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Abstract 

Street lighting is a ubiquitous utility, but sustaining its operation presents a heavy financial and environmental burden. 

Many schemes have been proposed which selectively dim lights to improve energy efficiency, but little consideration has 

been given to the usefulness of the resultant street lighting system. This paper proposes a real-time adaptive lighting 

scheme, which detects the presence of vehicles and pedestrians and dynamically adjusts their brightness to the optimal 

level. This improves the energy efficiency of street lighting and its usefulness; a streetlight utility model is presented to 

evaluate this. The proposed scheme is simulated using an environment modelling a road network, its users, and a networked 

communication system - and considers a real streetlight topology from a residential area. The proposed scheme achieves 

similar or improved utility to existing schemes, while consuming as little as 1-2% of the energy required by conventional 

and state-of-the-art techniques. 
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1. Introduction 

With approximately 90 million streetlights installed worldwide, street lighting has become a ubiquitous utility that 

can be found in most urban areas [1]. Effective street lighting can reduce both crime and traffic collisions [2, 3], and 

encourage socio-economic activities at night. Several studies have shown that the installation of street lighting improves 

the perception of personal safety and security [4, 5]. To realise a sustainable and liveable city, the concept of Smart Cities 

has been proposed. Key to this vision is that of a Smart Environment, requiring sustainable and efficient management of 

the environment and its limited natural resources through information and communication technology (ICT) [6]. Although 

the benefits of street lighting are clear, sustaining its operation has become a concerning issue to local governments, both 

financially and environmentally. Electric street lighting consumes 114 TWh annually, leading to the emission of 64 million 

tonnes of CO2 [1]. With rapid urbanization, the financial and environmental burden of street lighting is expected to grow 

as the number of streetlights is predicted to increase by over 300% in the coming decade [7].  
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Conventionally, streetlights remain lit continually overnight. The start and end of this period is typically triggered by 

a clock with a predefined schedule, or an integrated light sensor indicating when the surrounding environment becomes 

dark. However, this conventional or ‘always-on’ lighting scheme can result in energy wastage, especially when street 

lighting is not required or full brightness is no longer necessary. Examples of this include the middle of the night when 

very low traffic volumes are expected. Thus, the use of time-based dimming approaches, such as Philips Chronosense and 

Dynadimmer [8], has been proposed whereby selected streetlights are completely switched off or dimmed at specific hours. 

Warwickshire County Council, UK, anticipate annual savings of £0.5m (~$0.85m) and 3 000 tonnes of carbon reduction 

if their streetlights are operated on this basis [9]. Although time-based dimming schemes show substantial savings both 

financially and environmentally, they overlook the original purpose of having street lighting. The reduction or suppression 

of street lighting during specific hours may severely impair road users’ ability to navigate or to avoid obstacles [10], and 

lead to more accidents and crimes during these hours. 

Recent advances in sensing and communication technologies have encouraged their adoption in streetlight control 

and monitoring, permitting fine-grained management of streetlight operation [11, 12, 13]. Remote- and sensor-controlled 

street lighting offers significant prospects for saving energy, as the continual adjustment of lighting levels is possible. In 

general, a remote control centre performs the necessary management and regulation of streetlight operation, such as 

dimming for energy conservation and monitoring the health of the streetlights. In some cases, streetlight operations are 

adaptively adjusted based on ambient information, such as weather and traffic conditions, collected by a local sensor array. 

Most of the proposed remote- and sensor-controlled street lighting schemes adopt long- and/or short-range wireless 

communication networks to establish a communication link between the remote control centre and an individual streetlight. 

Jing et al. [14] proposed the use of cellular networks and wireless sensor networks (WSNs) in their streetlight monitoring, 

control and diagnosis system. In their proposal, a centralised control centre governs the entire streetlight network, and a 

remote terminal unit (normally installed at the streetlight transformer stations) serves as a gateway between the centre and 

the sensor nodes. Cellular network based Internet connectivity is proposed to relay the commands and the status of the 

streetlights between the control centre and the gateways, and eventually propagate to the intended streetlights via the WSN. 

This use of communication networks can be found in many similar works [11, 12, 13]; however, many of these rely on a 

remote control centre that typically comes with a relatively high price tag [15]. Furthermore, they are also subject to a 

single point of failure as their performance depends upon the reliability of the long-range communication network. 

