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Abstract

A new semiparametric and robust approach to small area estimation for discrete outcomes
is proposed. The methodology represents an efficient and easily computed alternative to
prediction using a generalised linear mixed model and is based on an extension of M-
quantile regression. In addition, two estimators of the prediction mean squared error are
described, one based on Taylor linearization and another based on block bootstrap. The
proposed methodology is applied to UK annual Labour Force Survey data for estimating the
proportion of the unemployed in Local Authorities in the UK. The properties of estimators

are further empirically assessed in model-based simulations.

Keywords: M-estimation; M-quantiles; Generalized linear mixed model; Robust inference; UK
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1 Introduction

Decision-makers tasked with devising and implementing policies to maximum effect need infor-
mation at disaggregated geographical levels. Such information can be obtained by producing
small area estimates derived from data collected in national surveys. The UK is one of few
countries in Europe where the National Statistics agency (the Office for National Statistics or
ONS) regularly produces small area estimates which have also gained accreditation as National
Statistics. An example of such accredited small area National Statistics is the annual set of
unemployment estimates for Unitary Authorities/Local Authority Districts (hereafter referred
to as UALADs) in the UK, which are derived from data collected in the UK Labour Force
Survey, or UKLFS. The demand for small area estimates of labour force activity in the UK

was recently highlighted in a letter written by the Librarian of the House of Commons to the
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Head of the ONS’ Labour Market Division, where the importance of a common set of key
labour force indicators at disaggregated geographical levels that can be used by Members of
the House of Commons is emphasised. Responding to this need, the ONS has recognised that
sample sizes for the UKLFS within UALADs are not sufficient to meet the 20% Coefficient
of Variation (CV) threshold necessary for publication of direct survey estimates of labour force
activity (ONS, 2006), and has implemented the use of model-based small area estimation (SAE)
methodology for producing official annual unemployment estimates for UALADs.

The increasing demand for reliable small area statistics has led to the development of a
number of efficient mixed model-based SAE methods (Rao, 2003; Jiang and Lahiri, 2006).
For example, the empirical best linear unbiased predictor (EBLUP) based on a linear mixed
model (LMM) is often recommended when the target of inference is the small area average
of a continuously distributed variable (Battese et al., 1988; Prasad and Rao, 1990). An al-
ternative approach to small area estimation is to use M-quantile regression models (Breckling
and Chambers, 1988) to characterise between area variation (Chambers and Tzavidis, 2006).
Unlike prediction based on mixed models, the M-quantile approach is semiparametric and au-
tomatically allows for outlier robust prediction. However, many survey variables, such as the
International Labour Organisation (ILO) definition of unemployment, are categorical in nature
and are therefore not suited to standard SAE methods based on LMMs.

The unemployment status of a person is a binary outcome. One option for small area pre-
diction in the case of binary outcomes is to adopt a Hierarchical Bayes approach (Malec et al.,
1997; Nandram et al., 1999) or to use Empirical Bayes (MacGibbon and Tomberlin, 1989; Far-
rell et al., 1997). Alternatively, if a frequentist approach is preferred, one can follow Jiang and
Lahiri (2001) or Jiang (2003) who propose an empirical best predictor (EBP) for a binary re-
sponse. Ugarte et al. (2009) analyse the performance of several design-based, model-assisted,
and model-based estimators for unemployment at the small area level by using different sources
of auxiliary information. Molina et al. (2007) use a multinomial logit mixed model for labour
force activity with random effects that are assumed to be the same across the categories of the
response variable. Lopez-Vizcaino et al. (2013, 2014) propose a multinomial logit mixed model
for small area estimation of a categorical response which they use to estimate labour force activ-
ity in Galicia, Spain. Their model allows for category-specific time and domain (area) random
effects, which seems appropriate. The current ONS methodology for estimating unemployment
levels and rates is based on a binary logistic mixed model with random effects specified at the
level of UALADS.

Large deviations from the expected response as well as outlying points in the space of the
explanatory variables (leverage points) are known to have a large influence on classical maxi-
mum likelihood inference based on Generalized Linear Models (GLMs) and Generalized Linear
Mixed Models (GLMMs). This has lead to the development of robust methods for fitting these
models (Pregibon, 1982; Preisser and Qagqish, 1999; Cantoni and Ronchetti, 2001; Noh and
Lee, 2007). Sinha (2004) proposes a robust Monte Carlo Newton-Raphson method of estima-

tion, which can be considered as a modification of the Monte Carlo Newton-Raphson method



of McCulloch (1997).

Tzavidis et al. (2014) propose a new semiparametric M-quantile approach to small area
prediction for counts that extends the ideas of Cantoni and Ronchetti (2001) and Chambers
and Tzavidis (2006). This predictor can be viewed as an outlier robust alternative to the more
commonly used Conditional Expectation Predictor for counts that is based on a Poisson GLMM
with Gaussian random effects. In this paper we propose a new robust approach to SAE for
binary outcomes that is based on M-quantile modelling. In particular, we extend the M-quantile
approach to SAE for continuous data (Chambers and Tzavidis, 2006) and for counts (Tzavidis
et al., 2014; Chambers et al., 014b) to the case where the response is binary. Modelling the
M-quantiles of a binary outcome presents more challenges than modelling the M-quantiles of a
count outcome. A detailed account of these challenges is provided in the present paper. With
the proposed approach random effects are avoided and between area variation in the response is
characterised by variation in area-specific values of M-quantile indices. Furthermore, outlier-
robust inference is achieved in the presence of both misclassification and measurement error.

To motivate the potential benefits from using the proposed methodology, we use data from
the UKLFS that have the same structure as those used by Molina et al. (2007). However, the
methodology presented in this paper is more aligned with the current ONS methodology, in
the sense that we focus on estimating unemployment for UALADs in the UK, with the aim of
demonstrating whether it is possible to produce reliable and in some cases improved estimates
compared to the GLMM-based estimates that are currently published by the ONS.

The structure of the paper is as follows. In Section 2 we review the current approach to
using a GLMM to estimate a small area proportion. In Section 3 we develop working models
for SAE of unemployment based on data from the UKLFS. To motivate the need for robust
estimation methods, particular emphasis in this Section is given to model diagnostics. Section
4 then describes M-quantile regression for binary data. The links between the statistical and the
econometric literature on modelling quantiles of discrete outcomes are also discussed in this
Section. This methodology is extended in Section 5 to an M-quantile approach to SAE for a bi-
nary outcome. In this Section we further propose analytic and bootstrap estimators of the mean
squared error (MSE) of small area estimators. In Section 6 we use these SAE methodologies
to estimate levels of ILO unemployment in the 406 UALADs of the UK in the year 2000. In
Section 7 we present results from model-based simulation studies aimed at assessing the ro-
bustness of the different small area predictors considered in this paper under a range of model
misspecification scenarios. In addition, the consistency of estimators is empirically evaluated.

Finally, in Section 8§ we summarise the main findings of the paper.

2 Small area estimation based on generalised linear mixed

models

Let U denote a finite population of size N which can be partitioned into 1D domains or small

areas, with U, denoting small area d. The small area population sizes Ng;d = 1,...,D are



assumed known. Let y4; be the value of the variable of interest for population unit j in area d,
and let x4 denote a p x 1 vector of unit level covariates (including an intercept). In general
it is assumed that the values of x,4; are known for all units in the population, as are the values
zq of a ¢ x 1 vector of area level covariates. However, in the important special case where
the components of x,4; are all categorical, we note that application of the methods described in
this paper only require that the area level tabulations of these variables be available. The aim
is to use the sample values of y, and the population values of x4 and z4 to infer the values
04;d = 1,..., D of a small area characteristic of interest. To save notation, in what follows
we use F to denote the expectation conditional on this information. It is well known that the
minimum mean squared error predictor of J, is then F[d4].

