 

profitable and rejects those who are not. This means choosing a cut-off score where the Good:Bad 

odds at the cut-off score equals the ratio of D to L. This follows since the profit is LP(G|s)-DP(B|s) 

and so is zero when  

 

 
( | ( ) )

( , ) log
( | ( ) )

M
M

M

p G s x c D D
a bc a b

p B s x c L L

         
 (7) 

 

The cut-off cM(a,b) with this property maximises the expected profit per period E(a,b,c). 

 

cM(a,b) is often chosen as the cut-off score (or cR value) after readjustment. However this is only 

optimal if the subsequent dynamics of the scorecard means the value of the log odds curve does not 

change at the cut-off score cR. Otherwise it may be better to anticipate the likely changes when setting 

the cut-off. The following corollary and counter example display these results. 

 

Lemma 1. Suppose the dynamics of the scorecards is such that the parameters, a(t) and b(t), 

change only under the condition the profit maximizing cut-off score (cM(a(t),b(t))) remains 

unchanged in the subsequent time periods. Under such an assumption, the optimal cut-off 

score when rebuilding is   cR(a,b)= cM(a,b).`  

 



 

 9 

Assume a scorecard is readjusted when the score to log odds parameters are a and b. If the subsequent 

dynamics of the scorecard is such that the transition probabilities satisfy 

0))(),(|)1(),1((  tbtatbtap  unless ( 1) ( 1) ( , ) ( , )
M M

a t b t c a b a bc a b     then the optimal 

readjustment of the cut-off is ),(),( bacbac MR  . 

 

Proof.  

Given the conditions in the corollary, the log odds to score graph continues to pass through the point 

(cM(a,b), log(D/L)), so at time t the scorecard must be in a state ))(),(( tbta where  

 ( ) ( ) ( , ) ( , ) logM M

D
a t b t c a b a bc a b

L
      
 

 (8) 

Hence from (7) ),( bacM maximises )),(),(( ctbtaE for all such states to which the scorecard can 

move. The total expected profit between this readjustment and the next readjustment is the 

expectation of the weighted sum of terms of the form )),(),(( ctbtaE as t varies over time. Since 

maximises every one of the possible terms in this expectation, it must maximise the expectation. 

Hence ),(),( bacbac MR  . 

 

It is easy though to construct cases where because the scorecard is changing over time, the cut-off that 

maximises the expected profit in the first period is not optimal over a future horizon. It is better to 

have a cut-off score that anticipates these changes. A simple case of this is when D=L=1, N=200, 

R=10, =0.999999 (so it is essentially 1 and we can ignore it); let 50% of the population have scores 

of -1 and 50% have scores of +1, and currently a=0 and b=1. Then 0)1,0( Mc . We assume that the 

slope of the log odds curve remains 1 and that the intercept goes up by 1 each period so that 

1)1,|1,1(  aap  and 0)1,|,( ayxp  for any other x, y. It is easy to show that a cut-off score of -2 

which accepted all the portfolio is more profitable than 0)1,0( Mc . 

 

We now show that given reasonable conditions on the dynamics of the scorecard, the rebuilding 

decision is a limit policy, that is one rebuilds the scorecard if a (or b) go below some limits. To do this 

we develop properties of the value function using the standard approach in Markov decision processes 

of induction on the iterates of value iteration.  In this model the iterates of value iteration satisfy 
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


                           

(9) 

 
 

Lemma 2. Vn (a,b,c) converges to the optimal value function V(a,b,c) which satisfies the optimality 

equation (6). 

 

Proof. The proof is the standard one for convergent Markov decision processes (Puterman, 1994).  

 

The reasonable assumption about the dynamics of the score to log odds graph is as follows. 

