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An understanding of the dynamic behaviour of railway tracks at high frequencies, in both vertical
and lateral directions, is important for the assessment of rolling noise. Although many analytical
models can be found in the literature, these mostly focus on the vertical vibration of the track.
Studies of the lateral vibration are less common while the coupling between the vertical and lat-
eral directions has received very little attention. In this paper, a model of a beam on an elastic
foundation is introduced that accounts for the coupling of the vertical and lateral vibration be-
haviour. The model allows for the effects of beam curvature, asymmetry of the cross-section,
shear deformation, rotary inertia and warping. Consideration is given to the fact that the loads at
the rail head, as well as those exerted by the railpads at the rail foot, may not be applied through
the centroid of the section. The track is subjected to a non-moving harmonic load and the solution
is obtained in the wavenumber domain using the Fourier transform method. Results are presented
as dispersion curves for the free rail and are validated with the aid of a Finite Element software.
Closed form analytical expressions are derived, using contour integration, for the forced response.
The track vibration decay rates are also presented and analysed as a means of assessing the noise
performance of the rail and the influence of vertical-lateral coupling.

1. Introduction

The dynamic behaviour of railway tracks at high frequencies and their radiation characteristics
are particularly important for the generation of rolling noise. The track vibration in both vertical
and lateral directions is important. Many analytical models can be found in the literature that focus
on vertical track vibration but lateral vibration and especially the coupling of the vertical and lateral
directions have received much less attention.

The cross-section of the rail is asymmetric in the vertical direction. As a result, the shear centre,
through which the shear forces act, is not coincident with the centroid through which inertial forces
act. This introduces coupling between lateral bending and torsion. For a fully asymmetric section,
such as a tram groove rail, the same will occur between vertical bending and torsion. In addition, in
a curved track the vertical bending will couple with the torsion and the lateral bending with the axial
response.
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Grassie et al. [1] modelled lateral track dynamics using similar models to those used for the
vertical direction, neglecting coupling. In [2], both vertical and lateral track behaviour was again
considered using a Timoshenko beam on a two-layer foundation model. Although the vertical/lateral
coupling was not taken into account directly, an empirical parameter was introduced (X) for the cross-
coupling. The cross receptance was estimated from the geometrical average of the vertical (Ax) and
lateral (Ay) receptances (Axy = X

√
AxAy), where X was obtained by comparison with measurements.

In [3] and [4] continuously supported multiple beam models were developed, including cross-
sectional deformation, for both vertical and lateral motion. Although they show excellent agreement
with a Finite Element (FE) model, the effect of vertical-lateral coupling was not considered.

Since the cross-sectional deformations are important in the frequency range of interest, various
more detailed models have been developed that are based on extensions of the FE method, eg [5, 6].
In [7], the dispersion relationship and receptance of an infinite rail were presented, based on an FE
model using periodic structure theory.

In the present work, an analytical approach is used to consider the various sources of verti-
cal/lateral interaction although cross-section deformation is not taken fully into account. The rail
is treated as a simple beam cross-section, accounting for vertical and lateral bending and torsion.
Corrections for shear deformation, shear centre eccentricity and warping are included as well as cou-
pling through track curvature. The dispersion curves are compared with results from a FE model. The
potential effects of the various sources of vertical/lateral coupling on rolling noise are presented in
terms of track decay rates. The main aim of this work is to provide insight into the various coupling
effects that exist for railway applications, and their importance in modelling.

2. Coupled vertical/lateral interaction model

The dynamic track model is based on a beam model presented by Kim et al. [8]. This utilises
Timoshenko beam theory for bending in the vertical and lateral directions, an axial rod in tension and
a torsional rod accounting for non-uniform torsion. Figure 1 shows a typical rail cross-section, where
C denotes the centroid and S the shear centre; e2 is the distance between them.
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Figure 1: Displacement field

Based on the generalised displacement field in the cross-section of the rail, the strains are de-
rived. In Fig. 2 an infinitesimal element of length Rdθ is presented, along with the forces acting on it
(excluding the bi-moment which is associated with warping). By summing the forces and moments
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Figure 2: Infinitesimal element

acting on the centroid in all three directions, the following equations of motion are obtained:

