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Abstract

In this paper, the issue of the identification of constitutive parameters of the Anand visco-plastic

model is addressed using the Virtual Fields Method (VFM) in an infinitesimal deformation frame-

work. By using VFM, one can take advantage of heterogeneous strain fields obtained by full-field

experimental techniques, such as Digital Image Correlation (DIC). Since a wide range of strains

and strain rates are sampled in a typical heterogeneous strain field, the number of experiments

required to reliably estimate constitutive parameters, especially of rate-dependent materials, is sig-

nificantly smaller than that needed if conventional experiments (such as uniaxial tension or pure

shear configurations) leading to nominally homogeneous strain states were used. However, for

such an approach to be successful, the test configuration and loading program should be such that

all the constitutive parameters play a significant role (are ’activated’) in the resulting strain fields.

An analysis of the Anand constitutive model shows that 4 of the 8 parameters can only be found

to within a multiplicative constant from full-field kinematic data. Therefore, one of these 4 con-

stants is arbitrarily chosen and the activation of the remaining 7 material parameters is investigated

by performing a series of one-element models. Detailed sensitivities of the VFM cost function to

these material parameters are derived for a variety of normal stress to shear stress ratios and loading

rates. Two main conclusions are drawn based on this one-element study: i) the VFM cost function

sensitivities to the material parameters do not vary significantly with loading ratios or rates, and ii)

∗Corresponding author
Email address: shankar_sj@iitm.ac.in (S. J. Subramanian)

Preprint submitted to Acta Materialia November 24, 2014



2 of the 7 material parameters are not activated for any of the loading ratios or rates considered.

Based on the results of the finite-element study, a modified single lap-shear test configuration is de-

signed to yield heterogeneous strains in the joint. Deformation data from a finite-element analysis

of this experiment are used as inputs to a VFM routine to compute the Anand material parameters.

Our results highlight that non-uniqueness of the identified parameters is a significant issue. The

effect of the choice of the cost function and the loading profile on the inverse technique is also

thoroughly investigated.

Keywords: Virtual Fields Method; constitutive behavior; elastic-viscoplastic material; numerical

algorithms; mechanical testing

1. Introduction1

Material characterization plays an important role in finite-element modeling of new compo-2

nents or processes in various branches of engineering. The accuracy of the computational model3

usually depends on the validity of the constitutive model used as well as the reliable measurement4

or estimation of the parameters used in the material model. The latter task is relatively straight-5

forward for simpler constitutive models such as linear elasticity, but becomes progressively more6

difficult for complicated models such as those used for rate-dependent plasticity. Various phe-7

nomenological and physically motivated constitutive models have been proposed in the literature8

to describe the combined behavior of rate-independent plasticity and creep effects in the same set9

of equations (1; 2; 3; 4; 5; 6; 7; 8; 9; 10). These equations describe important characteristics re-10

lated to inelastic deformation including strain rate dependence, isotropic or kinematic hardening,11

hydrostatic pressure and temperature dependence and evolving micro-structural state of the mate-12

rial (11; 12; 13; 14; 15). The material parameters of these constitutive models are usually obtained13

from simple experiments based on either phenomenological or physical interpretation of the ma-14

terial parameters. The Johnson-Cook model (1), although empirical, is a popular one wherein the15

functional form of stress includes strain, strain-rate and temperature dependence and is primarily16

used for modeling hot-working in high strain-rate regime. In overstress-based models (2; 3), the17

stress can exceed the rate-independent yield surface and relax back to it over time. Physically based18

material models are usually based on the theory of dislocations (4; 5) and crystallographic slip (6; 7)19

and some of them are shown to be valid over a wide range of strain-rates and temperatures. Another20
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class of constitutive models is based on the fact that the intricate physics of plastic deformation is21

assumed to be captured by only a few internal variables (8; 9; 10), which are named ’hardness’,22

’average dislocation density’ and ’deformation resistance’ in Bodner-Partom (8), Estrin-Mecking23

(9) and Anand (10; 16) constitutive models respectively. Typically, the internal variables are chosen24

to be scalars for modeling initially isotropic materials and the evolution of these variables are also25

specified as part of the constitutive model. A review on the historical use of internal variables in26

modeling inelasticity is given by Horstemeyer and Bammann (17).27

Apart from modeling hot working of metals, one of the commercially important problems that28

visco-plastic models address is the deformation of solders, which are widely used to provide me-29

chanical or electromechanical connectivity in microelectronics and other branches of engineering.30

Various rate-dependent constitutive models have been proposed in the literature to describe such31

deformation (18; 19; 20). Several studies (21; 22; 23) have also shown that the Anand model can32

be successfully applied to study the deformation behavior of solder alloys; the fact that the Anand33

visco-plastic model is pre-built in many commercial finite-element softwares including AbaqusTM,34

AnsysTM and AdinaTM makes it easier to perform finite-element analysis using this model. Re-35

cently, the original Anand model (10; 16) has been modified to better describe the behavior of36

solder joints (24; 25; 26) and conventional characterization techniques have been used to obtain37

material parameters.38

Conventional material characterization relies on experiments which yield nominally homoge-39

neous strain and stress states from which material parameters are obtained through curve fitting.40

For instance, Kowalewski et al. (27) performed creep tests on an Al alloy at 150◦C at various stress41

levels and defined a cost function based on the sum of squared differences between experimental42

and fitted strain-time curves:43

φ0 =
Nt

∑
i=1

[(
Ne

∑
j=1

(
ε

f− ε
exp
)2

+Wi

(
tf
i − texp

i

)
/texp

i

)]
, (1)

where ε f and εexp correspond to fitted and experimentally computed strains respectively, Wi are44

weighting factors, tf and texp correspond to predicted and experimental lifetimes, and Nt and Ne45

refer to the number of creep curves and the number of points per curve respectively. This cost func-46

tion was minimized to yield the material parameters. However, this procedure has limitations in47
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ensuring the best quality of fit as it fails to accommodate for different scales of strain and time and48

fails to consider the contributions of all the points of all the curves, especially if multiple curves49

need to be fitted as shown by Li et al. (28). To avoid such limitations and ensure robustness in50

the identification procedure, the objective function has been reformulated in other works (29; 30).51

Another inherent drawback of the conventional approach to material characterization is the large52

number of experiments required to encompass a sufficiently wide range of strain rates and tem-53

peratures, which becomes important especially for visco-plastic materials. Finally, in conventional54

material characterization, the assumption of homogeneous strain and stress states, which allows for55

easy interpretation of the experimental data, is violated at large deformations (e.g. due to necking56

in uni-axial tension). This necessitates the design of other test configurations which can give rise to57

large strain levels without strain localization (31) or modifications in the formulation of the inverse58

procedure (32).59

A recent alternative to circumvent these limitations is the use of experiments that lead to nom-60

inally heterogeneous strain states, which are measured through full-field experimental techniques61

such as Digital Image Correlation (DIC), Moiré interferometry, grid method, etc. and later pro-62

cessed with a suitable full-field inverse technique such as the Constitutive Equation Gap Method63

(CEGM, (33; 34)) and its variants, the Constitutive Compatibility Method (CCM, (35)) and the Dis-64

sipative Gap method (DGM, (36)); the Equilibrium Gap Method (EGM, (37)), the Self-Optimizing65