In many cases 0g = Ny ' >y, f(yq;) where f is a known function. The minimum mean
squared error predictor of d4 is then N; '{>° icsy L Wai) + 2 jer, Eslf(yay)]}, where sq denotes
the n, sampled units in small area d and r; denotes the N; — n, remaining (i.e. non-sampled)
units in this area. In general, the conditional expectation E[f(y4;)] can be difficult to evaluate,
and so is replaced by a suitable approximation. One such approximation is E[f(yq4)|ua] where
the uy;d = 1, ..., D are g-dimensional independent random effects characterising the between-
area differences in the distribution of yg; given x4 (see Rao, 2003; Jiang and Lahiri, 2006;
Gonzalez-Manteiga et al., 2007). This can be formalised by assuming a generalised linear

mixed model for 4 = E[yg;|ug] of the form

9(pa) = N = xg;8 + 24 ug, o))

where ¢ is a known invertible link function. When y4; is binary-valued a popular choice for g
is the logistic link function and the individual y4; values in area d are taken to be independent

Bernoulli outcomes with

1gj = Elygilug] = P(yg = 1|ug) = exp{ng }(1 + exp{nq}) ", (2)

and Var|yg|ug = pgi(1 — pg). The g-dimensional vector u, is generally assumed to be
independently distributed between areas and to follow a normal distribution with mean 0 and
covariance matrix X,,. This matrix is allowed to depend on parameters, which are then referred
to as the variance components of the GLMM, while the vector 3 in (1) is referred to as the fixed
effects parameter of this model.

We focus on the situation where the target of inference is the small area d proportion,
Ya = Ny ! > jeu, Ydj and the Bernoulli-Logistic GLMM (2) is assumed. In this case the ap-
proximation to the minimum mean squared error predictor of g is N; '[> iesy Yai T2 jer, Hdj)-
Since /14 depends on 3 and ug, a further stage of approximation is required, where unknown pa-
rameters are replaced by suitable estimates. This leads to the Conditional Expectation Predictor

(CEP) for the area d proportion ¥, under (2),

P = N v+ Y ) 3)

JESq JET,
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where jig; = exp{fg}(1 + exp{ng}) ", Ay = x5 B + z5 44, B is the vector of the estimated
fixed effects and 1, denotes the vector of the estimated area-specific random effects. In the
simplest case, ¢ = 1 and z, is a vector (0,0,...,1,...,0) with value 1 in the d-th position,
in which case the u, are scalar small area effects. We refer to (3) in this case as a ‘random
intercepts’ CEP. This model is widely used in applied work, and is the one currently used by the
ONS for calculating estimates of annual UALAD unemployment. For more details on this pre-
dictor, including estimation of its MSE, see Saei and Chambers (2003), Jiang and Lahiri (2006)
and Gonzalez-Manteiga et al. (2007). Despite their attractive properties as far as modelling
binary (and, more generally, discrete-valued) response variables are concerned, application of
GLMMs in small area estimation is not straightforward since estimation of model parameters
can be numerically demanding. Numerical approximations can be used, as for example in the R
function glmer in the package 1me4. Alternatively, estimation of the model parameters in (2)
can be carried out by using an iterative procedure that combines Maximum Penalized Quasi-
Likelihood (MPQL) estimation of 3 and u,; with REML estimation of the variance components
(Saei and Chambers, 2003). In the empirical results reported in Section 7, we used the function
glmer for fitting the GLMM defined by (1) and (2).

An alternative to (3) is the Empirical Best Predictor (EBP) of P(ys = 1|ug), see Jiang
(2003). This is given by

[exp{(ya +1)XuC = (na + 1) log(1 + exp{njy;})}]
Elexp{yaXu¢ — nqlog(1 + exp{iq})}]

exp{xyB) - : )
where yg. = >, vq and the expectations are taken with respect to ¢ ~ N(0,I). This pre-
dictor does not have a closed form and can only be computed via numerical approximation.
Computing EBPs is generally not straightforward, however, which is why National Statistical
agencies like the ONS favour computation of an approximation like the CEP. It is our under-
standing that an approximation like the CEP is also used in Molina et al. (2007) and Lopez-
Vizcaino et al. (2013, 2014). Nevertheless, in this paper we further include EBP estimation, for
the UKLFS application, by using the computational tools developed in Burgard (2013).

3 Data sources, model specification and diagnostics for the
UKLFS data

In this Section we describe the UKLFS data set that we use for illustrating the proposed method-
ology. We also present diagnostics from fitting a GLMM to this data. These diagnostics allow
us to subsequently motivate the use of an alternative semiparametric methodology based on M-

quantile models.



3.1 Data structure

The data that we use is a subset of the annual data set created by the ONS using UKLFS data
from the year 2000. The UKLFS is a quarterly survey of households living at private addresses
in the UK. Its purpose is to provide information on the UK labour market which can then be used
to develop, manage, evaluate and report on labour market policies. In this paper we focus on
using these data to estimate unemployment levels for the 406 UALADs in the UK in 2000. We
use the ILO definition of unemployment and our sample consists of about 169, 000 individuals
aged 16 and over. The ONS considers an estimate to be publishable if its estimated coefficient
of variation is less than 20 per cent. With this rule, direct survey estimates can only be published
for 75 out of the 406 UALADs given the data from 2000. Application of SAE methods based on
the CEP, see (3), significantly increases this number. Note that this requires that an appropriate
GLMM first be fitted to the survey data. Estimated model parameters for fixed and random ef-
fects are then combined with known population information for each UALAD in order to predict
its level of unemployment. The covariates we considered in our working GLMM are all either
categorical or correspond to sex-age by area counts derived from demographic and administra-
tive data sources and are based on prior studies of small area labour force characteristics in the
UK (Molina et al., 2007; ONS, 2006). These covariates are: sex-age category of an individ-
ual, with six categories corresponding to female/male and three age groups (16 — 25, 26 — 40
and > 40), government office region of the UALAD (twelve categories), ONS socio-economic
classification of the UALAD (Bailey et al., 2000) and total number of registered unemployed
in the sex-age group for the UALAD. The ONS socio-economic classification of the UALAD
consists of the following seven categories: rural areas, urban fringe, coast and services, pros-
perous England, mining, manufacturing and industry, education centres and outer London and
inner London. The total number of registered unemployed disaggregated by age and sex for
each UALAD is available from regularly updated administrative data sources, and represents
the most important contextual covariate used in the model. Government office region and ONS
socio-economic classification are area-specific categorical variables with values assigned by the
ONS.

We emphasise that all explanatory variables used in this working model for UALAD un-
employment are categorical variables for which sex-age by area counts are available. This
corresponds to the situation considered by Molina et al. (2007), and so model-fitting does not
require access to Census micro-data. This access would be required however if the model were

to include one or more person level covariates with values that varied within an age-sex by area

group.

3.2 Model fitting and model diagnostics

We start by fitting a binary logistic GLMM with normally distributed random effects to the

UKLEFS data. The estimated model parameters and the corresponding test statistics are set out



in Table 1 and are in the expected direction. For example, controlling for the effects of other
explanatory variables and unobserved heterogeneity, the odds of being unemployed for young
females are higher than the odds of any other age-sex group. Similarly, the odds of being
unemployed for sex-age=6 (men over 40) is about 0.09 times the odds for sex-age=1 (women
aged between 16 and 25). When we move from the group of women over 40 (sex-age=3) to men
aged between 16 and 25 (sex-age=4), there is a reduction in the odds of being unemployed. We
conclude that the odds of being unemployed decrease as age increases and are lower for men
than for women.

The significance of the variance component quantifying the between UALAD heterogeneity
in unemployment can be tested by using a Likelihood Ratio Test (LRT). The value of this test
statistic is 42.32, with a p-value 1.22e — 09, which provides evidence of significant unobserved
UALAD heterogeneity in the observed levels of UALAD unemployment in 2000. Given that
this is a test of whether this variance component is zero, i.e. a value on the boundary of the
parameter space, this p-value has been determined by using a 50 : 50 mixture of a 2 and a
X3 distribution (Self and Liang, 1987). The LRT is perhaps the most commonly used approach
for testing the significance of variance components. Results reported in Berkhof and Snijders
(2001) show that the LRT has good properties especially when there is a large number of level
2 units as is the case with the UKLFS dataset that we use in this paper.