For traffic-aware street lighting, a variety of different sensing mechanisms have been reported to allow autonomous 

adjustment of lighting level based on detected road users. Sun et al. [16] demonstrated the use of a multi-sensor module to 

prolong the operational hours of their standalone solar-powered streetlight. This module utilises a microphone and passive 
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infrared sensor to allow detection of passing humans.  A similar method was also adopted by many recent works [17, 18, 

19, 20, 21], where a presence-detection module controlled the streetlights from a distance. Their sensors, however, had a 

limited sensing range which limited the effective range of their proposed method [22]. Instead of detecting the presence of 

road users, Müllner and Riener [23] proposed the use of a pedestrian tracking solution via a combination of Global 

Positioning System (GPS) and Internet-enabled smartphones. This combination allowed the system to track the precise 

location of a pedestrian, and hence fade-in and -out streetlights within a defined radius of them. Such usage of smartphones 

provides a potential mechanism for precise traffic-aware street lighting, but solutions are inherently limited to owners of 

such devices. This is illustrated by the fact that only 39% of people in the UK own smartphones, with a significant bias 

towards younger age groups (16 to 34 years old) [24]. Enabling GPS sensing and Internet connectivity in a smartphone has 

been shown to increase power consumption by 600 mW [25] and 650 mW [26] respectively. Considering a smartphone’s 

limited battery capacity, such a power consumption can deplete a typical battery in a few hours. In addition, the issues 

surrounding location-privacy may also prove to be major obstacles of such traffic-aware street lighting schemes. 

In recent years, many research projects have considered the use of ICT to allow precise and adaptive control of 

streetlights to conserve energy. This includes our early work in this field [27], where we proposed an algorithm which 

adjusted streetlight brightness in response to nearby road users, reducing the energy consumption by 30% compared to 

state-of-the-art schemes. Importantly, many of these existing works (including our own) were primarily aimed at reducing 

energy consumption, with very little consideration given to the associated impact of such schemes on the usefulness of the 

streetlights. More recently, we reported on StreetlightSim [28], a simulation environment that models both road traffic 

patterns and adaptive networked streetlights. To evaluate the usefulness of street lighting we also presented StreetlightSim’s 

‘utility’ model, which quantifies the utility, or usefulness, of street lighting from different road users’ perspectives. 

In this paper, we propose TALiSMaN, a distributed Traffic-Aware Lighting Scheme Management Network.  We 

present a number of novel contributions over our previous work and the state-of-the-art: 

 We propose a new adaptive street lighting algorithm (based on that we proposed in [27]), TALiSMaN, which tailors 

its operation to different road users. This is based on the utility model we presented in [28], and we present a more 

complete description of this here. 

 Instead of requiring a centralised controller, TALiSMaN has been designed to operate autonomously over a short-

range mesh network (i.e. a network of decentralised and distributed networked streetlights). 

 TALiSMaN is evaluated against existing and state-of-the-art techniques, through the simulation of a scenario using 

real traffic and geographical data. Results are analysed for both energy consumption and streetlight utility. This is 

the first work that has used this holistic approach to the evaluation of lighting schemes. 
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Application-based simulations show that TALiSMaN is able to provide improved or comparable streetlight utility to 

existing street lighting schemes, but with a significant improvement in energy efficiency (requiring only 1-55% of the 

energy, depending on traffic volume). 

This paper is structured as follows: Section 2 presents the diverse requirements of street lighting from different road 

users’ perspectives, and derives a model for streetlight utility. Subsequently, section 3 presents the details of TALiSMaN, 

which utilises WSNs to manage streetlights to minimise energy consumption while maximising utility. The proposed 

lighting scheme is evaluated by simulating a real streetlight topology from a residential area in Southampton, UK, and 

considers a range of different road traffic volumes. Section 4 details the evaluation scenario and parameters adopted in this 

paper, and section 5 presents the performance of the proposed lighting scheme in terms of the achieved streetlight utility 

and consumed energy. 

2. Quantifying the Utility of Street Lighting 

Effective street lighting enables road users to see more clearly, better and further for a variety of different activities. 