 

Assumption A. There is a stochastic ordering property of the graph in both the a and b dimensions. 

|Concisely if തܲሺݔ, ,ܽ|ݕ ܾሻ ൌ ׬ ݓ݀ ׬ ,ݒሺ݌ݒ݀ ,ܽ|ݓ ܾሻ
ஶ
௫

ஶ
௬  and ܽ ൒ ܽ	́ and b ൒ ሖܾ , then                

	 തܲ(x,y|a,b)൒	 തܲ(x,y|ܽ́,b) and തܲሺݔ, ,ܽ|ݕ ܾሻ ൒ 	 തܲሺݔ, ,ܽ|ݕ ሖܾ ሻ.                               (10) 

 

So if the graph has a higher a value (or b value) this period, it is likely to have a higher a value (or b 

value) next period. This assumption is reasonable, since for parameter a it says if one portfolio has a 

lower risk now than another then next period it will continue to have a lower risk. For parameter b it 

says if a scorecard has a larger difference in good:bad odds per unit score now than another scorecard 

that larger difference will still be the case next period. With these properties we can show the 

monotonicity of the value function in a and b. 

 

Lemma 3. If Assumption A holds then 

i) V(a,b,c) is non decreasing in a; 

ii) V(a,b,c) is non decreasing in b. 

 

Proof. 

i) The proof is by induction on the iterates of value iteration. Trivially it is true for n=0 since 

V0(a,b,c)=0 for all a,b,c. Assume the hypothesis holds for Vn. Then in equation (10), the second 

expression is non-decreasing from the induction hypothesis while the third expression is constant. 

For the first expression E(Q(a,b,c)) increases as a increases since increasing a increases P(G|s) and 

decreases P(B|s). Considering V୬ሺݔ, ,ݕ ܿሻPഥሺݔ, ,ܽ|ݕ ܾሻ	 as the integral of its derivative between 

ሺ0,0ሻand ൫∞,∞൯	gives 



 

 11 

 

׬ ௡ܸሺݔ, ,ݕ ܿሻ݌ሺݔ, ,ܽ|ݕ ܾሻ݀ݕ݀ݔ ൌ ׬
ఋ

ఋ௫ఋ௬ ௡ܸሺݔ, ,ݕ ܿሻ തܲሺݔ, ,ܽ|ݕ ܾሻ݀ݕ݀ݔ ൅ ௡ܸሺ0,0, ܿሻ                   (11) 

 

The right hand side of (11) is non-deceasing in a since the derivative term is positive because of 

the induction hypothesis and  Pഥሺݔ, ,ܽ|ݕ ܾሻ is non-decreasing in a because of Assumption A. Hence 

all three expressions in the maximisation in (10) are increasing in a and so the induction 

hypothesis is true for n+1. Hence it is true in the limit for Vሺܽ, ܾ, ܿሻ. 

ii) The proof follows exactly that of i).  

 

This Lemma leads to the optimality of a control policy for when to rebuild the scorecard. 

 

Theorem 2. If assumption A holds then there exist function a*(b) and b*(a) so that in (a,b,c) the 

scorecard is rebuilt provided  

i)  a≤a*(b)  or 

ii)  b≤b*(a). 

 

Proof. 

Let ܽ∗ሺܾሻ ൌ ,൛ܽ|ܸሺܽݔܽ݉ ܾ, ܿሻ ൌ ܤ௖ಳሺെݔܽ݉ ൅ ܸሺܽ஻, ܾ஻, ܿ஻ሻሻൟ  then if a ൑ ܽ∗ሺܾሻ , ܸሺܽ, ܾ, ܿሻ ൑

ܸሺܽ∗ሺܾሻ, ܾ, ܿሻ ൌ ܤ௖ಳሺെݔܽ݉ ൅ 	ܸሺܽ஻, ܾ஻, ܿ஻ሻሻ  where ܸሺܽ, ܾ, ܿሻ ൑ ܸሺܽ∗ሺܾሻ, ܾ, ܿሻ	  follows from 

lemma 3. Hence one rebuilds the scorecard in state (a,b,c). 

The proof for (ii) is similar.  

 

In the next section we derive a model of the dynamics of the score to log odds relationship which 

satisfies Assumption A and allows us to solve the case study in section 6. 