Figure 1 shows the normal probability plot of estimated UALAD random effects (left plot)
and of Pearson residuals (right plot) obtained from fitting the logistic GLMM to the UKLFS
data. These plots indicate some departures from normality particularly in the tails of the distri-
bution.This is confirmed by a Shapiro-Wilk normality test, which rejects the null hypothesis that
the random effects and the Pearson residuals follow a normal distribution (p-values = 0.01371
and 0.0000, respectively). Furthermore, the distribution of the Pearson residuals indicates the
presence of potentially influential observations defined by large Pearson residuals (|rg| > 2).
One diagnostic tool for checking for the presence of such influential observations is based on
the work of Cantoni and Ronchetti (2001). Following these authors, we first carry out a robust
logistic GLM fit to the data of interest. This fit is defined by weights that modify the impact of
sample outliers. Our results suggest that although most sex-age by area cells receive a weight of
1 in the robust fit, about 17% receive weights less than 1 indicating that these cells correspond
to potentially influential observations. Note that there is no difference between the robust and
non-robust fits when all weights are equal to 1. Figure 2 shows the distribution of the weights,
by gender and age across UALADs, with values less than 1 generated by the robust GLM fit to
the UKLFS data. We can see that there is a substantial number of potentially influential data
values in every sex-age group. We conclude that developing a prediction approach that bounds

the influence of such outlying observations seems worthy of investigation for the UKLFS data.



Table 1: Model fitting results for UKLFS data: ‘.’ Significant at level 0.05, ‘x’ significant at

level 0.01, “xx’ significant at level 0.001, “x % x’.

Variable Estimate Std. Error zvalue Pr(> |z|)
Intercept -3.60404  0.18124 -19.89 0.000000 x* * *
registered unemployed 0.20762  0.02967 7.00  0.000000 *
sex-age=2 -0.17508  0.05417  -3.23  0.001229x%x
sex-age=3 -1.06979 0.05003 -21.38 0.000000x * *
sex-age=4 -1.12496  0.04407 -25.53 0.000000x *
sex-age=>5 -1.62521 0.05081 -31.99 0.000000 x* * *
sex-age=6 -2.33940  0.07604  -30.77 0.000000 s *
government=2 -0.06045 0.08692  -0.70 0.486763
government=3 0.05140  0.11485 0.45 0.654493
government=4 -0.09204  0.13790  -0.67 0.504487
government=5 0.26696  0.09752 274 0.006191xx
government=6 -0.05835  0.08521 -0.68 0.493448
government=7 0.08996 0.08818 1.02  0.307664
government=38 -0.11991 0.08387  -1.43 0.152812
government=9 -0.02315 0.09120  -0.25 0.799652
government=10 0.02623  0.09845 0.27 0.789926
government=11 0.09053  0.08705 1.04 0.298359
government=12 -0.14834  0.09464  -1.57 0.116990
socio-economic cluster=2  0.03377 0.06922 0.49 0.625705
socio-economic cluster=3  0.27070 0.07935 3.41 0.000647 * * x*
socio-economic cluster=4 -0.04883 0.07690  -0.63 0.525454
socio-economic cluster=5  0.28525 0.07655 3.73  0.000194x x* x
socio-economic cluster=6  0.05330  0.11659 0.46 0.647551
socio-economic cluster=7  0.33256 0.14546 2.29  0.022235 *x
Variance Component Estimate LR Pr(>x?%)

o 0.18519 42.32 1.22e-09
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Figure 1: Normal probability plot of estimated UALAD random effects (left plot) and of level
1 Pearson residuals (right plot) based on a logistic GLMM fit to UKLFS data.

4 M-quantile regression for binary outcomes

The diagnostic work described in the preceding Section indicates that a prediction approach that
bounds the influence of potentially outlying observations seems worthy of investigation when
estimating UALAD unemployment from UKLFS data. In this Section we therefore describe
an extension of the robust M-quantile regression modelling approach to binary data. Since M-
quantile regression modelling does not depend on how areas are specified, we drop the subscript

d in the notation used in this Section.

4.1 M-quantile regression for a continuous response

M-quantile regression (Breckling and Chambers, 1988) is a ‘quantile-like’ generalisation of re-
gression based on influence functions (M-regression). The M-quantile of order ¢ of a continuous

random variable Y with distribution function F'(Y") is the value (), that satisfies

[ () ar ) ~o, 5)

where ¢, (t) = 2¢(t){qI(t > 0) + (1 — ¢)I(t < 0)} and ¢ is a user-defined influence function.

Here o0, is a suitable measure of the scale of the random variable Y — (),. Note that when

Y(t) = t we obtain the expectile of order ¢, which represents a quantile-like generalisation of
the mean (Newey and Powell, 1987), and when v (t) = sgn(t) we obtain the standard quantile
of order ¢ (Koenker and Bassett, 1978).

Breckling and Chambers (1988) define a linear M-quantile regression model as one where

the ¢-based M-quantile @), (X; ) of order ¢ of the conditional distribution of y given the vector
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Figure 2: Histograms of the gender by age distributions of the weights from the robust logistic
GLM fit to UKLFS data across UALADs. Weights equal to one have been excluded from the
plot.

of p auxiliary variables X satisfies

Qq(X§ @Z}) = XIBQ‘ (6)

Let (y;,x;;7 = 1,...,n) denote the available data. For specified ¢ and continuous %, an

estimate Bq of 3, is obtained by solving the estimating equation

nTY hy(rje)x; =0, (7
j=1

where 7, = y; — Qq(x;5 1), Vq(rsq) = 20(0,  rjg){ql(rjq > 0) + (1 = ¢)I(rjq < 0)} and
, is a suitable robust estimator of scale, i.e. 6, = median|r;,|/0.6745. In this paper we will
always use the Huber Proposal 2 influence function ¢ (t) = tI(—c <t < ¢) 4+ c- sgn(t)I(|t| >
¢). Provided the tuning constant ¢ is bounded away from zero, we can easily solve (7) using

standard iteratively re-weighted least squares (IRLS).
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4.2 M-quantile regression for binary outcomes: an estimating equation

approach

There is no obvious definition of a quantile regression function when Y is binary since the
order g quantile of a binary variable is not unique. However, provided the underlying influence
function ¢/ is continuous and monotone non-decreasing, the M-quantiles of a binary variable do
exist and are unique. This is easily seen by considering the solution to (5) when Y is binary,
with P(Y = 1) = p. In this case (5) becomes

pao (1) — - n0- o (%),

q q

It is easy to see that when ¢ (¢) = ¢ and ¢ = 0.5, the solution to this estimating equation is
Qo5 = D, as should be the case. Furthermore, when both p and ¢ lie strictly between 0 and
1, the preceding assumptions about ¢ ensure that (), also lies strictly between 0 and 1 and is
monotone non-decreasing in ¢ for fixed p. It is also monotone non-decreasing in p for fixed g
under the assumption of a fixed scale parameter. A proof of this is available from the authors
on request.

In the same way that we impose a linear specification (6) on (),(X;1)) in the continuous
case, we can impose an appropriate continuous (in ¢) specification on (),(X; ) in the binary

case. In particular, we propose to replace (6) by the linear logistic specification

' B exp(X?ﬁq)
Qq(xj:1) = 1+ exp(x!'B,)

®)

For estimating 3, we consider the extension to the M-quantile case of the Cantoni and Ronchetti
(2001) approach to robust estimation of the parameters of a GLM. In particular these authors
propose a robustified version of the maximum likelihood estimating equations for a GLM of the

form:

w(B) =0 3" {ulrue) i~ a(8)} = o0, ©

g (Mj)
_ YiTHy

where r; = =% are the Pearson residuals, £ Y;] = wj, Var[Y;] = o%(u;), i} is the derivative
J

j=1

of 11; with respect to 3 and a(8) = + > i E[w(rj)]w(xj)#w),u; ensures the Fisher consis-
tency of the solution to (9). The bounded influence function v is used to control outliers in
y, whereas the weights w are used to downweight the leverage points. When w(x;) = 1V j
Cantoni and Ronchetti (2001) refer to the solution to (9) as the Huber quasi-likelihood estima-
tor. When 1 is the identity function, (9) reduces to the usual maximum likelihood estimating
equations for a GLM.

