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Sustainability is a broad concept which embodies social, economic and environmental

concerns, including the possible consequences of greenhouse gas (GHG) emissions and

climate change, and related means of mitigation and adaptation. The reduction of energy

consumption and emissions are key objectives which need to be achieved if some of these

concerns are to be addressed. As well as being an important component of sustainability

in other sectors, a good transport system needs to be sustainable in its own right. Energy

consumption and GHG emissions are important issues within the transport sector; in the

European Union (EU), for example, transport is directly responsible for between 25 and 30

percent of all carbon dioxide (CO2) emissions, and the inclusion of indirect (Scope 2 and

Scope 3) GHG emissions may increase this proportion further. If reduction targets are to

be met, it may be necessary to encourage behavioural change, including modal shift from

those modes of transport which are comparatively highly polluting, towards those modes

which pollute less. Rail is potentially a suitable target for such modal shift from road

transport (notably the private car for passenger travel) and, in some case, from short-haul

and domestic aviation. However, modal comparisons are often based on average data,

and are reliant on a number of assumptions. There are likely to be some circumstances

where modal shift towards rail makes more sense than others, but the use of average data

does not enable policy makers to be discerning. It should also be noted that many modal

comparisons are also based purely on operational energy consumption and emissions, and

neglect to take the whole life-cycle in to account. Embedded energy and emissions from

the construction of vehicles and infrastructure can be quite significant, as can the energy

consumption and emissions from vehicle idling in the case of public transport modes.

After considering the concept of environmental sustainability, this research begins by

reviewing existing energy consumption and emissions data for vehicle operation, where it

is noted that data for cars in Europe are quite comprehensive. Manufacturers are obliged

to publish fuel consumption and emissions data for each model of car they sell, although

the type approval tests do not reflect real-world performance. Studies are reviewed which

suggest that the gap between the tests and the real-world has been widening in recent

years. The gap appears to be independent of the size of vehicle, but is larger for hybrid

vehicles than it is for those powered solely by a petrol or diesel internal combustion

engine. Data for trains are less comprehensive, and that data which are available are

often based on a limited empirical sample, or simulated data for which a number of

assumptions have been made. Sometimes, the details of the measurements taken or

simulation parameters used are unclear. As a result, published data for a particular type

of train in the literature are sometimes found to vary significantly. In order to make

more informed comparisons between rail and other modes, two large empirical datasets

have been analysed. Two UK Train Operating Companies (TOCs) have also made

data from energy metering systems on-board their electric trains available, which have

been used to analyse the actual energy consumption of different trains over a number

of different routes. The sample size is far larger than that found in literature to date,

and it has been possible to consider variation between routes and service types. The
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basic principles of simulating the energy consumption (and related emissions) of a train

have also been illustrated, and a software tool has been developed for Arup so that it

can now make some estimate of operational energy consumption and emissions for a

given train over a given route. The aforementioned empirical data have also been used

to validate the tool and suggest some appropriate simulation parameters. A review of

existing literature concerning whole life-cycle analysis has been undertaken. It is clear

that life-cycle costs vary significantly but in general, the overall life-cycle costs of rail

appear to be higher than those for any other mode. The biggest additional factors appear

to be the embedded carbon and energy in the infrastructure, particularly for a system

comprising a lot of bridges, tunnels and large underground stations. For the vehicles

themselves, trains typically have a longer lifespan than cars, which reduces the embedded

carbon and energy as functions of time. When comparisons are made between modes,

passenger-km is a metric which is often chosen, because it helps account for some of

the fundamental differences between modes, including the fact that public transport

modes usually use vehicles which are much bigger than the private car. In order to make

comparisons on this basis, however, something about the load factor must be known. The

sensitivity to load factor is demonstrated, and the earlier empirical data analysis is used

to illustrate the benefits of longer trains. A discussion then follows about the potential

pitfalls of making comparisons purely on a per passenger-km basis. This thesis ends by

summarising some of the findings. Some consideration is given towards the future and

the fact that technological developments are being made in both the motor and the rail

industries.
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A dirty mystery

Snaking along the tracks, secretly venomous,

To our pockets and to our skies

Whilst the rats chug along one behind the other

through smog they spew, spray and stream.

An army of rats would slay a snake,

chew on through it

or so it would seem.

The cost of creation is high, rotting the above from hidden bunkers that

no one sees.

Scales are forged and tunnels mined,

Dyed blotches open up and the snakes hidden wrath

grows tremendous as it burrows into the earth.

Out of sight it slogs through the dark heat, fuel burns fiercely

And though green hills and valleys stay clear and clean

silent death glugs out of the dark.

Meanwhile the rats learn to lick their wounds,

They run wild without much strain,

bred better engineered, they evolve greener brains

while the ancient snakes still move unchecked in the darkness.

Still nothing is known.

Age of metal and flame must wain

And among bricks and glass and rows of screens

A truth is chased in a blue room.

In that tiny space

non-descript,

questioned will be asked.

And the answers may change all that occurs

outside those plastered walls.

Names are kept secret, no one will take the blame,

For we all ride, need places to gain and life to attain.

Keys will be pushed,

simulations will speak half-truths

until one day

all

is revealed.

(Maté Jarai, Faculty of Humanities, written about this research in 2012 for The Litmus Project at the

University of Southampton)

“The Lord God put the man in the Garden of Eden to take care of it and to look after it.”

(Genesis 2:15 - Contemporary English Version of the Bible)

“Society grows great when old men plant trees whose shade they know they shall never sit in.”

(Anonymous Greek Proverb)

xxv
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Chapter 1

Setting the scene

1.1 Introduction

Sustainability is an important concept; indeed, it has been suggested that “sustainability

is undoubtedly the biggest challenge facing engineering in the 21st century” (Pantelidou,

Nicholson, and Gaba, 2012). Amongst other things, it is concerned with worldwide

economic and political stability, climate change, energy security and transport. Many of

these issues are interlinked, although some of them may be seen to be more important

than others.

In this chapter, concepts of sustainability are briefly discussed, where it is noted that

environmental concerns form a key tenet. Sustainability is a challenge for the transport

sector in its own right, and also something which transportation systems can influence in

other sectors. Different ideas of what a sustainable transport system might look like are

considered. If sustainability (or at least some measure thereof) is viewed as an important

goal then it can help to define more specific objectives which should be considered as part

of planning and policy-making processes. Key objectives within the area of environmental

sustainability are introduced, including the reduction of emissions, energy and resource

consumption, the minimisation of noise and visual intrusion and effective management

of land usage. In light of concerns about climate change, the need for a reduction in

greenhouse gas (GHG) emissions has come to the fore and will be the main focus of this

thesis, along with energy consumption which, to some degree, is directly related.

This chapter presents data about GHG emissions levels both globally and from the UK,

considering the contribution of the transport sector and highlighting recent trends. For

meeting the ambitious targets for reducing GHG emissions, the transport sector has

a key role to play, and progress has not initially been encouraging. It is shown that

road transport is currently the dominant mode of transport in the UK, both in terms of

passengers and freight carried and in terms of overall distances covered. This is reflected

in the breakdown of GHG emissions from the transport sector.

1
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Although there have been, and will continue to be, many technological advances,

behavioural change will also be required if the reduction targets are to be met. Appropriate

behavioural change may include modal shift to forms of transport producing fewer GHG

emissions. Focussing particularly on passenger transport, the potential of rail to be

a suitable target for modal shift from more polluting modes is considered. Before

considering the viability of any policies to encourage this modal shift, it is necessary to

assess rail’s potential in terms of emissions per passenger. Although it is clear that, on

average, travel by train is less polluting than travel by car or domestic aviation, there are

a number of variables and assumptions made which mean that the situation for a given

journey could vary considerably, and more detailed research is required before blanket

modal shift policies could be recommended. The key questions are the extent to which

the railway really does offer a more efficient and less polluting alternative to other modes,

and in which context(s) it has the greatest advantage.

1.2 The concept of sustainability

The Brundtland Commission succinctly defined sustainable development as “development

that meets the needs of the present without compromising the ability of future generations

to meet their own needs” (Brundtland, 1987). This well-known definition encompasses

three key elements — economic, environmental and social — also known as the triple

bottom line (Pantelidou, Nicholson, and Gaba, 2012). When striving for sustainability,

whether in new development or by making changes to existing developments or lifestyle

habits, all three areas should be considered.

1.3 Sustainable transport

Transport is an issue which affects us all. The Department for Transport (DfT) (1998)

notes that most of us travel every day, even if only locally, and that we depend on

transport to meet our wider needs. The DfT also indicates that our quality of life is

dependent on transport, and that an efficient transport system is necessary for a strong

and prosperous economy. In other words, transport has a role to play in the sustainability

of other sectors and is not just a concern in its own right.

Because of this, and because decisions tend to be made in the context of larger policy

goals, transport is difficult to view in isolation. The transport sector has been described

as a complex social and economic system which is difficult to address comprehensively

(Goldman and Gorham, 2006).

Nonetheless, there have been various attempts to develop and clarify the notion of

“sustainable transport.” Some envision sustainability as a pathway, whilst others envision
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sustainability as an end-state. In the latter case, attempts have been made to define what

a sustainable transport system might look like, or a particular outcome which would

mark the attainment of sustainability.

A report for Transport Canada (The Centre for Sustainable Transportation, 2005)

suggests that three types of definition of “sustainable transport” exist in literature —

economic, environmental and comprehensive. A definition proposed by Schipper is cited

by way of an example of a literal economist’s definition:

“Transportation where the beneficiaries pay their full social costs, including

those paid by future generations, is sustainable.”

(Schipper, 1996, cited by The Centre for Sustainable Transportation, 2005)

Although the term “social costs” is broad enough to encompass environmental and social

concerns, the way in which these are valued economically is left open to interpretation.

As a result, an extreme example is given where a transport system which kills people

could still be viewed as meeting this definition of sustainability if the value of human life

is low enough (The Centre for Sustainable Transportation, 2005). Even in the UK, the

road network is perhaps a case in point, with relatively little attention apparently paid

to the fact that there are around 2000 fatalities a year (in sharp contrast to the reaction

usually seen when there are fatalities on other modes of transport). The report is also

justifiably critical of the fact that such a definition is only concerned with the costs of a

transport system, not the services it provides, and the fact that an estimation of future

costs is often impractical.

Focussing on environmental sustainability, both Goldman and Gorham (2006) and The

Centre for Sustainable Transportation (2005) cite the definition of sustainable transport

proposed by the Organisation for Economic Cooperation and Development (OECD) in

the course of its Environmentally Sustainable Transport project:

“An environmentally sustainable transport system is one that does not

endanger public health or ecosystems and meets needs for access consistent

with (a) use of renewable resources at below their rates of regeneration, and

(b) use of non-renewable resources at below the rates of development of

renewable substitutes.” (OECD, 1996)

The problem with being concerned purely with environmental sustainability is that it

could be easy to lose focus on the triple bottom line encompassed by the Brundtland

definition of sustainability. Such an environmentally sustainable transport system could

theoretically be achieved using policies which involve great economic cost and this would

not be desirable. In this particular definition, some social concepts are embodied by the
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concerns for public health, eco-systems and the needs for access; however there remains

a danger when focussing purely on the environment that some social aspects — such as

affordable mobility — could easily be neglected.

Additionally, both Goldman and Gorham and The Centre for Sustainable Transportation

make the same observation that the OECD definition is rather negative, defining more

what a sustainable transport system is not, than what it is or should be.

By contrast, the comprehensive definition of sustainable transport developed by The

Centre for Sustainable Transportation and adapted by the European Union is seen as

much more positive, defining a sustainable transport system as one which:

• Allows the basic access and development needs of individuals

• Supports safety and human health

• Promotes equity within and between successive generations

• Is affordable, fair and efficient

• Offers choice of transport mode

• Supports a competitive economy & balanced regional development

• Limits emissions & waste within the planet’s ability to absorb them

• Uses resources at rates which permit renewal or substitution

• Minimises impacts on the use of land and the generation of noise

(The Centre for Sustainable Transportation, 2005)

On the positive side, this definition has been described as concrete, comprehensive and as

having received general political acceptance (The Centre for Sustainable Transportation,

2005). On the other hand, it is still arguably unclear how it would look in practice, and

has been criticised for being too ambitious in its breadth, with no guidance for balancing

competing objectives (Goldman and Gorham, 2006).

Although it can be helpful to have notions of what a sustainable transport system might

look like, the fact that it remains difficult to visualise in practice is perhaps why others

have chosen to see sustainability as a pathway rather than as an end-state. Rather than

having a fixed outcome, the focus is on being “more sustainable” than the present, as

measured by a defined set of indicators. Such indicators are said to have the advantage

of being relatively easily understood by policy makers and the general public, and of

being easy to conceptualise as specific policy initiatives (Goldman and Gorham, 2006).

The disadvantages may include the fact that a desired end-state may not be reached

within an acceptable timescale.
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Whether or not the choice is made to focus on an end-state definition of “sustainable

transport,” the formulation of specific policy initiatives is vital if sustainability is to

become anything more than wishful thinking. Hence, having considered some concepts

of sustainability, and the idea of the triple bottom line of economic, environmental

and social concerns, the next step is to consider how this might translate into a set of

meaningful objectives.

1.4 Sustainability objectives

Within the context of the triple bottom line, Pantelidou, Nicholson, and Gaba (2012)

have identified seven key sustainability objectives, which are given in Table 1.1.

Table 1.1: Suggested sustainability objectives and their relationship to the triple
bottom line (Source: Pantelidou, Nicholson, and Gaba, 2012)

Objective Environmental Social Economic

Energy Efficiency &
Carbon Reduction

! ! !

Materials & Waste
Reduction

! ! !

Maintained Natural
Water Cycle &
Enhanced Aquatic
Environment

! ! !

Climate Change
Adaptation &
Resilience

! !

Effective Land Use &
Management

! ! !

Economic Viability
& Whole-Life Cost

! !

Positive Contribution
to Society

!

Despite the fact that the focus of these objectives is specifically in the area of civil

engineering and geotechnics, they are a useful starting point when moving from sustainability

as a concept to something which can be put into practice. Table 1.1 usefully shows which

aspects of the triple bottom line (environmental, social and economic concerns) each of

the objectives may help address, although some of them are better defined than others.

For example, whereas energy efficiency is a clear objective, a “positive contribution to

society” is vague and open to interpretation.
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It could also be argued that this list of objectives is not sufficiently comprehensive,

especially for fulfilling some of the visions of sustainable transport. A notable omission

is the promotion of health and wellbeing, which, although mentioned by Pantelidou,

Nicholson, and Gaba. in their discussion about societal contribution, should arguably be

an explicit objective.

Whereas all of the objectives in Table 1.1 arguably apply to the transport sector, it might

be useful to consider a more specific set of objectives. As part of a project on sustainable

mobility, the World Business Council for Sustainable Development (WBCSD) identified

seven goals for a sustainable transport system:

• Reduce transport-related conventional emissions (carbon monoxide (CO), nitrogen

oxides (NOx), volatile organic compounds (VOCs), particulates, and lead) to levels

such that they cannot be considered a serious public health concern anywhere in

the world.

• Limit transport-related GHG emissions to sustainable levels.

• Significantly reduce the worldwide number of deaths and serious injuries from

road crashes. Efforts to do this are particularly needed in the rapidly motorizing

countries of the developing world.

• Reduce transport-related noise.

• Mitigate transport-related congestion.

• Narrow the mobility “divides” that exist today (a) between the average citizen

of the world’s poorest and the average citizen of the wealthier countries, and (b)

between disadvantaged groups and the average citizen within most countries.

• Preserve and enhance mobility opportunities available to the general population.

(WBCSD, 2004)

It could be argued that, in contrast to the objectives in Table 1.1, this list concentrates

too much on health and wellbeing, at the expense of other economic, environmental and

social concerns. Nothing is said about land or resource usage, and although mitigating

congestion and preserving and enhancing mobility opportunities may have economic

benefits, it would be possible to fulfil these aims without them (or worse, in ways which

incur an economic cost). Goldman and Gorham (2006) also argue that by focussing on

mobility, the WBCSD have ignored the systems in which transport sits and from which

it derives its economic value.

These potential shortcomings highlight the importance of keeping the bigger picture

in mind when focussing on achievable objectives. Inevitably, there will be conflicts



Chapter 1 Setting the scene 7

and a need to compromise, and no goal or objective should be viewed in isolation.

At the same time, no single transport policy can be expected to achieve the “holy

grail” of sustainability overall. For the purposes of this thesis, it is necessary to be

selective, because it is not feasible to thoroughly consider every potential objective and

resulting policy initiatives, and the industrial context of the work is an important priority.

Nonetheless, the intention is to remain mindful of the fact that sustainable transport is

a complex issue in a complex world and that what may seem beneficial in one context

could have other adverse consequences which need to be considered.

1.5 A focus on greenhouse gas emissions & energy efficiency

Even when considering the slightly narrower concept of “environmental sustainability”

(as opposed to sustainability in general), it remained necessary to focus this research

on specific objectives. A common theme amongst sustainability objectives and policy

initiatives is the reduction of GHG emissions, and this — along with energy efficiency —

is the main focus here.

A key reason for this is that, in contrast to some environmental objectives, GHG reduction

is a global issue. Noise from a transport system, for example, only affects those in the

vicinity, whereas the possible effects of high levels of GHGs in the earth’s atmosphere

have potential consequences for us all (albeit with some uncertainty and with varying

degrees of impact). GHGs are responsible for global warming, and warming of the climate

system is now said to be unequivocal (IPCC, 2007b). The effects of continued global

warming and climate change could be catastrophic, and are likely to include sea-level

rises and extreme weather patterns; to put it another way, climate change is a serious

global threat, and it demands an urgent global response (Stern, 2006).

In terms of quantity, carbon dioxide (CO2) is the main GHG (DECC, 2012b), although

it is common to consider carbon dioxide equivalent (CO2e), which takes into account the

effects of other (potentially more potent) GHGs, such as methane (CH4) and nitrous

oxide (N2O). Different GHGs have different warming influences (radiative forcing) due

to their different radiative properties and lifetimes in the atmosphere, and CO2e is a

common metric used to express the impact of these GHGs relative to the radiative forcing

of CO2 (IPCC, 2007b).

In October 2006 Sir Nicholas Stern, Head of the Government Economic Service, presented

a report to the British Prime Minister and the Chancellor of the Exchequer about the

Economics of Climate Change. Stern stated that “the risks of the worst impacts of climate

change can be substantially reduced if greenhouse gas levels in the atmosphere can be

stabilised between 450 and 550ppm CO2e” (Stern, 2006). To achieve such stabilisation,

annual emissions need to be reduced significantly; the UK Climate Change Act of
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November 2008 states that by 2050, GHG emissions must be reduced by 80% relative to

1990 levels (DfT, 2009a).

Although reducing GHG emissions is mainly perceived to be an environmental concern,

the long term social and economic benefits are significant when compared with the

alternative. The Stern Review suggests that reducing GHG emissions to avoid the worst

impacts of climate change could cost around 1% of global GDP per annum, significantly

less than the costs of adapting to and dealing with the impacts later (estimated to be

equivalent to losing at least 5% of GDP per annum).

Energy efficiency is directly linked to the reduction of GHG emissions, because a lot of

energy is provided by the burning of fuels which release GHGs. The transport sector

relies heavily on the internal combustion engine, and increasingly on electricity. Between

April 2011 and March 2012, the generation processes for over 70% of the electricity

generated in the UK directly resulted in CO2 emissions (DECC, 2012a) and in 2011 an

estimated 40% of UK CO2 emissions were from the energy supply sector (DECC, 2012b).

Although a shift to alternative energy sources will help reduce GHG emissions, reducing

the amount of energy consumed in the first place has the potential to make a big impact.

Energy efficiency is also a worthy sustainability goal in its own right, with both social

and economic concerns in addition to the environmental issues (which include resource

depletion and damage to natural habitat as well as emissions). A continuity of energy

supply is necessary for a functioning society, and the cost of energy is likely to rise as

resources become depleted (Pantelidou, Nicholson, and Gaba, 2012).

1.6 Greenhouse gas emissions & the contribution of the

transport sector

In 2004, according to the Intergovernmental Panel on Climate Change (IPCC) (2007),

global GHG emissions from anthropogenic sources amounted to 49Gt of CO2e, of which

the transport sector was responsible for 6.4Gt (13%). Figure 1.1 shows the breakdown of

global GHG emissions (in terms of CO2e) for that year, by source.

Most of these emissions are a direct result of energy consumption, with the remainder

being from some industrial processes and other anthropogenic interventions such as

land-use changes. Some datasets focus purely on the emissions arising directly from

energy consumption, and the relative contribution of each sector may not match that

in Figure 1.1. Similarly, the choice of metric (be that CO2e as a way of considering all

GHGs, or just CO2) is also important. For example, in 2004 (the year represented in

Figure 1.1), global carbon dioxide emissions from energy consumption amounted to 27.1

Gt of CO2 (U.S. Energy Information Administration, 2014) of which the transport sector

was responsible for 23% (IPCC, 2007a).
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Figure 1.1: A breakdown of the sources of global GHG emissions (Data Source:
IPCC, 2007b)

The National Audit Office has published a breakdown of the UK’s GHG emissions for

2005 (National Audit Office, 2008) which is shown graphically in Figure 1.2. Total GHG

emissions for the year were 0.66 Gt of CO2e, of which 0.56 Gt was from energy usage.

The remainder includes a small reduction (0.02 Gt of CO2e) due to land use changes and

forestry. It is noted that the uncertainty in estimating GHG emissions is relatively high;

the 95% confidence interval for the UK’s total GHG emissions in 2005 ranges between

0.62 and 0.72 Gt of CO2e.

Of the emissions resulting from energy usage, the vast majority (96%) were CO2 emissions

from fuel combustion activities. A breakdown of these CO2 emissions by source is shown

in Figure 1.3.



10 Chapter 1 Setting the scene

Figure 1.2: A breakdown of the sources of the UK’s GHG emissions in 2005
(Data Source: National Audit Office, 2008)

Figure 1.3: A breakdown of the UK’s sources of energy related CO2 emissions
in 2005 (Data Source: National Audit Office, 2008)
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Data for the transport sector do not generally take into account international aviation

and shipping, because there is no internationally agreed way of reporting them (although

some estimates have been made elsewhere). Despite the uncertainties in emissions data,

the data in Figure 1.3 tally well with the data given for the same year in a later Statistical

Release (DECC, 2013b), in which it is noted that the breakdown by sector is based on

the source of the emissions and not the point of use. Hence the transport sector will

also have contributed to emissions attributed to the energy sector in Figure 1.3. Simple

analysis of some data published by the Department for Transport about CO2 emissions

(DfT, 2013a) would suggest that when considering the point of use rather than the

source, the transport sector is responsible for an additional 3% of CO2 emissions. It is

assumed, although it is not explicit, that these data only relate to emissions from vehicle

operation, and that if infrastructure and life-cycle costs (such as vehicle manufacture

and maintenance) were taken into account then the contribution of transport to overall

emissions levels would be greater still.

The contribution of transport (by source) to domestic CO2 emissions in the UK compares

well with the bigger picture for Europe; in 2006, the transport sector produced 24.7% of

domestic CO2 emissions from the European Union (EU)-15 area countries as a whole

(DfT, 2009a). Within the EU-15 countries, some variation is observed. In 2006, Germany

produced the most CO2 emissions overall, of which transport only accounted for 18.2%.

At the other end of the scale, Luxembourg produced the fewest CO2 emissions, but

transport made up 57.6%. With the exception of Luxembourg, the UK’s GHG emissions

from domestic transport are comparable on a per-person basis to those of the other EU-15

countries. It is thought that the emissions for Luxembourg are disproportionately high,

because transport emissions are calculated from the amount of fuel sold; comparatively

low prices for road transport fuels mean that a lot of fuel in Luxembourg is sold to

non-residents (DfT, 2011).

1.7 Different emissions scopes

It has been seen that the allocation of emissions to a particular activity, company or

sector is not always clear cut, and decisions need to be made on whether emissions are

allocated at source, or at a point of use. The most widely accepted approach is to identify

and categorise emissions-releasing activities into three groups (DEFRA, 2009), known as

“scopes”. According to Ranganathan et al. (2004), the three scopes are defined as follows:

• Scope 1: Direct GHG emissions

• Scope 2: Electricity indirect GHG emissions

• Scope 3: Other indirect GHG emissions
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Scope 1 includes those emissions directly released into the atmosphere by a particular

activity. This might include the combustion of fuels (for example, in engines, boilers,

turbines or furnaces), “process emissions” such as those from cement or waste processing,

and “fugitive emissions” such as leaks from pipelines or air-conditioning (DEFRA, 2009).

Direct CO2 emissions from the consumption of biomass and GHG emissions not covered

by the Kyoto Protocol (such as chlorofluorocarbons (CFCs) and NOx) are not included

in Scope 1, but should instead be reported separately (Ranganathan et al., 2004).

The Scope 2 emissions of an activity, company, or sector are those arising from the

generation of any electricity consumed. Scope 2 emissions physically occur at the facility

where the electricity is generated (Ranganathan et al., 2004). Scope 3 is an optional

reporting category for all other indirect emissions (Ranganathan et al., 2004). Examples

of Scope 3 activities include extraction and production of purchased materials, and

transportation of purchased fuels.

1.8 Trends within the UK’s transport sector

In 1990, the transport sector in the UK was the direct source of 120Mt of CO2 (DECC,

2013b). Assuming that all sectors have an equal role to play in meeting the reduction

targets set out by the Climate Change Act 2008, the annual emissions from the transport

sector in 2050 should not exceed 20% of this value. In absolute terms, this means that

by 2050 the UK’s transport sector should be responsible for no more than 24Mt of CO2

emissions annually.

Between 1990 and 2007, however, CO2 emissions from the transport sector rose further,

peaking at 131.1Mt (Department for Transport, 2013b). Since 2007, CO2 emissions from

transport have fallen; they fell below 1990 levels for the first time in 2010. In 2011, the

transport sector in the UK was reported to be the direct source of 117.4Mt of CO2, and

although the recent downward trend is encouraging, it is clear that there is a long way

to go if the reduction targets are to be met. In fact, it is suggested that GHG emissions

from the transport sector are still rising across the EU, and may have risen yet further

were it not for the economic downturn (European Commission, 2014b). A key reason for

this is the continued development of EU member states, and an increase in the demand

for passenger travel and the transportation of freight.

For some years, road transport has been by far and away the most dominant source of

transport’s CO2 emissions, as illustrated in Figure 1.4. In 2011, road transport was the

source of 92% of CO2 emissions from the transport sector in the UK, and cars and taxis

alone accounted for 55%. It would therefore be reasonable to expect steps to reduce road

vehicle emissions to have a sizeable impact on overall emissions levels from the transport

sector. To this end, the EU has put in place a comprehensive legal framework to reduce

CO2 emissions from new light duty vehicles (cars and vans), as part of efforts to ensure
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it meets its GHG emission reduction targets (European Commission, 2014b). As part of

this, car manufacturers are obliged to ensure that — on average — their new cars do not

emit more than 130g of CO2 per kilometre by 2015, with further upcoming targets of 95g

CO2 / km. This EU legislation, along with increased consumer desire for lower running

costs following the recession, has meant that in the UK, average new car emissions were

26.5% lower in 2012 than they were in 2000 (SMMT, 2013).

Figure 1.4: A breakdown of CO2 emissions from UK transport by source (Data
Source: DfT, 2013b)

As Figure 1.5 shows, however, this trend towards significantly lower CO2 emissions from

cars has not yet been fully reflected in overall CO2 emissions levels from transport. The

fact that overall transport emissions have not fallen as fast as emissions from new cars,

despite the fact that cars are a dominant source of emissions, is likely to be for several

reasons. Firstly, new car emissions do not represent the UK car fleet as a whole; a car

typically has a 14 year lifespan before it is scrapped (SMMT, 2013), and some lag would

therefore be expected before these figures represented a majority of cars on the road.

Secondly, the CO2 emissions figure for a car is derived from the New European Drive

Cycle (NEDC) test (SMMT, 2013), which takes no account of further real-world affects

that can significantly impact fuel consumption and related emissions (DEFRA, 2013b).

Although the tests are currently under review, it is likely that the large reduction in

emissions shown by official figures are simply not reflected in real world driving; a more

in-depth discussion on this follows in Section 2.4. Lastly, there are other factors which

can counter the fact that cars have become less polluting. These include changes in

travel habits, such as increased mileage and an increase in congestion, although it has
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been shown that recent trends in the UK do not indicate an increase in the number of

trips or the trip distances (DfT, 2013c).

Figure 1.5: Trends in car emissions compared with overall transport emissions
(Data Sources: DfT, 2013b; SMMT, 2013)

Banister (2010) asserts that although technological innovation could help towards

achieving a reduction in emissions, it will not on its own be able to help meet the

targets set. Indeed, he claims that “significant reductions of CO2 emissions in transport

in the EU can only be achieved through behavioural change.” Potential behavioural

change strategies to help reduce transport’s share of CO2 emissions are many and varied.

They may include an overall reduction in demand for travel and the transportation

of freight, or changes to reduce distances covered. They may also include modal shift

towards those modes of transport which pollute less, which is why it is important to

consider the contribution of the different modes in more detail. The particular focus of

this thesis is rail, and whether it would make a suitable target for modal shift as part of

a strategy to reduce overall emissions.

However, it is noted that the evidence for the potential of public transport to reduce

emissions presents a complex and somewhat contradictory picture (Gross et al., 2009).

In the short term, this potential is likely to be limited by the fact that the capacity of

public transport would need to be greatly increased. In the longer term, the potential

for modal shift towards a public transport mode such as rail is dependent on the relative

viability, attractiveness and affordability of that mode for any given journey. Gross

et al. also go onto note that there is a strong link between the availability of convenient

and affordable public transport and patterns of land use that are conducive to lower
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reliance on private cars. Policies to maximise modal shift towards rail could include the

provision of additional services, a reduction in fares and measures to restrict car use.

Before the effectiveness of some of the policies to influence behavioural change can be

considered, however, the relative environmental performance of rail should be scrutinised

more robustly.

1.9 Basic modal comparisons

Following on from Figure 1.4, a more detailed breakdown of the contribution of different

modes to CO2 emissions from domestic transport in the UK in 2011 (estimated to total

117.4 Mt of CO2) is given in Figure 1.6, which divides the emissions by source, and is

only concerned with direct emissions from each mode. These could be considered to be

the Scope 1 CO2 emissions from the UK’s Domestic Transport Sector. The DfT (2013b)

also provide a less detailed breakdown of transport emissions on an “end user” basis,

totalling 133.1 Mt of CO2 from the UK’s Domestic Transport Sector. Because the data

are said to include approximate emissions resulting from the production of fuels used,

this latter figure could be assumed to cover all three emissions scopes.

Figure 1.6: A detailed breakdown of CO2 emissions by mode in 2011 (Data
Source: DfT, 2013b)

If “end user” emissions are considered, rail’s relative contribution should be increased by

50% (from 2% to 3% overall), whilst the relative contribution from road transport as a

whole should be marginally reduced. This fits with the fact that road transport relies
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heavily on the internal combustion engine, whilst a significant proportion of the railway

network in the UK is electrified; about 40% of the track is electrified, on which about

half (by distance) of all passenger services are operated (Network Rail, 2009b). Because

electric rail produces no direct emissions at the point of use, they are not included in

Figure 1.6. As more of the railway network is electrified, and as electric vehicles become

more common on the roads, it will become more important to include Scope 2 emissions

and consider “end user” emissions rather than just direct emissions.

Emissions from international transport have been increasing in recent years, with

international aviation and international shipping attributable to the UK estimated

to have emitted 32.9 Mt CO2 and 9.6 Mt CO2 respectively in 2011 (DfT, 2013b). In total,

this is equivalent to an additional 36% of the total emissions from domestic transport

considered in Figure 1.6.

According to the Department for Transport, freight transport within the UK (excluding

that transported by pipeline) is estimated to account for 21% of transport’s GHG

emissions (DfT, 2011). On the face of it, this does not quite appear to reconcile with

the data presented in Figure 1.6, in which light vans and heavy goods vehicles alone

account for 33% of transport’s CO2 emissions. The discrepancy is unlikely to be down

to the fact that Figure 1.6 only considers CO2 rather than GHG emissions as a whole,

because the modal data for GHG emissions as a whole (DfT, 2013a) is almost identical;

in fact, CO2 makes up over 98% of UK GHG emissions from transport (DfT, 2011). In

any case, it can be concluded from the data available that passenger transport makes up

the majority of CO2 emissions from domestic transport within the UK.

1.9.1 Appropriate metrics for making comparisons

When drawing conclusions about the environmental performance of the different modes,

emissions data on their own can be fairly meaningless because they do not reflect the

relative popularity or usage patterns of each mode. There are different ways of measuring

the popularity of a mode over a period of time, including number of journeys made,

total distance travelled, average journey distance and amount of passengers or freight

carried. Each metric has its individual merits for understanding travel demand and travel

patterns. When comparing emissions, it is helpful to consider both some measure of

distance and of amount of passengers or freight carried — hence a common metric used

for passenger transport is the passenger-kilometre (passenger-km), which is derived from

the total number of passengers carried multiplied by the total distance covered. Similarly,

when considering freight transport, the tonne-kilometre (tonne-km) is a common metric.

A disadvantage of these metrics is that they infer nothing about the individual journeys

made — for example, a figure of 10 passenger-km could equally imply that one passenger

travelled 10km or that 10 passengers travelled 1km.
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The DfT (2011) have published some data for freight transport, comparing relative

GHG emissions with tonne-km for different modes. The comparisons (included here in

Figure 1.7) clearly illustrate the superior performance of both rail and shipping compared

with road in this regard.

Figure 1.7: A comparison of different freight modes (Data Source: DfT, 2011)

Passenger figures for public transport are comparatively easy to calculate if ticket sales

data are available, because it can be assumed that, in most cases, if a ticket is purchased

then a journey is made. It can be harder to estimate figures for car journeys, and data

are often based on survey results. The modal split of land-based passenger transport,

in terms of a percentage of total passenger-km travelled, is given for the year 2011

by the European Commission (2013), and it is possible to estimate the relative GHG

emissions for each of the three different modes (cars, passenger rail, buses & coaches)

from Department for Transport data (DfT, 2013a). It can be inferred from the suggested

split between passenger and freight emissions (DfT, 2011) and the data in Figure 1.7

that 80% of rail’s GHG emissions can be attributed to passenger rail.

The relative GHG emissions are shown with the relative usage levels (in terms of

passenger-km) in Figure 1.8.
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Figure 1.8: A comparison of land-based passenger transport modes in the UK
(Data Sources: DfT, 2013a; European Commission, 2013)

It is clear from Figure 1.7 and Figure 1.8 that although rail is a minority mode in terms

of the transport of both passengers and freight, its contributions to emissions levels on

a per passenger-km or per tonne-km basis are much less than those for road transport.

Increasing the relative proportion of freight and passenger traffic carried on the railway

should help achieve the goal of a significant reduction in GHG emissions. The next

section begins to investigate the potential benefits of rail in more detail.

1.10 The potential benefits of rail

The railway is one of the oldest mechanised modes of transport. Railways exist in a

variety of different forms, ranging from urban light rail through to long distance networks,

and are used to transport both passengers and freight. Passenger transport will be the

main focus here, because it is responsible for the majority of transport’s GHG emissions

in the UK. The different types of train service offered mean that rail can theoretically

provide a reasonable alternative to many of the trips people might make by car. For some

long-distance intercity journeys, rail can also compete with domestic aviation. Although

rail was once the dominant form of transport in many parts of the world, it has since

given way to road and air transport; in the UK, for example, rail’s modal share in 2009

was just 3% of all passenger trips (DfT, 2009b). For passenger journeys of 50 miles and
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above, where rail is a main competitor to road and domestic air transport, its share of

passenger journeys was 12%.

It has been seen that as part of a suite of measures to reduce GHG emissions from

transport, encouraging modal shift towards the railway is a potentially attractive option.

As Armstrong and Preston (2010, p.3) put it, “rail’s specific strengths in the context of

climate change include its general environmental friendliness relative to competing modes.”

The basis for this includes the fact that for steel wheels running on steel rails there is

comparatively little rolling resistance, which results in greater energy efficiency and thus

reduced emissions. The Rail Safety & Standards Board (RSSB) (2007) concluded that

there is a strong environmental case for transferring passengers from road and air to

electric railways which meet current “good practice” guidelines for energy consumption.

In principle, this is in line with the data displayed in Figure 1.8, but the fact that

“electric railways which meet good practice guidelines” are specified instead of “rail” more

generally indicates that perhaps modal shift towards rail cannot be advocated as a

blanket policy. The continued progress of the motor industry to reduce emissions from

cars should not be ignored, and it would be interesting to see how Figure 1.8 could be

updated in years to come once some of the recent technological advances have become

more widespread throughout the car fleet. Technological advances are also to be expected

across all modes, although the rate of change in the rail industry is likely to be slower in

the short term than it is for cars. This is because the lifespan of a train is longer than

that of a car (trains are typically designed for an operating life of about 30 years) (RSSB,

2007, p.5).

Current data concerning average CO2 emissions per passenger-km are shown in Figure 1.9

for cars, buses, domestic aviation and passenger rail. The data used are presented by the

Department for Environment, Food and Rural Affairs (DEFRA) as being “direct” CO2

emissions, but actually consider all three scopes. The accompanying notes for rail make

explicit mention of electric trains and the indirect emissions from electricity associated

with them have been included. Figure 1.9 suggests that the gap between cars and trains

is large and that even with major technological developments in the motor industry, it

could be a while before it gets closed. However, some of the underlying assumptions are

worth exploring further.

Although, on average, the emissions per passenger appear much lower for a rail journey

than they are for a car journey or a domestic flight, the reality may not always be so

clear cut. The RSSB (2007) note that the disadvantage of average data is that mixing

data for unspecified services or journeys with very different characteristics make the final

figure of limited value and open to challenge. The data shown here includes all types of

journeys, from short commutes to long distance trips, and all types of vehicle, from small

diesel cars to large petrol ones and from new electric commuter trains to older diesels.
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Figure 1.9: A comparison of emissions from different passenger modes (Data
Sources: DEFRA, 2012; RSSB, 2007)

The situation is particularly complex, because in order to make comparisons on a

per-passenger basis, as has been done here, some knowledge of the number of passengers

in a vehicle has to be included. Making comparisons between modes on a per-vehicle

basis could typically be considered meaningless, because a train can transport many more

people than a car. The load factor can be quite variable, particularly on public transport

modes where the load factor of a vehicle can vary considerably, not just between whole

journeys but also en route if there are opportunities for passengers to get on and off.

For rail, the data in Figure 1.9 are based on National Rail trends, which gave the total

number of passenger-kilometres travelled. This was used in conjunction with total energy

consumption data for the same period to estimate energy consumption per passenger-km,

and the associated levels of CO2 emissions (DEFRA, 2012).

For domestic aviation, the data from DEFRA are based on figures provided by the Civil

Aviation Authority (CAA) for average aircraft seating capacity, load factors, annual

passenger-km and annual aircraft-km. They include uplift factors to ensure that aviation

emissions are reported in line with the UN Framework on Climate Change, and that

the effects of non-direct routeing and circling are taken into account. The estimates for

domestic flights given here are based on a flight length of 463km, although clearly actual

flight lengths will vary considerably, impacting the relative lengths of the different phases

of the flight (take-off, cruise and descent/landing).
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Data provided by DEFRA for buses and coaches are from actual fuel consumption data

supplied by bus operators. Local buses in London have lower emissions per passenger-km

than those elsewhere in the country, due to higher passenger loadings. Data for coaches

were provided for DEFRA solely by National Express, who are responsible for the

majority of long-distance coach services in the UK.

For passenger cars, the data given by DEFRA (2012) are presented in terms of vehicle-km

rather than passenger-km. In order to convert this into data on a passenger-km basis

for comparison with other modes, an average load factor of 1.6 people, including the

driver, (RSSB, 2007) was assumed for all car journeys. DEFRA’s average data on a per

vehicle-km basis is based on manufacturers’ data and estimates of the make-up of the

UK car fleet and vehicle mileage. An uplift factor of 15% is included to take further

real-world driving effects relative to the test-cycle data into account.

It is clear that for a given journey the relative emissions levels for each mode may not

reflect the average data presented in Figure 1.9. On the strength of the data shown

here, coaches may have greater potential than rail for reducing emissions from passenger

transport, but the range of journeys for which the coach would be a suitable mode is

narrower than that for rail. Furthermore, as discussed further in Section 1.11, rail may

offer additional benefits over coach travel. It should also be noted that as a single private

operator, National Express have the flexibility to concentrate only on the routes for

which there is enough demand to remain profitable — provision of a more comprehensive

long-distance coach network may not be rewarded with similarly high load factors.

Although there is also clearly potential for rail to be an attractive mode of transport

as part of a system which promotes reduced emissions, blanket policies to promote rail

in all circumstances may not bring about the most benefits overall. In the short term,

attempting to reduce car journeys by increasing the patronage of existing public transport

(bus, coach and rail) services would appear to be a sensible policy. If the assumption is

made that such services will be operated in any case, then maximising the load factors

(thereby reducing the emissions per passenger-km) and simultaneously curtailing car

journeys will have some benefit for the reduction of GHG emissions. In the longer term,

however, the viability of some public transport services is perhaps open to question,

whilst increased capacity may be needed in other cases. As these things are addressed,

an understanding of the particular types of rail journey which have the most benefit will

be important.

1.11 Other aspects of sustainability

Sections 1.2 to 1.4 described the fact that there are a number of objectives which

help define a sustainable transport system, and although GHG emissions and energy

consumption have been chosen as the focus of this thesis, the findings should not be
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considered in isolation. For policy makers, this is particularly important for two reasons.

Firstly, a course of action whose sole aim is to reduce energy consumption and GHG

emissions may affect progress — both positively and negatively — towards meeting other

sustainability goals. Secondly, it has been noted (Section 1.10) that rail is not the only

mode of passenger transport with scope to help reduce energy consumption and GHG

emissions, and effective policies to encourage modal shift should take in to account other

potential benefits. Section 1.11.1 briefly considers other relative advantages of different

modes, and Section 1.11.2 explores the importance of the use of travel time, which can

be an important driver of modal shift, as well as contributing to other sustainability

goals in its own right.

1.11.1 Other relative advantages of different modes

Even where rail travel appears not to offer significant benefits over alternative road

transport in terms of energy consumption and emissions, it does have other advantages

which not only help it to remain an attractive target for modal shift but may also help it

to fulfil other sustainability goals. Electric rail does not produce emissions at the point

of use, reducing local air quality problems, and electric trains may produce less noise

than either diesel trains or other modes (although at higher speeds, wind noise becomes

the dominant factor in any case). At the moment, whilst the internal combustion engine

is still dominant in cars, buses and coaches, electric rail is also the only mode which

will benefit significantly from decarbonisation of the electricity grid (discussed later in

Chapter 11, Section 11.6). Rail also has the advantage of being better suited to mass

transit, thereby helping to reduce congestion.

For longer distance travel, rail also has the advantage of speed and reduced travel times

over both private cars and coaches — in the UK, intercity trains run at up to 201 km/h

(125mph) whereas coaches are limited to half that on the motorway, and the speed

limit for cars is a maximum of 112 km/h (70mph). Once the journey distance is above

250km, domestic aviation becomes a competitor, although high-speed rail could remain

competitive, especially when the additional time-overheads associated with flying, such

as queuing for security, are taken into account.

Car travel can be more flexible than public transport modes and offers a “door-to-door”

service. Although car-sharing schemes can be unpopular, for reasons including the fact

that scheduling and routeing are usually rigid, compared with public transport where a

traveller may be expected to have a range of trains and buses to choose from (Morency,

2006), there are occasions where they remain a preferable or more practical option.
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1.11.2 The use of travel time

It can be argued that travel time has an intrinsic value to an individual traveller, and that

shaping travel time to have a positive utility can benefit others in addition to the traveller

themselves (Jain and Lyons, 2008). Hence the ability of each mode to create such benefits

from travel time should be explored before policy decisions are made which favour one

over another. Additionally, the ability to gain something positive from the travel time

may be an important factor in increasing the load factor of a particular mode. Lyons

and Urry (2005) have produced illustrative frequency distributions of “productivity” of

travel time by mode, which are included here in Figure 1.10.

Figure 1.10: (Taken from Lyons and Urry, 2005)

“Productivity” is defined by Lyons and Urry as something which is judged to be of

benefit either to the individual traveller, or economically overall. Activities which may

be considered to have some productive value include working, playing, socialising and

sleeping. Lyons and Urry note that a number of factors will be at work in determining

the shape of the distributions in Figure 1.10, relating both to the individual and the

journey itself.

Changes in technology have influenced the way in which a positive use can be made of

travel time, with Jain and Lyons (2008, p.87) noting that “the printed word, portable

music, and mobile communications have become central to the art of equipping travel

time and managing the public space of rail and bus travel.” Furthermore, it is noted

that the mobile phone has become ubiquitous, with a quarter of the participants in a

focus group now using travel time as time to make contact with other people. It is noted

that rail travellers in particular may use the time to work (Lyons and Urry, 2005) and

that in any case, some public transport operators are now modifying attributes of the
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journey that benefit the journey experience (e.g. entertainment systems, WiFi, business

class) (Jain and Lyons, 2008). Even bus operators, such as Bluestar and UniLink in

Southampton, are investing in WiFi in order to improve the attractiveness of public

transport as an alternative to the private car (Go Ahead, 2012).

It is not just technology which is important, and vehicle design more generally has

a crucial role to play. The mention of “business class” as something which is worth

investing in to benefit the journey experience is consistent with the observation that first

class rail passengers are twice as likely as standard class passengers to spend most of

the journey working (Lyons et al., 2012). The travel environment can vary significantly,

particularly on public transport, and it is likely that an appropriate internal layout and

seating-density (discussed in Section 10.4) could have a big influence on the attractiveness

of the mode to passengers and the resulting occupancy levels. There is perhaps a balance

to be struck, because increasing passenger occupancy levels can result in crowding and a

less suitable environment for “productive” use of the time. It could even be argued that

if there already exists sufficient demand for a train or bus to be “crush-loaded” then the

impetus to improve the attractiveness of the travelling environment wanes somewhat.

Figure 1.10 suggests that bus travel provides the least benefit in terms of travel time

usage, but the benefits from coach travel would be higher; journey times on local buses

are often very short and involve standing, whereas passengers on a coach would be

expected to be seated for a long period of time and to be able to make more use of the

time to sleep, read or use technology such as a mobile phone or portable media player.

Lyons and Urry are also keen to dispel the notion that a car journey cannot yield any

benefits for the motorist concerned. They note that a car can become a “mobile office” —

the space in the car can be used for storage of files and papers, whilst the use of a mobile

phone enables business to be conducted whilst en route. Additionally, they note that the

car can become a domestic mode of dwelling or a sanctuary, and the term “carcooning”

is used to reflect this. Car drivers can enjoy being immersed in the spoken word or

music from the audio system, and may use the time to mentally prepare for their next

appointment.

Many of the benefits a car offers, however, do not fit well with the idea of increasing

passenger occupancy levels, perhaps through a car sharing scheme. Indeed, some

individuals indicate a preference for travelling alone so as to more effectively appropriate

their time (Lyons and Urry, 2005). In other ways, though, a car sharing scheme could

provide benefits. One member of the focus group selected by Jain and Lyons (2008)

actually relies on travelling in a car with work colleagues in order to prepare for a

meeting. The increased provision of “airline style” seats on trains, along with the fact

that public transport cannot generally provide an environment suited to confidential

discussion means that in cases like this, car sharing schemes are a much more attractive

alternative to train or coach travel.
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1.12 Initial conclusions and the basis for research

This chapter has introduced sustainability, and explained why the focus here is on GHG

emissions and energy consumption. Estimating GHG emissions accurately is difficult,

and there is a degree of uncertainty in the published data as a result. In any case,

it is clear that direct GHG emissions from transport form a significant proportion of

overall GHG emissions, both globally and at the UK domestic level. The vast majority

of these emissions are from road transport, which currently relies heavily on the internal

combustion engine. Overall, CO2 is the most abundant GHG emitted; this is especially

true of the transport sector. For this reason, along with the fact that much of the data

published by the transport industry (such as official European car vehicle emissions data)

are in terms of CO2 rather than CO2e, CO2 emissions will be the main focus here.

Since 2007, CO2 emissions from the UK’s domestic transport sector have begun to fall,

and are now below the 1990 levels used as a benchmark for emissions reduction targets.

Driven largely by recent legislation, improvements in vehicle technology have meant that

official CO2 emissions figures from new cars today are less than 75% of those from new

cars in 2000. In reality, technological improvements alone are unlikely to ensure that the

stringent emissions reductions targets are met, and policies to encourage behavioural

change are likely to be necessary. As well as affecting the overall demand for travel, this

could involve changing the current modal split.

Although rail currently only carries a comparatively small proportion of domestic freight

and passenger traffic, it produces on average less emissions per passenger or per tonne of

freight carried than road journeys or domestic flights over the same distance. As part

of a strategy to meet emissions targets, therefore, encouraging modal shift to rail has

potential benefits.

Making modal comparisons is not straightforward, and although the average data for rail

seem relatively good, there are many variables which mean that for some journeys rail

may offer no benefit. A key aim of this research is therefore to further investigate how

rail emissions vary and to understand the circumstances in which modal shift should be

encouraged. The prime focus will be on passenger rail, partially because of the scope

of the available data, and partially because of the fact that the majority of transport’s

GHG emissions come from passenger traffic.

1.13 Aims and objectives of this thesis

Having introduced the concept of sustainability, explored the need to reduce energy

consumption and GHG emissions and considered the potential for rail to play a role

within a sustainable transport system, the aims and objectives of this thesis are as

follows:
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1. Investigate existing carbon calculator tools used to compare the carbon

emissions from different modes of transport. Chapter 2 compares and

contrasts three different carbon calculator tools, with the aim of understanding

how different modes are compared and what the limitations are.

2. Compare existing energy consumption data for rail with empirical data

which have been obtained for this research. Empirical energy consumption

data from trains have been made available, and are analysed in Chapters 3 to 6.

3. Investigate the relative importance of the different factors which may

influence operational energy consumption and emissions. As well as simply

comparing the findings from the empirical data with existing data, the analysis in

Chapters 3 to 6 seeks to understand the factors which lead to variation in energy

consumption (and hence emissions).

4. Investigate techniques for modelling the operational energy consumption

of a train. Chapter 7 and Chapter 8 consider how the operational energy

consumption of a train may be modelled and explore the development of a simulation

tool for Arup. A key aim is to investigate whether simple modelling techniques

can be used to make reasonable comparisons between different routes and services.

5. Consider the effects of life-cycle analysis on modal comparisons. The

energy consumption of and emissions from a transport system are not confined to

vehicle operations alone. Chapter 9 considers life-cycle analysis, and the impact of

including non-operational aspects, such as the construction and maintenance of

necessary infrastructure. This enables some of the specific modal comparisons in

Chapter 2 to be revisited, and for rail to be compared more holistically with other

modes.

6. Understand passenger loadings and the limitations of passenger-km as

a metric. Chapter 10 reviews passenger load factor data and considers the impact

it has on modal comparisons.

These individual aims form part of the overall objective of understanding more about how

rail performs in terms of energy consumption and emissions relative to other modes. By

making use of empirical data, this thesis aims to make more detailed modal comparisons

than those which are typically undertaken on an aggregate basis, and to develop an

understanding of the circumstances under which rail should be promoted as part of a

sustainable transport system. The findings are summarised in Chapter 11.



Chapter 2

The use of carbon calculator tools

and a review of existing data

2.1 Introduction

When considering the contribution of transport to overall greenhouse gas (GHG) emissions,

different modes can potentially be viewed as “less polluting” than others. In order to

ascertain their relative impacts, various methods can be used to compare and contrast

each mode. One method is to take an inventory based approach, considering overall

energy consumption and GHG emissions data for each different mode. These could then

be scaled according to usage data; Section 1.9 introduced the concept of comparing

emissions on a per passenger-km basis (for passenger transport) and a per tonne-km

basis (for freight transport). It was shown that, on average, rail produces fewer emissions

than alternative modes, including road transport and domestic aviation. On this basis,

modal shift towards rail could be advocated as a way of helping to meet GHG reduction

targets.

A major limitation of this approach is that it doesn’t account for the fact that transport

systems are diverse. For example, a trip made on the motorway in a diesel car is unlikely

to consume the same amount of energy as a trip of similar length in a petrol car through a

congested town. Similarly, a rail journey could involve a trip at comparatively high-speed

on an electric train or a slow stopping service on a diesel train. When considering how

best to reduce energy consumption and emissions, it may not make sense to prioritise a

single mode for all trip types.

The National Atmospheric Emissions Inventory (DEFRA, 2014) does provide some

segmented data for different transport modes, allowing the impacts of different trip types

to be considered. Figure 2.1 illustrates overall CO2 data for passenger road and rail in

27
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the UK from 2012, showing the split between different types of driving and different

types of rail journey.

Figure 2.1: Comparison of total CO2 emissions for different modes in the UK
from 2012 (Data Source: DEFRA, 2014)

Using such data to make meaningful comparisons between modes is not easy, however,

especially because it is difficult to accurately apportion passenger usage figures to the

breakdown given in the National Atmospheric Emissions Inventory. Many road journeys

involve a combination of urban and extra-urban driving, whilst the difference between

regional and intercity rail is not always well defined, and a rail journey may also involve

a combination of the two. In this case, the National Atmospheric Emissions Inventory

data are based on direct (Scope 1) CO2 emissions and therefore do not include electric

rail, or electric road vehicles.

An alternative technique for comparing modes is to analyse specific journeys that are

broadly representative of how competing transport systems might be used (RSSB, 2007),

offering greater granularity. The main focus of this research is on passenger transport,

and many online journey planners now offer the ability to compare the CO2 emissions

for different modes for a specified journey. These tools are known as carbon calculators

and three of them are reviewed in Section 2.2. Considering the different methodologies

reveals something about the existing data and identifies the opportunities for further

research.

Despite taking into account some of the characteristics of individual journeys, the carbon

calculator tools still rely heavily on average data for the emissions per passenger-km of



Chapter 2 The use of carbon calculator tools and a review of existing data 29

a particular mode. Even where more specific data are available, they are often limited

and are not necessarily applicable for calculating the emissions of a particular journey

accurately. The review of the carbon calculators is followed by a review of some of the data

which are available for cars and passenger trains. Data available from the motor industry

are generally more comprehensive than data from the rail industry, largely because fuel

consumption and emissions data are published by the car manufacturers, making it easy

to obtain data for a particular model. Nonetheless, three reports containing a set of train

energy consumption and emissions data have been identified and are reviewed here.

