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Abstract

When the sample selection probabilities and/or the response probabilities are related to the model dependent

variable even after conditioning on the model covariates, the model holding for the sample data is different

from the model holding in the population from which the sample is taken. Ignoring the sample selection or

response mechanism in this case, may result in highly biased inference. Accounting for sample selection bias

is relatively simple because the sample selection probabilities are usually known, and several approaches have

been proposed in the literature for dealing with this problem. Accounting for nonignorable non-response

is much harder since the response probabilities are generally unknown, requiring to assume some structure

in the response mechanism. In this article, we develop a new approach for modelling complex survey data,

which accounts simultaneously for non-ignorable sampling and non-response. Our approach combines the

nonparametric empirical likelihood with a parametric model for the response probabilities, which contains

the outcome variable as one of the covariates. The proposed approach is also applicable in principle when

the probability of inclusion is unknown, such as data from voluntary Web-based surveys.

We illustrate the robustness of the proposed approach and propose ways of testing the underlying model.

Combining the population model with the model for the response probabilities defines the model holding

for the missing data and enables imputing the missing sample data from this model. Simulation results

illustrate the good performance of the approach in terms of parameter estimation and imputation.

Keywords: Empirical likelihood, Kernel smoothing, Model testing, NMAR non-response, Respondents

model, Population model, Sample model.

1 Introduction

Survey data are often used for analytic inference on statistical models assumed to hold for the population

from which the sample is taken. Familiar examples include the estimation of elasticity of demand from

family expenditure surveys, estimation of health risk factors from health surveys and the analysis of labor

market dynamics from labor force surveys. It is often the case, however, that the sampling design used to

select the sample is informative for the population model in the sense that the sample selection probabilities

are correlated with the target outcome variables even after conditioning on the model covariates, in which

case the model holding for the sample data is different from the model holding for the population values.

This will happen, for example, when the selection probabilities are determined by one or more design
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variables (stratification variables, size variables used for probability proportional to size sampling, etc.),

which are correlated with the model outcome variable, but at least some of them are not included among

the model covariates. In an extreme case, the sample selection probabilities are determined directly by the

outcome values, as in case-control studies. Inevitably, sample data are subject to non-response, which is

informative for the population model if the response probabilities are correlated with the outcome values

after conditioning on the model covariates, known as ‘not missing at random’ (NMAR) non-response. Here

again, the model holding for the data observed for the responding units is different from the sample model

under complete response, which as noted above is different from the population model under informative

sampling. Clearly, ignoring an informative sampling design and/or response mechanism may yield highly

biased estimators and distort the inference. Pfeffermann (2011) reviews several approaches proposed in

the literature to deal with informative sampling, ranging from weighting each sample observation by the

corresponding sampling weight to maximization of the sample likelihood as defined by the model holding

for the sample data. A common feature of these approaches is that they utilize the sampling weights in the

inference process, although in different ways. On the other hand, accounting for NMAR non-response is much

more complicated since the response probabilities are practically never known, requiring some assumptions

on them. Pfeffermann and Sikov (2011) review approaches proposed in the literature to deal with NMAR

non-response, but these approaches are quite limited. In particular, most of the approaches assume that the

model covariates are known also for the non-respondents, which is often not the case. Evidently, accounting

for both informative sampling and NMAR non-response in a single analysis is a major undertaking, and the

present article attempts to tackle this problem. We assume that not only the outcome values are missing

for the non-responding units but also the corresponding covariate values, known as unit non- response. The

only additional information beyond the data observed for the responding units assumed to be known is the

population totals of calibration variables, which may include some of the model covariates, and possibly (but

not necessarily) also the outcome variable. The totals of such calibration variables are often available from

administrative or census records. Our proposed approach combines the non-parametric empirical likelihood

(EL) under the population model with a parametric model for the response probabilities that contains the

outcome variable as one of the covariates. A third component needed for setting the likelihood holding for

the responding units is the expectation of the sampling weights given the outcome and the covariates, which

we estimate non-parametrically using kernel smoothing. The use of EL for analysing complex survey data

has its origins in a landmark paper by Hartley and Rao (1968), and has gained increasing interest in recent

years in more general statistical contexts following Owen (1988, 1990, 1991, 2001). Another important

paper is Qin and Lawless (1994). The EL combines the robustness of non-parametric methods with the

effectiveness of the likelihood approach. Another important advantage of this method is that it lends itself

very naturally to the use of calibration constraints, thus enhancing the precision of the estimators. See, e.g.,

Chen and Keilegom (2009) for a recent review. The use of this approach has also computational advantages

over fully parametric approaches. As the proposed method is a based on the empirical likelihood, conditional

on response, we’ll refer to it as ‘Conditional Respondents Empirical Likelihood’ (CREL).

Chang and Kott (2008) proposed a calibration-based approach where the sampling weights wi = 1/πi (where

πi is the probability of selecting unit i) are replaced by w∗i = wig(γ̃′zi), where g is a known and everywhere
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monotonic and twice-differentiable function, γ̃ is a vector parameter chosen in a manner that minimises the

difference
[∑

i∈U xi −
∑
i∈R w

∗
i xi
]
, in a weighted least squares sense. Here, U and R are the population and

the set of respondents, respectively, and xi is assumed known for each respondent, as well as its population

total.

In the next section we define the sample and respondents distribution and in Section 3 we define the empirical

likelihood and its components, given the observed data for the responding units. Section 4 provides some

details on the maximization of the empirical likelihood and in Section 5 we discuss ways of testing the model.

Section 6 reports the results of a simulation study aimed to illustrate the performance of the method. Section

7 contains concluding remarks.

2 The sample and respondents distributions

Let yi denote the value of an outcome variable Y associated with unit i belonging to a sample S, drawn

from a finite population U = {1, . . . , N} with known inclusion probabilities πi = Pr(i ∈ S). Let Ii denote

the sampling indicator defined as 1 if unit i is sampled, 0 otherwise, and xi = (x1,i, . . . , xp,i)
′ denote the

values of p auxiliary variables (covariates) associated with unit i. Let R be the set of respondents and let

the response indicator Ri be defined as 1 if unit i ∈ S responds, 0 otherwise. We denote by n the size of S
and by r the size of R.

In what follows we assume that the population outcomes are independent realizations from distributions with

probability density functions (pdf) fu(yi|xi). Following Pfeffermann et al. (1998), the marginal sample pdf,

fs(yi|xi) denotes the conditional pdf of yi given that the unit is sampled, i.e., fs(yi|xi) = f(yi|xi, Ii = 1).

