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Abstract

The use of experimental tests which involve full-field measurements to char-

acterize mechanical material properties is becoming more widespread within

the engineering community. In particular Digital Image Correlation (DIC)

on white light speckles is one of the most used tools, thanks to the rela-

tively low cost of the equipment and the availability of dedicated software.

Nonetheless the impact of measurement errors on the identified parameters

is still not completely understood. To this purpose, in this paper, a simula-

tor able to numerically simulate an experimental test which involves DIC is

presented. The chosen test is the Unnotched Iosipescu (UI) test used to iden-

tify the orthotropic elastic parameters of composites. Synthetic images are

generated and then analysed by DIC. Eventually the obtained strain maps

are used to identify the elastic parameters with the Virtual Fields Method

(VFM). The numerical errors propagating through the simulation procedure

are carefully characterized. Besides, the simulator is used to compare the

performances of DIC and the grid method in the identification process with

the VFM. Finally, the influence of DIC settings on the identification error
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is studied as a function of the camera digital noise level, in order to find the

best testing configuration.
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Digital image correlation, Virtual fields method, Error assessment,

Simulated experiments

1. Introduction

Material characterization is increasingly performed with the aid of full-

field measurements. Indeed, contrary to standard mechanical tests, these

can be designed in order to produce a heterogeneous stress-strain field in-

side the specimen. In this way, a single experiment can yield a wealth of

information since the material is loaded under different stress conditions at

different points of the same specimen. A standard test, instead, results in a

uniform state of stress, and accordingly many experiments are required to

identify for instance orthotropic material parameters.

Within the class of full-field measurements digital image correlation

(DIC) plays nowadays a very prominent role [1]. Indeed, thanks to its high

flexibility at various levels of deformation for various kinds of materials, DIC

has become a standard measurement tool in most of mechanical labs.

Nowadays many methods are available to extract the mechanical proper-

ties of materials from full-field measurements. Some of them rely on finite el-

ement updating [2–6], others on the constitutive equation gap method [7, 8],

the equilibrium gap method [9] or the reciprocity gap method [10]. In the

presented paper the Virtual Fields Method (VFM) [11] has been adopted.

The VFM allows to extract the material properties from the measured strain

field using the global equilibrium equation written in terms of the principle of
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virtual work. This method has been successfully employed in many different

branches of mechanics, e.g. vibration [12] or elasto-plasticity [13, 14], and

for many different materials; for instance, it was recently used to evaluate

the properties of 3D printed materials [15].

In spite of such extensive research on the identification techniques, very

limited work can be found on the coupling between the measurement tech-

nique, like DIC, and the inverse identification method, like the VFM. A first

attempt in this direction was made by Pierron et al. [16], who used the

sensitivity to noise of VFM to evaluate the best specimen configuration in

the UI test.

On the other hand, DIC developers judge the performances of DIC pro-

grammes in terms of correlation error or computational time. A very ex-

haustive analysis was conducted by Bornert et al. [17], the error of DIC

was assessed using simulated images and sinusoidal displacement fields. In

that paper, different DIC packages have been compared and master curves

were proposed to illustrate the influence of various parameters such as the

subset size, the speckle size, the interpolation functions etc. Similar work

has been performed by Lava et al. [18, 19] for the plastic deformation of

materials based on FE displacement fields. In other studies, standardized

experimental tests are employed to evaluate the DIC error instead of com-

puter generated images [20, 21]. Wattrisse et al. [22] analysed the error

induced by a strain localization during a tensile test on sheet metals. The

uncertainty of DIC on heterogeneous strain fields was studied in [23]. The

effect of the adopted shape functions was assessed in [24].

From this review, it turns out that, historically, the DIC errors and the

identification errors have been treated separately. However, a strict connec-

tion exists between the optical technique, the experimental conditions used
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to measure the kinematic fields and the final outcome of the identification

procedure. These two aspects should be studied at the same time, in par-

ticular for those cases where the spatial resolution is crucial, e.g. identifica-

tion of defects, strain localizations, high deformation gradients. Knowledge

of how the measurement technique influences the identification procedure

would lead to design the experimental test as a function of the identifica-

tion procedure, choosing the best geometry for the specimen, the optimal

smoothing function etc. Accordingly, all the degrees of freedom in the iden-

tification chain can be controlled.

A possible strategy to tackle the problem is to numerically simulate the

whole measurement chain. This approach was already presented by Rossi

and Pierron [25] for the UI test [26]. In that paper, starting from a FE

simulation, synthetic images were generated to reproduce the acquisition

process of a CCD camera. Artificial noise was added to the synthetic images,

then the grid method [27, 28], a full-field optical measurement technique,

was used to extract the full-field displacement and strain fields. Finally

the “measured”strain fields were used to identify the material properties

using the VFM. Thanks to this approach, different test configurations were

evaluated and critical aspects such as the effect of spatial resolution, the

influence of smoothing and missing data, were quantitatively investigated.