Method (SOM, (38)), the Finite-Element Updating Method (FEMU, (39)) and the Virtual Fields66

Method (VFM, (40; 41)) and its variants Eigenfunction VFM (EVFM, (42; 43)), Fourier-VFM67

(44). An overview of these identification techniques is presented in (45). In these methods, ex-68

periments leading to heterogeneous states of strain are employed and a broad range of strains and69

strain-rates are typically sampled in a single test; and as every measured data point participates70

in the optimization technique, more constraints are implicitly imposed on the cost function to be71

minimized, thereby ensuring that the computed material parameters are applicable over a wide72

range of strains and strain rates. In CEGM, the focus is to obtain an admissible stress field through73

the minimization of constitutive equation error over the kinematically admissible displacement and74

thermodynamically admissible material parameter space; the CCM reduces the computational cost75

of CEGM by decoupling the identification of stress from the identification of material parameters,76

while DGM relies on the error in dissipation for elasto-plastic material identification; EGM makes77
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use of the equilibrium deviation between neighboring elements in a discretized domain for material78

parameter and hence, damage identification; and SOM requires traction and displacement infor-79

mation on the boundary and estimates the material parameters through the minimization of virtual80

work integrals obtained from two parallel FE simulations of displacement and traction boundary81

conditions respectively. On the other hand, in FEMU, a finite element model of the actual test82

configuration is built up and the material parameters are iteratively tuned by repeatedly perform-83

ing finite-element analyses until a close correspondence between experimental and numerical field84

variables is achieved. Depending on the choice of field variables, the technique is either called85

FEMU-F (force) or FEMU-U (displacement). Although these techniques are quite popular, they86

incur high computational expense due to the large number of finite-element analyses required.87

Of late, VFM has been receiving increased attention due to the direct nature of material parame-88

ter estimation used herein. VFM is derived from the principle of virtual work, which is a statement89

of equations of equilibrium in weak form (46). When body forces are absent, the principle of vir-90

tual work under the assumption of static loading and small deformation framework can be written91

as (47):92

∫
S

ttt ·uuu∗dS =
∫
V

σσσ : εεε
∗dV , (2)

where ttt represents the actual traction at the boundary of the considered volume, uuu∗ represents93

any differentiable virtual displacement field, σσσ represents the actual stress field and εεε∗ the virtual94

strain field obtained by differentiation of the virtual displacement field. The actual stress σσσ can95

be expressed in terms of the actual strains using the constitutive equations. Thus Eqn. (2) can be96

rewritten in terms of the unknown material parameters, known actual tractions, actual strains and97

chosen virtual fields. By making an appropriate choice for the virtual displacement field in Eqn.98

(2), one equation for the set of unknown material parameters is generated at each deformation step.99

As full-field kinematic data are typically available at many deformation steps, an over-determined100

system of equations for the unknown material parameters is generated, which is solved in a least101

squares sense until the right hand side of Eqn. (2) (the ’internal virtual work’) closely matches the102

left hand side (the ’external virtual work’). For linear constitutive equations, the resulting system103

of equations is linear (48; 43), whereas for nonlinear constitutive models, the resulting system is104
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typically non-linear1 and is usually solved as a minimization problem.105

Merely obtaining heterogeneous strain fields from an experiment is not sufficient to ensure106

accurate computation of all the material parameters; unless the material parameter is strongly ac-107

tivated (i.e. has a strong influence on the measured kinematic fields), it cannot be uniquely ascer-108

tained using any inverse scheme. In order to ensure such activation, optimization of the geometry109

of the specimen and loading profiles is often performed. This approach directly affects the well-110

posedness of the inverse problem and is an active area of research. Pierron et al. (48) optimized111

the free length and the orthotropic axis angle of the unnotched Iosipescu specimen to extract the112

orthotropic material parameters and more recently, Wang et al. (49) achieved the same for a foam113

material. Robert et al. (50) qualitatively compared the experimental configurations of Haddadi114

and Belhabib (51) and Meuwissen et al. (52), which are used for elasto-plastic material charac-115

terization. A methodology for the design of test configuration considering all the errors in the116

identification chain has been recently proposed by Rossi and Pierron (53). The loading protocol117

used in the experiment also plays an important role in inverse problems: Pagnotta (54) and Bruno et118

al. (55) optimized the loading profile for retrieving elastic material parameters reliably. In general,119

refinement of the experiment is done in order to ensure strain and strain-rate heterogeneity and thus120

ensure activation of the material parameters.121

Many researchers also perform refinement of the objective function to ensure that uncertainties122

in the experimental data are suitably accounted for. For instance, Meuwissen et al. (52) and Mathieu123

et al. (56) assigned higher weights to larger strain values than to smaller strains in their objective124

function as it is well known that the uncertainty in strains computed using DIC is much higher125

for smaller strain levels when compared with finite strains (57; 58). Even if all material parameters126

are activated and experimental uncertainties are suitably accounted for in the objective function, the127

minimization algorithm may be trapped in any of a number of local minima due to the cost function128

being highly non-linear. In order to avoid this issue, some researchers (59; 60) have explored the129

idea of using evolutionary algorithms at the expense of computational efficiency.130

In the present work, a systematic approach for evaluating material parameters of the Anand131

model using full-field data and the Virtual Fields Method is described. Although the VFM has132

1This is not always the case; e.g. for some simple hyper-elastic constitutive models, which are non-linear in the
constitutive parameters, the resulting system of equations is linear.
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been previously applied to non-linear material characterization, see (61) for instance, to the best of133

the authors’ knowledge, this is the first application of the VFM to an inelastic model with more than134

4 material parameters. The emphasis in this work is to demonstrate the feasibility of our approach135

in estimating the material parameters of this challenging inelastic model with 8 parameters. There-136

fore, kinematic data generated synthetically using finite element analysis of a new test specimen137

designed to activate a number of the relevant material constants is used in lieu of actual experimen-138

tal data. By adopting this approach, errors due to the choice of an inappropriate material model or139

experimental noise is avoided. The application of the proposed methodology to experimental data140

will be pursued elsewhere, as will a comparison of the results obtained with the proposed method-141

ology using conventional VFM with those using the related Eigenfunction Virtual Fields Method142

(42; 43). The rest of the paper is organized as follows: in Section 2, a brief outline of the Anand143

visco-plastic model and an identifiability issue is presented; in Section 3, a procedure of refinement144

of the test configuration through a sensitivity analysis of a one-element model with varying normal145

to shear-stress ratios is described; in Section 4, a lap-shear configuration is designed using the re-146

sults of the sensitivity analysis and the issue of identifiability of material parameters is investigated147

using different load profiles and finally, a few concluding remarks are offered in Section 5.148

2. The Anand model and an identifiability issue149

The Anand visco-plastic model (10) is an internal variable based model in which rate-dependent150

and rate-independent plasticity effects are unified. The model employs a single scalar internal151

variable, s, which represents the isotropic resistance to macroscopic plastic flow. The model does152

not have an explicit yield criterion or a loading-unloading criterion and visco-plastic flow occurs153

for any non-zero stress.154

Motivated by experiments on Al and Fe-2%Si, Brown et al. (16) proposed the following func-155

tional form for the flow equation, which includes both power-law and exponential dependence of156

strain rate on stress:157

˙̃εp = f (q,s,θ) = Aexp
(
−Q
Rθ

)[
sinh

(
ξ

q
s

)]1/m
, (3)

where ˙̃εp is the equivalent plastic strain rate, A is a pre-exponential factor, Q is the activation energy,158
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R is the universal gas constant, ξ is a multiplier of stress, θ is temperature and q is the von Mises159

stress. The flow equation is complemented by an evolution equation for the internal variable s:160