By Bayes rule,

fs(yi|xi) =
Pr(Ii|xi, yi)fu(yi|xi)

Pr(Ii|xi)
2.0

where Pr(Ii = 1|xi) =
∫

Pr(Ii = 1|xi, yi)fu(yi|xi)dyi. Note that Pr(Ii = 1|xi, yi) is generally not the

same as the sample selection probability πi = Pr(i ∈ s) = Pr(Ii = 1|Zu), where Zu defines a matrix

of population values of design variables used for the sample selection. Since Pr(Ii = 1|πi, yi,xi) = πi,

Pr(Ii = 1|yi,xi) = Eu(πi|yi,xi), where Eu is the expectation under the population pdf. The population

and sample pdfs differ unless Pr(Ii = 1|xi, yi) = Pr(Ii = 1|xi) for all yi, and when this condition is not met

the sampling design is informative and cannot be ignored in the inference process. In particular, it follows

from (2.1) that under informative sampling

Es(yi|xi) = Eu

[
Pr(Ii = 1|xi, yi)

Pr(Ii = 1|xi)
yi

∣∣∣∣xi] 6= Eu(yi|xi) (2.2)

where Es denotes expectation with respect to the sample distribution. Estimating Eu(yi|xi) is often the

main target of inference. Thus, ignoring an informative sampling scheme, and in fact estimating Es(yi|xi),
can severly bias the inference. Next, consider the respondents distribution. The response probabilities

may depend on covariates v, which may differ from x in one or more components. The marginal pdf for

responding unit i, denoted by fr(yi|xi) = f(yi|xi, Ii = 1, Ri = 1) is, by Bayes Rule,

fr(yi|xi,vi) =
Pr(Ri = 1|yi,vi, Ii = 1)fs(yi|xi)

Pr(Ri = 1|vi,xi, Ii = 1)
. (2.3)
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Note that unless Pr(Ri = 1|yi,vi, Ii = 1) = Pr(Ri = 1|vi, Ii = 1) for all i, the respondents pdf differs from

the sample pdf.

So far we have excluded for convenience from the notation the parameters governing the various distributions.

If the outcome and the response are independent across units, the respondents likelihood has the form

Lr(γ, θ) =

r∏
i=1

Pr(Ri = 1|yi,vi, Ii = 1; γ)Pr(Ii = 1|yi,xi)fu(yi|xi; θ)
Pr(Ri = 1|xi,vi, Ii = 1; θ, γ)Pr(Ii|xi)

(2.4)

In principle, one could maximize the likelihood (2.4) with respect to θ and γ. But our experience shows

that this can be very complicated numerically and result in unstable estimates, depending on the population

model and the model assumed for the response probabilities. For this reason, we consider in the next section

the use of the empirical likelihood paradigm, which enables estimating the parameters γ governing the

response model without specifying the population model, and is therefore more robust. On the other hand,

as discussed in the next section, the parameters underlying an assumed population model can be estimated

very easily once the parameters of probabilities underlying the empirical likelihood have been estimated.

In this respect the use of the empirical likelihood can be viewed as a convenient way of estimating the

parameters of an assumed population model.

Remark 1. In theory, one also needs to model the probabilities Pr(Ii = 1|yi,xi). However, since

Pr(Ii = 1|πi, yi,xi) = πi, the probability Pr(Ii = 1|yi,xi) can be estimated outside the likelihood using

the relationship Pr(Ii = 1|yi,xi) = Eu(πi|yi,xi) = 1/Es(wi|yi,xi), where wi = 1/πi is the sampling weight.

Thus, the probabilities Pr(Ii = 1|yi,xi) can be estimated by regressing wi on (yi,xi) using the sample data.

See Pfeffermann and Sverchkov (2003, 2009) for different approaches to, and examples of, modeling and

estimating the expectations Es(wi|yi,xi). Alternatively, as explained in Section 4 and illustrated in Section

6, the expectations can be estimated nonparametrically using kernel smoothing or other smoothing methods.

Remark 2. A notable property of the likelihood (2.4) is that it does not require knowledge of the covariates of

the nonresponding units. On the other hand, even with good estimates of the probabilities Pr(Ii = 1|yi,xi),
the use of this likelihood requires specifying the population model fu(yi|xi), and the response probabilities

Pr(Ri = 1|yi,vi, Ii = 1), with no observations obtained directly from either one of the two distributions.

Pfeffermann and Landsman (2011) establish conditions under which the likelihood (2.4) is identifiable, but

our experience shows that even under these conditions, maximization of the likelihood is often unstable, due

to what Lee and Berger (2001) refer to as ‘practical non-identifiability.’ See Rotnitzky and Robins (1997)

for further discussion and theoretical results on the identifiability of likelihoods of the form (2.4).

the remark below added per your comment in the next section

Remark 3. Whilst we have assumed that the response probabilities are functions of nui, i.e., Pr(Ri =

1|yi,vi, Ii = 1), we can assume without loss of generality that νi is embedded in xi. Hence we’ll assume

ρi = Pr(Ri = 1|yi,xi, Ii = 1).

Remark 4. Although no observations are available from either the model defining the population pdf or

the model assumed for the response probabilities, the respondents model defined by (2.3) can nonetheless

be tested using classical test statistics since it relates to the data observed for the responding units. See
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Sections 5 and 6 for the test statistic used in our empirical study with illustrations. In the next section

we propose an empirical likelihood approach which does not require specifying the population model, thus

making the inference more robust.

3 Conditional empirical likelihood for responding units

We assume that for each unit i there corresponds a vector ui = (yi,x
′
i, c
′
i, τi, ρi)

′ where yi and xi are related

via a model fu(yi|xi;β), ci is a d-dimensional vector of survey values for which the population means c̄u

are known, τi = Eu(Ii|yi,xi), and where ρi = Pr(Ri = 1|yi,xi, Ii = 1) = Eu(Ri|yi,xi, Ii = 1). We

employ the load-scale approach of Hartley and Rao (1968) by assuming that the finite population values

are generated from a multinomial distribution with a vector of probabilities p = (p1, . . . , pr)
′. Thus the

population distribution has its support in the sample of respondents. Denote by Ni the number of units in

the finite population assuming the vector ui and let pi = Ni/N , where N =
∑
iNi. Under this model, the

distribution of the observed data for the responding units (hereafter the respondents’ distribution) is also

multinomial, with cell probabilities given by p
(r)
i = Pr(ui|i ∈ R) = piτiρi/

∑
k pkτkρk. Thus, the empirical

likelihood is

L =
∏
i

p
(r)
i = Π(p(r)), (3.1)

where Π(a) =
∏
i ai denoted the product of the elements of any vector a.