−
1
R

dFx

dθ
−

Fz

R
+ kxux + müx = F̃x(1)

−
1
R

dFy

dθ
+ kyuy + müy = F̃y(2)

−
1
R

dFz

dθ
+

Fx

R
+ kzuz + müz = F̃z(3)

−
1
R

dMx

dθ
+

Mz

R
+ ρIpθ̈x + kxrθx = M̃x(4)

−
1
R

dMy

dθ
+ Fz + ρ(Iz − Iwy)θ̈y − ρIyzθ̈z + kyrθy + Iwzρ f̈ = M̃y(5)

1
R

dMz

dθ
+

Mx

R
− Fy + ρ(Iy + Iwz)θ̈z − ρIyzθ̈y + kzrθz − Iwyρ f̈ = M̃z(6)

−
1
R

dMw

dθ
+ Tw + ρIw f̈w − ρIwzθ̈z + ρIwyθ̈y = M̃w(7)

where ux and θx are the displacement and rotation in the x direction, Fx and Mx are the internal
forces and moments acting in the x direction, and similarly for the y and z directions. Mw is the
bi-moment and Tw is the non-uniform torsion component, kx and kxr etc represent the foundation
stiffness per unit length for displacements and rotations respectively, R is the radius for a curved
beam, m = ρA is the beam mass per unit length, I is the second moment of area about the respective
axis, F̃x, F̃y, F̃z, M̃x, M̃y, M̃z and M̃w are the external forces per unit length due to the excitation source.

Based on the equations of motion, the strain-displacement equations for the beam can be obtained.
Then the axial strain (εxx) and the shear strains (γxy and γxz) can be written in terms of the displacement
(e.g. [8]). By taking the appropriate integrals of the normal and shear strains over the cross-section,
the force-deformation equations are obtained. The responses are then assumed to be harmonic both
in space and time with a complex amplitude. For example, the axial response ux is expressed as
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ux = Uxeiωte−iξx where Ux denotes the complex amplitude. By substituting this form of response back
into Eqs. 1 - 7 and collecting terms for the complex amplitudes the following is obtained:

A(ξ, ω)Ū = F(ξ, ω)(8)

where Ū contains the complex amplitudes, F the forces and the dynamic stiffness matrix A is a 7-by-7
matrix of coefficients dependent on ξ and ω. Now by collecting terms within A for ascending powers
of ξ, it follows that: ((

K0 − ω
2M

)
ξ0 − iξK1 − ξ

2K2

)
Ū = F(ξ, ω)(9)

In order to obtain the dispersion relationship, the free vibration of the rail (F(ξ, ω) = 0) is considered.
For such a case, non-trivial solutions require |A| = 0. This is a dual (non-linear) eigenvalue problem
in ξ and ω. In order to simplify the solution process, the 7-by-7 non-linear eigenvalue problem is
rewritten as an equivalent 14-by-14 linear eigenvalue problem, yielding 14 solutions for ξ at each
frequency (7 in each direction) [9].

3. Validation for a free rail

In order to validate the above model, a FE model was developed in order to obtain the dispersion
relations for a free beam and compare against the developed model. Tetrahedral solid elements of
maximum side length of 0.066 m were used. Figures 3 and 4 show the dispersion relationship for
a straight and curved beam respectively, based on the properties shown in Table 1 obtained through
analysing the cross-section in the FE model.

Table 1: Properties of rail.

Parameter Value Parameter Value
Cross-section area, A 7.67 × 10−3 m2 Young’s modulus, E 200 GPa
Moment of inertia, Iz 3038 × 10−8 m4 Shear modulus, G 76.923 GPa
Moment of inertia, Iy 512.7× 10−8 m4 Polar mom. of inertia, Ip 3.550× 10−5 m4

Torsional constant, J 2.212× 10−6 m4 Density, ρ 7860 kg/m3

Shear coefficient, κy 0.39 Shear coefficient, κz 0.54
Shear centre distance, e2 0.033 m Sectorial mom. of inertia, Iw 2.212× 10−8 m6

