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Abstract—Developing a reliable online condition monitoring 

prognostic indicator tool for MV cables is of great importance as 

it can predict and prevent upcoming failures of the distribution 

cable circuits. This paper introduces a thermal prognostic model 

for MV underground cable terminations based on a support 

vector regression algorithm. The model is shown to predict the 

likely temperature along the cable thirty minutes into the future 

and is able to rapidly identify temperature anomalies which may 

indicate upcoming failures.  
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I. INTRODUCTION  

The ability to accurately monitor the real-time health of 

power network systems is the ultimate aim for utility 

companies for tasks such as planning, asset management and 

identifying possible weaknesses within their networks. 

The power network distributors aim to supply electricity as 

safely and reliably as possible. Nevertheless failures in the 

power distribution networks are still regular occurrences [1]. 

The most common location of cable failures are at the cable 

joints or terminations [2, 3]. Over the past years there have 

been a number of failures reported within cable terminations, 

in particular near the termination sealing ends, where in some 

cases the monitored temperatures increase by up to 10 °C   [4-

6]. 

This paper presents a method of developing a reliable 

thermal prognostic indicator system for cable terminations. An 

experiment has been set up where a closed loop 33 kV cable is 

tested under current loading patterns. Real-time measurements 

(air ambient temperature, temperature of the cable 

terminations and loading demand) taken close to the cable are 

used to update the prognostic simulation model based on the 

support vector regression (SVR) algorithm. The model 

predicts the likely temperatures of cable terminations 30 

minutes into the future. Anomalies of the measurements along 

the cable are compared with predicted values in order to 

identify a possible degradation activity in the cable 

terminations.  

It is assumed that an increase of local cable temperature, 

i.e. a hot-spot, is indicative of degradation of the cable 

insulation due to thermomechanical, electrical and 

environmental factors. 

II. EXPERIMENTAL SETUP 

A closed loop of 10 meters 33 kV cable experiment, under 

different current loading patterns, was used to generate data 

needed to develop the thermal prognostic model. Two ends of 

the cable are electrically connected to create a loop. As the 

cable circuit length is short a single-point-bonding is used to 

avoid any sheath circulating current on the cable. 

Two current transformers (CT1 and CT2) and a motorized 

variac unit are used to generate the current loading profiles. A 

control system program was developed in order to vary the 

input current to the CTs and to simulate different load profiles. 

A data acquisition (DAQ) device collaborates with the control 

system program by receiving and sending analog signals. A 

Rogowski coil is used to measure the current passing through 

the cable conductor in real-time. This current is input to the 

DAQ which updates the control system program. Afterwards 

the control system program sends the appropriate signals to 

the motorized variac and adjusts the corresponding load 

profile demand in the cable to be close to the expected current 

value via the DAQ.  

The surface temperature of the cable was continuously 

monitored using 7 thermocouples (T#, where # is the 

thermocouple number) placed on the cable at various positions 

as is shown in Fig. 1. Three thermocouples (T1, T2 and T3) 

are located at the termination section. The other four 

thermocouples (T4, T5, T6 and T7) are located 2 meters away 

from each other. The thermocouples are connected to the 

datalogger which records the temperatures every minute and 

provides an average value of local temperature at 30 minute 

intervals.    

During this experiment a daily load current cycle, as 

shown in Fig. 2, was loaded in the 33 kV cable producing an 

increase in temperature on the surface of the cable. The 

experiment was run for two weeks, with the same current load. 

The first week of the experiment was used to gather data in 

order to build the thermal prognostic model while the second 

week was used to test the performance of the model. During 

the second week of loading, artificial hot-spots were 

introduced to the cable by adding fiberglass insulation 

sections. The fiberglass sections act to increase the local 

thermal resistance at the cable surface. The additional hot-

spots allow investigation of whether the thermal prognostic 

simulation model is sufficiently sensitive to detect temperature 
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anomalies at the cable surface. The two thermal insulation 

sections were added close to the end of the termination, where 

failures are more likely to occur. The first insulation was 

added by the end of the termination, located 0.10 meters from 

T2 and 0.35 m from T1. The second insulation was added 

above the T3, 0.10 meters away from the end section of the 

termination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. THERMAL PROGNOSTIC SIMULATION MODEL BASED ON 

SVR  

The SVR is a machine learning algorithm which aims to 

determine an approximation function, from a training dataset, 

that has a maximum pre define deviation from the targets 

output values and at the same time is not complex. It always 

perform a linear regression by transforming the input data 

features into a high dimensional feature space through a non-

linear mapping [7]. SVR is able to avoid overfitting issues and 

creates less complex models that always converge to a 

solution [8]. The thermal prognostic model was developed 

using the LIBSVM toolbox [9] in Matlab. 

A. Data Preparation 

The input data needed for the development of the SVR are 

shown in Table I.  

TABLE I  INPUT DATA FOR SVR 
 

Input  

Columns 
Features Description 

1 - 4 
Air ambient 

temperature 

Mean air temperature captured 

every 30 minutes 

5 - 8 Current loading 
Mean current loading captured 

every 30 minutes 

9 -12 T5 
Temperature of T5 captured every 

30 minutes 

 

T5 is used as an input variable for SVR training as well as 

the air ambient temperature in the laboratory and the current 

load profile of the experiment. The number of input columns 

correspond to 2 hours of input data. Each 2 hour interval 

contains patterns that the SVR uses to build the relationship 

and the generalization function for the input feature data 

against the output data. 