In the present paper, a similar procedure is developed using DIC as

optical full-field measurement technique. In this case, the reference image

is a random white light speckle pattern which has to be numerically de-

formed. In contrast to the grid method, no analytical expression for the

reference images exists, making the numerical deformation process of the

synthetic images more cumbersome. The DIC method, on the other hand,

is more frequently adopted since the bonding of the cross-hatch pattern on
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the specimen for grid testing is very hard. In addition, the measurement

range of the grid method is more restricted.

Although numerical tools are available to generate artificial speckle pat-

terns [29], real images of an actual speckle pattern have been used here.

In this way, the complete identification procedure can be simulated start-

ing from speckle patterns which are derived from actual experiments. The

analysis is again focused on the UI test.

The aim of the paper is to investigate the coupling between DIC and

identification with VFM, but, at the same time, it offers a critical analysis

of the numerical method used to generate simulated experiments in order to

highlight the limitations of this approach. The long term objective of this

research is to provide a framework for uncertainty quantification when using

heterogeneous tests, full-field measurements and inverse identification. This

is an essential step if such procedures are to become test standards in the

future.

2. Theoretical background

The identification procedure is composed of two techniques: DIC, that

is the optical full-field method used to measure the displacement field at the

surface of specimens during the test, and the VFM, which uses the measured

strain fields to identify the material parameters. Both techniques are well

established in the scientific community, for instance the reader can refer to

[1] for DIC and [11] for the VFM. In this section a brief summary of the two

methods is provided to ease the comprehension of the following parts and to

point out some aspects that will be used later, like for instance the concept

of virtual strain gauge.
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2.1. Digital Image Correlation

In a subset-based DIC (also denoted as “local approach”) method, a

matching between two speckle patterns is accomplished by considering a

pixel and its neighbourhood in the undeformed image f and searching for

the same subset in the deformed image g, by minimization of a similarity

criterion. In general, the origin of an (x, y) coordinate system is located at

the upper-left corner of f(x, y). Let us denote (xsc, ysc) the coordinates of the

centre pixel of a (2N+1)·(2N+1) subset in image f(x, y), with N a positive

integer number. A typical similarity criterion is the zero-mean normalized

sum-of-squared-differences correlation coefficient rZNSSD, defined as

rZNSSD =
∑
x

∑
y

 f [x, y]− f̄√∑
x

∑
y(f [x, y]− f̄)2

−

g[x, y; s]− ḡ√∑
x

∑
y(g[x, y; s]− ḡ)2

2

(1)

with
∑

y =
∑ysc+N

y=ysc−N ,
∑

x =
∑xsc+N

x=xsc−N and f̄ and ḡ the mean values of the

pixel intensities throughout the reference and deformed subset, respectively.

This correlation criterion is insensitive to both offsets in illumination and

contrast changes.

The unknown parameter vector s relates coordinates in the reference im-

age f to the corresponding coordinates in the deformed image g via subset

shape functions. The way in which the subset can deform during the cor-

relation process is defined by the polynomial order of these shape functions

and thus, the number of parameters in s. The values of these parameters

are obtained via an iterative Levenberg-Marquardt optimization algorithm,
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minimizing the correlation criterion in Eq.(1). This iterative process, how-

ever, involves the evaluation of grey-value and grey-value derivatives at non-

integer pixel locations. Here, a bicubic spline algorithm is adopted.

This procedure allows to retrieve the displacement fields with one mea-

surement point at the centre of each subset. At this point, the strain fields

need to be calculated from the displacement with some care, since noise

tends to get amplified by numerical differentiation. Many techniques can

be used for this purpose, and the estimated displacement fields may be

smoothed before the differentiation process.

In this work, an analytical expression of a surface is determined, which,

in a least squares sense, approximates the displacement values in a selected

region.

First, a square “strain window” is selected containing N × N discrete

displacement data points in the vicinity of the point of interest (x0, y0).

Then, the displacements are analytically approximated by making use of

Lagrange polynomials:

u(x0, y0) = auijx
i
0y

j
0

v(x0, y0) = avijx
i
0y

j
0 , (2)

where Einstein’s summation convention is used and i, j = 0, 1 and i, j =

0, 1, 2 correspond to bilinear (Q4) and biquadratic (Q9) Lagrange polyno-

mials, respectively.

The expressions in Eq.(2) are linear in the unknown parameter sets auij

and avij . Accordingly, their determination is straightforward and the defor-

mation gradient F can be easily derived as
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FQ4 =

 1 + au10 + au11y0 au01 + au11x0

av10 + av11y0 1 + av01 + av11x0

 (3)

A similar expression can be derived for the biquadratic case. The strain

field is then derived from the deformation gradient F choosing the appro-

priate strain tensor (e.g. infinitesimal strain tensor, Green-Lagrange, loga-

rithmic strain etc. ). In this case, the infinitesimal strain theory is adopted

since the deformation is in the elastic range.

This process is such that the resulting strain field calculated at a given

data point depends on a certain number of displacement data points around

it. This can be considered as the ’gauge’ size. Therefore it is useful to define

a quantity that reflects the actual physical dimensions of the adopted gauge

for the strain measurement.

