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Abstract 

A new 3D geological model and structural evolution of the Rio Tinto world-class VMS deposit 

is presented in this work. The Rio Tinto volcanogenic massive sulfide (VMS) deposit is located 

in the Spanish segment of the Iberian Pyrite Belt and is hosted by felsic porphyritic volcanic 

rocks and tuffs. Computer generated 3D modeling of the different orebodies and host rocks 

has been carried out using data from around 3,000 drill-core logs, allowing us to build 93 

cross-sections and 6 plants (both 50 m spacing). This has enabled us to recognize of the 

geometry and relationships between the mineralization and the earliest Carboniferous 

transtensional tectonics through the development of an extensional pull-apart basin with 

two sub-basins separated by the NW-SE trending Eduardo Fault. The sub-basins, Cerro 

Colorado and San Dionisio, were limited by two E-W strike-slip faults, the Northern and 

Southern faults, and bounded in the east and west by the NW-SE-trending Nerva and 

Western faults, respectively. The generated pull-apart basin was first filled by a basaltic 

magmatism of mantle origin and later, following the deposition of the intermediate complex 

sedimentary unit, by rhyodacitic volcanic rocks of crustal origin. The evolution of the 

subsiding basins caused the development of an E-W oriented rollover anticline that affected 

these filling rocks.  

As a result of a counterclockwise rotation of the stress axes, the primitive pull-apart basin 

evolved into a basin affected by E-W transtensional sinistral shearing. Its northern and 

southern limits were favorable areas for increased hydrothermal fluid flow, which gave way 
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to the huge concentration of VMS mineralization located near the limits. The Northern and, 

to a lesser degree, the Southern extensional faults thus become channel areas for feeding 

and discharging of the VMS and stockwork ores. The main mineralizing period was related to 

this stage. Subsequently, during the Variscan transpressional phase, the E-W extensional 

faults were reactivated as inverse faults, affecting the volcanic sequence of mafic to felsic 

composition and the intermediate complex sedimentary unit. Fault propagation folds 

developed above these faults, affecting the massive sulfides, the transition series and the 

Culm flysch sediments, with buttressing playing a significant role in the geometry of 

tectonically inverted structures. The VMS mineralization and cupriferous stockworks were 

folded and dismembered from the original conduits in the volcanic series, and a dextral 

reactivation of the NW-SE trending faults also developed.  

Finally, it should be emphasized that this new 3D geological model is an approach to provide 

a better insight into the 3D structure of the world-class VMS Rio Tinto deposit and could be a 

key-point for further studies providing a new tool to increase knowledge of the VMS 

mineralizations and exploration guidelines elsewerein the IPB.  

Keywords: Rio Tinto deposit, 3D modeling, transtensional tectonics, pull-apart basin, VMS, 

stockwork, Variscan Orogeny.  

1. Introduction 

The Iberian Pyrite Belt (IPB) extends from Portugal to Spain, covering an area of around 250 

km by up to 60 km, located in the South Portuguese Zone (-SPZ-, Fig. 1 A). In its central part, 

the SPZ contains the greatest known concentrations of volcanic-hosted massive sulfides 

(VMS) on Earth. The South Portuguese Zone (SPZ), together with the Ossa-Morena Zone 

(OMZ) and Central Iberian Zone (CIZ) to the north, formed in Devonian-Carboniferous times 

due to collision with left-lateral transpressional kinematics of Laurentia (SPZ) with 

Gondwana (OMZ and CIZ) (Oliveira, 1990; Simancas et al., 2003; Mantero et al. 2011). 

The IPB contains over 100 massive sulfide and stockwork deposits and many more small 

prospects (Fig. 1B) (i.e., Pinedo-Vara, 1963; Sáez et al., 1996; Leistel et al., 1998). Over 10 

giant (world-class) deposits, with more than 50 million metric tons (Mt) of ore, are hosted by 

volcanic rocks or associated shales, and were formed as exhalative ores in brine pools on the 

sea-floor or as filled veins and replacement-style mineralization (e.g., e.g., Solomon et al., 
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2002; Tornos, 2006; Gumiel et al., 2010a). The IPB has been estimated to hold a minimum 

resource of more than 1700 Mt of VMS (Almodovar et al., 1998; Leistel et al., 1998; Sáez et 

al., 1999; Carvalho et al., 1999; Tornos, 2006). Outstanding among the mines is Rio Tinto, 

which is the largest deposit in the IPB and has been estimated to have held more than 500 

Mt of massive pyrite, complex and stockwork types (Williams et al., 1975; Barriga, 1990; 

Boulter, 1993; Adamides, 2013). 

 

Figure 1 

Recently, the origin of the massive sulfide deposits, several authors (e.g., Oliveira, 1990; 

Moreno and Gonzalez, 2004; Mantero et al. 2011) invoke transtensional fracturation 

tectonic process during the early Carboniferous (between 356 and 349 Ma, Tucker et al, 

2002), that favored the emplacement of volcanic rocks through the accompanying fractures. 

Moreover, other authors propose that the whole IPB metallogenic province was formed in 

rather restricted pull-apart basins within a transpressive Orogeny (Oliveira, 1990; Gumiel et 

al., 2010a). Although these models are generally accepted and, as is demonstrated by 

Gumiel et al. (2010a) and Arias et al. (2011), there is clear relationship between fractures 

and ores, the geometry and relationships between specific deposits and transtensional 

tectonics are not clearly understood. In fact, a detailed interpretation that explains the 

structural control during ore formation has not been explained for any deposit up to now.  

In all the IPB VMS deposits the presence of fractures/faults, pyrite- and chalcopyrite- rich 

stockworks, massive sulfides both pyritic and complex, host volcanic and sedimentary rocks, 

is well known (Williams 1934; Pinedo Vara, 1963; Carvalho et al., 1976; IGME, 1982; Barriga, 

1990; Leistel et al., 1994; Leistel et al. 1998, Tucker et al., 2002; Tornos, 2006), but the 

relationships between these elements and the transtensional tectonics claimed for their 

genesis in the regional models of the IPB, are not explained in any single deposit.  

It should also be emphasized that, after this transtensional period, with the progress of the 

Variscan Orogeny, the IPB was subjected to transpression (in the sense of Sanderson and 

Marchini, 1984). Thus, processes during which the mineralization and the associated host-

rocks and structures, underwent an intense superimposed deformation, often made 

recognition of earlier transtensional structures difficult. 
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Between 2009 and 2013 there was an attempt as part of the ProMine project (FP7 

Programme, E.U.), run in Rio Tinto mining district, to carry out 3D semi-regional modelling in 

a 30x10 km area including Rio Tinto (Díez-Montes et al., in press).  