It is noted that when comparing trains, it can be better to start by considering energy

consumption rather than emissions. Whereas the motor industry has standard procedures

for quantifying emissions from the majority of the car fleet (by measuring them at the

tailpipe), the situation is more complicated for trains. A key reason for this is that

electric trains, which make up a large part of the rolling stock on the UK network, do not

produce tailpipe emissions, and hence a focus on direct emissions is meaningless. It is,

however, possible to measure energy consumption (by considering the fuel consumption

of diesel trains and the electricity consumption of electric trains), from which GHG

emissions can be estimated. It was found that much of the energy consumption data

presented in the reports are based on simulations (and associated assumptions) or on

limited empirical evidence — hence there is considerable scope for further research.

2.2 An overview of three carbon calculators

2.2.1 Transport Direct

The UK based Transport Direct1 (www.transportdirect.info) offers comprehensive door-to-door

journey planning within the UK. Journeys can be planned between postcodes, stations

and airports or simply between districts as a whole. The results can include options for

travelling by car, and by public transport, including, where applicable, train, light rail,

underground rail, bus/coach, ferry and plane.

Journeys made by public transport can often involve travel by more than one mode

(especially in the case of rail journeys, where travel to and from the station can

be significant). When estimating the CO2 emissions for a given journey, all the

different modes of public transport which may be taken on the one trip are included

in the calculations (Transport Direct, 2012a). However, the output also includes basic

comparisons with other modes, which assume a single mode for the entire journey.

Although clearly labelled, this may be misleading.

1The Transport Direct website was closed down on 30th September 2014, after this research had been
undertaken
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For car journeys, the calculations are quite sophisticated and are based on the amount

of fuel used. The fuel type (petrol or diesel) can be specified in the journey planning

stage, and if the user has fuel economy data for their particular car this can be entered.

Otherwise, the user is able to categorise their car by size. According to the published

methodology, the calculations take into account the predicted congestion and the amount

of urban driving (Transport Direct, 2012a).

For the public transport options, however, there are some weaknesses in the methodology

which mean that the results displayed may not accurately reflect the particular journey.

The first is that the emissions data for public transport modes are based on average

data provided by DEFRA (Transport Direct, 2010a). The second issue is that the exact

journey distance by public transport is not always known, and a number of assumptions

are made.

2.2.2 Travel Footprint

The online tool at www.travelfootprint.org2 was funded by Transport for London and

DEFRA (Travelfootprint.org, 2012a). In contrast to Transport Direct, some international

journeys (for example, to/from Paris) are permitted, and it does not rely entirely on

average data for public transport modes.

However, it is not as user-friendly as Transport Direct, and is in some ways more restrictive.

For example, the mode choice has to be made before the origin and destination are

chosen. Not only does this limit public transport journeys to a single mode but it also

limits the choice of origin and destination to stations (for rail), stops (for buses) and

airports (for flights).

Once a user has selected a particular mode of transport, Travel Footprint.org asks for

more detail about the mode itself, and the number of passengers. For rail, the options

include several specific types of train and an average UK figure for intercity electric rail.

Data are taken from a report by the AEA and some work by DEFRA (Travelfootprint.org,

2012b). The AEA report (Hobson and Smith, 2001) is reviewed in Section 2.5.1.

Although this alleviates some of the concerns about using average data, it is questionable

whether it would be easy for a user without detailed knowledge of the railway network

to make an appropriate selection (although some information about the choice made is

given once the emissions have been calculated). Furthermore, many rail journeys involve

a change of train and selecting one of the limited options for the entire journey may give

misleading results.

Similar caveats apply to journeys made by bus. Although the options are categorised

primarily by journey type (urban, rural or motorway), the user still needs to know

2The Travel Footprint website was closed down at the end of August 2014, after this research had
been undertaken
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whether the bus they will be travelling on was built between 2001 and 2006 or outside

those dates. Another concern for all types of public transport is that the user needs to

make an estimate of the load factor, something which may not be practical for an entire

journey, especially if it is not one which has been undertaken before. Whereas asking for

detail about the mode choice does help improve the emissions results, it is questionable

whether relying on the user to provide such information is realistic or sensible.

On the other hand, when considering a car journey, the range of categories is more

detailed than that offered by Transport Direct, whilst still avoiding the need to specify

an exact make and model. The downside is that there is no option for the user to enter

more specific data, such as known fuel economy, if they wish to. It is not clear whether

emissions calculations consider the journey type and levels of predicted congestion.

For most modes, the calculations consider some life-cycle emissions including fuel

production and vehicle manufacture (Travelfootprint.org, 2012b). This is useful for

giving a true comparison between modes, although it could be assumed that, for example,

the user already has a car and that some of these life-cycle emissions apply whether or

not a particular journey is made.

2.2.3 EcoPassenger

The tool at www.EcoPassenger.com is provided by the Union Internationale des Chemins

de fer, or International Union of Railways (UIC), and is clearly orientated towards rail

journeys. All journeys must be between railway stations, and although there is much

better European coverage than offered by either Transport Direct or Travel Footprint,

this is still fairly restrictive. For example, Abingdon in the UK has a population of

over 30,000 but — because it does not have a railway station — is not an acceptable

origin or destination. Another disadvantage compared with other two carbon calculators

considered here is that the only public transport information is for rail and, where

possible, air travel. In the latter case, the outputs are still rail-orientated; for example,

the suggested flight option between London Heathrow and Paris Charles-de-Gaulle

involves initially getting the train to London City Airport, and flying from there instead

of from Heathrow.

Like Transport Direct, the EcoPassenger tool only requires an origin, destination and

preferred time of travel to produce a journey plan and emissions data, and presents the

different mode choices together. For car journeys, energy consumption and emissions

data are dependent on the type of road (highway, rural or urban) and includes factors

such as cold-starting (UIC, 2010). As with Travel Footprint, it is not possible to enter

known fuel economy, and the car type must be selected from a range of categories. In

this case, however, the categories are not as intuitive and the EURO emissions standard

of the engine must be known.
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Unlike Transport Direct, both the EcoPassenger tool and Travel Footprint break flights up

into different flight phases. The EcoPassenger tool appears to be the most comprehensive,

considering four separate flight phases — Taxi, Take-off/Climb, Cruise, and Dive/Landing

(UIC, 2010). To estimate average emissions factors, data for aircraft from the Airbus

a320 and Boeing 737 families are used, on the basis that these are typical aircraft for

short– and medium– distance flights within Europe.

Trains are categorised into three service types — Highspeed, Intercity and Regional/Urban

(UIC, 2010) and where a change of train is necessary, each leg is considered separately.

It is assumed that all Highspeed services are electric, whilst the others could be either

diesel or electric. Electric traction is assumed, unless the train passes through a station

which can only be reached by diesel traction. A specific value per passenger-km for each

service type has been used for seven countries, whilst a weighted average is used for all

other countries considered. The specific energy consumption values are derived from the

UIC Energy Database, but are not publicly available.

If the correct assumptions are made about train and journey type, then it seems that

the EcoPassenger tool is likely to return better results for a rail journey than the other

carbon calculators considered, due to the use of more specific data. Unlike Transport

Direct, EcoPassenger does not rely on overall average data, nor does it require the user

to determine the train type or make assumptions that the whole journey is done on one

train.

For both rail and air, average load factors are assumed, although it is possible to re-run

the calculations for a maximum load factor, equivalent to having all seats occupied. For

car journeys, the number of passengers can be specified, although the default is the

European Average Utilisation, given as 1.5. The entire energy chain, from fuel extraction

and processing through to final energy consumption is considered, but no other life-cycle

components (for example, the construction of the vehicle) are taken into account.

2.3 Comparing sample carbon calculator outputs

For the purposes of making some simple comparisons, three UK journeys were entered into

the carbon calculators considered here. The first journey is between London Waterloo and

Southampton Airport Parkway (the most accessible main station for the Transportation

Research Group at the University of Southampton). This is a popular commuter journey,

with regular electric trains. There is also a frequent coach service between London and

Southampton, and — for car journeys — the route has a mix of motorway and urban

roads.

The second journey is between Swansea and Fishguard Harbour. Depending on the route

taken, it is of similar distance to the journey between Waterloo and Southampton but
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in a much more rural context. There is little motorway or urban driving, and the rail

service is provided by Diesel Multiple Units (DMUs). Comparisons between these first

two journeys were made to provide some insight into the differences between rural and

commuter journey types and how the different carbon calculators deal with them.

The third journey is between London and Glasgow chosen because this is a route over

which domestic aviation is a serious competitor to the road and rail alternatives, and

because empirical data for the trains which typically operate the direct route (the

Pendolino) have been made available and will be discussed in later chapters.

The time of travel chosen in each case was a Monday morning in March; the departure

time was chosen to be 10am. This was so that journey options were unaffected by

weekend perturbations (perhaps due to maintenance work) and enough time was allowed

to complete a long road or rail journey within the day. It was assumed that the journey

was being made by one person, and so the number of passengers in the car was set to one

(the driver only). The results are shown in Table 2.1 to Table 2.3 and some graphical

comparisons are made in Figure 2.2 to Figure 2.4. The same journeys are compared

again in Chapter 11, following the analysis of some empirical data in Chapters 3 to 6,

and a discussion of life-cycle analysis in Chapter 9.
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Table 2.1: Carbon calculator outputs for a journey between London Waterloo
and Southampton Airport Parkway

Calculator Transport
Direct

Travel
Footprint

EcoPassenger

Length of
journey [km]

Car 128 127.2 128

Train 118.2 120.3

Bus 141.1 127.2

CO2

emissions [kg]

Car 24.2 28.6 21.3

Train 6.3 4.2 6.9

Bus 4.7 5.9

Journey time
[min]

Car 114 88

Train 68 68

Bus 188

Notes

Car Medium sized
diesel. One
occupant

Avg. small
family diesel.
Driver only

Middle Diesel
EURO 3. One
passenger

Train Intercity
Electric
(50% load
factor)

Normally
crowded

Bus National
Express

Post 2006
Motorway (50%
load factor)



Chapter 2 The use of carbon calculator tools and a review of existing data 35

Table 2.2: Carbon calculator outputs for a journey between Swansea and
Fishguard Harbour

Calculator Transport
Direct

Travel
Footprint

EcoPassenger

Length of
journey [km]

Car 115 115.7 117

Train 85.7 117.7

Bus 124.7 113.8

CO2

emissions [kg]

Car 22.3 26 19.4

Train 4.6 7.5 5.7

Bus 16.5 4.8

Plane

Journey time
[min]

Car 113 74

Train 111 106

Bus 337

Notes

Car Medium Sized
Diesel One
Occupant

Avg. small
family diesel

Middle Diesel
EURO 3

Train Diesel Sprinter
(50% load
factor)

Rail distance
estimated

Bus National
Express
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Table 2.3: Carbon calculator outputs for a journey between London Euston and
Glasgow Central

Calculator Transport
Direct

Travel
Footprint

EcoPassenger

Length of
journey [km]

Car 646 645.4 647

Train 588.5 645

Bus 701 645.4

Plane 556

CO2

emissions [kg]

Car 118.5 144.9 106.9

Train 31.4 22.7 36.4

Bus 21.3 29.9

Plane 194.7 132.8

Journey time
[min]

Car 410 354

Train 271 269

Bus 539

Plane 198

Notes

Car Medium Sized
Diesel One
Occupant

Avg. small
family diesel

Middle Diesel
EURO 3

Train IC Electric
(50% load
factor)

Bus Megabus

Plane No data
available; plane
only a valid
mode for
journeys “within
Scotland only”

B737-400
(65% load
factor)
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Figure 2.2: A comparison of estimated CO2 emissions for a journey between
London Waterloo and Southampton Airport Parkway

Figure 2.3: A comparison of estimated CO2 emissions for a journey between
Swansea and Fishguard Harbour
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Figure 2.4: A comparison of estimated CO2 emissions for a journey between
London Euston and Glasgow Central

Examination of the results from these initial case-studies shows that there are some

interesting things to consider. Firstly, there is considerable variation in the distance

given for each journey. To some extent, this is inevitable, particularly for journeys

made by road, because there are many different route permutations. Unlike the other

two calculators, Transport Direct offers the user some choice for the driving route with

options including “Quickest”, “Shortest” and “Most Economical”, and it is unfortunate

that a comparison of the different options is not easily available when viewing the CO2

emissions results; the default setting, used here, is the “Quickest” journey option. In

the case of public transport, both Transport Direct and EcoPassenger start with “line of

sight” or “as the crow flies” distances between stops as a basis for estimating the distance

travelled (Transport Direct, 2012a; UIC, 2010). It is not clear how Travel Footprint

produces distance data, but a similar methodology is presumed, and the lack of complete

accuracy in this area needs to be taken into account.

Secondly, there is the potential of the bus to rival the train in terms of low GHG emissions.

Not only does this need to be considered further in its own right, but the results here

highlight the importance of having accurate scenario-specific data. For the first journey,

where an electric train is specified, the results from Travel Footprint suggest that the

train is better in terms of GHG emissions than the bus. For the second journey, where

a diesel train and a rural bus are specified, Travel Footprint could be used to argue

that the bus is the better option. On the other hand, the results from Transport Direct

could be used to recommend the opposite in each case, although the outputs need to be
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treated with particular caution, for two main reasons. The first reason is that Transport

Direct did not specify the journey distance when travelling by bus and the assumption

was made that it followed the same road route as the car. As noted above, however, the

distance was probably calculated in a more arbitrary manner such that the projected

emissions per passenger-km are likely to be skewed. The second reason is the fact that

Transport Direct relies on average data for public transport and its applicability to each

of the specific scenarios considered is questionable.

All three carbon calculators reviewed here suggest that in terms of operational GHG

emissions, the car remains more polluting than the bus or the train. However, because the

modes are compared on a per-passenger basis, this is very dependent on load factor. Any

car journey made with more than just the driver on board would have lower emissions

per passenger, whilst it is worth bearing in mind that the load factors used for the public

transport modes may not be representative of the scenarios in question. The issue of

load factor is explored in more detail in Chapter 10. Furthermore, although the choice of

car for the initial comparisons (a medium sized-diesel) may be more representative of the

current car fleet, it cannot be assumed that it is applicable to a specific journey being

planned by someone using such a tool, or that it will be representative of the future car

fleet as car design evolves. It is therefore possible that for some journeys, the difference

in emissions between driving and taking the train may be much less, and the need for

more accurate data to help differentiate the options is once again brought to the fore.

Although the gap between the car and the bus and train is consistently large, there is

some variation in the estimated car emissions from each of the carbon calculators. There

are a variety of plausible reasons for this, including the interpretation of “medium” or

“small-family” sized diesel, route choice and methods for predicting levels of congestion and

driving style. It is notable that Travel Footprint, the only one of the three to explicitly

include life-cycle impacts (arising from “fuel and vehicle production”), produces the

highest estimations of car emissions for each of the three scenarios. Life-cycle emissions

are considered in more detail in Chapter 9.

In spite of the fact that EcoPassenger makes some estimation of the emissions associated

with travel to the airport, the aviation emissions estimated by Travel Footprint for the

journey between London and Glasgow are much higher. There are two main reasons

for this. The first is that for domestic flights, Travel Footprint’s calculations are based

on the Boeing 737-400 (Travelfootprint.org, 2012b), whereas the others rely on some

sort of average figure. The 737-400 is an older aircraft, and the fact that the overall

average used by Transport Direct is lower could be indicative of the fact that the aviation

fleet is becoming less polluting. The second reason is that Travel Footprint includes the

use of a radiative forcing factor of 2.7 to represent the increased impact of emissions

at altitude, whereas the EcoPassenger methodology states that such additional global

warming occurs at altitudes above 9km, and that flights shorter than 500km are not

assumed to reach this altitude during the cruise (UIC, 2010).
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2.4 An overview of car emissions data

For car journeys, the choice of vehicle allowed by the carbon calculators is typically fairly

generic, although they are often based on more specific data. Despite the fact that in

reality a myriad of makes and models of car are available, specific emissions data are

readily available, especially for newer cars. In Europe, every car bought to market needs

to pass a Type-Approval (TA) test, in which fuel consumption and CO2 emissions levels

are determined (Mock et al., 2012). All tests follow procedures that are regulated in

the European Union, and an advantage of a standardised test procedure is that it is

easy to compare different makes and models. The current metric for measuring and

comparing CO2 emissions from new passenger cars in Europe is grams of CO2 emitted

per (vehicle) km (gCO2/km). Emissions are measured at the tailpipe during test-cycles

known as the NEDC (Patterson, Alexander, and Gurr, 2011). The tests are undertaken in

a controlled laboratory environment, using rolling road dynamometers for repeatability.

A key downside of laboratory based tests is that they may not be representative of

real-world driving. Following a look at the overall picture, this section goes onto discuss

some of the problems with these tests in more detail.

2.4.1 The overall picture

Weighted by sales data, the average emissions figure for new cars in the UK in 2012 is

given to be 133.1 gCO2/km (SMMT, 2013), but there is significant variation amongst the

models currently on sale. Figure 2.5 uses data provided by DEFRA (2012) to show how

emissions from petrol and diesel cars varies between different categories of vehicle. One of

the most efficient internal-combustion powered cars at the time of writing is the Kia Rio

CRDi diesel (Carpages.co.uk, 2013), which officially emits just 85g of CO2 per vehicle-km.

This is also shown in Figure 2.5, to illustrate the fact that specific models differ from

the average in each category and to highlight how much of an overall improvement such

comparatively newer and more efficient models can provide. Similarly, at the other end

of the scale, the Lamborghini Aventador officially emits 398g of CO2 per vehicle-km,

which is over 200% more than the overall average for 2012 (Carpages.co.uk, 2013).

It can be seen from Figure 2.5 that diesel cars generally produce less CO2 emissions

than their petrol equivalents. What Figure 2.5 does not show is that moving away from

the internal combustion engine can result in even fewer CO2 emissions. For example,

General Motors’ petrol-electric hybrid, marketed as both the Chevrolet Volt and the

Vauxhall Ampera officially emits just 27g of CO2 per vehicle-km (Carpages.co.uk, 2013).

Furthermore, there are an increasing number of battery-electric vehicles coming to market,

which officially have zero CO2 emissions at the point of use.

Data are available for CO2 emissions for new cars, and the number of registrations, from

1997 onward (DEFRA, 2013b). In 1997, the emissions dataset covered about 70% of total
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Figure 2.5: Average new car emissions data, grouped by sector (Data Sources:
Carpages.co.uk, 2013; DEFRA, 2012)

registrations. By 2000 it covered 99% of total registrations, and has essentially covered

all vehicles since then. As well as meaning that modal comparisons aren’t restricted to

new cars, it enables a detailed picture of the car fleet as a whole to be built, which is

how DEFRA (2013b) calculate their average data. DEFRA have also used data collected

from Automatic Numberplate Recognition (ANPR) cameras over 256 different sites in

the UK (covering different road types) to weight the emission factors for the age and

activity distribution of the UK vehicle fleet.

Vehicle emissions data are detailed and comprehensive. This is due in part to the

dominance of the internal combustion engine, from which it is possible to measure

emissions at the point of use, whilst sales of fuel are also comparatively easy to quantify.

This could change as electric vehicles (EVs) become more popular, because they officially

have zero tailpipe emissions, which makes monitoring and accounting for emissions much

more complicated. With no emissions at the point of use, EVs could be considered to have

no Scope 1 GHG emissions. Scope 2 GHG emissions (those arising from the generation

and supply of the electricity consumed), are comparatively hard to calculate, because

vehicles are often charged at home or at the workplace, and the electricity consumed is

likely to be difficult to isolate from other domestic or commercial consumption.

Whilst vehicle emissions data are currently quite easy to estimate, it can be more difficult

to convert this into data on a per-passenger basis for private cars. Whereas occupancy

data can be inferred from ticket sales data for public transport, no such records exist for
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private transport. Survey data, such as that obtained by the National Travel Survey, can

be used to estimate average car occupancy levels. Current occupancy levels, including

the driver, are thought to be in the region of 1.6 (RSSB, 2007), although this varies, with

business and commuting journeys typically being lower. Care must be taken with load

factor data presented in percentage terms, because the assumption is often made that

the average car has five seats, which may not be accurate. Although there are cars on

the market with more than five seats, a number — typically sports cars or small city

cars — also have less. Furthermore, many cars which nominally have five seats would

not be suited to carrying five adults for any distance. Assuming that the average vehicle

occupancy rate is still 1.6 passengers, the load factor in percentage terms may therefore

be slightly higher. Chapter 10 contains a more detailed discussion about passenger

loadings.

2.4.2 Issues with official test-cycle data

Although the standard test-cycles provide a useful benchmark for assessing all models

equally, the current NEDC tests are not representative of real-life driving conditions

(Mock et al., 2012); the low rates of acceleration, constant speed cruising and periods

of idling are unrealistic. Additionally, despite the fact that the test does account

for “cold-start” emissions by covering the warm-up period of the vehicle, the ambient

temperature of the test-site is typically higher than the average ambient temperature

across Europe (Patterson, Alexander, and Gurr, 2011). This could potentially be quite

significant, because even within the regulated range of 20 to 30oC, studies have shown

that the CO2 emissions could increase with temperature by at least 4% (Mock et al.,

2012). The test does not include the effect of the loading on the engine of ancillaries,

such as air-conditioning or power-steering, the effect of the weight of passengers and

luggage or the effect of gradients. Because it only applies to new cars, it also does not

consider the effects of (poor) maintenance or wear and tear.

To account for these combined real-world effects, an uplift of +15% over the official NEDC

values was agreed with the DfT in 2007, and has been included in the data published in

recent years by DEFRA (2010; 2013). However, DEFRA (2013b) suggest that this should

be reviewed in light of the fact that the differential between the NEDC values and the

actual CO2 emissions of cars on the road appears to be increasing. This is corroborated

by several studies, including that undertaken by Mock et al. (2012), who compared

NEDC data with two alternative German data sources. The first is spritmonitor.de — an

online database with more than 200,000 registered users who log their own fuel economy

for the type of car which they drive. The users input the amount of fuel purchased (in

litres) and the odometer reading (in km), from which the website calculates the fuel

economy; it is suggested that this is more accurate than asking users to estimate their

fuel economy directly. It is assumed that Mock et al. perform the conversion from fuel
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economy to CO2 emissions themselves, but no detail is given. The second data source

comes from ADAC — Europe’s largest automobile club. ADAC started an “EcoTest”

programme in 2002, with the aim of “providing a fair, reliable and objective assessment

of the environmental performance of cars.” (Mock et al., 2012). The EcoTest is based

on the European vehicle emission test procedures, but has additional procedures and

parameters to take some real-world effects into account. The results of the study suggest

that the typical discrepancy between official NEDC data and real-world CO2 emissions

as grown from around +8% in 2001 to +21% in 2011. The discrepancies observed in the

data from spritmonitor.de, which is based on actual real-world performance, are bigger

than those from the EcoTest data, although the data collected by spritmonitor.de is

likely to be much more variable. A large sample size will help mitigate the variations in

driving style and journey type, and the problem of false entries, but driving style and

journey type will nonetheless be significant factors.

A later report (Mock, German, and Icct, 2013) suggests that the discrepancy between

spritmonitor.de data and official NEDC data for new cars in 2011 ranged between +20%

and +25% for petrol cars and +25% and +30% for diesel cars. There appears to be little

variation between low CO2 and higher CO2 models. This later report also reviews other

data sources, including that collected in the UK for honestjohn.co.uk. The principle is

not dissimilar to that employed by spritmonitor.de, except that the user enters their

estimated fuel economy figure (in miles per gallon) directly. The honestjohn.co.uk dataset

comprises fewer users than the spritmonitor.de dataset, but the results are similar —

namely that the discrepancy between official data and real-world emissions increased

from +3% to +27% between 2000 and 2011.

Patterson, Alexander, and Gurr (2011) have also conducted some analysis which suggests

that the standard uplift factor of +15% now needs to be revised. They compared official

fuel consumption data with that gathered by AutoCar when they test-drove and reviewed

the vehicle, and used this to calculate the difference between real-world CO2 emissions

and the test data. They found that for the selected examples, real-world CO2 emissions

appear to be about 20% higher than the certified figures, although there was quite a lot

of variation. The Nissan 370Z, for example, was only found to produce about 5% more

CO2 than the official figure, whilst the diesel Mazda 5 produced as much as 36% more.

The discrepancy between official test data and real-world emissions is likely to arise

not just because some of the real-world effects are excluded from the test-cycles or are

otherwise hard to quantify. It is additionally thought that the fixed speeds, gear shift

points and rates of acceleration make it possible to optimise emissions levels for the test

in a way which is not borne out in real-world driving (Mock et al., 2012), although it is

important to note that taking advantage of some of the flexibilities in the test does not

necessarily imply anything illegal on the part of the manufacturers (Mock, German, and

Icct, 2013).



44 Chapter 2 The use of carbon calculator tools and a review of existing data

The inclusion of whole life-cycle data may be significant when making modal comparisons,

and Patterson, Alexander, and Gurr (2011) have considered life-cycle emissions and not

just tailpipe emissions from operation. This will be considered further in Chapter 9.

2.5 An introduction to rail energy and emissions data

In contrast to the car industry, the rail industry does not typically publish vehicle

emissions data. In part, this is because there are limits to the empirical data available.

Rochard and Schmid (2000) explain that extensive testing on operational railways is

no longer a particularly viable option. Testing takes up valuable train paths and is

quite resource intensive; even where test-track facilities are available they are not always

suitable for high-speed testing. Furthermore, where data are available, Arup (2009)

outlined a number of typical problems and ambiguities including:

• The GHG emissions of electric trains are crucially dependent upon the carbon

intensity of the electricity grid to which the railway is connected.

• Energy used for electric traction can be measured at the pantograph (or collector

shoe), at the substation, or in terms of the primary energy consumed at the

power station. Even if the assessment extends to the power station, it is often

unclear whether the data takes into account supply chain energy usage, such as

the extraction and delivery of coal or uranium.

• For diesel traction, it is often similarly unclear whether the energy and emissions

associated with the extraction, refinement and transport of the fuel have been

considered.

• In many cases it is not clear whether GHG emissions figures refer only to CO2 or

to CO2e (which takes into account the contribution of other gases).

Many of these issues are concerned with the conversion of energy consumption data into

GHG emissions data, which is why it can be preferable to start with energy consumption

as a basis for comparison. For electric rail, energy consumption can be comparatively

easy to measure and allocate correctly to the railway sector; unlike electric cars, electric

trains are powered from dedicated infrastructure.

Three existing datasets are reviewed here. The first was published in 2001 by AEA

Technology on behalf of the Strategic Rail Authority (SRA) (Hobson and Smith, 2001),

and is still widely referenced over a decade later (for example, it is used by the Travel

Footprint carbon calculator (Travelfootprint.org, 2012b) reviewed in Section 2.2.2). The

second was published by RSSB (2007), and finally, Network Rail included some energy

consumption data in their comparison of the environmental impact of conventional and
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high-speed rail (Network Rail, 2009a). Some brief comparisons are made, and factors

which may affect the energy consumption of and the emissions from a train are highlighted.

2.5.1 The AEA Rail Emission Model

In contrast to the RSSB report and the data collated by Network Rail, which focus

more on energy, the main focus of the AEA study is emissions. The emissions from the

rail industry are divided into three types — those from diesel trains, those produced

indirectly from electric trains and those from stationary sources, such as stations (Hobson

and Smith, 2001). Of most interest in this context are the operational energy and GHG

emissions data from the trains (both diesel and electric). The data for diesel trains come

from three main sources:

• For seven types of locomotive and the Intercity 125 passenger train, emissions data

were taken from an earlier study by the London Research Centre. In addition to

CO2 data, emissions factors for sulphur dioxide (SO2), particulate matter (PM10),

NOx, VOCs and CO are provided.

• For 19 classes and sub-classes of DMU, calculated data supplied by AEA Technology

are used. The data supplied represent fuel consumption for a given station spacing

on a level gradient, and emissions from fuel use have been estimated.

• For the Class 221 Super Voyager and a train design proposed by Siemens, emissions

data are supplied directly by the manufacturer.

For electric trains, the estimated fuel consumption is given in terms of kilowatt-hours

(kWh) per mile for 36 types of train. The data for some classes are derived for flat

(level-gradient) journeys, assuming a given station spacing. For others, estimates are

derived from measured electricity consumption over several different journeys in the

UK. Emission factors for the average UK electricity mix are provided for the purpose

of converting energy consumption data into emissions data. The emissions factors are

predicted from the year 2000 (known at the time) through to 2020 in five year intervals,

for scenarios based on modelling of future energy use by the Department for Trade &

Industry (DTI) and targets set by the Performance Innovation Unit (PIU). It is not clear

if they include transmission losses or not.

The factors for CO2 predicted by the report are compared with known emissions factors

from DEFRA (2012) in Table 2.4.

It can be seen that the carbon-intensity of the grid has not decreased significantly between

2000 and 2010, let alone by as much as predicted by the AEA report. However, because

energy consumption data are also supplied by Hobson and Smith (2001) it would be
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Table 2.4: Trends in electricity emissions factors (Sources: DEFRA, 2012; Hobson
and Smith, 2001)

Year

Emission Factors Predicted by AEA
[g CO2 per kWh]

Actual
Electricity
Emission
Factors

[g CO2 per kWh
consumed]

DTI Central
High Scenario

DTI Central
Low Scenario

PIU High
Renewables

Scenario

2000 523.3 523.3 523.3 509.6

2005 415.74 369.58 369.58 517.7

2010 401.57 351.69 351.69 490.7

possible to extrapolate more accurate emissions data if so desired. Decarbonisation of

the electricity grid is discussed further in Chapter 11 (Section 11.6).

The operational energy and emissions data published in the AEA report have several

limitations, many of which are outlined in the report itself. These include:

• The number of vehicles in a given type of train can vary (e.g. the Class 377 comes

in 3, 4 or 5 carriage variants), and some services are often operated by more than

one train connected in multiple. AEA emissions data are only provided for one

specific configuration.

• For newer trains, estimates of fuel consumption have been obtained directly from

the manufacturers and may not be on a comparable basis to the estimates for older

trains.

• Emissions are highly dependent on the type of journey being undertaken, including

gradients, speed and distance between stops. Although appropriate station spacing

has been assumed for different classes of trains, the theoretical data is unlikely to

match real-world scenarios.

• Where actual electricity consumption data has been used, it has been generated

from a small sample of journeys.

Additionally, many of the trains for which there are data are no longer in regular passenger

service, including six of the 19 DMUs, whilst many of the newer trains in the UK fleet

are not covered by the report.
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2.5.2 The RSSB “Traction Energy Metrics” Report

The main focus of the RSSB “Traction Energy Metrics” report (RSSB, 2007) is rail

traction energy consumption. It notes that there are a number of factors that can

influence energy use, and at least three different methods of calculating it. Such methods

include computer simulation, measurement of fuel delivered to a depot or electricity

supplied from a substation and data from a train’s on-board computer. Each method

has its limitations — on-board computers or consumption measured at the depot cannot

distinguish between the hotel load and traction energy, whilst simulations necessarily

make assumptions about driving style.

The report explicitly aimed to gather as many different sets of data as possible for each

train and compare them accordingly. In terms of the quality of data, therefore, the scope

is wider than that for the AEA report which tended to rely on a single source for each

train. However, in terms of the number of trains considered, the scope is much narrower,

with data given for only five diesel trains and seven electric trains in the UK. To some

extent, however, this is mitigated by the fact that the trains reviewed by the RSSB are

generally more modern and — at the time of writing — are all still in revenue earning

service.

Table 2.5 shows the level of data available for each train, which varies considerably. Some

of the data given are nestled within the text, which can make it hard to pick out. At

one end of the spectrum, the data for the Class 357 Electric Multiple Unit (EMU) are

particularly comprehensive, comprising data from on-board recorders from a sub-fleet of

10 units, data from the power-supply for the whole fleet, and detailed simulation results

for services over the same route. Data given about the trains themselves include the tare

mass and the number of seats. Having data from both the on-board computer and the

power-supply makes it easy to see how the different sources vary, and what the scale

of the losses might be, whilst the fact that simulations have been undertaken over the

same route, and to the same timetable means that it is easy to verify the accuracy of the

results. At the other end of the scale, a single figure for energy consumption is given for

the Class 90 and a rake of Mark 3 coaches, with no explanation of how this came about.
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Table 2.5: A summary of the data available in the ’traction Energy Metrics’
report (RSSB, 2007)

Train
Data Available

Average
Energy or

Fuel
Consumption

Empirical
Data

Details of
Empirical
Sample

Simulated
Data

Diesel

Class 170
(Turbostar)

! For 2- and 3-
car units

!

Class 180
(Adelante)

!

Class 220/221
(Voyager/Super

Voyager)

! Two
simulations

used

Class 222
(Meridian)

! !

Class 43 + Coaches
(HST)

! For 2+8
formation

only

For 2+8
formation

only

For 2+7
formation

only

Electric

Class 357
(Electrostar)

! For both
on-board

measurements
(10 units)

and
power-supply
measurements
(whole fleet)

! Comprehensive
dataset

Class 373
(Eurostar)

!

Pendolino ! For 9-car
only

More data
for 9-car

than 11 car

Class 458 (Juniper) ! !

Class 460 (Juniper) ! !

Class 90 + Mk 3
Coaches

Shown on
graph only

Class 91 + Mk 4
Coaches (IC225)

! ! Several
simulation

results,
including

with coasting
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Even where there is a comprehensive amount of data, care needs to be taken regarding

the wider applicability. For example, where the scope of the empirical studies is given in

terms of number of units and overall distance travelled, little is known about the type of

routes (including speed limits and gradients) and the service pattern. The report hints

that such things may be significant, noting for example that the differences between

the 2- and 3-car Class 170 results may be due to different stopping patterns, but does

not quantify them. Some trains, such as the Class 357, currently only run on a limited

part of the national network in Great Britain; this means that associated results will

probably be quite accurate for the current service patterns, but less useful in a more

general context. Other trains, such as the aforementioned Class 170, can be found across

the country on a variety of different routes and it may not be possible to apply the RSSB

data to a specific scenario without knowing more about the effects of factors including

gradients and stopping patterns.

As with the AEA report, the RSSB report is largely focussed on the UK, but there is a

section which makes comparisons with some trains in other countries. It is noted that

many railways are not directly comparable with the UK network, and the report has

aimed to choose relevant examples for comparison. In any case, most of the differences

are to do with load factor; at one end of the scale, long-distance services in North America

have facilities such as sleeping and dining cars, whilst other parts of the world tolerate

very high levels of crowding. For the services chosen for comparison, RSSB suggests that

the difference in energy consumption compared to similar UK services may be due to the

fact that the UK loading gauge is smaller, or — in the case of the Japanese Shinkansen —

the fact that proportionally less space on the train is inaccessible to passengers for safety

reasons (RSSB, 2007, p.30). These are again reasons related to passenger loadings and

affect the energy data on a per-passenger basis. Other factors which affect the energy

consumption of the train as a whole, such as stopping patterns and gradients, are likely

to have a more consistent effect the world over.

2.5.3 Network Rail Data

The Network Rail report comparing the environmental impact of conventional and

high-speed rail contains a summary table of some energy consumption data, provided

by the Association of Train Operating Companies (ATOC) and the DfT (Network Rail,

2009a, Table 2.5). The original data were given directly to Network Rail for the purposes

of the project and do not appear to have otherwise been made publicly available.

The report makes it clear that the data are approximate, based on a combination of

in-service measurements and modelled data. The inevitable caveat is given that the

actual achieved energy consumption will vary significantly depending on the particular

characteristics of a given service. Attention is drawn to factors including service distance,

number of stops, line gradients and running speeds, but — as with the other two reports
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reviewed here — no attempt at quantifying these factors is made. The energy consumption

figures are stated to be based on the service speed of the train, the implication being that

the train is assumed to be running constantly at this speed. Because the service speed is

given, it is easier to understand the circumstances to which the data are most relevant,

unlike some of the average data given in the other reports. The data may still not be

particularly true to reality, but some long distance services may broadly fit this model.

The purpose behind the table is to compare conventional electric intercity trains with

high-speed alternatives. Hence the scope is quite limited, especially compared with the

other two reports here, and data are only given for a select set of trains. However, the

data are well presented for easy comparison between the different trains, and include

details about seating capacity, train length and mass.

2.5.4 Some brief comparisons

It is difficult to make many direct comparisons between the data contained in the

three reports reviewed here, largely because there is little overlap in the types of train

considered. Only two trains feature in each case — the Class 390 Pendolino and the

Class 373 Eurostar. It is also worth noting that the AEA report gives data on a per train

basis, whilst the others give data on a per seat basis. The advantage of using a per seat

basis is that it is easy to visualise the data on a per passenger basis, particularly if the

load factor is known or can be reasonably estimated, and hence it is easier to make modal

comparisons. The disadvantage is that the data can sometimes be presented in a way

which is arguably misleading, because the whole train will run regardless of how many

seats are occupied. In the case of the Network Rail data, the high-speed trains appear

to compare well in terms of energy consumption with their conventional counterparts;

however, this is because they have more seats, which offsets the impact of higher speed

running on a per-seat basis. Ultimately, the comparison on this basis assumes that any

high-speed service will carry more passengers than any conventional service.

Table 2.6 compares the data from each of the reports for the Pendolino and Eurostar. It

is presented on a per-train basis; although RSSB and Network Rail data are given on

a per seat basis, the provision of data about the number of seats makes the conversion

straightforward.

In the case of the Pendolino, the AEA and RSSB data are consistent, and the lower

value given by Network Rail could be attributed to the fact that it is based on running

at service speed, with no acceleration or gradients being considered, whilst the others

involve some data from or modelling of actual journeys. The scale of variation in the

Eurostar data is surprising, with none of the reports agreeing, and varying by more

than 100% of the lowest quoted value. Possible factors include the stretch of line used

for analysis and the fact that before 2007, when the high-speed link was opened, the
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Table 2.6: A comparison of operational energy consumption data

Train Pendolino
(9-car)

Eurostar

Energy Consumption
[kWh per train km]

AEA Data 18.02 20.07

RSSB Data 17.56 41.25

Network Rail Data 14.49 30.25

Mean Value [kWh per train km] 16.69 30.52

Standard Deviation 1.92 10.59

Difference between highest & lowest [kWh per train km] 3.53 21.18

(% of lowest value) (24) (105)

UK section of the Eurostar route from London ran at slower speeds on conventional

third-rail tracks. Whatever the reasons, this further underlines the need for research into

the factors alluded to, but not quantified by, any of the reports such as stopping patterns

and service type.

2.5.5 Factors which may affect the energy consumption of and emissions

from a train

A number of factors which may affect the energy consumption of and emissions from

a given train have been highlighted. They can be broadly grouped into three separate

categories, which are considered further in Section 5.4:

• Features of the infrastructure and the line itself

• Features of the type of service

• Driving style

Features of the infrastructure include gradients and tunnels — a train going uphill could

be expected to consume more energy than a train going downhill, and a train in a tunnel

experiences more air-resistance than a train in the open air. Some of these things could

be expected to balance out over a return journey—in theory, a train going from A to B

uphill and returning from B to A downhill will use the same amount of energy overall

as if the route was flat, because the uphill and downhill runs balance out. In practice,

there are likely to be differences; for example if there is a stop on the hill, or if the

train is equipped with regenerative braking capabilities. A particularly interesting thing

about features of the infrastructure is that they may have been designed to reduce the
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environmental impact in other ways, and in some cases there could be some real trade-offs

which need to be understood.

Features of the type of service which affect energy consumption include stopping patterns

and line speed profiles. As well as suggesting that the type of service was responsible for

the differences between the data for the 2- and 3-car Class 170, RSSB also suggested that

the more significant difference between the Class 221 Super Voyager and the mechanically

similar Class 222 Meridian is “probably related to the route characteristics and the

number of station stops and signal checks on the Cross Country service, in comparison

with the relatively straightforward route on the Midland Main Line” (RSSB, 2007,

p.25). Finally, driving style includes the level of acceleration and braking as well as the

amount of coasting. Some train operating companies both in the UK and abroad are

already trialling driver advisory systems, because making improvements can have big

consequences for overall energy consumption. Driving style is discussed in Chapter 8.

Further work needs to be put into understanding what the optimum driving style might

be, and in quantifying some of the effects.

2.6 Conclusions

It was noted that using an inventory-based approach to comparing different modes can

have limitations, particularly given that the relative advantages of a given mode may not

be the same for all journey types. An alternative approach involves making comparisons

for specific journeys, and three different carbon calculator tools which estimate emissions

for a given journey were investigated.

By choosing three different journeys and using the three different carbon calculators

reviewed here to make appropriate modal comparisons, it would appear that rail

consistently produces lower emissions per passenger than driving or flying. Whether

it is better than the bus or coach needs further investigation, because the two carbon

calculators which allow the bus to be chosen as a mode of transport yielded different

results.

The validity of some of these results, however, is open to question, because all three

of the carbon calculators reviewed make assumptions which may mean that a specific

journey is not accurately represented. There is a continued reliance on average data

to some extent in all cases, with Transport Direct not taking into account the type of

train, bus or plane which might be typical for the journey at all. On the other hand, for

car journeys, Transport Direct is the only one which allows the user to input the fuel

economy of their car if they know it, and it offers a greater level of route planning than

the other carbon calculators. Where more specific data are available, the onus is all too

often on the user to make the most appropriate choices for the journey they are making,

and the language used often assumes a detailed understanding of different vehicle types.
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This means that the tools may not be that suitable as an accessible way of encouraging

anyone to make informed journey choices. For research purposes, this is less of a problem,

and the ability to make specific choices about the different modes is theoretically quite

useful; however, the options are often limited and too little is known about some of the

underlying data and assumptions made.

This review of carbon calculators has also highlighted some further issues with making

modal comparisons on a per-journey basis. The first is that it cannot be assumed that the

actual distance travelled will be the same for each mode for a given journey. This means

that the mode which produces less emissions per passenger-km won’t automatically be

the mode which produces less emissions per passenger for the journey overall. The fact

that some of the carbon calculators reviewed here make fairly sweeping assumptions

about distances (assuming, for example, that public transport modes always go as the

crow flies) is another reason that the validity of the results shown here are open to

question.

The second issue, linked with this, is that public transport modes are rarely door-to-door

in the same way driving can be. In fact, a journey made by public transport may even

be multi-modal. Transport Direct offers the most flexible journey planning options, and

allows for point-to-point journeys which may require several modes — although only

the dominant mode is included when comparing carbon emissions. Travel Footprint

and EcoPassenger are more limited, and only allow public transport journeys to be

made between public transport hubs, which can make overall journey comparisons more

difficult. Lastly, Travel Footprint’s explicit inclusion of some life-cycle impacts serves

as a reminder that operational emissions alone do not reflect the whole picture, and

that there is more to be considered beyond the operational emissions arising directly

from making a journey between two points. This is where an inventory-based approach

which includes life-cycle impacts may offer an advantage. Some of the issues encountered

when making modal comparisons are explored further in Chapter 10, whilst Chapter 9

discusses life-cycle analysis in more detail. At this juncture, however, it was appropriate

to first investigate the operational emissions themselves in more detail, and the second

half of this chapter included a review of existing data for road and rail.

Operational emissions data for cars are comparatively comprehensive, helped by requirements

for manufacturers to publish data, and the fact that it is straightforward for an individual

driver to calculate their own fuel economy, which can then be converted into an estimate

of emissions. The official test data published for new vehicles in Europe may not reflect

real-world driving and if the goal is to accurately understand the emissions from one

particular journey, then it would seem that the best option is to start with actual fuel

consumption records where possible. If the journey has not been made before, it should

still be possible to make estimations based on known fuel consumption data — indeed, this

is what some carbon calculator tools, such as that provided at www.transportdirect.info,

allow for. Websites which collect fuel consumption data, such as spritmonitor.de or
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honestjohn.co.uk, can be helpful resources, although the aggregated data may not reflect

the driving style or typical journey pattern of an individual user. If the goal is to make

more general comparisons, it is clear that official test data alone could be misleading,

and real-world effects need to be accounted for. It is likely that for some journeys and

for some vehicles the variation in actual CO2 emissions from the test data will be larger

than for others, and further research in this area could be useful.

Data for trains are less comprehensive, and rely heavily on simulated data or limited

empirical data collection. Although the empirical data may reflect real-world scenarios,

the limited data collected may not be universally applicable. In any case, it is clear that

differing simulation parameters, data collection methods and assumptions made have led

to very different results for the same class of train.

It is potentially easier to estimate passenger load factors for trains than for cars, but in

both cases care must be taken when presenting data on a per-passenger basis. Assumptions

are often made about the number of seats in a car, and it has been found that data

for trains are not always presented with consistent assumptions about load factor when

making direct comparisons.

Having identified some of the limitations in the existing rail data, and some potential

factors which may affect the operational energy consumption of and emissions from

a train, some more comprehensive empirical data have been obtained from on-train

energy metering systems, which are explored and analysed in Chapters 3 to 6. Chapter 7

describes how the empirical energy consumption of a train may be modelled, and uses

the aforementioned empirical data to help validate a basic simulation tool, developed as

part of the industrial context of this work.



Chapter 3

Empirical energy consumption

data

In order to improve the understanding of the energy consumption of a train, some

empirical data were obtained. The first part of this chapter introduces the principles of

train-borne energy measurement, and the data which were provided. The metrics used by

the existing data sources discussed in Chapter 2 include distance, and so if the empirical

data obtained are to be considered on a similar basis, knowledge of the distance travelled

by the trains is required. It was also postulated in Section 2.5.5 that features of the

infrastructure and of the type of service are factors which affect the energy consumption

of a train. For these reasons, the second part of the chapter describes ways of defining

physical railway network in the UK, and the final part introduces train schedule data

and describes how it may be used to calculate distances.

3.1 Train borne energy measurement

In recent years, some train operators have fitted equipment to their electric trains in

order to monitor electricity consumption. The data gathered as a result is useful for

gaining an insight into the energy consumption of a train and how it varies according to

service type, driving style and other key factors. This section introduces the concepts

behind on-board energy metering, describes the data which have been made available

and outlines the stages of analysis undertaken for this research.

3.1.1 Background

Traditionally, Network Rail have billed UK Train Operating Companies (TOCs) for the

electricity consumed by trains based on modelled rates per train mile for each class

55
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of train (Virgin Trains Ltd. 2010). Electricity consumption has been determined from

the meters in sub-stations, rather than being measured on-board the trains themselves,

with an end of year “wash-up” to address differences, unmetered usage, losses and price

variations.

In April 2010, with permission from the Office of Rail Regulation (ORR), Virgin Trains

transferred to a train-borne energy measurement system for its fleet of 52 Pendolino

electric trains, which are used for intercity services along the West Coast Main Line

(WCML). The new system makes it much easier to accurately apportion electricity

consumption, and has the added advantage of making it easier to investigate and

understand the actual operational energy consumption of a train. The stated aims of the

new system include helping users and suppliers to justify business cases to reduce energy

usage (Virgin Trains Ltd. 2010).

Similarly, London Midland, who operate suburban and semi-fast services around Birmingham

and along the WCML, completed installation of on-train energy meters across its electric

fleet of trains in 2011 (London Midland, 2011). As well as enabling London Midland to

pay only for the electricity they use, it is hoped that over time they can use the data to

reduce energy consumption. London Midland have been using the information gained

from use of energy meters to understand the most efficient driving style and to encourage

“greener driving” (London Midland, 2012).

As of May 2013, around 20% of rail traction electricity consumption in the UK was billed

on the basis of actual measured data. As well as Virgin Trains and London Midland,

other TOCs including First Capital Connect, First Scotrail and Southern have converted

at least some of their electric fleets to metered billing (Network Rail, 2013d).

The requirements for a train-borne energy measurement system which can be used for

billing purposes are set out in the Railway Group Standard GM/RT2132. Such an energy

measuring system must provide the following (RSSB, 2010c):

1. An energy measurement function that includes

(a) Voltage and current measurement.

(b) Calculation of energy consumed (and, where applicable, regenerated).

2. A data handling system that compiles data from the energy measuring function

with time data and geographical position, producing and storing the complete

series of data with true energy values ready to be sent by a communication service.

3. An on-board location function that gives the geographical position of the traction

unit.

4. An on-board to ground communications service that supports the transfer of

compiled data suitable for billing purposes.
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The energy measuring function (EMF) must measure all the energy consumed from the

contact line (third rail, or overhead line equipment (OHLE)) and, where applicable, the

energy returned to the contact line during regeneration.

3.1.2 Data obtained for the purposes of research

Virgin Trains and London Midland have made some of their data available for the purposes

of this research. Virgin Trains supplied two years’ worth of energy measurements and

associated train data for their Pendolino fleet. London Midland supplied one month’s

worth of data for their fleet of suburban trains, which comprises three distinct train

types. The scope and format of the data provided by each TOC are different, but regular

energy readings, each with a timestamp and GPS location data are available in each

case. Energy readings on each of the Virgin Trains Pendolino fleet were taken every five

minutes, whilst the frequency of readings taken for each of London Midland’s trains was

higher, with one taken every minute. Further details of the data provided by each TOC

are given in Appendix A.

The energy measurement system used by the Virgin Trains Pendolinos is integrated with

the Train Management System (TMS). The TMS monitors the performance of train

subsystems and equipment and provides information to the driver and maintenance staff.

It does not provide primary control of safety systems, but does offer defect reporting

and energy measurement (Virgin Trains Ltd. 2010). London Midland have opted for

standalone metering systems, in which the electricity meters and measuring equipment

are separate from any of the train’s other monitoring and control systems. The relative

merits of each system are outlined in the next section.

3.1.3 A comparison of energy measurement systems

Although Virgin Trains have settled for a TMS based system, they did fit one train in

their Pendolino fleet with a separate energy metering system for comparison purposes. A

comparison of the two systems, showing the advantages and disadvantages of using either

the TMS or separate meters to measure energy consumption was provided by Virgin

Trains (Virgin Trains Ltd. 2010) and is included here in Table 3.1.
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Table 3.1: A comparison of the different energy measurement systems (Source:
Virgin Trains Ltd. 2010)

Advantages of Train Management
System (TMS) based monitoring

Advantages of separate meters

TMS cannot be moved from train to train;
the TMS records changes in the traction
converter register. The Pendolino application
is a fixed rake.

Can be fitted to any electric traction.

Uses multiple current transducers (CTs) with
median value selection. In the event of a CT
failure an accurate value should still be
returned.

A standard meter can be used on multiple
fleets.

No additional hardware is required, thereby
avoiding a potential reduction in train
reliability.

Continuous counter for audit purposes.

The train cannot be operated with a major
TMS failure except to clear the line and this
therefore minimises time in a failed state.

Sealed unit providing a higher degree of data
security.

Pendolino TMS has built-in resilience with
key components duplicated for each 2 or 3
car section.

Meters are likely to be fully compliant with
the required standards (EN50463) without
the need for modifying other systems.

GPS loss identified quickly as it is used for
other train borne systems. Loss of GPS can
be reconstructed from other data.

A meter maintains a cumulative register.

Data consistent with other business systems
and errors and missing data easily identified.

Disadvantages of TMS Disadvantages of meters

The TMS is unique to the fleet, but could be
adapted to similar traction systems.

Additional equipment required and limited
space to fit on some trains.

The continuous counter is not readily
accessible as it is within the traction
converter

Uses a single CT.

An additional data transfer/processing stage
is required.

A meter would need to be EN50121/510155
compliant and measurement may not be
tolerant of other train systems

The system is not mechanically sealed, and
integrity is by processes and not hardware.
However, the system is resistant to
component changes.

Retro fit costs may be high on multiple
transformer/current collection systems.

Distributed system with a risk that several
low significance failures distributed around
the train could accumulate to fail.

Failures less apparent and repair times could
be increased.
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3.1.4 System accuracy & potential problems

Traction equipment is subject to normal engineering tolerances and consequently the

measured energy is subject to the effects of these tolerances (Virgin Trains Ltd. 2010).

Railway Group Standard GM/RT2132 (RSSB, 2010c) states that the energy measuring

function should have a total accuracy of at least 1.5% for alternating current (a.c.) trains

and 2.0% for direct current (d.c.) trains.

The technical report for the Pendolino, published before the relevant standards became

law, states that the trains have been calculated to have a total measurement system

accuracy of 1.68% (Virgin Trains Ltd. 2010). The report, which details the accuracy

calculations, also notes that there are additional factors which might affect the overall

accuracy of the energy measurements. For example, the accuracy of the current transducer

is specified at a nominal current of 200A, and at low loads the energy measurement could

be adversely affected.

The report also details eight possible causes of anomalies in the energy data (Virgin

Trains Ltd. 2010):

1. The TMS full scale value (255) sometimes appears to be erroneously entered into

the recorded energy fields for a given timeslot. This fault appears to be related to

train start up events and the data is marked as erroneous (the quality factor is set

to “N”) if 255 is present in the different gross- and regenerated energy fields in the

same five-minute time period. At the time of writing, further filtering based on

speed and the tractive effort profile was being considered. The impact of ignoring

such erroneous results is expected to be negligible as the actual energy usage when

they occur is typically low; if they remain undetected, however, they could lead to

over-recording.

2. Five-minute rounding errors can occur when the train is switched on or off and

part of a five-minute energy segment is lost. For example, if the train is switched

on in the middle of a five-minute segment, energy consumed during the first part

of the segment will not be recorded by the TMS. Similarly, if the train is switched

off during a five-minute segment, the energy consumed during the last part of the

segment will not be recorded. The impact of this error is expected to be negligible,

because a train is typically only switched off and on once per day, and such events

can be easily identified. If necessary, an appropriate estimated value can be inserted

to reflect the usage at start-up.

3. An identical dataset can appear more than once in the database — known as a

Double Record. Where all fields are identical, selecting only the distinct records

during the import process will account for this. Where Double Records occur with

different values and cannot be so filtered, the quality factor is set to “N.” The

impact of ignoring such erroneous records is expected to be negligible.
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4. It is possible for the recorded values to exceed the possible energy consumption

for the train. Such gross over-recording can be dealt with by setting the quality

factor appropriately for records containing values grossly in excess of the nominal

maximum energy consumption and regeneration in a five-minute period. This is

deemed to be a rare occurrence with a negligible impact.

5. It is possible for data to be downloaded or uploaded multiple times at the depot;

to protect against this, only the distinct records should be selected.

6. An offset of one second can occur leading to the possibility of data existing both for

an exact five-minute sample and for that five-minute sample time plus one second.

This can be identified and marked accordingly with negligible impact.

7. Data can be manually downloaded from the train in the depot just before it is

turned off, and there is a risk that data can be cleared or not uploaded to the server.

Although any data lost typically relates to energy usage within the depot when

the consumption is typically low, missing data can be identified and substituted by

estimates in accordance with the business rules.