This quantity will be denoted “virtual strain gauge” (VSG) further on.

Together with the subset size, it is a regularization parameter that must be

chosen with the highest care. The VSG has dimension of pixel and is defined

as:

VSG = [(N − 1)× step size] + 1 (4)

where the step size is the distance in pixel between two subsequent subset

windows and N ×N are the discrete displacement points used to compute

the strain tensor.

2.2. The virtual fields method (VFM)

The VFM is based on the principle of virtual work that, for a solid

of any shape of volume V and boundary surface ∂V , in the case of small

perturbations and absence of body forces, can be written as:
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∫
V
σ : ε∗dV =

∫
∂V

T · u∗dS (5)

where σ is the stress vector, T the surface forces acting at the boundary,

u∗ a continuous and differentiable virtual field, ε∗ the corresponding virtual

strain field and : and · the scalar products between 2nd order tensors and

vectors, respectively. In the case of an in-plane test, if t is the constant

thickness of the volume V and S the planar surface, the problem reduces to

a 2-D plane stress situation and Eq. 5 becomes:

t

∫
S
σ : ε∗dS = t

∫
∂S

T · u∗dl (6)

The constitutive equation for linear orthotropic materials, using the con-

ventional notation for contracted indices xx→ x, yy → y, xy → s, writes:


σx

σy

σs

 =


Qxx Qxy 0

Qxy Qyy 0

0 0 Qss




εx

εy

εs

 (7)

Q is the in-plane stiffness matrix and its four independent components are

the parameters to be identified. The reference frame here is such that x and

y coordinates correspond to the orthotropy axes, with x parallel to the fibre

direction. Assuming that the material is homogeneous and therefore Q is

constant, the stress tensor in Eq. 6 can be rewritten in terms of the strain

tensor using Eq. 7 and the constants moved out of the integrals:
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Qxx

∫
S
εxε

∗
xdS +Qyy

∫
S
εyε

∗
ydS+

Qxy

∫
S

(
εxε

∗
y + εyε

∗
x

)
dS +Qss

∫
S
εsε

∗
sdS =∫

∂S
Txu

∗
xdl +

∫
∂S
Tyu

∗
ydl (8)

At this point, introducing four independent virtual fields in Eq. 8, four

linear equations are obtained that can be used to identify directly the four

unknown parameters Qxx, Qyy, Qxy and Qss. The strain components εx,

εy and εs are measured on the specimen surface using a full-field optical

technique, and in order to solve the system, the virtual displacements have

to be chosen in such a way that the only information involved in the second

term of Eq. 8 is the global load measured by the load cell of the test machine.

Since a full-field optical technique provides a discrete description of the strain

field, the integrals of Eq. 8 are approximated by discrete sums. In this case

the required four independent virtual fields are automatically chosen using

optimised virtual fields defined by polynomials. This is a standard procedure

when the VFM is used to identify the elastic properties of materials, see [11].

3. Simulation of the experimental test

The simulated experiment is the unnotched Iosipescu (UI) test, which

is a shear test on a rectangular specimen that produces an heterogeneous

strain field. An example of the experimental set-up is given in Figure 1.

This test has already been validated in several applications with the VFM

(fibre composites, wood) and therefore it represents a good benchmark to

perform error estimation of the complete identification procedure.
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Fixed clamp Specimen Force actuator

CCD camera Area measured 
with DIC

Moving clamp

Figure 1: Experimental set-up of the unnotched Iosipescu (UI) test.

The complete measurement chain for this UI test has been numerically

simulated. The different steps are represented in Figure 2. The input param-

eters are the stiffness components, the design variables, i.e. the free length L

and the fibre orientation angle α, and the CCD camera characteristics such

as the pixel resolution, the dynamic range, the level of noise of the CCD

sensor. An FE model of the test is built up with reference material input

data that will serve as a benchmark later on. Then the displacement field

computed by FE is interpolated in order to have a displacement value at

each pixel position of the image. Two synthetic images are then generated

(reference and deformed respectively) and grey level white noise is added to

each image. From this point onwards, the procedure follows the same steps

as in a real experimental test. DIC is applied to obtain the displacement

and strain fields. Then the strain field and the applied force are input in

the VFM algorithm to extract the stiffness parameters of Eq. 7. Finally,
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these derived material parameters can be compared to the reference mate-

rial data of the FE model. Here, the comparison is carried out using an

error function, defined later on.

Design variables FE model

Generation of the 

deformed image from a 

reference image

Stiffness components

CCD camera characteristics

Input data:

Interpolation of the 

displacement field at 

the pixel coordinates

Introduction of artifical 

noise

Full-field

measurement 

by DIC

Parameter identification 

by VFM

Comparison

Figure 2: Flow chart of the simulation process

Each step of the procedure is susceptible to introduce errors that will in-

fluence the final identification results. There are two types of error, the ones

generated by the numerical procedure and the ones that reproduce actual

experimental errors. The first type of error is an artefact that should be

minimized. Because it is not possible to completely eliminate the numerical

artefacts, it is important to assess the weight of such errors in the overall

error. The various steps involved in Figure 2 are now detailed.