 

5. Dynamics of the Score to Log odds relationship 

We assume that the score log odds relationship will remain approximately linear (i.e. the score is a 

linear transformation of the log odds) but that the coefficients change over time. At a time t after the 

last scorecard rebuild the relationship is 

( | )
( ) ( ) ( , ) log

( | )
t

t

P G
a t b t s t

P B

 
   

 

x
x

x
               (12) 

Lenders monitor the performance of scorecards by plotting such score to log odds graphs but there has 

been no published analysis of how the relationship changes over time. Our empirical investigations 

suggests that the simplest reasonable model would be to assume that a(t) and b(t) both follow 

Brownian motion around a linear trend. Figure 1 shows the plots of a(t) and b(t) over a 24 month 
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period for the portfolio we will use in section 6. These plots support the idea that the relationship is  

Brownian motion around a linear trend  

                   [Figure 1 about here] 

A linear dynamic model is also suggested in Spader and Quercia (2009) and Sousa et al (2013). The 

negative correlation in the Brownian motion is also supported by the data and suggests that the score 

to log odds relationship is more stable close to the mean portfolio scores than at the extremes where 

there are usually fewer cases. 

 

One could argue that a piece-wise linear approximation would give a closer fit to the score-log-odds 

graph. However this would lead to a much more complicated state space and non-stationary optimal 

policies which are difficult to implement. The linear approximation describes the critical features of 

the relationship between score and log odds. 

 

In continuous time the dynamics of the parameters is given by 

 
1

2

( )

( )
a a

b b

da t dt dw

db t dt dw

 
 

 
 

 (13) 

However since the score to log odds relationship is only measured every month, the process is a 

discrete time one, namely 

1

2

( ) ( 1)

( ) ( 1)
a a

b b

a t a t W

b t b t W

 
 

   
   

           (14) 

where the Wi  are discrete time equivalents of Brownian motion which only take values +1 and -1 with 

  ,0iWE   1,iVar W   and their correlation coefficient is     2121 ),( WWEWW .These 

conditions are satisfied by the joint probability distributions 

 
1 2 1 2

1 2 1 2

1
{ 1, 1} { 1, 1}

4
1

{ 1, 1} { 1, 1}
4

P W W P W W

P W W P W W






         


         

 

This satisfies Assumption A. The state space (a,b,c) can be simplified to a countable state space.  Let 

g(a) be the  greatest common denominator of a and a so )(agkaa  and )(aglaa   then 

)()()1()( aglktata aa  . Thus we can identify a(t) with the integer n(t) where 

).()()( agtnata B  Similarly if ),,gcd()( bbbg  )(bgkbb  and ),(bglbb   then 

)()()1()( bglktbtb bb  and hence we can identify )(tb with )(tm  where ).()()( bgtmbtb B   

 

There are only a finite number of cut-off score values c to consider since a scorecard only produces a 

finite number of scores. One can translate the scorecard states (a,b,c) into states (n,m,c) where 
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)()( agnnaa BB   and ).()( bgmmbb BB   If one defines the corresponding optimal 

expected profit of operating, rebuilding and readjusting the scorecard as v(n,m,c) rather than V(a,b,c), 

then the optimality equation (6) becomes 

   

((1 )/4)( ( , , ) ( , , )
( ( , , ))

((1 )/4)( ( , , ) ( , , )

( , , ) max max ( ( , , ( , ))

max ( ( , , )
R

B

a a b b a a b b

a a b b a a b b

c R

a B B B

v n k l m k l c v n k l m k l c
E Q n m c

v n k l m k l c v n k l m k l c

v n m c R v n m c n m

B v n m c





            

              
  



         (15) 

 This dynamic programming still has an infinite set of states. However a standard approximation 

technique (Puterman, 1994) to obtain a finite state space is to impose absorbing barriers on the state 

space. If one wishes to restrict the state space to ULUL MmMNnNcmn  ,),,,(  then the first 

term on the RHS of (15) becomes 

 
((1 ) / 4) (min( , ),min( , ), )

((1 ) / 4) (max( , ),max( , ), )
( ( , , ))

((1 ) / 4)( (max( , ),min( , ), )

((1 ) / 4) (min( , ),max( , ), )

a a U b b U

a a L b b L

a a L b b U

a a U b b L

v n k l N m k l M c

v n k l N m k l M c
E Q n m c

v n k l N m k l M c

v n k l N m k l M c








     
      


     
    




 
 
 

    (16)

 

This gives a finite state space so we can now solve a real example numerically. 