Chaudhuri et al. (2010) use a similar approach, though restricted to the case of full response (viz., ρi = 1

for all i). The response probabilities ρi in (3.1) are unknown and need to be estimated. In order to account

for possible NMAR nonresponse, we model ρi as a function of the outcome and covariates. Specifically, we

assume ρi(γ) = Pr(Ri = 1|yi,xi;γ) = logit−1(`(yi,xi;γ) where logit−1(s) = (1 + e−s)−1 and `(yi,xi;γ) is

a polynomial in (y,x) with coefficients γ. A function of the form logit−1(`(yi,xi;γ)) can approximate any

response function which is a continuous function of x, y, arbitrarily close, provided its range is bounded away

from 0 and 1 . It thus follows that our EL is a combination of the nonparametric population distribution

(but see below), the expectation τi = Eu(Ii|yi,xi) and a parametric model for the response probabilities. We

mentioned in the introduction that the use of empirical likelihood facilitates the use of calibration constraints

for enhancing the efficiency of the estimators. Under our set up and the assumption that the population

distribution has its support in the respondents sample,
∑
i∈R pici = N−1

∑
i∈RNici = N−1

∑
j∈U cj = c̄u,

yielding the R-level constraint ∑
i∈R

p
(r)
i τ−1i ρ−1i (ci − c̄u) = 0. (3.2)

Denote ξi = τiρi and
∑
i∈R piξi = ξ̄u. Since τi = E(Ii|yi,xi) and ρi = E(Ri|yi,xi), ξi is the probability of a

unit i being sampled and subsequently responding, given its outcome and covariate values. Since ρi depends

on γ, we’ll also use the notation ρi(γ) and ξi(γ). Recall that pi
(r) ∝ piτiρi = piξi. Thus, pi

(r) = ξ̄−1u piξi.

Denote by Eη the expectation with respect to the combined sampling and response distributions. Then

Eη(r) =
∑
j∈U τjρj = N

∑
i∈R piτiρi = N

∑
i∈R piξi = Nξ̄u. Thus, r ≈ Nξ̄u, leading to the constraint
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r = Nξ̄u. Since
∑
i∈R pi = 1, we have 1 = r(Nξ̄)−1 = r(Nξ̄)−1

∑
i∈R pi = (r/N)

∑
i∈R pi

(r)ξ−1i , or∑
i∈R

p
(r)
i (1− r/(Nτiρi)) =

∑
i∈R

p
(r)
i (1− r/(Nξi)) = 0. (3.3)

Note that this constraint is equivalent to
∑
i∈R p

(r)
i τ−1i ρ−1i = N/r.

Let C be the r × d matrix, the ith row of which is ci − c̄u, and let D(γ) be the r × r diagonal matrix with

τiρi = τiρ(yi,xi;γ) as its diagonal elements.

Constraints (3.2) and (3.3) can be written in a matrix form as C ′D(γ)−1q = 0 and 1′D−1(γ)q = N/r,

respectively, where we have denoted q = p(r) for simplicity.

We now have the constrained maximization problem

max
γ,q

Π(q) s.t. A(γ)q =

(
0

0

)
, q ∈ Ω, (3.4)

where ξ(γ)−1 = (τ−11 ρ1(γ)−1, . . . , τ−1r ρ(γ)−1r )′, A(γ) =

(
C ′D(γ)−1

(rN−1ξ(γ)−1 − 1)′

)
, and where Ω is the simplex

of all non-negative vectors (a1, . . . , ar)
′ ∈ Rr with

∑
i ai = 1. The MLE of γ and q are the values where

(3.4) attains its maximum. In principle, one could maximize (3.4) over all (γ,p), subject to the constraints.

However, this may be impractical, due to the dimension of p. Fortunately, there is a much more efficient

maximization procedure, which we describe in Section 4.

Existence of a Solution. There are cases where a solution to (3.4) does not exist (and therefore the

feasible domain is empty). A simple example is where all observed values of a constraining variable c are all

greater (or smaller) than its known population mean. Moreover, multivariate conditions can also preclude a

solution. However, if a solution q ∈ Ω to (3.4) exists for a given γ, then there exists a solution in Ω for any

γ. In fact, since D(γ) is a diagonal matrix with a positive diagonal, there is such a solution if and only if

there is a positive vector v ∈ Rr such that C ′v = 0. The univariate constraint (3.3) can lead to an empty

feasible domain in (3.4) for some γ. Such is the case, for example, if ρi(γ) is very small. By definition, the

supremum over an empty set of a real-valued function is −∞. See also Sub-section 4.1.1.

We have assumed so far that the population distribution is multinomial with the unknown probabilities p,

which are estimated by maximization of the EL. Suppose, however, that the target population distribution

is in fact parametric. In particular, consider the general population model

yj = m(xj ;β) + εj ; Eu(εj |xj) = 0, Eu(ε2j |xj) = σ2
ε , Eu(εjεk|xj ,xk) = 0, (j 6= k), (3.5)

where m(xj ;β) has a known form and the covariates xj are random. Under some regularity conditions, the

vector parameter β and σ2
ε are the unique solutions of the equations Eu [(∂m(x;β)/∂β)(y −m(x;β))] = 0

and σ2
ε = Eu[y −m(x;β)]2. Hence β and σ2

ε satisfy∑
i∈R

pi
∂m(xi;β)

∂β
[yi −m(xi;β)] = 0 and σ2

ε =
∑
i∈R

pi[yi −m(xi;β)]2. (3.6)

Having estimated the probabilities pi by maximization of the EL, the estimates of β and σ2
ε are obtained by

solving the estimating equations (3.6) with p1, . . . , pr replaced by their estimates.
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The importance of the constraints. The EL maximization problem (3.4) is subject to constraints. The

question then arises as to how important these constraints are and how they should be best chosen. Suppose

for simplicity that τi = Pr(i ∈ s|yi,xi) = const (noninformative sampling) in which case p
(r)
i (γ) ∝ piρi(γ).

Then, for a given vector parameter γ, maxp(r) Π(p(r)) = r−r. Thus, without any constraints the empirical

likelihood is maximized by defining pi ∝ ρ−1i , implying non-identifiability in the estimation of p since this is

true for every γ.

Next is the question of how the survey variables defining the constraints should be chosen. To answer

this question, we consider first the constraints underlying the method of Chang and Kott (2008), written

in our notation C̄u = N−1
∑
i∈R wici/ρi(γ). In this case it is obvious that the variables c should be as

highly correlated as possible with y and x because otherwise they provide little or no information on the

probabilities Pr(Ri = 1|yi,xi;γ). Notice also in this respect that while ˆ̄CHT = N−1
∑
i∈R wici/ρi(γ) is

randomization unbiased for C̄u over all possible sample selections and nonresponse, the variance of ˆ̄CHT is

minimized when ci ∝ ρi(γ). You’ve asked why, but I don’t know and this came from your text.

In our proposed empirical likelihood approach the constraints (3.2) are of the form
∑
i∈R pici = C̄u which

are seemingly unrelated to the response probabilities, suggesting that it should not matter which survey

variables are used for defining the constraints. This, however, is a false conclusion since the empirical

likelihood is defined with respect to the probabilities p
(r)
i (γ) = piτiρi(γ)∑

k pkτkρk(γ)
, such that any constraint on the

pi’s effectively defines a constraint on the ρi’s, implying again that the variables in c should be correlated as

highly as possible with y and x. I moved the following from the paragraph that you deleted: The number of

constraints is of lesser importance than their choice. We illustrate this in the empirical study in Section 6.