The present work deals with 3D local, detailed modelling of an area of about 6 km2, 

exclusively centered in the Rio Tinto deposits and their immediate host rocks, reaching a 

high level of accuracy in the building and reconstruction of faults and folds. Different drilling 

surveys performed from 1950 to the last survey carried out by Río Tinto SAL in 2000, have 

been used to reconstruct the development of the deposits. This involved access to more 

than 5,000 drill-core logs from Rio Tinto mine, around 3,000 of which (Fig. 2A) have been 

used in the present study. These allow us a detailed reconstruction of the structure of the 

deposit through the generation of 93 N-S cross-sections (Fig. 2B), and subsequent 3D 

modeling, which is presented for the first time in this work. Planes-San Antonio VMS masses 

are included separately in this 3D reconstruction because the quality and quantity of the 

data from these orebodies provide less information and also there is a 300 m gap (Fig. 2B) 

for which less drill-hole data is available between Cerro Colorado and Planes. Nevertheless, 

the data from the whole area confirm the presence of the so-called Nerva Fault, the 

stockwork and massive sulfides in Planes and complex massive sulfides in San Antonio 

which, although not outcropping at the surface, are located approximately at 300 m depth 

below the Culm slates (see section 5 and Fig. 3).  

For this reconstruction, re-logging of these 3,000 boreholes has been carried out in an 

attempt to unify the criteria used by different geologists in logging operations and thus to 

establish a coherent geological database. In the computer-generated 3D model we have 

considered pyritic stockwork to be when the sulfur content is over 20%, and cupriferous 

stockwork when the copper content is higher than 0.2%. In fact, stockworks are much more 

broadly extended, but we have set these cut-offs because they are the limits of evaluation 

criteria.  

Finally, we have also highlighted the relationships between transtensional faulting and the 

resulting basins to the geometry of the stockworks, which has been shown by Gumiel et al. 

(2010a) and Arias et al. (2011) to be fractal, emphasizing the fact that stockworks have a 

distinctly mushroom shape from the feeder faults towards the surface. 

Figure 2 
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2. Regional geology 

The IPB is part of the Iberian Massif, which resulted from the amalgamation of three 

continental blocks: the South Portuguese Zone (SPZ), the Ossa Morena Zone (OMZ), and the 

ensemble of the Central Iberian Zone (CIZ), West Asturian-Leonese (WALZ) and Cantabrian 

(CZ) zones (Fig. 1A). All of these originated from the fragmentation of a Late Proterozoic 

megacontinent (Murphy and Nance, 1991). The IPB, which is part of the SPZ, formed as a 

series of marine basins which developed during the left-lateral transcurrent faulting 

generated by the oblique subduction and collision of Laurentia with Gondwana during the 

Variscan (Late Devonian−early Carboniferous; Silva et al., 1990; Oliveira, 1990) and were 

coeval in time with the presence of a mantle plume (Simancas et al., 2003). These basins 

were formed within the passive margin of Laurentia, now represented by the South 

Portuguese zone and adjacent to the continent−continent suture.  

The oldest rocks in the IPB (Fig. 1B) are a sequence of late Devonian quartz-rich sandstones 

and shales (the Phyllite-Quartzite Group, PQ) which were deposited on a stable 

epicontinental shelf (Schermerhorn, 1971). The overlying Volcanic Sedimentary Complex 

(VSC) hosts most of the mineralization and is a highly variable unit, up to 1300 m thick, of 

uppermost Devonian to middle Visean (ca. 356–349 Ma) age (Silva et al., 1990; Tucker et al, 

2002; Simancas et al., 2003; Oliveira et al., 2004; Pereira et al., 2007). It is characterized by 

dacitic–rhyolitic dome complexes and sills, basaltic lava flows and sills, and thick pumice- and 

crystal-rich felsic volcanoclastic units interbedded with detrital sedimentary rocks, mostly 

mudstone with some greywacke and sandstone (i.e., Soriano and Martí, 1999). The 

depositional environment appears to be dominated by submarine mass-flow tuffs as 

indicated by Schermerhorn (1971). Stratigraphically high in the volcano sedimentary 

sequence is a horizon, around 10 m thick, of hematitic radiolaria-rich, purple-colored shale 

with Mn-bearing jasper lenses, which has been used as a local correlation marker in some 

areas of the IPB (Routhier et al. 1980; Oliveira 1990; Leistel et al., 1998; Soriano and Martí 

1999; Carvalho et al., 1999). The VSC is capped by the flysch Group (Culm), consisting of 

synorogenic turbidites of late Visean to middle-late Pennsylvanian age (Oliveira, 1990). 

The earliest Carboniferous (about 360 to 350 Ma) was a transient period characterized by 

extension and I-type magmatism (Simancas et al., 2003). Abundant bimodal volcanism and 
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the extensive development of VMS mineralization were mainly emplaced along the fracture 

zones limiting the different basins (Oliveira, 1990), hitherto not defined on a mine scale. The 

faults responsible for the crustal thinning and basin formation were developed in a left-

lateral transtensional regime in a continental passive margin, and some of these basin-

forming faults were reactivated as thrusts during later Variscan shortening (Oliveira, 1990; 

Gumiel et al., 2010a). 

Within this scenario, and on a very large scale controlled by fracture/fault systems, the 

different VMS deposits developed, the largest ones probably having been controlled by the 

larger, most active and well-connected faults and fractures developed over an area heated 

by a mantle plume (Simancas et al., 2003). As described by Gumiel et al. (2010a), most of the 

massive sulfides are underlain by stockworks hosted within hydrothermally altered rocks. 

This ore-related hydrothermal alteration predated the regional metamorphism and was 

caused by the early circulation of modified seawater (Munhá, 1990). Up to the present, most 

of the well-known stockworks studied seem to have an irregular morphology and are hosted 

by volcanic rocks that show an irregular zonation, usually with an internal chlorite-rich zone 

surrounded by a sericitic or propylitic zone. Silicification is a frequent alteration process and 

carbonatization is also described. 

Volcanic rocks mainly occur as shallow intrusions into wet marine sediments with some lava, 

hydroclastic rocks and volcanogenic sediments in a depositional environment dominated by 

submarine mass-flow tuffs (Schermerhorn, 1971; Mitjavilla et al., 1997). Most of the basaltic 

rocks are continental tholeiites, but a few samples show an alkaline affinity. The origin of the 

basaltic rocks and their diversity of composition are explained by a single mixing model 

between E-type and N-type-MORB (Mid-Ocean Ridge Basalt) and assimilation of crustal 

material. Intermediate calc-alkaline and silicic rocks include basaltic andesites, andesites, 

dacites and rhyolites, the last two being the most abundant. Intermediate and silicic rocks 

are not related through fractional crystallization, nor is there a relationship between the 

basaltic and calc-alkaline rocks by the same process (Mitjavilla et al., 1997).  

Some authors (Mitjavilla et al. 1997; Leistel et al. 1998) suggest that in the Iberian Pyrite 

Belt, silicic calc-alkaline magmas were generated on a large scale by the invasion of 

continental crust by mafic magmas generated in the underlying upper mantle. The diversity 

of compositions shown by dacites and rhyolites can mainly be explained either by 
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differences in the composition of the source rocks or by different degrees of partial melting 

of upper-crust rocks. Andesites, however, formed by the mixing of basaltic magmas and 

upper-crust material (Mitjavilla et al., 1997; Munhá, 1983). 

As indicated by Rosa et al. (2010), the diversity of volcanic lithofacies recognized in different 

areas of the IPB mainly reflects variations in proximity to source, but also differences in the 

eruption style. The IPB volcanoes are intra basinal and dominated by felsic lavas/domes that 

occur at several stratigraphic positions within the volcanic center. Moreover, the pyroclastic 

units are also abundant and are spatially related to the lavas/domes. 