In some studies, the ergonomic comfort of lighting is also considered to address the psychological needs and well-being of 

its users [29]. To minimise the energy consumption of streetlights, the most straightforward option is to turn them off 

altogether (but this defeats their purpose); ideally, streetlights would only be turned on when they are useful. In this section, 

we consider what constitutes effective street lighting, from both a motorist’s and pedestrian’s perspective. These 

stakeholders are considered to be the major beneficiaries of street lighting. Subsequently, we detail a model (previously 

proposed in [28]) that quantifies the usefulness of street lighting, referred to as ‘streetlight utility’. 

2.1 A Pedestrian’s Perspective 

From a pedestrian’s perspective, effective street lighting should assist them in obstacle avoidance and navigation, 

identification of other pedestrians (facial recognition), and make them feel safer [30, 31]. Obstacles can cause pedestrians 

to fall, potentially resulting in serious injuries. Thus, an effective street lighting scheme should improve their ability to 

detect obstacles in their path. As intuition would suggest, obstacle detection is improved as illuminance increases [32, 33]. 

However, pedestrians begin to avoid obstacles at a distance of between 6 to 7 m, regardless of this [34]. Facial recognition 

of other pedestrians requires considerably higher illuminance compared to obstacle detection. It is reported that a streetlight 

at the minimum lighting level for a pedestrian should allow recognition of other road users at a distance of 4 m [30]. 

Nevertheless, pedestrians prefer to avoid collision with another at a distance of around 8 to 9 m [34]. 

We model the utility of street lighting for pedestrian obstacle detection, navigation and facial recognition by 

incorporating the aforementioned requirements. This is given by 𝑈𝑝𝑒𝑑(𝑎𝑣𝑜𝑖𝑑), as shown in Eq. (1), where 𝛾(𝑥, 𝑡) is the ratio 
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of illuminance level at x metres ahead of a pedestrian at time t to the minimum required illuminance level for the road the 

pedestrian is travelling on. This assumes that the illumination within a 10 m segment of road is equally important for 

obstacle detection, navigation and facial recognition. In the UK, BS EN 13201-2 [35] outlines the minimum required 

illuminance levels for different residential roads which range from 2 to 15 lux. Generally, illuminance levels with lower 

values are adopted for quieter residential roads.    

𝑈𝑝𝑒𝑑(𝑎𝑣𝑜𝑖𝑑)(𝑡) =  
1

10
∫ 𝛾(𝑥, 𝑡)
10

0

 𝑑𝑥 (1) 

Street lighting for pedestrians’ perceived safety was studied by Haans and de Kort [36] using three different light 

distributions: conventional, ascending, and descending. In a conventional light distribution, all streetlights in the test 

location delivered the same illuminance. In a descending light distribution, the streetlights in the subjects’ immediate 

vicinity delivered a higher illuminance, while those further away were incrementally lower. An ascending light distribution 

is the opposite of this. Based on their practical experiments, subjects expressed that they had a similar, and in some cases, 

better sense of safety while the streetlights were in a descending distribution. Among all the light distributions studied, the 

ascending light distribution was least favoured by subjects. Thus, streetlight utility for perceived safety, 𝑈𝑝𝑒𝑑(𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡), is 

given by:  

𝑈𝑝𝑒𝑑(𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡)(𝑡) =
1

300
∫ 𝑧(𝑥, 𝑡) 𝑑𝑥
150

−150

 (2) 

𝑧(𝑥, 𝑡) = {
𝜀(𝑥, 𝑡), 𝜀(𝑥, 𝑡) ≤ 1 

1, 𝜀(𝑥, 𝑡) > 1 
 (3) 

𝜀(𝑥, 𝑡) =
𝛾(𝑥, 𝑡)

1 − 0.2 ⌊
|𝑥|
30
⌋
, −150 ≤ 𝑥 ≤ 150 

(4) 

where 𝑥 is the distance in metres from a pedestrian at time t, 𝑧(𝑥, 𝑡) is the ratio of illuminance level at location x metres 

from a pedestrian at time t to the illuminance level required at illumination zone where location x is located.  