 

6. Case Study 

The behavioural scores and the good:bad status twelve months later was obtained for a sample of over 

two million credit card accounts for a two year period from January 2002 until December 2003. 

Although this is only one data set it is quite a substantial one. The model in our paper can be applied 

to other data sets. The results on the form of the optimal policy would continue to apply even if the 

details of the optimal policy will be different.   

 

In this sample the scorecard took values in the range 34 to 307. The score range was split into 40 

bands, with boundary values considered to be the cut offs c=1,2,..,40. The distribution of scores over 

the 24 months of the sample period in these 40 bands is given by Table 1 A system stability index test 

showed the score distribution at the end of the period was not significantly different from the one at 

the start of the period. 

 

[Table 1 about here] 

 

The log odds to score graph was derived each month t=1,…,24 by plotting for each scoreband the 

log(number of Goods in band/Number of Bads in band) against the mean score of the band. The linear 
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regression line was then fitted to the 40 points on the score to log odds graph . This gave the a(t) and 

b(t) values for that month t. 

[Table 2 about here] 

 
Table 2 shows the estimates of a(t) (intercept of the log odds score) and b(t) (slope of the log odds 

score) at each time period. Recall Figure 1 shows the trends in a(t) and b(t). Since b(t) is decreasing 

over time, this means the scorecard is degrading and becoming less efficient. .   

 

The data in Table 2 can be used to estimate the parameters  ,,,, bbaa needed for the dynamics 

of the state of the system. 000625.0,175.0  ba   are obtained from a linear regression of the 

values of the slope and the intercept against the time period.rs 972.0,525.0,001875.0   ba

are the standard deviation and variances and covariance of the slope and intercept values. In order to 

solve a finite state space problem we approximate these values in the discrete space dynamic 

programme by  

( ) 0.35, 0.5, 1.5, ( ) 0.00125, 0.5, 1.5a a b bg a l k g b l k       
 

 

This means the movement in the a and b values between different periods are multiples of 0.35 and 

0.00125 respectively and so we define the finite state space in terms of parameters n and m where 

 

2.3 0.35( 11),0 21; 0.024 0.00125( 17),0 25a n n b m m           

If the scorecard is rebuilt we choose the a and b values that were close to the actual values when it 

was rebuilt, namely aR=2.3, bR=0.024. These translate to m=17 and n=11. 

 

[Table 3 about here] 

The optimal policy is calculated using this discretization of the state and action spaces. Table 3 

displays the results for 21 different problems. They vary in their values of D, L and B values keeping 

R=1. For example, in scenarios 1a, we assume the debt incurred is D=250, the lost profit is L=5, the 

cost of rebuilding a scorecard is B=30 and the cost of readjusting a scorecard is R=1.  Column 2 to 

column 4 in Table 3 listed the details of these scenarios. We use Matlab to compute the results and the 

numbers of iterations of value iteration needed to solve the scenario are listed in column 4. For all 

problems, it takes less than 10 minutes for the dynamic programming computations of (15) and (16). 

Details of the optimal policy  are shown in Table 3.  Column 6 to 8 list the percentage of states where 

the optimal policy for that scenario requires scorecard readjustment, scorecard rebuilding or doing 

nothing.  
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Comparing the results of problems 1a and 2a, if the cost of rebuilding the scorecard is not very much 

higher than the cost of readjusting the scorecard (i.e. problem 1a, B:R=30:1), 28% states need to 

rebuild the scorecard. On the contrary, if the cost of rebuilding the scorecard is high (i.e. scenario 1c), 

only 13.9% requires rebuilding the scorecard.  