8. GPS errors can occur, particularly when the train is in a depot, heavily covered

station or a tunnel. The quality factor for the location field can be marked

accordingly, but this does not necessitate discarding the energy measurement.

No such detailed data have been provided by other TOCs, but it is assumed that the

measurement systems currently in operation meet the accuracy requirements set out in

the relevant standards and that many of the anomalies and potential sources of error

identified by Virgin Trains are universally applicable.

It should also be noted that the tolerances of the on-train measurement systems have

the potential to vary throughout their usable lives. To this end, provision has been

made within the Electric Current for Traction (EC4T) Metering Rules for Network Rail,

TOCs and the ORR to carry out periodic audits of metering systems. Network Rail also

plan on considering the extent to which such systems do remain within their prescribed

tolerances throughout their lifetime (Network Rail, 2013d).

In any case, Network Rail assume the existence of the “portfolio effect” whereby large

metered fleets operating within prescribed tolerance limits remain, as a portfolio, within

their collective tolerances over time (provided that there are no systemic inaccuracies).

However, the standards set for train-borne energy measurement are primarily concerned

with data for billing, and there remain further pitfalls when the data are used for more

in-depth analysis of energy consumption. Firstly, the fact that the resolution of the data

recorded is so high, being in terms of minutes rather than anything more regular, means

that the energy data alone cannot easily be used to draw meaningful conclusions about

energy consumption. A lot can happen in a minute, let alone five — for example, the
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train could conceivably make a station stop. Secondly, although inaccuracies in the GPS

data do not cause too many problems for billing, care needs to be taken when using it as

the prime source of data for ascertaining how energy consumption may vary with both

speed and location along a rail route.

If the aim were to make direct comparisons between different types of train, it would

be possible to aggregate the London Midland energy readings and generate data on a

five-minute basis in line with that provided by Virgin Trains. This would ensure that

trains from both TOCs were subject to similar rounding errors and would therefore be

more directly comparable. However, such comparisons are not the principle aim of this

thesis, and retaining the higher resolution of the London Midland data is beneficial for

some of the following analysis, in which the variation in energy consumption and the

factors which may cause it are investigated.

3.1.5 A breakdown of energy consumption data

An energy flow diagram for an electric passenger train is shown in Figure 3.1.

Figure 3.1: Energy Flow Diagram for an electric passenger train (Taken from:
UIC, 2003, Figure 3)

“Comfort functions” will include onboard heating, ventilation and air-conditioning (HVAC)

systems, interior lighting and other onboard amenities such as powered doors and power
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sockets for laptops and mobile phones. This is typically also referred to as the hotel

load. There may be other auxiliary systems which are not directly part of the passenger

environment, but for simplicity the term “hotel load” will be used to refer to all energy

consumption not directly related to train motion.

For a train with regenerative braking, the braking force comprises two components

— a friction braking force and a motor braking force. Only the motor braking force

can be used to produce electricity (Jong and Chang, 2005). The friction braking force

results in the dissipation of energy, as illustrated in Figure 3.1. For a train without

regenerative braking, all of the energy is dissipated. Experience with regenerative braking

systems in the UK has shown that they typically return about 15 to 20% of the gross

energy consumed to the grid, with some inner suburban services showing higher savings

(Railwaygazette.com, 2012).

The energy consumption data provided by on-board metering systems are for the train as

a whole. Because energy consumed and energy returned to the grid (via the regenerative

braking system) are metered separately, the effects of the regenerative braking system

can be accounted for. However, no distinction is made between energy consumed by

the traction systems, and the hotel load. An attempt is made in Chapter 6 to estimate

the hotel load by considering the energy readings taken when the train is stationary. In

published literature, estimates of the typical size of the hotel load range from 5% of the

traction energy (RSSB, 2011) to more than 30% of the energy consumed (assumed to be

net consumption, taking into account any regenerative braking) (UIC, 2003).

3.2 Defining the UK railway network

This section briefly describes some of the datasets and tools which are available for

mapping the UK railway network and identifying the routes taken by trains running

on it. The Traingraph project (https://github.com/trainhack/traingraph) and the

ShareGeo repository (http://www.sharegeo.ac.uk/) are both open-source. Network Rail,

the infrastructure manager responsible for Britain’s heavy railway network, have also

provided data specifically for use in this research.

3.2.1 Traingraph

Traingraph is an open-source set of tools for processing OpenStreetMap (OSM) rail data

(Westcott, 2013). The repository also contains a link to a database of mapping data for

the entire European railway network. The Python script graph to kml.py in the toolset

allows the railway lines and stations contained within the database to be output in

Keyhole Markup Language (kml) format, which can then be loaded by mapping software

or three-dimensional Earth browsers such as Google Earth. Use of Google Earth to
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visualise the data showed that the network defined by the Traingraph database matches

the Google Earth base-map and is comprehensive in its coverage.

Several limitations of both the dataset and the associated toolset are given (Westcott,

2013). For example, it is noted that the shortest path calculated along the railway network

is not necessarily the most sensible one over which to operate a train. This is a generic

concern, and not one which only applies to the Traingraph toolset.

Westcott (2013) also suggests that the inclusion of depots and sidings in the dataset is

unlikely to be helpful in route analysis, although in this case knowledge of their location

could be beneficial. This is because it could help separate the energy data recorded from

a train when it is in a siding or depot from that recorded from a train when it is in

service.

3.2.2 ShareGeo

It was possible to download data for the transportation network in Great Britain for use

in a Geographic Information System (GIS) package, such as ArcGIS, from the ShareGeo

repository (ShareGeo, 2010). This includes a polyline representation of the entire UK

railway network, and locations of all the stations.

The representation of the railway network is not as detailed as that from the Traingraph

repository and does not distinguish between individual tracks along a route. It does not

explicitly include depots and sidings, and when exported in Keyhole Markup Language

(kml) format it does not always accurately overlay the Google Earth basemap, although

this could be due to the way in which the kml data was generated in this case rather

than because of weaknesses in the underlying data.

3.2.3 Network Rail

Network Rail provided datasets for the area of the network used by London Midland

and Virgin Trains. The area covered includes the lines around Birmingham, the WCML

between London Euston and Birmingham New Street and further north to Crewe,

Manchester and Liverpool. The supplied data include station locations, line speed limits,

junction data and depot locations (Network Rail, 2013b; Network Rail, 2013c)

The data are labelled in terms of Engineers’ Line References (ELRs) which are unique

three or four character alphanumeric codes to referring to a particular section of track

on the UK national railway network. Publicly available details of each ELR (Deaves,

2013b), including a description of the location, were downloaded and imported into the

UK Locations SQL database for future reference.
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The most useful aspect of the Network Rail data was the line speed data, which is useful

for defining real-world route profiles for use in a simulation package such as the Arup

RouteMaster tool (Section 7.4) and for categorising service schedules according to average

line speed.

3.2.4 Additional location data

The UK railway network is also defined in terms of Timing Point Locations (TIPLOCs),

which are used for train schedules (Hicks, 2011). TIPLOCs represent key points on the

network, including stations (in some cases, even parts of a station), sidings, signals,

depots and junctions. In train scheduling (Section 3.3), they are used to define the path

a given train will take.

A TIPLOC is defined by a unique alphanumeric code of up to eight characters, loosely

based on the name of the corresponding location. For example, “EUSTON” is the

TIPLOC for London Euston Station and “MNCRPIC” is the TIPLOC for Manchester

Piccadilly Station. Data are publicly available online listing the TIPLOCs and the name

of the location they are assigned to, and matching them to other location codes used

within the railway industry such as CRS (Computer Reservation System) codes (Deaves,

2013a). Geographical co-ordinates (Easting and Northing) for the TIPLOCs at stations

are available in the National Public Transport Access Node (NaPTAN) database (DfT,

2007). An enhanced set of geographical co-ordinates featuring non-station TIPLOCs (such

as junctions) was already held by the Transportation Research Group at the University

of Southampton (TRG), having been manually created using OS Open Data (Ordnance

Survey, 2013). The exact location of some TIPLOCs was unknown. Google Maps was

used to check the location of key sidings and depots (listed in Appendix D.1) and to

enhance the dataset where necessary.

swlines Ltd., the company behind www.realtimetrains.co.uk, provided a set of mileage

data giving known mileages between pairs of TIPLOCs (swlines Ltd. 2012b).

3.2.5 Defining the network as a set of points

ArcGIS was used to export the railway network data provided by Network Rail (Section 3.2.3)

and ShareGeo (Section 3.2.2) into kml format. In this format, lines are represented as a

series of points, defined by Latitude and Longitude co-ordinates. ArcGIS 10.1 generates

compressed kmz files, and so Google Earth was used to decompress the output and

generate standard kml files.

Python modules were written to process the kml output, producing a set of points each

with a unique integer ID, Latitude and Longitude co-ordinates and references to the

individual line (“section”) of the network the point was found on. For generic network
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data, such as the ShareGeo data, Python numbered the sections. For the ELR data

provided by Network Rail, each ELR was already labelled in the data and the Python

module was adapted to take account of this. The ArcGIS function which allows polyline

data to be exported in kml format in this manner does not permit the frequency or spacing

of the points to be specified; however, the Python modules made use of the haversine

formula (Appendix E.1) to estimate the straight-line distance between successive points

in each section.

A summary of the data generated is given in Table 3.2.

Table 3.2: A summary of the point based data representing the UK railway
network generated from each of two datasets

Dataset ShareGeo Network Rail

Scope of data Whole of the railway network
in Great Britain

The WCML between London
Euston & Glasgow Central,
lines around Birmingham as
far West as Shrewsbury and
as far South as Cheltenham
Spa, and the loop including
Northampton and Long
Buckby.

Length of network covered
[km]

16,000 2,345

Number of points 253,393 32,086

Mean haversine spacing
between points [km]

0.063 0.061

The Python script also enabled a second set of points to be generated from the kml

data with a minimum point spacing as specified by the user. The network length in

Table 3.2 refers to route-km rather than track-km, which does not account for parallel

tracks (track-km cover each individual track, such that a section of double track would

cover twice as many track-km as it would route-km). The number of points and the

mean haversine spacing refer to the full set generated by ArcGIS when exported to kml

format; this is the highest resolution of the data, and specifying a minimum point spacing

would decrease the number of points and increase the mean spacing. The mean spacing

may not exactly reflect the actual spacing on the track because the haversine distance

is a straight line distance which does not exactly follow the course of the railway line.

The relative advantages of the Network Rail and ShareGeo datasets are summarised in

Table 3.3.
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Table 3.3: The relative advantages of two different railway network datasets

The whole network (ShareGeo data) A subset of the network (Network Rail
data)

Guaranteed to contain the section of track on
which a train was running when the GPS
data was recorded.

Does not contain all the routes covered by
the trains studied in this research; hence
some of the on-train data must be discarded.

The inclusion of data for parts of the network
not covered by the trains in question
increases the risk of failing to identify
positioning errors. If the GPS data is located
close to any point on the network, the
matching error will be small, even if that
point on the network is some distance from
where the train actually was.

By only covering a select subset of the
network, the matching error for any reading
not within that area will be large. This
means that any reading not within the area
of interest can be discarded and/or marked
as erroneous.

Distances between any two GPS readings can
be difficult to calculate without additional
knowledge of the network.

Any matched GPS points can be assigned the
correct Engineers Line Reference (ELR) and
linked in with other Network Rail data.

Although the Network Rail data had some advantages, it was decided to use the ShareGeo

data for the whole UK railway network, with a key driver being the fact that those

trains outside the area covered by the Network Rail data would not have to be discarded.

Additionally, matching a point to an ELR proved to be a complex and difficult process,

making it impractical to capitalise on some of the advantages of the Network Rail data.

However, it was decided that the default resolution of the ShareGeo data, with a point

spacing of about 63m (Table 3.2), was too great for a number of reasons:

1. 63m is comparable with the length of the shortest train analysed here (the three

carriage Class 323) and significantly less than the length of the 11-carriage Pendolino

(about 265m long). Not only is it meaningless to try and pinpoint the whole train

to an accuracy of 63m, but it greatly increases the risk that subsequent readings

from a stationary train are not matched to the same point, making it much harder

to identify stationary readings.

2. A high resolution of points increases the risk that the train is mapped to the wrong

line where lines join or cross.

3. The decision to use TIPLOC and schedule data to estimate distances travelled

meant that the accuracy of the distance measured between each reading became

unimportant, and therefore the advantages of a lower resolution (additionally

including faster matching with the GPS data) outweighed the disadvantages.

To overcome this, a minimum point spacing of 0.3km (300m) was specified, and a Python

module was written to produce a selected set of points from the ShareGeo data with
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a mean haversine spacing of 0.352km. There were 35904 points in this set. The point

spacing was chosen because it was bigger than the longest single train analysed (the

11-carriage Pendolino) whilst still being dense enough to locate the train reasonably

accurately.

3.3 Train schedules

Each train on the UK railway network is run according to a defined schedule, giving the

times at which it is expected to pass or stop at given locations en route. TIPLOCs are

used as the standard set of locations for scheduling the movement of a train over the UK

network. Train schedules can be planned at short-notice, which is not uncommon for

freight trains, but the vast majority of passenger services are planned so that a regular

timetable can be produced and published in good time. Extracts from Network Rail’s

Train Service Database (TSDB), containing relevant timetabling and scheduling data

were available in TRG. The format of this data is described in Appendix D.2.

In this case, the most useful of the fields used to identify a particular schedule in the

TSDB is the Train Identity, because it is used by the train operators in their train

allocation tables. Elsewhere it is referred to as a “Headcode,” but it should not be

confused with the Headcode field found in TSDB Common Interface File (CIF) records.

The latter refers to four numerics which form part of the eight digit retail service number

used in the New Reservation System, whereas the Train Identity “Headcode” is a four

digit alphanumeric code allocated to a given schedule. It can be used to identify the type

of service (for example, trains in passenger service usually have Headcodes starting with

“1” or “2” and trains running empty to/from a depot or siding have Headcodes starting

with “5”). For the avoidance of ambiguity, and for consistency with the language used

by train operators, “Headcode” is used hereafter to refer only to the alphanumeric Train

Identity.

Train operators are responsible for allocating the individual trains in their fleets to the

scheduled services. In some cases, a given service must be operated by one particular

type of train. There are many reasons for this, including the fact that some types of

train are much better suited to a given schedule than others (for example, intercity

services can require a higher running speed) and the expected number of passengers on a

particular service may require a certain level of capacity. Within a fleet of trains of the

same type, the allocation of individual trains to individual services is dependent on a

number of factors, including the need for trains to visit the depot regularly for cleaning

and maintenance, and a desire to use the available trains efficiently. It is unusual for

an individual train to be tied to a regular service. Because the two TOCs who supplied

energy data also provided allocation data, it was possible to link the energy readings

with the operation of a particular service.
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The process of matching train allocation data to a particular schedule is described in

detail for the London Midland data in Section 4.4.5 and for the Virgin Trains data in

Section 4.5.6. Matching a train to a schedule is not as straightforward as simply finding

the Headcode in the schedule data which matches the train allocation, mainly because a

Headcode does not uniquely identify a particular service within the TSDB. For example,

a weekend service may have the same Headcode as a weekday service on the same route,

even though the timings and stopping patterns may differ. The TSDB also allows for

temporary amendments to services and routes, to allow for engineering work or other

necessary alterations, but the Headcode usually remains the same. Similarly, the regular

passenger timetable is updated twice a year, in May and December, and headcodes are

typically re-used, irrespective of any major changes. For this reason, care must be taken

when the time periods covered by the train allocation data and the train schedule data

do not completely overlap.

3.3.1 Calculating schedule distances

A key reason for considering rail schedule data is that it can be useful when calculating

energy consumption on a per-distance basis. For this to be the case, the distance covered

by each service needs to be known.

A data table provided by (swlines Ltd. 2012b) gives the distance, in miles, along the

railway between pairs of adjacent TIPLOCs. Comparing schedule data directly with the

mileage table did not give a complete picture, because train schedules do not necessarily

include every TIPLOC en route. Hence there were many examples where adjacent

TIPLOCs in the schedule data were not physically adjacent on the railway network

and did not match any of the known pairs in the mileage table. To overcome this, a

route-finding algorithm was developed in Python, which was then used to process the

pairs of TIPLOCs in the schedule which were not physically adjacent.

The data in the TIPLOC mileage table was used to generate a set of nodes (represented

by the TIPLOCs) connected by links (according to the mileage data) — known as a

graph. Dijkstra’s Algorithm (Dijkstra, 1959) was then implemented so that the shortest

distance between any two TIPLOCs could be found. The distance from one TIPLOC

to the next in a given schedule could then be estimated and, by extension, the distance

covered by a train operating the service could be found.

Because the implementation of Dijkstra’s Algorithm was found to be quite slow, an

attempt was made at implementing the A* Algorithm (Hart, Nilsson, and Raphael,

1968) instead. This is based on Dijkstra’s Algorithm but uses heuristics to offer better

performance and relies on an initial estimate of the shortest distance between nodes. In

this case, such an estimate was made by using the geographical location of each TIPLOC

to calculate the haversine distance (Appendix E.1). In practice, because the geographical
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co-ordinates were not known for every single TIPLOC, it was not possible to use the A*

Algorithm universally.

The final Python module, TIPLOCDistances.py, applied the A*Algorithm where possible,

reverting to Dijkstra’s Algorithm when the geographic location of either or both of the

TIPLOCs in a given pair were was unknown. To accelerate the processing of the whole

set of schedule data, the distance found between a given pair of TIPLOCs was stored, so

that subsequent requests for the same pair did not have to invoke either algorithm again.

The assumption was made that the route given for a train schedule is unambiguous —

i.e. there is only one possible route between each subsequent TIPLOC — and that it

would be the shortest route found by the algorithm.

3.4 Summary & next steps

Several TOCs have invested in on-board electricity metering systems to record and

monitor the energy consumption of their electric train fleets. Section 3.1 introduced

the basic principles of such energy monitoring. London Midland and Virgin Trains

are two such TOCs who have made some of their data available for this research, and

although they have taken slightly different approaches to on-board energy monitoring

(Section 3.1.3), the data provided are similar — namely both datasets contain regular

energy readings which are labelled with identifiers for the particular train, a time-stamp,

and GPS location data.

Because the energy data were recorded at no more than one-minute intervals, the supplied

GPS location data alone are not sufficient to infer the distance travelled accurately. It is

therefore necessary to understand something of the railway network on which the trains

were running, and the services they were operating. Section 3.2 described data available

for defining the UK railway network, and Section 3.3 described available train scheduling

data and how distance travelled could be calculated from it.

Chapter 4 describes in more detail the energy data provided by the TOCs, how it was

filtered and categorised, and how it was matched to the UK railway network and schedules

from the TSDB. The resulting dataset comprises empirical energy consumption data for

a far greater number of train journeys than has previously been seen in the literature.

Chapter 5 and Chapter 6 go on to analyse some of the variation observed in this dataset

— the large sample size enables the importance of different factors, such as the route, the

driving style and the time of day to be investigated in a way which has not been possible

with very limited empirical data.





Chapter 4

Filtering and classification of

supplied energy data

4.1 Introduction

Chapter 3 introduced the concept of train-borne energy measurement and the fact that

two UK TOCs have made such energy consumption data available for this research.

This chapter explains how the raw energy data were matched to train service and rail

network data. Energy consumption was calculated in terms of kWh per train-km, a

distance-based metric which can be used as a basis for investigation of the factors which

may affect operational energy consumption (Chapter 5) and to make comparisons with

other modes (Chapter 11).

4.2 Main stages of analysis

Although there were differences in the format of the energy data supplied by each of

the TOCs, the stages of the analysis were similar in each case. The main stages were as

follows:

1. Identification of unreliable energy readings and initial categorisation of

the data. The data supplied by each TOC contained some indication of the

reliability of each energy reading. This information was used in data queries to

mark any erroneous records and exclude them accordingly; in the case of the Virgin

Trains data, around 21% of the data were marked as erroneous (Section 4.5.1). In

the case of the London Midland data, less than 2% of the energy data had a less

than perfect “Quality Reference” score (Section 4.4.1)1. Some initial categorisation

1It should be noted that the reliability information provided by each TOC was very different and
these figures should not be compared directly.
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of the data were undertaken at this stage — namely the division of the readings

by time of day. For the data supplied by Virgin Trains, some work had to be

undertaken at this stage to separate the data for the nine-carriage trains from the

data for the 11-carriage trains in the fleet, and the supplied data were sufficiently

comprehensive to identify and exclude periods of train maintenance.

2. Matching of GPS data to known locations on the railway network. It

can be assumed that a train is always located on the railway line. Mapping the

GPS data supplied with the energy readings to the railway network helped to link

energy data with schedule and route data. It also helped to identify energy readings

which corresponded to periods when the train was stationary and to separate those

taken when the train was stabled in a depot or siding.

3. Matching of energy data to a route schedule. The fleet allocation records

supplied by the train operators allowed the energy data to be linked with train

schedule data from Network Rail’s TSDB. When matching the energy data to a

schedule, the train allocation data itself cannot be assumed to be 100% reliable. For

example, mechanical problems, operating incidents or other last minute changes

to the schedule may mean that a train did not complete its planned allocation.

Furthermore, any operating delays could have an impact on the energy consumption

of the train, which might run much slower than usual, have long periods of idling or

run faster than usual in order to make up time. This must be accounted for when

attempting to calculate the mean energy consumption in normal circumstances

over a given route.

4. Calculation of energy per train-km. Having linked the energy data with train

schedule data, the total energy consumed by a given service could be estimated.

The distance covered by each schedule had also been estimated (Section 3.3.1), such

that consumption on a per train-km basis could be calculated. Because the energy

meters also monitor energy returned to the grid via regenerative braking systems,

it was possible to include the effects of regenerative braking where applicable.

Stationary readings were used to estimate the size of the non-traction energy

consumption; that is, energy which was consumed to power on-board and auxiliary

systems rather than to move the train. This includes heating, lighting and other

on-board power consumption and is sometimes referred to as the hotel load.

As well as considering energy consumption on a service by service basis, estimates

were also made of the overall energy consumed per train-km when periods of idling

and empty running to and from the depot were taken into account. Although this

energy consumption is not always directly attributable to the operation of a single

service, periods of idling and empty running still form part of the overall service

provision.
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Because of the fact that both the scope and the format of the data provided by London

Midland differ from that provided by Virgin Trains, the analysis is described separately

for each TOC, in Section 4.4 and Section 4.5 respectively. Prior to that, the process

of matching the energy data to the UK railway network is described in more detail in

Section 4.3, because it is common to both data sets.

4.3 Matching GPS data to the UK railway network

With the various datasets and tools available, different ways were explored of matching

the GPS readings provided by the train operators to the UK railway network. The

amount of data involved posed a particular challenge — with a combined total of over

20 million readings from the two train operators, computational efficiency was a high

priority. Trials were conducted with the Traingraph database and toolset introduced in

Section 3.2.1 and with the Route Analyst functions in ArcGIS 10.1. Ultimately, neither of

these approaches proved satisfactory, and a new point-matching algorithm was developed

in Python (Section 4.3.3).

4.3.1 Use of the Traingraph database and toolset

The Traingraph repository (Section 3.2.1) contained the most comprehensive available

representation of the UK railway network, including a function which will match a point

(described by latitude and longitude co-ordinates) to the nearest known stretch of railway

track (within a given radius — the default value is 80m).

Although it is possible to adapt the Python script to batch process a whole set of

co-ordinate pairs in this manner, it was not found to be a practical solution in this case,

for two key reasons. The first is that querying the database and searching for matching

stretches of railway track is a slow process which makes it unsuitable for processing a

large number of readings. The second is that the database used is actually too detailed;

multiple tracks are represented as distinct edges, when it would be far better to condense

them into a single path (Westcott, 2013). This is a real issue in this case because there

is a risk that when mapping the GPS data from a train onto the network, successive

readings may be incorrectly assigned to adjacent tracks because of the small spacing

between them and the imprecision of the GPS data. If this happens, any route finding

algorithm may return erroneous results because the path between two points on adjacent

tracks involves travelling via a junction between them.

Experiments with the route finding algorithm also revealed that the inclusion of depots

and sidings in the dataset could indeed be problematic. The algorithm considered all

possible paths from each junction traversed, including individual sidings and branches. If
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the route between two points passed the entrance to a large depot or yard, the run-time

of the algorithm was found to increase significantly as a result.

4.3.2 Use of ArcGIS

ArcGIS has a “Network Analyst” toolset which can be used for finding routes, and

associated distances across a network. The ShareGeo dataset (Section 3.2.2) was imported

into ArcMap 10.1, and the polyline representation of the railway network was converted

to a Network Dataset. It was then possible to make use of the Route Analyst function

to calculate the route along the railway network between pairs of points.

The London Midland GPS data were loaded into ArcMap and mapped as “Stops” on

the network. It was found that this process of matching points onto the network in this

way was a computationally intensive and slow process and a number of points were not

successfully located.

Use of the Route Analyst function revealed further problems with the ShareGeo dataset.

The dataset did not appear to contain explicit information about junctions, which meant

that when ArcGIS converted the polylines to a Network Dataset, junctions were placed

on the resulting network wherever a section came to an end, or two lines crossed. This

meant that the network used for route finding was not entirely representative of reality;

for example, it assumed the existence of a junction where one line crosses a bridge over

another. As a result, the Route Analyst function could not always be relied upon to

calculate a realistic route between two points on the network.

4.3.3 Point matching algorithms

Having defined the UK railway network as a set of points (Section 3.2.5), this section

describes how a Python module was developed to identify the nearest point on the

network to a given GPS reading.

A set of spatial algorithms and data structures is included in the SciPy package of

open-source software for the Python language (The Scipy Community, 2013b). The

cKDTree class was found to be an efficient means of matching GPS points to points on

the railway network. It is designed to provide an index into a set of k-dimensional points

which can be used to rapidly look up the nearest neighbours of any given point (The

Scipy Community, 2013a). In this case, the points on the railway network form a set of

two-dimensional points and the ckDTree algorithm was used to index them accordingly

and output the closest one to each given GPS data point.

Boundaries were defined on the network within which the London Midland and Virgin

Trains services could be expected to be found, and points lying outside that area were
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excluded. Although this was a fairly crude approach and still left a large number of

railway lines within the boundaries on which these two companies do not operate services,

it still served to reduce the amount of the network onto which trains could be mapped

incorrectly. The north western extremity of the network served by Virgin Trains is

Glasgow Central, and so a point north west of Glasgow (Loch Lomond) was chosen to be

the north west corner of the rectangular network boundary. Similarly, the south eastern

extremity of the area served by both operators is London Euston, and so a point south

east of this (London Bridge) was chosen to be the south eastern corner of the rectangular

network boundary. An SQL query was used to enhance the selected set of points from

the ShareGeo dataset to ensure that key TIPLOCs and Depots were included. This left

a set of 26,936 points representing the UK network, onto which the GPS data from the

operators could be matched.

ckDTrees were also built in the same way for those TIPLOCs and Depots for which

Latitude and Longitude data were known.

Historical weather data were obtained from Weather Underground (Weather Underground

Inc. 2013), providing temperature data and basic information about precipitation and

other weather conditions. Data were obtained for five weather stations close to the route

of the WCML — Birmingham International Airport, Cranfield, Glasgow International

Airport, Manchester International Airport and Northolt RAF Station. The ckDTree

algorithm was also used to build a two dimensional tree from the location of each of the

Weather Stations and to match the GPS data accordingly.

The Python module GPSPointsMatching.py was written for the purposes of matching

the GPS data from the two train operators to the set of points defining the UK Network,

the nearest Depot and TIPLOC and the nearest weather station. All point data was

passed to the cKDTree algorithms in Cartesian (x,y) form — to convert the geographic

co-ordinates (latitude, longitude) to Universal Transverse Mercator (UTM) co-ordinates

an appropriate Python module (Purvis, 2013) was downloaded. GPSPointsMatching.py

filtered the input data and excluded any GPS readings outside the rectangular boundary

defined by Loch Lomond in the north west and London Bridge in the south east. Table 4.1

summarises the format of the output tables produced by GPSPointsMatching.py, which

were then imported into the appropriate SQL database for the train operator.
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Table 4.1: A summary of the data tables produced by the Python module
GPSPointsMatching.py

Field Name Field Contents

ReadingID The unique integer ID of each energy reading

Train The train for which the energy reading
applies

Date The timestamp of the energy reading

NearestNetworkPoint The nearest point on the railway network to
the train

NetworkError The straight-line distance between the GPS
reading and the matched point on the
network (in km)

NearestDepot The nearest of the key depots and sidings
given in Table D.1 to the GPS reading

NearestDepotError The straight-line distance between the GPS
reading and the nearest Depot (in km)

NearestTIPLOCPoint The nearest TIPLOC to the train

TIPLOCError The straight-line distance between the GPS
reading and the nearest TIPLOC (in km)

NearestWeatherPoint The nearest weather station (for which data
are held) to the train

WeatherError The straight-line distance between the GPS
reading and the nearest weather station (in
km)

With a mean point spacing of approximately 350m, and the fact that the length of the

train is significant, it could be expected that if the GPS data were accurate then the

train would be located within 175m of a network point.

4.4 London Midland data

In order to facilitate the analysis, and to ensure that the supplied data remained intact,

a new database was created. Synopses of the key data tables created are given in

Appendix B.

4.4.1 Identification of relevant & reliable energy data

Each energy reading supplied by London Midland comprises 36 data fields. These includes

a unique identifier, a time-stamp, position data, data about the train from which the
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reading was taken and electricity meter readings. They also include “Quality Reference”

fields, containing integer values (between 0 and 127 inclusive) to indicate the quality of

the meter readings and associated location data. Not all of the data fields were relevant

for this research. Irrelevant fields include references and file names for internal use,

and voltage and current data. Furthermore, the original data comprises two sets of

electricity meter data; “Channel A” data apply to Class 350 trains, and “Channel B”

data applies to Class 321 and 323 trains. Relevant data were selected from the original

source accordingly, and copied to a new table in the analysis database (Table B.1).

Although the quality reference fields could theoretically take any integer value between 0

and 127 inclusive (where 127 represents total confidence in the supplied data), it was

found that the dataset only contained three distinct values: 46, 61 and 127. Table 4.2

shows the breakdown of the supplied energy readings, by train type (Unit Class) and by

the supplied quality indicator for the energy data.

Table 4.2: A breakdown of the supplied energy data by train type (Unit Class)
and quality indicators

Unit Class Energy
Quality Ref.

Number of
Readings

% of readings
by Unit Class

% of all
energy

readings

321

46 0 0 0

61 6,294 2 0

127 269,770 98 7

(All) 276,064 100 7

323

46 0 0 0

61 2,746 0 0

127 1,037,730 100 26

(All) 1,040,476 100 26

350/1

46 23,593 2 1

61 0 0 0

127 1,168,303 98 30

(All) 1,191,896 100 30

350/2

46 25,302 2 1

61 0 0 0

127 1,400,065 98 36

(All) 1,425,367 100 36
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The proportion of readings with a quality indicator below the maximum (127) is small

and excluding them is unlikely to have a significant bearing on the overall analysis.

A similar breakdown of the supplied energy readings by Unit Class and by the quality

indicator for the GPS data is shown in Table 4.3. It can be seen that the quality of the

GPS data is much more variable than the quality of the energy data. This reflects the

fact that the ability to obtain an accurate GPS position can be affected by a number of

factors, including the obscuring effect of trees, tunnels or station buildings.

Table 4.3: A breakdown of the supplied location data by train type (Unit Class)
and quality indicators

Unit Class Location
Quality Ref.

Number of
Readings

% of readings
by Unit Class

% of all
energy

readings

321

46 0 0 0

61 105,745 38 3

127 170,319 62 4

(All) 276,064 100 7

323

46 0 0 0

61 463,435 45 12

127 577,041 55 15

(All) 1,040,476 100 26

350/1

46 213,491 18 5

61 11 0 0

127 978,394 82 25

(All) 1,191,896 100 30

350/2

46 233,510 16 6

61 26 0 0

127 1,191,831 84 30

(All) 1,425,367 100 36

4.4.2 Matching the GPS data to the railway network

Using the Python point matching module described in Section 4.3.3, the energy readings

deemed to be valid (Section 4.4.1) were matched to a position on the UK railway network.

The results of the process are summarised in Table 4.4. The number of readings being
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reported outside the defined boundary is likely to be because a key station, Birmingham

New Street, is covered and therefore trains there may not record sensible GPS data.

Table 4.4: A summary of the GPS data supplied by London Midland

Total Number of Readings 3,933,803 100%

Number of readings matched
within 175m or less

3,251,260 83%

Number of readings matched
with an error between 176m
and 500m

222,295 6%

Number of readings matched
with an error exceeding 500m

5,454 0%

Number of readings not
matched due to being outside
the defined boundary

454,794 12%

Although it seems that the majority of GPS data located the train on the UK railway

network, there is no way of telling from this alone whether the GPS data has been

correctly matched to the point on the network where the train actually was. The process

of matching the trains to known schedules (described below in Section 4.4.5) helps to

alleviate this concern, because it relies on the reported location of the train throughout

the course of its journey and not solely on individual points.

4.4.3 Categorisation of energy readings by time period

Time Periods were defined as follows:

Weekend: Saturday and Sunday between 6am and 11pm

Morning Peak: Weekdays between 7am and 10am

Evening Peak: Weekdays between 4pm and 7pm

Off Peak: Weekdays between 6am and 11pm but outside the peak periods

Night: Between 11pm and 6am

Table 4.5 shows that the spread of energy readings for each class of train is as expected

given that the trains are typically drawing power, even when stabled.



80 Chapter 4 Filtering and classification of supplied energy data

Table 4.5: A breakdown of the London Midland energy data by time period

Time Period % of hours in
week

Unit Class Number of
energy

readings

% of total
energy

readings (by
Unit Class)

Weekend 20.20

321 51,731 18.70

323 213,416 20.50

350/1 225,695 18.90

350/2 262,190 18.40

MorningPeak 8.90

321 26,531 9.60

323 92,858 8.90

350/1 113,319 9.50

350/2 135,722 9.50

EveningPeak 8.90

321 27,133 9.80

323 93,856 9.00

350/1 114,341 9.60

350/2 135,809 9.50

OffPeak 32.70

321 97,905 35.50

323 340,857 32.80

350/1 416,038 34.90

350/2 494,827 34.70

Night 29.20

321 72,764 26.40

323 299,489 28.80

350/1 322,503 27.10

350/2 396,819 27.80
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4.4.4 Identification of maintenance periods

No maintenance records were supplied with the London Midland data and so it was not

possible to isolate those readings taken when the train was unavailable for service.

4.4.5 Matching the energy data to a known service

London Midland provided a Service Allocation data table, linking each energy reading

to a known service. A description of the data fields is given in Table 4.6 and a summary

of the data is given in Table 4.7.

Table 4.6: A description of the Service Allocation data table provided by London
Midland

Field Name Field Contents

IDtblRawEnergyUsage The unique integer to identify a particular
energy reading (can be matched with the
supplied energy data).

ServiceHeadCode The alphanumeric code used to identify a
particular train service. The first four digits
can be matched with Network Rail’s
scheduling data. The first digit indicates the
type of service with “5” being a non-revenue
run.

ServiceCode An integer used to identify a particular train
service

ServiceStartDateTime The date and time at which the service
started

ServiceEndDateTime The date and time at which the service
stopped

Table 4.7: A summary of the data in the service allocation table provided by
London Midland

Total number of service allocation records 1,739,744

Number of service allocation records with a
corresponding match in the supplied energy
data

1,524,262

% of service allocation records with a match
in the supplied energy data

87

Total number of energy readings 3,933,803

% of energy readings with a matched service
allocation record

39
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Not every service allocation record has a matching record in the supplied energy data,

because the time periods covered by the two datasets do not completely overlap. The fact

that a significant number of energy records do not have a matched service allocation record

is due to the fact that the energy records cover the whole day and include large periods

when the train is inactive between services or stabled overnight in sidings. The energy

consumption for these periods will be significantly less than the energy consumption

when the train is travelling in service, but the data still serve to highlight the fact that the

calculations of operational energy consumption of a train should consider the non-service

aspects.

The trains in London Midland’s fleet can be operated in multiple — on some services,

two or three individual trains are coupled together in order to provide greater passenger

capacity. The initial analysis undertaken did not consider this, but it was subsequently

found to be important to account for it at an early stage. Hence it was deemed necessary to

make a distinction between services (defined as a unique combination of ServiceHeadCode,

ServiceStartDateTime and ServiceEndDateTime in the service allocation table) and

allocations (the assignment of a train or trains in the fleet to a particular service).

The service start and end times given in the allocation table do not necessarily match

train schedule data, because energy readings from a period either side of the operation

of a schedule may have been included, especially if the train waited in the station before

departure and after arrival. To help identify the correct service in the train schedule

data, location data, including the origin and destination of the service, is helpful. Such

data were not included in the London Midland service allocation table, but could be

inferred by considering the associated energy data and mapped locations (Table B.3) for

the readings.

In order to link the energy data supplied by London Midland to the train scheduling

data, unique integers were generated for each service and for each allocation of a train

to a service (Table B.3). An allocation was defined by the matching of an individual

fleet number to a service. There were 23,605 unique services in the data, and 29,347

unique allocations of trains to services. This indicates that 20% of the allocations were

for services operated in multiple.

Each unique service was then matched, where possible, to a known schedule in the

extracts held from Network Rail’s TSDB, according to the following method:

1. The allocated Headcode for a given service was linked with all matching Headcodes

in the TSDB extracts, generating a set of potential schedules for each service. By

virtue of the fact that the schedule data held was for passenger runs only, any

non-revenue services were excluded at this point.

2. The day of the week on which the service was run was matched with the DaysRun

field in the Network Rail data, which describes which days of the week a given
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schedule was valid for. Any potentially matching schedules which did not match

the day of the week on which the service was run were discarded.

3. The location data attached to each energy reading was mapped to the nearest

TIPLOC on the UK railway network (Section 4.3). If the origin TIPLOC for a

potentially matching schedule had not been visited by the service, the schedule was

discarded. The process was then repeated for the destinations of the potentially

matching services.

4. The remaining potentially matching schedules for a given service were then ranked

by differences between the scheduled arrival/departure times and those reported in

the allocation table. The top schedule was identified as the best match.

5. The services for which the arrival and departure times are not within 10 minutes

of the best matching schedule were not included in the output table. This was to

ensure that erroneous matches were excluded and that the output initially only

contained services which could, more or less, be defined as punctual.

The resulting data table (Table B.5) comprises 9,079 records, which means that only

about 31% of the 29,347 unique allocations were successfully matched to a schedule in

the TSDB. Reasons for this discrepancy may include the following:

• Non-punctual services were excluded.

• Poor location data may mean that services were not correctly linked to an origin

or destination. This would be expected to be particularly true of services to/from

stations such as London Euston, Birmingham New Street and Liverpool Lime Street

which are covered, making it more difficult to obtain an accurate GPS signal.

• It is not known whether the TSDB extracts from Network Rail were comprehensive

for the time in question.

• The allocation records supplied by London Midland may not have been completely

accurate.

Despite the fact that a large number of allocations remained unmatched, the number of

matched journeys still provided a much larger dataset than anything found in published

literature (it was noted in Section 2.5 that empirical data are often taken from a very

small number of journeys).

For each of the matched allocations, the energy consumption was calculated by summing

the meter readings between the last energy reading taken at the origin (OriginEnergyReadingID)

and the first energy reading taken at the destination (DestEnergyReadingID). The metered

data allows calculation of gross energy consumed, energy recovered via the regenerative
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braking system and the resulting net energy consumption. These data are given in kWh

and by dividing by the length of the journey, data in terms of kWh per train-km were

obtained.

4.5 Virgin Trains data

In order to facilitate the analysis, and to ensure that the supplied data remained intact,

a new database was created. Synopses of the key data tables created are given in

Appendix C.

4.5.1 Identification of relevant & reliable energy data

The energy data table supplied by Virgin Trains contains 14 fields for each record. These

include a time-stamp, a reference to the train from which the reading was taken, position

data and energy consumption data. The Pendolino trains are divided in to two or three

segments (Appendix A.1) and each record contains energy consumption data for each

section separately. Each record also contains fields for flagging up potential anomalies in

the data, according to the criteria outlined in Section 3.1.4. There are three such fields,

RecordState 695, RecordState 698 and RecordState 653, corresponding to the energy

monitoring points in each segment of the train. Only 11-carriage trains have a third

segment (“653”), but the relevant field exists in all records. If the corresponding energy

data is thought to contain anomalies then the appropriate state fields are populated

with “N.” If the corresponding energy data is thought to be correct, then the appropriate

state fields are populated with “OK.” The exception to this is that “653” field in some

early records, before a software upgrade as part of the programme to lengthen some

nine-carriage trains, is empty (NULL). Table 4.8 summarises the total number of energy

records.

Table 4.8: A summary of the validity of the energy records provided by Virgin
Trains

Total number of energy readings 20,470,550

Readings where all RecordState fields are “OK” (or, in the case of
the ‘653’ RecordState, NULL)

16,165,198

“OK” readings as % of total 79

There are no indicators in this dataset about the quality of the GPS-based location

data. However, not all of the supplied GPS readings are consistent with the standard

format which was adopted (Latitude/Longitude co-ordinates are mainly given in the form

N##.#### W##.####). It was decided to exclude these non-standard records
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principally because they could cause practical problems when matching the data to the

UK railway network. About 28% of records have location data which do not fit this

format, but there is significant overlap with those records where one or more of the

record states is not “OK”; less than 1% of readings with “OK” “RecordStates” do not

contain location data in the standard format.

Those records for which the “RecordStates” were not “OK,” or for which the GPS data

were deemed invalid were excluded from further analysis, as were a number of duplicates

which had been identified. Data from each of the remaining records (16,016,159 records,

amounting to 78% of the original dataset) were copied to the ValidEnergyReadings table

in the analysis database (Table C.1).

4.5.2 Matching the GPS data to the railway network

Using the Python point matching module described in Section 4.3.3, the energy readings

deemed to be valid (Section 4.5.1) were matched to a position on the UK railway network.

The results of the process are summarised in Table 4.9.

Table 4.9: A summary of the GPS data supplied by Virgin Trains

Total Number of Readings 16,016,159 100%

Number of readings matched
within 175m or less

14,307,378 89%

Number of readings matched
with an error between 176m
and 500m

1,484,802 9%

Number of readings outside
the defined boundary or with
a matching error >500m

223,979 1%

4.5.3 Identification of train length

The numbering of the trains in the Pendolino fleet follows the six digit convention 390xxx

where the first three digits denote the class of train (390), the fourth digit denotes the

length of the train (0 for nine carriages and 1 for eleven) and the last two digits uniquely

identify each train in the fleet. Although separating the data should theoretically have

been straightforward, it was found that the supplied table in which the energy data

are contained does not use the 390 1xx and 390 0xx convention at all — all trains are

numbered 390 0xx. It was also noted that whilst the fields containing data about the

third segment of the train (labelled “653”) should only be populated for 11-carriage

trains, all fields in later records are non-null. This is presumed to be as a result of a
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software upgrade affecting all units, not just those which were extended. Whereas this

does not imply that there are useful data in these fields (many of them are populated

with whitespace or zeroes), isolating eleven car trains on the basis of data in these fields

could not be guaranteed to be 100% reliable.

The maintenance records included in the data supplied by Virgin Trains include references

in the notes field to “11 Car Integration”, but further analysis of the dataset gave rise

to the conclusion that this was not a reliable indication that the train was actually

extended at that point. Evidence for this included the discovery of more than one “11

Car Integration” maintenance record for the same train, several days apart, a lack of

reasonable energy data from the third (“653”) segment of the train after an “integration”

date, and a lack of consistency with the service allocation data, which does maintain the

390 0xx and 390 1xx numbering convention.

To help segregate the data, the table “ElevenCarUpgrades” was created (Table C.2).

Those readings for a given train on or before the “NineCarExService” date were taken

to refer to a nine-carriage train. Those readings for a given train on or after the

“ElevenCarInService” date were taken to refer to an 11-carriage train. The remaining

readings were assumed to refer to a period of maintenance for the integration of the

extra carriages.

A breakdown of the valid energy reading data by train length is given in Table 4.10. The

number of readings from 11-carriage trains is comparatively small, because these trains

were only introduced towards the very end of the period covered by the dataset provided

by Virgin Trains.

Table 4.10: A breakdown of the Virgin Trains data by train length

Train Length [Carriages] Number of energy
readings

% of total energy
readings

9 15,531,931 97.0

11 449,502 2.8

(Unallocated) 34,726 0.2

(All) 16,016,159 100

4.5.4 Identification of maintenance periods

The maintenance records were used to identify those days when the train was marked

as being out of service for repairs or maintenance. This information was stored in

the “StopDays” table (Table C.3). Those energy readings for a given train which fell

between a “Stop Date” and an “OK Date” (inclusive) were assumed to have been taken
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during a maintenance period; implicit in this assumption is that the maintenance records

are accurate and that the trains were out of service for whole days. On this basis,

approximately 14% of the valid energy reading data were deemed to have been recorded

during a maintenance period.

4.5.5 Categorisation of energy readings by time period

Time Periods were defined in the same way as for the London Midland data (Section 4.4.3)

and the breakdown of energy readings by Time Period is given in Table 4.11.

Table 4.11: A breakdown of the Virgin Trains energy data by time period

Time Period % of hours in
week

Number of energy
readings

% of total energy
readings

Weekend 20.2 3,306,292 20.6

Morning Peak 8.9 1,448,204 9.0

Evening Peak 8.9 1,463,893 9.1

Off Peak 32.7 5,301,322 33.1

Night 29.2 4,496,448 28.1

(All) 100 16,016,159 100

It can be seen that the spread of energy readings is as expected, given that the trains

are very rarely completely powered down.

4.5.6 Matching the energy data to a known service

Unlike the data provided by London Midland, the Virgin Trains allocation data did not

explicitly match each energy reading to a service. However, in addition to the energy and

allocation data, Virgin Trains also provided a comprehensive set of On Train Monitoring

Recorder (OTMR) data. This meant that there was more information which could be

used to match a train to a schedule. The OTMR data are broken up into train runs, each

with a unique integer ID (RunID). The RunID is typically incremented when the train

is made ready to operate a route or when the onboard systems are otherwise restarted.

The OTMR systems on-board each Pendolino are duplicated to some extent (each train

effectively comprises two half-trains, with each half having its own systems (Virgin Trains

Ltd. 2010)). Hence when a train operates a route, two sets of OTMR data, each with its

own RunID are recorded. For each RunID, the Headcode corresponding to the service to

which the train was allocated was recorded in the supplied data.
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The first step was to match the Headcode with both the data held on train allocations

and the punctuality records. This allowed each RunID to be linked with data about the

origin and destination of the run, along with the distance travelled (Table C.5). Each run

was then matched — where possible — to a known schedule in the extracts held from

Network Rail’s TSDB. Unlike the London Midland data, the allocation data supplied by

Virgin Trains included details about the origin, destination and departure and arrival

times. Hence there was no need to analyse the location of the energy readings in the

same manner; instead the Headcode, origin, destination, departure and arrival times

were checked against the schedule data and matched accordingly. If there was not an

exact match, the closest arrival and departure times were chosen — anything where the

arrival or departure times did not match within 10 minutes was excluded to ensure that

perturbed or unpunctual services were excluded and the risk of an erroneous match was

minimised. 53,874 runs were matched to a schedule in this way.

By knowing the timings of a run, and the identity of the train (the Fleet Number)

(Table C.5), it was possible to identify the relevant energy readings, and the total energy

for each run (in terms of kWh) was calculated accordingly. For each run, the OTMR

timeslot when traction was applied for the first time, and the OTMR timeslot when the

train had come to a complete stop for the final time were identified. This enabled any

data whilst the train was stationary immediately before or after a run to be discarded

when calculating the energy consumption of a particular run. If the run did not have

at least 90% of the expected number of valid energy readings (on the basis that there

should be a reading taken every five minutes), it was discarded, leaving 37,733 journeys

made by nine-carriage trains and 1,699 journeys made by 11-carriage trains for analysis.

This is a much broader dataset than was found to date in published literature.

The energy consumption in terms of kWh per train-km was found by dividing the energy

per run by the known distance travelled. In this case, Virgin Trains had provided distance

data with the allocation data, and the OTMR data contained odometer readings which

could be used to validate it.

4.6 Summary & next steps

This chapter explained how the supplied energy data were filtered, categorised and

matched to a train schedule.

Both datasets contain some indication of the quality of the energy data, but there

are differences between them. The London Midland data was supplied with “quality

references” for the metered data. It is not clear how these numbers were generated, but

it is thought that they are based mainly on the quality of the signal from the meters

themselves rather than on any other criteria. Rather than labelling the readings as

definitely “OK” or erroneous, these “quality references” contained integer values. It was
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found that only a very small proportion (∼2%) of the energy readings did not contain

the maximum value in these fields and hence only those with maximum values were

labelled “OK” in the new analysis database.

Virgin Trains has opted to mark each reading as either erroneous or non-erroneous,

according to the criteria given in Section 3.1.4. The criteria are quite comprehensive,

and consider not just the signal from the electricity meters but also the validity of the

values written to the database. It was found that 21% of all supplied energy readings

were marked as erroneous in this manner, but excluding them still left a sizeable dataset

comprising more than 16 million energy readings.

Although it was possible to infer something of the quality of the location data from

both datasets, only a limited amount of data were initially filtered or labelled explicitly

on this basis. This is because GPS data can be unreliable for a number of reasons,

but it does not necessarily mean that the energy data should be discarded. That data

which were excluded were the Virgin Trains readings whose location fields did not match

the standard format, which was largely for practical reasons in relation to subsequent

analysis. Most of these readings had already been marked as erroneous anyway.

It has been possible to categorise the supplied data according to the type (or length)

of the trains and according to the time period. For all types of train, the proportion

of energy readings allocated to each time period are broadly as expected, in line with

the fact that the trains are rarely completely switched off. This instils confidence that

the datasets are comprehensive and representative of the whole spectrum of operation,

especially in the case of the Virgin Trains data where this analysis took place after the

exclusion of those readings marked as erroneous.

Matching the energy data to train schedules was complex, and required a different

approach for each of the TOCs. It could not be assumed that the allocation data were

100% accurate, whilst the Headcodes in the allocation table often matched more than

one schedule in the TSDB extracts. Use of a point matching algorithm to map the GPS

data associated with each energy reading to a TIPLOC on the UK railway network

(Section 4.3.3) enabled the London Midland data to be matched and filtered on the basis

of whether or not each train had been linked with the origin and destination of a service.

Virgin Trains supplied more detailed OTMR data, which aided the matching process

and avoided the need to rely on schedule data for distance estimations.

Having estimated the distance travelled for a number of known services, energy consumption

per train-km was calculated. The results are explored in Chapter 5. It was also possible to

calculate the energy recuperated via the regenerative braking system (where applicable),

to estimate the hotel load and to consider the impact of non-revenue running and idling.

These are explored in Chapter 6. The data have also been used in the initial validation

of a computer model Chapter 7, following which the Virgin Trains OTMR data were

used to investigate driving style in more depth (Chapter 8).





Chapter 5

The empirical energy

consumption of a train

— explanatory variables and

analysis of variance

5.1 Introduction

From energy metering data supplied by two UK TOCs, it was possible to estimate the net

energy consumed (in terms of kWh per train-km) for a particular train on a particular

journey. Chapter 4 explained how the raw energy metering data were matched with

location and train scheduling data.

This chapter describes the use of simple single variable regression analysis to investigate

the relationship between the net energy consumption and each individual variable likely

to affect it. It then describes the development of a general linear model to predict the

net energy consumption of the Pendolino.

5.2 A summary of the data analysed

Estimates of total net electricity consumption on a per train-km basis were made by

summing the energy readings associated with a given schedule and dividing by the

distance travelled by the train whilst operating the schedule.

The number of expected energy readings for a given service was estimated from the

schedule data. A service was only included in the analysis if the number of valid energy

readings allocated to the service exceeded 90% of the expected number. It was decided

91
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not to match services on the basis of 100% of valid energy readings to allow for the fact

that trains were considered as “on time” if they arrived and departed within 10 minutes

of the scheduled time, and there may therefore be some variation in the actual number

of readings recorded for a journey.

For the London Midland data, schedule distances (including distances between stops)

were estimated from the associated timetable data Section 3.3.1. For the Pendolino trains

operated by Virgin Trains, distances were supplied with the data.

5.3 Energy consumption — net kWh per train-km

5.3.1 Class 321 (operated by London Midland)

The relatively small sample size of 157 passenger journeys reflects the fact that there are

only four Class 321 trains in the London Midland fleet. All journeys were operated by

two trains running in multiple. Table 5.1 gives some of the descriptive statistics for the

net energy consumption and the frequency distribution of the data is shown in Figure 5.1.

Table 5.1: A summary of the net energy consumed by Class 321 trains

Number of passenger services analysed 157

Mean Net Energy Consumption
[kWh per train-km]

6.7

Standard Deviation 0.71

Median Net Energy Consumption
[kWh per train-km]

6.68

1st Quartile 6.26

3rd Quartile 7.3

Interquartile range 1.04

Observed Minimum [kWh per train-km] 5.03

Observed Maximum [kWh per train-km] 8.37

Range 3.34
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Figure 5.1: Frequency plot for mean net energy consumption [per train-km] for
the Class 321 trains

It can be seen from Figure 5.1 that the data are unimodal. Although the theoretical

normal distribution has been included in Figure 5.1, the analysis of variance (ANOVA)

conducted later in this chapter does not require the data to be normally distributed.

The mean energy consumption observed is 15% higher than the simulated 5.84 kWh

per train-km suggested in the 2001 AEA Report reviewed in Section 2.5.1 (Hobson and

Smith, 2001). This AEA figure lies outside the observed interquartile range, but is within

two standard deviations of the mean. Key reasons for the observed difference between

the data here and the AEA report are likely to include the fact that the AEA data is

based on level track with uniform stop spacing.

5.3.2 Class 323 (operated by London Midland)

Although the Class 323 is not the most numerous train in the London Midland fleet,

the number of journeys analysed is the greatest. This is because they are used on inner

suburban services, which are typically of relatively short duration. They work as single

units on some services and in pairs on others. Table 5.2 gives some of the descriptive

statistics for the net energy consumption and the frequency distribution of the data is

shown in Figure 5.2.
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Table 5.2: A summary of the net energy consumed by Class 323 trains

Number of passenger services analysed 3,793

Mean Net Energy Consumption
[kWh per train-km]

6.49

Standard Deviation 0.79

Median Net Energy Consumption
[kWh per train-km]

6.48

1st Quartile 6.04

3rd Quartile 6.94

Interquartile range 0.90

Observed Minimum [kWh per train-km] 2.68

Observed Maximum [kWh per train-km] 10.58

Range 7.90

Figure 5.2: Frequency plot for mean net energy consumption [kWh per train-km]
for the Class 323 trains

The Interquartile Range is 14% of the median, which suggests a similar level of variation

to that observed in the Class 321 trains. The observed mean is very close to the simulated

value of 6.52 kWh per train-km per train-km suggested in the 2001 AEA Report reviewed

in Section 2.5.1 (Hobson and Smith, 2001). As with the data for the Class 321, the

AEA report assumes level track with uniform stop spacing. The fact that the difference
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between the AEA data and the data presented here is less pronounced may be because

the Class 323 trains have been fitted with regenerative braking systems that were not

considered by AEA.