4 Estimation of the Model Parameters

4.1 Estimation of the τ ’s

In the simulation study described in Section 6, we used kernel smoothing to obtain estimates of τi =

Eu(Ii|yi,xi). Note that 1/τi = Es(wi|yi;xi) = Er(wi|yi;xi) by applying kernel regression of wi on (yi, xi)

and their interaction, using the function npreg from the R package np at its default setting. See Subsection

6.2 for further details.

4.2 Point Estimation

4.2.1 Estimation of the Response Propensity Model

The profile likelihood of γ: The maximization problem in (3.4) is equivalent to the maximization

maxγ G(γ) where G(γ) is the profile likelihood of γ, defined as

G(γ) = max {Π(q) : A(γ)q = 0 & q ∈ Ω} . (4.1)

Danny - note that now A(γ) is defined right after (3.4)

For a given γ, the maximization in (4.1) can be done using R function scel, written by Art Owen and

available from his website http://statweb.stanford.edu/~owen/empirical. See Owen (2013) for related
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theory and further details.

Estimation of γ: The MLE of γ is γ̂ = arg maxγ G(γ). In the simulation study described in Section

6, arg maxγ G(γ) was found by using the R numerical optimization function optim. (Since optim is a

minimization routine, we minimized −G(γ).) The initial point for the optimization was obtained as follows:

an initial guess for γ0 was set as logit−1(r/n) and the remaining coefficients were initiated by a grid search.

Note: When the feasible domain in (3.4) for a certain γ is empty, G(γ) = −∞ by definition.

4.2.2 Estimation of the Population Model

Estimation of the population parameter p = (p1, . . . , pr)
′: Once we have obtained γ̂, we can estimate

p̂(r) = arg maxq Π(q) s.t.A(γ̂)q = 0, q ∈ Ω. Since pi ∝ (τiρi)
−1p−1i , we can now calculate

p̂i = p̂i
(r)[τiρi(γ̂)]−1

/
r∑

k=1

p̂
(r)
k [τkρk(γ̂)]−1 (4.2)

Estimation of the population model’s parameter β: For given p̂, β̂ is the unique solution of the

equation
∑r
i=1 p̂i {(∂/∂β)[yi −m((xi;β)]} = 0. Any statistical package capable of fitting generalized linear

models with survey weights can be used to solve these equations, with (p̂1, . . . , p̂r)
′ entered as ‘weights.’ In

our simulations, the R package ‘survey’ was used (Lumley 2004).

Remark: It is not required here to assume the population model holds at all. The parameter β can be re-

garded as merely a population parameter, defined as the solution to the equation
∑r
i=1 pi {(∂/∂β)[yi −m((xi;β)]} =

0. For example, in the case of linear regression, β = (X ′uXu)−1X ′uyu where Xu is the population design

matrix, yu is the population vector of y-values. In this case, β̂ = (X ′Dp̂X)−1X ′Dp̂y where X and y are

the corresponding values in the respondents’ data and Dp̂ = diag(p̂1, . . . , p̂r). In Sub-section 7.4, simulation

results are given for this estimate when the true model is non-linear.

Non-parametric estimation of the population model fp(y|x): The proposed approach does not

require any specification of a model for fp(y|x). In fact, once estimates p̂i are obtained (see 4.2 above), and

thus an estimate F̂ of the population distribution is available, non-parametric estimation of fp(y|x) can be

made, for example using smooth polynomial spline. In Sub-section 7.4, results using a smooth cubic spline

are given.

4.3 Estimation of Variances

4.3.1 Estimation of Var(γ)

Whilst a profile likelihood is not, strictly speaking, a likelihood, under general conditions one can still estimate

the variance by the inverse profile information Ipr(γ) = −(∂2/∂γ2)G(γ) and setting V̂ar(γ̂) = Ipr(γ̂)−1.

Murphy and van der Vaart (2000) discuss the appropriateness of treating a profile likelihood as proper
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likelihood for the purpose of variance estimation. Scott and Wild (2006) show the validity of estimating the

covariance of γ̂ by I−1pr more generally. Below is an outline of their argument.

Let `(γ, q) denote the log-likelihood of the parameters ψ = (γ′, q′)′ given the data, then the profile likelihood

of γ is `pr(γ) = `(γ, q̂(γ)), where q̂(γ) = arg maxq `(γ, q). In principle, the covariance matrix of ψ̂ = (γ̂′, q̂′)′

could be estimated by I−1 where I is the inverse information of ψ. Partitioning I into a block matrix with

blocks corresponding to γ and q and applying the formula for the inverse of a partitioned matrix, the upper

left block of I−1 equals I−1pr . However, that upper left block is also the estimate of the covariance of γ̂.

(Cf. Scott and Wild 2006 for further details.)

In our simulation study, the use of the inverse profile information gave very good variance estimates of the

response model parameter γ. See more details in Section 6.

4.3.2 Parametric Bootstrap Variance Estimation

In general, the parametric bootstrap approach consists of generating B samples, with each sample consisting

of r units independently drawn from the fitted fr(u) distribution, where u stands for all the variables

involved. In the case of the empirical likelihood, the fitted fr distribution is multinomial, with p(r) =

(p
(r)
1 , . . . , p

(r)
r )′ as its parameter. Therefore, we independently sample r units, with replacement, from R,

such that in each of the r draws, the probability of the selected unit being i is p̂i
(r). The estimation

procedure is applied to the data from each sample. Denote the B estimates of a parameter θ by θ̂1, . . . , θ̂B .

The parametric bootstrap estimate of the variance of θ̂ is B−1
∑B
b=1(θ̂b − θ̄)2 where θ̄ = B−1

∑B
b=1 θ̂b.

Note: Whilst the same estimation procedure carried out on the main sample data needs to be applied to

each of the B bootstrap samples, two time-saving measures can be used: (a) Starting estimate for γ may be

taken as the main sample estimate. (b) Additionally, the main sample estimates of τi can be used.

Dealing with outlying bootstrap estimates: Bootstrap variance estimates can be too conservative (positively

biased) due to outliers (Shao, 1988). This can be remedied by excluding a small portion of the bootstrap

samples that appear to be outliers. In our simulation study, we have classified a bootstrap sample as outlier

if its estimated γ̂b had any component more than 4se away from the corresponding main sample estimate,

where se is the estimated standard error calculated as described in Section 4.3.1. We found that on average

less than 3% of the bootstrap samples were excluded. The outlying bootstrap samples were excluded from

the variance estimation for both γ̂ and β̂.