In the case of binary outcomes, the estimating equation (9) can be extended to obtain the

M-quantile fit by applying the same asymmetric weighting of Pearson residuals as in the linear

11



case. In particular, the estimating equations (9) can be re-written as

\I/(ﬁq) =pn ! {wq(rjq)w(xj)a(cgq(ij; V)) aQ%(;Z; s

Jj=1

—a(B)} =0, (10)

i —Qa(Xy3 . — . . 0Qq(xj5%) __ .
where 7, = U055 (0, (x;: 1)) = [Qq (353 9)(1-Qy (x5 )]/, 22855 — 52(Q, (x;0)x;
and a(3,) is a bias correction term:

a(By) = n! zn; {@Dq(%)Qq(xﬁ V)—

Jj=

(=205 Y (1 o)) Yooy ) s p 00T

o(Qq(x5:9)) o(Qq(x5;9)) 9By
Setting w(x;) = 1V j leads to a Huber quasi-likelihood M-quantile estimator. An alternative
choice is w(x;) = m where 7 is the jth diagonal element of the hat matrix H =
X(XTX)~'XT, This leads to a Mallows type M-quantile estimator. The estimating equation
(10) can be solved numerically using a Fisher scoring procedure to obtain an estimate Bq of
B,. Note that when ¢ = 0.5, (10) reduces to (9). Moreover, (7) is a special case of (10) if the
linear link function Q,(x;;1) = x]Tﬁq is used and the tuning constant c¢ in the Huber influence
function tends to infinity (i.e. v is the identity function). Furthermore, this estimating equation
approach applies quite generally. For example, it can be used when Y is a count (Tzavidis et al.,
2014; Chambers et al., 014b).

At this point we must emphasise again that under the M-quantile modelling approach we
follow the tradition of M-estimation (Huber, 1981) and do not make explicit distributional as-
sumptions, e.g. assuming a Bernoulli distribution for Y. For fitting the M-quantile model we
use a logit link function and a quasi-likelihood estimator (McCullagh and Nelder, 1989) that
requires only the specification of working mean and the variance functions for Y. No explicit
distributional assumption is made as is the case under maximum-likelihood estimation. The
influence function ¢ defining the M-quantile of interest is chosen in order to bound the impact
of influential points in the space of the outcome and/or the explanatory variables. We then use
the estimating function of Cantoni and Ronchetti (2001) to define the quasi-likelihood estimator
for the parameters of the assumed mean and variance functions.

Assuming that 1) is a continuous monotone non-decreasing function, a first order approxi-

mation to the variance of (10) is given by

oo = (s e )T

Detailed expressions for these quantities are given in Appendix I. R routines for estimation and

inference using M-quantile regression with binary and count data are available from the authors.
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4.3 Links with the econometric literature

The estimating equation approach described in the previous Section does not apply to standard
quantile regression for binary data, which has been developed in the econometric literature
using a latent variable concept. However, as we now show, our proposed approach and the
econometric approach are very closely related, since the latter can be shown to be equivalent to
the solution of an estimating equation analogous to (7).

Since we confine ourselves to standard quantiles in this Section, we drop the influence
function 1/ from our notation and, following Kordas (2006), we assume that the observed values
y; depend on the outcome of a continuously distributed latent variable. In particular, we assume
that the observed value y; is generated by an unobserved (latent) real value y; in the sense that
y; = 1 wheny; > 0. Let Q;(Xj) denote the conditional quantile function of this latent variable.
Since y; = I(y; > 0) is a monotone transformation of y;, the gth conditional quantile of y;
should be the same transformation of the gth conditional quantile of y;. That is

Qq(xj) = 1(Q;(x5) > 0).

Given that Q;(X) = Xg,, it follows that Q,(x,) = I(x] 8, > 0) and a ‘maximum score’
estimator for 3, , defined by

T
By = max n” Z{% (1-¢)}(x[b>0) (12)

was suggested by Manski (1975, 1985). Put I;(b) = I{y; < I(x]b > 0)}. Since I{y; <

I;(b)} = (1 —y;)I;(b), we can, after some simplification, show that (12) reduces to

n

~

B, = min n [ql{yj > I;(b)} + (1 — ) I{y; < Li(b)}||y; — L;(b)]. (13)

b=1
=1

This is equivalent to fitting the quantile regression model Q,(x;) = I(x] B8, > 0) to the ob-

served y;, subject to the restriction ||3, = solving
(7) with ¥(t) = sgn(t), subject to this restriction. Note that the restriction is necessary in order
to ensure that 3, is identifiable (since the scale of y; is unknown) and so (12) has a solution.

A smoothed version of (12) has been proposed by Horowitz (1992) as having better finite

sample properties:
n

By =maxn 'Y {y; - (1—q)}F(o,'x]b), (14)
j=1

[b=1]|

where F'is an appropriately chosen ‘smooth’ cumulative distribution function defined on the

entire real line and 0, — 0 as n — oo. The same simplifying steps as those leading to (13)
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allow us to write (14) as

n

~

B = " [qI{yJ > Fo,'x;b)}+(1—q)[{y; < F(arflxjrb)}} ly; — F (0, 'x] b)],
=1

since 0 < F(t) < 1= I{y; < F(0,,'x]b)} = 1 — y;. That is, this ‘smoothed’ loss function
for regression quantiles for binary data leads to essentially the same estimator as the logistic

—1
formulation (8). In fact, if we put F'(t) = exp{o, 'x] b} (1—|—exp{a;1ijb}) then as o,, — 0,

-1
F(o,'x]b) — exp{x] b} (1 + exp{x?b}) , and we end up with the quantile analogue of
the solution to (7), with ),(x;; v) defined by (8) and subject to the restriction |3, = 1||.

4.4 Links with the statistical literature

Efron (1992) proposed using asymmetric maximum likelihood (AML) as an alternative ap-
proach to modelling the conditional distribution of a count outcome given a set of covariates.
As Machado and Silva (2005) point out, asymmetric maximum likelihood estimation can be
seen as the result of smoothing the objective function used to define the quantile regression es-
timator. Efron’s approach results in an estimate of the conditional location that is similar to the
conditional expectile proposed by Newey and Powell (1987). Efron’s method can be extended
to model the conditional distribution of a binary outcome. Using the binomial deviance, the
AML estimate Bw for 3 can defined as

B = argmaxn™ > _[y;log(p; (b)) + (1 — y;) log(1 — 11;(b))Juw W= ®l - (15)
b

j=1

1
where 11;(b) = exp{x] b} (1 + exp{xfb}) . From (15), by vector differentiation, the fol-

lowing estimating equation is obtained:

n

Y [ = i (B)x! [wt e ®t o, (16)

j=1

The approach we propose in this paper for estimating M-quantile regression also uses an objec-
tive function that has a degree of smoothness. In particular, the smoothness can be increased by
setting the tuning constant in the Huber influence function equal to a large value in which case
estimates of the model parameters from our approach are those obtained by Efron’s asymmet-
ric maximum likelihood estimation for a specific choice of w. In particular, setting the tuning

constant equal to a large value, (10) can be written as:

W(B,) =D { (05— Qulxss )] | =0, (17
j=1

where wj, = [q]{yj > Quxj)+ (1 — @) I{y; < Qq(xj;@b)}] This weight can be also
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written as wjq = [<1%q)f{yj > Qq(x;9)} + Hy; < Qqlxj39)}|. Setting w = 74
in Efron’s estimating equation (15) therefore results in estimates that are the same as those

obtained from our proposed estimating equation (17).

5 Robust prediction of small area proportions using M-quantile

regression

Many survey variables are binary and there is a growing demand for reliable small area estimates
based on such variables. From now on therefore we focus on using M-quantile regression

models for binary outcomes with the aim of obtaining small area estimates of proportions.