From a structural point of view, the Iberian Pyrite Belt can be considered as a south-verging, 

thin-skinned, fold and thrust belt that propagated southwards over a mid-crustal basal 

detachment (Silva et al., 1990; Quesada, 1998, Mantero et al., 2011). This event inverted the 

previous extensional structures acquired during the initial stages of the collisional process. 

The Variscan deformation in the SPZ was initiated by the oblique collision between the two 

(SPZ and OMZ) continental terranes in a transpressional setting. The metamorphic grade is 

mostly very low, typically prehnite-pumpellyite facies. However, in the northern part of the 

Iberian Pyrite Belt and near thrusts, deformation is more intense and the rocks are 

recrystallized within the greenschist facies (Munhá, 1990). 

It must be emphasized that the VMS mineralization is related to early Carboniferous 

fracture/faults with the deposits clustered and localized by these structures. Some early 

fractures were reactivated during later Variscan thrusting and this may have produced a 

spatial correlation between thrusting and the location of mineral deposits (Gumiel et al., 

2010a; Arias et al., 2011). 

 

3. Geology of the Rio Tinto district study case  

Six main geological units, which are roughly coincident with those defined by García 

Palomero (1980, 1990) and García Palomero et al (1986), were clearly recognized in the drill-

core logs (Fig. 3). From the bottom to the top these units are: basaltic rocks (over 250 m 

thick, with some black slates intercalated), intermediate slates and conglomerates with 

some interbedded felsic volcanic rocks (up to 40 m thick) acid volcanic rocks (of variable 

thickness, between 75 m at the western limit, more than 170 m in Corta Atalaya, 140 m 
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around Eduardo fault and up to 400 m in Cerro Colorado close to the Northern fault, 350m 

close to the southern fault and between 200 and 300 m in the central zone) hosting at its top 

the massive-sulfides (always close to the Northern or Southern faults), transition series 

(around 10 m, up to 30 m) and Culm (syn-orogenic flysch sediments). Affecting the first four 

groups of rocks are two main types of stockworks, pyritic (over 20% sulfur content) and 

cupriferous (over 0.2% copper content). In many deposits of the IPB, stockworks act as 

feeder zones to more massive mineralization (Nehlig et al., 1998).  

Figure 3 

In the Rio Tinto district, the stockworks comprise a network of interconnected fractures that 

isolate and partially replace blocks of host rock of variable size. The fractures are filled with 

quartz and sulfides (mainly pyrite and chalcopyrite) to varying thicknesses. In their deepest 

parts, stockworks are narrow and formed by thin quartz-sulfide veins in the volcanic rocks 

(Fig. 4A). These veins become thicker towards the surface. Close to the massive sulfides, 

most of the stockwork is made up of veins with lesser amounts of strongly replaced volcanic 

rock (Fig. 4B). Also, towards the surface, the stockwork becomes broader with a mushroom 

geometry.  

In the Rio Tinto area, the stockworks affect the basic unit (basalts), the intermediate unit and 

the acid volcanic rocks. Within the latter, some levels being more affected than others giving 

way to different geometries such as those of sections 3800 —Atalaya— and 2750 —Cerro 

Colorado— (Fig. 5, A and B). Mineralization, hydrothermal alteration and replacement (i.e., 

silicification, chloritization, sericitization and sulfuration) also infiltrate into the blocks, often 

along fine fractures.  

Figure 4 

The Rio Tinto deposit has been described in several papers (Mellado et al., 2006; Gumiel et 

al., 2010a and references therein) that have proposed that the currently dismembered 

lenses of massive sulfides formed a large area covering about 4 km2, with a total estimated 

tonnage of more than 500 Mt. The underlying stockworks crop out in the Cerro Colorado 

area, in the core of an anticline verging towards the south, and in Masa San Dionisio—Corta 

Atalaya, in the sub-vertical southern limb of the anticline (Figs. 3 and 5A, B). The rhyodacitic 

domes and plugs (Figs. 3 and 6) predate the formation of the stockworks and massive 
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sulfides, which are capped by the above-mentioned transition series forming a marker 

horizon in the whole IPB (Tornos, 2006).  

Figure 5 

The rocks of the Rio Tinto area show intense hydrothermal alteration, with an irregular 

distribution controlled by the host lithology and syn-sedimentary faults (Leistel et al., 1998, 

Gumiel et al., 2010a). The shale, polymictic breccia and basalt show a single chlorite-rich 

zone. The felsic volcanic rocks show a zoned alteration, with a pervasive sericitization that is 

cross-cut by a later chlorite-rich alteration. Locally, a silica—chlorite-rich alteration zone is 

found adjacent to the faults. At Cerro Colorado and Corta Atalaya, the alteration around the 

stockworks is chloritic, with intense silicification. Further from the stockworks, the rocks 

have a syngenetic sericitic alteration that, in areas near the surface (western part), show 

kaolinization as a result of weathering (Gumiel et al., 2010a). An important volume of 

sulfides in Cerro Colorado and minor amounts in Corta Atalaya have developed extensive 

gossans which were exploited from the sixties to the end of 1998 for gold, whith more than 

106 t (3.5 M oz) obtained (García Palomero et al., 1986; Arribas, 1998). In our 3D 

reconstruction of Rio Tinto we do not take into account the supergene alteration, 

considering the gossanized stockworks and massive sulfides as part of the deposit.  

In the Rio Tinto area it is difficult to differentiate, at the map scale, the domes and lavas 

from the pyroclastic units related to them. Nevertheless, in the core of the Rio Tinto 

anticline, rhyodacitic domes and lavas dominate (Figs. 3 and 6), whilst outside this domain, 

including the Eduardo fault area, pyroclastic tuffs dominate (Garcia Palomero, 1980; 

Adamides, 2013). Some domes and plugs have been included in the map as part of the felsic 

sequence, but not in the 3D model because it was not possible to reconstruct them from the 

drill-core logs.  

Figure 6 

4. Methodology used in 3D modeling 

The use of 3D models facilitate the understanding of surface and subsurface geology is well-

established by several authors (i. e., Houlding, 1994; Lemon and Jones, 2003; Calcagno et al., 

2008; Kaufman and Martin, 2008; Maxelon et al., 2009; Gumiel et al., 2010b; Wang et al., 

2013).  
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The 3D model was generated using 3D GeoModeller© (www.geomodeller.com), which was 

developed by BRGM (French Geological Survey; Lajaunie et al., 1997; Calcagno et al., 2002). 

In this software, lithological units are described as a pseudostratigraphic pile, intended to 

image the geology and structural relationships as closely as possible. Compared with other 

existing 3D solid modeling approaches (e.g. Boissonnat, 1988; Bertrand et al., 1992), a major 

feature of this tool is that the 3D description of the geological space is achieved through a 

potential field formulation in which geological boundaries are iso-potential surfaces, and 

their dips are represented by gradients of the potential. The model is built in a 

georeferenced system and uses (i) a digital elevation model (DEM), (ii) a simplified geological 

map, sections and plans (lithological contact information) and (iii) fractures/faults measured 

within the different units (local gradient information). 