4.4 Dealing With Unknown Probability of Inclusion

There are increasing instances where the probability of inclusion is unknown, such as in voluntary Web-based

surveys. The proposed approach is applicable in this case as well, provided the probability of ending up

in the sample is positive and provided the population means c̄ and respondents’ values ci for some control

variables c are known. Assume first that there are no multiple responses coming from the same unit. For

a unit i in the population, let ξi be the probability that the unit ends up in the sample. Assume a model

of the form log(ξi/(1− ξi)) = β′u, where u are survey variables which may include the population model’s

dependent and independent variables. Note that this situation is mathematically similar to the case where

the sampling is non-informative and the response probability of unit i is ξi. Therefore, we can take τi = const
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(any constant), treat ξi as response probability, and proceed as in the case of known sampling probabilities

and informative non-response.

It is often the case in Web-based surveys that individuals respond more than once. Moreover, such respon-

dents may do so deliberately, in order to influence the survey results, and without disclosing their multiple

responses. This is a challenging problem because those respondents may use different computers, or even the

same computer with a different IP address. A possible approach to dealing with this problem is to model

the number of times mi an individual i responds, for example, a log-linear model of the form log(mi) = η′vi

may be used. It should be noted, however, that this approach is feasible only as long as the population

means c̄ and respondents’ values ci are available and truthfully reported by the respondents.

5 Model testing

A crucial question regarding any statistical procedure is whether it can be tested. Contrary to the common

perception that it is impossible to test whether the nonresponse is ignorable, we contend that under the

present approach this is not true. Notice that we have observations from a model fitted to the responding

units so that we are basically faced with the classical problem of testing the goodness of fit of observed

data to an underlying hypothesized model. The argument in favor of the claim that the model cannot be

tested is that it may be the case that there is more than one combination of a population model and a

sampling or response mechanism yielding the same respondents models, such that the respondents model is

not identifiable or weekly identifiable. Pfeffermann and Landsman (2011) provide conditions under which

the respondents model is identifiable, with references to other related studies. On the other hand, notice the

role of the constraints that the approach proposed in this paper relies upon. Indeed, as discussed in Section

3 and illustrated in Section 6, if the number of the constraints is deficient, alternative models may better fit

the observed data.

Hosmer-Lemeshow-Type Testing

Following Pfeffermann and Landsman (2011), Pfeffermann and Sikov (2011) applied several goodness of fit

tests to test the respondents model for the case where the outcome is continuous. Below we describe the

application of the Hosmer and Lemeshow (1980, 2000) test statistic for the case of a binary outcome, which

performed well in our simulation study. To construct this test statistic, the sample is partitioned into G

groups of approximately equal size, based on the predicted probability of ‘success.’ The test statistic is then

defined as

Ĉ =

G∑
k=1

(ok − nkµ̄k)2

nkµ̄k(1− µ̄k)
, (4.3)

where ok is the number of observed ‘successes’ in group k, nk is the size of the group, and µ̄k is the mean

number of the estimated probabilities of success therein, µ̄k =
∑
i∈Gk

µ̂i/nk, where Gk is the kth group, and

where µi = Pr(yi = 1, Ii = 1, Ri = 1|xi).
The conditional probability of observing yi, given that i ∈ R and given its covariate values is

Pr(yi|xi, i ∈ R;β,γ) ∝ Pr(yi|xi;β)τ(xi, yi)Pr(Ri = 1|xi, yi;γ)
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and is estimated as follows. First, we estimate Pr(yi|xi) by ŷi = logit−1(β̂′xi). Next, τ̂(x, y = 1) is obtained

by interpolation of the τ̂(xi, yi) values at the points {xi : yi = 1}. Similarly, τ̂(x, y = 0) is obtained. Denote

p1,i = ŷiτ̂(x, y = 1)Pr(R = 1|yi = 1, xi, γ̂) and p0,i = (1 − ŷi)τ̂(x, y = 0)Pr(R = 1|yi = 0, xi, γ̂). Then

ŷ∗i = p1,i/(p1,i + p0,i) is the estimate of the probability Pr(yi|xi, i ∈ R).

Hosmer and Lemeshow (1980) found through an empirical study that their test statistic follows approximately

a χ2
(G−2) distribution under the null hypothesis that the model fits the data. We verified in our empirical

study in Section 6 that a similar result holds in the case of our model.

6 Imputation of Non-Respondents’ Data

In this section, we propose methods for imputation of the non-respondents data, depending on the whether

the auxiliary variables x are available for the non-respondents. The goal is to impute observations for each

subject in the non-respondents set Rc in such a way that the distribution of the variables in the combined

data R∪Rc is the same as in that in the original sample, including the unobserved data.

Let us denote the conditional distribution of the response variable given the covariates and given unit i not

responding by fnr(yi|xi), and let ρi = ρ(yi,xi; γ) = E(Ri = 0|yi,xi; γ). An analogue of of (2.3), and similar

to (20) of Pfeffermann-Sikov (2011) is fnr(yi|xi) ∝ (1− ρi)fs(yi|xi), leading to

fnr(yi|xi) ∝
1− ρi
ρi

fr(yi|xi). (6.1)

Similarly

fnr(xi, yi) ∝
1− ρi
ρi

fr(xi, yi), (6.2)

and

fnr(xi) ∝
1− ρi
ρi

fr(xi). (6.3)

Let p̂(r) be the EL estimates obtained according to the method described in Section 4, and let p̂(nr) be

the corresponding estimates of the multinomial parameter characterising the joint distribution in the non-

respondents set of the variables.

Consider now the following two scenarios below.

Scenario 1: The explanatory variables xi not available for non-responding units.

From (6.2), we get

p̂(nr) ∝ (1− ρ̂i)ρ̂i−1p̂(r)i . (6.4)

Thus, under Scenario 1, data forRc can be imputed by drawing n−r independent observations i(1), . . . i(n− r)
from Multinomial(p̂

(nr)
1 , . . . , p̂

(nr)
r ). We now have the two alternatives below.

(a) Take (yi(1),xi(1)), . . . , (yi(n−r),xi(n−r)) as the imputed data.

(b) Impute the covariates xi(1), . . . ,xi(n−r) as in (a) and then independently draw yi(j) for each i(j) from

the estimated model fnr(y|x). Note that informative non-response and sampling alter the model in

such a way that even if the population model f(y|x) is one of the familiar generalised linear models,

such as linear or logistic regression, the distribution fr(y|x) may be very different. One possibility is
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to estimate fnr(y|x) non-parametrically (e.g., using smooth kernel regression, with weights given by

(6.4)) and use this estimated model to draw the imputed y values.

Scenario 2: The explanatory variables xi are available for both responding and non-responding units.

In this case, we independently draw yi for each i from the estimated model fnr(y|x), similar to (b) above.

Sub-section 7.5 gives simulation results the imputation.