5.1 The M-quantile small area model

Mixed models use random area effects to account for between-area variation in SAE. The M-
quantile approach to SAE is based on a completely different way of modelling between-area
heterogeneity. To start, the population model is specified (and fitted) at the unit level and is free
of any small area geography. Next, define g4 such that yy = Qg (Xq;¢). Thatis, qq is a
random index that varies between zero and one. Assuming a logit specification, the population
M-quantile model for ¢4 (and hence yg;) is then defined by

Quy (X4 V) = exp{x4;84,} (1 + exp{xzz}ﬁqdj}> -

Chambers and Tzavidis (2006) refer to the g4; as the M-quantile coefficients. Their variabil-
ity reflects variability at the unit level. If clustering exists, population units in the same cluster
(or small area) will have similar M-quantile coefficients and these will be different from those
of units that belong to other clusters (or areas). An area d-specific M-quantile coefficient is then
defined as 0, = E[qq;|d], where the expectation is conditional on the distribution of the random

indices gq; within area d.

5.2 Point estimation

Chambers and Tzavidis (2006) define the empirical value g4 of the random index gq; as the
solution to 4 = Qq . (Xa5; 1) and refer to this value as the estimated M-quantile coefficient of
yq;- Provided there are sample observations in area d, and non-informative sampling method
has been used to obtain them, an estimate 6, of the area d-specific M-quantile coefficient 6
is the sample average of the estimated M-quantile coefficients for that area, otherwise we set

6, = 0.5. The corresponding M-quantile predictor of the average ¢, in small area d is

=N Y+ Y Qs (18)

JESq JETq
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When Y is binary, and we model its regression M-quantile of order ¢ via (8), the natural ex-

tension of this approach is to put Q; (X4j; ) = exp{xz,@éd} (1 + exp{xz;ﬁéd}> in (18).
However, this begs the question of how one defines the estimated area level M-quantile coeffi-
cient 6, since the estimating equation y; = qu (x;; 1) for the estimated M-quantile coefficient
of a continuous y; no longer has a solution when y; is binary. We therefore discuss extensions

of the M-quantile coefficient concept to binary Y before we consider inference based on (18).

5.3 M-quantile coefficients for binary data

A first step in defining M-quantile coefficients for binary data is to note that any reasonable
definition of this concept has to associate a larger M-quantile coefficient with a value y; = 1
compared with a value y; = 0 at the same value of x;. The next thing to note is that the solution
m; to the equation Qm]. (xj;%¢) = 0.5 can be interpreted as a measure of the propensity for
y; = 1 to be observed relative to the propensity for y; = 0 to be observed at x;. A value
m; < 0.5 indicates that y; = 1 is more likely than y; = 0 and vice versa. This leads to our first
definition of an estimated M-quantile coefficient when Y is binary.

DEFINITION A: Given binary data with fitted M-quantile regression function Qq(xj; 1), the
estimated M-quantile coefficient for observation j is ¢; = (m;+y;)/2, where Qmj (x;;9) = 0.5.

Note that provided Qq (x;;) is monotone in g at x;, the above definition of an estimated M-
quantile coefficient should be unique. In order to understand the motivation for this definition,
suppose that y; = 0 at x; and that there are many more Y = 0 than Y = 1 ‘near’ x;. Then
(a) y; = 0 is not unusual, and (b) we anticipate that the monotone increasing function f(q) =
Qq(xj; 1)) will only exceed half for values of ¢ close to one. That is, m; will be close to one and
so g; will be slightly less than half. On the other hand, suppose y; = 1 but there are still many
more Y = O than Y = 1 ‘near’ x;. Then (a) y; = 1 is unusual, and (b) we still anticipate that
the monotone increasing function f(q) = Qq(xj; 1) will only exceed half for values of ¢ close
to one. Here ¢; will be close to one. Conversely, suppose that there are many more observations
with Y = 1 than with Y = 0 ‘near’ x;, so m; is close to zero. Then if y; = 0 (an unusual
value) we expect g; will also be close to zero, while if y; = 1 (not unusual) we expect g; will
be slightly greater than a half.

The estimated M-quantile coefficients allow us to index the sample data. A somewhat dif-
ferent indexing based on quantile regression modelling of Y is described in Kordas (2006). This
takes a latent variable approach and the resulting index is essentially defined by a quantile-based
estimate of P(y; = 1|x;). Under linearity of the conditional quantiles of this latent variable,
we have already seen that Q,(x;) = I(x] 8, > 0) and so P(y; = 1|x;) = 1 — h;, where
xfﬁhj = 0. Consequently, given an estimate ﬁq for each value 0 < ¢ < 1 we can index the
sample observations by p; = 1 — h; where XJTB;U = 0. Note that this index does not depend on
y;, and so cannot reflect individual effects, which would seem to limit its usefulness in charac-
terising how groups differ after covariate effects have been taken into account. However, we can
use the approach leading to Definition A to extend this index by allowing it to reflect individual

effects.This leads to our second definition of an estimated M-quantile coefficient for the binary
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case.

DEFINITION B: Given binary data with fitted M-quantile regression function Qq(xj; 1), the
estimated M-quantile coefficient for observation j is ¢; = (h; + y;)/2, where X;FB;L]. = 0.

Note that if x7 3, = 0 < Q,(x;;¥) = 0.5 then Definition B and Definition A are identical.
This condition will hold, for example, whenever ¢ is the identity function and Q,(x;;v) =
Qq(x;) = F(x] B,) where F(t) is a distribution function that satisfies '(0) = 0.5.

Unfortunately, both Definition A and Definition B have a serious deficiency. This follows
from the fact that in applications where h; varies around some constant, say /, ¢g; will be ‘con-
centrated’ near (1+ h)/2 and h/2. Furthermore, it is impossible to observe g; = 0.5 in general.
An extreme case is where there is no relationship between y; and x;, and y; = 1 is just as likely
as y; = 0. In this case h; = 0.5, and there are just two possible values of ¢;, 0.75 (y; = 1) and
0.25 (y; = 0).

The basic reason for this behaviour is that both Definition A and Definition B compute g;
on the same scale as y;. This makes sense when the distribution of y; is measured on a linear
scale. However, in the binary case the distribution of y; is linear in the logistic scale, and so
it makes sense to define ¢; in the same way. That is, we replace ¢; and h; in Definition B by
qu (x;:10) and Qo 5(x;;¢) respectively, leading to our third, and final, definition of ¢;:

DEFINITION C: Given binary data with fitted M-quantile regression function Qq(xj; 1), the
estimated M-quantile coefficient for observation j is g;, where qu (xj;7) = (QAO.5(XJ’; ) +
Yi) /2. )

Note that under a logistic specification for (),(x;;), using Definition C is equivalent to

defining g; as the solution to y; = x;-.Fqu, where

. 0-5{Q0.5(Xj;1/)) + 5}
| = .
TR <1 —0.5{Qo.5(x;;¢) + yj})

The value y; above can be thought of as a pseudo-value that behaves ‘like’ the unobservable
latent variable whose distribution determines that of y;. In the rest of this paper, and particularly
in the simulation experiments reported in Section 7, we use Definition C when calculating
estimated M-quantile coefficients.

Small area estimation via GLMMs is based on predicted area effects. Similarly, small area
estimation using the binary M-quantile model proposed in this paper is based on estimated area
level M-quantile coefficients. A natural question to ask then concerns the strength of the rela-
tionship between the predicted area effects and the estimated area level M-quantile coefficients.
Some empirical evidence for this relationship can be obtained by conducting a simulation ex-
periment to show how the predicted area effects defined by the glmer function in R and the
estimated area level M-quantile coefficients based on Definition C are related to true area effects.
The simulated dataset was generated using D = 200 areas, each with a sample size of n; = 25.
At each simulation, values of x4 were independently drawn as Normal(0, 1) and correspond-
ing values of y,; were then generated as Bernoulli(pg;) with pg; = exp{n4} (1 + exp{ng})~*

and 74y = x4; + ug. The small area effects uy were independently drawn as Normal (0,1).
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The average correlation between the true area effects and the predicted area effects, over 1, 000
simulations, was 0.89, and the corresponding correlation between the true area effects and the
estimated area level M-quantile coefficients was 0.80. These results suggest that estimated area
level M-quantile coefficients are comparable to predicted area effects computed using standard
GLMM fitting procedures as far as capturing intra-area (domain) variability is concerned. Note
also that these simulations build on data generated via a GLMM. In real applications, where
GLMM assumptions may be violated, we expect an M-quantile approach to offer a robust alter-

native for small area estimation.