ṡ = g(q,s,θ) ˙̃εp =

[
h0

∣∣∣∣1− s
s∗

∣∣∣∣asgn
(

1− s
s∗

)]
˙̃εp, (4)

where h0 represents hardening, a represents strain rate sensitivity of hardening and s∗ represents a161

saturation value of deformation resistance at a given strain rate ˙̃ε p and temperature θ given by162

s∗ = s̃
[ ˙̃εp

A
exp
(

Q
Rθ

)]n

= s̃
[
sinh

(
ξ

q
s

)]n/m
, (5)

where, n represents the strain rate sensitivity of deformation resistance and s̃ is a material parameter.163

The signum term is added to accommodate for situations when s > s∗, e.g. during rapid reduction164

in strain-rate or rapid rise in temperature and this term also models strain softening situations.165

However, for general loading situations in which such rapid strain-rate or temperature changes are166

not encountered, it can be assumed that s≤ s∗ in the Anand model.167

In the present work, the focus is on isothermal deformation, therefore it is not possible to168

obtain material parameters Q and A separately, instead they are combined and retrieved as a single169

parameter C = A exp(−Q
Rθ

). From Eqn. (3), it can be seen that when plastic flow is fully established170

( ˙̃ε ≈ ˙̃εp), the applied stress is directly proportional to s:171

q =
1
ξ

sinh−1

[( ˙̃εp

A
exp

Q
Rθ

)m
]

s (6)

This approximation has been used previously to identify the Anand model parameters (16). How-172

ever, the objective of the present work is to recover the constitutive parameters C, m, n, a, s̃, h0, s0173

and ξ from full-field kinematic data. An interesting issue of identifiability of the four parameters174

s̃, h0, s0 and ξ arises from the nature of the Anand constitutive model (Eqns. 3 and 4). If the pa-175

rameters C, m, n and a are held at their true values, while s̃, h0, s0 and ξ are scaled from their true176

values by an arbitrary multiplicative constant α , then an analysis of Eqns. (3) and (4) shows that177

for a given ˙̃εp, one obtains the same stress, irrespective of the value of α . Thus, even in principle,178

knowledge of full-field kinematic variables and the total load is sufficient to estimate the actual179

values of the four parameters s̃, h0, s0 and ξ to only within a multiplicative constant. This identifi-180
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ability problem is temporarily circumvented in this work by arbitrarily fixing the value of ξ to be181

7, a value previously obtained for eutectic SnAg solder (24); thus, a functional form similar to a182

variant of the Anand model, proposed in (62) is recovered. This observation will have a significant183

bearing on the identifiability of the other Anand model parameters as discussed in Section 4.184

3. Optimization of test configuration185

The issue of choosing the test configuration plays a pivotal role in the inverse problem. For186

example, direct determination of shear modulus of a linear-elastic material from a homogeneous187

equi-biaxial experiment is not possible. As a prelude to designing a planar test configuration which188

leads to a balanced activation of all material parameters of the Anand model, a series of infinitesimal189

deformation one-element models is analyzed for a range of strain rates and normal to shear-stress190

ratios (Fig. 1). The boundary conditions for this element are chosen so that both normal-stress191

and shear-stress can be independently varied. The Anand visco-plastic model implemented in192

AbaqusTM is utilized in this analysis. Representative Anand model parameters obtained from Chen193

et al. (24) (Table 1), along with the elastic material parameters (E = 48 GPa and ν = 0.36) are194

assigned to the single square element of side 5 mm. The element is assumed to be in a state of195

plane stress, just as an actual specimen will be, in order to enable computation of the virtual work196

integrals.197

Material Parameter Value
C (s−1) 1.624 ×10−9

s̃ (MPa) 52.4
ξ 7
m 0.207
n 0.018
a 1.6
h0 (MPa) 1.178 ×105

s0 (MPa) 7.198

Table 1: Representative material parameters of Anand model from Chen et al. (24).

Six different loading cases are considered, as shown in Table 2 to span a range of stress states198

ranging from simple shear to pure uniaxial tension. The loading profiles (Fig. 2) include a linear199

ramp as well as creep portions, each for 3000 seconds. The displacement and strain histories are200
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Figure 1: A representative one-element model with the applied boundary conditions, such that the
normal stress σ22 and the shear stress σ12 can be independently varied. A linear shape
function is chosen for the plane stress element, which is a square of side 5 mm.

obtained from the FE analysis and stored, to simulate the experimental data obtained from a full-201

field technique. For each of these models, virtual displacement fields are chosen to mimic the true202

strain fields (Table 2), i.e., either uniform virtual tension, shear or both.203

Case σ12 (MPa) σ22 (MPa) u∗1 u∗2
A 12 0 X2 0
B 11.4 3.7 X2 X2
C 9.7 7 X2 X2
D 7 9.7 X2 X2
E 3.7 11.4 X2 X2
F 0 12 0 X2

Table 2: Normal-stress to shear-stress ratios ranging from pure normal stress to simple shear are
chosen in the finite-element simulation and the virtual fields, u∗1 and u∗2 are chosen so as
to include all non-zero stress components in the computation of internal virtual work. X2
is an independent variable varying from 0 to 5 mm.

As this one-element analysis is stress controlled, the external virtual work is calculated straight-204
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forwardly in terms of the applied tractions:205

W ∗ext =
∫

CD

(t1u∗1 + t2u∗2)dX1 +
∫

DA

t2u∗2dX2 +
∫

BC

t2u∗2dX2 (7)

For instance, for loading case A, the only non-zero contribution to W ∗ext comes from t1u∗1 on CD206

and is equal to (12 MPa × 5 mm × 5mm) = 0.3 J per unit thickness. Similarly, for loading case F,207

W ∗ext is again equal to 0.3 J per unit thickness. The internal virtual work at a particular time step is208

calculated as209

W ∗int =
∫
V

σi jε
∗
i jdV = σi jε

∗
i jA

e (8)

where the thickness is again assumed to be unity and Ae is the area of the element. In order to210

compute the Cauchy stress σi j from the strains as one would need to do in an experiment, a finite211

deformation time integration routine based on the one presented in (63) is used. However, since212

that algorithm is valid only for plane strain and three-dimensional elements, a modified version213

suitable for plane stress situations is implemented through nested iterations at the integration point214

level (64), as detailed in Appendix A. Although the internal virtual work integral can be straight-215

forwardly computed from the stresses obtained from FE solution for the present one-element case,216

this integration scheme will be required to implement the VFM for actual kinematic measurements217

and therefore, it is developed and used for the one-element case as well.218

Figure 2: Loading profiles for all test cases include a monotonic loading region as well as creep
region.