5.3.3 Class 350 (operated by London Midland)

There are 30 Class 350/1 and 37 Class 350/2 trains in the London Midland fleet

(Appendix A). They operate a number of routes in multiples of up to three units. The

main difference between the sub-classes (/1 and /2) is the seating density, which is not

thought to have a significant direct effect on the operational energy consumption of the

train, but is an important consideration when making comparisons with other modes

on a per-seat and per-passenger basis. Table 5.3 summarises the data for each of the

sub-classes separately. The distribution of the data is shown graphically for the Class

350/1 and Class 350/2 separately (Figure 5.3 and Figure 5.4 respectively) and then for

all Class 350 data combined (Figure 5.5).

Table 5.3: A summary of the net energy consumed by Class 350 trains

Sub-class 350/1 350/2

Number of passenger services
analysed

1,641 1,884

Mean Net Energy
Consumption
[kWh per train-km]

6.59 6.71

Standard Deviation 0.87 0.94

Median Net Energy
Consumption
[kWh per train-km]

6.46 6.67

1st Quartile 5.97 6.03

3rd Quartile 7.06 7.35

Interquartile range 1.09 1.32

Observed Minimum
[kWh per train-km]

4.09 4.40

Observed Maximum
[kWh per train-km]

10.68 10.07

Range 6.59 5.67
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Figure 5.3: Frequency plot for mean net energy consumption [kWh per train-km]
for the Class 350/1 trains

Figure 5.4: Frequency plot for mean net energy consumption [kWh per train-km]
for the Class 350/2 trains
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Figure 5.5: Frequency plot for mean net energy consumption [kWh per train-km]
for the Class 350 trains (both sub-classes)

On initial inspection, there does not seem to be much difference between the two

subclasses, and what difference there is could be due to the fact that the routes operated

may differ. The range of different routes operated by the Class 350 trains is much greater

than the range of different routes operated by the Class 323 trains, and it is thought that

the fact that more journeys were observed on some routes than others is a contributing

factor to the observed skew in the data. As with the Class 323 (Section 5.3.2), there are

also thought to be a few potential outliers in the data.

5.3.4 Pendolino (operated by Virgin Trains)

The nine- and 11-carriage Pendolino trains were analysed separately. The extra two

carriages of the 11-carriage trains provide a significant increase in the number of seats,

but also add to the overall length and mass of the whole train. They also include

extra traction motors and energy metering systems. Table 5.4 summarises the data and

frequency plots of the net energy consumption are given in Figure 5.6 and Figure 5.7. It

is clear from Figure 5.7 that the standard deviation is affected by potential outliers in the

data. This is less significant for the nine-carriage trains Figure 5.6 because the number

of sample journeys is so much greater, although some level of skew and leptokurtosis

can be seen. It is postulated that this is a result of the fact that more energy data are

available for some routes than others.
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Table 5.4: A summary of the net energy consumed by Pendolino trains

Train Length 9 carriages 11 carriages

Number of passenger services
analysed

37,733 1,699

Mean Net Energy
Consumption
[kWh per train-km]

12.93 14.75

Standard Deviation 1.11 1.27

Median Net Energy
Consumption
[kWh per train-km]

12.94 14.79

1st Quartile 12.24 13.94

3rd Quartile 13.63 15.62

Interquartile range 1.39 1.68

Observed Minimum
[kWh per train-km]

5.74 9.75

Observed Maximum
[kWh per train-km]

18.85 18.77

Range 13.11 9.02

The mean energy consumption for the Pendolino is around double that of any of the

individual trains in the London Midland fleet. This reflects the fact that the Pendolino

is significantly longer than any of the individual trains in the London Midland fleet, and

operates at a higher speed.

The level of variation observed is less than that for the trains in the London Midland

fleet; the interquartile range is 11% of the median for the nine-carriage trains and 12%

of the median for 11-carriage trains. The large sample size, especially in the case of the

nine-carriage trains, will have reduced the influence of abnormal data, but the variation

is also likely to be less because the services operated are more consistent in terms of

running speed and stopping patterns than those operated by some of the London Midland

fleet. These explanatory factors are introduced in more detail in Section 5.4.
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Figure 5.6: Frequency plot for mean net energy consumption [kWh per train-km]
for the nine-carriage Pendolino trains

Figure 5.7: Frequency plot for mean net energy consumption [kWh per train-km]
for the 11-carriage Pendolino trains
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5.4 Factors which affect the energy consumption of a train

It has been suggested that the factors which affect the energy consumption of a train

can be categorised as follows (Section 2.5.5; see also Pritchard (2013a)):

• The type of rolling stock. Some trains will be more energy-efficient than others.

• The type of service. In the same way that urban driving uses more fuel than

driving on an open road, it is thought that the type of service, including the

stopping frequency, may impact the energy consumption of a rail journey.

• Features of the infrastructure. It is likely that gradients, and other features

of the infrastructure such as tunnels, may have a notable impact.

• Driving style. Train drivers are not always consistent in their driving style,

particularly for rates of acceleration and braking.

The type of service and features of the infrastructure can, to some extent, be categorised

together as features of the route and service pattern — for example, stop spacing may

be dictated as much by the location of the stations as it is by the calling pattern of the

service. It is additionally thought that temporal factors may be important — including

the time of day, the month and even the year. There are also other factors which could

plausibly influence the operational energy consumption of a train, but are not explicitly

considered here. The first of these is train punctuality; late running could impact the

energy consumption of a train in a variety of different ways depending on the situation.

For example, a train running at a lower average speed than normal may be expected to

consume less energy, whilst a train running faster to make up lost time may be expected

to consume more energy. Analysis of the impact of train delays would make for an

interesting further research project but, as stated in Chapter 4, trains which were not

classed as punctual were filtered out of the dataset in this case in order to reduce the

complexity.

Passenger loadings are another factor which may influence operational energy consumption;

it has been shown that overall passenger mass can have an impact (RSSB, 2010b). A

nine-carriage Pendolino weighs 466t (Table A.1), and a full compliment of 439 passengers

would increase this by more than 6% (assuming that the average person weighs around

70kg). Passenger loading data have not been obtained and cannot therefore be included

explicitly in this analysis — however, it is implicit to some extent when considering

temporal factors because peak-time services may be assumed to be more heavily laden

than off-peak services.

This section considers each of the main categories in more detail and defines explanatory

variables which will then be used in some initial regression analysis (Section 5.5) and a
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general univariate linear model (Section 5.6 and Section 5.7). In line with the aims of this

thesis (Section 1.13), the main aim of such Analysis of Variance (ANOVA) techniques is

to understand the relative importance of the different factors which influence operational

energy consumption and emissions.

5.4.1 The type of rolling stock

It was shown in Section 5.3 that the mean energy consumption could vary significantly

between different types of train — particularly between London Midland’s three- and

four- carriage suburban trains and Virgin Trains’ nine- and 11- carriage intercity trains.

Although it is important to remember that the comparison is not just between different

types of train but between different types of service (considered in Section 5.4.2), variation

between types of train is to be expected. Factors which affect energy consumption include

mass (RSSB, 2010a), train length, and streamlining. Chapter 7 shows how the parameters

of the Davis equation for resistance to motion — a key factor in determining energy

consumption — might be expected to vary between different trains. It is also presumed

that some traction systems and on-board auxiliary systems will be more efficient than

others. In this case, the data for each distinct class of train are already separate and,

given the differences in sample size and scope of the data, it is appropriate to continue

to treat them as such.

It is likely that there may also be some variation between individual trains in a fleet.

Reasons for this include the possibility of minor variations in specification, and the

fact that different trains will have been at different points in the maintenance cycle

during the period from which data were collected. One possible explanatory variable

for a general linear model is therefore the train’s fleet number — the last two digits of

the train’s number which uniquely identifies it within a class. In the case of the Class

350 (Section 5.3.3), the sub-class (/1 or /2) is investigated as a possible explanatory

variable, to see whether the minor variations between sub-classes make a significant

difference. Although these explanatory variables are initially considered individually,

with some simple regression modelling (Section 5.5), not every train operated every

route, and so the possibility of interaction between variables characterising the train and

variables characterising the route is included in the more general model (Section 5.6 and

Section 5.7).

Finally, some of the London Midland services are operated by trains coupled together in

multiple. This is different from lengthening a train with additional carriages, because

each train in the consist remains fully powered and the mass per seat remains the same.

However, aerodynamic effects could still mean that the energy consumption of each

individual train in the consist is reduced. Hence Unit Count (the number of trains in the

consist) is considered where appropriate as an explanatory variable. There is likely to
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be some interaction between the Unit Count and the route and the temporal variables,

because trains are typically operated in multiple on more heavily patronised services.

5.4.2 Features of the route and service pattern

By grouping the data by route, it can be seen that the mean net energy consumption for

a particular route differs from the mean net energy consumption overall (for a particular

train type). To illustrate this, a summary of the mean net energy consumption for selected

suburban routes operated by the Class 323 is given in Table 5.5 and the variation is

shown graphically in Figure 5.8 (where the interquartile range of the energy consumption

for each route is labelled). Similarly, the data for selected intercity routes operated by

the Pendolino (nine-carriage) are summarised in Table 5.6 and shown graphically in

Figure 5.9. Although it is possible for the mean stop spacing to vary on a given route

depending on the calling pattern of the service, a single stopping pattern was chosen for

each route in this case.
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Table 5.5: Summary data for selected services operated by Class 323 trains

Route Sample
Size

Stop
Spacing

[km]

Route
Length

[km]

Mean net
energy

consumption
[kWh per
train-km]

Median net
energy

consumption
[kWh per
train-km]

Standard
Deviation

Birmingham
to

Longbridge

106 1.7 12.7 8.23 8.28 0.44

Birmingham
to

Longbridge
[Rtn]

154 1.7 12.7 6.02 6.02 0.45

Longbridge
to Lichfield

City

316 2 39.1 6.17 6.14 0.41

Longbridge
to Lichfield
City [Rtn]

187 2.1 39.1 7.19 7.16 0.38

Birmingham
to Redditch

31 2.4 24.9 6.42 6.32 0.58

Birmingham
to Redditch

[Rtn]

50 2.4 24.9 6.63 6.61 0.42

Birmingham
to

Wolverhampton

259 2.9 20.7 6.8 6.76 0.44

Birmingham
to

Wolverhampton
[Rtn]

104 2.9 20.7 5.8 5.75 0.4

Birmingham
New Street

to
Birmingham
International

209 3.2 13.2 5.96 5.92 0.63

Birmingham
New Street

to
Birmingham
International

[Rtn]

106 3.2 13.2 6.61 6.57 0.62
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Table 5.6: Summary data for selected services operated by nine-carriage
Pendolino trains

Route Sample
Size

Stop
Spacing

[km]

Route
Length

[km]

Mean net
energy

consumption
[kWh per
train-km]

Median net
energy

consumption
[kWh per
train-km]

Standard
Deviation

Euston to
Wolverhampton

977 33.7 205.9 13.62 13.62 1.24

Euston to
Wolverhampton

[Rtn]

597 33.7 206.1 11.96 11.97 1.25

Euston to
Birmingham

2,501 45.3 181.7 13.94 13.98 1.03

Euston to
Birmingham

[Rtn]

2,626 45.3 181.7 12.39 12.38 1.01

Euston to
Liverpool

791 62.2 311.6 12.63 12.67 1.02

Euston to
Liverpool

[Rtn]

114 62.2 311.6 12.83 12.88 1.24

Euston to
Manchester
(via Stoke)

7,370 73.7 295.3 13.29 13.31 0.94

Euston to
Manchester
(via Stoke)

[Rtn]

3,090 73.7 295.3 12.7 12.69 0.93

Euston to
Manchester
(via Crewe)

3,291 75.8 303.5 12.99 13 0.91

Euston to
Manchester
(via Crewe)

[Rtn]

2,196 75.8 303.5 12.7 12.67 1.11



Chapter 5 The empirical energy consumption of a train
— explanatory variables and analysis of variance 105

Figure 5.8: The interquartile range of net energy consumption for selected
services operated by Class 323 trains

Figure 5.9: The interquartile range of net energy consumption for selected
services operated by nine-carriage Pendolino trains
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A key reason for the variation in energy consumption between routes and services is

thought to be the mean spacing between stops. Figure 5.10 shows the observed empirical

variation of energy consumption with mean stop spacing for a variety of off-peak services.

It is difficult to conclude that there are definite trends, especially for intercity services, but

use of the Arup RouteMaster simulation tool (which will be introduced in Chapter 7) to

investigate the theoretical variation in energy consumption with stop spacing showed that

energy consumption could be expected to increase with increasing stop density (Pritchard,

2012; Pritchard, 2013a). Although this is dependent on the simulation parameters and

assumptions made, mean stop spacing (in km) will therefore be considered as a key

explanatory variable.

Figure 5.10: Variation in energy consumption with distance between stops for a
variety of off-peak services

Mean stop-spacing is unlikely to be the only reason for the variation in energy consumption

between routes and services. This is clear from the fact that the outbound and return

services detailed in Table 5.6 have the same stopping pattern but show some variation

in energy consumption. Features of the infrastructure are also assumed to play some

role. These include the gradient of the line, and the data in Table 5.6 broadly fit

with the fact that the line out of Euston is predominantly uphill (Allan, 1966). Other

features of the infrastructure which may have an impact include tunnels, which in theory

have a significant impact on the air resistance experienced by, and the related energy

consumption of, a train running through them (Pritchard, 2013a), although the limited

number of tunnels on the routes considered here mean that it is difficult to conclude

anything from the empirical data in this instance. To account for the physical variation in
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the infrastructure, “Route Name” as defined by an origin-destination pair and a direction

(“Rtn” where applicable) is considered as an explanatory variable.

Finally, the mean running speed is also likely to be a factor — the Davis equation

(Section 7.3.1) indicates that resistance (and hence energy consumption) increases

quadratically with speed. The mean running speed can vary between route (different

lines may have different speed limits) and between service patterns on the same route

(more stops are likely to result in a lower mean running speed, but it is also possible to

schedule the same calling pattern with some variation in timings and speed). Hence,

mean running speed is also considered as an explanatory variable. It is noted that the

three explanatory variables chosen to describe the route and service (mean stop spacing,

route name and mean running speed) are likely to be inter-dependent to some degree.

Figures 5.11 to 5.15 show the proportions of different journey-types for which data were

available (after initial filtering) for each of the trains. The services were categorised

by stop spacing and grouped in line with the RSSB’s “Route Categorisation” (RSSB,

2010a):

• Inner Suburban Services with less than 10km between stops

• Outer Suburban Services with between 10 and 20km between stops

• Inter Urban Services with between 20 and 50km between stops

• Inter City Services with more than 50km between stops
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Figure 5.11: Journeys operated by Class 321 trains

Figure 5.12: Journeys operated by Class 323 trains
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Figure 5.13: Journeys operated by Class 350 trains

Figure 5.14: Journeys operated by nine-carriage Pendolino trains
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Figure 5.15: Journeys operated by 11-carriage Pendolino trains
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From Figure 5.12, it can be seen that although the majority of journeys operated by

Class 323 trains were inner suburban services, there were a very small proportion of outer

suburban and inter-urban services — it is thought that these might have contributed to

the leptokurtosis observed in Figure 5.2. Similarly, although the journeys operated by

Class 350 trains (Figure 5.13) comprise a range of services from inner suburban through

to inter-urban, the spread of data is non-uniform, with a bias towards inner suburban

services.

5.4.3 Driving style

Although no personally identifiable information was given by Virgin Trains, the supplied

on-train monitoring data for the Pendolino trains did include a set of integers representing

the allocation of a driver to a service. From these data, it was possible to infer if and how

the energy consumption might vary between drivers. The mean net energy consumption

(in terms of kWh per train-km) was calculated for each driver, and the frequency

distribution of mean net energy consumption for drivers of the nine-carriage Pendolino is

shown in Figure 5.16.

Figure 5.16: Frequency distribution of mean net energy consumption per train-km
per driver
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The mean of the mean net energy consumption per driver (12.96 kWh per train-km) is

close to the overall mean net energy consumption for the train (12.93 kWh per train-km)

and there appears to be some uniform variation of mean net energy consumption between

drivers. Hence the integer variable used to label different drivers (the DriverID) is

considered as an explanatory variable.

5.4.4 Temporal factors

It is possible that the energy consumption of a train varies with time of day (Morning

Peak, Evening Peak, Off-Peak, Weekend and Night, as defined in Section 4.4.3) due to

variation in passenger loadings. The ambient temperature, which affects the hotel load

(discussed further in Chapter 6) may also be a consideration. Figure 5.17, based on

the data for the Class 323 trains, shows that some variation in net energy consumption

with time of day is indeed observed, and hence Time Period is also considered as an

explanatory variable.

Figure 5.17: Variation in net energy consumption with time of day for Class 323
trains

Some variation according to the time of year is also expected — firstly due to the

variations in ambient temperature and the impact it has on the hotel load and secondly

due to the effect of different weather conditions. For example, wet and icy rails can result

in reduced adhesion between the wheels and the rails. Sufficient data were available for

the nine-carriage Pendolino to consider the variation in net energy consumption with

month, which is shown in Figure 5.18.
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Figure 5.18: Variation in the mean net energy consumption of the nine-carriage
Pendolino by month

Some variation in net energy consumption on a monthly basis is evident and so the

month is considered as an explanatory variable. A small amount of variation in energy

consumption on a yearly basis is evident (Figure 5.19), which is plausible due to changes

in scheduling, annual variations in weather and efforts to encourage energy efficient

driving. The data for 2009 and 2012 are limited, but the year is also explored as an

explanatory variable.
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Figure 5.19: Variation in the mean net energy consumption of the nine-carriage
Pendolino by year

5.5 Single variable linear regression

It was shown in Section 5.3 that the empirical net energy consumption of the different

trains studied can be quite variable. Section 5.4 discussed some of the factors which

might lead to this variation and suggested some possible explanatory variables for use

in a linear model. This section summarises the possible explanatory variables and uses

single variable linear regression modelling to estimate the significance of each one and

rank them by importance according to the adjusted R2 value of the model.

5.5.1 A summary of possible explanatory variables

Table 5.7 summarises the proposed explanatory variables. Factors are discrete nominal

variables, whereas co-variates are continuous.
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Table 5.7: Possible explanatory variables for the variation in net energy
consumption for a given train

Explanatory
Variable

Category Variable Type Notes

Fleet Number

Train

Factor

Sub Class Factor Only applicable for
Class 350 trains

Unit Count Co-variate Only applicable for
London Midland
trains

Route

Route and service

Factor Defined by origin,
destination and
direction

Mean Stop Spacing
[km]

Co-variate

Mean Running Speed
[km/h]

Co-variate

DriverID Driver Factor Data only available
for Pendolino trains

Time Period

Temporal

Factor

Month Factor Data only available
for nine-carriage
Pendolino trains

Year Factor Data only available
for nine-carriage
Pendolino trains

5.5.2 Adjusted R2 Values created by single explanatory variable models

SPSS was used to test the importance of each of the explanatory variables in turn by

assessing the fit of a single explanatory variable linear regression model for the net energy

consumption (in terms of kWh per train-km). A Univariate General Linear Model was

used in each case to estimate the statistical significance of the relationship between each

explanatory variable and the net energy consumption and to rank each variable by its

explanatory power (measured by the adjusted R2 value). Table 5.8 summarises the

adjusted R2 values created by each of the models.
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Table 5.8: Adjusted R2 values created by single explanatory variable models

Factor 321 323 350 390
(9-carriage)

390
(11-carriage)

Route 0.554 0.237 0.559 0.159 0.165

Mean Speed 0.298 0.002 0.162 0.007 0.008

Mean Stop
Spacing

0.443 0.034 0.345 0.008 0.012

Sub Class 0.004

Unit Count 0.080 0.019

Fleet
Number

0.022 0.082 0.017 0.010 0.048

Time Period 0.020 0.002 0.011 0.007 0.020

Month 0.087 0.035

Year 0.006

Driver ID 0.200 0.313

5.5.3 Ranking the explanatory variables in order of importance

Using the adjusted R2 values created by single explanatory variable models (Table 5.8)

as a measure of how much of the observed variation in net energy consumption can be

explained by each variable, the explanatory variables were ranked in order of importance,

with the highest adjusted R2 values deemed to be the most important. Table 5.9 lists

the top five explanatory variables for each train type.

Table 5.9: Ranking of explanatory variables by adjusted R2 value

Variable
Ranking

321 323 350 390
(9-carriage)

390
(11-carriage)

1 Route Route Route Driver ID Driver ID

2 Mean Stop
Spacing

Fleet
Number

Mean Stop
Spacing

Route Route

3 Mean Speed Mean Stop
Spacing

Mean Speed Month Fleet
Number

4 Time Period Unit Count Unit Count Fleet
Number

Month

5 Fleet
Number

Mean Speed Fleet
Number

Mean Stop
Spacing

Time Period
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Care should be taken when comparing the different trains in Table 5.9 because not all

explanatory variables applied to all trains (Table 5.8). For example, the Pendolinos never

work in multiple, and so Unit Count does not apply, and no driver data were provided

by London Midland. Where driver data were provided (for the Pendolino trains) it can

be seen that it is the most important explanatory variable, and the differences between

drivers is explored in more detail in Chapter 8. Features of the route and service are

otherwise the most important factors. It is likely that the apparent importance of Fleet

Number in most cases is at least partially due to the fact that some trains operated

some routes more frequently than others, and the interactions between these variables is

considered in Section 5.6. The fact that the mean stop spacing appears more important

for suburban trains rather than the intercity Pendolino fits with Figure 5.10, which shows

that the variation in energy consumption with increasing stopping density appears more

prominent for the Class 323 on inner suburban services. Although apparently significant,

the mean running speed does not appear to offer any real explanation for the variation in

energy consumption for the Pendolino — this is probably because the intercity services

they operate have similar speed characteristics, with long periods of running at 125mph.

For the Class 323 and Class 350, which operate in different groupings of up to three

trains in multiple, the Unit Count appears to be important, but the difference between

the Class 350 sub-classes (/1 and /2) appears to be less so. Some temporal factors are

important for the Pendolino. It is difficult to verify the importance of them for the

London Midland fleet due to the limited data available. However, it is noted that Time

Period is more significant for the trains which operate services in and out of London

than it is for the Class 323 which only operates local services in the Birmingham area.

This may reflect the fact that routes in and out of London are particularly subject to

significant variations in passenger demand throughout the day (discussed further in

Chapter 10).

5.6 An intial multiple explanatory variable General Linear

Model for the nine-carriage Pendolino

Having considered the proposed explanatory variables individually, SPSS was then used

to develop a multiple explanatory variable General Linear Model for the nine-carriage

Pendolino. The aim was to understand whether the majority of the variation in the net

energy consumption could be described by the chosen variables, and to ascertain whether

some of the interactions between them could be deemed significant. After considering

the overall fit of an initial model, the limitations of the model are discussed. A simpler

model which might have more practical use is then proposed and discussed in Section 5.7.

The size of the dataset (37,733 individual journeys and 550 individual drivers) meant

that it was not possible to compute a comprehensive model for the entire sample (there
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was not enough memory for SPSS to compute the model). Hence a random subset of

10% of the data was chosen and the model only included those two-way interactions

thought to be significant. Furthermore, the mean speed and the year were excluded

on the basis that the adjusted R2 values were very small when they were considered

individually (Table 5.8). Also, understanding the variation with year is of little practical

use unless further study were to be undertaken of the impacts of changes in scheduling

and driver training — for which more data would be required. Table 5.10 summarises

the variables used in the model and their significances (p-values). The null hypothesis

is that the coefficients (β) of the explanatory variables are zero (i.e. the explanatory

variable has no impact in the model). If the significance is given to be less than 0.05,

then the explanatory variable is said to be significant at the 5% level and the null

hypothesis should be rejected. In other words, if the significance is less than 0.05 for a

given explanatory variable, said variable is deemed to have an impact.

Table 5.10: Variables and interactions used in the model and their significances

Variable Significance

Route 0.351

Fleet Number 0.002

Time Period 0.051

Month 0.000

DriverID 0.000

Mean Stop Spacing [km] 0.586

Route * Fleet Number 0.000

Route * DriverID 0.000

Route * Mean Stop Spacing 0.270

Route * Time Period 0.050

The model fitted the 3,763 journeys selected at random by SPSS with an adjusted R2

value of 0.519 Given the large p-value (significance) for Mean Stop Spacing, and its

interaction with the Route variable, it was concluded that Mean Stop Spacing may not

be an important explanatory variable. To verify this, the model was re-run excluding

the Mean Stop Spacing, and the adjusted R2 value of the revised model fitted to the

same 3,763 journeys was also 0.519. This fits with the observations in Section 5.4.2, but

the fact that the model were only run for a random subset of 10% of the data should be

borne in mind.
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5.6.1 Limitations of the model

The adjusted R2 value of 0.519 indicates that the explanatory variables proposed in

Section 5.5.1 are helpful in explaining the observed variation in the energy consumption

data, but do not explain everything. Furthermore, it is not clear whether the random 10%

of the data selected could be classed as a fair sample. In any case, there are potentially

three main sources of additional variation:

• Errors in the data. It is possible that some data were incorrectly matched to a

schedule and are not a true reflection of the actual energy consumption.

• Passenger loadings and behaviour. Although considering the time of day

might account for some of the overall trends in passenger loading, passenger

numbers will have varied from journey to journey. Variation in passenger numbers

not only leads to a variation in overall train mass, but can also have an impact

on the hotel load and auxiliary systems — for example, some HVAC systems

adjust themselves automatically with passenger numbers, airflow and on-board

temperature. Additionally, the use of power doors and charging points for phones

and laptops (where provided) will vary between journeys.

• Train reliability and schedule perturbations. The data were filtered so that

incomplete and significantly delayed journeys were not included in the analysis

(Chapter 4). However, there was still some scope for deviation from the overall

schedule and it is therefore possible for journeys to have been affected by signal

checks and other sources of delay (it is noted that, particularly on long-distance

journeys, a train can be delayed significantly near the beginning of the journey and

still make up enough time to be within the set punctuality limits at the destination).

It is also noted that short term maintenance issues and problems with auxiliary

equipment are not accounted for but could also impact the energy consumption.

In its current form, the model is of limited practical use. The first reason for this is that,

with 19 distinct routes and 550 drivers, the number of dummy variables and associated

co-efficients is large, making it unwieldy to implement. The second reason for this is

that it only applies to existing trains, drivers and routes and cannot be extrapolated for

new drivers or additions to the train fleet. To address these issues, a simplified model is

proposed — this is discussed in the next section.
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5.7 A simplified model

In order to reduce the number of variables and make the General Linear Model more

applicable to the real-world, two key changes were made. Firstly, the DriverIDs were

assigned an efficiency rating which was used as an explanatory variable in place of the ID

itself. The efficiency ratings were assigned according to the mean net energy consumption

of the driver, using the 25th, 50th and 75th percentile points. The criteria are summarised

in Table 5.11. Although the introduction of a new driver could alter the statistics, this is

a useful starting point for broadly grouping the drivers.

Table 5.11: Driver efficiency ratings

Efficiency Rating Criteria Range of Mean Energy
Consumption

[kWh per train-km]

1 Mean energy consumption
below the first quartile for all
drivers

E < 12.62

2 Mean energy consumption
between the first quartile and
the median for all drivers

12.62 ≤ E < 13.00

3 Mean energy consumption
between the median and the
third quartile for all drivers

13.00 ≤ E < 13.32

4 Mean energy consumption
above the third quartile for
all drivers

E ≥ 13.32

Secondly, the months were replaced with broader seasonal groupings: Spring (March

to May), Summer (June to August), Autumn (September to November) and Winter

(December to February).

Finally, although it did not appear to be important explanatory variables in the initial

General Linear Model when applied to a random 10% subset of the data, Mean Stop

Spacing was included in the simplified model. This was primarily because of concerns

that the random 10% subset may not have been representative of the whole dataset;

although it would have been possible to investigate it further by running the model on a

number of small random samples, the reduced complexity of the new model meant that

it was no longer necessary to use a small sample of the data.

Table 5.12 summarises the variables used in the model and the significances calculated

by SPSS, both when it was run for the same 10% sample as before and when it was run

for the whole dataset.
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Table 5.12: Variables and their significance in the simplified explanatory model

Variable Significance

When applied to 10% sample When applied to whole
dataset

Route 0.003 0.000

Efficiency Rating 0.000 0.000

Time Period 0.004 0.188

Fleet Number 0.003 0.003

Season 0.000 0.000

Mean Stop Spacing [km] 0.019 0.035

Route * Efficiency Rating 0.120 0.000

Route * Time Period 0.000 0.000

Route * Fleet Number 0.004 0.000

Route * Season 0.005 0.000

Route * Mean Stop Spacing 0.000 0.000

The adjusted R2 value of the model was 0.436 when applied to the random 10% sample,

falling to 0.423 when applied to the whole dataset. This is lower than the adjusted R2

values from the original general linear model. It may be that the driver efficiency groupings

are too broad, whilst the seasonal groupings may not accurately reflect the variations

in temperature and weather which are thought to have an impact. There is therefore

a balance to be struck between detail and keeping a manageable number of variables.

Driver behaviour is investigated further in Chapter 8, whilst regenerative braking and the

hotel load (which are thought to be dependent on weather and temperature accordingly)

are considered in Chapter 6.
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5.7.1 Sample parameters

The simplified model to describe the mean net energy consumption E can be written in

the following form:

E = A+B1 +B2 +B3 +B4 +B5 +B6x (5.1)

where:

• A is a constant.

• B1 is determined by the Route.

• B2 is determined by the driver Efficiency Rating and its interaction with the Route.

• B3 is determined by the Time Period and its interaction with the Route.

• B4 is determined by the Fleet Number and its interaction with the Route.

• B5 is determined by the Season and its interaction with the Route.

• B6 is determined by the Mean Stop Spacing and its interaction with the Route.

• x is the Mean Stop Spacing (in km).

The large fleet size (53) and number of routes (19) mean that the model has 800 different

parameters in total. In order to investigate whether the predicted effects of the model

seem sensible, one route (Euston to Wolverhampton) and one train in the Fleet (390

001) were selected. Having fixed the Route and Fleet Number, the number of remaining

parameters — summarised in Table 5.13 — was greatly reduced. The parameters given

in Table 5.13 were generated by SPSS when the model was applied to the whole dataset.
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Table 5.13: Parameters generated by SPSS for the Simplified Model, where the
Fleet Number is 1 and the Route is Euston to Wolverhampton (EUS WVH)

Model
Term

Explanatory Variable Individual
Parameter

Interaction
Parameter1

Total
Parameter

Value

A (Intercept) 13.794 n/a 13.794

B1 Route = EUS WVH 0.764 n/a 0.764

B2

Driver Efficiency = 1 -1.419 0.139 -1.280

Driver Efficiency = 2 -0.936 0.033 -0.903

Driver Efficiency = 3 -0.596 0.092 -0.504

Driver Efficiency = 4 0.000 0.000 0.000

B3

TimePeriod = EveningPeak -0.215 - -

TimePeriod = MorningPeak 2.227 - -

TimePeriod = Night 0.074 -0.435 -0.361

TimePeriod = OffPeak 0.860 -0.806 0.054

TimePeriod = Weekend 0.000 0.000 0.000

B4 FleetNumber = 1 0.257 -0.115 0.142

B5

Season = Autumn -0.386 -0.269 -0.655

Season = Spring -0.553 -0.006 -0.559

Season = Summer -0.792 -0.234 -1.026

Season = Winter 0.000 0.000 0.000

B6 MeanStopSpacingKm -0.036 0.025 -0.011

1These are the parameters for the interaction terms between the explanatory
variables and the Route = EUS WVH
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Using the parameters in Table 5.13, Equation (5.1) can be re-written as follows for the

first train in the fleet (390 001) running between Euston and Wolverhampton, for a mean

stop spacing of x km:

E = 14.7 +


Efficiency = 1

Efficiency = 2

Efficiency = 3

Efficiency = 4

 +


EveningPeak

MorningPeak

Night

OffPeak

Weekend

 +


Autumn

Spring

Summer

Winter

− 0.011x

(5.2)

From Table 5.13, the different values for the Driver Efficiency ratings are as follows:
Efficiency = 1

Efficiency = 2

Efficiency = 3

Efficiency = 4

 =


−1.280

−0.903

−0.504

0


It can be seen that, as would be expected, the change from the least efficient drivers

(Efficiency Rating 4) through to the most efficient drivers (Efficiency Rating 1) reduces

the energy consumption E. Similarly, the different values for the seasons are as follows:
Season = Autumn

Season = Spring

Season = Summer

Season = Winter

 =


−0.655

−0.559

−1.026

0


This leads to E being lowest in the summer months and highest in winter, in line with

what can be observed in Figure 5.18. Finally, the different values for the Time Period

are as follows:
EveningPeak

MorningPeak

Night

OffPeak

Weekend

 =


−
−

−0.361

0.054

0.000


The observed relationship, in which journeys at night consume less energy than weekend

journeys, and weekday off-peak journeys consume a little more does not seem unreasonable

(although it is at odds with the pattern observed for the Class 323 trains in Figure 5.17).

In this case, it is likely that weekend and night-time journeys have more slack in the

timetable (perhaps to allow for Engineering Work) and therefore have a lower running

speed. The problem, however, is that there are no data for peak journeys on this route.

Hence it is likely overall that the model is affected by a lack of data.
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Choosing off-peak journeys with a mean stop spacing of x = 33.7km, the estimates of

net energy consumption, E, in terms of kWh per train-km, are given in Table 5.14 for

the different seasons and driver efficiencies.

Table 5.14: Estimated values of E using the Simplified Model for off-peak
journeys between Euston and Wolverhampton

Season =
Autumn

Season =
Spring

Season =
Summer

Season =
Winter

Driver
Efficiency = 1

12.4483 12.5443 12.0773 13.1033

Driver
Efficiency = 2

12.8253 12.9213 12.4543 13.4803

Driver
Efficiency = 3

13.2243 13.3203 12.8533 13.8793

Driver
Efficiency = 4

13.7283 13.8243 13.3573 14.3833

Considering Figure 5.9, the estimates for net energy consumption in Table 5.14 seem

plausible. Furthermore, the mean of all the values in Table 5.14 is 13.15 kWh per

train-km, which is about 3% less than the mean value for the route given in Table 5.6,

and well within one standard deviation.

5.7.2 Further testing of the model

Having shown that the mean net energy consumption can be reasonably described by the

model, taking the form given in Equation (5.1), it was decided to test whether the model

could in future be used to predict the energy consumption for new routes. In order to

do this, the 2,222 journeys corresponding to Euston to Wolverhampton, considered in

Section 5.7.1, were removed from the dataset, and SPSS was used to recreate the model

on the remaining 35,511 journeys. The recreated model was checked and then used to

predict the energy consumption for journeys between Euston and Wolverhampton; the

results were compared with those in Section 5.7.1.

Of the remaining routes, the one between Euston and Birmingham was taken to be

most similar to the route between Euston and Wolverhampton, because it is of similar

length and initially covers the same sections of track. Table 5.15 summarises the model

parameters for this route, where the Fleet Number is 1.
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Table 5.15: Parameters generated by SPSS for the Simplified Model on a reduced
dataset, where the Fleet Number is 1 and the Route is Euston to Birmingham
(EUS BHM)

Model
Term

Explanatory Variable Individual
Parameter

Interaction
Paramater1

Total
Parameter

Value

A (Intercept) 13.794 n/a 13.794

B1 Route = EUS BHM 3.146 n/a 0.764

B2

Driver Efficiency = 1 -1.419 0.169 -1.250

Driver Efficiency = 2 -0.936 0.308 -0.628

Driver Efficiency = 3 -0.596 0.203 -0.393

Driver Efficiency = 4 0.000 0.000 0.000

B3

TimePeriod =
EveningPeak

-0.215 0.323 0.108

TimePeriod = Morning
Peak

2.227 - -

TimePeriod = Night 0.074 -0.667 -0.593

TimePeriod = OffPeak 0.860 -0.775 0.085

TimePeriod = Weekend 0.000 0.000 0.000

B4 FleetNumber = 1 0.257 -0.496 -0.239

B5

Season = Autumn -0.386 -0.157 -0.543

Season = Spring -0.553 -0.015 -0.568

Season = Summer -0.792 -0.094 -0.886

Season = Winter 0.000 0.000 0.000

B6 MeanStopSpacingKm -0.036 -0.009 -0.045

1These are the parameters for the interaction terms between the explanatory
variables and the Route = EUS BHM
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It can be seen from Table 5.15 that the parameter values continue to follow expected

patterns for Driver Efficiency and Season. Following the same methodology used in

Section 5.7.1 the estimates of net energy consumption, E, in terms of kWh per train-km,

are given in Table 5.16 for the different seasons and driver efficiencies on the route

between Euston and Birmingham. As before, off-peak journeys were chosen, but a

stop-spacing of 45.3km was used, as it is more typical of services on this route.

Table 5.16: Estimated values of E using the Simplified Model for off-peak
journeys between Euston and Birmingham

Season =
Autumn

Season =
Spring

Season =
Summer

Season =
Winter

Driver
Efficiency = 1

12.9545 12.9295 12.6115 13.4975

Driver
Efficiency = 2

13.5765 13.5515 13.2335 14.1195

Driver
Efficiency = 3

13.8115 13.7865 13.4685 14.3545

Driver
Efficiency = 4

14.2045 14.1795 13.8615 14.7475

The values in Table 5.16 compare favourably with Figure 5.9, and the overall mean of

13.68 kWh per train-km is within one standard deviation of the mean for the route

between Euston and Birmingham given in Table 5.6.

Using this data to estimate values of energy consumption for the route between Euston

and Wolverhampton is more problematic, however. Although they are ostensibly similar

routes, the value of B1 in Table 5.15 differs considerably from that in Table 5.13. Using

the values in Table 5.15 for off-peak journeys and a mean stop-spacing of 33.7km,

which is more appropriate for the Euston to Wolverhampton route, a mean net energy

consumption of 14.20 kWh per train-km was predicted — significantly higher than that

predicted in Section 5.7.1 and that observed in Section 5.4.2.

It can therefore be concluded that although the model can be used to predict energy

consumption where data about a given route already exists, it can not currently be used

to predict absolute values of energy consumption for routes not in the dataset (although

it may be useful for predicting some general trends in terms of driving style and time of

year). In order to make the model more generally applicable, more generic explanatory

variables to describe the different characteristics of a route would need to be found. This

would require the acquisition of more detailed route data, including gradients and line

speed limits.
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5.8 Conclusions

Significant variation in net energy consumption for different trains over different journeys

has been observed. There is a big difference between the suburban trains operated by

London Midland and the intercity services operated by Virgin Trains. Train design is an

important factor, with the intercity trains being longer, faster and heavier overall, and

there are differences between the routes operated.

It was postulated that much of the variation for a given train was caused by driving

style, aspects of the route and service, other aspects of the train (such as variations

within a particular class of train) and temporal factors such as time of day and time of

year. Some initial observations were made and some explanatory variables for use in

general linear modelling were defined. It was indeed found that much of the variation

could be explained by the suggested factors, with driving style and route being the most

important. It was not possible to ascertain the impacts of driving style for the London

Midland fleet, due to a lack of data. Despite the fact that it cannot therefore be stated

that driving style would continue to be a dominant factor, it is noted that suburban

services have greater potential for driving style to make an impact, due to the higher

frequency of stops. It is, however, interesting to note that variations between routes

are apparently much more important for suburban journeys, with mean stop spacing

becoming less important for intercity services than it is for inner suburban services. This

is thought to be because the stops are more dominant on suburban services — intercity

services tend to feature long periods of higher speed running.

SPSS was used to fit a multiple explanatory variable General Linear Model to the data

for the nine-carriage Pendolino, which had the most comprehensive dataset. For the

random sample of data chosen there was a good fit, but there are clearly other reasons for

the variation in energy consumption, which were briefly put forward. The General Linear

Model was found to be too complex — the large numbers of dummy variables needed for

all the drivers made it quite unwieldy. Hence some simpler explanatory variables were

suggested, including the use of an “efficiency rating” in place of an individual DriverID.

Although the simpler models did not explain so much of the variation, similar trends

were observed in terms of the significance of the different factors.

It was found that the parameters generated by SPSS for the simpler models were plausible,

and could be used to predict the mean net energy consumption of a train. However,

without better data to describe and differentiate the various routes, such models have

limited applicability to new routes for which data are not already available.

Clearly, driving style, aspects of the route and service and temporal factors do have an

impact on the net energy consumption of a train. Chapter 6 considers the importance

hotel load and the impact of regenerative braking, both of which may be affected by route
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and temporal factors. Features of the route are explored further when modelling energy

consumption in Chapter 7 and driving style is investigated in more detail in Chapter 8.





Chapter 6

Regenerative braking, the hotel

load and non-revenue operation

6.1 Introduction

The benefits of regenerative braking were quantified from the energy metering data

supplied by the two TOCs, since the meters and monitoring systems recorded how much

energy was recovered via the regenerative braking system in each monitoring period. This

chapter summarises the findings and performs some basic analysis of variance (using the

same linear modelling techniques performed for the net energy consumption in Chapter 5)

to examine how the performance of a regenerative braking system might be affected by

different factors.

It was not possible to measure the hotel load directly, because the metering and monitoring

systems made no distinction between energy consumed by the auxiliary systems and

energy consumed by the traction systems. Instead, attempts were made at inferring the

probable size of the hotel load by considering the energy consumption when the trains

were stationary, on the basis that the energy consumed by the traction systems should

be zero.

Finally, this chapter considers the impact of non-revenue running and idling — the

analysis in Chapter 5 was for energy data recorded during passenger journeys, whilst it

is arguable that all energy consumption needs to be considered as a necessary part of

providing a train service.

131
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6.2 The effect of regenerative braking

With the exception of the Class 321, all of the trains analysed are fitted with regenerative

braking systems. For each journey analysed, the mean fraction of the gross energy

recovered by the regenerative braking system was calculated. Table 6.1 summarises the

resulting data.

Table 6.1: Descriptive statistics for the percentage of gross energy recovered by
regenerative braking

323 350 390
(9-carriage)

390
(11-carriage)

Mean fraction of
gross energy
regenerated [%]

23.08 16.80 15.49 15.56

Standard
Deviation

4.32 4.38 3.44 3.23

Median fraction
of gross energy
regenerated [%]

23.00 16.00 15.00 15.00

1st Quartile 20.00 14.00 13.00 13.00

3rd Quartile 26.00 19.00 18.00 18.00

Interquartile
Range

6.00 5.00 5.00 5.00

Minimum
recorded
fraction of gross
energy
regenerated [%]

6.00 5.00 0.00 6.00

Maximum
recorded
fraction of gross
energy
regenerated [%]

35.00 31.00 34.00 29.00

The fraction of energy saved through regenerative braking is in line with other observations

which suggests that 15 to 20% is typical, rising further for some inner suburban

services (Railwaygazette.com, 2012). It was noted in Chapter 5 that the Class 323

trains predominantly operate inner-suburban services (defined as having a mean stopping

spacing of less than 10 km), whilst the Class 350s operate a range of inner-suburban,

outer-suburban (mean stopping spacing of 10 – 20 km) and inter-urban services (mean

stopping spacing of 20 – 50 km). The Pendolinos operate a mix of inter-urban and

inter-city services (mean stopping spacing of more than 50 km). It can thus be concluded

from Table 6.1 that the proportion of energy regenerated varies with stopping density;
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this is intuitively correct, because stopping services will involve more periods of braking.

It is also noted that for some Pendolino services no energy was recovered from the

regenerative braking system. This is probably because the sample size was big enough to

include rare cases when the regenerative braking system was inoperative, and adds weight

to the suggestion put forward in Chapter 5 that the reliability of some on-train systems is

a factor in the variation of the net energy consumption. Figure 6.1 and Figure 6.2 show

the distribution of the data for the Class 323 trains and the Class 350 trains respectively,

whilst Figure 6.3 shows the distribution of the data for the nine-carriage Pendolino trains

and Figure 6.4 shows the distribution for the 11-carriage Pendolino trains.

Figure 6.1: Frequency distribution of the energy regenerated on journeys operated
by Class 323 trains
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Figure 6.2: Frequency distribution of the energy regenerated on journeys operated
by Class 350 trains

Figure 6.3: Frequency distribution of the energy regenerated on journeys operated
by nine-carriage Pendolino trains
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Figure 6.4: Frequency distribution of the energy regenerated on journeys operated
by 11-carriage Pendolino trains

As with the distribution of values for the net energy consumption (Chapter 5) some

skewness is evident in Figures 6.1 to 6.4. This is probably because some services and

routes are more prevalent in the data than others — it has already been noted that

stopping patterns are likely to be an important factor in the amount of energy which is

recovered.

It seems, generally, that the variation in energy recovered can be explained by the

same key factors describing the variation in net energy consumption overall. As well

as stopping patterns, it is also likely that some aspects of the route infrastructure have

an impact — gradients are likely to affect the amount of braking force required, whilst

variations in line speed limits could also dictate the amount and severity of braking

required. The severity of the braking will affect how much of the braking force can

be provided by motor braking (through which energy can be regenerated) and how

much friction braking force (through which energy is dissipated rather than recovered)

is required. Hence it is also likely that individual driving style is a factor. Because

adhesion levels can affect braking performance, the weather is expected to be a factor

(with wet and icy rails reducing adhesion), and some of the monthly variation observed

in Chapter 5 (Figure 5.18) may be attributable to variations in the weather and the

resulting regenerative braking performance. Other temporal factors, such as time of day,

are likely to be less significant in this case, but are considered nonetheless, because rail

conditions may vary throughout the day, especially in winter, when ice is more prevalent

in the morning and the evening. The variations in train mass caused by the variations
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in passenger loading may also be a factor. Finally, although they are probably less

significant for regenerative braking performance than they are for overall variations in

net energy consumption, the variations between different sub-classes of train (for the

Class 350) and the operation of trains in multiple is considered.

6.3 Single variable linear regression modelling to test the

significance and importance of the different possible

explanatory variables

Following the same methodology as that in Chapter 5, a single variable linear regression

model was developed in SPSS to investigate the explanatory power of the chosen variables.

Having noted above that the performance of the regenerative braking system is likely

to be affected by similar factors to those which affect the net energy consumption as

a whole, although perhaps not to the same extent, the explanatory variables chosen

for investigation were the same as those set out in Chapter 5 (Table 5.7). Table 6.2

summarises the adjusted R2 values generated by single explanatory variable models in

SPSS. All of the variables were found to have significance values (p-values) of less than

1%, meaning that they are indeed likely to have an impact on the fraction of energy

regenerated.

Table 6.2: Adjusted R2 values created by single explanatory variable models

Factor 323 350 390 (9-carriage)

Route 0.248 0.675 0.192

Mean Speed 0.018 0.126 0.138

Mean Stop Spacing 0.004 0.471 0.072

Sub Class 0.015

Unit Count 0.049 0.018

Fleet Number 0.071 0.047 0.009

Time Period 0.007 0.004 0.025

Month 0.025

Year 0.030

Driver ID 0.170

Using the adjusted R2 values in Table 6.2, Table 6.3 ranks the variables by explanatory

power, with the highest adjusted R2 values deemed to be the most important.
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Table 6.3: Ranking of explanatory variables by adjusted R2 value

Variable Ranking 323 350 390 (9-carriage)

1 Route Route Route

2 Fleet Number Mean Stop Spacing Driver ID

3 Unit Count Mean Speed Mean Speed

4 Mean Speed Fleet Number Mean Stop Spacing

5 Time Period Unit Count Year

Table 6.2 and Table 6.3 can be compared with Table 5.8 and Table 5.9 in Chapter 5

respectively. It is noted that, in general, the adjusted R2 values which explain the

variation in amount of energy regenerated are higher than those in Chapter 5 which

explain the variation in total net energy consumed. This is assumed to be because some

of the additional sources of variation suggested in Chapter 5 are less applicable for the

regenerative braking system. Whereas the regenerative braking system is thought to be

as susceptible as any other component to reliability issues and performance fluctuations;

the regenerative braking system is unaffected by varying demands on the HVAC systems,

for example.

The dominant factor appears to be the route, for which it is postulated that gradients, line

speed limits and the position of stops are important. In the case of the inner-suburban

services operated by Class 323 trains, the mean stop spacing was not ranked as important.

It is suggested that this might be because, once a certain stopping density is reached, the

addition of extra stops does not significantly add to the overall braking time and other

factors begin to dominate. In contrast, on less suburban services, the addition of stops

can make a big difference to the number of braking periods on the service overall. It is

interesting to note, however, that the correlation between mean stop spacing and the

amount of energy regenerated was positive in each case, which seems counter-intuitive.

Similarly, when considering the mean running speed, the coefficient of correlation with

the regenerated energy was positive in each case. It is possible that this could be because

when finally bringing a train to a halt some friction braking is needed, whilst at higher

speed an application of the brakes could involve purely relying on the motor braking force

from which energy is regenerated. Furthermore, whereas the addition of a stop increases

the number of braking periods in which energy can be recovered, it also increases the

number of acceleration periods, which can lead to increased energy consumption overall.

There may therefore come a point where although the amount of energy regenerated

increases, the energy regenerated as a proportion of gross energy consumption does not

similarly increase.

It is therefore suggested that there is an optimum stop spacing below which the train

does not reach higher running speeds, and although the number of braking periods is
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higher, the regenerative efficiency of each one is lower. Similarly, above such an optimum

stop spacing, periods of running at constant speed become the dominant aspect of a

service and there is less opportunity for energy to be recovered through braking. There

is scope for further research in this area.

The apparent importance of Fleet Number might hint at the impact of equipment

reliability and maintenance schedules, especially in the case of the Class 323 and Class

350, where the time period covered by the data is not sufficient enough to include complete

maintenance cycles. However, it is thought that the Fleet Number might appear more

significant than it is because different trains may have operated different services more

frequently; this could similarly be the case for Unit Count given that some services are

operated in multiple more than others.

No driver data were available for the Class 323 and Class 350 trains, but it is clear from

the results for the Pendolino that driving style could well be a factor. This is intuitive for

two main reasons. Firstly, the gross energy consumed is dependent on the driving style,

and in relative (percentage) terms, the energy regenerated will be influenced accordingly.

Secondly, it has already been noted that the severity of the braking affects how much

of the braking force can be provided by the motor braking component, through which

energy is regenerated. If a driver has a tendency to brake severely enough to rely more

heavily on the friction braking force then less energy may be recovered than otherwise.

Driving style is explored in more detail in Chapter 8.

6.4 Estimating the hotel load

The hotel load is defined in this case as all energy consumption not directly related to

the train motion (Section 3.1.5) — including HVAC systems, lighting and other auxiliary

power. HVAC equipment is generally responsible for the most significant part of this

consumption, with a clear dependence on climate conditions (Powell, González-Gil, and

Palacin, 2014). Existing estimates of the typical size of the hotel load range from 5% of

the traction energy (RSSB, 2011) to more than 30% of the energy consumed (assumed

to be net consumption, taking into account any regenerative braking) (UIC, 2003).

Attempts were made to estimate the hotel load from the empirical datasets used here, by

considering the energy consumption of the trains when they were stationary.
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6.4.1 Energy consumption when the train is stationary

Stationary energy consumption was calculated by considering those energy readings

where the train remained in the same location as the previous reading. These were

identified using the following criteria:

• The GPS data for the reading was mapped to the same point on the UK railway

network as the previous reading (see Chapter 4 for details of how the GPS data

were matched to the network).

• The mapping error for the reading was within 10m of the mapping error of the

previous reading; this is because it is possible for a train to have moved and still be

mapped to the same point. Keeping the difference in mapping errors small helps

exclude such cases.

• The recorded energy returned to the grid via the regenerative braking system

was zero; a non-zero reading implies that the train is slowing down rather than

stationary.

In order to estimate the hotel load, further criteria were used to filter the set of stationary

energy consumption data obtained:

• Readings identified as being taken whilst the train was mapped to a depot or siding

were ignored, on the basis that energy consumption monitored in a depot is unlikely

to be representative of the hotel load whilst in passenger service.

• Readings taken overnight (between 11pm and 6am) were ignored, on the basis that

if not in a depot the train is still likely to be parked out of service.

• Readings for which the energy consumption was recorded as zero were ignored.

A summary of the filtered stationary energy consumption data for the London Midland

Class 323 and the Virgin Trains Pendolino (nine-carriage) is given in Table 6.4. For the

Pendolino, data were also filtered by year, and only data for 2010 and 2011 (the whole

years in the dataset) are included in Table 6.4. The reason for this is that the number of

stationary points in the whole dataset was too big to be processed by Microsoft Excel.
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Table 6.4: A summary of the stationary energy consumption for two different
types of train

Train Class 323 Class 390 (9-carriage)

Number of stationary
readings

101,711 700,108

Mean energy consumption
[kWh per minute]

1.07 3.37

Standard Deviation 1.14 2.17

Median energy consumption
[kWh per minute]

0.84 3.2

1st Quartile 0.67 2.8

3rd Quartile 1.04 3.8

Interquartile range 0.37 1

Observed Minimum
[kWh per minute]

0.01 0.2

Observed Maximum
[kWh per minute]

22.3 84.2

The distribution of the data is shown graphically in Figure 6.5 and Figure 6.6 for the

Class 323 and Pendolino respectively, where it can be seen that the overall mean and

standard deviation are influenced by a the presence of relatively large values in the

dataset. Although there may be some erroneous readings in the data, it is assumed

that most of these large values arise from cases where the train has not remained idling

throughout the time period corresponding to the energy measurement in question. The

time between readings is one minute for all London Midland trains and five-minutes for

the Virgin Trains Pendolino, and during such times a train’s operational status can vary

significantly.
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Figure 6.5: Frequency distribution for the stationary energy consumption of the
Class 323 trains

Figure 6.6: Frequency distribution for the stationary energy consumption of the
Pendolino (9-car) trains
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The smaller peak observed in the Class 323 data (Figure 6.5) is assumed to arise from

the fact that not all data from when the trains were stabled have been excluded. This

will be because if the train has been shut down in a station platform it won’t have

been identified as being in a siding or depot. Additionally, at some stations, it is hard

to distinguish between the location of the platforms and the location of the stabling

sidings. Although the hotel load during passenger operation would be expected to be

higher (corresponding to the larger peak in Figure 6.5), on-board auxiliary systems

are rarely shut down completely when a train is stabled. This is to facilitate cleaning

operations, to prevent damage to vulnerable components due to freezing temperatures

and to ensure that the conditions in the on-board environment (such as the temperature)

are appropriate when the train is returned to service (Powell, González-Gil, and Palacin,

2014).