Figure 7 

The 3D modeling involved several steps for the processing of data according to their type 

(Fig. 7 A to C): 

First step. Incorporation of the digital elevation model into ArcGIS 10.1© software (ASCII 

format) to model the topographic surface. Acquiring, compiling and standardizing the 

geological information and borehole data. The sources of the datasets are: 

A) ) Topography 1:10,000 scale from the Andalusian Institute of statistic and mapping, 

Digital Elevation Model (DEM in ASCII format, 2009), and PNOA ortho-image of Rio 

Tinto area from ©Instituto Geográfico Nacional (2014).  

B) Geological surface data from the authors. The use of the geological reports from the 

Rio Tinto staff, drill-hole logs and the works from Williams (1934), García Palomero 

(1980) Gumiel et al. (2010) were very useful.  

C) Reports and geological information of old underground workings. This information 

was very useful in helping to obtain an accurate shape of the massive sulfides and 

stockworks and a precise location of faults where the drill-hole data were scarce, as 

for example, at the south fault.  

D) From the 5,000 existing drill-hole logs, after a short examination we selected around 

3,000 that contain valuable lithological or structural information and we re-log these 

drill-holes as mentioned above in the introduction section. For the 3D model we 
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established a coherent geological database with the 7 units and 3 mineralization 

types, as indicated previously.  

Second step. Hand drawing of 93 N-S vertical cross-sections, spaced at 50 m intervals, using 

the boreholes data projected on the sections (Fig. 2). Based on these, another 6 horizontal 

sections from the 450 m level to 200 m have also been drawn, both at 1:2,000 scale. The 

methodology followed is well known in geology, often being applied to mineral exploration 

and mining (i.e., McKinstry, 1970; Marjoribanks, 2010).  

The sections and plants have been georeferenced and digitalized to produce the XYZ 

coordinates of each contact between the units and mineralized bodies defined in step 1, and 

the geological structures. All this digitized information has been stored in a Geodatabase 

created in ArcGis 10.1©, and the correctness of the topological relationships between the 

digitized elements has been checked.  

Third step. Importation of all geological contacts, fault intersections and DEM from the 

Geodatabase to Geomodeller© using a script developed by us that allows the data format 

transformation. Geological surface models were built by contact and dip vectors derived 

from the sections and DEM. Geological subsurface objects were validated by the large 

borehole data at depth.  

The use of sections that were built directly from drill-hole data permits us to use them as 

depth constraints.  

 

5. Geological characteristics of the different elements in the 3D geological model: 

Stockworks and rollover geometry. 

Two main E—W trending fault zones have been characterized in the 3D geological model of 

Rio Tinto mine (Figs. 8, 9 and 10, Appendix 1 and 2), namely the Northern and the Southern 

Fault zones. They are subparallel and approximately 1 km apart. Moreover, these two faults 

are crosscut by the NW—SE trending Eduardo Fault zone, which dissects both E—W faults in 

two sections. The first, approximately 3 km in length, and lying to the East of the Eduardo 

Fault, gives way to the Cerro Colorado area, which ends in the Nerva Fault zone. The other 

section, lying farther west, is approximately 1 km in length and is limited by the Western 

Fault zone. This sector corresponds to the San Dionisio-Corta Atalaya area (Figs. 3, 8, 9, 10 
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and 11). The Western fault zone is outside the 3D-modeled area. These fault zones delimit 

two sub-basins; the Cerro Colorado sub-basin, of 3x1 km to the east of Eduardo Fault, and 

the San Dionisio sub-basin, of 1x1 km westward of Eduardo Fault (Figs. 8, 9, 10 and 11). This 

fault is barren from a metallogenic point of view, as was previously mentioned by Williams 

(1934) and Pinedo Vara (1963). The San Dionisio sub-basin is displaced around 100 m to the 

north as a result of the dextral kinematics of the Eduardo Fault zone (Fig. 3, see section 6).  

Figure 8 

Figure 9 

  Figure 10 

The geometry and trace of the mentioned faults are well reflected in the Residual Bouguer 

Anomaly map (gravity survey, Fig. 12), within which the whole Rio Tinto area corresponds to 

an E—W-trending positive anomaly that terminates abruptly and is bent at the western and 

eastern ends by the Western and Nerva fault zones respectively. Two narrow areas can be 

observed; the western one corresponding to the Eduardo Fault zone and the eastern one to 

a locally defined NNW—SSE fracture. The gravity map agrees with the pull-apart basin that 

gives way to the Rio Tinto mineralized area.  

Figure 11 

In Cerro Colorado there is a narrow area between the pyrite rich stockwork of Salomon and 

the rest of Filon Norte to the west. The so-called 1800 fault lies within this narrow area. Also, 

to the east, close to Argamasilla mass, is located the Argamasilla N—S fault (Figs. 3 and 12). 

The 1800 fault is seen in the open pit but is not included in the 3D sections because it is 

difficult to follow in the drill core logs and in the N—S sections. Locally, these NW—SE faults 

affected the Culm sediments and in some cases small amounts of massive sulfides appear as 

olistoliths (Fig. 13) at the bottom of the Culm slates, as can be seen in the western limb of 

Eduardo fault or in the area of the Argamasilla fault (Fig. 3 and 12).  

Figure 12 

Figure 13 

It is noteworthy that the Northern Fault is almost vertical whilst the Southern Fault initially 

dips around 80° to the north but its dip becomes gentle with depth (Fig. 8A, B, C and Fig. 9A) 
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and probably intersec the Northern Fault at a relatively small dip angle. The southern Fault is 

therefore antithetic to the Northern Fault, and is developed within the formation of a 

rollover anticline. Other minor fractures are developed subparallel or conjugate to the 

previously mentioned faults, outstanding among them being the so-called middle fault (Fig. 

3), the NW—SE 1800 fault, the N—S Argamasilla fault and the NE—SW fault-set in Cerro 

Colorado, which may be conjugate structures to the Eduardo fault. 

An important contribution of this 3D model to the knowledge of the structural evolution of 

the area is the modeling of an E—W-trending rollover anticline favored by the Northern and 

southern extensional faults (Figs. 8, 9, 10 A to C, and 14 A). This structure displays (Fig. 14 A) 

a turtle shape (Rouby et al., 2002), which originated by both vertical shear (Verrall, 1981; 

Gibbs, 1983, 1984) and bending associated with slip on the synthetic fault (Northern Fault) 

and on the antithetic (Southern Fault), similar to models described by McClay (1990) and 

Imber et al. (2003). 