 

[Table 4 about here] 

 

Table 4 shows the optimal policies of problems 1a, 2a and 3a where the cut-off is c=3. The code “B” 

means the optimal policy is to rebuild the scorecard; the code “K” means keeping the current cut-off 

unchanged. If the model suggests changing the cut-off, the optimal value is listed in the table. For 

example, the optimal cut-off for n=5 and m=3 is level 1, which corresponds to accepting everyone.  

 

The results show that when m increases (i.e. the slope b decrease), the model recommends rebuilding  

the scorecard. As the log odds graph flattens, there is no way to improve the discriminating power of 

the scorecard but to rebuild it. This applies when it is costly to rebuild the scorecard (i.e. scenario 1c) 

and when it is relatively cheap to rebuild the scorecard (i.e. scenario 1a). Since the expected loss is 

relatively low in these three scenarios, in many states, the optimal policy is to reduce the cut-off to 1, 

which corresponds to accepting everyone.  

 

[Tables 5 and 6 about here] 

 

Table 5 shows three extreme cases. For scenarios 7a, 7b and 7c, the expected loss is far higher than 

the expected profit (where D/L=5000). So in the majority of the states in these three scenarios, the 

optimal policy is to increase the cut-off, i.e. decrease the population being accepted, or to rebuild the 

scorecard. If the default rate of the overall population is low (i.e. n is high), the optimal policies are 

either to keep the cut-off unchanged or to reduce the cut-off to 2.  Overall this leads to a much more 

conservative risk profile. 

 

If we compare Tables 5 and 6, where the only difference is in what the current cut-off level is (c=3 in 

Table5, c=8 in Table 6), the optimal policy only differs when one is readjusting the cut-off in one 

case but doing nothing in the other. So in Scenario 7a of Table 5, in the state m=9 and n=5, one keeps 

the cut-off at level 8 if it is there already (as in Table 6). It moves the cut-off to level 9 if it is already 

at level 3 as in Table 5. 

The examples confirm that rebuilding follows a control limit form in that for any point with  

rebuilding as the decision all the decisions to the right and above it are also rebuild. Note that taking 

no action is only optimal in about 2% of the states in any scenario, while readjusting is much more 

common. 
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7. Conclusion 

Some lenders monitor their scorecards by drawing the score to log odds graph. This paper shows how 

the parameters of the linear approximation (a,b), of this graph together with the cut-off score c, is a 

concise way to describe the discrimination of the scorecard. It allows dynamic programming models 

to be developed which optimise when scorecards should be rebuilt or readjusted. The dynamic 

programming model shows that the current way of readjusting after a rebuild is suboptimal in that it 

does not allow for the likely future dynamics of the scorecard. It also proves that the optimal 

rebuilding policy is a control limit both in the intercept and the slope of the log-odds score graph. 

 

We apply this model to a data set of over two million credit cards to determine when the scorecard 

should be rebuilt and when it needs readjusting. Even when the cost of readjusting is made high- 

probably higher than the cost in a real situation - the optimal policy suggests lenders should readjust 

much more often than they do in practice. Moreover one can simulate the optimal policy to find out 

how frequently the scorecard needs rebuilding. This will give management an indication of the size of 

the analytics team they will need for rebuilding all their scorecards. Thus the model is useful for 

determining the logistic support needed to keep a scorecard discriminating well.  

 

Although we have described the model in terms of a credit scorecard, the same approach can be 

applied problems and other scorecards. For example some lenders have three possible actions they can 

undertale on a new applicant for credit. Accept, Review and Reject. There is a cost for reviewing but a 

review changes the probability of a customer with a particular score being Good or Bad. The decision 

then involves two cut-off scores c1 and c2. and the expected cost E(Q(a,b,c1,c2 ) is the sum of the costs 

under the three decisions. The need to rebuild and readjust scorecards occurs in any area where 

scorecards are in use, O this approach can be useful in propensity to purchase scorecards, churn 

scorecards, as well as scorecards in health care and the legal system.  
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Table 1. Distribution of scores 