Product of inertia, Iyz 0 m4 Product of inertia, Iwz -8.046× 10−15 m5

Product of inertia, Iwy 0 m5 Rail loss factor, ηr 0.02

In Fig. 3 the FE results are plotted for a straight rail of length 1.2 m with symmetry or anti-
symmetry boundary conditions at each end. The lateral (red) and vertical-longitudinal (green) mo-
tions are uncoupled for a straight rail. The vertical motion includes two main wave-types. The first
is the vertical bending (Type I) while the second is a higher-order wave associated with the foot flap-
ping (Type II). Longitudinal waves include the first order axial wave (Type III) and a higher order
axial wave (Type IV). For the lateral motion of the rail, the first two wave types correspond to the
lateral bending (Type I) and the torsional wave (Type II). Two higher-order waves appear at higher
frequencies, corresponding to the bending (Type III) and double bending (Type IV) of the web.

Because the cross-section geometry is not included in the present model (i.e. no separation of
head, web and flange) the higher order wave-types are not accounted for and therefore their effects
are not present. This also means that the lateral bending wave, for example, above 200 Hz does not
match that of the FE model since in the latter case it is influenced by the cross-section deformation.
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Figure 3: Comparison of dispersion curves
for straight rail with FE model
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Figure 4: Comparison of dispersion curves
for curved rail with FE model (R = 1.45 m)

The added flexibility in the web in the FE model, causes waves to travel at higher wavenumbers,
leading to the deviations of the analytical model from the FE model at high frequencies. Similarly,
the torsional wave (lateral wave type II) is seen to be influenced by the web bending in the FE model
at higher frequencies.

The dispersion relationship for a curved beam of radius 1.45 m is plotted in Fig. 4. Although
this radius is unrealistic for railway applications, it is used here for the validation of the model and
to emphasize the effect of curvature. It can be seen that the main differences from a straight rail
occur below about 1500 Hz. The most obvious difference is that two of the waves, namely the first
longitudinal and second lateral wave types, cut on at around 500 Hz (550 and 510 Hz respectively),
whereas for a straight rail they cut on at 0 Hz.

The cut-on frequency of the first order longitudinal wave is most commonly referred to as the
breathing or ring mode. In this mode, the ring expands and contracts in the radial direction uniformly.
It can seen as a lateral movement of the cross-section, but since this is uniform throughout the curved
beam, the axis of the beam extends/contracts, thus making the beam centreline longer/shorter. The
frequency is identified analytically as (e.g. [10]):

(10) fco,1 =
1

2πR

√
E
ρ

The second mode is similar to the rigid-body torsional mode for a straight beam. This is related to
the uniform rotation of the ring cross-section about the shear centre. It corresponds to a rigid-body
mode of the beam in torsion for a straight beam, but for a curved beam it will include bending in the
vertical direction, as the beam rotates [11]. This cuts on at the following frequency:

(11) fco,2 =
1

2πR

√
EIz

ρIp

It is seen that this mode does not depend on the torsional rigidity as no relative torsion takes place,
but rather on the bending stiffness of the beam and the polar moment of inertia.

4. Closed form solution for the response

To obtain the forced response, Equation 8 is solved for the unknown response, giving:

Ū = A−1F =
B1(ξ, ω)
B2(ξ, ω)

(12)
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where B1(ξ, ω) = ad j(A)F and B2(ξ, ω) = det(A). Taking the inverse Fourier transform over
wavenumber:

U(x) =
1

2π

∞∫
−∞

B1(ξ, ω)
B2(ξ, ω)

e−iξxdξ(13)

The above integration is performed using contour integration [12] and is evaluated as:

U(x) = −i
N∑

n=1

e−iξn xRes
[
B(ξ, ω), ξn

]
(14)

where ξn are the poles in the upper (or lower) half-plane (depending on the sign of x), B(ξ, ω) =

B1(ξ, ω)/B2(ξ, ω) and the residues are given by:

Res
[
B(ξ, ω), ξn

]
= B1(ξn, ω)/B′2(ξn, ω)(15)

with the dash (′) meaning the derivative with respect to ξ.