In this model, 𝑈𝑝𝑒𝑑(𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡) considers a lit road segment 150 m before and after a pedestrian. These road segments 

are subdivided into five illumination zones (each segment covers a 30 m length of road, the typical coverage of a single 

streetlight) where each zone requires different minimum illuminance levels. The minimum illuminance of the nearest zones 

are at 100% according to the minimum required illuminance level for the road the pedestrian is travelling on. For each zone 

further away from the pedestrian, their minimum illuminance values are gradually decreased by 20%.  The road segments 

that are outside these illuminance zones are not required to be lit.  
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Over a period of time, a pedestrian will perform both obstacle detection and navigation/awareness. Hence, the overall 

streetlight utility for pedestrian is given by:   

𝑈𝑝𝑒𝑑(𝑡) = 𝛼 𝑈𝑝𝑒𝑑(𝑎𝑣𝑜𝑖𝑑)(𝑡) + (1 − 𝛼) 𝑈𝑝𝑒𝑑(𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡)(𝑡) (5) 

where 𝛼 is the weight of the time spent by pedestrian looking at the footpath. In this paper, we adopt a value of 𝛼 = 0.45. 

This is based on the findings of Davoudian and Raynham [31], who found that pedestrians spend 40-50% of their time 

looking at the pavement.  

2.2 A Motorist’s Perspective 

From a motorist’s perspective, street lighting helps to extend and broaden their visual range beyond that offered by 

vehicle headlamps. This allows them to detect potential hazards in their direction of travel. In general, an effective street 

lighting scheme considers the average luminance, luminance pattern (also known as uniformity), threshold increment and 

surround ratio [30]. Among these factors, average luminance and uniformity affect motorists’ ability to detect potential 

hazards. The effect of various illuminances and uniformities on hazard detection has been extensively studied [37, 38, 39, 

40]. These studies report that motorists perform better at hazard detection when luminance and uniformity are increased. 

Hazard detection is normally associated with the proximity of the hazard to the vehicle in either time or in distance, in 

which appropriate manoeuvres can be carried out to avoid a collision and thus reduce the probability of injury to oneself 

or other road users. This distance is reflected as the stopping distance where a motorist must be able to stop their vehicle 

safely after a potential hazard is detected [41]. Usually, the stopping distance is between 60 m to 160 m based on factors 

including the vehicle’s speed, road surface conditions, and the motorist’s reaction time.  

To model the streetlight utility for a motorist, we consider that they require a segment of road ahead of them to be 

illuminated, hence allowing them to detect potential hazards within their travelling path and bring their vehicle to a stop. 

As this road segment is typically between 60 m to 160 m, a value of 100 m [41] is adopted in our model as it includes most 

of the stopping distances required in a residential road. In the UK, residential roads typically have a speed limit of 30 mph 

(approximately 15 m/s or 50 km/h). Assuming that the illuminance level within this road segment is equally important, and 

this road segment is lit at the minimum required illuminance level for the road a motorist is travelling on, the streetlight 

utility for a motorist, 𝑈𝑚𝑜𝑡, is modelled by:  

𝑈𝑚𝑜𝑡( 𝑡) =
1

100
∫ 𝛾(𝑥, 𝑡)
100

0

 𝑑𝑥 
(6) 

where 𝛾(𝑥, 𝑡) is the ratio of illuminance level at x metres ahead of a motorist at time t to the minimum required illuminance 

level for the road where the motorist is travelling on. 
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In the next section, these utility models are considered in the design of a traffic-aware adaptive lighting scheme. This 

scheme aims to maximise the utility of the streetlights, and minimise their energy use. 

3. A Traffic-Aware Lighting Scheme Management Network (TALiSMaN) 

Based on the proposed utility models, two observations can be reached: (1) the lengths of the required lit road 

segments are finite, i.e. 150 m and 100 m for pedestrians and motorists respectively; and (2) within these required lit road 

segments, pedestrians and motorists require different light patterns. TALiSMaN exploits these properties by progressively 

adjusting the illuminance of streetlights according to different road users’ needs, and improves their energy efficiency by 

minimising their energy use. TALiSMaN detects road users and shares the information with nearby streetlights. Upon 

receiving the information, they cooperate to create optimum lighting conditions that meet the road users’ needs, and avoid 

illuminating the road at higher levels as this simply wastes energy.  

The different user needs for street lighting and the proposed utility models in section 2 were considered, and translated 

to a relationship between a streetlight’s proximity to the road user and the desired illuminance. This is summarised in Table 

1. Instead of relying on a remote centralised control centre for managing streetlight operation, we propose to implement 

TALiSMaN over an autonomous WSN. Each streetlight incorporates a wireless sensor node with a short-range wireless 

communication module. This allows it to form a multi-hop WSN with neighbouring streetlights to exchange information. 