Once the stresses are computed, the internal virtual work of Eqn. (8) is calculated for each219
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time step considered and a cost function φ1 is defined as the normalized sum of squared differences220

between the internal and external virtual work over all time steps:221

φ1(ppp) =
Nt

∑
1

[
W ∗ext−W ∗int(ppp)

W ∗ext

]2

(9)

where Nt represents the number of time steps. One expects that the true material parameter vector222

ppptr renders the difference between the internal and external work minimal; therefore, the objective223

is to find the true set of material parameters ppptr by minimizing φ1 with respect to ppp:224

ppptr = argmin
ppp

[φ1(ppp)] (10)

The cost function φ1 is minimized using the Matlab built-in function fminsearch (based on the225

Nelder-Mead algorithm) for all the loading scenarios. The chosen guess parameter set converges to226

the true set for every profile, suggesting that any profile (Table 2) can be used for model parameter227

identification. To get a more quantitative comparison across the loading cases, φ1 variation with228

respect to deviation in material parameters from their true values is studied. Figure 3 illustrates the229

variation of φ1 for the simple-shear loading profile A, when material parameters n and m are varied230

from their true values by ±10%, while the other material parameters are kept at their true values.231

Evidently, the minimum is found at the true values of the material parameters, m and n as indicated232

by vertical and horizontal lines respectively (Fig. 3). The valley formed by φ1 in m− n space is233

aligned nearly parallel to the n axis indicating the low identifiability of n. Further, the slope of φ1234

along the valley is very small, indicating that several (m,n) pairs provide similar φ1 values. In order235

to systematically obtain the relative sensitivities of φ1 to all 8 material parameters, a full-factorial236

computation is performed over the material parameters at five levels (true values, ±25%, ±50%)237

using the kinematic data obtained from the finite-element analysis corresponding to the true mate-238

rial parameter set. The normalized sensitivity matrix [φ
′′
i j = (∂ 2φ1/∂ pi∂ p j) / min(∂ 2φ1/∂ pi∂ p j)]239

is computed for each loading case, the normalization factor chosen to be the same so that relative240

sensitivities can be unambiguously compared and the smallest φ
′′
i j is unity. The φ

′′
i j for simple shear241

at a strain rate of 2× 10−4 s−1 (Table 3) strongly suggests that φ1 is not very sensitive to the pa-242

rameters h0, n, C and s0 (indicated by italic font) whereas φ1 is much more sensitive to parameters243

m, ξ and s̃ (indicated by bold font), while the sensitivity to a is between those of these two groups244
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of material parameters. The same trend is observed across all normal to shear stress ratios; the φ
′′
i j245

for loading profile D with (σ12/σ22 = 0.72) is shown in Table 4.246

Figure 3: Cost function variation over a range of n and m show a minimum at their true values as
indicated by intersection of the horizontal and vertical lines respectively.

The variation in sensitivities with changes in strain-rates (from 10−5 s−1 to 10−1 s−1) is also247

studied for the simple-shear loading case A. The normalized sensitivity matrix (Table 5) for this248

loading at a strain rate of 10−1 s−1 is similar to that at a strain rate of 2× 10−4 s−1 (Table 3) but249

with more balanced sensitivities with respect to material parameters s̃, m and ξ .250

In order to compare normalized sensitivity matrices across different loading cases, the sensitiv-251

ity of φ1 with respect to each parameter is normalized by that with respect to C. The normalized252

sensitivity quotients, φ
′′
ii/φ

′′
CC (no summation implied) for various material parameters are shown in253

Fig. 4. Parameters C,s0,h0,n and a have less influence on φ1 compared to the other parameters s̃,m254

and ξ . Moreover, across different loading scenarios and applied strain-rates, parameters C and s0255

consistently have the least impact on φ1 and therefore, it is expected that they will not be uniquely256

identified by the present approach. Material parameter C = A exp(−Q/Rθ) has a low impact on257

the cost function since it does not play a role in the determination of the saturation value of de-258
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C s̃ n h0 s0 m a ξ

C 12.4 118.2 16.4 15.7 4.1 93.9 27.9 129.9

s̃ 1047 147.9 99.1 9.7 800.1 219.2 1085.2

n 21 12.2 1 111.7 29 150.7

h0 31.3 11.8 95.4 43.3 140.7

s0 14.1 20.6 6.8 36.2

m sym 631.5 181.2 860.1

a 74.1 253.4

ξ 626.8

Table 3: The normalized sensitivity matrix for simple-shear loading case A shows that φ1 is not
sensitive to parameters h0, n, C and s0 (italics) but very sensitive to parameters m, ξ and s̃
(bold).

formation resistance, s∗ (Eqn. 5), which dictates the value of deformation resistance and hence259

the stress (q < s). The low sensitivity of s0 can be reasoned through the following argument. The260

initial value of deformation resistance, s0, is seen to influence the kinematics of the problem only261

during the initial phase of deformation and for the various material parameter combinations and262

strain rates considered here, s saturates quickly irrespective of s0 (Figs. 5 and 6). The equivalent263

stress q profiles corresponding to different s0 also differ only in the initial stages of deformation,264

while they match closely in the creep regime (Fig. 7). Since the cost function φ1 accommodates the265

contribution of all time steps, the effect of the initial stages of deformation on φ1, and hence of s0,266

is very small. At first sight, it might seem that the identifiability of parameter s0 can be improved267

by only considering the experimental kinematic data from a first few load steps, however the iden-268

tifiability problem will be made more acute by the presence of higher experimental noise in this269

regime (typically in DIC), which leads to uncertainties in s0 that will render its estimate practically270

meaningless.271

One of the commercially important applications where the present methodology can be applied272

is the mechanical characterization of solders, which often undergo shear dominated loading largely273

caused by mismatches in coefficients of thermal expansion. Therefore, a modified lap-shear con-274

figuration with the solder joint sandwiched between two rectangular copper substrates (Fig. 8)275

was designed, which mimics the stress state experienced by typical solder joints. Since the single-276
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Figure 4: The effect of material parameters on φ1 reveals that parameters (C,s0,h0,n and a) have
less influence, while parameters (m, s̃ and ξ ) have a greater influence for an applied
strain-rate of 1.6×10−5 s−1. The load profiles A-1, A-2 and A-3 correspond to loading
profile A at applied strain rates of 10−5 s−1, 10−3 s−1 and 10−1 s−1 respectively.

Figure 5: The evolution of the deformation resistance s for loading case A (strain rate of 2×10−4

s−1) corresponding to different initial values of deformation resistance s0 indicates
observable differences only in the initial stages of deformation.
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Figure 6: The evolution of deformation resistance s for loading case A at applied strain rate of
10−1 s−1 is the same irrespective of s0.