Figure 14 

The subsiding area evolves into a transtensional graben, bounded by the two normal faults 

(Northern and Southern fault) and becoming progressively more asymmetric, with the faults 

probably connecting at depth. These faults bounding the sub-basins are related to a pull-

apart structure and are favorable areas for the intrusion of igneous rocks, especially in 

transtensional zones. This magmatism in the Rio Tinto area started with  basaltic volcanism 

that marked the beginning of the transtensional process related to the formation of the pull-

apart basins. After the basaltic volcanism and the deposition of the intermediate unit, the 

acid volcanism commences with the emplacement of rhyolite—dacite domes and the 

generation of lavas and abundant submarine mass-flow tuffs, cinerites and the volcanism 

characteristic of the area (Garcia Palomero, 1980). The variation in thickness of the acid 

volcanism previously mentioned are in agreement with the rollover geometry, being thicker 

close to the Northern and Southern faults and thinner in the axis of the rollover and close to 

the Eduardo fault. The role of the E—W trending faults is critical in explaining the genesis, 

location and structure of the VMS and cupriferous stockworks of the Rio Tinto district. The 

3D model suggests that hydrothermal circulation and discharge are highly focused and 

localized along these syn-sedimentary faults, acting as feeder channels to the hydrothermal 

fluids (Figs. 8, 9, 10 A to C, and 14 B).  
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In all cases, the stockworks are located between the Northern and Southern faults and most 

of the massive sulfides are also located between these two faults, although small masses of 

VMS locally may occur beyond these fault limits. In certain areas the hydrothermal fluids 

discharge onto the seafloor producing substantial volumes of massive sulfides These may 

remain on the stockworks (as at Filon Norte, Filon Sur, San Dionisio and Planes) or small 

masses may be transported when the syn-sedimentary basins are filled up by the VMS. In 

the latter case,the VMS that seals and extends beyond the Northern and Southern faults (as 

at Filon Norte and San Dionisio). 

In the case of the San Antonio complex sulfides, the eastern end of the Rio Tinto structure, the syn-

sedimentary displacement of the VMS mass is more significant, extending beyond the Nerva Fault 

zone in the east (Figs. 3 and 10 B, C), probably as a consequence of the filling up of the syn-

sedimentary basins. 

Although most of the stockworks are located in the acid volcanic series, a few are hosted in 

the intermediate unit and in the basic volcanic rocks. When they were formed, the roots of 

the stockworks were located in the master E—W trending faults. In the deeper parts, the 

stockworks were subvertical and relatively narrow, and towards the surface became broader 

while near to the top of the system they became almost horizontal (mushroom-shape). This 

geometry is now noticeable in the northern sector of Cerro Colorado area where the 

stockworks are developed from the domes to the abundant volcanoclastic material, 

frequently following bedding planes or other rock discontinuities (Figs. 8, 9 and 10 A to C).  

The Northern and Middle Faults and the formation of stockworks and VMS mineralization 

were active after the deposition of the acid volcanic unit, ceasing their activity before the 

deposition of the transition series that seals them. All massive sulfide orebodies are located 

on the top of the acid volcanic series, and in some areas, such as the southern part of San 

Dionisio mass, the syn-sedimentary basins were filled up by the VMS that were displaced 

over the faults and fossilized them. During the Variscan transpressional phase the Culm 

sedimentary sequence was deposited and folded, and the E-W extensional faults were 

reactivated as contractional structures operating as reverse faults (Fig. 14 C), affecting the 

basic and acid volcanic rocks and the intermediate unit. Shortening was accomplished by 

folding and reverse reactivations of faults, which propagate upwards developing fault-

related folds that affect the massive sulfides (see Figs. 11 and 14 C), the transition series and 
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the Culm (Fig. 15) as shown in the computer-generated 3D model. During this compressive 

stage the rollover is tightened and its southern flank becomes more vertical, developing an 

anticline verging to the south (Fig. 14 C). Also, the two sub-basins associated with the 

rollover and limited by the Northern (Cerro Colorado) and Southern faults (San Dionisio) are 

folded as synclines (Figs. 9 B and 14 C) and the faults become more vertical. The massive 

sulfides deposited in these two sub-basins, which seal the extensional faults, were also 

folded (Figs. 5, 8, 9, 10, 11 and 14 C).  

 

Figure 15 

 

6. Tectonic evolution of the Rio Tinto area based on the generated 3D model 

The computer-generated 3D model has been used to explain the tectonic evolution of the 

Rio Tinto area and its implications for the VMS mineralizations; two clearly differentiated 

structural stages can be distinguished (Fig. 16):  

1) Pre-Variscan transtensional phase. This transtensional stage, active during the earliest 

Carboniferous and associated bimodal magmatism, is critical to explain the VMS deposits of 

the Rio Tinto area. An early stage starts with the development of a pull-apart having two 

sub-basins (Cerro Colorado and San Dionisio –Atalaya sub-basin, Fig. 16 A) limited by the 

NW-SE trending Eduardo Fault Zone and of two sinistral strike-slip fault zones of the same 

orientation, the Nerva and Western Fault zones, bounding the eastern and western areas 

respectively. These faults overlap and generate a transtensional zone of interaction limited 

by two extensional E-W trending faults (the Northern and Southern Faults) bounding the 

pull-apart. This geometrical pattern can be explained by a NW-SE shortening (1) and a 

resultant NE-SW extension (3) (Fig. 16 A). In addition, as has been shown (i.e. Connolly and 

Cosgrove, 1999; Drew 2006, Zhang et al., 2008), in a transtensional pull-apart the most 

favorable areas for increased fluid flow and highest concentration of mineralization are 

located near the boundaries, such as the areas delimited by red ellipses in Fig. 16.  

Figure 16 
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Later, as a result of a counterclockwise rotation of the stress axes (around 30°), the 

shortening (1) becomes WNW-ESE and the extension (3) roughly N-S. At this stage the 

Northern and Southern Faults are dominantly extensional, forming a conjugate pair with the 

Southern Fault being antithetic and linked at depth to the Northern Fault, localizing 

extension and promoting the formation of the rollover anticline (Fig. 14 A). The resulting 

extensional basins were first filled by the basaltic magmatism of mantle origin and then, 

after the deposition of the intermediate unit sediments, by the latter acid volcanism, all of 

them being folded in a rollover anticline structure (Fig. 14 A). At this time the Eduardo Fault 

Zone starts to assume relevance since it probably represents a basement tectonic structure 

with sinistral strike-slip kinematics (Fig. 16 A, B and C).  

Likewise, the favorable areas (red ellipses) for promoting fluid flow and mineralization 

increase on both sides of the basins in the Northern and Southern extensional faults, 

becoming areas for the feeding and discharge of the VMS and copper stockwork 

mineralizations (Figs. 14 B and 16 B, C). We also emphasize the fact that the ENE-WSW 

orientation of the Cu-stockworks roughly coincides with the orientation of tension cracks 

parallel to the (1) direction (Fig. 16 C). 

E-W trending transtensional sinistral shearing (Fig. 16 C) becomes active and continues over 

time as a result of a counterclockwise rotation of the stress axes (25°-30°), the shortening 

(1) being ENE-WSW trending and the extension (3) NNW-SSE trending.  

2) Variscan transpressional phase. This stage of deformation developed in the Visean 

orogenic phase, persisting until the end of the Carboniferous. During transpression (in the 

sense of Sanderson and Marchini, 1984), prolonged E-W trending shear with sinistral 

kinematics was developed. This produced southerly-directed folding and thrusting, with 

reactivation of the early basin bounding faults. It also produced dextral reactivation of the 

NW-SE trending faults (Fig. 14 C and 16 D), with new sinistral NE-SW trending faults 

(synthetic Faults 1 and 2), both systems at a high angle to the main E-W trend of the IPB. 

WNW-ESE to E-W oriented folds plunging eastward and a reverse component in the NW-SE 

faults (i.e. Eduardo Fault) is developed. The transpressional nature of the Variscan 

deformation on a regional scale has been mentioned by several authors (i.e. Quesada, 1998; 

Soriano and Casas, 2002; Silva and Pereira, 2004; Simancas et al., 2006; Gumiel et al., 2010a; 
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Arias et al., 2011), however, till now, it has not been established on the local scale, nor had it 

been used to explain the overall tectonic evolution of the Rio Tinto area.  