The higher resolution of energy readings for the London Midland data means that it is

possible to identify potentially stationary readings whilst the train has been allocated to

a service — if the train is stationary for more than a minute prior to departure, after

arrival or even at intermediate station calls, it is likely that there will be associated

energy readings which are flagged as stationary (the five-minute intervals of the Virgin

Trains data mean that the energy consumption associated with stationary periods en

route are generally impossible to isolate, but it is possible to capture data immediately

prior to departure and after arrival). The distribution of stationary energy consumption

where the train was allocated to a service is shown in Figure 6.7 for the Class 323,

where it can be seen that the smaller peak observed in Figure 6.5 is no longer present.

Considering only the data for the Class 323 when allocated to a service, the mean and

median stationary energy consumption values are slightly higher than those given for

all stationary readings in Table 6.4 (1.07 kWh per minute and 0.89 kWh per minute

respectively).
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Figure 6.7: Frequency distribution for the stationary energy consumption of the
Class 323 trains whilst allocated to a service

It is possible to estimate the hotel load for a given service by finding the average stationary

energy consumption in terms of kWh per min and multiplying it by the duration of the

service. This could then be stated as a fraction of the net energy consumed for the service.

However, it was found that this appeared to significantly overestimate the hotel load —

in some cases it was calculated to equate to more than 100% of the net energy consumed.

One reason for this is that the number of stationary readings for a given service could be

quite small, and even using the median rather than the mean to calculate the average

stationary energy consumption did not eliminate the impact of excessively large readings.

It is also likely that the stationary energy consumption recorded whilst the train is in a

station is higher than the hotel load whilst the train is moving — this will be due to the

opening and closing of powered doors, and the influx of air through open doors affecting

the performance of thermostatically controlled HVAC systems.

6.4.2 Use of the Median Absolute Deviation to filter the data

To eliminate the problem of outliers, the Median Absolute Deviation (MAD) (Appendix E.2)

was used to filter the data. Any reading more than one MAD away from the median was

excluded.

One result of this was that some services were left with no stationary energy consumption

data, and hence the hotel load could not be estimated in this manner. To get around
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this, it was possible to use an average value of stationary energy consumption (in terms

of kWh per minute) for the type of train to estimate the hotel load. This was also

considered for the Virgin Trains data, for which it was almost impossible to allocate

stationary readings to a particular service.

A key limitation of the use of single average values in this manner is that it doesn’t

allow for any variation to be accounted for. On the basis that HVAC systems are a key

component of the hotel load, the variation in temperature was investigated.

6.4.3 Investigating the variation of the hotel load with temperature

Using the median as a more robust measure of the average stationary energy consumption

in this case (because it is less susceptible to the excessively large readings), the variation

in stationary energy consumption with estimated temperature (found by linking the

position of the train with historical weather data — Chapter 4) is shown in Figure 6.8.

For the London Midland data, this is based on all stationary energy readings, not just

those which are linked with a service.

Figure 6.8: The variation in stationary energy consumption with temperature

Powell, González-Gil, and Palacin (2014), who did some empirical analysis of the Newcastle

Metro trains when stabled, suggest that the variation of the hotel load with temperature

could be split into three sections. Below a certain point (about 0oC in the case of the

Metro study), the energy consumption was independent of temperature, as a result of

the fact that the fact that the heating system operates at its maximum power rating
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regardless. At the other end of the scale, above about 15oC, the energy consumption was

also found to be independent of temperature, corresponding to the fact that the heating

is always off. In between, the energy consumption was found to decrease linearly with

temperature.

Figure 6.8 shows a general trend of decreasing stationary energy consumption between

about -4oC and 10oC for the London Midland fleet, although there are some fluctuations,

which may have arisen for several reasons. Firstly, the available data are not spread

uniformly across the temperature range, and there may be some temperatures for which

the sample size isn’t large enough to be truly representative. Secondly, the estimation of

temperature is very crude, based on a single figure recorded at a weather station some

distance away from the train itself. Thirdly, it has not been possible to account for other

factors which may affect the hotel load, such as the number of people on board (which

will affect the internal temperature and the use of other on-board auxiliaries such as

power sockets and powered internal doors), the time of day (which may affect the level

of interior lighting) and whether the external doors are open. It should also be noted

that the range of temperatures observed for the London Midland fleet is limited by the

fact that the data were only taken from one month (January 2012). Of the trains in

the London Midland fleet, the Class 350s have a higher stationary energy consumption

than the others. They are of a newer design, and the implication is that any benefits

of better insulation and a more efficient heating system are offset by the presence of

air-conditioning and additional on-board electronics.

The energy consumption for the Pendolino appears to be lowest when the temperature is

approximately 15oC. This reflects the fact that more heating will be required at lower

temperatures, whilst the air-conditioning (not fitted on the Newcastle Metro) has to

work harder at higher temperatures — if data were available for the London Midland

fleet for the summer months, a similar trend would presumably be observed for the

classes of train also fitted with air-conditioning. The stationary energy consumption is

much higher for the Pendolino than it is for the London Midland trains; this will be

due to the fact that it is a much longer train with more carriages and more on-board

amenities (such as a buffet/shop and power sockets for laptops). It is also noticeable

that the relative change with temperature is smaller for the Pendolino trains; this will

partly be due the extra on-board amenities which are not temperature sensitive and

partly because the passenger saloon is much better insulated from the outside (there are

no opening windows and the external doors are set away from the seating area behind a

set of internal doors).
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6.5 Use of temperature data to enhance the estimations of

the hotel load for specific journeys

Although the temperature data are crude, they were still useful in enhancing the estimates

of the hotel load. For the Virgin Trains data, each service was assigned an estimated

value of the hotel load in terms of kWh per minute by matching the mode of the observed

temperatures for the service with the overall median kWh per minute calculated for

that temperature. For the London Midland fleet, it was possible to make an improved

estimate by making use of the fact that each service had a set of stationary energy

consumption values associated with it. Each stationary reading was matched with the

overall median kWh per minute calculated for that train at that temperature. If it was

within the MAD of the median, it was accepted as a valid estimate. If it was outside

the MAD of the median, it was assumed to have been influenced by other factors (for

example, the train may not have been truly stationary for the whole minute) and was

replaced by the median value. The mean of the resulting dataset for each service was

then taken as an estimate of the kWh per minute.

Estimates of the hotel load were then calculated as a fraction of the net energy

consumption for each given service. The mean hotel load in terms of kWh per minute,

kWh per train-km and as a fraction of net energy consumption over all services is given

for each train in Table 6.5.

Table 6.5: Estimated mean hotel load for each class of train

Train 321 323 350 390
(9-carriage)

390
(11-carriage)

Estimated
mean hotel
load [kWh
per minute]

0.59 0.69 1.07 2.78 3.17

Estimated
mean hotel
load [kWh
per train-km]

0.45 1.1 0.8 1.37 1.58

Estimated
mean hotel
load [% of
net energy
consumption]

6.3 15.7 11.9 10.2 10.3

It can be seen that the hotel load is typically responsible for more than the 5% of net

energy consumption suggested by RSSB (2011), but less than the 30% suggested by the

UIC 2003 (see Section 3.1.5), although, as the calculations are based on stationary data,
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they should only be taken as a guide for the non-traction energy consumption when the

train is moving.

Chapter 7 considers how the energy of a train may be modelled, and notes that resistance

forces, and hence required traction energy, increase significantly with speed. On the

other hand, the hotel load should not be affected as such. Hence it is postulated that

the lower running speed of the Class 323 trains is a key reason for the fact that the

hotel load makes up a higher proportion of the net energy consumption. The frequent

stops, leading to increased use of powered doors and increased changes in airflow and

internal temperature, may also be a contributing factor, although it should be noted that

no difference is observed between the service types operated by Class 350 trains. It is

thought that the relative lack of on-board amenities on the older Class 321, which has

a higher running speed than the Class 323, is a reason for the comparatively low size

of the hotel load, although the comparatively small number of journeys considered may

mean that some of the assumptions made in the calculations aren’t appropriate.

6.6 A breakdown of the gross energy consumption of the

trains when operating passenger journeys

Having calculated the mean energy recovered by the regenerative braking system

(Section 6.2) and estimated the hotel load (Section 6.4), it is possible to consider how the

gross energy consumption of a train is broken down across the three main components —

the energy used by the traction motors, the energy consumed by auxiliary equipment (the

hotel load), and the energy returned to the grid. It is assumed that any braking losses

are included in the traction energy component. The mean breakdown of the gross energy

consumed by each of the classes of train studied whilst operating passenger services is

shown in Figure 6.9.

6.7 The impact of non-revenue running and idling

The operational energy consumption of a train extends beyond that when the train is

conveying passengers between stations; it has already been noted (Section 6.4.1) that

trains are often left powered-up when stabled to provide cleaning and maintenance staff

with heat and light, and to ensure that the carriages are kept at a comfortable internal

temperature. Furthermore, trains are often left switched on in stations between services

and run empty to/from depots, sometimes over a considerable distance. Because these

are necessary aspects of providing a train service, it is argued that they should be taken

into account when making comparisons with other modes.
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Figure 6.9: A breakdown of the gross energy consumption of the trains when
operating passenger journeys

The data provided by Virgin Trains are comprehensive enough to estimate this extra

operational energy consumption of the nine-carriage Pendolino fleet and to include it in

overall calculations of energy per train-km, based on the distance travelled in passenger

service.

For each train in the fleet, the mean daily energy consumption was calculated by summing

all the energy readings for each day. The mean daily distance travelled in passenger

service was estimated from the supplied service allocation data. It was thus possible to

calculate a new figure for net energy consumption per train-km for both the nine and

eleven carriage trains, which could be compared with the earlier figure calculated based

on the actual passenger services (Chapter 5). The results are given in Table 6.6.

It can be seen that the extra operational energy consumption is significant, and should not

be ignored. The large standard deviation is because the operational patterns of a train

vary from day to day — some days a train will be running early and late services with

little idling over a 24h period, whilst other days there may be gaps between allocations,

long distances to travel to the depot and even time out on maintenance. The fact that

the eleven carriage trains are observed to have a higher proportion of extra operational

energy consumption could be down to the fact that they were being introduced during

the period covered by the dataset and were not operating a full set of allocations. In the

absence of more detailed analysis of the London Midland data, it is not clear whether

the uplift factor for non-revenue running and idling would differ significantly.
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Table 6.6: A comparison of total energy consumption with that during passenger
service for the Pendolino

Train Length 9 carriages 11 carriages

Total energy consumption
[kWh per train-km]

14.33 16.92

Standard deviation 9.25 11.9

Mean net energy
consumption when in
passenger service
[kWh per train-km]

12.93 14.75

% difference between total
energy consumption and that
when in passenger service

11% 15%

When matching trains to known schedules (Chapter 4), non-revenue journeys (those with

a headcode beginning with a “5”) were not easily matched with scheduling data for a

variety of reasons. These include the fact that when locating the train to a point on the

network it wasn’t always easy to distinguish between the stations and the sidings, and

the fact that these journeys can be highly variable and subject to last minute scheduling

changes. Nonetheless, it was possible to analyse a small number of non-revenue journeys

made by Class 323 units, the results of which are given in Table 6.7.

Table 6.7: Summary energy data for non-revenue journeys operated by Class
323 trains

Estimated mean hotel load [kWh per minute] 0.72

Mean net energy consumption
[kWh per train-km]

4.4

Standard deviation 1.02

It can be seen that the mean net energy consumption for these non-revenue runs is over

30% less than the mean net energy consumption for the Class 323 when in passenger

service (calculated as 6.49 kWh per train-km in Chapter 5). This will be because there

are no intermediate stops en route, leading to a much higher stopping density of 22.5km,

and may also be a reflection of lower running speeds. The hotel load appears lower on

non-revenue runs (Table 6.7) than that given in Table 6.5, which could be explained by

a lack of demand for heating and use of power-doors.
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6.8 Conclusions

Having quantified the energy recovered by regenerative braking systems (where fitted),

it was found that the empirical data studied here are broadly in line with observations

made in published literature. It is clear that regenerative braking systems have significant

potential to reduce the net energy consumption, with the systems typically saving 15%

of the gross energy on intercity services operated by the Pendolino, rising to over 23%

on inner-suburban services operated by the Class 323, where regular periods of braking

form a dominant aspect of the service. It was postulated that the observed variation

in the energy recovered by the regenerative braking systems on each train could be

explained by a similar set of explanatory factors used to explain the variation in net

energy consumption overall (Chapter 5), and each factor was explored in turn with a

basic linear regression model. It was found that aspects of the route and the driving

style dominated, and these are considered in more detail in Chapter 8.

It was more difficult to quantify the hotel load, because traction energy and auxiliary

energy are not metered separately. Stationary energy readings were used to make some

estimation, but it was found that this was quite prone to error. Distinctions were made

between the stationary energy when stabled (i.e. not part of a service) and when running

a service. Some of the hotel load estimates were considered to be unrepresentative of the

journey as a whole because they were taken whilst the train was stationary at a platform

and subject to use of powered external doors and increased airflow. Some variation in

hotel load with temperature was observed as a result of the fact that HVAC systems

typically make up a large part of the auxiliary systems, but the data were subject to

inaccuracies.

Trains can be left partially powered overnight and between services, whilst idling in

stations and running empty to/from the depot can all add to the energy consumption,

even though these aspects are not directly attributable to a single passenger service.

The additional energy costs of non-revenue running and idling were calculated for the

Pendolino, where it was found that on average they add a further 11% to the net energy

consumption for each passenger service. Chapter 9 considers not just such “inactive”

operation but also the other life-cycle energy costs associated with the provision of a

transport system.



Chapter 7

Modelling the energy

consumption of a train

7.1 Introduction

Because empirical data are sometimes difficult to obtain, simulations are often used

to estimate the operational energy consumption of and — by extension — the GHG

emissions from a train. This chapter introduces some basic principles of estimating the

energy consumption of a train and goes onto describe the RouteMaster tool developed

with Arup, which can estimate the traction energy consumed by a train. This was a

key aspect of the work for industry which formed part of this research. The tool was

validated against some of the empirical data obtained from Virgin Trains, where it was

found that the simplistic modelling of the driving style limits its usefulness for accurately

predicting variations in energy consumption between routes.

7.2 An overview of the energy consumption of a train

Jong and Chang (2005) suggest that a complete energy estimation model for electric

trains includes at least three parts — the energy used by the traction motors, the

energy consumed by auxiliary equipment (the hotel load), and the energy produced by

regenerative braking systems (and subsequently returned to the grid). Not all trains are

fitted with regenerative braking systems, but this broad breakdown seems sensible.

Mathematically, the UIC (2003) suggest the following formula for the net energy

consumption of a train:

Enet =
1

χ
(Ekin+pot + Erun + Ecomfort)− χβEkin+pot (7.1)
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Where:

Enet is the net energy intake.

Ekin+pot is the sum of the energy required at the wheels to accelerate the train or

climb a slope.

Erun is the energy required at the wheels to overcome running resistance (mechanical

friction and air resistance).

Ecomfort is the hotel load.

χ is a measure of the energy efficiency of the whole system, and is used to account

for losses. It is defined by the UIC as the “energy output divided by the energy

intake for a certain period of time.” In this case, the “energy output” includes the

hotel load and the total energy required at the wheels.

β is a measure of the share of the braking effort attributed to the motor braking

force which in a regenerative braking system converts the kinetic and potential

energy of the train back into electricity. It also takes into account the efficiency

of the regenerative braking system. If the train is not fitted with a regenerative

braking system, β is zero.

This formula can be broken into the three separate components suggested by Jong and

Chang (2005) as follows:

Enet =
1

χ
(Ekin+pot + Erun) +

1

χ
(Ecomfort)− χβEkin+pot (7.2)

Where:

Enet = Total net energy consumption.

1
χ (Ekin+pot + Erun) = Traction energy.

1
χ (Ecomfort) = Hotel load.

χ β Ekin+pot = Energy recovered from regenerative braking

The relative contribution of each of these three components could be expected to vary

with the type of train and the type of route, as illustrated in Figure 7.1. In line with the

findings in Chapter 6, the total traction energy (required to overcome running resistance,

gravitational resistance on a slope and to provide acceleration) appears to be universally

dominant compared with the hotel load.
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Figure 7.1: Typical composition of energy demand for different operation/traction
classes (Taken from: UIC, 2003, Figure 8)

7.3 Modelling the traction energy of a train

It has been seen that a key component of the traction energy of a train is the energy

required to overcome resistance due to friction and aerodynamic drag. Modelling this can

be challenging. Although it can be calculated theoretically, with the help of computational

fluid dynamics (CFD) “the approaches are complex, require knowledge of very many

parameters and do not necessarily lead to useable train resistance data” (Rochard and

Schmid, 2000, p.186). Rochard and Schmid go onto suggest that the resistance of a train

can be “estimated by the application of a sufficiently accurate empirical calculation tool,”

several of which are subsequently reviewed in their paper.

One such method of calculating the resistance encountered by a moving train is the

widely-used Davis Equation. This is briefly introduced here, followed by a brief discussion

of some of the resistance forces it does not model. The concept of calculating the “work

done” by the applied tractive forces, leading to overall estimates of traction energy

consumption, is then explained.
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7.3.1 The Davis Equation

The resistance force experienced by a moving train, R, can be approximated by the Davis

Formula (Rochard and Schmid, 2000) — an empirical quadratic function of the train’s

velocity v, written as:

R = A+Bv + Cv2 (7.3)

If R is in Newtons (N) and v is in meters per second (ms−1), then the coefficients A,

B and C have units N, Nsm−1 and Ns2m−2 respectively, although in this thesis the

values are scaled for velocities in terms of km/h. A and B include the mechanical

resistances (and are mass related), whilst the third term accounts for the aerodynamic

resistance (Rochard and Schmid, 2000). Numerous methods are available for calculating

these coefficients (RSSB, 2010b); these may include full-scale empirical testing, results

from a wind-tunnel (full-scale or otherwise) or use of other empirical relationships. For

example, Armstrong and Swift (cited by Rochard and Schmid, 2000), created empirical

relationships to calculate the Davis coefficients for a British Rail EMU. These are used

to estimate A, B and C from other known measurements of the train, including the total

mass of the power cars, the total mass of the trailer cars, a drag coefficient, the length

and cross-sectional area and the intervehicle gap.

Sample values for the Davis coefficients for three different types of train are given in

Table 7.1. The standard coefficients for the Suburban and Intercity trains are taken from

RSSB (2010b) and are based on the UK Class 357 Electrostar (RSSB Train A) and the

Pendolino (RSSB Train D) respectively. The values for the High-Speed train are taken

from those attributed to the AGV-11 (SYSTRA, 2011).

Table 7.1: Sample Davis coefficients for different types of train

Train Suburban
Electric

Intercity
Electric

High-Speed
Electric

Davis
Coefficients

A 2158 5311 2500

B 5.384 21.696 29

C 0.4158 0.9097 0.45

The resistance curves for each of these trains were generated using the Davis Equation

(Equation 7.3) and are plotted in Figure 7.2.

It is well documented — for example by RSSB (2010b) and by Raghunathan, Kim, and

Setoguchi (2002) — that the value of C is proportional to both the length of the train

and the head and tail drag coefficients. It is therefore likely that train length is a key

reason for the fact that the High Speed and Intercity trains (comprising 10 and 9 vehicles

respectively) experience a greater resistance force than the Suburban train (comprising
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Figure 7.2: Davis Resistance curves for three types of train

just 4 vehicles). The fact that the High-Speed train experiences less resistance than the

Intercity train may well be down to reduced head and tail drag coefficients.

7.3.2 Other resistance forces

The Davis Formula (Equation 7.3) only covers inertia and running resistance. Other

forces include grade resistance (the additional force required to overcome gradient)

and curve resistance (the added resistance experienced by a train operating through

a horizontal curve) (AREMA, 2003). The energy required to overcome a gradient is

explicitly mentioned in Figure 7.1 and separated from other running resistances in the

UIC equation for modelling energy consumption (Equation 7.1), but curve resistance

is not explicitly treated in either case. Curve resistance and grade resistance can be

neglected if the additional assumption is made that the track is straight and level.

7.3.3 Work done and energy consumption

The work done by a moving train can be calculated by multiplying the applied force by

the distance moved. The work done, E, by the train exerting tractive effort T over a

distance d is thus estimated by:

E = Td (7.4)
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If T is given in Newtons (N) and d is given in meters (m) then this gives work done

in terms of joules (J). One kWh is 3.6 megajoules (MJ). The assumption is that T is

constant over the given distance; which is reasonable if d is chosen to be small enough or

the velocity and resistance forces both remain constant. On this basis, the work done

over a whole route can be estimated by dividing the route into appropriate segments and

summing the work done for each one.

In any case, something must be known about the tractive effort, T, in order to model the

work done, E. If the train is moving at constant velocity, then T is equal and opposite to

the total resistance force, R; hence the importance of knowing the resistance to motion.

If the train is accelerating, and both the mass of the train m and the rate of acceleration

a are known at a given point, then according to Newton’s second law:

T = ma (7.5)

If the rate of acceleration also needs to be determined, further data about the tractive

performance of the specific train need to be obtained. When a train is decelerating, no

forward force is applied and T is zero on level track.

The actual energy required to move the train will be greater, due to the fact that the

traction and transmission systems are not 100% efficient (in one example, RSSB (2007,

p.23) assume that the efficiency of the traction system is 85%).

7.3.4 An alternative equation for energy consumption

An alternative equation for energy consumption per vehicle kilometre is given by Schäfer

et al. (2009, page 105), assuming movement on a horizontal surface:

E =
1

η
(A+D +R) (7.6)

Where:

• η is the efficiency of the propulsion system

• A is the acceleration resistance or vehicle inertia

• D is the aerodynamic drag

• R is the rolling resistance
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A is defined as A = ma where m is the vehicle mass and a is acceleration.

D is defined as D = cDS(ρ2v
2) where CD is the vehicle’s aerodynamic drag coefficient, S

is its cross-sectional area, v is its speed and ρ is the density of air.

R is defined as R = cRmg where cR is the rolling resistance coefficient and g is the

acceleration due to gravity.

Although Schäfer et al. (2009) describe this equation in the context of road vehicles, it is

equally applicable to rail vehicles. The quadratic dependence on vehicle speed, and the

similarities with the Davis Equation (Equation (7.3)) are evident.

7.4 Introduction to the Arup RouteMaster tool

Arup’s RouteMaster tool is a Microsoft Excel Addin, written originally to model predicted

running speed and running times for a train over a given route. Work for this thesis

included development of the tool so that the outputs now include an estimation of the

tractive effort expended and work done by the train. The basic principle follows the

concept introduced in Section 7.3.3, of breaking the route down into segments, calculating

the work done along each one (Equation 7.4) and summing the results along the whole

route. Arup provided some existing train resistance and tractive effort data for a range

of UK rolling stock. The data were originally in a standard format used by proprietary

software such as RailSys and Dynamis, so they were converted into a more suitable

format and the rolling stock library used by RouteMaster was updated accordingly.

As well as the additional functionality to calculate and output tractive effort and work

done, enhancements made to the tool include improvements to the User Interface (UI)

and the design of the output worksheets. The underlying code was re-written and broken

down into modules to aid further development. These developments were necessary to

fulfil the aim of making sure that Arup could make good use of the tool.

The model’s main input is a route profile, which provides information about a section

of railway — including the Static Speed Profile (SSP), gradients and the location of

stops. Once the train type has been selected, the model uses resistance and braking

performance data to determine a maximum speed profile for the train over the route,

taking into account the SSP and braking distances for speed reductions and stops. It

then uses tractive effort data to ascertain the actual attainable performance of the train

within the limits of the speed profile.

An important aspect of the RouteMaster tool is that it is quite simple, requiring little

customisation or specialist knowledge, but it is possible to change various parameters

in order to incorporate some aspects of driving style into the model. For example, it is

unlikely in reality that a driver will always apply maximum tractive effort or braking
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force, so the option is available to cap each of the maximum applied tractive effort and

braking force (in percentage terms).

7.5 Validation of the Arup RouteMaster tool

From the empirical energy data provided by Virgin Trains, data for four specific service

patterns (outbound and return journeys over each of two routes) were chosen as a basis

for validation of the RouteMaster tool. The first route chosen is between London Euston

and Wolverhampton, with five stops and a mean distance between them of approximately

35km. It was chosen for its relatively high stopping density (which could lead it to be

classified as an “inter-urban” rather than an “intercity” route) and its similarity to a

service already studied in some detail by RSSB (2010b). The second is between London

Euston and Manchester Piccadilly, with three stops and a much higher mean stop spacing

of 73km. The stop spacing is less uniform than that on the chosen Wolverhampton

service, and the very long first section, amounting to 235km of non-stop running, makes

it an interesting choice for more in-depth study. Both outbound and return journeys

were considered in each case. The use of different routes and service patterns also allows

some understanding to be gained of why different aspects of the route and service were

found to be important explanatory variables in Chapter 5.

Service timings were obtained extracts from the Network Rail TSDB (Network Rail, 2012)

and distances were obtained from the RailMiles mileage engine (swlines Ltd. 2012a) as

described in Section 3.3.1. Gradient profiles were measured from “British Rail Mainline

Gradient Profiles” (Allan, 1966). Line speed data were obtained from Network Rail

(2013b) and supplemented by study of the supplied on-train monitoring data from Virgin

Trains where data were missing or subject to ambiguity; the Network Rail data showed

that there were some differences between the fast and slow lines and did not always

appear to contain the higher speed limits, designated Enhanced Permissible Speed (EPS),

which are applicable to the Pendolino fleet (they are fitted with tilting technology). For

the London Euston to Wolverhampton route, it was possible to compare the gradient and

line speed profiles with those given by RSSB (2010b), and a good match was observed.

The majority of services considered departed between 11am and 7pm on a Sunday. This

was because it was desirable to ensure that the comparisons made between each route

were as fair as possible and most of the matching energy data — especially for the

Manchester services with a long non-stop section — corresponded to weekend departures.

Although it is acknowledged that Sunday services are more susceptible to delays and

alterations due to Engineering Work, care was taken to ensure that only those services

matching a particular total journey time and stopping pattern were considered.
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7.5.1 London Euston to Wolverhampton

The first route chosen for comparison was the route between London Euston and

Wolverhampton, which was included in the studies undertaken by RSSB (2010b).

RSSB considered an off-peak service departing from London Euston at 10.23, with

five intermediate stops and a total journey time of 106 minutes (Headcode 1G14).

Subsequent timetable changes have meant that the number of matching journeys in the

energy data supplied by Virgin Trains were limited, and the schedules chosen for analysis

here have a total journey time of 108 minutes. The return services (not considered by

the RSSB) have a total journey time of 110 minutes.

Summaries of the chosen service patterns are given in Table 7.2 (outbound journey) and

Table 7.3 (inbound journey). The route profile, showing the gradient and line speed,

limit is illustrated in Figure 7.3.

Table 7.2: A summary of the station calls on the chosen service pattern between
Euston and Wolverhampton

Stop Distance from
origin [km]

Typical journey
time from origin

[min]

Typical dwell
time [s]

Watford Junction 28 13 90

Coventry 151.2 61 120

Birmingham
International

168.5 72 120

Birmingham New
Street

181.7 84 240

Sandwell & Dudley 190.3 96 90

Wolverhampton 202.6 108 (terminates)
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Table 7.3: A summary of the station calls on the chosen service pattern between
Wolverhampton and Euston

Stop Distance from
origin [km]

Typical journey
time from origin

[min]

Typical dwell
time [sec]

Sandwell & Dudley 12.2 9 90

Birmingham New
Street

20.9 20 240

Birmingham
International

34.2 32 120

Coventry 51.4 44 120

Watford Junction 174.6 90 90

London Euston 202.6 110 (terminates)

Figure 7.3: Line speed and gradient profiles for the service from Euston to
Wolverhampton

7.5.2 London Euston to Manchester Piccadilly (via Stoke-on-Trent)

The second route chosen for analysis was that between London Euston and Manchester

Piccadilly, via Stoke-on-Trent. This is a longer journey than the one to Wolverhampton,

and the services chosen for analysis ran non-stop between London Euston and Stoke-on-Trent

— a distance of 235km.
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Summaries of the chosen service patterns are given in Table 7.4 (outbound journey) and

Table 7.5 (inbound journey). The route profile, showing the gradient and line speed limit,

is illustrated in Figure 7.4.

Table 7.4: A summary of the station calls on the chosen service pattern between
Euston and Manchester

Stop Distance from
origin [km]

Typical journey
time from origin

[min]

Typical dwell
time [sec]

Stoke-On-Trent 235 89 120

Macclesfield 267 106 90

Stockport 286 120 90

Manchester
Piccadilly

296 131 (terminates)

Table 7.5: A summary of the station calls on the chosen service pattern between
Manchester and Euston

Stop Distance from
origin [km]

Typical journey
time from origin

[min]

Typical dwell
time [sec]

Stockport 9 7 120

Macclesfield 28 19 90

Stoke-On-Trent 60 36 90

London Euston 296 131 (terminates)
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Figure 7.4: Line speed and gradient profiles for the service from Euston to
Manchester

7.5.3 Empirical energy data for the selected services

The journeys corresponding to these service patterns were identified in the energy data

supplied by Virgin Trains. A summary of the observed energy consumption data for

nine-carriage Pendolino trains for each of the four services selected for analysis is given

in Table 7.6.

The mean net energy consumption for all four services together is 12.89 kWh per train-km.

Table 7.7 compares the mean net energy consumption for each service individually with

this overall value, to give some idea of the relative performance of each service. Table 7.7

also defines the relative energy consumption of each service, taking the service with

the lowest mean net energy consumption (Wolverhampton to Euston) as 1. This is a

useful measure when assessing simulation parameters, because a key aim is to be able to

predict how the energy consumption may vary between different types of route even if

assumptions made by the simulation preclude the calculation of a completely accurate

figure for the net energy consumption.

It can be seen from Table 7.7 that — as was noted in Section 5.4.2 - Down services (away

from Euston)1 use more energy than the mean, and Up services (towards Euston) use

less energy than the mean. The gradient is likely to be an important factor here — the

route is initially uphill out of Euston in both cases and remains predominantly uphill

1In line with British practice, services towards London are referred to as “Up” and services away from
London are referred to as “Down”.
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Table 7.6: Summary of available energy data for selected journeys operated by
the nine-carriage Pendolino

Service Euston to
Wolverhampton

Wolverhampton
to Euston

Euston to
Manchester

Manchester
to Euston

Number of
journeys
sampled

511 523 2804 1161

Mean net energy
consumption
[kWh per train-km]

13.75 11.98 13.21 12.63

Standard
deviation of
mean net energy
consumption

1.14 1.23 0.92 0.94

Mean fraction of
gross energy
regenerated [%]

15% 19% 15% 16%

Mean total gross
energy
consumed per
journey [kWh]

3346 3025 4627 4486

Mean total
energy
regenerated per
journey [kWh]

561 596 726 753

Mean total net
energy
consumed per
journey [kWh]

2427 2783 3901 37 30

Estimated hotel
load per journey
based on
observation
[kWh]

418 303 381 389

Estimated hotel
load per journey
at 10% of net
kWh consumed

243 278 390 373
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Table 7.7: Comparison of mean net energy consumption across all four services

Service Euston -
Wolverhampton

Wolverhampton
- Euston

Euston -
Manchester

Manchester -
Euston

Mean net energy
consumption
[kWh per train-km]

13.75 11.98 13.21 12.63

Difference from
overall mean [%]

6.7% -7.1% 2.5% -2.0%

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1

1.15 1.00 1.10 1.05

for the service to Wolverhampton (Figure 7.3). The variation either side of the mean is

greater for the Wolverhampton services than it is for the Manchester services, and one

reason for this could be that the station calls are all on an upward gradient for the Down

Wolverhampton services (Figure 7.3) whereas the Manchester services are more balanced;

some of the station calls on the Down Manchester services are on a downward gradient

(Figure 7.4), reducing the tractive effort required when accelerating from a stop.

It is also noted that the mean energy consumption for the Up and Down Wolverhampton

services is marginally higher than the mean energy consumption for the Up and Down

Manchester services; the difference in stopping density is likely to be a reason for this.

Timetabling is likely to be another factor — it is noted that the Up Wolverhampton

service has an extra two minutes over the Down service, which would allow for a slightly

lower running speed and/or more opportunities for coasting. In its current incarnation,

RouteMaster does not take these things in to account, but the observed variation in

driving style on these services is explored further in Chapter 8.

7.5.4 Finding the input parameters which best match the timetabled

performance

Varying the tractive effort and braking force has an impact on the simulated journey

timings. For each of the routes studied here, the tractive effort and braking parameters

were varied in order to find the combination which best matched the actual service

timetable. A load factor of 40%, in accordance with typical observations about intercity

services (See Section 10.2.4) was assumed in all cases. Table 7.8 shows the tractive effort

and braking combinations which led to the best simulated match in terms of overall

journey time. In each case, the discrepancy in terms of total journey time between the

service timetable and the RouteMaster simulation was less than 30 seconds.
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Table 7.8: The RouteMaster tractive effort and braking parameters which best
matched the overall timings for the services

Service Maximum Tractive
Effort [%]

Maximum Braking Force
[%]

Euston - Wolverhampton 50 70

Wolverhampton - Euston 50 40

Euston - Manchester 40 40

Manchester - Euston 40 80

Given that more tractive effort is required to accelerate a train than to maintain a

constant speed, it is intuitive that the Wolverhampton services require a higher level

of tractive effort to maintain the overall timings than the Manchester services, which

have fewer stops. The Down Wolverhampton and Up Manchester services require more

braking effort than the others. This is likely to be because of the locations of stops and of

line speed restrictions, where the need to accelerate and decelerate over a short distance

downhill will require a greater braking force.

Figure 7.5 compares the distance-time profile simulated by RouteMaster for the Euston to

Wolverhampton service with the actual service timetable. The RouteMaster parameters

were the same as those in Table 7.8, and it can be seen that although there is a good

match with overall journey time, there is some discrepancy with the intermediate timings

en route. The speed-distance profile simulated by RouteMaster is given in Figure 7.6,

where the reasons for the discrepancy become apparent — by limiting the maximum

tractive effort, the train does not always reach the maximum line speed, and cannot

maintain speed on some gradients.

Increasing the maximum applied tractive effort to enable the train to maintain speed on

the gradients meant that the overall journey time was reduced and no longer compared

favourably with the timetable. This is because RouteMaster assumes that the train will

maintain the maximum permitted line speed as far as possible, which may not be the

case in reality.
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Figure 7.5: Distance time plots for the Euston — Wolverhampton service,
comparing the timetable with the output of the RouteMaster tool

Figure 7.6: Output from RouteMaster for the Euston — Wolverhampton service
with a tractive effort cap of 50% and a braking cap of 70%
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7.5.5 Using RouteMaster to predict energy consumption

The net traction energy per train-km (taking into account regenerative braking) was

calculated for each route according to the parameters in Table 7.8. A powertrain efficiency

of 0.85 (RSSB, 2007) was assumed, and the outputs increased accordingly. Similarly, a

hotel load equivalent to 10% of the net energy consumption was assumed, and the data

were increased again accordingly. These estimations are detailed in Table 7.9.

Table 7.9: Net energy consumption data from RouteMaster assuming parameters
given in Table 7.8

Service Net traction
energy

consumption
estimated by
RouteMaster

[kWh per train-km]

Traction energy
consumption

accounting for
power train

efficiency
[kWh per train-km]

Net energy
consumption

accounting
additionally for

hotel load
[kWh per train-km]

Euston -
Wolverhampton

11.07 13.02 14.47

Wolverhampton -
Euston

8.77 10.32 11.46

Euston - Manchester 8.9 10.47 11.63

Manchester - Euston 10.03 11.8 13.11

The mean net energy consumption, including powertrain inefficiencies and hotel load,

was therefore estimated to be 12.67 kWh per train-km for the four routes considered.

This is just 2% less than the observed mean net energy consumption, but it should be

acknowledged that assumptions have been made about passenger loading and the hotel

load. Furthermore, RouteMaster does not consider some resistance forces, such as those

due to track curvature, and it is not clear whether they would have a significant impact

(it is, however, noted, that the WCML is highly curved and the Pendolino trains are

tilt-enabled as a result).

Table 7.10 compares the estimated energy consumption for each route with this calculated

overall mean. It is a direct parallel of the data contained in Table 7.7, which is based on

empirical findings — comparing the two tables, it can be seen that RouteMaster does

not accurately predict the relative variation between routes with these parameters.

The exercise was repeated assuming a 100% application of tractive effort and braking

force in all cases (known as “all out running”), in order to assess whether it had

been beneficial to make any assumptions about driving style. The mean net energy

consumption, including powertrain inefficiencies and hotel load, was therefore estimated

to be 16.23 kWh per train-km for the four routes considered, and the data for each route

are summarised in Table 7.11.
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Table 7.10: Comparison of mean net energy consumption across all four services
using RouteMaster data assuming parameters given in Table 7.8

Service Euston -
Wolverhampton

Wolverhampton
- Euston

Euston -
Manchester

Manchester -
Euston

Mean net energy
consumption
[kWh per train-km]

14.47 11.46 11.63 13.11

Difference from
overall mean [%]

14 -10 -8 3

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(RouteMaster)

1.26 1 1.01 1.14

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(Empirical
Value)

1.15 1 1.1 1.06

Table 7.11: Comparison of mean net energy consumption across all four
services using RouteMaster data assuming maximum tractive effort and braking
performance

Service Euston -
Wolverhampton

Wolverhampton
- Euston

Euston -
Manchester

Manchester -
Euston

Mean net energy
consumption
[kWh per train-km]

16.52 15.05 16.8 16.54

Difference from
overall mean [%]

2 -7 4 2

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(RouteMaster)

1.1 1 1.12 1.1

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(Empirical
Value)

1.15 1 1.1 1.06
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It can be seen that the relative variation between routes becomes less pronounced

if maximum braking and tractive effort are assumed. Furthermore, the estimates of

regenerative braking were found to be reduced as a result of the increased tractive effort

and braking force, and the overall mean for the data in Table 7.11 exceeds the empirical

mean by 25%.

7.5.6 The importance of modelling gradient

Although gradient data have been obtained in this instance, it cannot be assumed that

it will always be readily available. To assess the importance of including such data,

the simulations were re-run with the parameters in Table 7.8 and with the assumption

that each route is completely flat. The results are given in Table 7.12. The mean net

energy consumption, including power train inefficiencies and hotel load, was estimated

to be 12.79 kWh per train-km for the four routes considered, which is within 1% of the

empirical mean.

Table 7.12: Comparison of mean net energy consumption across all four services
using RouteMaster data assuming parameters given in Table 7.8 and assuming
no gradients

Service Euston -
Wolverhampton

Wolverhampton
- Euston

Euston -
Manchester

Manchester -
Euston

Mean net energy
consumption
[kWh per train-km]

14.08 12.14 13.32 11.62

Difference from
overall mean [%]

10 -5 4 -9

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(RouteMaster)

1.16 1 1.1 0.96

Mean net energy
consumption
relative to
Wolverhampton
- Euston = 1
(Empirical
Value)

1.15 1 1.1 1.06

It can be seen that excluding gradient made no significant difference to the overall

estimated mean energy consumption, or to the estimated energy recovered by the

regenerative braking system. Table 7.12 shows that when gradient data are excluded,

the estimated energy consumption relative to the Up Wolverhampton to Euston service
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reflects the empirical data for the Down Wolverhampton service and Down Manchester

service. This indicates that the locations of stops and of line speed limits may be a key

reason for the observed variation, although it would be unwise to conclude much from

this table.

In any case, RouteMaster should to be able to make good relative comparisons between

routes when gradient data are known, and it is clear from Table 7.10 that the use of

constant parameters for tractive effort and braking is not adequate.

7.6 Comparisons with other simulation work & plans for

future development

Care should be taken when comparing RouteMaster with other simulation work, because

different tools have different aims. The aim of the RouteMaster tool is not to accurately

model a particular scenario in detail, but to be able to make simple comparisons between

different scenarios. On that basis, work by RSSB (2010b) seems the most relevant for

comparison. The RSSB simulation is based on similar principles to RouteMaster, but

accounts for coasting and makes different assumptions about the traction and braking

performance. The “average power level” is given to be 2/3 of the maximum available,

which exceeds the parameters chosen for RouteMaster (Table 7.8). However, it is not

clear whether, as with RouteMaster, this is applied constantly. It is assumed that the

maximum refers to the maximum for a given speed, given the fact that the maximum

tractive effort a train produces decreases with increasing speed. The published results

from the RSSB simulation tend to indicate a higher energy consumption than the results

from RouteMaster, and from the empirical data collected. This may be as a result of the

higher maximum tractive effort assumed.

It is also interesting to note that the RSSB simulation follows industry practice, and

rounds up the timings at each station. Furthermore, timing comparisons are made with

the Working Timetable (WTT) and consider intermediate timing points and stations

rather than just end-to-end journey time.

7.7 Conclusions

This chapter has introduced the principles of modelling the energy consumption of a

train, which is typically broken down in to traction energy, hotel load and — where

applicable — the energy recuperated via a regenerative braking system. Traction energy

is the dominant component, and can be estimated by considering the work done to

overcome resistance forces encountered by the train. The Davis Equation is widely used

to model the resistance forces, although it does not consider everything.
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The Arup RouteMaster tool is a simple model used to estimate the performance of a

given train over a given route, whose outputs have been expanded to include estimated

work done and tractive effort. Four service patterns, comprising return journeys over

two routes, were analysed and used to validate the tool. Schedule data from Network

Rail’s TSDB were used to compare the outputs from RouteMaster with the timetable

and adjust the limited input parameters accordingly. It was found that a relatively low

tractive effort cap (about 40% of the maximum available) was typically required for the

end-to-end journey times from RouteMaster to match the schedule, but it was noted that

the use of constant tractive effort and braking caps meant that the predicted performance

of the train at intermediate points did not match the schedule.

Having made assumptions about the efficiency of the traction system and the size of the

hotel load, the estimated energy consumption output by RouteMaster was compared with

empirical energy data from Virgin Trains, which had been matched to known schedules

in Chapter 4. When it came to the overall mean, the RouteMaster figure was within

2% of the empirical data. However, RouteMaster did not correctly predict the relative

variation in energy consumption between routes. As with the observed discrepancies in

timing between RouteMaster and the empirical data, a key reason for this is the use of

constant tractive effort and braking caps, and the fact that coasting is not modelled at

all. Following consideration of the route profiles, it was postulated that gradient is a key

reason for variation in energy consumption. By not allowing for increased tractive effort

to keep time uphill or coasting to save energy downhill, RouteMaster cannot model these

effects properly. When gradient was not included in the RouteMaster profile, the relative

variations between routes were predicted better, suggesting that other factors such as

stopping density are indeed important. When “all out running” (maximum tractive effort

and braking force) was modelled, the RouteMaster mean net energy consumption was

more than 25% above the observed empirical mean — this emphasises the effect which

simulation parameters can have and goes some way towards explaining the variation

observed in the literature in Section 2.5.

Overall, although RouteMaster can be useful for basic estimations, it must be concluded

that driving style needs to be better understood and modelled. For this reason, OTMR

data for the four services considered here are analysed in more depth in Chapter 8.





Chapter 8

Taking into account driving style

and refining simulation

parameters

8.1 Introduction

Analysis of empirical data has shown that there may be significant variation in the net

energy consumed (on a per train-km basis) between individual journeys. In Chapter 5,

Analysis of Variance was undertaken using simple general linear models, and the dominant

causes of variation were found to be driving behaviour (where data were available to

identify the fact that different services were operated by different drivers) and aspects

of the route and service. Chapter 7 introduced the concepts of modelling the energy

consumption of a train, and the Arup RouteMaster model was described and validated

against the empirical data. The RouteMaster model makes very simplistic assumptions

about the driving style, and it was found that this makes it inadequate for estimating the

relative variation in energy consumption between different routes. This chapter explores

the observed variation in driving style and makes use of OTMR data to understand how

tractive and braking effort might be expected to vary.

Because of the size of the dataset, it was not possible to consider the OTMR data for all

journeys. The four services described in Section 7.5 — Up and Down services between

Euston and Manchester, and between Euston and Wolverhampton — were therefore

chosen for detailed investigation.

173
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8.2 Variations between individual drivers

It has been seen that DriverID is one of the most important explanatory variables for net

energy consumption (Chapter 5) and for regenerative braking performance (Chapter 6).

Chapter 5 considered the observed variation in mean net energy consumption for different

drivers for all the nine-carriage Pendolino journeys which were analysed. Figure 8.1

shows the variation in mean net energy consumption for different drivers when operating

the four services under detailed consideration here. To minimise the impact of anomalous

journeys, those DriverIDs which appeared fewer than five times in the database for this

subset of services were excluded.

Figure 8.1: Variation in mean net energy consumption of the drivers operating
the four services under consideration

Following the pattern in Chapter 5, each DriverID was allocated an efficiency rating

based on the mean net energy consumption whilst operating these four services. These

efficiency ratings are summarised in Table 8.1.

OTMR data were used to analyse the driving controls for each journey, with the aim of

understanding what makes some drivers more efficient than others. In simple terms, the

train driver can apply traction (to move the train), apply the brakes (to stop the train)

and adjust the amount of tractive effort or braking force used. The OTMR data logged

every instance of the traction being enabled or disabled, every instance of the brakes

being applied or disengaged and every change in the percentage of power applied.
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Table 8.1: Driver efficiency ratings defined for the services studied

Efficiency Rating Criteria Range of Mean Energy
Consumption

[kWh per train-km]

1 Mean energy consumption
below the first quartile for all
drivers when operating the
services studied here.

E < 12.70

2 Mean energy consumption
between the first quartile and
the median for all drivers
when operating the services
studied here.

12.70 ≤ E < 13.08

3 Mean energy consumption
between the median and the
third quartile for all drivers
when operating the services
studied here.

13.08 ≤ E < 13.46

4 Mean energy consumption
above the third quartile for
all drivers when operating
the services studied here.

E ≥ 13.46

8.2.1 Overall comparisons

When considering the overall mean application of tractive effort or braking force for a

given service, there did not seem to be any variation with the efficiency ranking of the

driver. However, when the tractive effort and braking force were considered in more

detail, differences could be seen. Each journey was broken down into time segments,

with each segment being assigned a value from -90 (braking with 90% of maximum force)

through to +90 (90% of maximum tractive effort applied). Zero represents coasting.

Figure 8.2 illustrates the mean levels of traction and braking over time for the four

services, and compares the drivers who were ranked as being most efficient (a rating of 1;

Table 8.1) with those who were ranked as being least efficient (a rating of 4).

Figure 8.2 shows that the most efficient drivers spend more time coasting than the

least efficient drivers. Typically, the applied tractive effort also appears to be lower

for the more efficient drivers, although it is noticeable that they spend more time at

near maximum tractive effort than the least efficient drivers. This corroborates findings

in existing literature (for example, Dongen and Schuit, 1989) which suggests that the

optimum running strategy (as far as improving energy efficiency is concerned) involves

accelerating the train at as high a rate as possible. Higher rates of acceleration may be

correlated with the amount of coasting, as there would be more scope for coasting if the
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Figure 8.2: Variation in applied braking and traction between the most efficient
and the least efficient drivers

line speed were reached more quickly. The least efficient drivers appear to spend more

time braking, which would again fit with the relative lack of coasting.

Figure 8.2 shows how the braking patterns differ between the most efficient drivers and

the least efficient drivers. As well as being related to the amount of coasting, the braking

technique also has a bearing on the amount of energy which may be recovered by the

regenerative braking system, as noted in Section 6.3. For braking, Table 8.2 shows how

the energy recovered via regenerative braking (in terms of % of gross energy regenerated)

varies for each route with driver efficiency. It shows that — in the main — the more

efficient drivers make better use of the regenerative braking system. The braking system

of a train fitted with regenerative braking has two components — a friction braking force,

and a motor braking force. Energy dissipated through the friction braking system is not

recoverable. It is therefore likely that the higher levels of regenerative braking arise from

the fact that less use needs to be made of the friction component.

In line with the observations in Section 7.5.3 (Table 7.6), the Up services (towards London

Euston) have a higher proportion of energy recovery through the regenerative braking

system than the Down services (away from Euston). This is partly thought to be because

a predominantly downhill gradient allows for a higher level of regenerative braking, and

partly thought to be because the Down timetable allows more time for coasting and a

lower mean rate of braking, if the train is running to schedule.
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Table 8.2: Mean percentage of gross energy regenerated on each route for each
driver efficiency ranking

Driver
Efficiency
Ranking

Euston -
Wolverhampton

Wolverhampton
- Euston

Euston -
Manchester

Manchester -
Euston

1 16 20 16 17

2 17 20 16 16

3 16 19 15 16

4 16 18 14 16

Although the range of services considered here in detail is comparatively narrow, some

of the variations in route characteristics (discussed in Section 7.5.3) are likely to have an

impact on the driving style. This is considered further in Section 8.3, but it is first helpful

to consider detailed comparisons between two specific instances of the same service.

8.2.2 A comparison of two specific journeys

Two instances of the same service between London Euston and Manchester Piccadilly

were identified in the data as having similar characteristics in terms of punctuality and

timing, one of which had a DriverID with an efficiency rating (Table 8.1) of 1 and the

other had a DriverID with an efficiency rating of 4. Both journeys correspond to a service

which departed London Euston at 15:00 in May 2011, and the data for each journey are

summarised in Table 8.3.

Table 8.3: Service details for two individual journeys operated by a nine-carriage
Pendolino between London Euston and Manchester Piccadilly

RunID 428342 420150

Headcode 1H32 1H32

Driver Efficiency Ranking 1 4

Punctuality at Origin
[minutes]

-1 -1

Punctuality at Destination
[minutes]

-1 -1

Net energy consumption
[kWh per train-km]

12.39 13.8

Net energy consumption
relative to mean for service
[%]

-6% 4%
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The speed-distance profiles for each of the journeys are shown graphically in Figure 8.3,

which can be directly compared with the route profile shown in Figure 7.4. It should

be noted that the on-board odometer has a tolerance of +/- 10%, which is why there is

some discrepancy between the distances at which the trains are recorded as coming to a

stop for the stations towards the end of the journey.

Figure 8.3: Speed distance charts for two individual journeys between Euston
and Manchester

It can be seen that on the journey with a poor efficiency rating (of 4), the train was

typically driven to maintain the maximum line speed for as much time as possible. In

contrast, on the more energy efficient journey, evidence of coasting and gentler rates of

braking can be seen — this is particularly evident at Point B on the chart. At Point

A, the journey with a poor efficiency rating had a significant reduction in speed below

normal line speed. This may have been because of a signal check — perhaps due to a

slow moving train or other obstruction ahead — or because of a temporary line speed

restriction. In any case, it serves to illustrate the fact that a train journey is subject to

external factors beyond the immediate control of the driver.

Figure 8.4 shows the variation in applied braking and traction between the two journeys.

It can be compared directly with Figure 8.2, where similar patterns can be seen. The more

efficient driver has a higher proportion of coasting (in accordance with the observations

above) and typically lower rates of braking and applied traction. The higher proportion

of time spent by the more efficient driver at near-maximum tractive effort is particularly

pronounced in Figure 8.4. It is postulated that one reason for this is the repeated

re-acceleration to line speed after a period of deceleration (assumed to be coasting) seen
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in Figure 8.3 — particularly around Point C. In contrast, the more constant maintaining

of line speed observed on the relatively inefficient journey (Figure 8.3) may explain the

high proportion of time spent with about 30% applied tractive effort shown in Figure 8.4.

Unlike the overall observations shown in Figure 8.2, the individual driver with a high

efficiency rating is shown in Figure 8.4 to spend a comparatively high proportion of time

at near-maximum braking rates. It is not clear whether this is due to a feature of the

route or a perturbation on the particular service, or whether it reflects the fact that more

time is made for coasting by short periods of hard braking as the train is brought to a

stop.

Figure 8.4: Variation in applied braking and traction between the drivers of the
two individual journeys studied

8.3 Variations in driving style across the four services

It was noted in Section 8.2 that some of the apparent variations between drivers may be

due to variations between the different services (some drivers operate some services more

than others). Figure 8.5 shows the mean split (in terms of time) for applied traction,

braking, and coasting for each of the routes considered.
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Figure 8.5: Mean proportions of applied traction, braking and coasting for each
service

It can be seen that the Wolverhampton route has a higher proportion of braking, in

keeping with the fact that the stopping density is much higher. In both cases, the

proportion of coasting is higher on the Up journey (to Euston), probably as a combined

result of a predominantly downhill gradient and more slack in the timetable, in keeping

with the proposition in Section 7.5.3.

The mean percentage of tractive effort applied, and the mean percentage of braking force

applied, were calculated for each journey. The mean was then calculated for each of the

routes considered, and the results are shown in Table 8.4.

Table 8.4: Mean applied tractive effort and braking force for each service

Service Mean Tractive Effort
Applied [% of maximum]

Mean Brake Force
Applied [% of maximum]

Euston - Wolverhampton 42 42

Wolverhampton - Euston 42 42

Euston - Manchester 42 42

Manchester - Euston 42 41

One of the problems with taking single values for tractive effort and braking force is that

it ignores the fact that there will necessarily be some variability throughout a journey, as

evident from Figure 8.2 and Figure 8.4. This is particularly true in the case of tractive
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effort, where accelerating the train takes more effort than maintaining a constant speed.

It could be expected that the applied tractive effort is greater at lower speeds, when the

train would typically be accelerating towards line speed, and the variation in applied

tractive effort with speed was considered. For these reasons, the mean observed values in

Table 8.4 do not always compare favourably with the traction and braking caps used in

the RouteMaster model (Table 7.8). The variation of mean tractive effort against speed

is plotted in Figure 8.6 for the route between London Euston and Wolverhampton and

in Figure 8.7 for the route between London Euston and Manchester Piccadilly. It can be

seen that applied tractive effort is indeed typically greater at lower speeds.