The network is time-synchronized, and each streetlight is pre-programmed with its own location information and unique 

identification, which are shared with others during network setup.  

Table 1 

The relationship between road users’ distance and streetlight illuminance output. 

Road User Type Distance from streetlight, d Illuminance output 

Pedestrian 

0 ≤ 𝑑 < 30 100% 

30 ≤ 𝑑 < 60 80% 

60 ≤ 𝑑 < 90 60% 

90 ≤ 𝑑 < 120 40% 

120 ≤ 𝑑 ≤  150 20% 

𝑑 > 150 0% 

Motorist 
0 ≤ 𝑑 ≤ 100 100% 

𝑑 > 100 0% 

 

The streetlights are equipped with a light controller and a road-user sensor [16, 22]. The light controller modulates 

the lamp output to switch the streetlight on, off, or adjust its illuminance. To allow near-instant response to continually 

changing illuminance requests, it is assumed that each streetlight uses a dimmable light-emitting diode (LED) lamp, and 

that its beam pattern covers the limited area of a single road segment. Although these sensor-based methods provide less 



8 

 

accuracy in detecting road-user positions than GPS-based systems [23], they do not require the road-users to be 

instrumented with dedicated smartphone apps or other hardware, while still providing a substantial energy saving.  

The following subsections explain the operation and implementation of TALiSMaN. 

3.1 System Operation  

In order to enable progressive control of the streetlight illuminance, based on the either presence detected by local 

sensors or information relayed by neighbouring nodes, four different operational states are defined in TALiSMaN: ‘Lamp 

on by sensor’, ‘Lamp on by neighbour’, ‘Lamp on by delay’ and ‘Lamp off’. Amongst these operation states, ‘Lamp off’ 

and ‘Lamp on by sensor’ are shared between neighbouring sensor nodes using the on-board wireless communication 

module. Figure 1 shows the state machine of these operation states during operational hours.  

Lamp off

Lamp on by 
sensor

Lamp on by 
delay

Lamp on by 
neighbour

Local presence 
detected & within the 

operational hour 

Local presence 
not detected

Active delay 
timer

Presence detected 
by neighbours 

Presence not 
detected by 
neighbour

Local presence 
detected & within the 

operational hour 

Presence not detected 
by neighbours

Start

Local presence 
detected & within the 

operational hour 

 

Figure 1. TALiSMaN operation state machine during streetlight operational hours. 

When TALiSMaN shifts to ‘Lamp on by delay’, the state delay counter is reset and activated (see section 3.3 for state 

delay counter). The operation state will remain here until the state delay counter expires or a road user is detected by a 

local road-user sensor. Once the state delay counter expires, the received neighbours’ operation states are evaluated, and 

operation state shifts to ‘Lamp on by neighbour’ only if neighbours are on. At this state, the streetlight remains switched 

on and its illuminance is adjusted to deliver the required lighting pattern (see section 3.2 for detail). The streetlight is 

switched off if none of the local or the neighbouring road-user sensors have detected the presence of any road users. While 

the operation state is ‘Lamp on by neighbour’ or ‘Lamp off’, the operation states from neighbouring nodes are evaluated 

as each packet is received.  
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3.2 Adjusting the Illuminance 

For TALiSMaN, the illuminance of the streetlights is adjusted for energy conservation while maintaining the optimum 

usefulness of having street lighting. However, creating the lit road segment that satisfies different road users’ needs requires 

coordination between several streetlights. This is due to the assumptions that a road-user sensor has a limited detection 

range and the coverage from the streetlight beam pattern is finite. The coordination between streetlights is facilitated by 

sharing the road users’ presence information with other sensor nodes within the required lit road segments. By sharing this 

information, the relative distance to the detected road users can be approximated using the Euclidean distance to the nearest 

sensor node. While the precise location of a road user is unknown, the receiving nodes assume that the detected road users 

are at the ‘best-case’ distance from them. This approximate relative distance,  𝑑𝑎𝑝𝑟𝑜𝑥 assumes that the road user is always 

located at the nearest edge of the sensor range, see Figure 2 and Figure 3. 

The following sections detail the modulation of streetlight illuminance output upon detection of a pedestrian and a 

motorist. 