3.1. FE model

The FE model of the UI test was built up with ABAQUS Standard, the

model is the same as described in [25] and is illustrated in Figure 3. Here

it is used to obtain realistic displacement distributions of the UI test to be
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L23mm 15mm

Area of measurement
H

UY
0

UY
0 Material orientation 

at the element

a X

Yy

x
Fiber 

orientation

Figure 3: FEM model of the UI test, with boundary conditions and element material

coordinate system [25].

used to deform the synthetic images. The model is parametric, two design

variables can be varied by the user, the free length L and the fibre orientation

(orthotropy) angle α. As illustrated in Figure 3, the material coordinate

system is (x, y) while the global coordinate system is (X,Y ). The analysis

is linear elastic using the small strain formulation. The material model is

orthotropic elasticity model that reproduces the behaviour of a glass/epoxy

unidirectional composite. The constitutive parameters are, in this case, four

independent stiffnesses, their numerical values are listed in Table 1.

For each configuration of α and L, different levels of force can be used

to load the specimen. If the force is increased the measured displacements

increase as well and, consequently, the signal-to-noise ratio increases with a

beneficial effect on the identification. However the amount of force cannot

be increased over a certain limit because of damage occurrence or deviation

from linear elastic behaviour.

In order to keep such effect into consideration, the applied force was

scaled so that the maximum stress inside the specimen guarantees linear

elasticity. Because of the orthotropic behaviour of the material, different

stress levels can be reached in different directions, in tension and in com-
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Stiffness Maximum stress

Qxx (MPa) 40920 S+x (MPa) 1000

Qyy (MPa) 10230 S−x (MPa) -600

Qxy (MPa) 3069 S+y (MPa) 40

Qss (MPa) 4000 S−y (MPa) -100

Ss (MPa) 40

Table 1: Reference properties for the UD composite, data from [30].

pression. The stress limits used in the analyses are listed in Table 1. S+x

and S−x are the tensile and compressive strengths in the fibre direction re-

spectively, whereas S+y and S−y represent these two strengths but in the

direction transverse to the fibres, hence their much lower values. Ss repre-

sents the shear strength. In this case, the two parameters that condition the

maximum load are S+y and Ss.

3.2. Generation of synthetic images

The reference speckle pattern used here is an experimental one. A speckle

pattern was sprayed on a blank screen and framed with a high resolution

camera (4000 × 2672 pixels and 8-bit dynamic range) with a pixel scale of

around 0.05 mm/pixel. From this basic image other images with different

magnification levels can be generated by cubic interpolation, see Figure 4.

This procedure was employed to generate the reference image used in the

deformation process.

The simulated camera has a CCD sensor of 1320× 1024 pixels and 8-bit

dynamic range, already leading to an undersampling of the higher resolution

reference image. Since the length of the specimen will be varied in the

simulation, the field of view and the magnification level are set to maximize
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the spatial resolution of the measurements and to avoid that the deformed

image goes beyond the image limits. Therefore, the pixel scale Sp writes:

Sp = min

[
max

(
L∗

nH
,
H∗

nV

)
,max

(
L∗

nV
,
H∗

nH

)]
(9)

where nH and nV are the number of pixels in the CCD sensor in the hori-

zontal and vertical direction, respectively. L∗ and H∗ are the length and the

height of the area of measurement plus twice the maximum displacement,

so that the gauge area does remains in the field of view of the camera after

deformation:


L∗ = L+ 2 max (|ux|)

H∗ = H + 2 max (|uy|)
(10)

Original pattern 
 scale = 0.05 mm/pixel

2 mm

Interpolated pattern 
 scale = 0.0375 mm/pixel

1.5 mm

Interpolated pattern 
 scale = 0.075 mm/pixel

3 mm

Figure 4: Generation of the reference image. Starting from a real image (on the left),

images with different magnification levels are obtained by grey level interpolation.

The numerical deformation process is sketched in Figure 5. Two inter-

polation stages are needed, named Phase I and Phase II. First, in order

to map an FE field to a reference image, the discrete displacement field is
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interpolated to the integer pixel positions of the image (Phase I ). Next, the

reference image is deformed according to this interpolated field. This results

in a grey value map at non-integer pixel positions. Accordingly, the grey val-

ues at the integer positions are obtained by interpolation of the non-integer

ones, yielding a synthetically deformed image (Phase II ). Phase I deals with

displacement values, whereas Phase II deals with grey level values. Here all

the interpolations were performed using the “TriScatteredInterp” Matlab R©

function based om Delaunay triangulation, which allows to perform inter-

polation of a scattered dataset. A similar procedure was adopted in [31] to

generate synthetic deformed speckle patterns.