7 Simulation Study

7.1 Simulation set up

In order to test the performance of our proposed approach, we conducted a small simulation study as follows.

A population of values xj , j = 1, ..., 10000 was generated from gamma(2, 2). For each value xj , a binary

response yj was generated with Pr(yj = 1|xj ;β) = logit−1(−0.8+0.8xj). Next, a value of a design variable Z

was generated as zj = max[(xj+1.1)(2yj+1)+νj , 0.01], where νj ∼ Uniform(−0.2, 0.2). Values of calibration

variables c were generated as cj = (1, xj , yj , xjyj , x
2
j , x

2
jyj)

′+εj , with εj independently drawn from N(06, I6).

(Here, 0m and Im respectively are the m-dimensional zero vector and the m×m identity matrix.) A sample

was drawn by Bernoulli sampling (Ij
indep∼ Ber(πj)), where πj = min(3500z−1j /

∑10000
k=1 z−1k , 0.9999). The

sampled units were classified as respondents/non-respondents with Pr(Rj = 1) = ρj = logit−1(γ0 + γxxj +

γyyj); γ0 = 0.07, γx = 0.5, γy = 1.5. The process of generating the population values and selecting the sample

and the subsample of respondents was repeated independently 500 times. (The x-values were generated only

once). We used kernel smoothing to obtain estimates of Es(wi|yi;xi) = Er(wi|yi;xi) by applying kernel

regression of wi on (yi, xi) and their interaction (see next sub-section). For each sample of respondents we

estimated the vector coefficients (γ,β) and the variance of the estimators using the procedures described in

Section 4.

7.2 Smoothing Weights By Kernel Smoothing

In our simulation study, we used kernel smoothing to obtain estimates of Es(wi|yi;xi) = Er(wi|yi;xi) by

applying kernel regression of wi on (yi, xi) and their interaction. Since in our case, yi attains only two values,

0 or 1, the smoothing was applied to estimate Er(wi|yi = 0;xi) and Er(wi|yi = 1;xi) separately. The kernel

regression was performed using the function npreg from the R package np at its default setting. Specifically,

Nadaraya-Watson kernel smoothing was performed, with a bandwidth automatically calculated using the

method of Racine and Li (2004) and Li and Racine (2004).

7.3 Estimation of the models’ parameters

Tables 1 and 2 below give mean estimates from the simulation study described in subsection 6.1. Table 1 gives

the mean estimates of the response probability model parameters (γ) using the proposed method (CREL),

as well as their empirical standard deviation, and the the square root of their mean variance estimates, using
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the inverse information and the bootstrap methods. The BS numbers below are being updated and may

change a little.

Mean Estimates Empirical std Square Root Mean

Variance Estimate

Square Root Mean

Bootstrap Variance

Estimate

γ̂0 γ̂x γ̂y γ̂0 γ̂x γ̂y γ̂0 γ̂x γ̂y γ̂0 γ̂x γ̂y

0.736 0.499 −1.523 0.214 0.212 0.319 0.220 0.212 0.339 0.291 0.223 0.404

Table 1: Estimation of γ. Mean Estimates, Empirical Standard Deviations (std), Square Root of Mean

Variance Estimates by Inverse Information and by Bootstrap. (γ0 = 0.7, γx = −1.5, γy = −1.5, 3063 ≤ n ≤
3954, 2039 ≤ r ≤ 2636). Results from 300 main samples.

Table 2 below compares five mean estimates of the population model parameters β: (1) the unweighted

full sample estimate (hypothetically assuming the data for the non-respondents were obtained), (2) the

weighted full sample estimate, (3) estimation using the respondents’ data, ignoring the weights and the

non-ignorability of the non-response, (4) estimation using the respondents’ data and their sampling weights,

(5) using the proposed method (CREL).

Method Mean Estimates Empirical std Square Root Mean

Variance Estimate

β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

FR UW −1.902 0.802 0.073 0.071 0.073 0.071

FR PW −0.798 0.799 0.073 0.072 0.075 0.072

MAR UW −2.665 0.966 0.105 0.093 0.111 0.095

MAR PW −1.559 0.962 0.106 0.093 0.113 0.097

CREL −0.797 0.799 0.178 0.104 0.188 0.108

APW −0.799 0.800 0.180 0.108 0.190 0.112

FR= Full response, estimators obtained from all sample data; UW= Unweighted; PW= Probability

weighted by sampling weights; MAR= estimators obtained when ignoring response mechanism.

CREL= proposed method: constrained respondents’ EL. APW = proposed method: adjusted

probability weighted (sampling weights divided by response probabilities (estimated by CREL).

Variance estimation of the CREL and APW estimates based on parametric bootstrap from 60 main

samples.

Table 2: Estimation of β: Mean Estimates, Empirical Standard Deviations (std) and Square Root of Mean

Variance Estimates. (β0 = −0.8, β1 = 0.8, 3395 ≤ n ≤ 3625, 2227 ≤ r ≤ 2455).
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7.4 Non-parametric Estimation of f(y|x)

One hundred samples were generated as follows: N = 20, 000 x variables were generated once from Γ(2, 2),

and then N y values were generated from the non-linear model y = g(x) + e where g(x) = −0.3 +

max(0,min(5, 1 + 0.1x + 0.7x2)) and where e ∼ N(0, 32). A non-informative sample was then drawn using

Poisson sampling. Non-response was generated from the model logit(Pr(R = 1|y, x)) = 0.35 + 0.05x− 0.5y.

The generation process was repeated 100 times. The sample size ranged from 4,839 to 5,115. The number

of respondents ranged from 1,992 to 2,213. The response rate ranged from 0.40 to 0.44.

Figure 1: Non-parametric Estimation of Population Model.
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Estimates of the regression parameter: As discussed in Sub-section 4.2.2, estimation of the regression

parameter β can be valid even when the assumed model does not hold. In that case, β is viewed as only a

descriptive parameter as defined by the population estimating equation. Both approaches proposed in this

paper: CREL (constrained respondents’ EL) and APW (adjusted probability weighted) give good estimates.

The table below compares estimates from the 100 samples described above, by these methods to estimates

when ignoring the response mechanism (while still using the sampling weights).

MAR-Weighted = estimators obtained when ignoring response mechanism, but using the sampling

weights. CREL= proposed method: constrained respondents’ EL. APW = proposed method: adjusted

probability weighted (sampling weights divided by response probabilities (estimated by CREL).