3.2.1 Illuminance Modulation based on Detected Pedestrians 

 

Figure 2. A lit road segment created by streetlight 𝑠1 to  𝑠7 while operating using the TALiSMaN. This lighting pattern is 

created based on the approximate relative distance to the detected pedestrian. 

Figure 2 shows the development of the required lighting pattern after a pedestrian is detected by a road-user sensor at 

streetlight 𝑠2. After the presence of the pedestrian is shared amongst the sensor nodes at streetlight 𝑠1to 𝑠8 , the illuminance 

of the respective streetlights, 𝐿𝑝𝑒𝑑 is progressively modulated according to the following algorithm: 

if operation state is ‘Lamp off’ then 
𝐿𝑝𝑒𝑑 = 0 

if operation state is ‘Lamp on by sensor’ or ‘by neighbour’ then  
𝐿𝑝𝑒𝑑 = 1 − 0.2 𝑍𝑝𝑒𝑑(𝑑𝑎𝑝𝑟𝑜𝑥) 

if operation state is ‘Lamp on by delay’ then 
current 𝐿𝑝𝑒𝑑(𝑑𝑎𝑝𝑟𝑜𝑥) remains 
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where 𝐿𝑝𝑒𝑑 is the required illuminance of the streetlight based on the approximate relative distance (m) to the detected 

pedestrian, and  𝑑𝑎𝑝𝑟𝑜𝑥 and 𝑍𝑝𝑒𝑑 determines the illumination zone of the streetlight according to 𝑑𝑎𝑝𝑟𝑜𝑥. 

In section 2.1, five different illumination zones were considered for pedestrians, and the required illuminance of each 

zone sequentially reduced by 20%. To allow streetlights in different illumination zones to operate at these required 

illuminance levels, 𝐿𝑝𝑒𝑑 is sequentially reduced by a factor of 0.2 per zone. Since each illumination zone is 30 m in length 

and a pedestrian requires a lit road segment of 150 m before and after them, 𝑍𝑝𝑒𝑑 has maximum value of five. The 

illumination zone of a streetlight, 𝑍𝑝𝑒𝑑 with respect to 𝑑𝑎𝑝𝑟𝑜𝑥 is given by:    

𝑧𝑝𝑒𝑑(𝑑𝑎𝑝𝑟𝑜𝑥) =

{
 
 

 
 0, ⌊

𝑑𝑎𝑝𝑟𝑜𝑥
30

⌋ = 0

⌊
𝑑𝑎𝑝𝑟𝑜𝑥
30

⌋ − 1, 0 < ⌊
𝑑𝑎𝑝𝑟𝑜𝑥
30

⌋ ≤ 5

5, ⌊
𝑑𝑎𝑝𝑟𝑜𝑥
30

⌋ > 5

 (7) 

𝑑𝑎𝑝𝑟𝑜𝑥 = {
0, 𝑑𝑟𝑎𝑑 ≥ 𝑑𝑑𝑒𝑡 

𝑑𝑑𝑒𝑡 − 𝑑𝑟𝑎𝑑 , 𝑑𝑟𝑎𝑑 < 𝑑𝑑𝑒𝑡
 (8) 

 

where 𝑑𝑑𝑒𝑡 is the Euclidean distance (m) to the nearest sensor node that detects the pedestrian and  𝑑𝑟𝑎𝑑 is the maximum 

detection range (m) of the road-user sensor.  

3.2.2 Illuminance Modulation based on Detected Motorists 

 

Figure 3. A lit road segment created by streetlight 𝑠1 to 𝑠4 while operating TALiSMaN. This lighting pattern is created 

based on the approximate relative distance to the detected motorist. 

As the difficulty in detecting potential hazards increases with darker lighting conditions [10], the streetlight 

illuminance required by a motorist, 𝐿𝑚𝑜𝑡 is always at 100% for a road segment 100 m ahead of them. Since the road-user 
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sensors are assumed to be unable to detect the direction that the detected motorist is travelling in, both road segments before 

and after the motorist are lit. Figure 3 illustrates the development of the required lighting pattern upon detection of a 

motorist by a road-user sensor at streetlight 𝑠1. After the presence of the motorist is shared between streetlights 𝑠1to 𝑠5, 

their illuminance is modulated according to the following algorithm: 

if operation state is ‘Lamp off’ then 
𝐿𝑚𝑜𝑡 = 0 

if operation state is ‘Lamp on by sensor’ or ‘by neighbour’ then 
𝐿𝑚𝑜𝑡 = 1 − 𝑍𝑚𝑜𝑡(𝑑𝑎𝑝𝑟𝑜𝑥) 

if operation state is ‘Lamp on by delay’ then 
current 𝐿𝑚𝑜𝑡 remains 

 
where 𝑍𝑚𝑜𝑡 is the function that determines whether a streetlight is within the required road segment need to be lit. 𝑍𝑚𝑜𝑡 is 

given by:    