5. Decay rates and mobility

In this section, results are presented of the overall track decay rate, calculated from the forced
response. Results for both vertical and lateral track decay rates are presented for a typical ballasted
railway track, properties of which are listed in Table 2.

Table 2: Properties of track.

Parameter Value Parameter Value
Railpad vertical stiffness, ky 120 MN/m/m Railpad lateral stiffness, kz 40 MN/m/m

Railpad axial stiffness, kx 40 MN/m/m Pad loss factor, ηp 0.1
Railpad width (rail foot), w f 150 mm Foot to centroid distance, y f 81 mm

The decay rate (dB/m) in each one-third octave band is evaluated as [13]:

(16) ∆ =
4.343

xmax∑
x=0

|A(xn)|2

|A(x0)|2
δxn

where A(xn) is the calculated mobility in the one-third octave band at a location xn away, A(x0) is the
mobility of the excitation point and δxn is the length of rail segment associated with the point xn.

To calculate the vertical response, the rail is excited 20 mm from the centre of the railhead and
the response is obtained at the same position at various distances xn. The decay rate and mobility
for the vertical excitation are plotted in Fig. 5. Equivalent results are shown in Fig. 6 for the lateral
excitation, where the force and response points are located 20 mm below the top of the railhead. The
black line represents the classical Timoshenko beam model, the magenta line represents the current
model without accounting for shear-centre eccentricity or warping, the green and red lines show
only the individual effect of shear centre eccentricity and warping respectively, while the blue line
represents the fully coupled model. Finally the cyan line is for a curved rail with R = 100 m.

At low frequencies, the decay rates are high due to the blocking effect of the support. They drop
around the cut-off frequency of the rail bouncing on the railpad (

√
ky/m/2π). At high frequencies, the

decay rate increases due to damping in the rail (ie E = E(1 + iηr)). Similar behaviour is observed for
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Figure 5: Track decay rate and mobility for vertical excitation
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Figure 6: Track decay rate and mobility for lateral excitation

the lateral direction, with the decay rate dropping at a lower frequency due to the smaller foundation
stiffness.

For the vertical case, changes are seen due to the eccentric applied load exciting the torsional
response as well as the lateral. This is due to the change in input mobility A(x0) whereas the decay
rate of the torsional wave is higher than that of the bending wave, thus at a distance from the excitation
source, the response is mainly influenced by the bending behaviour. If the rail is excited through its
centreline all six curves would be identical. A peak is seen in the mobility at about 140 Hz, which
corresponds to the cut-off frequency (

√
kxr/(ρIp)/2π = 143 Hz) of torsional waves; the torsional pad

stiffness is given by kxr = w2
f ky/12, where w f is the width of the railfoot and ky is the vertical stiffness.

At higher frequencies, the decay rate is mainly influenced by changes in the mobility.
Similar observations can be made for the lateral case. Overall, the difference in mobility relative to

the classical Timoshenko beam model is higher than for the vertical bending, as the effect of torsion is
more influential in the lateral response. The cut-off frequency of the rail bouncing on the railpad (130
Hz) and that of the torsional wave (143 Hz) are very close and thus are not seen as two independent
peaks. In addition, the cross-section is asymmetric relative to the horizontal axis, thus providing a
further coupling between the lateral bending motion and torsion.

For both vertical and lateral directions, the effect of curvature is seen to be insignificant for the
radius considered here. Since typical railway tracks will mostly have curvatures greater than this, it
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can be concluded that track curvature is not an important aspect in modelling the response of curved
rails. Instead, a straight rail model is sufficient and should be preferred to avoid added complexity.

6. Conclusion

An improved model for prediction of the response of a railway track is presented. The effects
of shear centre eccentricity, warping and curvature of the track have been included. The model is
validated for the case of a free rail against an FE model, providing excellent agreement up to 2 kHz.
For a supported rail, results for the track decay rate and point mobility are presented for both vertical
and lateral excitation.

The response in both the vertical and lateral directions is mostly influenced by the inclusion of
torsion in the model. The effect of curvature is found to be minimal for the modelling of rails, and
instead a straight rail model is sufficient. In order to improve the model further for higher frequencies,
consideration needs to be given to the cross-sectional deformation which is especially significant for
the lateral response.
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