Figure 7: The evolution of equivalent stress q for loading case A (strain rate of 2×10−4 s−1)
indicates observable variation only in the initial stages of deformation (magnified plot)
for different s0.
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C s̃ n h0 s0 m a ξ

C 7.9 60.7 6.8 16.1 4 50.1 24.9 77.7

s̃ 428.4 49.3 93.5 10.1 337.1 168.4 516

n 5.6 10.3 1 38.1 19 58.2

h0 32.8 11.1 88.6 46.1 137.9

s0 12.8 19.2 6.9 34.2

m sym 279.4 139 427.7

a 74.8 212.2

ξ 387.4

Table 4: The normalized sensitivity matrix for loading case D also shows that φ1 is not sensitive to
parameters h0, n, C and s0 (italics) but very sensitive to parameters m, ξ and s̃ (bold).

element study shows that the cost function does not depend significantly on the stress ratio, this277

configuration is as well suited as any other for the purpose of material parameter identification.278

However, it has two distinct advantages: it ensures heterogeneity in the strain field (65) and can be279

used directly in a universal test machine without the need for special fixtures (66). The solder joint280

is chosen to be a square of side 3 mm in the plane. This choice ensures that the joint is representa-281

tive of those in real applications, and the entire field of view is contained well within the commonly282

employed 4:3 aspect ratio image sensor even at large displacement. Thus, the spatial resolution283

of the kinematic variables, which plays an important role in the identification process (53), is not284

compromised at any time during the loading. However, imaging such a small region of interest285

calls for a high-magnification set-up with a long working distance. For instance, if a camera with286

2000 × 2000 pixels is used, then image pixel size will be 3000/2000 = 1.5 micron. If the camera287

has a pixel size of 3.45 micron (e.g. AVT Manta camera), then a magnification of 3.45/1.5 = 2.3288

is required, which can be achieved with a macro lens. For example, the Canon MP-E 65mm macro289

lens (67) can be used to achieve this magnification at a working distance of 240 mm. However,290

care should be exercised to minimize out-of-plane movements due to alignment of camera with the291

test specimen, grip alignment issues, fixture deformation, etc. (68).292
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C s̃ n h0 s0 m a ξ

C 1.4 20.1 6.2 4.1 1 21.1 5.9 24.3

s̃ 267.8 83.4 40.5 4.4 265.3 71.7 303.7

n 25.5 12.3 1.3 81.3 21.9 93.1

h0 18.5 6.6 57.6 20.8 67.6

s0 6.7 15.4 3.2 18.6

m sym 281.9 80.1 326.3

a 28.5 922.9

ξ 234.2

Table 5: The normalized sensitivity matrix for simple-shear loading case A at a higher strain rate
of 10−1 s−1 is similar to that at a strain rate of 2×10−4 s−1 (Tables 3 and 4) but with
higher sensitivity to n and balanced sensitivities for s̃, m and ξ . Material parameters (s̃,m
and ξ ) which significantly influence φ1 are indicated by bold font whereas the least
influential parameters (C,h0 and s0) are indicated by italics.

4. Numerical results and discussion293

A finite-element model of the optimized test configuration (Fig. 8) was built and a displacement294

controlled simulation was performed. The global shear strain was limited to 5% to enable the use295

of the infinitesimal deformation VFM formulation with negligible error in this preliminary study.296

After a mesh convergence study, the model was discretized into 4582 elements, of which 1600 were297

in the solder joint, which is the region of interest. As the primary interest was to obtain the Anand298

model parameters, the elastic material parameters (E = 48 GPa and ν = 0.36) were assumed to be299

known.300

The focus was to identify a loading profile which leads to well-posedness of the inverse prob-301

lem, indicated through the convergence of the gradient based minimization routine to the true ma-302

terial parameter set independent of initial parameter values. Therefore, in this preliminary study,303

three different loading profiles were tested (Fig. 9), viz., monotonic shear loading, I; shear load-304

ing at two different strain rates combined with relaxation, II; and shear loading with four different305

applied strain-rates and relaxations, III. The applied relaxation regimes in loading profiles II and306

III are shown in Fig. 10. The strain field evolution over monotonically increasing loading seg-307

ments were used to compute the localized strain rates for all loading profiles and their range over308
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Figure 8: The modified lap shear configuration used for identification of Anand model constitutive
parameters (dimensions in mm).

the region of interest is shown in Fig. 11; the monotonic profile I yields strain-rates in the range309

5×10−6 s−1 to 10−3 s−1 even though the applied global strain-rate is held constant at 5.5×10−4
310

s−1, primarily due to the heterogeneity of the shear strain in the region of interest; profile II yields311

averaged strain-rates from 10−5 s−1 to 2×10−3 s−1, while the largest range from 10−5 s−1 to 10−2
312

s−1 is obtained for profile III. However, the effective strain-rate ranges relevant to VFM computa-313

tions is smaller than these since the regions with smaller strain rates also have low strains and will314

therefore contribute little to the VFM integrals.315

Figure 9: Applied shear strain variation: loading profile I corresponds to monotonic loading; II to
two applied strain rates with relaxation and III corresponds to 4 applied strain rates with
relaxation in between; all the loading profiles reach 5% global shear strain at the end.
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Figure 10: Load vs time plot for the three loading profiles I, II and III. Relaxation in I and II
loading is clearly noticed.

Figure 11: Averaged strain-rate sampled through the loading segments of loading profiles I, II and
III are indicated through red, green and blue lines respectively.
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The components of the logarithmic strain E are stored at the end of each time step in the simu-316

lation. Although the present application involves infinitesimal deformation, the logarithmic strain317

is used so that finite deformation VFM may also be accommodated later without any change in the318

stress updating algorithm. A few applications of VFM-based material characterization in a finite319

deformation framework can be found in (69; 70; 71; 72) and extension of the present work for finite320

deformation cases will be pursued in future work. As shown in Fig. 12, the strain components E11,321

E22 and E12 show concentrations at the corners of the joint, which is a point of singularity that322

cannot be resolved by mesh refinement. In Fig. 13, the strain fields in the interior 80% of the joint323

are shown and it is evident that the normal strain components are much smaller in magnitude than324

the shear strain in the interior of the joint. The stress fields computed using the modified stress325

updating algorithm are shown in Fig. 14; the shear stress σ12 is the largest in magnitude and does326

not show large values at the corners, while the two normal stresses σ11 and σ22 show large values at327

the corners, but are small everywhere else. Since uncertainty in the computed strains and stresses328

are high at the corners, including them in the VFM integrals may lead to more uncertainty in the329

computed material parameters.330

The region of interest is divided into Z = 40 horizontal slices of equal length X i+1
1 −X i

1 = L/Z =331

3/40 mm and the virtual field for any ith slice is chosen as simple shear:332

• For X1 ≤ X i
1, u∗i1 = u∗i2 = 0333

• For X i
1 < X1 < X i+1

1 , u∗i1 = 0 and u∗i2 = X1334

• For X1 ≥ X i+1
1 , u∗i1 = 0 and u∗i2 = X i+1

1 −X i
1335

The cost function is chosen so that the squared deviation between the external and internal virtual336

work over every ith horizontal slice of the solder and at every time step is included (61). The cost337

function is then normalized so that equal weights are assigned at every time step irrespective of the338

magnitude of load.339

φ(ppp) =
Z

∑
i=1

Nt

∑
j=1

 P(t j)L
tZ −

∫
Vi

σ12(ppp)dV
P(t j)L

tZ

2

, (11)

where P(t j) represents the resulting load at jth time step and t refer to the unit thickness of the test340

configuration. Thus, virtual normal strains are zero, leading to zero internal virtual work from these341
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components. The only non-zero internal virtual work contribution comes from σ12, which does not342

contain high stress gradients over the field of view.343

Figure 12: Logarithmic strain components at the end of the simulation for loading profile III
indicate strain concentration at the corners.

Figure 13: Logarithmic strain components at the end of simulation for loading profile III
excluding the 20% region at the boundaries indicate the smaller magnitude of axial
strains when compared with shear strain over most of the region of interest.