Band Scoreband 

Lower limit 

Scoreband 

Upper limit 

% in 

Band 

Band Scoreband 

Lower limit 

Scoreband 

Upper limit 

% in 

Band 

1 34 144 1.71 21 250 252 2.47 
2 145 158 1.85 22 253 255 2.40 
3 159 168 2.04 23 256 257 1.77 
4 169 176 2.12 24 258 260 3.23 
5 177 182 1.94 25 261 261 1.23 
6 183 188 2.18 26 262 263 3.07 
7 189 193 1.98 27 264 266 3.18 
8 194 197 1.59 28 267 268 2.68 
9 198 203 2.60 29 269 271 3.67 

10 204 206 1.35 30 272 272 2.13 
11 207 212 2.97 31 273 273 2.47 
12 213 217 2.35 32 274 274 0.99 
13 218 222 2.92 33 275 277 3.35 
14 223 227 2.88 34 278 279 0.86 
15 228 230 1.58 35 280 280 1.73 
16 231 235 2.78 36 281 282 3.90 
17 236 239 2.19 37 283 285 3.73 
18 240 243 2.64 38 286 289 4.55 
19 244 247 2.75 39 290 294 3.79 
20 248 249 1.35 40 295 307 5.03 

 

Table 2. Estimates of a(t) and b(t) at each time period 
Time Period a(t):Intercept b(t):Slope Time Period a(t):Intercept b(t):Slope 

1 (JAN 2002) -1.4715 0.0269 13 (JAN 2003) 2.0228 0.0136 

2 (FEB 2002) -0.8866 0.0253 14 (FEB 2003) 2.4301 0.0132 

3 (MAR 2002) -0.8567 0.0235 15 (MAR 2003) 2.1875 0.0129 

4 (APR 2002) 0.8989 0.0185 16 (APR 2003) 2.4029 0.0137 

5 (MAY 2002) 0.7725 0.0176 17 (MAY 2003) 2.2516 0.0129 

6 (JUN 2002) 1.2673 0.0168 18 (JUN 2003) 2.9714 0.011 

7 (JUL 2002) 0.9466 0.0167 19 (JUL 2003) 2.8581 0.01 

8 (AUG 2002) 1.7658 0.0164 20 (AUG 2003) 3.1495 0.0145 

9 (SEP 2002) 1.3969 0.0167 21 (SEP 2003) 2.8273 0.00951 

10 (OCT 2002) 2.0485 0.0153 22 (OCT 2003) 3.3631 0.00948 

11 (NOV 2002) 1.7942 0.0148 23 (NOV 2003) 3.0513 0.00957 

12 (DEC 2002) 2.3302 0.0138 24 (DEC 2003) 3.1424 0.0103 
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Figure 1. Dynamics of the slope and intercept for the log odds to score graph     

  
 

Table 3. Scenarios setting and the corresponding results 

Scenarios D/R L/R B/R 
No. of 

Iterations 

Change 
the cut-off 

(%) 

Rebuild the 
scorecard 

(%) 

No 
action 
(%) 