5.4 Mean squared error estimation

In this Section we propose a MSE estimator for (18) based on the linearisation approach set out
in Chambers et al. (O14a). This assumes that the working model for inference conditions on
the realised values of the area effects, and so the MSE of interest is conditional and equal to a
conditional prediction variance plus a squared conditional prediction bias. In order to conserve
space, we omit some technical details in the following development, but these are available from
the authors upon request. We also assume that the estimated area-level M-quantile coefficient
values 0, have negligible variability and so can be treated as fixed.

A first order approximation to the conditional prediction variance of (18) is then

Var(iy'® — galbs) = Nd‘z{Var[Z Qo (X;; 1/1)} +) Va?"(yj)}

jErd Jj€ra
~ Nd_g{ [Z Qo, (X;: ¢)ij] Var(Be,) [Z Qo, (X3 z/))xﬂ T
+> " Var(y) },

JETA

which can be estimated by

Varit'®) = N[0 @, e 00| Var(8,,) [ 32 @, (e 00T
JETq JETq
JETq

Here @*(Béd) is a sandwich-type estimator that can be calculated using the expressions in
Appendix I and ‘7a\r(yj) can be calculated either by (i) using the sample data from area d,
@(yj) = y4(1 — 14) or by (ii) pooling data from the entire sample, in which case @’(yj) =

y(1—17). Note that the pooled estimator should lead to more stable prediction variance estimates

when area sample sizes are very small.
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The conditional prediction bias can be approximated using the results of Copas (1988):

B a0 ~ 5 {55180} {r[{ G VB fVartB)] )

0B, 084,
0
Z Qed (Xj; 1/1) ’
{ 0B, = }
with corresponding plug-in estimator
—_— . 1 0 -1 0 —
— M@y _ L [ O A o A A
Bias(y, ©) = ON { 96, \I’(ﬁed”ged:ﬁéd } {tr H Gﬁeﬁﬁgﬂ V(Bs,) ‘Bed:ﬁéd }Var(ﬁed)] }
0
{ aﬁed Z Qed (Xj7 ¢) |ﬁ9d:Béd }
JETq
The estimator of the conditional MSE of gjfin is then
mse (§3'%) = Var(jy"?) + { Bias(j;'?)}> (19)

In the development above we make the standard assumption that a consistent estimator of
the MSE of a linear approximation to the small area estimator of interest can be used as its
MSE estimator. As noted by Harville and Jeske (1992), such an approach will not generally
be consistent, and the resulting MSE estimator can be biased low. As noted earlier, the MSE
estimator (19) ignores the contribution to the mean squared error from estimation of the area
level M-quantile coefficients by 04. This is a linearisation assumption since for large overall
sample sizes the contribution to the overall mean squared error of (18) arising from the vari-
ability of éd is of smaller order of magnitude than the prediction variance of (18). However, the
potential underestimation of the MSE of (18) implicit in (19) needs to be balanced against the
bias robustness of this MSE estimator under misspecification of the second order moments of
y, and may well lead to (19) being preferable to other MSE estimators based on higher order
approximations that depend on the model assumptions being true (Chambers et al., 014a).

A bootstrap-based method for estimating the MSE of (18) can also be implemented. This
is based on the random effects block (REB) bootstrap of Chambers and Chandra (2013). In
order to save space, the computational details for this bootstrap procedure are set out in the
Appendix II. Here we summarise the main characteristics of the method, which is a robust
alternative to the parametric bootstrap for clustered data. The REB bootstrap is free of both
the distribution and the independence assumptions of the parametric bootstrap and is consistent
when the mixed model assumption is valid. In particular, it preserves area effects by bootstrap
resampling within areas. Here we adapt this procedure in order to estimate the distribution of
the M-quantile predictor (18). This is accomplished by resampling the marginal logistic scale
residuals rﬁf @ = xde(Béd — 30,5) within each area in order to generate bootstrap values of
P(y; = 1|x;) for the population units making up the area. Bootstrap binary population values

are then obtained by using Bernoulli simulation.
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6 Estimating levels of ILO unemployment for UALADs in
the UK

In this Section we present the results from the application of the CEP and M-quantile approaches
to estimating the level of ILO unemployment for UALADs in the UK. We also consider EBP
estimation using the computational algorithms in Burgard (2013). In order to assess the result-
ing estimates we use a set of diagnostics based on the requirement that model-based small area
estimates should be consistent with corresponding unbiased direct estimates, but more precise.
In addition, given the model diagnostics presented in Section 3, we expect that the proposed
robust M-quantile approach should offer some efficiency gains over alternative predictors.

The GLMM is fitted using the glmer function in the package 1me4 of R. The M-quantile
model is fitted in R using a modified version of the robust GLM fitting procedure described in
Cantoni and Ronchetti (2001). Details of this algorithm are available from the authors of this
paper on request. The influence function ¢ used in the M-quantile model is the Huber Proposal
2 function with tuning constant ¢ = 1.345. The specification of the working model is set out in
Section 3 and was validated via a robust stepwise fitting procedure based on the Huber quasi-
deviance (Cantoni and Ronchetti, 2001). The analysis of deviance is reported in Table 2 and
shows that the model covariates are all highly significant predictors of unemployment.

Table 3 presents results from a robust fit of a Binomial GLM with a logit link function to
the UKLFS data and the corresponding non-robust fit of the same model. These results indicate
that there are some differences between the robust and non-robust model fits. This was expected

given the diagnostic analysis presented in Section 3.

Table 2: Analysis of quasi-deviance table for the M-quantile model at ¢ = 0.5. ‘. Significant
at level 0.05, ‘x’ significant at level 0.01, “xx’ significant at level 0.001, “x * *’.

Covariates pseudo df df x? value p-value
Null 168977

registered unemployed 168976 1 894.8  0.0000 x*
registered unemployed, sex-age 168971 5 1793.8 0.0000 * *x
registered unemployed, sex-age, government 168960 11 65.0 0.0000 * *x
registered unemployed, sex-age, government, 168954 6 53.5  0.0000 * *x*

socio-economic cluster

Figure 3 maps the estimated levels of ILO unemployment for UALADs in the UK in 2000
using three SAE methodologies namely, direct estimation, CEP estimation and M-quantile es-
timation. The emerging patterns of unemployment for UALADs in the UK produced by the
proposed M-quantile methodology are consistent with the patterns reported by ONS (2006).
Clusters of higher unemployment in 2000 are located in UALADs in parts of London, South
Wales, North-east and North-west England and Scotland.

Although maps offer an effective tool for summarising small area estimates, they do not
answer a fundamental question. How good are the estimates produced by using the proposed

binary M-quantile model? In order to answer this question, we note that model-based estimates
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Figure 3: Maps of estimated levels of ILO unemployment for UALADs in the UK in 2000:
Direct (top), CEP (bottom left) and M-quantile (bottom right) estimates.

21



Table 3: Estimated coefficients of the robust GLM logistic model fit (3g.;) and the non-robust

GLM logistic model fit (3) .