The evolution of deformation resistance s shows an interesting pattern: it increases quickly344

from its initial value of s0 to close to the saturation value in the first 45 seconds of deformation;345

and the change in s through the rest of the deformation is very small, except for small jumps seen346

after the relaxation period. The evolution of s in the central and free edge regions (points P and Q)347

are distinctly different (Fig. 15) as the evolution of equivalent plastic strain rates ˙̃ε p are different348

for the same applied global strain rate.349

The cost function φ (Eqn. 11) is minimized for all the three loading profiles, I, II and III350

using the stresses computed from the kinematic fields and a suitable guess for the set of material351

parameters. As discussed in Section 2, at the outset, ξ is set to be equal to 7, which leaves 7 material352

parameters to be obtained by the optimization procedure. Since φ is non-quadratic, the influence of353
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Figure 14: Cauchy stress components at the end of simulation for loading profile III indicate the
prominence of shear and bending, as expected. The normal stresses are concentrated at
the corners while the in-plane shear stress is nearly uniform in the central region.

Figure 15: Deformation resistance s (top) is heterogeneous. s increases much more rapidly at P
compared to Q due to the larger magnitudes of ˙̃εp at P than at Q, where all strain
components are very small (Fig. 12).

23



the initial guess on the solution must be studied. This is done by using a set of 12 different initial354

guesses obtained via Latin Hypercube sampling2 (73) of the 7-dimensional parameter space.355

As done in Section 3, the optimization is first attempted using the Matlab built-in function356

fminsearch. However, it is not straightforward to handle upper and lower bounds on this function.357

Therefore, a gradient-based method, fmincon, with the interior point algorithm is used to minimize358

φ . The upper and lower bounds for the material parameters are chosen to be approximately ±50%359

of their reference values and are listed in Table 6. The material parameters obtained from the360

optimization routine for the three loading regimes I, II and III and for all the 12 initial guesses are361

shown in Fig. 16. Several interesting trends can be seen in these plots. First, although the cost362

function for the true material set for any loading profile should be zero in principle, the computed363

values for each of the three profiles are not, as shown in the last sub-plot of Fig. 16. One of364

the reasons for this discrepancy is the way the virtual work integrals are computed. The stresses365

and strains are assumed to be piecewise-constant within each element, a simplification that can be366

expected to yield errors in high-gradient regions. Due to this error in computing the virtual work367

integrals, it is also seen that some of the initial guesses (e.g., the 2nd, 5th, 6th, 7th, 9th, 11th and 12th
368

of loading profile II) converge to cost function values that are smaller than that of the true material369

parameter set. In addition to the assumption of piece-wise constant strains and stresses, two other370

sources of error are the stress computation routine and the use of infinitesimal PVW instead of the371

finite deformation version. It is also noted that the cost function for the true material parameter set372

is seen to be non-zero even for the one-element model; since the strains are actually uniform over373

the entire element, the piecewise-constant assumption does not contribute to this error. Even though374

the converged φ values for these cases are lower than the corresponding value for the true material375

set, the global minimum is not attained as the parameters have converged to values different from376

the true parameter set. There appears to be a multitude of parameter sets whose φ values are lower377

than that corresponding to true parameter set. All the computed material parameters, those (s̃, m378

and a) that were identified by the one-element study as having a strong influence on φ as well as379

2Latin hypercube sampling is a technique of generating random sample sets in a higher dimensional parameter
space. The randomness should obey the following restriction: if N sample sets are to be generated in M−dimensional
parameter space, then the range of each parameter is divided into N equally spaced intervals and the N samples are then
chosen so that every interval is represented by a sample and is non-repeating among different samples in the particular
parameter space. For instance, in a 2-dimensional space, if equally spaced intervals are represented by columns and
the sample sets by rows, then a sample is present in every column and row.
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those (h0, n, C and s0) that were identified as not, are seen to be sensitive to the initial guess. This380

dependence on initial guess is not surprising considering that a gradient based optimization scheme381

is used. For every initial guess and loading profile, each computed parameter is normalized by its382

true value and trends are analyzed with respect to the loading profile. It is also observed from box383

plots3 (Fig. 17), that all three profiles yield parameters with significant variability.384

C (s−1) s̃ (MPa) n h0(MPa) s0(MPa) m a
Lower 5×10−10 20 0.01 5×104 3 0.08 1.1
Upper 5×10−9 110 0.03 1×106 12 0.35 3.0
Reference 1.6×10−9 52.4 0.02 1.2×105 7.2 0.21 1.6

Table 6: Lower and upper bounds along with reference values for the material parameters of the
Anand model.

It appears that local minima entrapment is an important issue for all three loading profiles since385

all initial guesses lead to answers that are different from the true ones used to generate the full-field386

kinematic data used as inputs to the optimization routine. To understand this further, the evolution387

of material parameters from their initial values until convergence is examined. Figure 18 shows388

the material parameter histories for the first guess set in loading profile III; parameters C and s0389

quickly converge to an incorrect value and do not change thereafter. In fact, C approaches the lower390

bound, i.e., 5×10−5 s−1 for all the initial guesses of all loading profiles. Thus, it appears that the391

non-convergence of parameters C and s0 to their true values in turn leads to incorrect values for all392

the other parameters too due to the use of a gradient based optimization algorithm.393

In order to confirm this hypothesis, a second set of optimizations was carried out after fixing394

the values of C and s0 at their true values, while retaining the 12 sets of initial guesses for the395

other parameters. The resulting converged parameter sets are shown in Figs. 19 and 20. Fixing C396

and s0 dramatically improves the quality of the solution even though the 5 parameters that are now397

computed still have initial guesses that are distributed over the entire parameter range. Irrespective398

of the loading profile, all 12 guess parameter sets converge to values very close to the true ones with399

φ lower than that corresponding to the true set. The box plots (Fig. 20) for all the loading profiles400

indicate the presence of outliers, all of them due to the parameter n, as it has the least influence on401

3The bottom and top horizontal lines of the box plot correspond to 25th and 75th percentile data respectively and
the red line corresponds to the median of the dataset, while the outliers are represented by plus marks.
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Figure 16: The same initial guess is provided to the optimizer using kinematic data from I, II and
III loading profiles and non-uniqueness is observed in all cases. The cost function
value at the end of convergence is also shown in the last sub-plot with the dotted lines
referring to the cost function value corresponding to the true parameter set.
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Figure 17: The box plots indicates that the variability in the estimated material parameters is
significant for all the loading profiles.

Figure 18: Evolution of the material parameters during the iterations of the gradient based
minimization (all plots have been normalized with respect to the true values of
respective parameters).
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φ among the remaining 5 parameters.402

Figure 19: The same initial guess is provided to I, II and III loading profiles while C and s0 are
kept fixed at their true values. Irrespective of the loading profile and the initial guess,
the cost function converges to the global minimum.