Estimation of the response probability model:

The 10% and 90% quantiles of the ratio ρ̂i/ρi of the estimated probability of response to the true one were

0.95 and 1.06, respectively.
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β0 β1 se(β0) se(β1)

Finite Population 0.21 1.50 0.04 0.03

MAR-Weighted −1.23 1.07 0.09 0.10

CREL 0.21 1.51 0.16 0.13

APW 0.26 1.47 0.31 0.23

Table 3: Mean estimates from 100 samples

γ0 γx γy se(γ0) se(γx) se(γy)

True 0.35 0.05 −0.50

elcl 0.38 0.04 −0.51 0.18 0.10 0.06

Table 4: Estimates of the response model parameters

Percentile 10% 20% 30% 40% 50% 60% 70% 80% 90%

ρ̂i/ρi 0.95 0.97 0.99 1.00 1.00 1.01 1.02 1.04 1.06

Table 5: The ratio of estimated response probability to its true value

7.5 Imputation Results

In practice, y is not observed for the non-respondents. However, when conducting a simulation, we do know

the missing observations and thus we can compare the distributions fs(y|x) and fimp(y|x).

To illustrate the performance of the imputation procedure when the covariates are not available, we generated

100 samples in the same manner as described in Sub-section 7.1. The average percentage of units with y = 1

was 22.1% in the full samples and 22.6% in the imputed data. We have also plotted the empirical CDF

(eCDF) of x given y in the full sample, separately for y = 0 and y = 1, and compared them to the

corresponding eCDF of the imputed data. Averaged over 100 samples, the curves were practically identical.

Therefore, we also compared the same eCDFs over just three samples. See Figure 2 below.
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Figure 2: Comparison of the distribution of x by y in the full sample and in the imputed data, averaged over

three samples. (Solid line: Full sample, dotted line: Imputed)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y = 0

t

F
(t

)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y = 1

t
F

(t
)

It appears that fimp(x) ≈ fs(x) and fimp(y|x) ≈ fs(y|x), which suggests that fimp(x, y) ≈ fs(x, y).

7.6 Discussion of Results

Parametric Estimation: Both the CREL estimates and the APW estimates were virtually unbiased,

whereas ignoring the informativeness of the non-response (viz. assuming MAR) showed large biases. (Note

that the ‘full response’ estimates are shown for reference only, and are impossible to obtain in real life.) The

performance of the two proposed methods remains good even when the population model is misspecified, or

even when no such model is specified, and f(y|x) is estimated non-parametrically.

The parametric bootstrap variance estimates of the population model parameter were good as well.

7.7 The Role of the Constraints

An important element of the proposed method is the use of the known population mean of a vector of

variables ci. Ideally, the components of ci should approximate target model’s variables. In this section,

we study the impact of the choice of the variables ci and their proximity to the target model’s variables.

A 6-dimensional c = (c0, c1, c2, c3, c4, c5)′ variable was created where ci = (1, xi, yi, xiyi, x
2
i , x

2
i yi)

′ + εi and

where the εi were independently generated from a multivariate normal N(06, σ
2
cI6), for a number of values

of σc. Additionally, we tested the case where there was no correlation between c and the response model

covariates. To avoid numerical problems with very large numbers, the ci were divided by a constant so

that their population values were in the [−1, 1] range. The table below demonstrates the dependence of the

accuracy of the model parameters estimates on the closeness of the survey calibration variables to the ones

in the response model.
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β0 β1 γ0 γx γy se(β0) se(β1) se(γ0) se(γx) se(γy)

Simulation value (‘True’) −0.800 0.800 0.700 0.500 −1.500 — — — — —

σc = 0.5 c0, c1, c2, c3, c4, c5 −0.804 0.802 0.702 0.501 −1.491 0.119 0.086 0.165 0.177 0.198

σc = 0.5 c1, c2, c3, c4, c5 −0.804 0.802 0.702 0.501 −1.490 0.119 0.086 0.164 0.177 0.197

σc = 0.5 c0, c1, c4 −1.012 0.754 1.880 0.353 −1.660 0.882 0.215 2.091 0.407 3.67

σc = 0.5 c2, c3 −0.796 0.797 0.699 0.516 −1.501 0.135 0.092 0.180 0.226 0.223

σc = 0.5 c2, c3, c5 −0.800 0.800 0.705 0.505 −1.497 0.128 0.091 0.181 0.222 0.214

σc = 1.0 c0, c1, c2, c3, c4, c5 −0.802 0.800 0.712 0.507 −1.502 0.177 0.107 0.223 0.214 0.317

σc = 1.0 c1, c2, c3, c4, c5 −0.801 0.800 0.712 0.507 −1.503 0.176 0.107 0.222 0.216 0.316

σc = 1.0 c2, c3 −0.786 0.784 0.716 0.539 −1.523 0.248 0.143 0.251 0.360 0.418

σc = 1.0 c0, c1, c4 −1.098 0.761 1.759 0.314 −1.256 0.894 0.210 2.076 0.433 3.830

σc = 1.0 c2, c3, c5 −0.790 0.793 0.723 0.517 −1.522 0.201 0.115 0.232 0.265 0.362

σc = 9.0 c0, c1, c2, c3, c4, c5 −0.893 0.733 1.358 0.710 −1.852 0.752 0.318 1.799 1.312 2.583

σc = 9.0 c1, c2, c3, c4, c5 −0.856 0.727 1.500 0.708 −2.060 0.751 0.315 1.878 1.274 2.632

σc = 9.0 c0, c1, c4 −1.115 0.717 1.445 0.857 −0.922 1.010 0.406 2.167 1.664 4.039

σc = 9.0 c2, c3 −0.800 0.671 1.526 1.278 −2.112 0.832 0.467 2.215 2.269 2.746

σc = 9.0 c2, c3, c5 −0.764 0.628 1.656 0.778 −2.023 0.796 0.371 1.864 1.592 2.92

Uncorrelated c = (c0, . . . , c5)′ −1.051 0.753 1.143 2.280 −1.310 1.096 0.603 2.826 2.877 4.015

Table 6: Relationship between σc and accuracy of estimates. Mean estimates and standard errors (se) from

300 samples in each case.

7.8 Discussion of Results

The results in Table 3 demonstrate the importance of choosing the ‘right’ constraints. Note that using the

pair c2 and c3 alone performed rather well, whereas the combination of c0, c1 and c4 resulted in sizeable bias.

This is explained by the fact that it is the conditional dependence of y given x that matters and in our case,

c2 and c3 are proxies for y and xy, respectively. Therefore, to estimate the population model well, constraint

variable should be chosen so that the conditional distribution of y given x is accounted for.

As the case c2, c3 with σc = 1 shows, even though only two constraints were used, the estimates are good

(though less precise than when more constraints are used). Even with large noise (σc = 9) the performance

was acceptable.

Finally, note that in our approach, in addition to the respondents data, only population means of the

constraints variables need to be known.