𝑍𝑚𝑜𝑡(𝑑𝑎𝑝𝑟𝑜𝑥) =

{
 
 

 
 0, ⌊

𝑑𝑎𝑝𝑟𝑜𝑥
𝑑𝑎𝑣𝑔

⌋ ≤ ⌈
100

𝑑𝑎𝑣𝑔
⌉

1, ⌊
𝑑𝑎𝑝𝑟𝑜𝑥
𝑑𝑎𝑣𝑔

⌋ > ⌈
100

𝑑𝑎𝑣𝑔
⌉

 (9) 

where 𝑑𝑎𝑝𝑟𝑜𝑥 is the approximate relative distance (m) to the detected motorist (see Eq. (8)), and 𝑑𝑎𝑣𝑔 is the average distance 

to the next adjacent streetlight (assumed to be 30 m).  

3.2.3 Combined Pedestrian-Motorist Illuminance Modulation 

Whenever pedestrians and motorists are detected simultaneously, the illuminance output of the streetlight is set 

to 𝑚𝑎𝑥 (𝐿𝑝𝑒𝑑 , 𝐿𝑚𝑜𝑡). This is to ensure that an optimum lit environment can be provided both to pedestrians and motorists. 

3.3 State Delay Counter 

Void regions result from gaps in sensor coverage between streetlights. When road users travel into them, they can 

potentially cause unnecessary adjustment of streetlight illuminance. To reduce the impact of void regions, a state delay 

counter is adopted to prolong the TALiSMaN operation state at ‘Lamp on by delay’ until the road user is believed to have 

left the void region and entered the sensing range of the next streetlight. This feature also mitigates the latency of the 

communication network, which is particularly relevant when neighbouring sensor nodes detect the presence of road users 

simultaneously and compete for the communication channel to disseminate the information. 

In this paper, the expiration time of the state delay counter, 𝑡𝑒𝑥𝑝, is given by:  

𝑡𝑒𝑥𝑝 = 
𝑑𝑎𝑑𝑗 −  2𝑑𝑟𝑎𝑑

𝑣
, 𝑑𝑎𝑑𝑗 ≥ 𝑑𝑟𝑎𝑑 

(10) 
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where 𝑑𝑎𝑑𝑗 is the distance (m) to the furthest adjacent streetlight,  𝑑𝑟𝑎𝑑 is the detection range (m) of the sensor node and it 

is assumed to be 13 m [22] and 𝑣 is the expected slowest travelling speed (m/s) of a particular road user.  

Considering that only the presence of the road users is known, we use the road user’s slowest travelling speed to 

compute 𝑡𝑒𝑥𝑝. We assume that the slowest travelling speed of a motorist on residential roads is 4.5 m/s (10 miles per hour). 

For pedestrians,  0.73 m/s is assumed to be the slowest walking speed after considering the 5th percentile of the pedestrian 

walking speed distribution (mean walking speed is 1.34 m/s and standard deviation is 0.37 m/s) [42]. If both motorists and 

pedestrians are detected at any one moment, the pedestrian’s slowest walking speed is always used to compute 𝑡𝑒𝑥𝑝.  

4. Simulation Setup 

To evaluate the efficiency and effectiveness of TALiSMaN, it requires the modelling of vehicles, road networks, 

algorithms, and communication systems. However, existing tools were not available for this. Therefore, StreetlightSim 

[28], a simulation environment combining the OMNeT++ and SUMO simulation tools was created to model both traffic 

patterns and networked streetlights. This environment is used in this paper to evaluate the performance of TALiSMaN 

against existing works. StreetlightSim is open-source and freely available to the community [43]. Figure 4 (a) shows 

StreetlightSim simulating 112 streetlights based on the topology shown in Figure 4 (b). As illustrated by Figure 4 (a), only 

those within the required lit road segments are switched on (shown by white dots) upon detection of road users. Each 

lighting scheme is simulated over ten repeated simulation runs for every combination of traffic patterns and traffic volumes 

specified in section 4.2. 