In order to study the effect of the choice of cost function on the inverse technique, the cost403

function formulated in Section 3 (Eqn. 9) with the virtual field being chosen as simple shear over404

the entire domain is used.405

u∗1 = 0; u∗2 = X1;

⇒ ε
∗
11 = 0; ε

∗
22 = 0; ε

∗
12 = 0.5;

(12)

For this cost function φ1, the influence of the loading profile becomes much stronger when the pa-406

rameters C and s0 are fixed at their true values (Fig. 21). Profile III leads to excellent identification407

of the parameters for all 12 initial guesses, followed by loading profile II, which leads to correct408

identification for 10 of the 12 initial guesses. However, profile I performs quite poorly even with C409
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Figure 20: The box plots indicate that the converged parameters sets are very close to the true set
for all loading profiles when C and s0 are fixed at their true values. The outliers of
profile I correspond to parameter n, which is least influential among the remaining 5
parameters, while the outliers of profile III correspond to premature convergence of the
10th initial guess as well as corresponding to parameter n.

and s0 fixed at their true values throughout the optimization process, yielding the correct material410

parameter set for none of the initial guesses considered. Recalling that profile III has the most411

relaxation steps and I has none, the trend of Figs. 21 and 22 may be extrapolated to suggest that412

more discriminating full-field data for material parameter identification may be obtained from tests413

that include more stress jumps, cyclic loads, variable strain rates, etc.414

Entrapment of the objective function in local minima is a major issue in inverse problems deal-415

ing with inelastic constitutive models (59; 60; 74). Even though the optimizer converges and yields416

a material parameter set, the predictive capability of a model using such a material parameter set is417

questionable, as demonstrated for hyperelastic materials by Ogden et al. (75). It is worth mention-418

ing that Andrade-Campos et al. (59) also obtained Anand visco-plastic constitutive model parame-419

ters of an Al alloy through a conventional inverse technique based on tension and shear experiments420

conducted at different temperatures and reported the occurrence of numerous local minima in their421

gradient-based optimization process, which prompted them to use evolutionary techniques that422

would enable them to reach the global minimum. The use of such global optimization techniques423

in the present scheme will be explored in future work.424

Several works in the literature have previously obtained Anand model parameters for solders425
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Figure 21: The same initial guess is provided to I, II and III loading profiles while C and s0 are
kept fixed at their true values, but using cost function φ1 instead of φ (see Fig. 19). The
converged material parameters for all the cases indicates that loading profile III
converges to the true set for all 12 initial guess sets while II converges in 10 out of 12
guess sets; while non-uniqueness is observed for loading profile I.
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Figure 22: The box plots indicate that the variability in the estimated material parameters
progressively decreases for loading profiles I, II and III, when C and s0 are fixed at
their true values and φ1 is minimized. Loading profile III performs the best with all 12
initial guesses converging to the true material parameters set.

and thus, it is essential to place the work in context. For example, researchers (25; 76; 77; 78)426

have obtained Anand material parameters for SAC 305, a popular lead-free solder alloy, using427

non-linear least squares fitting of uniaxial monotonic or creep test data. However, a rather large428

range of material parameters are reported in these studies for nominally the same material. In Fig.429

23, stress-strain curves under uniaxial tension at an applied strain-rate of 0.001 s−1 at 25◦ C are430

plotted using the Anand model parameters from four studies (in all curves, a Young’s modulus431

of 45 GPa as reported by Motalab et al. (78) and a Poisson’s ratio of 0.35 are used). Evidently,432

different responses are obtained from the different studies; in fact, the Motalab et al. (78) study433

yields two curves, one with parameters obtained from monotonic uniaxial test data and the other434

from creep test data. The reasons for this large discrepancy are not well understood, although it435

is quite plausible that differences in microstructure in the test specimens is a prominent factor.436

Additionally, since the constitutive equation is highly nonlinear, the issue of uniqueness discussed437

in the present study may also be expected to be an important contributor to this discrepancy. Each438

of these cited studies appears to arrive at an optimal value of the material parameters, but due to the439

lack of uniqueness, each set of parameters produces a significantly different macroscopic response.440

This problem may be expected to become more pronounced if responses to multi-axial stress states441
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are sought.442

Figure 23: Equivalent stress-strain responses computed from Anand model parameter sets of SAC
305 alloy available in literature show significant variation. The curves are obtained
when global strain rate is 0.001 s−1 and the temperature is 25◦ C.

Since materials scientists are often interested in the role of microstructure on macroscopic prop-443

erties, the present study offers an important word of caution: before one can attempt to study444

structure-property relationships, especially in the case of complicated constitutive models, one must445

resolve the aforementioned uniqueness issues. For if these are not dealt with properly, the chosen446

numerical scheme may lead to misidentification of material properties, thereby leading to an incor-447

rect understanding of the role of microstructure in determining constitutive properties. Specifically,448

straightforward nonlinear least squares fitting of limited test data such as those from uniaxial or449

shear experiments may be insufficient. Test data of the type explored in the current study are more450

suitable for material property estimation; the more heterogeneous the training data sets are with re-451

spect to strains, strain rates and temperatures, the more robust they will be with respect to material452

property identification.453

5. Concluding remarks454

In the present work, the issue of identifiability of the Anand visco-plastic model constitutive455

parameters using VFM and synthetic full-field kinematic data is investigated. VFM has been used456

for the first time to characterize an inelastic material model with more than 4 material parame-457
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ters. A modified lap-shear specimen is designed and three different loading profiles are used in a458

finite-element model of this specimen to generate synthetic full-field kinematic data for the inverse459

computations. The following conclusions are drawn from this work:460

• A preliminary single-element study performed over a range of normal to shear stress shows461

that the VFM cost-function is not sensitive to the loading direction.462

• The single-element study also shows that the cost function is sensitive to s̃, m, a and ξ , but463

not so sensitive to parameters h0, s0, C or n.464

• Due to the form of the Anand model constitutive equations, one can obtain the four parame-465

ters s̃, h0, h0 and ξ to only within a multiplicative constant.466

• The formulation of the cost function to be minimized plays an important role in the inverse467

technique.468

• VFM computations with 12 different initial guesses show that both the loading profile and469

initial guess have a significant impact on the obtained material parameter set.470

• The two parameters C and s0 have the least impact on the cost function and the gradient based471

minimization technique is not able to drive them towards their true values. This is supported472

by the observation that estimates improve dramatically for all loading profiles once these473

values are fixed at their true values.474

• In order to obtain material parameters from a gradient based optimization technique, the cost475

function should be formulated such that it is almost equally sensitive to all the parameters.476

As the functional form of a constitutive model directly affects this issue, care needs to be477

exercised during the development of the constitutive model.478

• More complicated loading profiles with stress jumps, multiple strain rates, cyclic loading,479

etc. are likely to reduce non-uniqueness in the computed parameters.480

• The gradient-based optimization scheme employed may be substituted by a global optimiza-481

tion scheme to avoid the issue of entrapment in local minima altogether, albeit at a greater482

computational expense.483
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Appendix A - Stress updating algorithm for Anand visco-plastic model (63) applicable to490

plane stress491

The Anand model was developed to describe hot working of initially isotropic materials with492

isotropic hardening using the state variables [σσσ , s, θ ], where σσσ is the Cauchy stress, s is a scalar493

internal variable representing the isotropic resistance offered by the material to plastic deformation494

and θ is the temperature. The evolution equation for the Cauchy stress is given through495

σσσ
∇ = L [D−Dp] (13)

where σσσ∇ is the Jaumann derivative of the Cauchy stress σσσ , L is the elasticity tensor, D is the rate496

of deformation tensor and Dp is the plastic part of D. The flow rule is given by497