Variable Brob J6]

Estimate Std. Error Pr(> |z|) Estimate Std. Error Pr(> |z])
Intercept -3.35478 0.14593  0.000000 -3.32730 0.14063  0.000000
registered unemployed 0.16948 0.02295  0.000000 0.16018 0.02214  0.000000
sex-age=2 -0.24560 0.05344 -0.000004 -0.20798 0.05155  0.000054
sex-age=3 -1.05495 0.04733  0.000000 -1.01950 0.04592  0.000000
sex-age=4 -1.16072 0.04459 -0.000000 -1.13803 0.04327  0.000000
sex-age=>5 -1.63163 0.05179  0.000000 -1.63127 0.05034  0.000000
sex-age=6 -2.41673 0.07444  0.000000 -2.39604 0.07110  0.000000
government=2 -0.07659 0.07680 0.318627 -0.05160 0.07369  0.483805
government=3 0.05644 0.09093 0.534794 0.07652 0.08791 0.384015
government=4 -0.04934 0.09970 0.620659 -0.03599 0.09679  0.709987
government=5 0.25743 0.07798  0.000962  0.25886 0.07563  0.000620
government=6 -0.05733 0.07083 0.418323 -0.05510 0.06857 0.421684
government=7 0.07565 0.07063 0.284165 0.08899 0.06837 0.193101
government=8 -0.15685 0.07396  0.033941 -0.11721 0.07082  0.097904
government=9 -0.04077 0.07894  0.605478 -0.02246 0.07592 0.767321
government=10 0.02560  0.08229 0.755685 0.02512  0.07973  0.752755
government=11 0.03893 0.07127 0.584881 0.04193 0.06900  0.543398
government=12 -0.19680 0.07380 0.007660 -0.14136 0.07100  0.046483
socio-economic cluster=2  0.03396 0.06126  0.579389  0.04577 0.05872  0.435708
socio-economic cluster=3  0.24173 0.06856  0.000422  0.24935 0.06580 0.000151
socio-economic cluster=4 -0.07265 0.06958 0.296433 -0.07014 0.06648 0.291409
socio-economic cluster=5  0.31740 0.06489  0.000001  0.32286 0.06242  0.000000
socio-economic cluster=6  0.09617 0.09133 0.292351 0.08438 0.08827 0.339108
socio-economic cluster=7  0.40772 0.11271 0.000297 0.38995 0.10920 0.000356

should be (i) ‘close’ to the direct estimates and (ii) more precise than direct estimates. Following
Brown et al. (2001), we assess (1) by computing a goodness of fit (GoF) diagnostic. This is
based on the idea that if model-based estimates are ‘close’ to the small area value of interest,
then unbiased direct estimates can be considered as random variables whose expected values
are equal to the values of the corresponding model-based estimates. The GoF diagnostic is

computed as the value of the following Wald statistic for each model based estimator:

W:

{ (zjgirect o Z?Zandd)Q }
7\ Var(ggr) + MSE(57)

The realised value of W can then be compared against the 0.95 quantile of a x? distribution
with D = 406 degrees of freedom, i.e. 453.98. Note that the m of the M-quantile estimates
is calculated using the REB bootstrap of Section 5.4 while the corresponding value for the
CEP estimates is calculated by using the parametric bootstrap proposed in Gonzéilez-Manteiga
et al. (2007). The values of the GoF are 412.64 for M-quantile estimates and 209.52 for CEP

estimates. That is, both sets of model-based estimates are not statistically different from the
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direct estimates. Figure 4 compares the M-quantile estimates of the total number of unemployed
for each UALAD with the corresponding direct estimates. We note that the M-quantile estimates
appear to be generally consistent with the direct estimates, with the correlation between the two
sets of estimates being 0.78. The corresponding correlation between the direct estimates and
the CEP estimates is 0.87. The higher correlation between the CEP and the direct estimates,
compared to correlation between the M-quantile and the direct estimates, is consistent with the

GoF values reported above.
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Figure 4: Numbers of unemployed people aged 16 and over in UALADs in the UK in 2000:
M-quantile estimates versus corresponding direct estimates.

In order to assess (i1) above, i.e. the potential gains in precision from using model-based
estimates (either CEP or M-quantile) instead of the direct estimates, we examine the distribution
of the ratios of the estimated CVs of the direct and the model-based estimates for the UKLFS
data. A value greater than 1 for this ratio indicates that the estimated CV of the model-based
estimate is smaller than that of the direct estimate. Figure 5 shows the relationship between
these ratios and the number of unemployed people in the UKLFS sample in each UALAD.
Two sets of ratios are plotted - those corresponding to the CEP estimates (black) and those
corresponding to the M-quantile estimates (gray). Figure 5 shows that the estimated CVs of
the M-quantile and CEP estimates of unemployment are generally much lower than those of
the direct estimates. Furthermore, the estimated CVs of the M-quantile estimates are generally
lower than those of the CEP estimates, indicating potentially better accuracy. One source for
the differences between the CVs of the CEP and M-quantile estimates may be the presence
of influential points identified in the diagnostic analysis reported in Section 3. From Figure 5

we also see that the differences between the CEP and the M-quantile estimates become more
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evident as the number of unemployed in the sample decreases. In those cases there may be
additional variability associated with the prediction of the random effects that contributes to the
higher CVs of the CEP estimates.

One could also use an EBP-based approach to estimate UALAD unemployment. But, as
noted earlier, computing EBPs is not a straightforward task, and the SAE methodology currently
in use by the ONS is based on the CEP. Nevertheless, we calculated EBP estimates of UALAD
unemployment in UKLFS 2000 by using the numerical algorithms proposed by Burgard (2013).
The EBP and CEP point estimates and the corresponding estimates of the MSEs (produced by
parametric bootstrap under the assumptions of the GLMM) did not differ substantially. The
similarity between the EBP and the CEP estimates has been also reported by Burgard (2013).
Given that the CEP methodology is the one that is used in practice, and because of the lack of
substantial differences between the CEP and the EBP estimates, we report only the CEP results
in this paper. The EBP estimates are available from the authors on request.
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Figure 5: Ratio of estimated coefficients of variation of direct estimates to M-quantile (gray)
and CEP (black) estimates of total number of unemployed people for each UALAD.

7 Model-based simulations

The validity of model-based inference depends on the validity of the assumed model. The pre-
ceding analyses of the UKLFS data are sample-specific, which makes generalisation difficult.
In this Section we empirically evaluate the properties of small area predictors and correspond-
ing MSE estimators. In particular, we use Monte Carlo simulation to carry out a sensitivity

analysis of departures from GLMM model assumptions. Our simulations are model-based, in
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the sense that population data are first generated under a model assumption or scenario, with a
sample then selected from each simulated population. Estimates of small area proportions and
corresponding MSEs are computed using the data from these samples.

Two different M-quantile versions of (18) were investigated in the simulations, both based
on a linear logistic M-quantile model defined by a Huber-type influence function with tuning
constant c. In the first, referred to as M-quantile below, ¢ = 1.345, while the second, referred
to as Expectile below, ¢ = 100. These estimators were compared with the CEP (3) under
a GLMM with a logistic link function and with the direct estimator (the sample proportion).
Both MSE estimation and confidence interval coverage performance were evaluated using the
analytic and the REB bootstrap methods described in Section 5.4. Note that the logistic M-
quantile linear regression fit underpinning the M-quantile and Expectile predictors was obtained
by using functions written in R. The parameters of the GLMM used in the CEP were estimated
using the function glmer in R.

In each simulation we generated N = 5, 000 population values of X and Y in D = 50 small
areas with Ny = 100, d = 1,..., D. Individual x4 values were drawn independently at each
simulation as Uni form(ag, bg), forag = —1land by = d/4,d = 1,...,D, j = 1,..., N,
Values of y,; were then generated as Bernoulli(pg) with pg; = exp{ng H1 + exp{ng})~*
and g = w48 + uq. The small area effects uy were independently drawn from a normal
distribution with mean 0 and variance ¢ = 0.25, and § = 1 (Gonzélez-Manteiga et al., 2007).
Population values generated under this scenario are denoted by (0). In addition, we generated
data corresponding to a combined misclassification and measurement error scenario, denoted
(M). In this scenario, a random 1% of the sample z4; values were replaced by 20 (introducing
measurement error) and the corresponding y4; values were set to 0 (introducing misclassification
error). For each of these scenarios 7' = 1,000 Monte-Carlo populations were generated. For
each generated population and for each area d we then took simple random samples without
replacement of sizes ngy = 10 and ngy = 20 so that the overall sample sizes were n = 500 and
n = 1,000. For each sample the M-quantile and Expectile predictors, the CEP and the direct
estimator were used to estimate the small area proportions 44, d = 1,..., D.