Interpolate onto pixel positions

Imposed data points 
from FEM

U(x,y), V(x,y)

Displace each pixel

Interpolate back to pixel positions

Imposed datum point, 
U(x,y), V(x,y) Reference image 

F(x0,y0):
Up(x0,y0), Vp(x0,y0)

Interpolation

Displacement data at pixels
Up(x0,y0), Vp(x0,y0)

v

G(x0+Up,y0+Vp)

G(x0+Up,y0+Vp)

Deformed image
G(x0,y0)

Reference image
F(x0,y0)

v G(x0,y0)

Figure 5: Construction of the numerically deformed image.

In order to reduce the numerical errors coming from the deformation

routine, a pixel subsampling procedure was also implemented. The reference

and deformed images were first generated at a higher resolution and then
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the final images were obtained by pixel subsampling. The procedure is

illustrated in Figure 6. In this example a 5×5 sub-pixel matrix is employed,

therefore a high resolution reference image of (5nH) × (5nV ) pixels with a

pixel scale of Sp/5 is created and deformed using the interpolation functions.

Thus, the grey level value of each pixel of the final images is obtained as the

average of the grey level of the corresponding sub-pixel matrix. Of course,

the size of the sub-pixel matrix heavily influences the computational time

needed to generate a synthetic image.

Final reference image

HR reference image 

(5×5 sub−pixels)

HR deformed image 

(5×5 sub−pixels)

Final deformed image

pixel sub−sampling pixel sub−sampling

Image 
deformation

DIC 
analysis

Figure 6: A pixel subsampling algorithm was used to obtain the final images where DIC

is applied.

In order to validate the deformation routine, the same approach as pro-
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posed in [32] was employed. In that paper, a reference image was shifted

to sub-pixel values using different deformation algorithms and the error be-

tween the imposed displacement and the one measured by DIC was com-

puted and compared.

The same procedure was repeated here. The developed deformation rou-

tine, with and without the subsampling algorithm, was compared with the

FFT approach and the “binning” technique. The last two techniques can

be taken as reference, since they both represent optimal image shifting al-

gorithms [32]. The FFT approach decomposes the image in the frequency

domain and generates a shifted image through a linear phase shift. The

“binning” technique uses a high resolution image to generate an image by

subsampling, the displacement is obtained by shifting the subsampling ma-

trix. Here, a 10× 10 subsampling matrix is used, therefore a shift 0.1 pixel

can be produced. It is worth noting that the binning technique can only be

used to shift images and as such, does not require any interpolation. On the

contrary, the proposed algorithm can be indifferently used to deform images

of any shape with any heterogeneous displacement field.

The comparison is shown in Figure 7. If no subsampling is used, a large

error is obtained compared to FFT and binning. With subsampling, even

with a small sub-pixel array of 3× 3, the error reduces to the same level as

that of FFT and binning.

The spatial distribution of the error introduced by the image deformation

algorithms and the DIC analysis is studied in Figure 8. Here the displace-

ment and strain fields obtained with binning (reference) were compared with

the ones obtained with the deformation routine, with or without subsam-

pling. The analysis was conducted using a constant displacement of 0.3

pixels, this position corresponds to the largest error in the average displace-
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Figure 7: Comparison of different deformation algorithms.
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Figure 8: Comparison of the displacement and strain fields obtained with different tech-

niques applying a shift of 0.3 pixels.
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ment observed in Figure 7. The displacement maps shows both the bias

and the spatial distribution of the error. The strain maps illustrate only

the spatial distribution of the error since the average strain is zero. When

no subsampling is used, the displacement and strain error is larger, whereas

with subsampling, the result is very similar to the one obtained with bin-

ning. This analysis validates the performance of the deformation routine. In

the rest of the paper, all simulated images were obtained using a sub-pixel

matrix of 3× 3.

3.3. Error evaluation

The procedure presented above has been used to simulate the UI test

under different conditions, i.e. varying the free length and the fibre orien-

tation of the specimen, the level of noise, the smoothing intensity, the DIC

parameters, etc. The total identification error Err is defined as:

Err =

√√√√∑
ij

wij

(
1− Qij

Q0
ij

)2

with ij = [xx, yy, xy, ss] (11)

where Q0
ij are the reference parameters introduced in the FE model, see Ta-

ble 1, Qij are the parameters identified with the VFM and wij is a weighting

parameter that can be varied to give more or less importance to a particular

stiffness component.

When noise (or other random variables) is introduced, for each config-

uration, several simulated experiments are repeated. In this case the error

function Err becomes the average of the error obtained in each experiment,

viz:

Err =
1

Ne

Ne∑
k=1

Errk (12)
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considering Ne simulated experiments. This error function takes into ac-

count both the bias and the random part of the error.

Nonetheless, it reflects all the errors generated during the simulated ex-

periment, including the artefacts caused by the numerical procedure. It is

important that the latter are as small as possible.

3.4. Error induced by FEM and interpolation

A converged FE model is still an approximated solution of the direct

problem in solid mechanics. Moreover the mesh used in the FE analysis

does not coincide with the position of pixels in the image. Therefore an

interpolation is necessary to obtain the displacement at each pixel position.