Remarks: The information provided by c0 = 1 + ε is essentially the same as that already provided by

the r-constraint. Therefore, the c0, c2-based estimates (and the c0, c1-based estimates) appear to be far less

accurate than the c2, c3-based estimates.
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7.9 Model testing—Numerical Results

7.9.1 Distribution of Test Statistic under H0

Figure 1 below, shows the empirical distribution of the Hosmer-Lemeshow-type test statistic with G = 10

nearly equal groups, calculated from 500 samples. Recall that if x1, . . . , xn are independent draws from a

χ2
d distribution, the log-likelihood of d is 1

2

∑
log xi − nd

2 log 2 − log Γ(d2 ) + H(x1, . . . , xn), where Γ is the

Gamma function and H(x) is a function of x1, . . . , xn alone. We have estimated the degrees of freedom

as approximately 8.0991 using maximum likelihood estimation, and have included a QQ-plot, where the

observed quantiles were compared to the expected quantiles from a χ2
8 distribution.

Figure 3: Distribution of Test Statistics (G = 10 equal size groups) under H0 : logit(ρi) = 0.7+0.5xi−1.5yi;

Comparison to a χ2
8 and to a χ2

8.099 Distributions. (Based on 500 simulated samples.)
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The two figures show a close approximation of the empirical distribution of the test statistic (with G = 10

groups) to the hypothesised χ2
8 distribution, thus validating the conjecture of Hosmer-Lemeshow (2000).

7.9.2 Power of the test statistic

In order to explore the power of the proposed tests, we tested the null hypothesis that correct response

model was of the form logit(ρi) = 0.7 + 0.5xi − 1.5yi when in fact the data were generated using a response

model of the form logit(ρi) = 0.7 + 0.5xi − 1.5yi + ax2i + bxiyi, for a few combinations of a and b. In these

simulations, the population model used to generate the data was log[Pr(y = 1)/Pr(y = 0)] = β0 + β1x, with

β0 = −0.8, β1 = 0.8. It was assumed the form of the population model was known, but its parameter values

were not. Table 4 below shows the rejection rates using the proposed test statistics with G = 10 and G = 20,

at significance levels α = 0.05 and α = 0.10, for these combinations (labelled as 0, . . . , 24).
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Outlier Samples. When assumptions made while fitting a model are far from being true, the estimation

process may result in estimates of the population model’s parameters having extremely high absolute values.

In our simulations this was also accompanied with the estimated probability of ‘success’ of the dependent

variable (i.e., E(y)) being either 0 or 1. We refer to such samples as ‘outliers’ and reject the hypothesis that

the model fits.

Correct Model
Rejection Rate Percent

G = 10 G = 20 Outlier

Label a b α = 0.05 α = 0.10 α = 0.05 α = 0.10 Samples

0 0.0 0.0 0.0480 0.1020 0.0340 0.0880 0.0

1 0.0 -1.0 0.0660 0.1240 0.0700 0.1120 0.0

2 0.0 -1.2 0.0900 0.1380 0.0660 0.1260 0.0

3 0.0 -1.3 0.1100 0.1580 0.1140 0.1620 0.0

4 0.0 -1.5 0.2000 0.2620 0.1660 0.2180 0.2

5 -0.5 0.0 0.1400 0.2380 0.0860 0.1520 0.0

6 -0.5 -1.0 0.6700 0.7180 0.6060 0.6540 2.4

7 -0.5 -1.2 0.7420 0.7840 0.7060 0.7380 7.4

8 -0.5 -1.3 0.8000 0.8340 0.7500 0.7840 11.2

9 -0.5 -1.5 0.8600 0.8820 0.8380 0.8600 25.0

10 -0.6 0.0 0.2040 0.2640 0.1440 0.2100 0.0

11 -0.6 -1.0 0.7280 0.7840 0.7040 0.7300 3.6

12 -0.6 -1.2 0.8100 0.8460 0.7880 0.8120 13.0

13 -0.6 -1.3 0.8560 0.8700 0.8340 0.8520 18.6

14 -0.6 -1.5 0.9020 0.9220 0.9020 0.9080 26.2

15 -0.7 0.0 0.2620 0.3500 0.2380 0.2940 0.0

16 -0.7 -1.0 0.8180 0.8380 0.7700 0.8020 7.0

17 -0.7 -1.2 0.8820 0.9020 0.8480 0.8700 17.2

18 -0.7 -1.3 0.8960 0.9080 0.8700 0.8800 21.6

19 -0.7 -1.5 0.9440 0.9540 0.9340 0.9380 30.2

20 -0.8 0.0 0.3900 0.4720 0.3200 0.3900 0.0

21 -0.8 -1.0 0.8500 0.8780 0.8300 0.8500 11.6

22 -0.8 -1.2 0.9080 0.9240 0.8800 0.9000 16.8

23 -0.8 -1.3 0.9360 0.9480 0.9220 0.9340 20.8

24 -0.8 -1.5 0.9600 0.9680 0.9460 0.9560 27.2

Table 7: Rejection rate and target model estimates when assuming (fitting) the response model logit(ρi) =

0.7 + 0.5xi− 1.5yi, while the correct response model is logit(ρi) = 0.7 + 0.5xi− 1.5yi +ax2i + bxiyi, assuming

the χ2(G− 2) distribution under the null hypothesis.

Note that with the number of groups G = 10, the observed rejection rates when the model was correctly
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assumed (Model 0 in the table), were close to the nominal rates (0.05 and 0.10).

Remark 5. As the dissimilarity between the correct model and the model assumed under the null hypothesis

(i.e., as the distance between (a, b) and (0, 0)) grows, so do the rejection rates. The figure below illustrates

this point.

Figure 4: Rejection rates when the correct response propensity model is Pr(R = 1) = (1 + exp(−{0.7 +

0.5x− 1.5y + ax2 + bxy}))−1 while assuming a = b = 0.
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7.10 Discussion of Results

The Hosmer-Lemeshow-type test statistic with G = 10 groups showed an empirical distribution very close

to χ2
8. Testing with this test statistic and 10 groups at significance levels 0.05 and 0.1 resulted in rejection

rates very close to the nominal rates, when the null hypothesis was true. The test statistic’s power to reject

the null hypothesis ( H0) is clearly dependent on how far the correct model is from the one under H0. This

was illustrated by adding a quadratic term x2 and its interaction with y, viz. ax2 +bxy, for a range of values.

as the distance between a and b and the origin (0, 0) grows, so do the rejection rates. In extreme cases,

the fitted model exhibits a behaviour similar to complete separation, with the predicted probabilities at the

endpoints of the interval [0, 1].
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8 Conclusions

We have developed and illustrated a general procedure for analysing complex survey data subject to infor-

mative sampling and NMAR nonresponse, with minimal assumptions. In fact, the only parametric model

assumed is the model for the response probabilities as illustrated. Contrary to common misconception, this

model can be tested with good power.

The proposed approach is numerically simpler and much more stable than fully parametric alternatives.

The results from our simulation study demonstrate the good properties of the method for sufficiently large

number of respondents, which is the common situation in large scale surveys used for the production of

official statistics.
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