The performances of these different small area estimators for area d were evaluated with
respect to two criteria: their average error 7! Zthl(gjdt — ya) and the square root of their
average squared error 7'~ Zle(ﬁdt — 9a:)%. These are denoted Bias and RMSE respectively
below. Here ¥, denotes the actual area d value at simulation ¢, with predicted value 7. The
median values of Bias and RMSE over the D small areas are set out in Table 4, where we see
that claims in the literature (Chambers and Tzavidis, 2006) about the superior outlier robustness
of the M-quantile predictor compared with the CEP and the Expectile predictor certainly hold
true in these simulations. In particular, under the (0) scenario the CEP performs better than the
M-quantile and Expectile predictors in terms of Bias, whereas the M-quantile predictor is the
best under the (M) scenario. In terms of RMSE, there is no notable difference between CEP,
M-quantile and Expectile predictors under the (0) scenario, while under the (M) scenario the

M-quantile predictor appears to be superior.
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Table 4: Model-based simulation results: Performance of predictors of small area proportions.
The true small area proportions range between 0.4 and 0.9.

ng = 10 Ng = 20
Predictor/Scenario 0) M) 0 M)
Median values of Bias

Direct 0.0004 -0.0001 0.0001 -0.0001
CEP 0.0013 -0.0200 0.0008 -0.0116
Expectile 0.0043 -0.0178 0.0045 -0.0164
M-quantile 0.0041 0.0046 0.0041 0.0045
Median values of RMSE
Direct 0.1146  0.1148 0.0770 0.0777
CEP 0.0519 0.0598 0.0442 0.0507
Expectile 0.0506  0.0625 0.0442 0.0508
M-quantile 0.0509 0.0511 0.0444 0.0445

In order to evaluate the performance of the MSE estimators for the M-quantile predictor
(c = 1.345) proposed in Section 5.4 we used the data generated for the scenario with D =
50 and sample sizes ngy = 10 and ny = 20. For providing some empirical evidence for the
consistency of the proposed MSE estimators we also simulated data for the larger sample size
ng = 30. Again, 7' = 1,000 Monte-Carlo populations were generated and for each generated
population a simple random sample without replacement of size was drawn from each area d,
which was then used to calculate the M-quantile predictor and its linearisation MSE estimator
(19) and the REB bootstrap MSE estimator m.se*”P (3}'“) based on 100 bootstrap iterations.
The performance of these MSE estimators for each scenario is presented in Table 5 where we
show the medians of the area-specific Bias and RMSE (x1000). We also show the medians
of the empirical coverage rates for nominal 95% confidence intervals (CR95) based on these
methods. In the case of (19) these intervals were defined by the small area estimate plus or minus
twice the value of the square root of (19). For the REB bootstrap these intervals were based on
the 2.5 and the 97.5 percentiles of the corresponding bootstrap distribution. Examination of
the results in Table 5 shows that both MSE estimation methods tend to be biased low, but all
generate nominal 95 per cent confidence intervals with acceptable coverage. Increasing the
domain-specific sample sizes results in lower Bias and RMSE for both the analytic and the
bootstrap MSE estimators. However, the REB bootstrap estimator exhibits smaller bias and
better stability than the linearisation-based estimator (19). We therefore recommend that the

REB bootstrap MSE estimator be used in applications.

8 Final remarks

Small area prediction for binary outcomes is an important and challenging problem. In this
paper we propose a new approach to this problem based on an extension of M-quantile regres-
sion to binary data. By construction, the resulting M-quantile predictor is outlier robust. The

benefits of the approach are illustrated by applying it to estimation of unemployment for local
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Table 5: Model-based simulation results: Performance of MSE estimators.

Median values Median values  Median values
of Bias of RMSE (x1000)  of CR95 (%)
Ng = 10
Estimator/Scenario 0 M) 0) ™M) () M)
mset (7)) -0.0027 -0.0031 0.1198  0.1105 95 94
mseREB(319) -0.0004 -0.0006 0.0532  0.0433 95 95
nd:20
mse(759) -0.0005 -0.0019 0.1130  0.0995 95 95
mseREB (319) -0.0001 -0.0006 0.0286  0.0294 95 95
nd:30
mse(7579) 0.0002 0.0011 0.0994  0.0893 95 95
mseRFB(GMQ) 10,0000 -0.0002 0.0146  0.0172 95 95

authorities in the UK. The results indicate that the proposed methodology leads to estimates that
are consistent and more efficient than direct estimates and are comparable to alternative model-
based estimates. We further present two approaches to estimating the MSE of the M-quantile
predictor, one based on a linearisation approach and the other based on application of REB
bootstrap. The MSE estimators provide acceptable coverage performance in our simulations,
with the REB bootstrap being perhaps preferable because of its stability and simplicity.

The present paper has focused on an alternative methodology to the one currently used
by ONS in the UK. Molina et al. (2007) and Lo6pez-Vizcaino et al. (2013, 2014) propose the
use of multinomial mixed models for multi-category outcomes with applications to small area
estimation of labour force activity. The papers by Lopez-Vizcaino et al. (2013, 2014) further
allows for category-specific random effects, which seems appropriate in practice. An obvious
extension of the development set out in this paper is M-quantile modelling of multi-category

outcomes. This is an area of current research.
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Appendix I

A first order approximation to the variance of (10) is given by (11) where

N B e e e e S Z (8,

E[w{ya(zzcg()fx¢;§) b= {wi(%)@ww>+w2(%)<l—%<><ﬁw>>},

ajz (8,) is the square of the bias correction term for unit j, and the expectation £ [M} 1s
q

j=1

oB

B(8,) = —n”' ia@q(xj;w»{{w(%}%)m(%) Lo (Qu o)t .

An estimator of (11) is then defined by plugging in estimates of unknown quantities into these
expressions. Denoting these plug-in estimates by a hat leads to a variance estimator for Bq of

the form
Var(8,) = n B 1(B,)Var{¥(8,)}[B (8" (20)

Appendix 11

Let A denote a set of objects and let m denote a strictly positive integer. In what follows, we use
the notation srswr(A, m) to denote the set of size m obtained by sampling with replacement

m times from the set A.

REB bootstrap procedure

The steps in the REB bootstrap are as follows.

: : MQ _ MQ\ _ T(A 3 S
1. Calculate D vectors of marginal residuals r,; = (ry; ) = X4(Bq,; — Bos)s J =
1,...,ng, d = 1,..., D, re-scaling the elements of the vector rin so that they have

mean equal to zero.

2. Construct the individual bootstrap errors for the N, population units in area d as rQ/IQ* =

(rgjm*) = srswr(r%g, Ng) where h(d) = srswr({1,...,D},1).

3. Generate a bootstrap population U* of N independent bootstrap Bernoulli realisations
made up of D areas with area d of size N, and with bootstrap Bernoulli realisation yy; in

area d taking the value 1 with probability

. eXp{XZ;-Bo.s + 'rfl\fQ*}

Dg;

=1,..

= ~ P J LA 7Nd-
1+ exp{x};B05 + T’ng }

4. Calculate the bootstrap population parameters 4, d = 1, ..., D.
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5. Extract a sample s* of size n from the bootstrap population U* using the same sample
design as that used to obtain the original sample and calculate the bootstrap M-quantile
predictor yMQ* d=1,...,D.

6. Repeat steps 2-5 B times. In the bth bootstrap replication, let gj:l(b)

~MQx(b)

be the quantity of

interest for area d and let ¥/, be its corresponding M-quantile estimate.

7. The REB bootstrap estimator of the MSE of y _MQ

B
mS@REB AMQ — B~ IZ(ANIQ* _ —*(b)> _ (21)
b=1
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