Figure 8.6: Variation in level of applied tractive effort with speed for the route
between Euston and Wolverhampton

It can also be seen from Figure 8.6 and Figure 8.7 that the Down services show slightly

more variation, and a greater application of tractive effort between 30 and 50 km/h

than the Up services in both cases. This is likely to be because the Down services have

more acceleration uphill. The services between Euston and Manchester (and return)

also appear to have a greater application of tractive effort at lower speeds than those

between Euston and Wolverhampton (and return). Consideration of the route profiles

(Figure 7.3 and Figure 7.4) suggests that this might be because the line speed limits are

lower around the stops on the Wolverhampton route than they are on the Manchester

route and therefore a lower rate of acceleration is needed away from each stop to bring

the train up to running speed.
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Figure 8.7: Variation in level of applied tractive effort with speed for the route
between Euston and Manchester

8.4 Learning from the findings

Despite the claim that “it is debatable whether [driving style] can ever be realistically

simulated” (RSSB, 2010b), it is clear from Chapter 7 that the use of constant traction

and braking parameters limit the potential usefulness of a simulation tool. RSSB note

that it is hard to simulate driving style because “a driver will make numerous choices

between power level, braking rate and coasting throughout a journey based on operating

conditions and personal preferences,” but it is thought that something could nonetheless

be learned from the overall trends observed in this chapter.

A key point is that coasting is an important aspect of the driving profile on all of the

routes considered here; Figure 8.5 suggests that a train will be coasting with no applied

power or braking for at least 20% of the time on any given journey. One strategy for

accounting for coasting in similar simulation tools is to fix coasting points in the route

profile; RSSB (2010b) are currently developing an iteration routine for their simulation to

decide where coasting points should be placed on the route, based on timetable data. A

disadvantage of this is that this leads to an added layer of complexity when loading a new

route profile, which should be considered when taking in to account the requirement for

RouteMaster to remain relatively simple. It is also not clear whether the fixed coasting

points generated in this way would match the general coasting patterns adopted by some

drivers, or whether this would make a significant difference to the estimation of energy

consumption, and further investigation is recommended.
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It is clear that simulations should account for some variation in the applied tractive effort

and braking forces, according to features of the route (such as gradient) and features

of the service (the timetable may dictate the level of acceleration and braking required

at some points). Modelling this may not be straightforward, because it can be seen

that different services have different tractive effort characteristics, but Figure 8.6 and

Figure 8.7 show that in general that applied tractive effort is higher at lower speeds,

and as the speed increases, the variation in applied tractive effort stabilises. Further

investigation into the usefulness of a generic tractive effort profile based on those observed

here is recommended, although it is noted that its usefulness is likely to be limited if

gradient is not taken into account.

As with the modelling of coasting, it is likely that introducing timing points into a

simulation could help with the modelling of traction and braking — the applied traction

and braking could be adjusted according to whether or not the train is “on time” at a

given point. This would be an iterative process, so there would be a trade-off between

accuracy of results and simulation performance. There is clearly some variation in

real-world driving profiles, as discussed in Section 8.2, but it would be desirable to ensure

that the resulting traction and braking profiles were not totally unrealistic.

8.5 Conclusions

The empirical analysis shows that driving style can have a significant effect on the

operational energy consumption — and related emissions — of a train journey. It is

no surprise, therefore, that Driver Advisory Systems are becoming more commonplace,

and are standard fitment on some new trains with a stated aim of reducing energy

consumption (Siemens, 2010).

From the four different services studied here, some general conclusions can be drawn.

Firstly, analysis of different journeys has shown that a more efficient driving style tends

to involve a higher proportion of coasting. Secondly, although more efficient drivers

typically apply less tractive effort, they do make more use of (near) maximum tractive

effort, which verifies findings in the literature that, during the acceleration phase, the

most energy efficient techniques involve accelerating the train as fast as possible. Thirdly,

it is clear that the more efficient drivers recuperate more energy via the regenerative

braking system, and it is thought that this is due to a combination of overall driving

strategy (with more coasting) and more careful application of the brakes to avoid wasting

energy through the friction components of the system.

However, the analysis has also shown that aspects of different driving strategies, especially

the proportion of coasting, can vary between different routes, probably as a result of the

gradient profile and timetabling constraints. Furthermore, the application of tractive

effort with speed is not uniform, and the relationship was found to vary between routes
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(Figure 8.6 and Figure 8.7). This is why the use of a simplistic tractive effort parameter

means that RouteMaster simulation results do not reflect reality, especially for the relative

difference between different routes.

This means that care should be taken when considering simulated performance data,

such as that published by Network Rail Network Rail (2009a), which assumes maximum

“all out running.” If comparisons are being made between different types of train in the

same scenario then it might yield useful results, but comparing different service types on

this basis may not lead to accurate conclusions. In order to overcome these problems,

RouteMaster should be developed to include both coasting and a level of variation in

tractive effort applied. Given that the relationship between tractive effort and speed

appears to vary between routes, there may be a trade-off between keeping the model

simple and easily applicable to any new scenario, and ensuring that the results are

accurate for a particular route.



Chapter 9

The importance of life-cycle

analysis

9.1 Introduction

The energy consumption of and emissions from the transport sector are not confined to

the actual movement of passengers and freight, although this is a significant component.

Other sources of energy consumption and emissions which are attributable to the transport

sector include the manufacturing, maintenance and disposal of vehicles, and the building,

operation, and maintenance of the infrastructure. The study of these wider contributions

is known as life-cycle analysis, or life-cycle assessment (both abbreviated to LCA).

The relative size of the additional life-cycle components compared with the operational

energy consumption and emissions is dependent on a number of factors, and varies

between modes. When making modal comparisons, therefore, it is important that the

whole life-cycle has been considered. This is particularly true if changes in transport

policy and the encouragement of modal shift to help meet energy and emissions reduction

targets require the construction of new infrastructure.

Although Arup (2009) suggested that the available literature concerning the carbon

footprint of the rail industry was “very much concerned with operational energy use and

emissions, to the almost total neglect of other areas” there is evidence that there has

been increased interest in life-cycle analysis in recent years, with Chester and Horvath

at the University of California, Berkeley, undertaking some of the more detailed work.

This chapter considers the different life-cycle components of a transport system, presents

some of the data available and discusses some of the issues involved in making modal

comparisons.

185
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9.2 Categorising the different life-cycle components

There are various ways of categorising the many different components of a transport

system which consume energy and produce emissions. For example, there are operational

components, directly associated with the movement of vehicles, passengers and freight.

There are non-operational components such as infrastructure construction and vehicle

maintenance. Some components are directly related to the vehicles themselves, whilst

others are directly related to the infrastructure. Based on work by Chester and Horvath

(2009; 2010), Figure 9.1 illustrates the main categories which will be discussed here.

Figure 9.1: An overview of the life-cycle components of a transport system

9.3 Vehicle operation

Vehicle operation has been the main focus of this research, and is concerned with the

energy consumption (and related emissions) at the point of use. The operational energy

consumption of any given vehicle is directly related to its usage, and is thus typically

expressed in terms of vehicle-km.

Although much of the literature considers vehicle operation as a single category, Chester

and Horvath (2009) make the distinction between active operation and inactive operation.

Active operation covers everything directly related to vehicle running, and inactive

operation covers additional energy consumption and emissions from idling and auxiliaries.

The distinction is not always clear cut — for example, the start-up phase seems to be

allocated to active operation for road transport and inactive operation for aviation. It is

also interesting to note that Chester and Horvath explicitly include cold starting as a
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significant component of active operation for road vehicles (presumably based on the

dominance of the internal combustion engine) but do not mention it for rail vehicles.

This is assumed to be because it is not a concern for trains; electric trains do not have an

internal combustion engine, whilst diesel trains are often left running between services.

In the case of public transport, in-service running can be treated separately from

out-of-service running (for example, buses and trains running empty to/from the depot).

This could be desirable, firstly because out-of-service running may exhibit different

characteristics from in-service running, and secondly because to some extent out-of-service

running could be expected to be a fixed cost, irrespective of further usage of the vehicle.

For example, a bus will have to run empty from the depot whether it is then used

for a single service from the bus station or a series of services throughout the day.

Chester and Horvath do not appear to make this distinction, and this may be because

actual out-of-service running (as opposed to idling, which is accounted for) is generally

insignificant compared with the distances covered in service.

Based on their analysis of specific systems in the USA, Chester and Horvath suggest

a range of values for the relative contribution of vehicle operations to overall life-cycle

energy consumption (Chester and Horvath, 2009). These are given in Table 9.1.

Table 9.1: Range of values suggested for vehicle operation as a % of total life-cycle
energy

Mode Car Bus Rail Aviation

% of total
life-cycle energy
attributable to
active vehicle

operation

65 - 74
(figure quoted for “on road” transport)

24 - 39 69 - 79

% of total
life-cycle energy
attributable to
inactive vehicle

operation

- 3 7 - 21 2 - 14

It can be seen that the relative size of the energy consumption of the operational phases

compared with the overall life-cycle is quite variable, especially for rail and air. For

rail, this is a reflection of the different services studied by Chester and Horvath — the

Caltrain commuter line is diesel powered and has higher emissions at the point of use

than the two electric rail systems studied, whilst the relative size of the embedded

energy in the infrastructure varies between different systems. For air travel, many of the

inactive operational components, which are given to include start-up and taxiing, are

fixed regardless of the length of the flight. Hence they will be much more dominant on

short-haul flights than they will on long-haul flights. In all cases, the data are subject to

assumptions made about usage cycles. The relative contribution of inactive operation
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to vehicle operations overall was estimated from the data in Table 9.1 and is shown in

Table 9.2, making the assumption that the relative size of the inactive operational energy

consumption will be at the lower end of its range when the relative size of the active

operational energy consumption is at the upper end of its range, and vice versa.

Table 9.2: Estimated proportions of vehicle operations attributable to inactive
operation, based on data from Chester and Horvath (2009)

Mode Car Bus Rail Aviation

Estimated
proportion of

vehicle
operations

attributable to
inactive

operation [%]

0 4 12 - 68 2 - 20

The ranges shown in Table 9.2 may be broader than the reality, because the calculations

did not consider the contributions of the rest of the life-cycle. To some extent, the relative

proportions of the operational components would be expected to vary together according

to the relative size of the non-operational components. Considering a more detailed

breakdown of the different modes studied by Chester and Horvath (shown graphically in

Figure 9.2), it can be seen that there is little variation in the relative sizes of the active

and inactive operational components.

In Chapter 6, the effects of non-revenue running and idling, and the size of the hotel load

(the non-traction energy used to power auxiliaries) for the Pendolino intercity electric

train were studied. Excluding non-revenue running and idling, the mean net energy

consumption was found to be 12.93 kWh per train-km. Overall, including non-revenue

running and idling, the mean net energy consumption was found to be 14.33 kWh per

train-km, an increase of about 11%. These figures include the hotel load, which was

estimated to be approximately 1.37 kWh per train-km. It can therefore be surmised

that “inactive operation” comprising the hotel load and non-revenue running and idling

accounted for approximatel 19% of the total mean net operational energy consumption.

This is towards the lower end of the range implied by Table 9.2, whereas it can be seen

from Figure 9.2 that inactive and active operational components are more evenly split for

the rail systems studied by Chester and Horvath. One reason for this is that it is dependent

on rolling stock utilisation (if a train is less well utilised, the inactive components of idling

and empty running will be much larger relative to the active operation components).

Another reason for this is that Chester and Horvath have focussed on light rail and

commuter rail, which is not directly comparable to the Intercity services operated by the

Pendolino. The (active) operational energy consumption would be expected to increase

with running speed (Section 7.3.1), as evidenced in Chapter 6, where it was seen that

the relative size of the hotel load was higher for suburban trains, which are slower.
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For cars, Chester and Horvath appear to assert that “inactive” operation is negligible. This

is arguably untrue as cars could be deemed to have a hotel load (heating, air-conditioning

and comfort systems) and may be expected to spend time idling either when held in

traffic or whilst waiting for someone or something. It has already been noted that the

distinction between “active” and “inactive” operations is not that clear cut, but a greater

level of consistency would be useful.

Figure 9.2: Life-cycle energy consumption and GHG emissions for selected modes
(Taken from Chester and Horvath, 2009)

It can be seen from Figure 9.2 that, on the whole, the relative contributions of the

different life-cycle components are the same for both energy consumption and GHG

emissions. However, it should be noted that the GHG emissions from vehicle operation

are highly dependent on the fuel or source of electricity used; the positive correlation

observed between energy consumption and GHG emissions is because the energy inputs

in the scenarios considered are heavily dominated by fossil fuels. The effect of varying

the energy source can be seen in Figure 9.2, by comparing the light rail system in Boston

with the one in San Francisco (SF). The San Francisco area only generates 49% of its

electricity from fossil fuels, and the proportion of GHGs from vehicle operation is less

than the proportion of energy consumption attributable to it. In contrast, the Boston

area generates 82% of its electricity from fossil fuels and it can be seen that the proportion

of GHGs from vehicle operation is accordingly larger.
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9.4 Non-operational energy & emissions from vehicles

The construction, maintenance and disposal of vehicles all consume energy and produce

GHG emissions, which should be attributed to the transport sector. Rather than focusing

on the overall impact of including these activities in the transport sector as a whole,

existing literature tends to break it down and consider it on a per vehicle basis. In order

for the data to be meaningful it is typically divided over the lifespan of the vehicle to

estimate the contribution of these non-operational activities on a per vehicle-km or even

a per passenger-km basis. The downside of this is that assumptions about the lifespan

and usage cycle of the vehicle in question have to be made.

9.4.1 Non-operational energy & emissions from trains

Ueda, Miyauchi, and Tsujimura (2003) conducted some life-cycle analysis of the Japanese

Shinkansen trains. Table 9.3 presents their data for the construction, maintenance and

disposal of a Shinkansen carriage.

Table 9.3: Non-operational energy and emissions from Shinkansen trains (Data
Source: Ueda, Miyauchi, and Tsujimura, 2003)

Per carriage Per 16 carriage
train

As a proportion of
total

non-operational
components

Life-cycle
Component

Energy
[GJ]

CO2 [t] Energy
[GJ]

CO2 [t] Energy CO2

Construction 155 5.8 2,480 92.8 5.30% 5.70%

Maintenance
(total;
assuming
annual
maintenance
over 20yrs)

2,777 95 44,432 1,520 94.10% 93.70%

Disposal 18 0.62 288 9.92 0.60% 0.60%

Total
non-operational
components

2,950 101.42 47,200 1,622.72

Allocated over a lifespan of 20 years and 8,000,000 km, Ueda, Miyauchi, and Tsujimura

(2003) suggest that the non-operational components make up about 5% of the total vehicle

energy consumption and CO2 emissions. It is suggested that the operational component

was even more dominant for older trains, with the higher speeds of newer designs being

more than compensated for by improvements in operational energy efficiency.
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Figures for the German ICE published by Tuchschmid (2009, Section 3.2.2) are allocated

over a longer lifespan of 30 years and 12,000,000 km. An operational carbon footprint

of 9.83kg of CO2 per train-km is given, whilst the total material input of the rolling

stock is given as 0.263kg of CO2 (assumed to be per train-km). Taking this material

input as the total non-operational component of the train, it represents about 2.5% of

the carbon footprint of the train as a whole (operational + non-operational components).

This is less than the estimate for the Shinkansen trains, but the following points should

be noted.

• The assumed lifespan of the ICE trains is 50% longer than that of the Shinkansen

trains, and hence the impact of the fixed costs of manufacture and disposal are

going to be less on a per train-km basis.

• The operational energy consumption of the ICE is assumed to be different to that

of the Shinkansen, although no data are explicitly given for the latter.

• The emissions from electricity production used in the ICE calculations are assumed

to be 0.422kg of CO2 per kWh (Tuchschmid, 2009), compared with 0.392kg of CO2

used in the Shinkansen calculations (Ueda, Miyauchi, and Tsujimura, 2003).

• It is not clear exactly what has been included when calculating annual emissions

from train maintenance. For example, the annual maintenance regime is estimated

to produce 76t of CO2 per train per year for the Shinkansen trains (based on data

in Table 1 4), but it is not clear whether this includes “revision” and refurbishment;

the “revision” of an ICE train (every four years) is estimated to produce the

equivalent of 43t of CO2 per train per year (Tuchschmid, 2009). Similarly, although

Tuchschmid (2009, Figure 3.1) explicitly includes cleaning and maintenance as a

separate item, no detailed data are presented.

Whereas it is clear in any case that, for the high-speed trains considered, the operational

aspects are by far the most dominant component of a train’s life-cycle, it is also clear that

they will vary between specific scenarios and depend on assumptions made about lifespan,

usage cycles, maintenance regimes and the carbon intensity of the electricity grid. How

the boundaries of the system are defined will also have an impact; for example, the

operation of the factory producing the train may be included, but the construction of the

factory is typically excluded. This could prove to be quite a significant point. Similarly,

for GHG emissions from fuels and electricity, it is not clear which of the different scopes

(Section 1.7) have been taken into account.

It should be noted that for “classic” (non high-speed) rail, the non-operational components

may represent a slightly higher proportion of the train’s overall life-cycle. It is estimated

that the operational energy consumption of an ICE is around 22.5 kWh per train-km

(Rozycki, Koeser, and Schwarz, 2003), which is higher than that calculated in Chapter 5
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for the Pendolino running on intercity routes in the UK, and significantly higher than

that calculated for the suburban trains operated by London Midland. Even when

including “inactive” and non-revenue operation, the operational energy consumption of

an 11-carriage Pendolino train was calculated to be around 17 kWh per train-km, whilst

the suburban trains only consume around 7 kWh per train-km — about a third of the

consumption of the ICE. This thought to reflect both the running speed and the the size

of the train. It is clear that speed is a big factor in the running resistance experienced

by a moving train (Chapter 7), and the corresponding energy consumption, so it stands

to reason that high-speed trains have higher energy and emissions costs associated with

operation. However, the intercity and suburban trains considered in Chapters 3 to 6 are

smaller than the 12 carriage ICE and 16 carriage Shinkansen trains (the suburban trains

only have three or four carriages). This means that the non-operational components

would be expected to vary accordingly, and also highlights the flaw in using train-km

as a suitable metric when making comparisons. Longer trains have more seats, and so

comparisons should really be made on a per seat-km basis (or, accepting the fact that

the number of seats is not always indicative of passenger capacity, some other suitable

capacity metric could be used).

In terms of overall split between the operational and non-operational components

of a vehicle, Chester & Horvath’s results displayed in Figure 9.2 suggest that the

non-operational component might be greater than that for the trains considered here.

It is noted, however, that in contrast to the data presented for the Shinkansen trains,

maintenance is not such a significant component in their analysis.

9.4.2 Non-operational energy & emissions from cars

The lifespan of a car is typically estimated to be around 14 years (SMMT, 2013), which

is much shorter than the 20 to 30 years usually assumed for trains. The usage cycle

is also much less intense for cars than for trains, with a lifetime travel distance of

between 150,000km to 300,000km typically assumed (Patterson, Alexander, and Gurr,

2011), compared with 400,000km annually for the trains discussed in Section 9.4.1.

This means that the non-operational costs overall for a car would be expected to be

proportionally higher than those for a train, although the maintenance activities (the

highest non-operational component for the Shinkansen trains discussed in Section 9.4.1)

would not be expected to be so important.

This is reflected in the data collected by Patterson, Alexander, and Gurr (2011). The data

directly from manufacturers suggests that for a car covering 150,000km in its lifespan,

the production of a conventional internal combustion engine car would contribute about

20% of overall life-cycle emissions, and disposal about 1%. Maintenance, if considered, is

presumed to be included in the “in-use” component of life-cycle emissions, which totals

about 80%. Other data collected by Patterson, Alexander, and Gurr varies, with the
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operational component of the life-cycle analysis for a conventional car estimated to range

between 73% and 87%.

For newer technologies, including EVs and hybrid electric vehicles (HEVs), the data shows

a relative decrease in emissions from the operational phase relative to the production

phase. As well as producing fewer emissions at the point of use, some of the production

costs are thought to be higher; data included from Toyota also suggests that disposal of

the Prius Hybrid could account for as much as 3% of life-cycle emissions. This is because

the introduction of battery packs, electric motors and power electronics increases the

embedded CO2 emissions associated with production of a vehicle, whilst significantly

reducing the tailpipe CO2 emissions from vehicle operation (Patterson, Alexander, and

Gurr, 2011).

It is assumed that the energy consumed during vehicle operation is similar for electric

vehicles, and that the reduction in emissions arises from the fact that electricity is

assumed to be less carbon intensive than petrol or diesel; Hawkins et al. (2012) concludes

that “it is counter productive to promote EVs in regions where electricity is produced

from oil, coal and lignite combustion.”

As with the data for trains, the breakdown of the total life-cycle energy consumption

of a car is dependent on various assumptions made, including those concerning vehicle

lifespan and usage patterns. It is also noted that geographical location (affecting both the

transport of materials and the carbon intensity of the electricity grid) and the processes

used (especially when recycling or disposing of vehicles) will be a factor.

9.5 Energy & emissions related to infrastructure

9.5.1 Infrastructure operation

The infrastructure of a transport system consumes energy (and produces associated

emissions) in day to day operation. On the railway, energy may be consumed by station

heating, station lighting, escalators, train control systems and components of the track

itself such as points heating (Chester and Horvath, 2009; Network Rail, 2009a). On

the roads, street lighting and traffic lights consume electricity, and the fuel consumed

by service vehicles, such as gritters, could be counted towards the operational energy

consumption of the infrastructure. Terminal buildings, airport lighting (runways and

taxiways) and the operation of ground support equipment should be included when

assessing the energy consumption and emissions associated with aviation.

Calculating the energy consumption of and emissions from infrastructure operation is

fraught with difficulty. In some cases, it can be difficult to know where to assign the

boundaries — for example, should a large retail complex in a station or airport be



194 Chapter 9 The importance of life-cycle analysis

considered in the transport sector or as part of the retail sector? It is noted that airport

terminals themselves do not feature in the list of activities compiled by Chester and

Horvath (2009, Table 1), which is arguably a serious omission as they form a significant

part of an airport’s infrastructure, particularly for operating energy consumption and

emissions.

Data for infrastructure operation are generally rare in existing literature. Network

Rail (2009a) suggest that infrastructure operation is insignificant compared to the total

embedded infrastructure emissions, which does not seem to be reflected in Chester &

Horvath’s analysis of some rail systems in the USA (Figure 9.2); although they do not

publish actual figures in their work (Chester and Horvath, 2009). This might be because

the systems analysed in the US are urban systems with a high density of stations. Baron,

Martinetti, and Pepion (2011) also contradict Network Rail, suggesting that, for station

buildings at least, the emissions from heating and lighting are 10 or 20 times those from

the construction phase. However, they do not consider this in their overall analysis and

exclude infrastructure operation across all modes.

Transport systems vary considerably and, particularly in the case of railway stations,

it can be very difficult to make generalisations. Chester (2008) notes that there are

extreme variations in stations from large underground stations with no natural lighting

through to small “bus shelter” type stations at street level with only a few lamps on

at night. This is reflected in the estimated energy consumption, with lighting at an

underground rapid-transit station measured at 2.3 million kWh per year, compared with

a small street-level station in Boston having an estimated energy consumption of 2,600

kWh per year. Additionally, there are other station facilities to consider; where present,

escalators are estimated to account for 24% of station energy consumption (Chester,

2008).

Another major problem is finding an appropriate metric over which to allocate the energy

and emissions associated with infrastructure operation, and there appears to be little

consistency in the literature. For example, Chester (2008) considers the energy and

emissions from railway stations on a per station per year basis. This is useful when

considering the overall energy consumption and emissions from the transport sector, but

is less so when making modal comparisons on a per passenger basis. On the other hand,

Network Rail (2009a) supplies data for station lighting and heating on a per passenger

basis, but it is not clear how that relates to the journeys made and the distance travelled.

It also masks the fact that the contribution of infrastructure operation to the overall

energy consumption and emissions would be expected to be much lower for journeys

made between small rural stations than it would be for journeys made between large

urban stations.

Other aspects of rail infrastructure, such as points heating and train control systems are

considered in the literature on a per route-km or per route-mileage basis (for example, this
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is the way that some train control systems are dealt with by Chester (2008)). This makes

sense given that the energy consumption and related emissions will vary with the size of

the network, but again it is only useful when considering overall energy and emissions

from the transport sector, and is less useful when making modal comparisons. The use

of different metrics also means that it is impossible to assess the relative importance

of the various different non-operational aspects, although Chester (2008) does at least

appear to have quantified the energy consumption of train control systems relative to

total station electricity consumption; a figure of up to 17% relative to station electricity

consumption is cited, although this will be heavily dependent on the type of system.

Urban rail systems tend to have a high density of stations, and it could be assumed

that those which are underground have high energy costs due to a constant need for

ventilation control, lighting and escalators.

9.5.2 Infrastructure construction

The energy and carbon associated with infrastructure construction is known as the

embedded energy and carbon of the infrastructure. It is clear that there are two

distinct aspects of estimating embedded energy and carbon in infrastructure; the first is

quantifying the materials themselves, and the second concerns the construction processes.

Data are available for the embedded carbon and energy in construction materials, for

example in a database compiled at the University of Bath (Hammond and Jones, 2011).

This means that it is theoretically possible to estimate the embedded carbon and energy

in the materials of a particular infrastructure project, although a detailed knowledge

of the quantities and of the types of material are required. In the case of concrete, for

example, the embedded energy and carbon can vary significantly, and Hammond and

Jones strongly advise against simply using the “general” value they provide.

Some aspects of transport infrastructure, such as the track itself in the case of the railway,

are already well documented; for example, details of the most popular track designs are

given in an Arup report (Ceney, n.d.) and can be supplemented by details from the

manufacturer themselves (for example in the case of the Rheda 2000 Slab Track System

(Rail.One GmbH, 2011)). Other aspects of the infrastructure are currently more difficult

to quantify — for example, tunnels and bridges tend to be more bespoke — although

estimations are available in current literature (Baron, Martinetti, and Pepion, 2011).

It is also worth noting that much of the available data for materials are subject to

various assumptions. Stimpson (2011) outlines some of the pitfalls associated with carbon

footprint data and cites a recent project which concludes that the University of Bath

data for embedded carbon in concrete is inaccurate. In this case, the estimates used by

the University of Bath were likely to be overstating reality, which is arguably better than

underestimating embedded carbon but is still not ideal.
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The construction processes are more difficult to quantify. Some details of construction

techniques, plant and labour hours have been documented, and could be expected to vary

little from project to project; for example, some details for the different types of track are

given in a report by Dunne and Ceney (2005), and some work has been done to gather

data for some standard types of machinery. On the other hand, some aspects of a project

will be more variable, such as the landscaping required at a particular location and

the transport distances of materials to and waste from the construction site. Materials

transport can vary significantly, and earthworks for the railway are an example of an

area where typical practices have changed and trade-offs may occur. Historically good

practice has involved keeping embankment fill areas as close as practicable to the cut

locations (Soga et al., 2011), which has the advantage of minimising the distance over

which materials need to be transported, and alignments were usually designed with this

in mind. There is now a current trend towards lowering road and rail alignments to

reduce noise and visual impacts, making it more difficult to balance cut-and-fill volumes

and potentially increasing transport costs. Additionally, in some cases, soils cannot

be re-used as earthworks fill because they are too wet, which gives rise to the need to

balance another trade-off within the context of trying to reduce GHG emissions and

energy consumption. Some such soils can be dried out using quicklime (a process called

lime modification), which enables them to be used after all, thus reducing transport

requirements. However, the embodied energy of the lime, which is produced in a kiln, is

comparatively high.

In the literature, embedded carbon and energy are typically allocated per network

distance per year, but this again requires assumptions about lifespan to be made.

Different components of a transport system have different lifespans; (Baron, Martinetti,

and Pepion, 2011) suggest that railway tracks and roads typically have a lifespan of 30

years, whilst bridges, tunnels and buildings typically have a lifespan of 100 years. The

choice of lifespan can have a significant impact. Baron, Martinetti, and Pepion compare

calculations for the construction of particular lines where the lifespan of tunnels and

bridges is 100 years with calculations made for the same lines on the assumption that

bridges and tunnels only have a 60 year lifespan. The relative size of the embedded energy

and emissions in these components means that the effect on the life-cycle calculations for

the whole project was significant in each case.

For new infrastructure, there are several ways in which the lifespan may be estimated. One

option is to consider the “payback period” over which operations over the infrastructure

are expected to recoup the initial (financial) costs of construction, which may be shorter

than the actual life-expectancy of the infrastructure. There may be a “design lifespan”

over which the infrastructure is expected to sustain operations (which may differ from

the “payback period”), and it is also worth considering historical precedent and looking

at the age of existing infrastructure. One advantage of choosing a shorter-time horizon
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(as Ademe, SNCF, and RFF (2009) have done) is that it reduces the need to predict long

term operational trends and costs when considering the whole picture.

There are also questions about how to account for existing infrastructure. At one end of

the scale, it could be argued that when assessing the provision of new transport services

over existing infrastructure, the carbon and energy cost of the infrastructure has already

been accounted for and has no bearing on the new services. At the other end of the

scale, Baron, Martinetti, and Pepion note that construction methods and processes have

changed such that using modern standards to assess a tunnel built 20 or 30 years ago

could serve to underestimate the embedded energy and carbon. Additionally, transport

systems rarely exist in complete isolation, which means that there may be cases where the

allocation of infrastructure costs are potentially ambiguous. For example, if construction

of a new railway requires construction of a new road bridge, a case could be made to

allocate the costs of the bridge to either the railway or the road. Similarly, many large

stations include multi-modal interchanges and retail and leisure facilities which may

not be wholly attributable to the transport sector. The simplest approach is to rely on

historical precedence; in the case of the aforementioned road bridge, if the road existed

before the railway, then the new bridge should be attributed entirely to the new railway.

A summary of the carbon dioxide emissions from the construction of a railway are given

in Table 9.4. It is assumed that each kilometre of route is double tracked.

The total embedded emissions for a given railway line depends heavily on the design

of the line and the number of bridges, tunnels and viaducts. Table 9.5 summarises the

estimates made by Baron, Martinetti, and Pepion for two different high-speed projects;

the LGV Mediterranee in France and the line between Taipei and Kaohsiung in Taiwan.

The latter has an extremely high proportion of tunnels and viaducts, with only 9% of

the line being on “normal” track.
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Table 9.4: A summary of the carbon-dioxide emissions from the construction of
a railway (Data Source: Baron, Martinetti, and Pepion, 2011)

Aspect Estimated CO2 emissions
[t/km/year]

Notes

Conception Phase 0.45 Includes office works for
planning a high-speed line
prior to construction. Based
on data for the LGV
Mediterranee line

Earthworks 5 to 22 Estimates based on different
TGV lines

Track 22.8 (ballasted track) The biggest source of
emissions is the steel for the
rails

31.6 (slab track)

Bridges/Viaducts 68 (small bridges) to 183
(large and high viaducts over

valleys)

Tunnels 172 to 243

Railway Equipment 3.5

Stations 33 to 82

Table 9.5: Estimated embedded emissions for two high-speed lines (Data Source:
Baron, Martinetti, and Pepion, 2011)

Line LGV Mediterranee Taipei - Kaohsiung

Length [km] 250 345

Estimated CO2 per year [t] 17,055.5 60,900.75

CO2 per year per km [t] 68 176.5
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In order to make comparisons, data are typically presented in terms of passenger-km.

This requires estimates to be made about the usage of the line, which can introduce

further variability. Baron, Martinetti, and Pepion estimate the embedded emissions of

the LGV Mediterranee line to equate to 5.7g of CO2 per passenger-km over its lifetime.

In contrast, they estimate the embedded emissions of the Taipei — Kaohsiung line to be

as high as 42.7g of CO2 per passenger-km.

Baron, Martinetti, and Pepion also present similar calculations for the construction of the

A7 motorway in France and conclude that the embedded emissions are about 73t of CO2

per km per year. This is higher than the embedded emissions in the LGV Mediterranee

railway line, but the number of passenger journeys made by car along the motorway

is estimated to be higher than the number of passenger journeys made by high-speed

train; consequently the embedded emissions per passenger-km are given as being just

0.73g of CO2 (just 13% of those for the LGV Mediterranee line). It should be noted,

however, that all of the calculations are based on specific projects and may not be easily

generalised.

9.5.3 Infrastructure Maintenance

Infrastructure maintenance is not always considered in detail in the literature, with

Network Rail (2009a) citing a lack of information. Baron, Martinetti, and Pepion note

that to some extent maintenance can is accounted for by considering the reduced lifespan

of some of the key components (such as rails or ballast) compared with others — assuming

that the major maintenance of these components entails replacement when they are

life-expired, this can be absorbed into the cost of construction. However, a report by

Ademe, SNCF, and RFF (2009) suggest that maintenance costs include the transport

needed to conduct track inspections (which may include helicopters or cars as well

as inspection trains), the energy used by ballasting, tamping, grinding and weeding

machinery, and the embedded energy of the various materials (including not just the

components of the track which need replacement but other sundries such as weed killer).

The emissions from the maintenance of 140 route-km (double track) of the European

Eastern LGV line are estimated to amount to 19,900t of CO2e over a 30 year operating

period. This amounts to 4.7t of CO2e per km per year. Considering the data in Table 9.4,

this amounts to an additional 21% of the embedded emissions from the construction of

ballasted track, although the potential discrepancy between CO2 (Table 9.4) and CO2e

(Ademe, SNCF, and RFF, 2009) is noted.
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9.6 Life-cycle emissions from fuels

There are a number of activities associated with the supply of fuel and electricity which

consume energy and produce GHG emissions. These should be accounted for when

considering the whole life-cycle. These activities include the mining or extraction of the

raw material, the refining process (in the case of oil and gas) and the transport of the

fuel to the point of use. In addition, electricity transmission involves losses which need

to be considered.

When considering GHG emissions, life-cycle emissions are classed as Scope 3 emissions

(Section 1.7). DEFRA publish estimations of Scope 3 emissions for fuels in the UK,

which are summarised for electricity generation in Table 9.6 and for petrol, diesel and

aviation fuel in Table 9.7.

Table 9.6: Scope 3 emissions for fuels (Data Source: DEFRA, 2013a)

Fuel Petrol
(avg. biofuel blend)

Diesel
(avg. biofuel blend)

Aviation Turbine
Fuel

Emissions at point of
use
[kg CO2e per kWh]

0.23 0.25 0.25

Scope 3 (“Well to
Tank”) emissions
[kg CO2e per kWh]

0.05 0.05 0.05

Scope 3 emissions as
a % of those at use

22 22 22

Table 9.7: Scope 3 emissions for electricity (Data Source: DEFRA, 2013a)

Emissions at point of generation
[kg CO2e per kWh]

0.45

Emissions at point of use (including losses)
[kg CO2e per kWh]

0.49

Scope 3 emissions 0.07

Scope 3 emissions as a % of those at use 16

It is important to note that the data are for all GHG emissions (CO2e), with no separate

figure for CO2 alone. It is thought that although CO2 is by far and away the most

prevalent GHG from the transport sector when considering only Scope 1 emissions (the

point of use), CO2 emissions such as CH4 become more significant when considering the

whole life-cycle.

The data do not appear to include other indirect emissions arising from other aspects

of the life-cycle of power stations and energy generation systems, such as construction
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and maintenance. All electricity generation technologies emit CO2 at some point in their

life-cycle (Baldwin, 2006), and although direct emissions from plant operation are the

most significant for fossil fuel plants, non-operational phases can be quite significant

for “low carbon” technologies. For example, solar cell production can be quite energy

intensive, and apportioning the life-cycle emissions over the operating lifespan leads to

estimates of 0.058kg of CO2e per kWh generated by solar panels in the UK. Elsewhere,

where there is more sunlight, leading to a higher number of operating hours and a greater

level of energy output, the life-cycle emissions per kWh generated are lower (Baldwin,

2006). Other “low carbon” technologies have lower life-cycle emissions — construction

and maintenance of wind turbines leads to estimated emissions of around 0.005kg of CO2e

per kWh generated — but it is clear that completely zero carbon electricity generation

is not a realistic prospect.

9.7 Making modal comparisons

Like Chester and Horvath, whose results are shown in Figure 9.2, (Baron, Martinetti,

and Pepion, 2011) have estimated the life-cycle CO2 emissions of car travel, rail travel

and air travel on a per passenger-km basis. Their results are shown in Figure 9.3.

Figure 9.3: Life-cycle emissions of different modes (Data Source: Baron,
Martinetti, and Pepion, 2011)
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Because of the potential for variation, Chester and Horvath have expressed their findings

in terms of ranges. The data presented by Baron, Martinetti, and Pepion are re-cast in

percentage terms and presented alongside these ranges in Table 9.8.

Table 9.8: A comparison of data for different life-cycle components

Mode Road Rail Air

Data
Source

Chester
and

Horvath
(2009)

Baron,
Martinetti,

and
Pepion
(2011)

Chester
and

Horvath
(2009)

Baron,
Martinetti,

and
Pepion
(2011)

Chester
and

Horvath
(2009)

Baron,
Martinetti,

and
Pepion
(2011)

Vehicle
operations
[%]

63 - 71 86 40 - 56 52 77 - 83 0

Vehicle
construction
and
maintenance
[%]

29 - 37 14 44 - 60 9 17 - 23 100

Infrastructure
construction
and
maintenance

0 39 0

Other
life-cycle
components
(fuel
production,
infrastructure
operation,
inactive
vehicle
operation

Not
considered

Not
considered

Not
considered

There are some general trends which are common to the work done by both Chester and

Horvath and Baron, Martinetti, and Pepion For example, the shorter lifespan of a car

results in the vehicle construction being proportionally more important than it is for the

other modes, whilst infrastructure is a much more significant life-cycle component for

rail.

However, for various reasons, caution must be exercised when directly comparing the

two datasets. Firstly, the analysis undertaken by Chester and Horvath is more thorough

— for example, data about station operations are explicitly included, as are a number

of additional operational and maintenance activities, such as road salting or herbicide

spraying. Secondly, it is very clear that both the specific scenario selected for analysis and

the assumptions made can affect the results. In terms of operational emissions, Chester
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and Horvath use a value of 367g of CO2 per vehicle-km for the saloon car considered

(Chester, 2008), whereas Baron, Martinetti, and Pepion use a value of 208g of CO2 per

vehicle-km (130g of CO2 per passenger-km with an assumed occupancy of 1.6 people).

This may be appropriate for the context in each case (Chester & Horvath’s analysis is

based in America whilst Baron, Martinetti, and Pepion focus on Europe), but it serves

to show just how much of a difference there can be. Furthermore, new targets for car

emissions mean that operational emissions can be expected to fall significantly further

relative to the data in current literature. Similarly, mention has already been made of

the importance of the carbon intensity of the electricity grid. It is also worth noting that

for rail, Chester and Horvath have considered light rail, which is likely to have a higher

density of stations, more underground infrastructure and lower running speeds than the

high-speed rail considered elsewhere.

Because the data are given on a per passenger-km basis, the usage patterns and passenger

loadings are important variables. Chester and Horvath discuss the sensitivity of their

findings to passenger loadings, and this is explored further in Chapter 10.

Table 9.9 presents the life-cycle components not as a proportion of the overall energy

consumption and emissions, but as an additional proportion of the operational energy

consumption and emissions. This is useful for two reasons — firstly, data for different

modes are often confined to the operational phase, and it is helpful to have some idea

of what the uplift might be when including some of the other components. Secondly,

there are some cases where it might be appropriate to add some life-cycle components to

the operational data, but not others. The operation of new rail services over existing

infrastructure would be a good example of where some life-cycle data may not need

to be added. However, care must be taken — firstly, if the data for existing services

include infrastructure construction, it would be inappropriate not to recalculate this

fixed component over all services. Secondly, in any case, an increase in passenger traffic

will affect how the fixed components are allocated, as well as influencing maintenance

and renewal regimes, and this should be considered accordingly.
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Table 9.9: Life-cycle emissions as an additional percentage of active operational
emissions

Mode Road Rail Air Notes

Inactive
Operation

0 12-68 2-20 See Section 9.4

Scope 3
emissions from
fuels

22 16
(electric rail)

22 See Table 9.6 and Table 9.7;

22
(diesel rail)

Based on DEFRA data for the
UK

Vehicle
Construction
&
Maintenance

20 2.5 - 5 4-9 Car data are European. Rail
data are based on high-speed
systems (Section 9.4; based on
specific studies). Air data are
taken from Chester &
Horvath’s results (Figure 9.2)

Infrastructure
Construction
&
Maintenance
(Baron,
Martinetti,
and Pepion,
2011)

1 75 0 Chester & Horvath’s analysis
is more comprehensive and the
light rail systems studied are
potentially more infrastructure
intensive than the High Speed
lines considered by Baron,
Martinetti, and Pepion

Infrastructure
Construction
&
Maintenance
(Chester and
Horvath, 2009)

11 to 20 81 to 190 3.5 to 4.7

Total 43 to 62 105.5 to
285

28 to 56

9.8 Conclusions

It can be seen that when making modal comparisons, additional life-cycle components

which consume energy and produce GHG emissions need to be taken into account. This is

particularly true for rail, where the infrastructure can contain more embedded energy and

carbon than it does for road, especially for routes with many stations, tunnels and bridges.

Any operational advantage rail may have in terms of reducing energy consumption and

emissions may be reduced once these life-cycle effects are taken into account, although it

is questionable whether the construction of existing infrastructure should be included

when assessing the impact of new services which rely on it. Estimating the life-cycle

components can be difficult due to a lack of data, whilst they can vary significantly

between specific transport systems. The lifespan of the vehicles and the infrastructure
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components and the assumptions made about vehicle usage and passenger loadings all

make a big difference to the appropriate allocation of the fixed costs.

Table 9.9 gives some indication of how the operational energy and emissions data discussed

in Chapters 3 to 6 should be modified to take into account life-cycle emissions. It is

clear that when considering data on a per passenger-km basis, the data for all life-cycle

components are very sensitive to assumptions made about load factor. Such assumptions

will be discussed further in Chapter 10.





Chapter 10

The use of passenger-km as a

metric & the importance of load

factor

10.1 Introduction

As was noted in Section 1.9, comparisons between the energy and emissions of different

modes of passenger transport are often made in terms of passenger-km. A key advantage

of this as a metric is that it accounts for some of the fundamental differences between

modes, such as the fact that public transport vehicles are often much bigger than the

private car. A disadvantage of this as a metric is the fact that some knowledge of the

load factor is required, which can be highly variable and difficult to estimate accurately.

Use of the carbon calculator tools compared in Chapter 2 assumed average load factors

for the public transport modes and an occupancy of one (the driver) for journeys made

by car. The data reviewed later in Chapter 2 was typically in terms of vehicle-km,

avoiding the issue of load factor completely but making it impossible to make direct

modal comparisons. Similarly, the analysis of the operational energy consumption of a

train in Chapters 3 to 6 presented the data on a per train-km basis.

This chapter presents some estimates of typical load factor data for the different modes,

and illustrates the sensitivity of emissions on a per passenger-km basis to the load factor.

Emissions data for electric trains are based on the analysis of the net energy consumption

undertaken in Chapters 3 to 6, using data about emissions from electricity generation to

make appropriate estimations. Emissions data for other modes, including diesel trains,

are gathered from other published sources for comparative purposes.

207
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The importance of train design and train length, including some further analysis of

empirical energy data, is considered, followed by a discussion on the suitability of

passenger-km as a metric on which to base policy and decisions.

10.2 Typical load factor data

10.2.1 Private cars

Occupancy levels of private cars are estimated from travel survey data, and in the UK

are found to be in the region of 1.6 people (DfT, 2013c; RSSB, 2007). For a car with five

seats, this equates to a load factor of 32%. This has fluctuated slightly from a high of

1.62 in 1990 to a low of 1.57 in 2004 and is slightly higher than the average car occupancy

level for Western European countries (1.54) and lower than the average for Eastern

European countries (1.74), which has declined in recent years (European Environment

Agency, 2010). Data for the USA are similar, with an average car occupancy level of 1.67

in 2009, down from 1.9 in 1977 (Santos et al., 2011)

Car occupancy levels vary according to the purpose of the trip made, with an average

occupancy level of 1.12 in the UK in 2012 for business trips and commuting, rising

to an average of 2.0 for leisure trips and education (DfT, 2013c). Again, the trends in

the USA are observed to be similar (Santos et al., 2011). In keeping with the variation

observed according to the purpose of the trip, average car occupancy levels in California

were observed to be higher at weekends (1.7) than during the week (1.4) (Metropolitan

Transport Commission, 2005, Table 2.2.4).

10.2.2 Buses and coaches

Estimating typical load factors for buses and coaches is more complicated than it is

for private cars. The occupancy levels are much more variable for a given journey due

to passengers boarding and alighting en route, and average occupancy overall varies

between regions and service types as much as it does between countries. For example, in

the UK, the average passenger occupancy given for a local bus in London is significantly

higher than that of a local bus outside London (DEFRA, 2013b). It is assumed that

the data given by DEFRA refers to numbers of passengers rather than load factor in

percentage terms. Calculating the load factor in percentage terms is not straightforward

because buses can vary significantly in terms of seating capacity, and there is the issue of

standing passengers (who might be expected to exceed the number of seated passengers

on some urban buses, but are generally not allowed on long-distance coaches).

The European Environment Agency (2010) makes some attempt at comparing load

factors in percentage terms across different European countries, but it is difficult to
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draw conclusions because urban buses in one country are compared with long distance

buses and coaches in another. This may be because in some cases it is difficult to make

distinctions between different services; DEFRA, for example, note that their data for

coaches are likely to underestimate actual occupancy levels because non-local buses have

been included in the calculations.

Coach travel is of most interest in this research because in most cases they provide a

more directly comparable alternative to rail services than local buses, and were shown in

Chapter 2 to be comparable to rail in terms of GHG emissions. In the UK, load factors

for coaches leaving Victoria Coach Station in London have been estimated to be in the

region of 60% (RSSB, 2007). Given that this is for services leaving the capital’s main

coach station this may be higher than the national average, although it does appear to

be in the same region as the figures for coaches in Germany (60%) and national buses in

Poland (47%) (European Environment Agency, 2010). International bus travel to/from

Poland is stated as having a particularly high load factor of 72%. Overall, the European

Environment Agency suggest that on long distance buses and coaches, an average of 33%

of the seats are occupied.

10.2.3 Domestic aviation

Aviation appears to maintain higher load factors than other modes of transport. This

will partly be because airlines have more flexibility to operate single routes according

to passenger demand than bus or train operators. As well as the fact that the route an

aeroplane takes is not restricted by transport infrastructure in the same way that buses

and trains are, it is more common for bus and train operators than it is for airlines to be

required to operate particular services, with subsidies provided where passenger demand

is otherwise insufficient to make them economically viable.

Across Europe, aviation load factors have risen steadily, from 57% in 1991 to 77% in 2007

(European Environment Agency, 2010). They are thought to be similarly high within the

USA; in their analysis of sensitivity to load factor, Chester and Horvath (2009), 50% was

taken as the “low” load factor for a domestic flight. In the UK, the average load factor of

a domestic flight is currently given as 69.3% (DEFRA, 2013b, Table 24), which is in line

with the observation that “aircraft load factors fluctuate around 70%” (RSSB, 2007).

10.2.4 Rail

As with buses and coaches, passenger occupancy levels of trains are quite variable.

Factors include the type of service and the time of day. In the UK in 2005/6, the average

domestic load factor was found to vary between 25% to 47% (RSSB, 2007). As with

buses and coaches, significant variation can also be observed throughout an individual
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journey. The example of London (Euston) to Glasgow is cited by RSSB, who claim that

it is normal for the train to be standing room only for the first 100km and virtually

empty by the end.

Using data from the Office of Rail Regulation for timetabled train-km and passenger-km

for each TOC for the year 2010-2011 (ORR, 2011), some estimates of typical train

occupancy levels were made. These are summarised in Table 10.1 for a selection of

UK train operating companies, whose operations include London commuter services,

non-London suburban services and a range of inter-urban and intercity services.

For those operators with a very varied fleet of trains, such as London Midland and

Southern, it is difficult to convert the estimated average train occupancy levels into an

estimated load factor. For example, 110 passengers on a Southern service operated by

a single four-car Class 377 is equivalent to a load factor of 49%. If the service were

operated by a 12-carriage train then the load factor would be nearer 15%. The number

of trains working in multiple will reflect to the expected passenger demand for the service

in many cases, but extremes of passenger load factor may still be borne out in reality

on occasion. The long distance operators have a more uniform fleet. The average load

factor for Virgin Trains based on the data in Table 10.1 would appear less than that

given elsewhere; RSSB (2010b) cite the results of a study by the ATOC suggesting an

average load factor of 46.5%, whilst for a nine-carriage Pendolino the data in Table 10.1

equates to an average load factor of 36%.

High-speed rail in Europe has been observed to have higher load factors than intercity rail

in the UK, with the TGV from Paris to Strasbourg operating with a typical load factor of

88% in standard class (Network Rail, 2009a). The ICE in Germany has lower load factors

of between 40% and 50% (is similar to intercity rail in the UK). This perhaps reflects

the fact that the comparatively high service frequencies and shorter distances are similar

to the intercity routes in the UK, even though the line speeds are higher. The data

gathered by Network Rail (2009a) suggest that load factors on high-speed rail services

are generally higher on longer-distance services, perhaps because at such distances the

private car is less competitive, and aviation is the main alternative. Network Rail also

suggest that there may be a degree of over capacity provided by ICE services compared

with high-speed services in other countries.

The nature of railway operations mean that passenger occupancy levels fluctuate

significantly around the overall average. This is particularly true for commuter services;

Figure 10.1 and Figure 10.2 show how the average load factor (ascertained by dividing

the number of passengers by the number of available seats on trains) varies throughout

the day for arriving and departing passengers in Birmingham and London.
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Table 10.1: Estimates of train occupancy levels for a selection of UK TOCs

TOC Southern London
Midland

East Coast Virgin
Trains

Cross
Country

Type of
operator

Suburban
with a large
section of the
London
commuter
market

Suburban
and
inter-urban
with some
London
commuter
services

Intercity,
serving the
Londonto
Scotland
market

Intercity,
serving the
Londonto
Scotland
market

Intercity and
inter-urban.
Do not serve
London

Annual
timetabled
train-km
(ORR, 2011)

37.5 24.4 19.9 35.6 32

Annual
passenger-km
(ORR, 2011)

4,132.8 1,852.3 4,771.5 5,698.8 3,078.5

Mean
passengers
per train

110 76 240 160 96

Typical train Class 377
’Electrostar’

Class 350
“Desiro”

British Rail
Mark 4 set

Pendolino Class 220
“Voyager”

Typical
seating
capacity

223 (single
4-carriage
train) to 669
(three trains
in multiple —
12 carriages)
(Govia, 2014)

183 (single
4-carriage
Class 350/1)
to 840
(three Class
350/2 units
in multiple)
(The Railway
Centre.Com,
2006)

535 439
(nine-carriage
train) to 589
(11-carriage
train)

208
(4-carriage
train)

Notes Some
London
“Metro”
services are
operated
with Class
455 trains
with 316
seats per
train.

Virgin Trains
also operate
some Class
221 Voyager
trains which
have 262
seats.
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Figure 10.1: Variation in load factor for trains arriving/departing Birmingham
(Based on data from ORR, 2011)

Figure 10.2: Variation in load factor for trains arriving/departing London (Based
on data from ORR, 2011)
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It can be seen that despite high passenger loadings on trains arriving in urban centres

during the morning peak and departing during the evening peak, average load factors are

reduced by comparatively low loadings on trains in the opposite direction. The morning

peak period is particularly intense, with average arrivals in London having load factors

in excess of 100% due to the number of standing passengers. These figures are based on

average data over a time period and hide the fact that specific trains can be particularly

crowded. Such high load factors are only likely to occur towards one end of a journey,

however, and the average load factor for the whole journey will be lower. Variation of load

factor with time and day is very much dependent on the type of service — Figure 10.1 and

Figure 10.2 are affected by the fact that urban centres such as London and Birmingham

attract commuters. RSSB (2007) note that long distance operators typically maintain

a more constant load factor than those serving predominantly commuter markets, but

in any case, care must be taken when considering the extremes; comparatively empty

services may still be a necessary component of the overall service provision, if only to

facilitate the trains being in the right place to meet demand later on. On this basis,

although the average load factor may not be representative of an individual service, it is

still a useful figure when considering the whole picture.

10.3 The sensitivity of emissions data to load factor

Table 10.2 contains emissions data in terms of CO2 per passenger-km for road and rail

transport.

The average UK new car emissions for 2007 and 2011 are taken from the Society of Motor

Manufacturers and Traders (SMMT, 2013), and the suggested uplift of 20% to account

for real-world effects is in line with the literature reviewed in Section 2.4. The figure for

the Chevrolet Volt is the manufacturer’s figure, taken from an online “Green Guide to

Car CO2 Emissions” (carpages.co.uk, 2013), where at the time of writing it produces the

least emissions of any hybrid car. In line with the literature reviewed in Section 2.4, this

is uplifted by 35% to account for real-world effects.

The data for coach travel are based on the calculations for the Megabus undertaken by

the RSSB (2007).

The average data for UK rail are provided by DEFRA (2013). Additionally, a number of

specific train types are included. The data for electric trains come from the empirical

data analysis undertaken in Chapters 3 to 6, assuming a figure of 490g CO2 per kWh of

electricity consumed (DEFRA, 2013a) and include an uplift of 11% to take into account

non-revenue running and idling (Section 6.7). The data for diesel trains come from actual

fuel consumption data presented by RSSB (2007), using a figure of 26.5g of CO2 emitted

per litre of diesel per 100km. Because the data for diesel rail are based on overall fuel
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Table 10.2: CO2 emissions data for selected road and rail transport

Mode CO2

emissions
per seat-
km [g]

Typical
load factor

CO2

emissions
per

passenger-km
at typical
load factor

[g]

Minimum
load factor

Maximum
load factor

Chevrolet
Volt

9.11 40% 22.78 25% 100%

Coach
(’Megabus’)

16.7 60% 27.83 10% 100%

Intercity
Electric Rail
(Pendolino
’Pendolino’)

15.84 40% 39.6 10% 110%

Suburban
Electric Rail
(Class 321)

12.1 30% 40.33 10% 110%

Suburban
Electric Rail
(Class 323)

12.54 30% 41.8 10% 110%

DEFRA
Average Rail

48.8

Suburban
Electric Rail
(Class 350/1)

19.69 30% 65.63 10% 110%

Suburban
Diesel Rail
(Class 170
’Turbostar’)

20.88 30% 69.61 10% 110%

Intercity
Diesel Rail
(Class 221
’Voyager’)

31.8 40% 79.5 10% 110%

Average New
Car (2011)

33.14 32% 103.58 20% 100%

Average New
Car (2007)

39.58 32% 123.68 20% 100%
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consumption data, the assumption is made that they take into account the effects of

non-revenue running and idling.

Following on from the data reviewed in Section 10.2, the average car occupancy is

assumed to be 1.6 people. The average new car is assumed to have five seats and the

Chevrolet Volt has 4, so the typical load factors are taken to be 32% and 40% respectively.