The 30 minutes prediction horizon proved to be the most 

suitable prediction time when considering the thermal time 

constant of a loaded MV cable. In addition as the data are 

averaged every 30 minutes only 1 data point needs to be 

predicted by the SVR.  

In order to avoid features with larger numeric values being 

dominant to those with smaller values, input data has to be 

scaled before being fed into the SVR. Scaling of the input data 

reduces computation time during the modelling process. In 

this model the data were scaled from [0, 1] as follows:  

 

 
 

where is the original data,  the scaling data,  

and  are the maximum and minimum values of . 

 

B. Selection of SVR parameters 

Selection of the appropriate SVR tunable parameters C, Ȗ 

and İ plays a significant role to achieve a good generalization 

performance. The parameter C controls the trade-off between 

model complexity and the frequency with which errors are 

allowed. The parameter Ȗ controls the width of the Gaussian-

RBF kernel which is used to map the input features to a higher 

dimensional space. The combination of C and Ȗ controls the 

input range of the training data and therefore these two values 

have to be tuned together. The parameter İ is associated with 

the deviation of the output value from the training data. Larger 

deviation value of İ will result in less complex underfitting 

model. On the other hand small value of İ will result in more 

complex overfitting model. The temperature data collected 

during the experiment has a precision of two decimal places 

hence the value of İ=0.01 has been selected. The kernel 

selection as well as the grid-search technique and cross-

validation method used to identify the best pair of C and Ȗ can 

be found in a previously reported work [10].  

Fig. 1 Experimental setup of 33 kV cable. 

Fig. 2 Experimental daily loading profile.  
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IV.  EXPERIMENTAL RESULTS 

 

Three different models were built to detect temperature 

increases at T1, T2 and T3 after the introduction of the hot-

spots produced by the fiberglass insulation sections by the end 

of the termination. 

The hot-spots were introduced on the second week of the 

experiment. The first 5 days of the experiment were used to 

train the SVR algorithm, the next 2 days to test its 

performance using root mean square error (RMSE) and to 

identify the best combination of C and Ȗ. Finally in the last 

week the models, developed the week before, were left to run 

without any change of parameters under unknown conditions 

and under the influence of local hot-spots.  

Figures 4, 5 and 6 show 30 minutes ahead predictions 

made for the testing and unknown data for T1, T2 and T3 

without and with the influence of hot-spots.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The prediction made for the testing data of T1, T2 and T3 

shows good results with prediction RMSE less than 1.3% as 

can been seen from Figures 4, 5 and 6. After the introduction 

of the hot-spots from the day 7 until day 14 of the experiment, 

the RMSE for T1, T2 and T3 increased to 3.50%, 7.71% and 

14.46% respectively. It can be observed that all of the 

thermocouples were able to identify the increase of 

temperature caused by the nearby hot-spots. 

The thermal prognostic model has an accuracy of ± 1°C. 

Hence in the event when the real temperature is higher than 

predicted temperature by at least 1°C, the positive part of the 

temperature prediction error graphs can be assumed to be an 

indication of an upcoming failure of the system. 

Figures 7, 8 and 9 show the temperature difference, real 

minus predicted, for the same thermocouples while the hot-

spots were disabled and enabled. 

 

 

 

 

Fig. 4   Comparison between predicted temperature on testing data 
(RMSE=1.11%) and unknown data (RMSE=3.50%) with the 

real temperature of T1. 

Fig. 5   Comparison between predicted temperature on testing data 

(RMSE=0.89%) and unknown data (RMSE=7.71%) with the 
real temperature of T2. 

Fig. 7 Temperature prediction error for T1. 
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Fig. 6   Comparison between predicted temperature on testing data 
(RMSE=1.26%) and unknown data (RMSE=14.46%) with the 

real temperature of T3. 
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T2 which is 0.10 m away from the first hotspot, thermal 

insulation 1, identified an increase of temperature of the order 

of 4.42 °C while T1 which is located further away from the 

hot-spot, at the distance of 0.35 m, could as well identify an 

increase of temperature of 2.54°C. T3 which is located just 

below the second hot-spot, thermal insulation 2, had a 

temperature increase which reached 8.22°C. The temperature 

prediction error for T2 and T3 is well above 1°C as these 

thermocouples are located near or below the hot-spots. T1 

positioned 0.35 m away from the location of the first hot-spot 

was able to identify the presence of hot-spots with the highest 

temperature magnitude falling during the daytime but could 

not detect the hotspots during the nighttime due to the much 

lower air ambient temperature. 

 

V. CONCLUSION 

This paper describes the development of a new thermal 

prognostic model based on SVR which can detect the 

temperature anomalies in the cable terminations using a 

prediction of temperatures 30 minutes into the future. The 

developed thermal model is able to monitor specific areas of a 

cable, such as terminations, where hot-spots are more likely to 

occur, and to identify the signs of imminent degradation in the 

cable.  

Based on the experimental results presented, it can be 

concluded that the most effective distance for the thermal 

prognostic simulation model to identify the location of the 

hot-spots is within a radius of up to 0.35 m. A distribution of 

thermocouples close to the area of interest is sufficient for the 

model to identify and predict a possible failure process at an 

early stage. 

The use of such systems enables a form way of prognostic 

condition monitoring in with the aim to measure less and 

model more. Prognostic models will enable the power network 

operators to increase asset utilization and reduce costs. 
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Fig. 8 Temperature prediction error for T2. 
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Fig. 9 Temperature prediction error for T3. 
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