As was suggested by Arias et al. (2011), the role of the NW-SE trending faults, in particular 

the Eduardo Fault Zone in Rio Tinto, when connected with the E-W trending extensional 

faults generates dilation zones favorable for mineral concentration (Figs. 14 B and 16 C, D).  

As shown in the 3D model, the Variscan folding in the area (Figs. 5, 8, 9 and 10, Appendix 1 

and 2) is reflected by an anticline and two synclines plunging to the East, and the VMS 

mineralization and cupriferous stockworks are folded and dismembered from the original 

conduits (Northern Fault) in the acid volcanic series (Figs. 14 C and 16D).  

Above the Northern Fault, a fault-related fold is developed (Figs. 8 B, C, 9 A, B and 14 C). The 

geometry of this folded sequence is easily observed in the transition series, unconformable 

with the VMS mineralization and the rest of the sequence. This geometrical pattern was 

controlled by the lower series (acid, intermediate and basic) buttresses in the footwall block 

of the Southern Fault. This suggests that buttressing (in the sense of Bayley et al., 2002) of 

the lower series plays a significant role in the geometry of tectonically inverted structures 

and the partitioning of deformation in the area. Therefore, during this transpressional phase, 

reactivation of the syn-sedimentary faults is critical (Figs. 14 C and 16 D). 

The NE-SW trending oblique compression (1) also favors the development of an inverse 

component in some faults, such as the Eduardo Fault, that increase the strike-slip fault 

movement with dextral kinematics. During transpression, an approximate estimate of 

shortening is around 30-40%, based on the proposed 3D model. Finally, the orientation of 

the extension (3) is NW-SE, leading to a progressive counter-clockwise rotation and tectonic 

inversion.  

7. Discussion  

The general structure of Rio Tinto results from two main periods of deformation. The first is 

largely transtensional and, after the deposition of slates and quartzites (the PQ formation) in 

a stable continental shelf, produced localized extension and basin development, with 

associated volcanism and the development of the Volcanic Massive Sulfide deposits. The 

second was transpressional, producing reactivation and compression during the Variscan 

Orogeny produced by the oblique convergence of Gondwana and Laurentia.  
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In the Rio Tinto area, the early stage began with the development of a pull-apart with two 

sub-basins (Cerro Colorado and Atalaya) through two NW-SE trending sinistral strike-slip 

fault zones, the Nerva and Western fault zones, bounding the eastern and western areas 

respectively. These faults overlap and generate a transtensional pull-apart zone of 

interaction limited by two extensional E-W trending faults (the Northern and Southern 

Faults).  

The localization of this extension in the Rio Tinto area, facilitates a process of mantle 

decompression with the intrusion of large volumes (over 250 m thick) of basaltic rocks of 

mantellic origin (Mitjavilla et al. 1997), favored by the extensional faults bounding the pull-

apart. Upon the emission of the basaltic rocks, the infilling of the basin continues with slate 

sediments (black shales) and intercalated basalts and tuffs forming the so-called 

intermediate unit (García-Palomero, 1980), sometimes with a conglomeratic appearance as 

defined by Williams (1934). During this transtensional process with the development of 

these pull-apart basins, partial melting of crustal rocks occurred, leading to the subsequent 

emplacement of the acid volcanic sequence, thus developing the characteristic bimodal 

volcanism of the area. 

The emplacement of magmas of this acidic volcanic sequence was favored by the E-W 

trending extensional faults bounding the transtensional basins. This acid volcanism leads to 

thicker acidic tuff sequences, mostly in the Cerro Colorado and San Dionisio areas, into 

which some rhyodacitic plugs subsequently intrude. Most of the recognized rhyodacitic plugs 

are located on or in the vicinity of the extensional E-W trending faults bounding the basins.  

During this stage, the maximum aperture of the transtensional pull-apart occurs and a 

rollover anticline is developed. In fact, the Northern fault corresponds to a deep synthetic 

fault that initially favors the formation of a rollover anticline affecting both volcanism (basic 

and acid) and the intermediate unit, and channels most of the acid volcanism and, later, 

hydrothermal activity (Figs 9 A and 14 A).  

This activity was of less impact in the Southern fault. This may explain why Cerro Colorado 

stockwork and Filon Norte massive sulfides constitute the main mineralized area at Rio 

Tinto.  
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According to the proposed structural model (Fig. 16), during this phase, as a result of a 

counterclockwise rotation of the stress axes, the primitive pull-apart basin evolved into a 

basin affected by an E-W trending transtensional sinistral shearing. The main mineralizing 

period was probably related to this stage after the emplacement of the rhyodacitic plugs, 

with the development of kilometric-scale geothermal convective cells generated around the 

basin, in accordance with the models proposed by Sato (1972, 1977), Lambert and Sato 

(1974) and Turner and Campbell (1987). These cells were controlled by the E-W trending 

faults on a large scale, and by the rhyodacitic plugs at local scale. The formation of the 

different mineralized structures must have been directly related to this long term 

hydrothermal activity, which also explains the low dispersion of lead isotopic geochemistry 

(Marcoux, 1998). The extensional tectonics seems to be essential to homogenize throughout 

hydrothermal cells lead isotopes (García-Sansegundo et al, 2014; Palero-Fernandez et al. 

2015).  

It is also noteworthy that the stockwork at Cerro Colorado trends slightly obliquely to the 

Northern fault (Fig. 10A), this direction coinciding with the orientation of tension cracks 

parallel to the (1) during this stage (Fig. 16 C).  

Dilation zones located on E-W trending faults promoted connectivity between fractures and 

cracks of volcanic rocks, thereby focusing the hydrothermal flow from deep areas to the 

surface, and thus producing well-connected stockworks, as has been demonstrated (Gumiel 

et al., 2010a; Arias et al, 2011). The stockworks are hosted in the volcanic sequence and are 

all located in the vicinity of the Northern and Southern faults, from which the roof of the 

basic rocks, the transition and the middle and upper part of the acid series mineralize. From 

the master faults, the stockwork mineralization penetrates the bedding planes defined in the 

volcanic rocks and the intermediate unit, developing the above mentioned mushroom 

geometry. As seen in Figures 8, 9, 10 and 14, these stockworks are narrow and vertical in the 

deeper parts, opening up towards the surface. In the deeper areas, the network of veins is 

narrower and dominates the volume of rock, while toward the surface vein thickness 

progressively increases and veins clearly dominate over replaced host rock fragments, which 

are strongly altered (chloritized, silicified and sulfurized). Finally, in certain areas 

hydrothermal fluid was discharge onto the seafloor, producing substantial volumes of VMS 

mineralization that may remain above the stockworks (i.e. Filon Norte, Filon Sur, San 
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Dionisio and Planes) or suffer transport with displacement of small masses that seal and 

surpass the Northern and Southern faults in Filon Norte and San Dionisio (Figs. 8 and 9). 