The minimum car occupancy is 1 (the driver) and the maximum is governed by the

number of seats (100% load factor) because (in Europe, at least), it is illegal to carry

more passengers than there are seats. It should be noted that the emissions per seat-km

for the average car are calculated on the basis of five seats in a car, but some cars on the

market have fewer, and a few family cars have more.

For the specific trains, an average load factor of 30% is assumed for suburban rail, rising

to 40% for intercity rail. A load factor of 60% is assumed for the coach, accepting the

caveat that this may be on the high side. For public transport (coaches and trains), a

load factor of 10% is assumed as a typical minimum, although services may run with

fewer passengers. For coaches, it is assumed that standing passengers are not allowed,

leading to a maximum load factor of 100%. It is typically permissible for trains to carry

more passengers than there are seats, and a typical maximum load factor of 110% is

assumed (although some crush-laden commuter services may exceed that, as discussed in

Section 10.2).

Figure 10.3 compares the average CO2 emissions per passenger-km for the different modes

on the basis of typical load factors. The error bars give some indication of how that

might change if the load factor was varied between the minimum and maximum given in

Table 10.2; a lower load factor leads to increased emissions per passenger-km, and vice

versa.

It can be seen from Figure 10.3 that if the typical load factors suggested in Table 10.2

are indeed representative of the real-world then rail travel typically emits less CO2 per

passenger-km than travelling by private car, and coach travel emits less still. However,

particularly as far as the coach is concerned, the assumptions made about typical

passenger loadings are crucial; the coach only emits less CO2 per passenger-km than

the Pendolino intercity train if higher load factors are maintained. The variation in

CO2 emissions per passenger-km with load factor shows that, overall, coach travel and

intercity rail travel are similar.
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Figure 10.3: Emissions data for selected modes

It can also be seen that if the average car carries more than 1.6 people then it may

not actually produce more CO2 per passenger-km than the train, particularly as far as

diesel trains are concerned. The Chevrolet Volt is not (yet) typical of the car fleet in

the UK, and even increasing the manufacturer’s official emissions figures by 35% may

still be optimistic — no account has been taken of any additional emissions arising from

electricity consumed to charge the battery, and the benefits of the hybrid system may

not be sustained throughout a longer journey. Its inclusion here, however, does serve to

illustrate that as cars become more efficient then even a crush-laden train may struggle

to compete in terms of lower CO2 emissions per passenger-km.

Emissions per passenger-km from cars are much more sensitive to changes in passenger

numbers than they are from public transport modes because the number of seats in a

typical car is much less. Increasing the number of people in a car to four brings the load

factor up to 80%, whereas the number of passengers which would be required to increase

the load factor of a train to 80% is significantly greater. The importance of the number

of seats in a vehicle is explored further in the next section (Section 10.4), whilst the true

value of an increased load factor is discussed in Section 10.5.
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10.4 The implications of vehicle design

10.4.1 The number of seats

The load factor is typically expressed as a percentage of the number of seats which

are occupied, and hence the number of seats is a crucial factor. It has already been

highlighted that the relatively small number of seats in a private car means that even a

single person can have a significant impact on the load factor. A load factor in percentage

terms may not, therefore, tell the full story. For example, some cars on the market —

typically sports cars or small city cars — only have two seats. In this case, it only takes

one passenger (in addition to the driver) to achieve a load factor of 100%, but the vehicle

emissions can only be apportioned across two people. A load factor of 80% in a typical

five-seat family car may sound less impressive, but the vehicle emissions would be divided

between four people, leading to a much more significant reduction in emissions on a per

passenger basis.

Similarly, London Midland operate Class 350 “Desiro” trains with two different seating

configurations. The Class 350/1 has two seats either side of the main aisle throughout

(a 2+2 layout), giving a total of 183 seats (The Railway Centre.Com, 2006). The Class

350/2 has a 3+2 layout, increasing the total number of seats to around 280. Externally,

both trains are the same, with the same number of carriages. The Class 350/1 fleet are

generally scheduled to work the longer-distance services, but it is clear from the empirical

data analysed in Chapters 3 to 6 that there are some services which are operated by both

sub-classes. The upshot of this is that a typical passenger load of 76 people (Table 10.1)

equates to a load factor of 42% on a Class 350/1 and just 27% on a Class 350/2, but

since the energy consumption was found to be similar for each sub-class, the variation in

load factor as a percentage makes no difference to the emissions per passenger overall.

Some metro trains have been designed around standing capacity rather than seating

capacity — for example, the Class 378 trains recently introduced on London Overground

services have longitudinal seats and wide gangways, giving an estimated passenger capacity

(including standing passengers) of 700 per four-carriage train (Railwaygazette.com, 2009).

The number of seats is far less than this, such that even a load factor of 110% of the

seating capacity would be on the low side. On such Metro services, “crush-loading” is

much more acceptable.

The House of Commons Transport Committee (2003) report that there are different

ways of calculating the capacity of a train, depending on the type of train and the type

of service. Citing the Rail Passenger Council, they suggest that for journeys of more

than 20 minutes, the capacity of the train could be defined by the number of Standard

Class seats, whilst for journeys of less than 20 minutes the capacity could be defined for

“slam-door” trains as the total number of seats plus 10%. For trains with sliding doors,

capacity could be defined not in terms of number of seats, but in terms of floor-area; the
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report suggests that the capacity threshold is one passenger per 0.45m2 of floor area,

whether there is a seat there or not. It would be fair to raise some questions about these

definitions — for example, on outer-suburban and inter-urban services, some passengers

will be making journeys of more than 20 minutes, whilst some passengers may only be

on the train for a very short time. This means that the capacity of the same train on the

same service could be legitimately defined in two separate ways. It is also not clear why

first class seating is excluded from the calculations. The age of the report means that

the distinction between “slam-door” and “sliding-door” trains is no longer particularly

appropriate because most of the “slam-door” trains in the UK have been phased out

since the report was written.

The key point, perhaps, is that defining load factor in terms of the number of seats is

not necessarily sufficient. For long-distance intercity services, where having a seat is a

reasonable expectation, it remains a useful measure, but adoption of an alternative metric

(perhaps based on floor area per passenger) would be better for other services. A similar

point could be made about buses; whereas long-distance coaches do not allow standing

passengers, local buses do to the extent that a load factor of 100% of the number of seats

does not reflect the overall passenger capacity at all.

10.4.2 Vehicle design — the onboard environment

Although it may be legally possible for as many passengers to be carried in a vehicle

as there are seats (if not more, in the case of some buses and trains), high occupancy

levels are not always practical or desirable. The middle seat in the back of a five seat car,

for example, is often not comfortable for an adult and hence, although the maximum

occupancy level might be achievable for a family outing, it would be reasonable to suggest

that car sharing schemes might struggle more to achieve it.

For trains, the type of service plays a role when it comes to the design of the onboard

environment and the suitability of a particular seating-density. A dense layout, such

as the 3+2 layout in the Class 350/2 may be suitable for short journeys, but there is

some evidence to suggest that such high density seating may not always lead to higher

passenger occupancy levels. On the direct route between Portsmouth and London, trains

with 2+2 seating were replaced with very similar trains to the Class 350/2, with a

3+2 layout, a move which proved unpopular with passengers (Portsmouth City Council,

n.d.). The report by Portsmouth City Council claims that some passengers have “started

driving instead” whilst others prefer to stand or in the aisle whilst leaving the middle

seat of the three unoccupied. The implication is that if the seating density is too high

then the maximum load factor may be harder to achieve, except in situations where

demand is very high and passengers would be prepared to put up with crowded conditions.

This may depend partially on how passengers expect to utilise their travelling time (see

Section 1.11.2). It was noted in Section 10.4.1 that it may be better to define the capacity
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in terms of floor area rather than the number of seats, and that the suggested capacity

(one passenger per 0.45m2 of floor area) is independent of the number of seats (House of

Commons Transport Committee, 2003). It is thought that perceived capacity may vary

with seating density — for example, the observed reluctance to occupy the middle of

three seats may lead to the train appearing more crowded than it really is in terms of

passengers per floor area. If it were possible to directly compare passenger loadings on

the same journeys between similar trains with different seating densities (such as the

Class 350/1 and Class 350/2) the results could be interesting.

10.5 Train length

A unique feature of trains is that it is possible to lengthen them to provide greater

capacity without increasing the seating density and without the need to run additional

services. This can either be done by adding extra carriages to a train, as Virgin Trains

did with their Pendolino trains or by joining two or more trains together, known as

multiple working, which is commonplace on the London Midland network. The extra

length and increased mass will have some detrimental effect on energy consumption and

the resulting emissions, but it is still preferable overall to running additional trains in

isolation. ATOC (2007) suggest that adding carriages to an existing train might be

expected to have a carbon impact of about 60% of the un-lengthened train. Although it

is not entirely clear what they mean by “carbon impact”, the benefits both for Virgin

Trains and London Midland have been quantified, as described below.

10.5.1 Longer trains: the case of the Pendolino

In 2012, Virgin Trains introduced some new 11-carriage Pendolino trains into service, to

supplement their existing fleet of nine-carriage trains. Some of the nine-carriage trains

were also lengthened to 11-carriages. The two lengths of train were treated separately in

the analysis conducted in Chapters 3 to 6, and a summary of the energy consumption

data is given in Table 10.3. It can be assumed that CO2 emissions are directly related to

energy consumption.

From this data, it is possible to estimate the marginal net energy consumption of each

additional seat in the 11-carriage train. This is given in Table 10.4.

On a per-seat basis, it can be calculated from Table 10.4 that the energy consumption

per additional seat in the lengthened (11-carriage) train is only 41% of that of the energy

consumption per seat in the un-lengthened (nine-carriage) train.
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Table 10.3: A summary of net energy consumption data for the Pendolino

Train Length [carriages] 9 11

Mean net energy
consumption per train-km
[kWh]

12.93 14.75

Number of seats 439 589

Mean net energy
consumption per seat-km
[kWh]

0.029 0.025

Table 10.4: The marginal energy consumption per seat of the additional seats
when an 11-carriage Pendolino is compared with a nine-carriage Pendolino

Increase in seating capacity 150

Increase in energy consumption
[kWh per train-km]

1.82

Additional energy consumption per
additional seat-km [kWh]

0.012

10.5.2 Multiple working: the case of the Class 323

In the analysis conducted in Chapters 3 to 6, it was possible to separate the trains

running in multiple from the trains running as single units. It was found that care needs

to be taken when making direct comparisons, because services operated by trains in

multiple can be different from those operated by single units (in contrast, both nine and

11 carriage Pendolino trains operate similar services).

Table 10.5 summarises the energy consumption data for the Class 323 train running as a

single four-carriage train and in a pair.

From this data, it is possible to estimate the marginal cost of each additional seat when

a second train is added to create a pair. This is given in Table 10.6.

On a per seat basis, the energy consumption per additional seat added when two trains

are put together is about 97% of that of a train running on its own, so comparatively

little is to be gained by multiple operation in this case. The fact that the mean stop

spacing of services operated by trains in multiple is less than that of services operated

by individual trains may have inflated the marginal cost of each additional seat slightly,

but there is nothing to suggest it should be much lower.
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Table 10.5: Energy consumption data for the Class 323 train running as part of
a pair compared with running as a single train

Trains operating
together

1 2

Number of seats 284 568

Mean stop spacing of services
operated [km]

2.57 2.23

Mean energy consumption
per whole train-km [kWh]

6.52 12.64

Mean energy consumption
per seat-km [kWh]

0.023 0.022

Table 10.6: The marginal energy consumption per seat of the additional seats
when two Class 323s are run as a pair, compared with a single train

Increase in seating capacity 284

Increase in energy consumption
[kWh per train-km]

6.12

Additional energy consumption per
additional seat-km [kWh]

0.022

The marginal cost of the additional seats when two Class 323s are run in multiple appears

to be significantly more than the marginal cost of the additional seats when a Pendolino

train is lengthened from nine to 11 carriages. The main reason for this is likely to be

the fact that when two trains are run together in multiple, both remain powered and

everything — including driving cabs, toilets and on-board systems — is duplicated,

adding to the mass. In a lengthened (11-carriage) Pendolino, only one of the extra

carriages is powered and, although there are some additional on-board systems, the

additional mass per seat is considerably less.

10.5.3 Comments about train length

It cannot be assumed that a reduction in energy consumption and emissions on a per

seat-km basis brought about by lengthening a train translates into an improvement

on a per passenger-km basis, unless the passenger occupancy levels are also increased

accordingly. If the net result of lengthening a train is just that the existing passengers

have more space, or no longer have to stand then there are no appreciable benefits in

terms of energy consumption or emissions, and the extra comfort of the passengers has

come at a cost. Despite this, it is clear that crowding can be a real issue. Not only does

it limit scope for promoting modal shift to rail, but over-crowding (or the perception
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thereof) can lead to increased stress levels amongst passengers; indeed, Cox, Houdmont,

and Griffiths (2006) conclude that “crowding should be accepted as a possible threat

both to the healthiness of the rail industry and passengers.” It has been shown above

that lengthening a train — either by adding additional carriages or by joining trains

together — can reduce the energy consumption and, by extension, the emissions per

seat-km, and that this approach to increasing capacity is preferable to running extra

trains

One of the problems with running a train service which has to cope with fluctuations

in demand (Figure 10.1 and Figure 10.2) is that providing enough capacity where it

is needed may also mean that the additional overheads of longer trains still apply to

less popular services. The advantage of running trains in multiple is that they can be

joined and split as required, whereas lengthening trains such as the Pendolino is a more

permanent change to make. Theoretically, trains comprising a locomotive and a rake of

coaches, as used to be prevalent in the UK, are easier to lengthen or shorten on demand,

and have the added advantage that the extra coaches won’t have the mass of extra

traction systems if these are all already contained within the locomotive. The downside

is that such trains have other practical concerns to contend with, such as the extra time

and space needed to run the locomotive round the train every time a change of direction

is required, and it is for these reasons that integrated “multiple unit” trains or push-pull

formations have become dominant.

10.6 The use of passenger-km as a metric for modal comparison

Mention has been made of the fact that the use of passenger-km as a metric for modal

comparison allows some of the fundamental differences between modes to be taken into

account. Despite that, making modal comparisons purely on the basis of CO2 emissions

per passenger-km means that some of the other fundamental differences between modes,

which lead to other advantages and disadvantages in each case, can be easily overlooked.

Such differences can include actual journey distance (flying may be expected to be

generally more direct than road or rail), whilst other sustainability goals should also not

be ignored. Furthermore, having shown just how sensitive the metric is to passenger

occupancy levels, it could be tempting to wrongly conclude that increasing the load

factor is always a good thing. This section discusses some of these issues in more detail.
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10.6.1 The dangers of an over-inflated load factor

If a particular journey is looked at in isolation then it has been shown that increasing the

passenger occupancy levels will reduce the energy consumption and emissions on a per

passenger basis. However, if the occupancy levels are increased due to increased demand

for travel then there is no net benefit. In many cases, there may even be a negative

effect on overall energy consumption and emissions; in the case of a car journey, the mass

of an additional passenger (and luggage) can be significant compared with the overall

mass of the vehicle, especially as cars become lighter, and this can lead to increased fuel

consumption. This is slightly less of a consideration for public transport modes when

considering individual passengers, because the vehicle mass is typically much higher than

that of a person, although it has been shown that overall passenger mass can have an

impact (RSSB, 2010b). The other issue with public transport is that creating demand for

an existing service may also lead to journey creation and associated additional emissions

elsewhere — for example driving or getting a taxi to/from the station.

Low fares, particularly those booked in advance, are often used to entice people onto

public transport and there is a real risk that this leads to demand creation rather than

modal shift. For example, RSSB (2007) note that the low cost airline easyJet has seen

load factors rising above 80%, but raise the question of whether demand induced by very

low fares makes such a high load factor valid for comparison with other modes.

Even if increased load factor comes from modal shift rather than new demand for travel,

this may still produce no net benefit — for example, if someone decides to travel by

coach rather than by train, it is likely that both the coach and the train journey will still

be made anyway, leading to no noticeable change in energy consumption and emissions.

This is discussed further in Section 11.7.2.

Unlike public transport modes, where the driver is there for provision of the service and

therefore not counted as one of the passengers making the trip, it is usually presumed

that the driver of a private car is only doing so in order to make the trip themselves,

and should therefore be included in the passenger occupancy count. This assumption is

open to question in some cases, however. For example, surveys conducted in the Greater

Montreal Area found that 15% of car trips made by more than one person from the same

household are made exclusively for one of the passengers and not the driver themselves.

Morency (2006) uses the term “family taxi” for such trips, and gives the example of

a mother driving her child to/from school; the high average passenger occupancy for

education related trips may therefore be misleading. Data for business and commuting

trips are unlikely to be skewed in the same way.
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10.7 Conclusions

Comparing energy consumption and emissions on a per passenger-km basis can be useful,

and for typical passenger occupancy levels, electric rail and intercity coach travel would

seem to be the preferred modes if reducing energy consumption and emissions was the

main goal. However, many assumptions are made about passenger-loadings, and on

public transport modes in particular there may be no such thing as a “typical” load

factor. Commuter rail in particular is affected by peaks and troughs in demand, and

providing capacity to relieve peak-time crowding can lead to reduced performance overall

if the same train then has to run almost empty on off-peak services.

It cannot be assumed that a high load factor is always a good thing because although it

may reduce the emissions per passenger for a given journey, it could still be detrimental

if high passenger occupancy is as a result of the creation of additional demand for travel.

Vehicle design is important, not just in terms of the number of seats (and the resulting

load factor in percentage terms) but in terms of how suitable the passenger environment

is for the journey and how attractive it can be if modal shift and improved passenger

occupancy levels are to be achieved.
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11.1 Introduction

Chapter 2 compared three different carbon calculator tools for estimating the carbon

emissions produced by different modes for a specified journey. Each of the different tools

relied on different assumptions for the emissions per passenger and the distance covered

by each mode, leading to varying results for each of the sample journeys considered. In

some cases, this gave rise to a level of ambiguity about which mode is the least polluting

per passenger (in terms of GHG emissions) for a particular journey. A key aim of this

research has been to investigate the factors which affect the calculations of emissions per

passenger, particularly for rail travel, in order to validate some of the assumptions made

by the carbon calculator tools and to be able to make more informed modal comparisons.

Chapters 3 to 6 contained in-depth analysis of empirical data collected by energy

metering systems on electric trains, providing a better understanding of the operational

energy consumption and related GHG emissions, including an estimate of the energy

consumption from idling and running empty to/from the depot, not directly associated

with carrying passengers. Chapter 9 considered some life-cycle analysis of transport

systems, showing how taking into account construction and maintenance of the vehicles

and infrastructure, and extraction and transportation of fuels can add to overall emissions.

Finally, Chapter 10 looked at passenger loadings.

225
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This chapter brings some of the findings together and applies them to the sample journeys

considered in Chapter 2. Section 11.2 provides more informed estimates of the operational

energy consumption and emissions of a train on each of the journeys and compares them

with the estimates made by the carbon calculator tools. Section 11.3 reviews how the

modal comparisons might be expected to change if the whole life-cycle were considered.

Section 11.4 looks in more detail at the London to Glasgow route, applying some of the

findings about life-cycle emissions. Section 11.5 considers how future developments might

influence modal comparisons and Section 11.7 considers how such comparisons between

modes (in terms of emissions) should be used to influence travel choice and policy.

11.2 Operational emissions from passenger rail — making

estimates for specific journeys, based on empirical

data analysis

In Chapter 2, three specific journeys were selected for comparing the different carbon

calculator tools. The first was the journey between London and Southampton, where

the direct rail service has competition from a direct coach service and there are good

motorway links. The second journey was that between Swansea and Fishguard Harbour,

chosen because it is a journey of similar length but in a much more rural context. The final

journey chosen was between London and Glasgow, chosen because it is a longer intercity

route, over which domestic aviation is a key competitor. This section reconsiders each

journey and uses the earlier empirical analysis of rail’s operational energy consumption

and emissions to make estimates of the emissions per passenger, which can be compared

with the outputs from the carbon calculator tools.

11.2.1 London Waterloo to Southampton Airport Parkway

The route between London Waterloo and Southampton Airport Parkway is typically

operated by Class 444 and Class 450 “Desiro” trains. These are very similar to the Class

350 trains operated by London Midland, for which data were analysed in Chapter 5; the

Class 450 is almost identical, with four carriages and a predominantly 3+2 seating layout

like that on the Class 350/2. The Class 444 is a five-carriage train, with an intercity

style layout. Class 444 trains have longer carriages (23m as opposed to 20m) with doors

at the end of the carriages rather than at the 1/3 and 2/3 points. The seating layout is

less dense than on the 450, with a 2+2 seating layout in standard class and a 2+1 layout

in first class. Although electric power along the route to Southampton is provided by a

750V d.c. third rail, as opposed to a 25kV a.c. overhead catenary, all “Desiro” trains

are designed to be compatible with either system with minimal modification; some of

London Midland’s Class 350s are already fully equipped as dual-voltage trains. For these
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reasons, it is considered appropriate to use the data for the Class 350 trains as a basis for

estimating rail’s operational energy consumption and emissions on this route. Table 11.1

summarises the empirical data for the Class 350/2 for outer suburban services (defined

as having a mean stop-spacing between 10km and 20km) and for inter-urban services

(defined as having a mean stop-spacing of between 20km and 50km). The data for are for

all journeys in the dataset for Class 350/2 trains analysed in Chapters 3 to 6, and will

be used as the basis for the calculations here. The length of the route between London

Waterloo and Southampton Airport Parkway is 120.4km (swlines Ltd. 2012a). Timetable

data (Network Rail, 2012) suggests that a typical stopping service may have up to 10

intermediate stops with a mean stop-spacing of about 11km, whilst some fast peak-time

services only have one intermediate stop.

Table 11.1: Empirical estimations of the energy consumption of a Class 350/2
“Desiro” train

Mean net energy consumption of Class 350/2
outer suburban services (mean stop spacing
between 10 and 20 km) [kWh per train-km]

6.13

Standard deviation of mean net energy
consumption for outer suburban services

0.63

Mean net energy consumption of Class 350/2
inter-uban services (mean stop spacing
between 20 and 50 km) [kWh per train-km]

5.40

Standard deviation of mean net energy
consumption for inter-urban services

0.58

Section 10.5 compared two different lengths of Pendolino train, and found the mean

net energy consumption with nine-carriages to be 12.93 kWh per train-km, rising to

14.75 kWh per train-km for the 11-carriage Pendolino. This is an increase in energy

consumption of 14% for an increase in train length of about 22%. It is therefore postulated

that the net energy consumption for the 5-carriage Class 444 “Desiro” would be expected

to be in the region of 15 to 20% greater than that for the 4-carriage Class 450 “Desiro’.

Taking all of this into account, the mean (6.13 kWh) +/- two standard deviations would

seem to be a sensible range for the estimated net energy consumption per train. Factors

which may affect this include the proportion of services operated by each class of train

and the proportion of services run by trains in pairs, and if non-revenue running and

idling are to be accounted for then Section 6.7 suggests that these figures should be

increased by 11%.

Direct trains on the route are operated exclusively by South West Trains. In 2010-11,

they ran services totalling 5,524 million train-km with 39.5 million passenger-km (ORR,

2011). This equates to an average of 140 passengers per train. Although South West

Trains run a number of different services, the typical loadings on the line from Waterloo

to Southampton are assumed to fall somewhere between the heavily used London “metro”
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services and lower passenger occupancies towards the edge of the network (for example,

between Southampton and Weymouth). However, this figure may still be on the high

side because it is for the whole train, which may actually comprise two or more units

running in multiple. A single Class 450 unit has 273 seats and a single Class 444 unit has

234 (The Railway Centre.Com, 2006). On a single unit, 140 passengers would correspond

to a load factor of 51% on a Class 450 and 60% on a Class 444 — which is much higher

than the average load factors suggested by RSSB (2007). It was therefore decided to use

a figure of 100 passengers per single unit, which corresponds to a load factors of 37%

and 43% for the Class 450 and Class 444 respectively. This is higher than the median of

31% suggested by RSSB, but is justifiable when comparisons are made with the data for

other operators given by the ORR (2011). Other operators of similar “Desiro” trains,

such as First Transpennine Express and London Midland had, on average, fewer than

100 people per train, and so the assumption that South West Trains has higher load

factors than the national average is not unreasonable, especially since the majority of

their services serve London.

Throughout this research, a figure of 0.49 kg of CO2 emitted per kWh of electricity

consumed has been used — this is based on the UK generation mix for 2010 (DEFRA,

2012), and includes transmission losses. Table 11.2 estimates the total estimated CO2

emissions per passenger over the whole 120.4km journey, and summarises the figures

used in the calculations.

Table 11.2: Estimated energy and emissions data for the rail journey between
London Waterloo and Southampton Airport Parkway

Estimated net energy consumption per
train-km [kWh]

4.87 to 7.40 (mean 6.13)

Estimated net energy consumption including
“inactive operation” of non-passenger running
& idling [kWh per train-km]

5.4 to 8.2 (mean 6.81)

Estimated CO2 emissions [kg per train-km] 2.6 to 4.0 (mean 3.34)

Assumed number of passengers on the train 100

Estimated CO2 emissions per passenger-km
[kg]

0.026 to 0.040 (mean 0.033)

Estimated CO2 emissions per
passenger-journey (120.4 km) [kg]

3.19 to 4.85 (mean 4.02)

Figure 11.1 compares the estimated CO2 emissions for the journey based on the empirical

data and calculations here with the estimates given by each of the three carbon calculator

tools in Chapter 2 — Transport Direct, EcoPassenger and Travel Footprint.
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Figure 11.1: A comparison of the calculated emissions estimates with the carbon
calculator estimates from Chapter 2 for the rail journey between London Waterloo
and Southampton Airport Parkway

The calculations undertaken here match the output from the Travel Footprint tool most

closely. This is perhaps unsurprising given that this is the only one of the three tools

to allow the user to specify the type of train, and to estimate the distance correctly.

Transport Direct (2010b) uses average data from DEFRA which is based on the whole UK

network and includes diesel rail. It also marginally underestimates the distance travelled.

According to the published methodology (UIC, 2010), EcoPassenger should assume that

the train on this route is electric, because it only assumes the use of diesel traction if the

route includes a station which can only be reached by diesel trains; however, the details

are unclear and it is not obvious whether the assumptions about the train reflect the

reality. Exact distance data for EcoPassenger are not provided, but the methodology is

based on increasing the straight-line distance between consecutive stations by a fixed

percentage to account for curvature, so the accuracy is questionable. The emissions

factor for electricity is also subject to variation — for example, EcoPassenger uses a

figure of 0.576kg of CO2 per kWh of electricity supplied for the UK (in 2007), which is

significantly higher than the DEFRA figure used in the calculations here.

An electric train was specified for Travel Footprint, although the only option was an

“Intercity Electric” based on an “average UK mix.” The options for passenger load factor

were limited and the 50% occupancy level chosen might be on the high side, but the

results remain comfortably within the range calculated here. It is worth noting that

the calculations in this section assume a direct train between London Waterloo and
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Southampton Airport Parkway, but it is possible to make the journey with a change at

Basingstoke, which could then involve travel on a diesel train for at least one leg. It is

also possible to make the journey to London Paddington on a longer route with a change

at Reading, and even the direct Waterloo services sometimes deviate from their normal

route (for example, in the event of Engineering Work). Any of these variations could

involve higher CO2 emissions per passenger for the journey.

11.2.2 Swansea to Fishguard Harbour

The rural service between Swansea and Fishguard Harbour is operated by Arriva Trains

Wales, using diesel trains. As a result, data from the electric trains analysed in this

research cannot be applied specifically. Instead, existing data about fuel consumption of

diesel trains are used to make some estimations. Arriva Trains Wales, who operate the

route, use a mixed fleet of diesel multiple units (Arriva Trains Wales, 2014). Estimated

emissions data for most of the trains in the fleet are available from studies undertaken by

AEA Technology (Hobson and Smith, 2001). They are summarised in Table 11.3, along

with details about seating capacity taken from the Arriva website.

Table 11.3: Seating capacity and emissions data of selected diesel multiple units
operated by Arriva Trains Wales

Train Class Seating Capacity (Arriva
Trains Wales, 2014)

Estimated CO2 emissions
[kg/km] (Hobson and

Smith, 2001)

Class 143 106 2.011

Class 150 146 3.202

Class 153 75 1.415

Class 158 (2-carriage) 140 2.793

The mean of the estimated CO2 emissions for the trains in Table 11.3 is 2.47 kg per

train-km. The emissions data appear to be based on idealised journeys with a level

gradient and a fixed stopping pattern, and would be expected to vary for each train in

reality according to driving style (see Chapter 8). A range of 1.4 to 3.5 kg of CO2 per

train-km is therefore assumed, with the large variation reflecting the fact that the route

is not solely operated by one type of train. It is assumed that the work undertaken by

AEA Technology (Hobson and Smith, 2001) — reviewed in Section 2.5.1 — does not

include non-revenue running and idling, and so an uplift should be applied to take into

account this “inactive operation.” In the absence of any more relevant data, an uplift of

11% is assumed, in line with the findings in Section 6.7.

According to the ORR (2011), Arriva Trains Wales operated 23.8 million train-km in

2010-11, with 1,100.9 million passenger-km. This equates to an average of 46 passengers
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per train. In percentage terms, this equates to a load factor of 32% for a Class 150, and

61% for a Class 153. This figure is based on the whole Arriva Trains Wales network, and

includes services in and around Cardiff, so may be an overestimate of the rural services to

Fishguard. On the other hand, some Fishguard services will be bolstered by connections

with the ferry to Ireland, and so in the absence of more detailed information, the figure

of 46 passengers per train is used.

The journey distance was found to be 116.1 km (swlines Ltd. 2012a). Table 11.4 estimates

the total estimated CO2 emissions per passenger for the whole journey, and summarises

the figures used in the calculations. Figure 11.2 compares the result graphically with the

output from the three carbon calculator tools.

Table 11.4: Estimated energy and emissions data for the rail journey between
Swansea and Fishguard Harbour

Estimated CO2 emissions [kg per train-km] 1.4 to 3.5 (mean taken as 2.47)

Estimated net energy consumption including
inactive operation of non-passenger running
& idling [kWh per train-km]

1.55 to 3.89 (mean 2.7)

Assumed number of passengers on the train 46

Estimated CO2 emissions per passenger-km
[kg]

0.03 to 0.08 (mean 0.06)

Estimated CO2 emissions per
passenger-journey (116.1 km) [kg]

3.9 to 9.8 (mean 6.9)

It can be seen that the estimated CO2 emissions per passenger for this journey are higher

than those for the journey between London Waterloo and Southampton, in spite of the

fact that the journey length is similar. This reflects the fact that the route is operated

by diesel, as opposed to electric, trains, and that passenger loadings are expected to be

lower. Again, the Travel Footprint tool is the one whose outputs most closely match the

calculations undertaken here, reflecting the fact the distance was correctly estimated,

and the choice of train (Diesel Sprinter) was appropriate. Travel Footprint is also the

only one of the tools to have explicitly considered the life-cycle emissions of the fuel.

The Transport Direct figure is based on an incorrect assumption about the journey

length (101.8 km) and should be increased by approximately 20% as a result. The use

of average data, including electric trains, means that the Transport Direct figure would

still be expected to be lower than the calculations undertaken here. It is assumed that

EcoPassenger correctly selected a diesel train, but no details about emissions data or

actual distance assumed are given.
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Figure 11.2: A comparison of the calculated emissions estimates with the carbon
calculator estimates from Chapter 2 for the rail journey between Swansea and
Fishguard Harbour

11.2.3 London Euston to Glasgow Central

The intercity service between London Euston and Glasgow Central is operated by Virgin

Trains, using Pendolino trains of the type analysed in Chapters 4 to 6. Specific data for

some of Euston to Glasgow services were available for nine-carriage trains, for which

the mean net energy consumption was calculated to be 12.25 kWh per train-km (5%

below the overall mean for the nine-carriage train of 12.93 kWh per train-km). There

were no matching data for 11-carriage trains. Data for nine-carriage trains on the return

journey from Glasgow to Euston showed the mean net energy consumption to be 13.42

kWh per train-km, which is 4% above the overall mean. In light of this, and the fact

that the number of intermediate stops for typical Glasgow services varies from six to

twelve (Network Rail, 2012), it was decided to base the calculations in this section on

the overall mean for the train.

For nine-carriage trains, the overall mean net energy consumption was found to be

12.93 kWh per train-km, with a standard deviation of 1.11. For 11-carriage trains, the

overall mean net energy consumption was found to be 14.75 kWh per train-km, with a

standard deviation of 1.27. Assuming that the route is now operated equally regularly

by 11-carriage trains and nine-carriage trains, an average of 13.84 kWh per train-km can

be taken. To account for variation, from factors including driving style (Chapter 8) a

standard deviation similar to that observed for 11-carriage trains is assumed. Assuming
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that the net energy consumption is typically within two standard deviations of the mean,

a range between 11.3 kWh per train-km and 16.4 kWh per train-km is suggested. It was

also found that to account for “inactive” operation such as non-revenue running and

idling, these energy data should be increased by 11% (Section 6.7).

According to the ORR (2011), Virgin Trains operated 35.6 million train-km in 2010-11,

with 5,698.8 million passenger-km. This indicates that the average number of passenger

per train was 160, equivalent to a load factor of 36% on a nine-carriage train and just

27% on an 11-carriage train. Although this is lower than other estimates for some routes

operated by Virgin Trains (for example, RSSB, 2010b), the loading is not constant for

this route and can go from “standing room only” for the first 100km to “almost empty”

for the last 100km (RSSB, 2007). In the absence of more specific data for this route, the

figure of 160 people per train is used. The length of the route was measured as 646km

in the dataset supplied by Virgin Trains, and this matches the RailMiles data (swlines

Ltd. 2012a). Table 11.5 summarises the data used in the calculations and the resulting

estimate of the CO2 emissions per passenger for the journey. This estimate is compared

in Figure 11.3 with the outputs from the carbon calculators.

Table 11.5: Estimated energy and emissions data for the rail journey between
London Euston and Glasgow Central

Estimated net energy consumption per
train-km [kWh]

11.3 to 16.4 (mean 13.84)

Estimated net energy consumption including
inactive operation of non-passenger running
& idling [kWh per train-km]

12.5 to 18.2 (mean 15.4)

Estimated CO2 emissions [kg per train-km] 6.1 to 8.9 (mean 7.5)

Assumed number of passengers on the train 160

Estimated CO2 emissions per passenger-km
[kg]

0.04 to 0.06 (mean 0.05)

Estimated CO2 emissions per
passenger-journey (646 km) [kg]

24.8 to 36.0 (mean 30.4)
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Figure 11.3: A comparison of the calculated emissions estimates with the carbon
calculator estimates from Chapter 2 for the rail journey between London Euston
and Glasgow Central

In this case, Travel Footprint is not the best match for the calculations made here. The

reason for this is probably the assumptions made about passenger load factors — at

50%, it is significantly greater than the figure used in the calculations here. Transport

Direct underestimates the distance by about 8% in this case, and so the estimated CO2

emissions would be expected to be higher still. Again, little is known about the exact

data used by EcoPassenger, but the assumption is made that it is based on data for

electric rail on this route.

As with the London Waterloo to Southampton Airport Parkway route, there are some

plausible alternatives to the direct train, and the route may be subject to variation in

the event of maintenance and engineering work. These are not taken into account here.
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11.3 Life-cycle considerations

It has been seen (Chapter 9) that considering the whole life-cycle of a transport system,

including construction and maintenance of the vehicles and infrastructure, can add a

significant amount to the overall greenhouse gas emissions, and may reduce the perceived

benefits of one mode over another. Life-cycle analysis is complex and relies on a number

of assumptions; Chapter 9 showed how the results from different studies can vary. Key

assumptions which have to be made when assigning life-cycle emissions to a particular

train journey include:

• The lifespan of the different assets

• The utilisation of the infrastructure

• The utilisation of the rolling stock

• Passenger numbers

• The make-up of the infrastructure in terms of type of track, amount of bridges and

tunnels, and the extent of earthworks required.

• The type of train

This section reviews the assumptions made for some of the specific rail projects considered

in the literature discussed in Chapter 9 and suggest how they might need to be varied

for each of the journeys considered in this chapter.

11.3.1 Assumptions about lifespan

The general consensus in the literature reviewed in Chapter 9 is that railway tracks

have a lifespan of around 30 years, although ballast may need replacing more often. In

the absence of more specific data, it is reasonable to make the same assumptions about

the UK railway network for each of the three journeys considered here; indeed, some

track components were recently replaced at London Waterloo, after they “completed

their lifespan of three decades” (technology.com, 2013). The lifespan of ballast will vary

according to factors including usage of the line and exposure to wind and water, and it

is desirable from a sustainability perspective to reduce the quantities of new ballast used

(Franklin, 2006).

Although some literature (for example, Ademe, SNCF, and RFF, 2009) assumes a lifespan

of 30 years for the whole railway project, the general consensus is that other aspects

of the infrastructure have a much greater lifespan, with tunnels and bridges perhaps
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having a lifespan of 100 years or more. Again, it seems reasonable to make the same

assumptions about the UK railway network.

The assumed lifespan of the high-speed trains reviewed in the literature ranges from

20 years (Ueda, Miyauchi, and Tsujimura, 2003) to 30 years (Baron, Martinetti, and

Pepion, 2011). Some of the rolling stock operated by Arriva Trains Wales is already older

than this and at the time of writing (Arriva Trains Wales, 2014), 24% of trains on the

UK network date from the 1980s and 13% date from the 1970s (ATOC, 2013, Figure 1).

Hence a longer lifespan of perhaps 35 years could be assumed for the trains in this case.

11.3.2 Utilisation of the infrastructure

The allocation of the embedded carbon in the infrastructure to a particular journey is

dependent on how intensively the infrastructure is used. One such measure of usage

is the number of trains per day. The high-speed lines considered in the literature are

typically assumed to have between 70 and 90 trains per day over double track (Baron,

Martinetti, and Pepion, 2011; Tuchschmid, 2009). Table 11.6 uses data from the ORR

(2011) to make an initial estimate of the level of infrastructure utilisation which might

be expected for each of the three journeys considered here.

Table 11.6: Estimated infrastructure utilisation for the three main train operators
considered here (Data Source: ORR, 2011)

Train Operator Route-km
operated in 2010 -

11

Train-km
operated in 2010
— 11 (millions)

Mean number of
trains per day

over the routes
operated

Arriva Trains Wales
(Operator of Swansea
— Fishguard Harbour
services)

1,840.8 23.8 35

South West Trains
(Operator of London
Waterloo —
Southampton
Airport Parkway
services)

944.7 39.5 115

Virgin Trains
(Operator of London
Euston — Glasgow
Central services)

1,190.9 35.6 82

The data contained in Table 11.6 have limitations. Firstly, the routes operated by each

operator overlap with other passenger operators — for example, the line between London

Waterloo and Southampton Airport Parkway also carries services operated by Cross
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Country, First Great Western and Southern. Secondly, freight services also use the lines.

Thirdly, the assumption has been made that each stretch of track is used evenly. Finally,

it cannot be assumed that each route-km corresponds to a kilometre of double track,

because some of the network has single track (including much of the line between Swansea

and Fishguard Harbour) and some of the network has quadruple track (including much of

the WCML between London Euston and Glasgow Central, and the South West Mainline

between London Waterloo and Basingstoke).

The data in Table 11.6 are consistent with the level of detail used by existing carbon

calculators to estimate the amount of passenger traffic on each route. In the same way

that other operators provide services on lines predominantly used by the operators listed

here, so some of the route-km attributed to each operator will be on lines predominantly

run by someone else, and some degree of balance could be assumed. In the case of the

WCML, in locations where there is quadruple track, Virgin Trains could be assumed to

be the main user of the two fast lines, and other operators (such as London Midland)

could be assumed to be the main passenger users of the two slow lines.

Network Rail provide some data about route utilisation which includes freight traffic as

well as passenger traffic. Although freight traffic is relatively insignificant in terms of

train-km, freight trains are typically longer and heavier than passenger trains, and make

a more significant contribution in terms of train-tonne-km. This is a more useful metric,

because train mass influences the amount of wear and tear on the infrastructure, and, by

extension, may affect the lifespan and level of maintenance. In the Wessex Region, which

includes the London Waterloo to Southampton route, the total annual train-tonne-km

was given to be 13,585 million in 2010 (Network Rail, 2010a, Figure 3), of which 91%

is attributable to passenger traffic, and the remaining 9% to freight traffic. In Wales,

it can be surmised that only 56% of the total annual-train-tonne-km is attributable to

passenger traffic (Network Rail, 2010b, Figure 3), although this is almost certainly not

the case on the route west of Swansea to Fishguard, as Network Rail note that railfreight

is mostly concentrated upon the corridor in south-east Wales. On the WCML between

London and Glasgow, the proportion of freight traffic is similarly high (Network Rail,

2010c). However, continuing to consider the quadruple track as two sets of double track

(fast and slow), it is assumed that the freight traffic is mainly carried on the slow lines,

and that the proportion of freight traffic on the same tracks as the Virgin Trains services

to Glasgow would be much smaller.

Taking all of this into account, the allocation of embedded carbon in the infrastructure to

a number of passenger trains is likely to be of a similar order to the data already found

in existing literature for both the route between London Waterloo and Southampton and

the route between London Euston and Glasgow. For the route between Swansea and

Fishguard, the infrastructure would appear to be less intensively utilised, resulting in a

higher proportion of the embedded carbon being allocated to each passenger train.
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11.3.3 Utilisation of the rolling stock

The relative importance of the embedded carbon in the rolling stock (arising from

construction, maintenance and disposal) is dependent not just on the lifespan of the

trains (Section 11.3.1) but on the intensity of operations. From the literature reviewed

in Chapter 9, the high-speed trains are assumed to typically travel around 400,000km

per year.

By dividing the total number of trains operated by each TOC by the number of train-km

operated annually given by the ORR (2011), an estimate of the annual distance covered

by each train can be obtained. The data are summarised in Table 11.7.

Table 11.7: Estimated rolling stock utilisation for the three TOCs under
consideration

Train Operator Number of trains
in fleet

Train-km
operated in 2010

— 11 (millions)
(ORR, 2011)

Estimated annual
distance covered

by each train [km]

Arriva Trains Wales
(Operator of Swansea
— Fishguard Harbour
services)

128 23.8 185,900

South West Trains
(Operator of London
Waterloo —
Southampton
Airport Parkway
services)

337 39.5 117,200

Virgin Trains
(Operator of London
Euston — Glasgow
Central services)

77 35.6 462,300

The data in Table 11.7 do not take into account the fact that some services, particularly

those operated by South West Trains, are operated in multiple, and hence the annual

distance covered by an individual train would be expected to be higher. Trains operated

by Arriva Trains Wales and South West Trains cover significantly less distance annually

than the high-speed trains in the literature because they operate shorter services at

a significantly lower running speed. Although the running speed of the Virgin Trains

fleet is lower than most high-speed services, the scheduling of services is perhaps more

intensive.
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11.3.4 Passenger numbers

High-speed services, such as those most prevalent in the literature reviewed in Chapter 9,

often have high capacity trains and high passenger load factors. On the routes studied

by Baron, Martinetti, and Pepion, the number of passengers per train varies from 385

to 526 (2011, Section 2.3). Even at the lower end, this is more than double the typical

number of passengers on the routes studied in Section 11.2. This means that even if the

intensity of the train service provided (Section 11.3.2) is comparable, the fixed costs of

the infrastructure must be spread over far fewer passengers, meaning that the allocation

of these costs to a particular passenger journey is far greater. Similarly, the fixed costs

of building, maintaining and disposing of the trains must also be spread over far fewer

passengers, even if the usage cycle (Section 11.3.3) is comparable.

11.3.5 Infrastructure design

Baron, Martinetti, and Pepion (2011) show that bridges and viaducts, tunnels and

earthworks can significantly add to the embedded carbon in the infrastructure of a given

route. Compared with some high-speed routes, the three routes studied in Section 11.2

do not have a significant number of tunnels — for example, using data provided by

Network Rail (2013a), it was estimated that less than 1% of the WCML is in tunnels.

It could also be argued that even if much of the infrastructure requires renewal as it

becomes life-expired, the alignment of the route is already in place (and has been for

many years) such that the impact of earthworks on these existing routes can — to some

extent — be ignored. Some exceptions to this have been observed in recent years — for

example, some junctions have been re-modelled, the alignment in some tunnels has been

modified (to cater for bigger containers on freight trains) and landslips have necessitated

some rebuilding work. In the main, however, it is suggested that the carbon intensity of

the infrastructure for the three routes considered here is at the lower end of the range

observed in the literature. This is thought to be particularly true of the infrastructure

on the route between Swansea and Fishguard, which does not have electricity supply

systems and is not built to carry heavy trains at high-speed. However, it is worth noting

that the benefits of less carbon intensive infrastructure are reduced by the relatively low

utilisation.
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11.3.6 Train design

With the possible exception of the 11-carriage Pendolino, or three “Desiros” in multiple,

none of the trains operating the routes considered in Section 11.2 are as long as the

high-speed trains reviewed in the literature. Broadly speaking, some of the costs of

construction, maintenance and disposal — such as the amount of material — would be

expected to fall with decreasing train length, whilst others (such as the operation of

maintenance facilities) would be expected to remain broadly fixed. The variation in age

and purpose of the trains considered in Section 11.2 means that the mass per seat is also

quite variable, but it might be possible to make an estimate of the embedded carbon in

the rolling stock by converting values from the literature from a per train or per vehicle

basis to a per tonne basis.

11.3.7 Accounting for well-to-tank emissions from fuel

It was noted in Chapter 1 (Section 1.7) and Chapter 9 (Section 9.6) that the supply

of fuel and electricity can also result in carbon emissions which should be allocated at

the point of use. Based on available data, it was suggested that operational emissions

from electric trains should be increased by 16% to account for this, whilst operational

emissions from diesel trains, cars (petrol or diesel) and aircraft (aviation fuel) should be

increased by 22%.

11.3.8 Life-cycle estimates from Travel Footprint

The only carbon calculator tool reviewed which explicitly includes any life-cycle data is

Travel Footprint, whose output is broken down into “tailpipe emissions” and “fuel/vehicle

production.” For cars, the “fuel/vehicle production” emissions equated to an additional

37% of the tailpipe emissions. For buses, it was about 23%, and for aircraft it was about

6%. No life-cycle data were given for electric rail, but for diesel rail on the Swansea

to Fishguard route, “fuel/vehicle production” emissions equated to about 21% of the

tailpipe emissions.



Chapter 11 Discussing the findings
— making more detailed modal comparisons in the context of this research 241

11.4 Further consideration of the route between Euston

and Glasgow

Of the sample routes studied, the route between London Euston and Glasgow is the one

for which the most detailed data are available. It is operated by the Pendolino, for which

comprehensive empirical data about operational energy consumption were provided for

analysis, and — of the rolling stock used on the different routes — is the most comparable

to the high-speed and intercity trains typically considered in the literature on life-cycle

analysis. It is also the one route of the three over which four modes (train, domestic

aviation, car and coach) are competitive. For these reasons, it is the most suitable for

further consideration in light of the research which has been undertaken.

11.4.1 Quantifying the life-cycle emissions for the train journey

In light of the discussions in Section 11.3, the calculation of life-cycle costs for a German

ICE train undertaken by Tuchschmid (2009) is the most suitable for making a quantitative

estimate of the additional life-cycle carbon emissions for a train journey between London

Euston and Glasgow Central. It is noted that the assumptions about the infrastructure

made by Tuchschmid fit the profile of the route operated by Virgin Trains between

London and Glasgow, namely the fact that the ICE uses ballasted track (as opposed to

slab track) and has a typical utilisation of 80 trains per day (over double track). Like the

Pendolino used between London and Glasgow, the ICE is a long-distance intercity train,

with a relatively large number of carriages and passenger accommodation over a single

deck (as opposed to the double-deck layout on some other high-speed trains). Table 11.8

summarises the figures used in the calculations by Tuchschmid (2009, Section 3.3).

Table 11.8: A summary of embedded carbon estimates (Data Source: Tuchschmid,
2009)

Component Embedded carbon
[kg CO2 per train-km]

Ballast 0.034

Track systems 2.3

Rolling stock 0.263

Carbon emissions from rolling stock revision
and maintenance

0.108

The embedded carbon in the rolling stock is based on the mass of the ICE train being

782t. An 11-carriage Pendolino has a mass of 567t (Wikipedia, 2014) and so it would

be appropriate to scale the carbon estimates accordingly (Section 11.3.6). A revised
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estimate for the embedded carbon in the rolling stock on this basis is 0.190 kg of CO2

per train-km. Similarly, a revised estimate for the carbon emissions from rolling stock

maintenance is 0.078 kg of CO2 per train-km, based on the fact that materials and use

of resources (such as water) form the bulk of the emissions, and assuming that any fixed

costs can also be scaled. Table 11.9 shows the estimates of the life-cycle emissions for

the journey from London to Glasgow on a per passenger-km basis, assuming that there

are 160 passengers on a typical train (Section 11.2.3). The total life-cycle emissions for

the journey from London to Glasgow (646km) are estimated to be 10.5 kg of CO2 per

passenger.

Table 11.9: Estimated life-cycle emissions per passenger-km for the Pendolino
operating on the WCML, assuming 160 passengers per train

Component Carbon emissions
[kg CO2 per passenger-km]

Embedded carbon in ballast 0.0002

Embedded carbon in track systems 0.0144

Embedded carbon in rolling stock, adjusted
for mass of Pendolino

0.0012

Carbon emissions from rolling stock revision
and maintenance, adjusted for mass of
Pendolino

0.0005

Total life-cycle emissions from track
and rolling stock

0.0163

Table 11.10 shows a breakdown of the estimated total carbon emissions per passenger

for the journey between London and Glasgow, which can be compared with the typical

ranges estimated from the literature (Chapter 9, Table 10). It should be noted that some

literature does not separate active and inactive operation, whilst Chester and Horvath

(2009) include the “hotel load” of heating, lighting and other onboard auxiliaries as

inactive operation. The estimate for the embedded carbon in the rolling stock is consistent

with the ranges suggested in Chapter 9, but higher than the estimated proportion for

the ICE (2.5% of the operational energy) on which the calculations are based. This is

due to the fact that the Pendolino trains are smaller and have a lower running speed

than the ICE trains, such that the energy consumption and related emissions from

the operation are also lower. The estimated contribution of the infrastructure is lower

than might be expected from the data reviewed in Chapter 9 — this is because tunnels,

bridges, earthworks, stations and the preliminary planning phases have not been taken

into account. This is arguably a fair assumption in this case (Section 11.3.5), but it

remains that the data in Table 11.9 and Table 11.10 are likely to underestimate reality.
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Table 11.10: A breakdown of the estimated total carbon emissions per passenger
for the journey between London and Glasgow

Emissions Source CO2 per passenger [kg] Emissions as a
proportion of active

operational emissions [%]

Active Operation 27.4 -

Inactive Operation 3 11

Infrastructure 10.5 38

Rolling Stock 1.1 4

11.4.2 Estimating the life-cycle emissions from road and air transport

Chapter 9 suggested that the life-cycle emissions from road transport would, overall,

be expected to be less than those for rail. The sample calculations done by Baron,

Martinetti, and Pepion (2011) are based on a motorway route, and are used as a basis

for estimating the life-cycle emissions from the motorway route between London and

Glasgow. Table 11.11 summarises the data used by Baron, Martinetti, and Pepion (2011,

Section 3.1.2).

Table 11.11: A breakdown of estimated life-cycle emissions for cars (Data Source:
Baron, Martinetti, and Pepion, 2011)

Element Carbon emissions
per passenger-km

[g]

Emissions as a
proportion of

active operational
emissions [%]

Notes

Operation 130 - Assumes a petrol car

Vehicle Construction 20.9 16 Vehicle mass 1310kg.
Assumes 150,000km
covered in vehicle
life-time

Infrastructure
Construction

0.7 1 Assumes a three-lane
motorway with
65.5% of the usage
being attributable to
freight transport

Baron, Martinetti, and Pepion have assumed a medium-sized petrol car with 1.6

passengers; the outputs from the carbon calculator tools (Chapter 2) assumed a medium-sized

diesel car with only one passenger (the driver). However, the percentages in Table 11.11

are generally deemed to be suitable figures pending more detailed analysis. The one

exception is perhaps the assumption that nearly two-thirds of the motorway traffic is
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freight-based; this seems on the high side (for the UK at least) although it may be that

the data have been scaled according to potential wear and tear on the infrastructure

(heavy lorries are much more damaging than cars).

Similarly, Table 11.12 summarises the data provided by Baron, Martinetti, and Pepion

for an Airbus a320 with a passenger load factor of 65%, which is representative of flights

between London and Glasgow. It is noted that the life-cycle proportions are lower than

those suggested by other sources (for example, Chester and Horvath, 2009).

Table 11.12: A breakdown of estimated life-cycle emissions for domestic aviation
(Data Source: Baron, Martinetti, and Pepion, 2011)

Element Carbon emissions per
passenger-km [g]

Emissions as a
proportion of active

operational emissions [%]

Operation 163.2 -

Vehicle Construction 0.5 0.3

Infrastructure Construction 0.3 0.2

11.4.3 Comparing road, rail and air

Having considered more detailed data for the trains used on the route between London and

Glasgow (Section 11.2.3) and estimated the possible contribution of life-cycle components

(Section 11.4.1), comparisons are now made with other modes. For cars, to take into

account some variation in route choice and vehicle specification, an average of the outputs

from the three carbon calculators for the route (Section 2.3) was used to estimate

the operational emissions; the emissions from fuel/vehicle production given by Travel

Footprint were excluded. Instead, estimates of the life-cycle emissions for the vehicles

and the infrastructure were added, according to the proportions in Table 11.11. For

coach travel, operational emissions data for a typical Megabus service (RSSB, 2007) were

used, and the life-cycle emissions were estimated using the same proportions as for a

car (the basis for this is that the increased number of passengers in a bus compared

with a car will be offset to some degree by the fact that the larger size of the bus will

also increase the embedded emissions of the vehicle and the wear and tear on the road

infrastructure). This may not be entirely fair, given the difference in the proportion of

life-cycle emissions suggested by Travel Footprint (Section 11.3.8) but the aim at this

stage is to make broad comparisons rather than provide detailed calculations.

For domestic aviation, an average of the values provided by Travel Footprint and

EcoPassenger was used, to reflect the fact that different aircraft and different London

airports can be used to make the journey. Table 11.12 was used to make some estimation

of life-cycle emissions from the vehicles and infrastructure.
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For all modes, an estimate of the emissions from the supply of electricity or fuel were

made according to the figures discussed in Section 11.3.7. The data are summarised in

Table 11.13 and shown graphically in Figure 11.4.