The interpolated displacement field used to deform the synthetic image

is not an exact solution and produces an error when the VFM is used to

identify the constitutive parameters. It is important to verify that such

error, which represents a numerical artefact, is lower than the real errors

supposed to be simulated.

A sensitivity analysis was conducted using an FE model of a specimen

with length L = 30 mm and fibre angle α = 45◦. Similar results were found

using different values of L and α. The element size of the FE model was grad-

ually decreased from about 100 to 7 times the pixel size. The displacement

values obtained from the FE model at each node have been interpolated to

the pixel position of the corresponding synthetic image (1360×1024 pixels).

In this case only the Phase I interpolation is considered, neither synthetic

images nor optical measurement are involved.

The strain field was computed from the interpolated displacement field

by finite difference and fed into the VFM for stiffness identification.

In Figure 9, the error is plotted as a function of the ratio of the pixel
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Figure 9: Influence of the strain field interpolation. Error obtained as a function of the

FE mesh refinement.

size to the average element size. The weight parameter wij was varied to

look at the different parameters separately.

As the mesh refinement increases, a rapid drop in the error function

occurs. Using an average element size 10 times larger than the pixel size,

the total error is below 1 × 10−3 for all stiffness components. This error

level is much lower than the one obtained in the simulated experiments, see

Figure 12 and the following. Thus it is reasonable to conclude that it will

not affect the results discussed in the following sections.

4. Results and discussions

In this section, the simulator is used to investigate the test configuration

and the DIC settings that lead to the best stiffness identification with the

UI test. The following variables are studied here: the specimen parameters
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L and α, the noise level and the DIC settings (subset, VSG, step size).

However, before examining this, an important point about missing data at

the edges has to be reviewed.

4.1. Effect of the measurement points at the specimen edges

Rossi and Pierron [25] noted that in the UI test, missing data at the

top and bottom edges of the specimen highly deteriorated the identification

with the VFM. As illustrated in Figure 10, since the subset size is usually

larger than the step size with the DIC approach, the measurement cannot be

extended up to the edges of the specimen, resulting in some missing data.

The larger the subset, the more missing points. It should be noted that

missing data at the right and left boundaries of the field of view do not

create such a problem. The issue arises with data missing at the top and

bottom edges of the specimen resulting in a bias in the VFM equilibrium

equation.

A simple procedure is employed here to correct this effect: the unknown

values at the missing data points at the top and bottom edges have been

replaced by the ones measured at the last point of the corresponding row

(padding process). Even if these data are inaccurate, they are much better

than missing as the transmitted stress is now reconstructed with much more

fidelity. The same approach was already used in [33]. Other methods allow

to extend the measurement up to the edge of the region of interest (ROI),

for instance Pan et al. [34] proposed a method where the number of active

pixels in the subset is automatically reduced once approaching the edge of

the ROI.

In order to verify the suitability of the padding process used here, it was

compared with a compensation method based on the shape functions of the
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Measurement points
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Figure 10: Missing data points at the edges of the measurement area due to the subset

size.

nearest evaluated subset close to the edge of the ROI. In this way, the subset

keeps its full pixel capacity, no extrapolation is required, and all data points

yield a consistent resolution and spatial resolution.

A simulated test was performed using a specimen with L = 30 and

α = 45◦, the subset size was varied from 11 to 44 pixels, no smoothing was

applied. Three step sizes were considered: 5, 10 and 15 pixels, respectively.

Figure 11 illustrates the identification error obtained with and without

the compensation methods.

Without any compensation, the error rapidly increases with the subset

size and there is a strong dependency on the step size, especially for large

subsets. Extending the measurment to the edges, using either of the compen-

sation methods, the error is lower and rather independent from the subset

size and the pixel step. Very similar conclusions hold for all configurations
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Figure 11: Influence of missing data. Identification error as function of the subset size

and the step size, with and without the data padding. (L = 30, α = 45◦, no noise)

and when noise is added to the data.

More studies can be conducted on this subject, and some are already

ongoing, however, for the scope of the present paper, the padding process was

considered enough accurate and was used in all the following computations.

4.2. Analysis without noise

As a first step, noise-free images only have been considered. In this situ-

ation, the observed error indicates the bias (or systematic error) introduced

by the DIC technique in the identification. The free length L was varied

from 10 mm to 60 mm with a step of 2 mm, the fibre angle α was varied

from 0◦ to 90◦ with a step of 5◦. For each configuration, two 8-bit synthetic

images were generated (undeformed and deformed) and the error function

of Eq. 11 was evaluated.

The DIC settings were kept constant to a subset of 21 pixels and a step

of 10 pixels. No smoothing was used so the VSG size is equal to the step,
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Figure 12: Error as a function of the design variables L and α.

namely 10 pixels. The influence of the DIC parameters will be studied later

on.

The error obtained using DIC was compared to that from the grid

method taken from a previous study [25] with the same camera resolution.

The grid method analysis was performed using a sampling of 5 pixels per

grid period and no smoothing.

The result is plotted in Figure 12 as a contour maps of Err (Eq. 11). The

two axes of the graphs represent the design variables L and α, respectively.