1a 250 5 30 690 69.8 28.4 1.8 

2a 400 5 30 692 69.2 28.9 1.8 

3a 500 5 30 694 68.9 29.3 1.8 

4a 750 5 30 696 68.1 30.1 1.8 

5a 1000 5 30 698 67.0 31.2 1.7 

6a 2500 5 30 720 67.7 30.5 1.8 

7a 5000 5 30 731 66.3 31.8 1.9 

1b 250 5 90 693 78.9 19.0 2.0 

2b 400 5 90 693 77.4 20.6 2.0 

3b 500 5 90 695 76.3 21.7 2.0 

4b 750 5 90 696 74.8 23.2 2.0 

5b 1000 5 90 698 73.9 24.2 1.9 

6b 2500 5 90 720 72.1 25.9 2.0 

7b 5000 5 90 732 69.9 28.0 2.1 

1c 250 5 180 693 83.9 13.9 2.1 

2c 400 5 180 693 81.4 16.4 2.2 

3c 500 5 180 695 80.6 17.3 2.1 

4c 750 5 180 696 78.3 19.6 2.1 

5c 1000 5 180 699 77.6 20.4 2.1 

6c 2500 5 180 721 74.1 23.8 2.1 

7c 5000 5 180 733 72.6 25.1 2.3 
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Table 4. The optimal policy for Scenario 1a, 1b and 1c where c=3  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 B B B B B B B B B B B B B B B B B B B B B B B B B
2 B B B B B B B B B B B B B B B B B B B B B B B B B
3 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B B B B B
4 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B B B B B
5 1 1 1 1 1 1 1 1 2 2 B B B B B B B B B B B B B B B
6 1 1 1 1 1 1 1 1 2 2 2 2 2 B B B B B B B B B B B B
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B B B B B B B B B
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B B B B B B B B B
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B B B B B B B B B

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B B B B B B B
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B B B B B
2 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B B B B B
3 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B B B
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B B B
5 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B B B B B B B B B
6 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B B B B B B B B B
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B B B B B B B B B
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 B B B B B B B
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 B B B

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2 K B B B B B B B B B B B B B B B
2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B B B B B
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B
5 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B B B B B B B B B
6 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 B B B B B B B B
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 B B B B B B
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Scenario 1a

Scenario 1b

Scenario 1c

n m
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Table 5. The optimal policy for Scenario 7a, 7b and 7c where c=3.  

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 B B B B B B B B B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 B B B B B B B B B B B B B B B B B
4 K K K K K K K K B B B B B B B B B B B B B B B B B
5 K K K K K K K K 9 B B B B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 B B B B B B B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 B B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 K K K K K K K K B B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 B B B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 B B B B B B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K K B B B B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K 2 2 2 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 K
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 6 6 6 6 6 6 6 6 B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 B B B B B B B B B B B B B B B B B
4 K K K K K K K K 11 B B B B B B B B B B B B B B B B
5 K K K K K K K K 9 9 B B B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 7 7 B B B B B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 K K K K K K K K B B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 B B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 8 B B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 B B B B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K K K K K B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K K K K 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 K
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 6 6 6 6 6 6 6 6 B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 13 B B B B B B B B B B B B B B B B
4 K K K K K K K K 11 11 B B B B B B B B B B B B B B B
5 K K K K K K K K 9 9 9 9 B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 K K K K K K K K 14 B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K K K K K B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 K K K K K K K 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 5
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 K
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n m

Scenario 7a

Scenario 7b

Scenario 7c
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Table 6. The optimal policy for Scenario 7a, 7b and 7c where c=8. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 B B B B B B B B B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 B B B B B B B B B B B B B B B B B
4 3 3 3 3 3 3 3 3 B B B B B B B B B B B B B B B B B
5 3 3 3 3 3 3 3 2 K B B B B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 B B B B B B B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 B B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 B B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B B B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 K B B B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 B B B B B B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 B B B B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 3
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 6 6 6 6 6 6 6 6 B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 B B B B B B B B B B B B B B B B B
4 3 3 3 3 3 3 3 3 11 B B B B B B B B B B B B B B B B
5 3 3 3 3 3 3 3 2 K K B B B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 7 7 B B B B B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 B B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 B B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 K K B B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 B B B B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 3
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 6 6 6 6 6 6 6 6 B B B B B B B B B B B B B B B B B
2 5 5 5 5 5 5 5 5 B B B B B B B B B B B B B B B B B
3 4 4 4 4 4 4 4 4 13 B B B B B B B B B B B B B B B B
4 3 3 3 3 3 3 3 3 11 11 B B B B B B B B B B B B B B B
5 3 3 3 3 3 3 3 2 K K K K B B B B B B B B B B B B B
6 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 B B B B B B B B B
7 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 B B B B B B B B B
8 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 B B B B B B B B B
9 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 14 B B B B B B B B

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 11 11 B B B B B B B
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 K K K B B B B B B
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 B B
13 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 B
14 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
15 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 B
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 B
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 5
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 3
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n m

Scenario 7a

Scenario 7b

Scenario 7c