Table 11.13: A breakdown of life-cycle emissions by mode for the journey between
London Euston and Glasgow Central

Emissions [kg CO2 per passenger]

Mode Train Car Coach Aircraft

Operational
Emissions,
including
“inactive”
operation for
rail

30.4 110.4 17.97 163.75

Embedded
Vehicle
Emissions

1.1 17.7 2.9 0.5

Embedded
Infrastructure
Emissions

9.4 1.1 0.18 0.3

Emissions from
supply of fuel

4.9 24.3 4 36

Total
Emissions

45.8 153.5 25.1 200.6

It can be seen that the comparisons in Figure 11.4, which include a more detailed

examination of data for rail, and some estimates of life-cycle emissions, follow a similar

pattern to the outputs from the carbon calculator tools given in Chapter 2 for the same

route. Domestic aviation and car travel appear significantly more polluting per passenger

than the land-based public transport options of rail and coach travel, and the difference

is such that the inherent uncertainties in the calculations are unlikely to affect the overall

picture. The exception to this may be when different assumptions are made about

passenger load factor; this is briefly considered in the next section.
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Figure 11.4: A comparison of life-cycle emissions by mode for the journey between
London Euston and Glasgow Central

11.4.4 Comparing road, rail and air with 100% load factors

The calculations in this chapter so far have been based around passenger loadings which

are deemed to be typical for each mode of transport, with the exception of car travel

where single occupancy has been assumed. The rationale for this is that if a user were

using the carbon calculator tools as part of planning a journey then it is likely that if

they wanted to take the car they would have to plan on driving themselves, whereas

all other modes will continue to run whether or not someone chooses to travel. The

implications of this are discussed further in Section 11.7.1.

It has been seen (Chapter 10) that emissions data calculated on a per-passenger basis

are very sensitive to assumptions made about passenger occupancy levels, and so in some

cases it might be more instructive to compare the potential performance of each mode,

based on 100% passenger load factors. Table 11.14 summarises the assumptions made

about passenger occupancy levels.

The data in Table 11.13 were scaled according to the data in Table 11.14 in order to

produce an estimate of emissions per passenger for the journey from London to Glasgow,

assuming 100% passenger occupancy levels. The results are shown in Figure 11.5.

For those modes for which a relatively high load factor was already assumed, the difference

is not so great. For the passenger car, however, the significant increase in load factor (in

percentage terms) is reflected in the fact that that the emissions per passenger are now
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Table 11.14: Assumptions made about passenger occupancy levels

Mode Typical passenger
occupancy levels
assumed

Maximum
passenger
occupancy level
now assumed

Notes

Train 160 people 514 people (average
seating capacity of
nine- and 11-carriage
Pendolino trains)

Average seating
capacity chosen
because energy
calculations assume
an even mix of 9-
and 11- carriage
trains on the route
(Section 11.2.3).
Standing passengers
not considered as
this would be
unacceptable for the
whole journey.

Car One person Four people Fifth seat in most
family cars not
suitable for adults
over long distances
such as this.

Coach 60% of available
seats

100% of available
seats

Exact number of
seats depends on
vehicle type.

Aircraft 65% of available
seats

100% of available
seats

Exact number of
seats depends on
aircraft type, which
for some airlines will
be varied according
to demand.

significantly reduced. A more efficient car than the medium-sized diesel considered here

could conceivably be comparable to the bus and train (as demonstrated by consideration

of the Chevrolet Volt in Chapter 10). Equally, if one of the other journeys had been

considered, such as the one between Swansea and Fishguard Harbour, on which the

operational emissions from the diesel trains used are likely to be higher, the gap between

road and rail might also be seen to close.

Figure 11.5 also reflects the findings in Chapter 10 about the relative performance of the

Megabus and the Pendolino intercity train — namely that they are very comparable in

terms of emissions. It is likely that re-assessment of some of the life-cycle analysis — for

example, the inclusion of stations and other aspects of the infrastructure for rail could

ultimately give a small advantage to the coach.
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Figure 11.5: A comparison of life-cycle emissions by mode for the journey between
London Euston and Glasgow Central, assuming 100% passenger occupancy levels

11.5 The future

The modal comparisons made here are based on current vehicle design and technology,

and — in the case of electric rail — assume that electricity is supplied via the current UK

generational mix. Improvements in vehicle design and decarbonisation of the electricity

grid are likely to lead to a reduction in operational emissions for both road and rail.

Improvements in construction, maintenance and other industrial processes may also lead

to a reduction in life-cycle emissions. This section focuses on key factors which may

reduce operational emissions — the biggest contributor to overall emissions levels — and

discusses what impact that might have on comparisons between modes in the future.

11.5.1 New vehicle design

A reduction in energy consumption and emissions has become a key part of vehicle

design, driven in part by new legislation and a desire to reduce operating costs. For

example, the new Siemens “Desiro City” trains, which will be introduced on the London

Thameslink route, have been designed with a number of features to improve energy

efficiency. These include a 25% mass reduction compared with existing UK train fleets,

intelligent heating, air-conditioning and lighting systems to minimize the auxiliary load,

improved aerodynamics and an energy storage system which can use braking energy for

re-acceleration (Siemens, 2010). Similarly, car manufacturers have been investing in new
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technologies to improve fuel economy and emissions, including stop/start technology (to

minimise idling at traffic lights), hybrid technology and mass reduction strategies. The

number of electric and alternative-fuel vehicles being bought to market is also increasing.

A result of this is that average new car emissions in the UK fell by 26.5% between 2000

and 2012 (SMMT, 2013) and are expected to continue to fall as EU Targets come into

force. The fleet average to be achieved by all new cars is 130g of CO2 per vehicle-km by

2015, according to current EU legislation, and a law setting a target of 95g of CO2 per

vehicle-km by 2021 is awaiting formal publication (European Commission, 2014a). This

is shown in Figure 11.6. It is worth bearing in mind that average new vehicle emissions

do not reflect the current car fleet, and may be measured from a test-cycle which does

not reflect realistic operating conditions (Section 2.4.2).

Figure 11.6: Trends in new car emissions (Based on data from: European
Commission, 2014a; SMMT, 2013)

In the railway industry in the UK, there is a move towards more widespread electrification,

and the total requirement for new trains in coming years will be met entirely by electric,

rather than diesel, trains (ATOC, 2012). This is likely to have a significant effect on

reducing the overall average operational emissions from rail in the UK, something which

will be helped further if the carbon intensity of electricity generation is also reduced.
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11.6 Decarbonisation of the electricity grid

A change in the electricity generation mix, including a move towards cleaner technologies,

has meant that the carbon intensity of the electricity grid has — on the whole — shown

some level of decline in recent years. This is illustrated in Figure 11.7.

Figure 11.7: CO2 emissions from electricity generation (Data Source:
International Energy Agency, 2012, p. 111)

There has been some fluctuation in the UK in recent years because higher oil and gas

prices have encouraged increased use of coal (RSSB, 2007), although the overall trend

is still towards reduced emissions. The electricity supply sector is not exempt from the

stringent GHG emissions reduction targets set for 2050 and this should drive continued

decarbonisation of the electricity grid. In fact, it is suggested that the electricity supply

sector should make the biggest proportional reductions, aiming for as much as a 99%

reduction in emissions, relative to 1990 levels, by 2050 (Hewicker, Hogan, and Mogren,

2011). The suggested targets for 2005, 2030 and 2050 are given in Table 11.15, along with

an estimate of what they should look like in absolute terms of CO2 per kWh generated.

The IEA figure of 0.585kg CO2 per kWh generated for the EU-27 countries in 1990 is

taken as the baseline figure.

Assuming a steady rate of reduction, these targets are broadly similar to others suggested

for the UK by 2020 (0.3kg, The Committee on Climate Change, n.d.) and 2022 (0.32kg

RSSB, 2007). The target proposed by The Committee on Climate Change for 2030 is a

more stringent 0.05kg.
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Table 11.15: Reduction targets for GHG emissions from electricity generation
(Data Source: Hewicker, Hogan, and Mogren, 2011)

Year 2005 2030 2050

Reduction Target
[Reduction as a % of
1990 Levels]

7 (Actual: 20) 54 to 68 93 to 99

Target Emissions
[kg CO2 per kWh]

0.544 (Actual: 0.466) 0.267 to 0.187 0.041 to 0.006

The EU target of 95g of CO2 emitted per vehicle-km for new cars is equivalent to a

reduction of 47.5% of emissions with respect to the year 2000. Taking a figure of 0.472

kg CO2 per kWh of electricity generated for the year 2000 (International Energy Agency,

2012, p. 111), this means that emissions from electricity generation must come down to

0.248 kg CO2 per kWh if existing electric trains are to maintain their environmental

performance relative to the average car. This is within the range of targets set for 2030

(Table 11.15), by which time average new vehicle emissions from 2021 are likely to be

more representative of the car fleet as a whole.

Whether these targets are achievable, however, is open to question. The tendency

to be over-optimistic when estimating the possible reductions has already been seen

in the 2001 AEA report (Hobson and Smith, 2001) reviewed in Section 2.5.1. The

Committee on Climate Change suggest that the targets could be achieved by ensuring

that by 2020 30% of electricity is generated by renewable sources and that by 2030, 40%

comes from renewable sources and 40% comes from nuclear sources, but even if this

comes to fruition, it is not clear whether they have taken the aforementioned life-cycle

emissions (Section 11.3.7) into account. Furthermore, the continued role of gas as a fuel

for power generation is questionable (Hewicker, Hogan, and Mogren, 2011) — it produces

significantly less emissions than other fossil fuels (particularly coal), and could be an

effective solution for quick emissions reductions. However, beyond 2030, the reduction

targets are so stringent that gas can only be a significant part of the generation mix if

commercially deployable solutions are developed to eliminate carbon emissions. Carbon

Capture & Storage (CCS) is an early-stage technology with significant potential, but

also significant challenges which need to be overcome, and it remains uncertain whether

it will become commercially viable in time to help meet some of the targets.

Demand reduction is another possible way of reducing overall emissions from the electricity

generation sector. Although energy efficiency measures will help with this, this policy

is at odds with increased use of electric rail and of the electrification of transport in

general. At the moment, the UK Transport sector does not represent a significant

portion of electricity demand — of the 376TWh of electricity supplied in the UK in

2013, only 4.1TWh (approximately 1%) was used for transport (DECC, 2013a), although
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that represents an increase on previous years. It is important to note that, even if the

transport sector could be powered entirely by low carbon or renewable sources, it cannot

be separated out from the electricity generation mix as a whole. As RSSB (2007) put

it, “were the railway to be closed tomorrow, the [low carbon sources] would continue to

operate at their normal power, and some fossil fuelled power stations would be instructed

to operate at reduced load.” On the other hand, demand reduction in other sectors could

help to reduce reliance on more polluting power stations.

11.7 Interpreting the modal comparisons — implications

for policy

As it stands, assuming typical passenger loadings, intercity electric rail and intercity

coach travel appear to produce significantly less CO2 emissions per passenger than car

travel or domestic aviation. Section 11.4 focussed particularly on the long-distance route

between London and Glasgow, but the use of electric trains and intensive use of the

infrastructure on the route between London and Southampton means that rail could be

expected to perform similarly well along that corridor. The use of diesel trains, poor

passenger loadings and low utilisation of the infrastructure means that the rail route

between Swansea and Fishguard (and others like it) may not offer such benefits in terms

of emissions, although it is still likely to be preferable to driving. However, there are

other things to consider before promoting a policy of modal shift towards rail and/or

coach travel. Firstly, the journeys considered here are largely comparable in terms of

distance for each mode, but this cannot always be assumed to be the case. Section 11.7.3

explores this further, and also considers the fact that journeys made by public transport

are not always point-to-point in the same way that car journeys can be. Section 11.7.4

discusses the fact that minimising CO2 emissions may not be the only reason to choose a

particular mode, even within a remit of promoting “sustainability.”

Finally, although carbon calculator tools are typically geared around helping individuals

to make particular travel choices, benefits of modal shift are rarely realised at the

individual level. In fact, somewhat counter-intuitively, promoting driving in cases where

it would purport to produce the least emissions per passenger can still end up increasing

overall emissions if the alternative public transport modes continue to run in addition.

11.7.1 Assumptions about travel demand

An implicit assumption when using carbon calculator tools in the planning of a journey

is that the journey will be made regardless, and it is just the choice of mode which might

change. This assumption that travel demand is fixed, however, cannot be made when

considering policies to encourage modal shift. It was noted in Chapter 10 that policy
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instruments such as low fares might artificially enhance passenger occupancy levels by

encouraging people to make trips they wouldn’t otherwise have made. For these reasons,

an illustrative model to consider the overall change in emissions (∆X) resulting from a

new High Speed (HS) railway line was defined as follows (Pritchard, 2011):

∆X = PGenerated ×XHSR −
∑

(PModalShift × (XHSR −XOtherModes)) (11.1)

where

• PGenerated is the number of new passenger trips on the High Speed railway which

wouldn’t otherwise have taken place.

• XHSR is the emissions per passenger of the High Speed railway.

• PModalShift is the number of passenger trips on the High Speed railway resulting

from modal shift.

• (XHSR −XOtherModes) is the reduction in emissions per passenger as a result of

travelling on the High Speed railway rather than an alternative mode.

Similar principles should be followed when considering the benefits of any new transport

system or policy intervention. Care should also be taken when assuming that any modal

shift automatically results in a reduction in emissions; the next section Section 11.7.2

elaborates on the idea of vehicle trip cancellation, noting that an overall change in

emissions may not result from an individual passenger switching modes. It is also

worth noting that an increase in demand for one mode (and a corresponding reduction

in emissions per passenger) can result in a reduction in demand for another (and a

corresponding increase in emissions per remaining passenger).

11.7.2 Vehicle trip cancellation

It may sometimes be assumed that a passenger switching from a more polluting mode

(such as driving or flying) to a less polluting mode (such as rail) will directly result in a

reduction in emissions. Unfortunately, the reality is somewhat different. Any potential

emissions savings tend not to occur at the point one passenger switches modes, but at

the point when enough passengers switch to warrant the cancellation of the trip. This

is summarised in a 2006 report entitled “High Speed Rail and GHG Emissions in the

US” (Center for Clean Air Policy and Center For Neighborhood Technology, 2006). This

is not necessarily hugely significant when considering modal shift away from the car,

because if the driver chooses an alternative mode of transport then the car journey is

not made, although there is the potential for indirect trip generation; if modal shift from
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road to rail results in reduced road congestion then some people may choose to make car

journeys which were previously unattractive.

Vehicle Trip Cancellation is a more important factor when assessing the overall benefits

of modal shift from air to rail. There is evidence to suggest that where high-speed

railway lines are built along domestic aviation corridors, enough modal shift does occur

to warrant a reduction in the number of flights - French domestic air traffic is said to

have declined 7% between 2000 and 2007, largely due to the increased availability of

TGV connections (OECD and International Transport Forum, 2009, Footnotes on Page

20). However, Section 5 of the same report notes that the shift from air to rail released

scarce capacity. In other words, the airline slots could have been reallocated elsewhere,

and a reduction in domestic aviation does not necessarily result in a reduction in aviation

overall. In the UK, slots at some of the major airports are so valuable that airlines have

been criticised for running empty flights to protect them during periods of low demand

(Nugent, 2008). If high-speed rail were to permanently reduce demand on a particular

corridor (for example London-Glasgow), airlines may simply use the slots to serve other

destinations instead. Without any sort of intervention to prevent this, the environmental

benefits of modal shift from air to rail would be substantially weakened.

11.7.3 Assumptions about trip distance

One of the disadvantages of the railway is that the network is fixed and at times quite

limited. Although there are examples within the UK of journeys where the railway

and main road are more or less parallel (for example, the M4 and the railway between

Newbury and Reading), there are plenty of journeys where this is not the case. When

travelling between Newbury and Southampton, for example, the most direct driving

route is straight down the A34, a distance of around 60 km (Transport Direct, 2012b),

whereas travelling by train involves travelling east to Reading before returning south west

to Southampton, a distance of nearly 100 km (Transport Direct, 2012b). Any advantages

the railway has in terms of operational efficiency are offset by the extra distance travelled,

although there will be some cases where the railway takes a less circuitous route than

the road.

An additional consideration is the fact that whereas the car can be used for an entire

journey between two points, it is very rare for a journey to be made which begins or

ends at a railway station. Hence when travelling by rail, a journey will usually comprise

more than the actual travelling on the train itself (the “line-haul element”). Transport

Watch UK suggest that for journeys whose main mode is rail, the average distance

travelled is about 7.5 miles more than the line-haul distance (Transport Watch UK,

2006). Where journeys to and from the station are made on foot, bicycle, or by existing

public transport, it would reasonably be expected that the environmental impact would

be negligible. At the other end of the scale, the worst-case scenario would perhaps be if
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a traveller received a lift in a car to and from the station, which could necessitate an

extra return car journey at each end of the trip. Additionally, when considering a new

station, the impact of developing a new bus network or other public transport system to

provide accessibility should not be underestimated.

The same considerations also apply to other modes of public transport, including flying.

The illustrative model therefore needs to be developed to take this into account. Whereas

it would be impossible to gather the data to accurately analyse every passenger’s entire

journey, some concept of travel patterns to/from the station or airport will be essential.

11.7.4 A summary of other aspects of sustainability

Chapter 1 introduced the concept of sustainability, and the notion that it has three

facets — economical, environmental and social. This work has focussed particularly

on the environmental aspects, and — more specifically — the goals of reducing energy

consumption and greenhouse gas emissions, but that doesn’t mean to say that other

sustainability concerns should be ignored when making travel choices. The limitations

of emissions per passenger-km as a metric were discussed in Chapter 10, where other

potential benefits of different modes were introduced. Table 11.16 summarises some other

sustainability concerns. It is evident that there may be some conflicts between them.
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Table 11.16: A summary of other sustainability concerns, besides energy
consumption and GHG emissions

Concern Area(s) of
sustainability

Likely best choice
of mode

Notes

Travel time Economic; affects use
of time and limits
time for other
productivity. Social;
improved travel time
can reduce isolation
of some communities
and people.

Air (long distance) or
Rail (short to
medium distance) —
provided that access
to/from the station
is convenient. In
some cases, the
door-to-door option
offered by the car
may be preferable.

Assumes that a
reduction in travel
time is a
sustainability goal.
Some sustainability
benefits, particularly
economic ones, can
be had from a
productive use of the
journey itself
(Section 1.11.2).

Flexibility Social; improved
connectivity and
mobility. Economic;
more flexible travel
options can allow for
better business links

Car High frequency
public transport
services can provide
necessary flexibility
between certain
origin and
destination pairs.
The low frequency of
bus and rail services
is a big disadvantage
on the Swansea to
Fishguard route.

Cost Economic and social;
more affordable
travel options can
improve mobility

Car or bus. Travel
concessions (e.g. for
the elderly) can
make bus travel
particularly
attractive on this
front.

Leisure travellers are
typically more
price-sensitive than
business travellers.

Noise Environmental
(although there may
also be an economic
benefit to reducing
health problems
associated with noise
pollution).

Electric Rail High-speed rail can
still be quite noisy

Air quality Environmental (and
socio-economic if
related health
problems are taken
into account

Electric Rail

Visual Intrusion Environmental.
Economic if land and
property values are
adversely affected

Air Visual intrusion near
an airport is a
concern. Rail
infrastructure and
motorways tend to
be the most visually
intrusive along the
length of a route.
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11.8 Conclusions

The use of empirical data and other findings from the literature has enabled the outputs

of the carbon calculator tools considered in Chapter 2 to be verified, and has allowed

life-cycle emissions to be considered. It was found that the outputs from Travel Footprint

were most representative of reality, provided that the user made appropriate choices

about the mode. There was noticeable variation from the average data used by Transport

Direct, which typically overestimated emissions from electric rail. The empirical analysis

undertaken in Chapter 5, suggests that even when exact details are known about the

train, the route and the passenger loadings, operational emissions are still subject to

variation, and in addition to this, variation in train-type and passenger numbers is very

common — hence it would be preferable if the outputs from carbon calculators indicated

a possible range. The use of an absolute value, often to at least one decimal place, is

arguably a bit meaningless. Overall, despite the potential for variation, it was found that

carbon calculators — especially Travel Footprint — could be used to make a reasonable

estimate of operational emissions.

A discussion ensued about life-cycle emissions, and the Euston to Glasgow route was

examined in more detail. Although life-cycle emissions were found to be significant,

their consideration did not particularly influence whether one mode was typically more

polluting than another. However, this may depend on the assumptions made, and a new

railway project requiring a significant amount of earthworks, bridges and tunnels may

have particularly high life-cycle costs.

As per Chapter 10, it was found that the load factors did have an impact on the relative

performance between modes. At high load factors, domestic aviation remained the most

polluting, but the gap between other modes, particularly between intercity rail and coach

travel narrowed.

For informing policy decisions, comparisons based on carbon emissions per passenger

should not be the only factor influencing modal choice, and it was noted that the whole

door-to-door journey should be properly considered before assuming that rail or bus

travel is always preferable car travel. The issue of vehicle trip cancellation and the effect

of individual modal shift means that in the short term the best policy for reducing carbon

emissions is to encourage the use of the least polluting mode of public transport (rail or

coach), but long term service provision and behavioural change should be considered.





Chapter 12

Concluding remarks & future

work

The concept of sustainability was introduced in Chapter 1 as being one of the key

challenges of the present age. A very broad topic, it was defined by Brundtland (1987)

as “development that meets the needs of the present without compromising the ability of

future generations to meet their own needs.” Sustainability has economic, environmental

and social facets which must be kept in balance, and may sometimes be in conflict with

one another. Sustainability is something to strive for in many areas of life and sectors of

activity, and the transport sector stands out both as a sector which should in itself be

sustainable and as a key aspect of sustainability in other areas due to the provision of

mobility and the support of economic activity.

To move from broad definitions to practical concepts, sustainability goals are often

defined. Some key sustainability objectives were introduced in Section 1.4, and it was

noted that many such goals can simultaneously support two or more of the three facets.

For example, mitigation of the effects of climate change is thought to have economic

benefits (compared with the alternative costs of adaptation later on) and social benefits

(such as the protection of livelihoods and communities which would otherwise be “at

risk”). Focussing particularly on environmental sustainability, there are many noteworthy

concerns, including a desire for better land-use management, a reduction in noise and

visual issues, better resource management and a reduction in emissions. Given the

global challenges associated with concerns about climate change, and the consensus that

greenhouse gas (GHG) emissions need to be reduced, the reduction of GHG emissions

was chosen as the main focus of the research. Tied in with this was a focus on a reduction

in energy consumption, because the two can be directly related and the latter is often

more easily understood and quantified.

It was shown that the transport sector is responsible for a significant amount of global

GHG emissions. A key reason for this is a strong reliance on the internal combustion
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engine, and as such, carbon dioxide (CO2) is currently the most dominant GHG produced

by the transport sector. Although technological improvements have a role to play,

continued demand for travel means that other policies will be required if stringent GHG

reduction targets are to be met. On the basis that the provision of transport is itself a

key sustainability concern, blanket policies to reduce travel demand completely could

have undesirable economic and social ramifications. One possible behavioural solution,

however, is to encourage shift from those modes which emit more GHGs to those modes

which emit less.

In this context, rail transport — which is currently a minority mode, especially compared

with car travel — could be a good target for such modal shift, with the bulk movement

of passengers and freight on steel rails being comparatively efficient. With a particular

focus on passenger transport, this research has set out to investigate whether modal shift

from road transport (and, where applicable, domestic aviation) to rail transport does

indeed have potential as a policy for reducing GHG emissions.

Chapter 2 reviewed some online carbon calculator tools used for estimating carbon

emissions from a given journey, and the results for three different sample journeys

were considered. It was found that making a journey by train would be expected to

produce less CO2 emissions per passenger than the same journey by car in each case

and — in the case of a long distance journey — it would certainly be less polluting per

passenger than flying. The distinction between the train and the bus was less clear,

with some carbon calculators suggesting that the bus would be better than the train.

Consideration of the underlying methodology in each case, however, made it clear that

robust conclusions from the carbon calculator outputs should not be drawn. Carbon

calculators rely on assumptions about the type of vehicle, the journey distance (especially

for public transport modes) and the typical passenger load factors (which affects how

emissions are apportioned on a per-passenger basis). There was a notable reliance on

average data, which means that the results may not be applicable to specific journeys.

In order to make more robust comparisons, it was decided to move away from average

data where possible, and the second part of Chapter 2 included a review of available

data for cars and trains. It was found that emissions from cars (in Europe, at least) are

theoretically well understood, due to legislation which requires the publication of fuel

consumption and CO2 emissions data for all models of car on sale in the European Union.

In practice, it is noted that the standardised laboratory testing used to obtain official

figures may be increasingly unrepresentative of real-world conditions, but there is some

understanding of how the manufacturers’ figures should be adjusted to take into account

real-world driving. It was found that data for trains are much less well understood, and

a review of the existing data uncovered a range of methodologies, from simulations with

basic assumptions made about the route and the service pattern to empirical data taken

from just a handful of isolated journeys. The fact that several sources suggested very
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different energy consumption data for the same class of train made it clear that more

research was required.

Some Train Operating Companies (TOCs) in the UK have recently fitted their electric

train fleets with energy meters, in order to more accurately monitor consumption, and

recorded data were obtained from two such TOCs. The basics of energy metering

systems, and a summary of the data available were presented in Chapter 3. Data about

the physical railway network and train scheduling data were used to calculate energy

consumption in terms of kilowatt-hour (kWh) per train-km for a large number of different

services (Chapter 4). This metric provided a basis for comparison with other modes,

once passenger load factors had been estimated, and allowed different trains and services

to be compared. The dataset was much more comprehensive than any of the existing

empirical data considered in Chapter 2, and the variation in observed operational energy

consumption was explored in Chapter 5. The observed range in energy consumption for

each of the trains in the empirical data set studied here is less than the range of estimated

values for a given type of train in the literature reviewed in Chapter 2. This is likely

to be because of the reliance in the literature on simulations, which can have limited

accuracy, and because the data published are not always well defined — for example, it

is not always clear whether the published data refer to net energy consumption (taking

in to account the energy recuperated if the train is fitted with a regenerative braking

system) or whether they include other overheads such as non-revenue running and idling.

Nonetheless, significant variation was observed in the empirical data, with aspects of

the route and service, the influence of the driver and temporal factors being important

explanatory factors.

No driver data were available for the fleet of suburban trains studied, but the route

itself was found to be a significant explanatory variable for the observed variation in

operational energy consumption. An important characteristic of a given route and

schedule is the distance between stops, and trends were observed between the mean stop

spacing and the mean net operational energy consumption. RSSB (2010a) suggested

ways in which services could be classified according to the mean distance between stops,

and the observed energy consumption for outer suburban services operated by Class

350/2 trains was found to be 14% higher than the observed energy consumption for

inter-urban services operated by the same trains (Table 11.1). This confirms the claim

by RSSB that some of the differences they found for outwardly similar types of train can

probably be attributed to variations in the route and service pattern and shows that the

type of service must be taken in to account when considering data about the operational

energy consumption of a train.

Where (non-personally identifiable) driver data were available, for the fleet of intercity

trains studied, the (anonymised) DriverID number was used as an explanatory variable

to estimate the influence of the driver on the operational energy consumption. It was

found that when using single explanatory variable univariate linear regression models for
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the mean net energy consumption, the adjusted R2 value was higher for DriverID than

it was for route as an explanatory variable, although it should be noted that aspects of

the route and service appear to be less important for intercity services than for suburban

services (see Figures 5.8 to 5.10, for example). Methods for modelling and simulating the

operational energy consumption of a train were explored in Chapter 7 where it was found

that the use of rudimentary fixed parameters to model driving style were inadequate for

accurately modelling the observed energy consumption on four services chosen for more

detailed analysis. Furthermore, when maximum application of tractive effort and braking

force were assumed (“all out running”), the mean net energy consumption estimated by

the Arup RouteMaster tool increased from 2% below the observed mean to 26% above

it. It is no wonder, therefore, that the values for a given type of train in the reviewed

literature (Section 2.5), which include a mixture of simulated and empirical data, were

found to vary so much.

Driver efficiency ratings were devised, which were more suitable for modelling the influence

of the driver than an arbitrary DriverID. Chapter 8 studied the empirical On Train

Monitoring Recorder (OTMR) data in more detail for the four services selected in

Chapter 7. It was found that coasting (running with no applied traction or braking force)

is an important part of the overall driving profile, and that those drivers ranked as most

efficient made better use of coasting. The variation of applied tractive effort with speed

was investigated, and the resulting profiles were found to differ between the different

routes. This is likely to be because different routes have different gradients, line speed

profiles and stopping patterns, which can all influence the required tractive effort.

It was noted that the operational energy consumption could be divided into three key

components — energy used to move the train (the traction energy), energy used for

onboard auxiliaries such as heating and lighting (the hotel load) and, where the train

is so equipped, energy recovered by regenerative braking systems and returned to the

grid. Chapter 6 analysed the regenerative braking performance of the trains which were

studied in Chapter 5 and it was found that such systems can indeed offer significant

benefits. As with the data for the net energy consumption in Chapter 5, simple analysis

of variance was undertaken. Again, the influence of the driver and aspects of the route

and service were seen to be important, but there was less temporal variation. It was

difficult from the available data to measure the hotel load accurately, but estimates were

made by considering energy measurements taken when the trains were stationary. It was

found that there was a variation in the hotel load with temperature, which was expected

due to the fact that the heating, ventilation and air-conditioning (HVAC) systems are an

important component. The hotel load was found to form a larger part of the net energy

consumption for suburban services, likely to be due to lower running speeds and more

frequent opening of the outer doors, but even for the intercity services it was found to be

in the region of 10% of the net energy consumption — this affirms recent decisions taken

by some TOCs to fit trains with more energy efficient lighting and auxiliary systems.
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Initial modal comparisons in Chapter 1 and Chapter 2 were made on a per-passenger

basis, which makes sense because on a per-vehicle basis different types of transport

are generally not directly comparable. In order to calculate energy consumption or

emissions on a per-passenger basis, passenger occupancy levels must be known. These

were explored in Chapter 10 where it was shown that assumptions about passenger

occupancy levels can greatly affect the comparisons between modes when considering

GHG emissions. For rail, the passenger occupancy levels can be particularly variable

— especially on routes used by commuter traffic. It was also found that defining load

factor in terms of seating capacity was not always appropriate. For long-distance bus

and rail services, it is reasonable to expect all passengers to have a seat, whereas for

suburban services there could be a number of standing passengers. It was noted that

strategies to increase the occupancy levels of a public transport service, thereby reducing

the emissions per passenger, could be counter-productive if they increased travel demand

rather than encouraged modal shift.

Although some thought had been given to non-revenue overheads such as running to/from

the depot and idling (Section 6.7) most of the comparisons centred around the operational

energy consumption and emissions directly associated with the movement of passengers

between two points. Chapter 9 provided an overview of some of the wider life-cycle

emissions associated with the provision of a transport system, including the construction

and maintenance of the vehicles and infrastructure. Data available in the literature are

variable, reflecting the level of complexity, the variation between different systems (for

example, an urban rail system has very different infrastructure from a long distance one)

and the fact that boundaries for what should and should not be considered are sometimes

ill-defined. It was found, however, that life-cycle components are significant and should

not be ignored — especially for rail systems, which can require more carbon-intensive

infrastructure than other modes.

Chapter 11 returned to the carbon calculator comparisons, using the more specific data

obtained during this research to make more accurate estimates of the emissions for

the three sample journeys. It was found that even when life-cycle considerations were

taken into account, the overall trends remained the same — namely that trains generally

produce fewer emissions per passenger than cars or aircraft. However, the pitfalls of

using average data (as used by the Transport Direct carbon calculator) can be seen in

Figures 11.1 to 11.3 — for the routes operated by electric diesel with high load factors,

Transport Direct overestimated the emissions compared with the empirical estimates

calculated here, whilst for the route between Swansea and Fishguard, which is a rural

diesel service, Transport Direct underestimated the emissions.

Looking ahead, it could be concluded that the railway is indeed a suitable target for modal

shift if the reduction of energy consumption and emissions remains a key concern. There

are, however, questions which need to be answered. Chapter 2 showed how progress is

being made in the motor industry and if there continues to be a move towards alternative
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fuels and electric cars then the advantage the train has may narrow. Chapter 10 showed

how a full hybrid car could provide fewer emissions per passenger than a train, whilst

Chapter 11 outlined some of the other advantages of car-sharing schemes. On the other

hand, however, the rail industry is also set to benefit from technological improvements

and the decarbonisation of the electricity grid.

Within the diverse range of sustainability goals, different modes have different strengths.

Although the coach was found to be very competitive compared with intercity rail in

terms of emissions, rail remains more attractive in other areas, including speed and use

of travel time (in many cases). These factors should not be ignored, and play a role in

determining the potential for modal shift. Questions about how to encourage modal

shift without encouraging new travel demand need to be answered, whilst an inherent

variability in demand for rail services (Chapter 10) mean that making the most efficient

use of capacity may not be possible all the time. As it stands, the available rail capacity

compared with the available road capacity is small and widespread modal shift may

require new infrastructure. In this case, some of the life-cycle concerns, which may be

considered less important for existing infrastructure, become more prominent.

Rail should be able to play an important role as part of a wider sustainable transport

system, and it has been shown that it can currently provide mass transport with fewer

emissions per passenger than a typical journey made by car. However, by making use of a

much more comprehensive empirical dataset than has been found in previously published

literature, this thesis has confirmed that the operational energy consumption (and related

emissions) of rail depend on the context, with some routes and services performing better

than others. Comparison of the empirical data analysed with estimates from a simulation

tool and with existing data in the literature has shown that assumptions made about

route and service or about driving style can make a significant difference, and that some

simulation data are not adequate enough for making fair comparisons with other modes.

Although not investigated here, it is likely that rail has similar strengths as a mode of

freight transport, but in both cases, the discussion of life-cycle analysis has shown that

consideration of operational energy consumption and emissions alone are not enough.

It has been shown that policy makers wishing to develop the role of rail as part of a

sustainable transport system need to have a clear understanding of the data they make

use of, so that they can account for the limitations and make sure that it is appropriate

for a given context.

There is much scope for future work on the topic. Chapter 5 noted that there are

additional factors which may influence the operational energy consumption and emissions

of a train. These include train punctuality and passenger loading. The empirical data

provided by the two TOCs could be used to undertake further study on non-punctual

services, but more data would be required in order to include passenger loading in any

analysis. A welcome additional benefit of obtaining passenger loading data is that it
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would be possible to verify some of the discussions in Chapter 10 and to begin to better

understand where there is most scope for increasing passenger load factors.

It was also noted in Chapter 5 that it would be desirable to better describe features of

different routes, in order to improve the accuracy of the models to describe and predict

the variation in energy consumption, and to make them more widely applicable. A

more detailed understanding of the differences between routes may also help with the

development of improved traction and braking profiles to replace the fixed parameters

currently used by the Arup RouteMaster tool, as discussed in Chapter 8. In any case,

work is ongoing to further develop the RouteMaster tool, and the inclusion of coasting in

to the driving profile is seen as a high priority.

Finally, whilst Chapter 8 showed how features of a route (such as gradients) can affect

operational energy consumption and emissions, Chapter 9 showed how features of the

route (such as tunnels and embankments) can affect life-cycle energy consumption and

emissions. A continuation of this research will therefore involve working to understand

some of the trade-offs involved in infrastructure design (for example, it may be that

something which reduces operational emissions increases embedded emissions). As part

of this, work with Arup is ongoing to enhance a database of embedded carbon in railway

infrastructure.





Appendix A

Energy consumption data

provided for the research

Operational energy consumption data were provided for this research by two UK Train

Operating Companies (TOCs), London Midland and Virgin Trains.

A.1 Virgin Trains data

Virgin Trains supplied energy consumption data from their fleet of intercity Class 390

Pendolino trains, as pictured in Figure A.1. Basic details of the fleet are summarised in

Table A.1.

Figure A.1: A Pendolino train (Scott, 2004)
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Table A.1: Details of Virgin Trains’ Pendolino fleet

Train type Class 390/0 Class 390/1

Number in fleet 53 (until 2012), 22 (after
2012)

35

Number of carriages 9 11

Maximum speed [km/h]
(mph)

201 (125) 201 (125)

Train mass [t] 466 567

Seating capacity 439 589

Introduction in to service 2002 2010

Notes 31 of the fleet were originally
built as nine-carriage Class

390/0 and later extended

The energy measurement system on the Pendolino fleet is part of the Train Management

System (TMS). The TMS records the energy usage and aggregates it over five-minute

segments. At the end of each five-minute dataset, the TMS date/time stamp and GPS

position is attached. A ground based server polls each train on a nightly basis and

downloads these aggregated readings. Each Pendolino train is made up of a fixed set

of either nine or 11 carriages. Although each set is always operated as a whole unit,

with one driving cab at each end, the trains are divided into segments, each with its

own systems. A nine-carriage train comprises two segments, and an 11-carriage train

has three. Each segment measures its own energy usage from three current transducers

(CTs) and voltage transducer (VT).

Energy measurements are made in each of the two segments of a nine-carriage Pendolino

and in each of the three segments of an 11-carriage Pendolino. At each measurement

point, both the gross energy consumed and that returned to the grid via the regenerative

braking system is recorded in kilowatt-hour (kWh). Energy data for the whole train can

be obtained by combining the data for each segment.

On Train Monitoring Recorder (OTMR) Data are recorded across 159 channels, each

one monitoring a different input or variable. Channels include speed, distance, driver

inputs and the operation of various train functions. The system is an event recorder,

and data are captured every time the input value on any given channel changes. Each

such event is assigned two integer IDs — a RunID, which is incremented every time the

train is started or begins a new duty, and a TimeSlotID which is unique to each event

recorded within a Run.
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The data from Virgin Trains were supplied in a Microsoft SQL database. Tables in the

database include a table of the energy readings taken every five-minutes, data pertaining

to the route allocation of each train, and a comprehensive set of OTMR data.

A summary of the data supplied by Virgin Trains is given in Table A.2.

Table A.2: A summary of the data supplied by Virgin Trains

Data Period Covered Notes

Energy Readings 2nd February 2009 to 1st
September 2012

20,470,550 records in total,
covering the entire Pendolino
fleet. Each record includes
the date the measurements
were taken, the train they
were taken from, energy
readings from each train
segment, the location of the
train at the time of
measurement and an
indication of the quality of
the measurements.

Fleet Maintenance Records 29th March 2010 to 6th
September 2012

Some records undated.

Fleet Allocation Records 1st April 2009 to 6th
September 2012

443,163 records in total. The
table includes allocated
schedules for each train in
the fleet, including departure
and arrival times and route
mileage.

Train Running Data 1st April 2010 to 5th
September 2012

391,543 records in total.
Records include actual
performance data for each
scheduled service, with fields
including Punctuality at
Origin and Destination (in
minutes).

OTMR Data 15 Tables

A.2 London Midland data

London Midland supplied energy consumption data from their fleet of suburban electric

trains, comprising Class 321s (Figure A.2), Class 323s (Figure A.3), and Class 350s

(Figure A.4). Basic details of the fleet are summarised in Table A.3.

London Midland use separate energy metering systems, provided by Interfleet Technology.

In addition to monitoring electricity consumption via a voltage/current transducer in the
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Figure A.2: A Class 321 train (Skuce, 2009a)

Figure A.3: A Class 323 train (Wikimedia Commons, 2008)

Figure A.4: A Class 350 train (Skuce, 2009b)
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Table A.3: Details of London Midland’s electric train fleet

Train type Class 321 Class 323 Class 350/1 Class 350/2

Number in fleet 7 26 30 37

Number of
carriages

4 3 4 4

Maximum speed
[km/h] (mph)

161 (100) 145 (90) 161 (100) 161 (100)

Introduction in
to service

1989 to 1990 1992 to 1993 2004 to 2005 2008 to 2009

Notes Since the data
for this research

were collected
they have been

upgraded to run
at 177 km/h

train’s pantograph well, the meter fitted inside each train undertakes various calculations

and records the date/time and GPS position of each energy reading (Interfleet Technology,

n.d.). The data are transmitted over the cellular network to Interfleet’s servers, where

they are is processed and analysed. Readings are taken on a minute-by-minute basis

(London Midland, 2011).

London Midland arranged for access to the Energyx web portal, through which energy

consumption data for their fleet of electric trains could be viewed and downloaded.

Because it was not straightforward to download data in bulk, London Midland also

provided a data table covering January 2012 for the entire fleet.

In addition, a table containing the route allocations for the fleet over the same period was

also provided. The tables were provided in the standard Comma Separated Value (.csv)

format, from which a Microsoft SQL database was constructed to facilitate querying and

sorting the data.

A summary of the data supplied by London Midland is given in Table A.4.
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Table A.4: A summary of the data supplied by London Midland

Data Period Covered Notes

Energy Readings 1st January 2012 to 31st
January 2012 inclusive

3,933,803 records in total.
Each record is assigned a
unique integer ID and
includes the time the reading
was taken and the train it
was taken from. Energy
measurements are split into
gross energy, energy returned
to the grid via regenerative
braking and net energy — all
in kWh. Each record also
includes a location field, with
a GPS measurement
describing the location of the
train at the time the reading
was taken and integer fields
to indicate the reliability of
the data. Additional fields
include measurement of
current and voltage and
estimates of CO2 emissions.

Fleet Allocation Records 30th December 2011 to 2nd
February 2012

Matches energy readings to a
scheduled service, defined by
an integer “service code”, an
alphanumeric “service
headcode”, a start time and
an end time. 1,739,744
allocated energy readings
over 19,477 scheduled
services.
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A synopsis of the data tables built

for analysing London Midland

data

To facilitate analysis of the energy data supplied by London Midland, a new Microsoft SQL

database was created and populated accordingly. The key data tables are summarised

here.
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Table B.1: A summary of the data contained in the “EnergyReadings” data
table

Field Name Field Contents

EnergyReadingID The unique integer supplied with each energy
reading

UnitClass The first four digits of the fleet number of the
train. These describe the type of train in
question and have been included separately
because the energy data is for a
non-homogenous fleet of trains and needs to
be analysed accordingly.

FleetNumber The last two digits of the fleet number of the
train, identifying a particular train within a
UnitClass

TimeStamp The date/time of the energy reading

Latitude
The GPS data supplied with the energy reading

Longitude

GrossKwh The total energy consumed (summed over all
metering points)

RegenKwh The total energy returned to the grid
(summed over all metering points)

EnergyQualityRef An integer recorded to indicate the quality of
the energy data

LocationQualityRef An integer recorded to indicate the quality of
the location data

Table B.2: A summary of selected fields in the “EnergyReadingStatus” data
table

Field Name Field Contents

EnergyReadingID (see Table B.1)

UnitClass (see Table B.1)

Train The full six digit identifying number for the
train, in the format UnitClass +
FleetNumber

TimeStamp (see Table B.1)

TimePeriod The time period in which the energy reading
was taken.

EnergyStatus “OK” if the relevant energy quality reference
is 127, “N” otherwise
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Table B.3: A summary of the data contained in the “AllocationID” data table

Field Name Field Contents

EnergyReadingID The unique integer to identify a particular
energy reading. Synonymous with
IDtblRawEnergyUsage in the tables supplied
by London Midland

AllocationID An integer generated to identify the
allocation of a specific train to a specific
service

UnitClass The class of train which has been allocated to
the service

FleetNumber The specific train which has been allocated

ServiceID An integer generated to identify a specific
service

ServiceHeadCode The alphanumeric code used to identify a
particular train service — as provided by
London Midland in the allocations table.

ServiceCode An integer used to identify a particular train
service — as provided by London Midland in
the allocations table.

ServiceStartDateTime The date and time at which the service
started — as provided by London Midland in
the allocations table.

ServiceEndDateTime The date and time at which the service
stopped — as provided by London Midland
in the allocations table.
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Table B.4: A summary of the data contained in the “AllocationDetails” data
table

Field Name Field Contents

AllocationID The unique integer ID for the allocation of a
particular train to a particular service

UnitClass The class of train which has been allocated to
the service

FleetNumber The specific train which has been allocated

ServiceID The integer ID of the service to which the
train has been allocated

UnitCount The number of trains which have been
allocated to the service — used to identify
services which are operated by trains running
in multiple

ServiceHeadcode The alphanumeric code used to identify a
particular train service — as provided by
London Midland in the allocations table

ObservedOrigin The nearest TIPLOC matched to the first
energy reading for a given service from the
AllocationID table

ObservedDestination The nearest TIPLOC matched to the last
energy reading for a given service from the
AllocationID table

ServiceStartDateTime The date and time at which the service
started — as provided by London Midland in
the allocations table

ServiceEndDateTime The date and time at which the service
stopped — as provided by London Midland
in the allocations table

ServiceMinutes The number of minutes between the
ServiceStartDateTime and the
ServiceEndDateTime

TotalReadings The total number of energy readings linked
to a particular allocation

NonStationaryReadings The number of energy readings corresponding
to a period of movement linked to a
particular allocation

ValidEnergyReadings The number of energy readings linked to a
particular allocation which are not thought to
be erroneous

ValidLocationReadings The number of energy readings linked to a
particular allocation which are thought to
have been located correctly
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Table B.5: A summary of the data contained in the “MatchedScheduleAllocation’
data table

Field Name Field Contents

AllocationID The unique integer ID for the allocation of a
particular train to a particular service

ScheduleID The unique integer ID assigned to a
particular schedule in the Train Service
Database.

DayOfWeek An integer representing the day of the week
on which the service is run, from 1 (Monday)
to 7 (Sunday)

OriginPuncuality The number of minutes between the
scheduled departure from the origin and the
actual departure from the origin (a negative
number indicates a delay)

DestinationPunctuality The number of minutes between the
scheduled arrival at the destination and the
actual arrival (a negative number indicates a
delay)

OriginEnergyReadingID The EnergyReadingID corresponding to the
train at the origin

DestEnergyReadingID The EnergyReadingID following arrival at
the destination

ScheduleKm The length of the journey (in km)
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A synopsis of the data tables built

for analysing Virgin Trains data

To facilitate analysis of the energy data supplied by Virgin Trains, a new Microsoft SQL

database was created and populated accordingly. The key data tables are summarised

here.

Table C.1: A summary of the data contained in the “ValidEnergyReadings”
table

Field Name Field Contents

ReadingID A unique integer generated and assigned to
each record for ease of referencing later.
Analogous to the EnergyReadingID field in
the London Midland data but generated as
part of the analysis rather than being
supplied in the original data.

Train The fleet number of the train in the format
390xxx

Date The date/time of the energy reading

GPS The GPS data supplied with the energy
reading

TotalGrossKwh The total energy consumed (summed over all
metering points)

TotalRegenKwh The total energy returned to the grid
(summed over all metering points)
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Table C.2: A summary of the data contained in the “ElevenCarUpgrades” table

Field Name Field Contents

FleetNumber The last two digits of the train’s fleet number,
identifying a specific train in the fleet

IntegrationDate The “11 Car Integration” date in the
maintenance records for the specific train. If
more than one such date exists, the first one
was taken. If no date exists, this field is left
empty (NULL).

FirstElevenCarSchedDept The first entry in the service allocation data
referring to the train as 3901xx rather than
3900xx. If there is no such date, this field is
left empty.

FirstEnergyReading The first energy reading for the train in
which the “653” RecordState is “OK” and
the recorded consumption is greater than
zero. If there is no such reading, this field is
left empty.

NineCarExService The assumed last day in service as a
nine-carriage train; the earliest of the
integration date and the day before the first
11-carriage energy reading. If there are no
relevant dates for the train then the field
remains NULL.

ElevenCarInService The assumed first day in service as an
11-carriage train; if no such service allocation
data exists then this is taken as the day of
the first 11-carriage energy reading. If there
are no relevant dates for the train then the
field remains NULL.

Table C.3: A summary of the data contained in the “StopDays” data table

Field Name Field Contents

FleetNumber The last two digits of the train’s fleet number

StopDate The date at which the train was recorded as
out of service

OKDate The “OK” date given in the maintenance
records (the date the train was fit for service
again)

StopDays The number of consecutive days the train was
out of service for
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Table C.4: A summary of the data contained in the “VTEnergyReadingStatus”
data table

Field Name Field Contents

EnergyReadingID The unique integer identifying the energy
reading

Train The fleet number of the train in the format
390xxx

TrainLength The number of carriages (9 or 11)

TimeStamp The date/time of the energy reading

TimePeriod The time period during which the reading
was taken

TrainStatus Used to identify when the train was in
service, at a depot or on maintenance.

AllocatedHeadcode Refers to the service the train was allocated
to at the time the reading was taken.

RunID Refers to the OTMR RunID at the time the
reading was taken.

MatchedScheduleID Refers to the service the train was allocated
to at the time the reading was taken.

RouteName Refers to the service the train was allocated
to at the time the reading was taken.

TempC Gives an estimate of the temperature at the
time the reading was taken
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Table C.5: A summary of the data contained in the “RunAllocations” data table

Field Name Field Contents

RunID The integer identifying a particular run

FleetNumber The two digits which identify a particular
train in the fleet

DriverID A unique integer which is tied to a particular
driver. No personally identifiable information
is held, but this can be used to help assess
how energy consumption varies according to
driving style

Headcode The alphanumeric code used to identify a
particular train service

ScheduledDeparture The scheduled departure time of the service

Origin The origin TIPLOC of the service

Destination The destination TIPLOC of the service

OriginPunctuality The difference in minutes between the
scheduled departure and the train running
data (where available)

DestinationPunctuality The difference in minutes between the
scheduled departure and the train running
data (where available)

RouteMiles The distance (in miles) of the allocated route

RunMiles The distance (in miles) recorded by the
OTMR along the route. It is expected to be
within 10% of the allocated data

TrainLength The number of carriages — either 9 or 11

OTMRInstance Either 1 or 2. Used to identify the two
RunIDs which correspond to the same train
on the same run (one from each train half)
and to filter the data accordingly so that
duplicate data can be excluded
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Table C.6: A summary of the data contained in the “MatchedRunSchedule” data
table

Field Name Field Contents

RunID The integer identifying a particular run

Headcode The two digits which identify a particular
train in the fleet

AllocatedDeparture The allocated departure time of the service in
the data provided by Virgin Trains

ScheduledDeparture The scheduled departure time of the service
in the Train Service Database provided by
Network Rail

AllocatedArrival The allocated arrival time of the service in
the data provided by Virgin Trains

ScheduledArrival The scheduled arrival time of the service in
the Train Service Database provided by
Network Rail

Origin The origin TIPLOC of the service

Destination The destination TIPLOC of the service

ScheduleID The unique integer ID assigned to a
particular schedule in the Train Service
Database.
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Table D.1: Key depots and sidings used by London Midland and Virgin Trains

Depot Name TIPLOC Code Type Operator

Soho Light
Maintenance Depot

SOHODED Depot London Midland

Longsight Traction
Maintenance Depot
(Electric)

LNGSEMD Depot Virgin Trains

Polmadie Carriage
Maintenance Depot

PLMDCMD Depot Virgin Trains

Wembley Inter City
Depot

WMBYICD Depot Virgin Trains

Oxley Carriage
Maintenance Depot

OXLEYCS Depot Virgin Trains

Edge Hill Carriage
Maintenance Depot

EDGHCMD Depot Virgin Trains

Northampton
Electric Maintenance
Depot

NMPTEMD Depot London Midland

Camden Carriage
Servicing Depot

CMDNCSD Depot London Midland

Camden Carriage
Washing Machine

CMDNCWN Sidings London Midland

Bletchley Carriage
Sidings

BLTCCS Sidings London Midland

Bletchley Carriage
Washing Machine

BLTCCWM Sidings London Midland

Coventry Yard COVNYD Sidings London Midland

Longbridge
Reversing Sidings

LONBRS Sidings London Midland

Northampton River
Sidings

NMPTNRS Sidings London Midland

Wolverhampton
Carriage Sidings

WVRMCS Sidings London Midland

Crewe Carriage
Sidings L&NWR Site

CREWLNW Sidings London Midland
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D.2 The format of train schedule data

Train scheduling data were obtained from Network Rail’s Train Service Database (TSDB),

which adheres to the Common Interface File (CIF) standard. A CIF Extract file is

sequential, containing fixed-length 80 character records. There are different types of

record, which can be identified by the first two bytes of a record — the record identity.

An individual train schedule comprises the following set of records:

• A basic schedule record (BS)

• A basic schedule extra details record (BX)

• Train specific note records (TN), if present

• An origin location record (LO)

• A sequence of intermediate location records (LI) in journey order, preceded by a

change en route record (CI) if present for a given location

• A terminating location record (LT)

Location specific note records (LN) may follow any LO, LI or LT records.

Basic Schedule records (BS and BX) contain a whole set of fields describing aspects of a

particular schedule. This includes dates between which the schedule is valid, the days of

the week on which the service runs, some details about the type of train used, maximum

speed data and a set of fields used to identify the service.

Although it is important to have a defined standard for train scheduling data, the CIF

format used by Network Rail is not easily linked with other data, such as train allocation

data from the operators. In order to overcome this, Python was used to extract schedule

data from the supplied CIF files and produce data tables which could be imported into

an SQL database.

A Python module was written to produce two data tables from any given CIF file. The

first table is based mainly on the “basic schedule” (BS and BX) records and contains a

summary of all the schedules contained within the CIF file. Each schedule is assigned a

unique integer ID for easy referencing later, and other fields include the Headcode, the

Train Operator (ATOC) code, the origin and destination, departure and arrival times

and the days on which the schedule is valid.

The second table is based mainly on the location fields from the CIF file and lists the

timings given at each location for a schedule, and identifies each location appropriately

as an Origin, Destination, (other) Stop or just a point which is passed (“Pass”). Each

record is associated with a schedule in the first table by means of an integer ID.
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The Python module also contains a function to ensure that the timings given in the

CIF file are properly formatted in standard SQL datetime format, and the output tables

are saved in Comma Separated Value (.csv) format, which can be imported into an

SQL database. In this research, Microsoft SQL Server was used, because that was the

standard adopted by one of the train operators who supplied data. SQL queries could

then be written to match train schedule data with data provided by the TOCs.



Appendix E

Mathematical Formulae

E.1 The Haversine Formula

The distance d between two points with latitude and longitude co-ordinates (Φ1,Λ1) and

(Φ2,Λ2) can be calculated by:

d = R.c (E.1)

where c = 2.arcsin(
√
a)

and a = sin2(∆Φ
2 ) + cos(Φ1)cos(Φ2)sin2(∆Λ

2 )

and R is the radius of the Earth (6,371km)

E.2 The Median Absolute Deviation (MAD)

For a set of values x with median M , the MAD is defined as follows (Leys et al., 2013):

MAD = Mi(|xi −Mj(xj)|) (E.2)
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