However, in the case of the San Antonio deposit (east of Cerro Colorado), the syn-

sedimentary displacement of the massive sulfides after the filling of the basin is significant, 

spreading eastwards over the Nerva Fault zone (Fig. 10 B, C). 

Moreover, the NW-SE fault systems play a minor role from the point of view of the 

mineralization. These faults only appear to accommodate the geometry of the above-

mentioned basins and are only associated with minor mineralized veins.  

During this transtensional stage, the transition series is deposited covering all the previous 

mentioned rocks. It represents the final volcanic sediments, several meters thick, which is 

also a guide level for the IPB (Leistel et al. 1998, Soriano and Marti, 1999, Tornos, 2006). 

Later on, during the main Variscan transpressional phase, the Culm sedimentary sequence 

was deposited and the E-W extensional faults were inverted. For example, the Eduardo fault 

placed Cerro Colorado sub-basin above the San Dionisio mass. In some places, these NW-SE 

trending faults affect the Culm sediments and on some occasions fragments of massive 

sulfide (olistoliths) can slid into the bottom of the Culm slates (i.e. Argamasilla fault, Fig. 13).  

These faults move as inverse faults, and propagate up as faults-related folds affecting the 

massive sulfides, the transition series and the Culm (Figs. 5, 8, 9, 10 and 15). During this 

compressive stage the rollover is tightened and the VMS mineralization of the two sub-

basins (Cerro Colorado and San Dionisio) was folded, sealing the extensional faults, (Figs. 5, 

8, 9 and 10, Appendix 1 and 2). 

The structural model proposed here is coincident in some aspects with those of Neves Corvo 

(Relvas et al., 2006), the other supergiant deposit of the IPB (Fig. 1 B). This area is farther 

south than Rio Tinto (Fig. 1 B), hence the Variscan tightening is less, possibly with better 

preservation of the original transtensional structure. At Neves, where the IPB trend is NW-

SE, the SW-NE section (perpendicular to the general trend, see Fig. 3 from Relvas et al., 

2005) through Graça and Corvo presents two main faults, the northern being near vertical 

and the southern dipping around 45° to the NE. Both faults seem to define a similar basin to 

those proposed here for Rio Tinto. It should also point out that all the stockworks are close 

to, or between these two faults, and that the massive sulfides are located mostly between 

the faults. Moreover, the thickness of the Neves Formation increases to the north of the 
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southern fault and the same happens with the massive sulfides that disappear rapidly to the 

south. In fact, these two faults probably define a syn-sedimentary subsiding basin in the 

interior of which the main mineralized structures develop similarly to Rio Tinto.  

8. Conclusions 

A new 3D geological model and structural evolution of the Rio Tinto world-class VMS deposit 

is presented in this work. A computer generated 3D reconstruction of the different 

orebodies and host rocks has been carried out using data from around 3,000 boreholes 

generating 93 cross-sections with 50m spacing. The resulting geological model has a 

resolution of ~3 m and includes the exploited mineralization above the present 

topographical profile as well as the distribution of the VMS and stockwork mineralizations 

that remains to be mined.  

This new 3D geological model leads to a new understanding of the development of the VMS 

deposits at Rio Tinto and their relationship to the Variscan evolution of Iberia. We provide an 

interpretation of the geometry and relationships between the mineralization and the earliest 

Carboniferous transtensional tectonics. 

The development of an extensional pull-apart with two sub-basins separated by the NW-SE 

trending Eduardo fault. The sub-basins, Cerro Colorado and San Dionisio, were limited by 

two E-W trending faults, (the Northern and Southern faults), and bounded eastward and 

westward by the NW-SE trending Nerva and Western faults respectively.  

As a result of a counterclockwise rotation of the stress axes, the primitive pull-apart basin 

evolved into a basin affected by E-W trending extensional faults.  The formation of subsiding 

basins caused the development of an E-W trending rollover anticline affecting these filling 

rocks. We suggest also how these structures evolved, the main structural, magmatic, 

sedimentary and hydrothermal processes related to them resulting the Rio Tinto deposit.  

The generated pull-apart were first filled by a basaltic magmatism of mantellic origin and 

then, after the deposition of the intermediate unit, by a rhyodacitic volcanism of crustal 

origin.  Its northern and southern limits were favorable areas for increased fluid flow and 

hydrothermalism, producing a huge concentration of mineralization located near the limits, 

mainly the Northern and, to a lesser degree, the Southern faults becoming channel areas for 
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feeding and discharge of the VMS and stockwork ores. The main mineralizing period was 

related to this stage. 

At the end of the Carboniferous, the Variscan orogeny produced compression (sinistral 

transpression) of the IPB. The massive sulfides, the transition series and Culm were all 

extensively folded and thrust. The early transtensional structures were overprinted with 

many of the basin-bounding normal faults being inverted and the rollover anticline was 

tightened. Buttressing mechanism can play a significant role during inversion. The VMS 

mineralization and cupriferous stockworks were folded and dismembered from the original 

conduits in the volcanic series, and a remarkable dextral reactivation of the NW-SE trending 

faults also developed.  

Finally, this new contribution to the knowledge of this area of world relevance, based on real 

data, and the resulting computer-generated 3D geological model of the Rio Tinto district can 

open new possibilities for prospectivity of the VMS and stockwork mineralizations at the IPB. 

The geometry and relationships between mineral deposits and the structural evolution at 

different scales should be carefully studied with special emphasis placed on the 

transtensional (extensional) processes to explain the origin of these types of mineralization 

and their prospectivity. In accordance with the proposed model, a new interesting area 

could be the South fault to the east of the Eduardo fault, because the “Filon Sur” massive 

sulfides and stockwork could have developed a syncline structure, as happens in Corta 

Atalaya, but this structure has not been found. As this area is very close to the South fault, it 

could have been displaced or tectonized during the Variscan shortening and buttressing 

deformation.  
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Figure captions 

 

Figure 1. A) The zones of the Iberian Massif, CZ: Cantabrian Zone. WALZ: West Asturian-

Leonese Zone. CIZ: Central Iberian Zone. OMZ: Ossa Morena Zone. SPZ: South Portuguese 

Zone. B) Geological scheme of the South Portuguese Zone with the location of the main 

massive sulfide deposits in the IPB, including the Rio Tinto world-class deposit. The 

geological base is from (Leistel et al. 1998; Simancas 2004; Mantero et al., 2011, and 

modified by the authors).  

Figure 2. A) Location of the 3,000 utilized boreholes from different surveys in Cerro Colorado 

and Corta Atalaya with the DEM of the area. Information provided by EMED Tartesus. B) 

Location of 93 N-S cross-sections generated based on the carefully study and re-logged of 

the drill cores used for building up the 3D model presented in this work. 

Figure 3. Geological map of the Rio Tinto district, including San Dionisio, Cerro Colorado and 

Planes orebodies obtained from the 3D geological model and field mapping. The location of 

the rhyodacitic plugs is approximate. 

Figure 4. Two representative aspects of the stockwork mineralization: A) Deepest part of the 

stockwork made up by narrow sulfide veins in rhyodacites. B) Close to the surface and near 

to the massive sulfides, the sulfides prevailing over rock fragments (Cerro Colorado open-

pit). 