A logarithmic contour scale was used to highlight the gradient. With the

grid method, the error is around ten times lower. This is not surprising

since the grid method has a higher spatial resolution and is more adapted

to measure low strains in large strain gradient situations.

This difference between the two measurement techniques is pointed out

in Figure 13 where the strain maps generated with the simulator in the two

cases are compared with the reference ones from the FE model. Only εx is

plotted for a specimen with L = 30 mm α = 45◦, similar results are obtained

for other strain components and other configurations. DIC generates a more
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Figure 13: εx strain maps generated with the simulator using DIC and grid method.

(L = 30 mm α = 45◦).

corrupted strain map, the error level is similar to that observed in Figure 8.

The effect is highlighted in the magnification which shows the bottom left

corner of the measurement area, where a high compressive strain gradient

is present.

However, the higher precision of the grid method is obtained at the

cost of having to bond a grid onto the specimen. Moreover, the results

of Figure 12 are obtained using a perfect grid. In practice, grid defects

are common and this will degrade the grid method results. This could be

simulated and it will be investigated in the future.

Because of the noise generated by the technique itself, smoothing is com-

monly used in the strain computation with DIC and the VSG size is in gen-

eral larger than the step size. A second analysis was performed using a VSG

size of 141 pixels, that is a smoothing kernel of 15×15 points. The resulting

strain fields are shown in Figure 14. The magnification emphasizes how the

smoothing reduces the high frequency noise but also flattens out the large

local strain gradients.
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Figure 14: Strain maps generated with the simulator using DIC, without and with smooth-

ing, i.e. VSG = 141 pixels. (L = 30 mm α = 45◦).

The effect of smoothing on the identified parameters is shown in Fig-

ure 15. It turns out that the smoothing influences both the level and the

shape of the error function. With no smoothing, the minimum error is ob-

tained for a free length of around 25 − 30 mm and a fibre orientation of

25◦ − 30◦. When smoothing is introduced, a new minimum is found with

L ≈ 30 mm and α ≈ 60◦ but with a slightly larger error than without

smoothing. This is reasonable because no noise is introduced here.

4.3. Analysis with noise

A new analysis was conducted taking the noise into account. A Gaus-

sian random noise was introduced in the grey level value of each synthetic

image. A standard deviation of 2 grey levels was employed, this value was

obtained experimentally taking two pictures of the same speckle pattern and

computing the noise level as the standard deviation of the difference divided

by
√

2.

Figure 16 illustrates the generated εx strain maps when noise is intro-
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Figure 16: Strain maps generated with the simulator introducing noise. DIC with no

smoothing, DIC with VSG = 141 pixels and grid method without smoothing are compared.

(L = 30 mm α = 45◦).
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duced. The effect of noise is clearly visible when no smoothing is performed.

The spatial frequency of the noise is lower with DIC than with grid, this is

due to the lower spatial resolution of DIC. When smoothing is introduced,

with a VSG size of 141 pixels, the high frequency noise is filtered out and

the strain map looks similar to the one of Figure 14.

The effect of noise in the identification is reported in Figure 17. This

time, the total error Err of Eq. 12 was evaluated considering 20 repetitions

for each configuration. Each virtual experiment is indeed different because

of the random noise introduced into the data. The error obtained using DIC

with and without smoothing was compared to that from the grid method.

The same grey level noise was used for all cases.

Looking at the results for DIC, again the smoothing influences the shape

of the error function. In this case, the best result was obtained with smooth-

ing. This makes sense because this time noise was introduced in the gener-

ated images. It is interesting to observe that the error obtained with noise

is very similar to the one without noise if smoothing is introduced. This

shows that a VSG size of 141 pixels filters out the effect of random noise

and that the remaining error mainly comes from the reconstruction error.

Looking at the grid method, when noise is introduced, a larger error is

obtained with the minimum value that goes from 0.002 of Figure 12 to 0.01.

Qualitatively, the error map of the grid method looks very similar to

that of DIC with smoothing. The configuration with the lowest error is

similar in both cases, i.e. L = 30 mm and α = 50◦ − 60◦. In fact, as

already demonstrated in [25], 30 mm corresponds to an aspect ratio of S

similar to that of the CCD sensor, showing the importance of the spatial

resolution. Looking at the numerical value in the optimal configuration, the

error for DIC is around three times larger than for the grid method. In non
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optimal configurations, the difference increases and the identification error

using DIC is approximately five to six times larger than for the grid method.

In order to investigate the similarity between the error achieved with DIC

and grid method, further analysis was conducted looking at the identification

of each single stiffness component. Figure 18 shows the error computed

separately for each Qij by suitably setting the weighting parameter wij in

Eq. 11 to 1 for a given stiffness component and 0 for the others. For DIC,

the analysis with smoothing was considered. For each parameter, the same

considerations as for Figure 17 can be made: using DIC, the average error

is larger, however, qualitatively, the four maps look similar.