Dp = ˙̃εp

[
3
2

σσσ
′

q

]
(14)

where σσσ
′
is the deviatoric part of the Cauchy stress, ˙̃εp = f(q, θ , s) > 0 is the equivalent plastic strain498

rate, i.e., a function of von-Mises stress q, internal variable s and temperature θ . The evolution of499

s is given by500

ṡ = g(q,θ ,s) (15)

During finite deformations, material frame-indifference restricts the form of constitutive model501

so that no stress increment is measured by a co-rotational observer for pure rotation. Since the502

basis also spins along with the material, the rotation tensor, Q(ζ ) used to ensure material frame-503
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indifference is to be found through the solution of the initial value problem (79)504

Q̇(ζ ) = W(ζ )Q(ζ ); t ≤ ζ ≤ τ (16)

with the initial conditions Q(t) = I and W(ζ ) represents a spin tensor at time ζ . Using Q(ζ ), Lush505

et al. (63) define the bar transformation wherein the field values obtained in the material frame of506

reference are transformed back to the fixed reference frame through507

σ̄σσ(ζ ) = QT(ζ )σσσ(ζ )Q(ζ ) (17)

From Eqns. (16) and (17),508

˙̄σσσ(ζ ) = QT(ζ )σσσ∇(ζ )Q(ζ ) (18)

It is assumed that the field values (σσσ k, sk) at time tk are known and the objective is to determine the509

field values at time tk+1, i.e. (σσσ k+1, sk+1). Using Eqns. (13-17),510

σσσ
k+1 = Qk+1

[
σσσ

k +
∫ tk+1

tk
L

[
D̄− 3

2
˙̃εp σ̄σσ

′

q

]
dt

](
Qk+1

)T
(19)

sk+1 = sk +
∫ tk+1

tk
ṡ dt (20)

Here, Qk+1 can be chosen to be the incremental rotation (80), i.e. the rotation of the configuration at511

time tk+1 relative to that at time tk, obtained from the polar decomposition of relative deformation512

gradient, Fr
k+1 = Fk+1(Fk)−1. Using Euler’s backward integration scheme, Eqns. (19-20) can be513

written as514

σσσ
k+1 = σσσ

k+1
∗ −6µδ t f (qk+1,sk+1)

√
3
2

(
σσσ
′
∗

)k+1

(q∗)
k+1 (21)

sk+1 = sk +δ tg(qk+1,sk+1) (22)

where σσσ k+1
∗ = σ̄σσ

k +L [δE] is the trial Cauchy stress, with σ̃σσ
k = Qk+1σσσ k (Qk+1)T representing515

the co-rotational Cauchy stress at time tk, qk+1
∗ denotes the trial equivalent stress, while δE =516

Qk+1
[∫ tk+1

tk D̄ dt
]
(Qk+1)T . Taking the deviatoric part of Eqn. (21) and using the fact that the517
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incremental plastic strain direction is along the deviatoric stress tensor, i.e., perpendicular to the518

yield surface, one obtains519

qk+1 = qk+1
∗ −3µδ t

( ˙̃εp)k+1 (23)

Thus, the problem reduces to solving for sk+1 and qk+1 from the pair of scalar equations (22-23).520

The radial-return factor is then obtained as521

η
k+1 =

qk+1

qk+1
∗

(24)

and the Cauchy stress is updated through522

σσσ
k+1 = η

k+1
(

σσσ
′
∗

)k+1
+

1
3

tr(σσσ k+1
∗ )I (25)

This algorithm (63) is applicable only for plane-strain and 3D elements; the corresponding modifi-523

cation for its applicability to plane stress cases is done through nested iterations at the integration524

point level (64). Here, the out-of-plane elastic strain is updated at the integration point level in525

every iteration until the chosen plane stress tolerance, β = 5×10−3 MPa is achieved:526

(Ee
33)

k+1 =
−ν

1−ν

[
(Ee

11)
k+1 +(Ee

22)
k+1
]
−σ

k+1
33 /

[
E (1−ν)

(1+ν)(1−2ν)

]
(26)

The pseudo-code of the stress-updating algorithm for the Anand model modified for plane stress527

situations is shown in Algorithm 1.528
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input : Logarithmic strain at k and k+1 increments Ek, Ek+1; Cauchy stress σσσ k,
deformation gradient Fk+1, material parameters ppp, plane stress tolerance β , no. of
elements Ne, trial out-of-plane elastic strain (E∗)

e
33 = 0

output: kinetic field at increment k+1

Trial incremental stress, δσσσ k+1
∗ = λ tr(Ek+1−Ek)I+2µ(Ek+1−Ek)

for i← 1 to Ne do
while σ

k+1
33 ≥ β do

Relative deformation gradient, Fr
k+1 = Fk+1(Fk)−1;

Cauchy-Green left stretching tensor, Vr
k+1 =

√
Fr

k+1 (Fr
k+1)T

;

Incremental rotation, Qk+1 = Vr
k+1 (Fr

k+1)−1
;

Co-rotational Cauchy stress, σ̃σσ
k = Qk+1σσσ k (Qk+1)T ;

Trial Cauchy stress, σσσ k+1
∗ = σ̃σσ

k +δσσσ k+1
∗ ;

Co-rotational logarithmic strain, Ẽk+1 = Qk+1Ek (Qk+1)T
+
(
Ek+1−Ek);

Trial deviatoric stress,
(

σσσ
′
∗∗∗

)k+1
= σσσ k+1

∗ − 1
3 tr
(
σσσ k+1
∗
)

I;

Trial equivalent stress, qk+1
∗ =

√
3
2σσσ

k+1
∗ : σσσ

k+1
∗ ;

Calculate sk+1 and qk+1 by solving
sk+1− sk−δ tg(qk+1,sk+1) = 0
qk+1−qk+1

∗ +3µδ t f (qk+1,sk+1) = 0;

Radial return factor, ηk+1 = qk+1

qk+1
∗

;

Cauchy stress, σσσ k+1 = ηk+1 (σσσ∗)
k+1 + 1

3 tr(σσσ∗)k+1I;

Elastic strain,
(
Ẽe)k+1

= L σσσ k+1;

Plastic strain,
(
Ẽp)k+1

= Ẽk+1−
(
Ẽe)k+1;

Elastic strain in fixed basis, Ee =
(
Qk+1)T (Ẽe)k+1 Qk+1;

Plastic strain in fixed basis, Ep =
(
Qk+1)T (Ẽp)k+1 Qk+1;

Elastic strain updating,(
Ee

33
)k+1

= −ν

1−ν

[(
Ee

11
)k+1

+
(
Ee

22
)k+1

]
−σ

k+1
33 /

[
E(1−ν)

(1+ν)(1−2ν)

]
(64)

Plastic strain updating,
(
Ep

33
)k+1

=−
[(

Ep
11
)k+1

+
(
Ep

22
)k+1

]
end
Deformation gradient updating, Fk+1

33 = 1+
(
Ee

33
)k+1

+
(
Ep

33
)k+1;

Fk+1
13 = Fk+1

23 = Fk+1
31 = Fk+1

32 = 0;
end

Algorithm 1: Pseudo-code of Anand visco-plastic model stress updating algorithm for plane
stress, based on Lush et al. (63)
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