Figure 5. Two representative geological sections of the Rio Tinto deposit: A) Section 3800 

Corta Atalaya and B) Section 2700 Cerro Colorado (the same legend as in Figure 3). Both 

sections have been selected from the 93 sections generated from drilling data. Each section 

was built using data from the drill core where they intersect the section surface. In the figure 

are added the drill number (from the Emed Tartesus data base) and its spatial position in the 

section. Figure 6. Rhyodacitic plug in the northwestern part of Cerro Colorado. 

Figure 7. Organigram of the methodology carried out to generate the 3D geological model of 

the Rio Tinto deposit. For explanation, see text. 

Figure 8. Different perspectives of the computer-generated 3D geological model of the Rio 

Tinto VMS deposits (same legend as in Fig. 3). A) General view, from SE, of the whole 

modeled area showing the Cu-stockwork mineralization (light green), the pyritic stockwork 
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of Salomon and the VMS orebodies (red). Notice the rollover anticline plunging 35°-40° 

towards east well expressed in the intermediate unit (blue). B) View, from SE, of the Cerro 

Colorado and Corta Atalaya open pits on the orthoimage of the area. Notice the rollover 

anticline bounded by the Northern and Southern Faults, well expressed in both the 

intermediate unit (blue) and the transition series (light blue). C) A similar panoramic view 

oriented from SE, and four representative sections have been included in order to facilitate 

the visualization of the 3D model. Notice both the disposition of the VMS orebodies and the 

Cu-stockwork mineralization (light green). This view includes the mineralization exploited in 

both open pits.  

Figure 9. A) A detail of the 3-D geological model (eastern view). Notice both the geometry of 

the VMS mineralization (red) and the disposition of the pyritic (dark green) and the Cu-

stockworks (light-green) with a mushroom shape on the rollover anticline. This view includes 

the exploited mineralization above the present topographical section to enhance the 

geometry of the rollover anticline. See also the geometry and disposition of the pyritic 

stockwork close to the vertical Northern Fault (light yellow) and the Filon Sur VMS 

mineralization close to the Southern Fault (blue). See section 5 for explanation. B) General 

view, from SW, of the Corta Atalaya and Cerro Colorado open pits on the orthoimage of the 

area. Notice both the disposition of the VMS mineralizations (Filon Norte and San Dionisio-

Filon Sur) and the Cu-stockwork mineralization (light green) scattered on the rollover 

anticline. C) View from below, from SE direction, enhancing the geometry of the VMS 

mineralizations, the Cu-stockwork (light green) and the pyritic stockwork (dark green), 

showing the existing mineralization below the surface that remains unexploited.  

Figure 10. A) Zenith panoramic view of the rollover anticline bounded by the Northern and 

Southern Faults, well expressed in the intermediate unit (blue) with some folds plunging 

eastward. Notice both the geometry of the VMS orebodies (red) and the disposition of the 

pyritic (dark green) and the Cu-stockworks (light-green) scattered on the rollover anticline. 

The dextral kinematics of the Eduardo Fault can be observed in this view. B) Partial view of 

the eastern area of the 3D model to observe the disposition of the Planes-San Antonio VMS 

mineralization plunging towards east over the pyritic stockwork (dark green) and the acid 

unit (light yellow) spreading over the Nerva Fault. Notice the end of the rollover anticline 

plunging around 35°-40° eastward well expressed in the intermediate unit (blue). Three 
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representative sections have been included to facilitate the visualization of the 3D model. C) 

A similar view to the previous but below the surface including the exploited mineralization 

above the present topographical section. Notice the disposition of the Planes-San Antonio 

VMS mineralization plunging to the east (See section 5 for explanation). 

Figure 11. Mapping of the Atalaya open-pit over a current photocomposition and based on 

field data. The mapping of the lithological units is consistent with the computer-generated 

3D model, showing the hydrothermal alteration of the acid and basic volcanic rocks, the Cu-

stockwork and folds in the VMS mineralization of San Dionisio mass. 

Figure 12. Proposed structural model on the Residual Bouguer Anomaly map, based on the 

gravity survey of the Rio Tinto area. (Source of the gravity data: EMED Tartesus). 

Figure 13. Boulder of massive sulfides into the Culm slates in the eastern side of the 

Argamasilla fault (see Figure 12 for location of this fault). 

Figure 14. Idealized scheme showing the evolution of the rollover anticline; A) Extensional 

stage favored by the Northern and Southern extensional faults with the generation of a 

rollover anticline, originated by both vertical shear and bending associated with slip on the 

synthetic fault (Northern Fault) and on the antithetic (Southern Fault). B) Diagram showing 

the critical role of the Northern and Southern Faults to explain the genesis, location and 

structure of the VMS and cupriferous stockworks of Rio Tinto. C) Diagram showing a later 

transpressional phase. Shortening generates folding of the volcano-sedimentary sequence, 

the VMS mineralization and cupriferous stockworks which are dismembered from the 

original conduits (Northern Fault) in the acid series. Reactivation of the Southern Fault as a 

reverse fault is also observed. 

Figure 15. Folds developing a sub‐vertical axial plane cleavage in the Culm slates over the 

Southern fault at Corta Atalaya open-pit. 

Figure 16. Idealized diagram showing four stages of the structural model proposed for the 

Rio Tinto VMS deposit. A) Pre-Variscan transtensional phase. An early stage starts with the 

development of a pull-apart with two sub-basins (Cerro Colorado and Atalaya) and two E-W 

trending sinistral strike-slip fault zones (the Nerva and Western Fault zones) bounding the 

pull-apart. B) Prolonged transtensional phase. As a result of a counterclockwise rotation 

(around 30°), the shortening direction (1) becomes WNW-ESE and the extension (3) 
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roughly N-S. The red ellipses are favorable areas for promoting fluid flow and mineralization. 

C) E-W trending transtensional sinistral shearing becomes active and continues over time as 

a result of a counterclockwise rotation (25°-30°) of the stress axes. At this stage the highest 

concentration and discharge of mineralization occurs. D) Variscan transpressional phase. 

During transpression, prolonged E-W trending shear with sinistral kinematics is developed, 

producing a remarkable dextral reactivation of the NW-SE trending faults acting as antithetic 

faults (i.e. Eduardo Fault). For explanation see section 6. 
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Table 1.  

Summary of the main features related to the tectonic evolution of the Rio Tinto area based on the 

generated 3D model. 

1) Pre-Variscan Transtensional period 

 a) Transtensional pull-apart stage 

  - Basaltic magmatism 

   - Acid volcanism with rhyodacitic plugs 

 b) Transtensional sinistral shearing stage 

  - Development of a rollover anticline structure 

  - Main mineralizing moment producing stockworks and VMS mineralization 

  - Transition series deposition 

     

2) Variscan Transpressional period 

 a) Transpressional sinistral shearing stage 

  - Culm sedimentary sequence deposition 

  - Folding and thrusting with inversion of E-W trending extensional faults 

  - Buttressing 
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Highlights 

A new computer-generated 3D model of the Rio Tinto world class deposit is presented  

We used data from 3,000 boreholes and 93 cross-sections for the 3D geological model  

We emphasize on relationships between mineralization and transtensional pull-apart  

A rollover anticline: a new structural model for the Rio Tinto district is presented  

This new 3D model, based on real data, can be utilized for prospectivity in the IPB  