4.4. Influence of DIC settings on noise

In this section, the interaction between DIC parameters and noise is

evaluated. A single configuration is studied with L = 30 mm and α = 55◦,

which represents the optimum configuration of Figure 17. The same amount

of noise of 2 grey level is used.

In Figure 19, the error was evaluated as a function of the subset and

the VSG size. It is possible to obtain an optimal setting with a subset of

23 pixels and a VSG of 171 pixels. With respect to the configuration used

in the previous section (subset = 21 pixels, VSG = 141 pixels), a further

improvement (15-20%) is obtained with the error reducing from 0.03 to

0.025. Looking at the contour map, the VSG is the parameter that mostly

influences the error.

To look at the effect of the noise level, the analysis was repeated using

a standard deviation of noise of 15 grey levels. This value is exaggerated

compared to actual experiments and is used here only as for the sake of

sensitivity analysis. The results are shown on Figure 20. As expected the
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deviation of noise: 2 grey levels.

value of the error is much higher. The minimum error is obtained with a VSG

of 321 pixels, showing that in this case more smoothing is favourable, as one

would expect. The best subset size is 15 pixels, which is a bit surprising. A

possible explanation is that a small subset size and a high level of smoothing

obtained by VSG allow to better describe the strain field close to the edges.

The present results show that the optical measurement parameters have

an important effect on the quality of the final stiffness identification. More-

over, the choice of the different parameters (subset size, smoothing kernel

etc.) can be performed more rationally if such a simulator is available. For

a given test configuration, it should be possible to employ this tool to pro-

vide realistic confidence intervals for identified material parameters. This is

very important if such new approaches are to become test standards in the

near future. Finally, this tool can also be employed to design and optimize
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new test configurations with a rational procedure. It opens up very wide

prospects in the design of novel test methods.

4.5. Influence of the step size

In the previous analyses, the step size was kept constant to 10 pixels,

in this section, a study was conducted to investigate in more details its

effect. In Figure 21, the identification error was evaluated varying the step

size from 2 to 20 pixels, keeping the VSG size constant to 81 pixels. The

adopted specimen configuration was L = 30 mm and α = 55◦. First no

noise was added, and three different subsets were considered: 21, 31, and 41

pixels. Then, using a subset of 21 pixels, the same analysis was conducted

introducing noise with a standard deviation of 2 pixels.

It turns out that the step size has an impact on the identification error,
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Figure 21: Influence of the step size on identification error, without noise and with noise.
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and a small step size can improve the identification quality. The same trend

was obtained when noise is added to the synthetic images. This suggests

that the step size influences the identification error when high gradients have

to be measured.

4.6. Influence of the grey level range

A final study was conducted to verify the influence of the grey level

encoding. Synthetic images were create using 16-bit dynamic range, the

speckle pattern is simply scaled from the 8-bit one, used in the previous

analysis. A specimen configuration, with L = 30 mm and α = 55◦, was

used. The following DIC parameters were used: subset = 21 pixels, step

= 10 pixels, V SG = 141 pixels; similar results are obtained using different

configurations.

Figure 22 shows that, if the ratio of noise standard deviation to the grey

level range is the same, the use of 8-bit or 16-bit images gives the same

result in terms of identification error. Of course, a large dynamic range

gives more flexibility on the histogram, and is beneficial, especially in case

of poor illumination.

5. Conclusion

A general procedure to numerically simulate an actual test, i.e. the UI

test, has been proposed. The procedure starts from an FE model of the

test and generates synthetic images deformed from a pre-existent reference

image. The synthetic images aim to simulate a real acquisition performed

during an experimental test. After the simulation process, the displacement

and strain fields are computed using DIC and then the VFM is applied to

identify the material properties. An error function is used to assess the
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quality of the identification procedure. The numerical procedure was de-

signed to use real speckle pattern pictures as reference images. In order

to avoid numerical artefacts at low displacements, a subsampling algorithm

was employed.

The following concluding considerations can be made:

• the identification with the UI test is highly influenced by missing data

at the edges. The adopted DIC technique produces missing data be-

cause of the subset size. A simple procedure is proposed to correct

the data by padding and a remarkable improvement is obtained in the

identification.

• The performance of the DIC was compared with the grid method.

When noise is introduced, using an optimal configuration, the error

obtained with DIC is around three times larger than the one obtained

with the grid method, as expected from the better spatial resolution
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of the latter, at the cost of having to prepare the specimen surface

with a grid pattern. On the other hand, in the simulation of the grid

method, the used grid did not have any defect (missing bits of grid,

non-uniform grid pitch), which, in actual tests, can increase the error.

• The procedure was used to evaluate the sensitivity of the identification

routine to the noise level. According to the level of noise, the devel-

oped procedure provides a rational route to the selection of good DIC

parameter settings. The VSG size is the most influential among those

studied.

In future work, the simulator can be used to design test configurations

which maximize the performances of DIC and VFM. Moreover, other sources

of error could be introduced like for instance misalignment of the specimen

or out-of-plane movements during the test. In order to have a complete

validation of the procedure, other experimental tests should be simulated

and the numerical experiments should be compared with actual ones.
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