The following subsections detail the simulation scenario and parameters adopted in this paper. 

4.1 Streetlights 

An actual streetlight topology located in a residential area was modelled for this evaluation. The locations of these 

streetlights were identified using an aerial photograph. Figure 4 shows the topology of the streetlights (represented by dots) 

in a residential area in Southampton, UK. In total, there are 112 streetlights placed over approximately 3.5 km of residential 

roads. For the purposes of evaluation, each streetlight is assumed to be equipped with a 25 W LED lamp which can 

illuminate a 30 m road segment. The streetlights are assumed to start operation at sunset and finish at sunrise the next day. 

Based on these observations, the distance between streetlights varies – for example as a result of roundabouts and junctions. 

Thus, a near-optimal streetlight utility is achieved, as shown in Figure 8.  

The energy consumption of the different lighting schemes is influenced by the duration of their operation. This is 

dependent upon the geographical location, season, weather, and local environment. Therefore, our simulation scenario 
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limits operational hours from 16:00 to 08:00 (16 hours) for clarity of evaluation. These operational hours represent one of 

the longest streetlight durations required during winter months in the UK. 

 

Streetlights are 

switched on
Simulated road user

Streetlights are 

switched off
Dwellings

 

 

(a) (b) 

Figure 4.  A Street lighting topology that consists of 112 streetlights scattered within 3.5 km of residential roads. (a) 

Snapshot of StreetlightSim simulating the TALiSMaN lighting scheme with the topology. White dots represent streetlights 

switched on due to their distance from detected road users, whereas black dots represent streetlights that are not within the 

required lit road segments, and thus they are switched off. (b)  The locations of the streetlights (dots) and road network 

(shaded lines) considered during the simulations (the base map was adapted from Google Maps).  

4.2 Road Traffic 

To approximate the volume of actual road traffic in the residential roads (represented by shaded lines in Figure 4(b)), 

five different daily traffic volumes are considered during simulations. These values are 180, 438, 1347, 3508 and 6554 

vehicles per day which represent the minimum, 1st quartile, median, 3rd quartile and maximum ‘annual average daily traffic 

flow’ (AADF) values respectively for residential roads in Southampton, UK [44]. Since AADF only accounts for vehicular 

traffic, an additional 14% is added to these values to represent pedestrian traffic; this value is based on data supplied by 

Southampton City Council [45]. Two traffic profiles, namely weekday and weekend, are considered during simulation as 

they demonstrate distinct traffic trends, see Figure 5. The mobility of a simulated pedestrian and a simulated motorist is 

governed by a total of 100 random routes. The mobility speed of these road users varies according on route traffic conditions 

but is limited to maximum 1.9 m/s for a pedestrian [42] and 30 mph for a motorist (the speed limit on residential roads in 

the UK). Detailed information on generating and injecting road traffic during simulations can be found in our previous 

work [28].  
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Figure 5. The traffic distribution ratio by time for the average weekend and weekday traffic (adapted from [46]). 

4.3 Baseline Lighting Schemes 

A range of different approaches have been proposed to reduce the energy consumption of street lighting, as outlined 

in Section 1. In our evaluation, we evaluate and compare TALiSMaN against the state-of-the-art approaches listed in Table 

2. The Conventional (or ‘always-on’) lighting scheme is also included in our evaluation to serve as a benchmark for 

streetlight utility. 

Table 2 

Summary of streetlight schemes evaluated in this paper. 

Lighting Scheme Operation 

Conventional / always-on All the streetlights are switched on with 100% illuminance output during the simulations. 

Philips Chronosense [8] Similar to Conventional lighting scheme except from 22:00 until 05:00 when illuminance 

output of all the streetlights is reduced to 65%. 

Part-night [9] All the streetlights are switched on at 100% except from 00:00 to 05:30 where the streetlights 

are switched off completely to conserve energy. 

Philips Dynadimmer [8]  Streetlights operate at 40% between 23:00 and 05:00, 55% from 05:00 to 06:00 and 65% from 

20:00 to 23:00. For the rest of the operational hours, all the streetlights operate at 90%. 

Multi-sensor [22] The streetlights are always switched on at 40%, and increased to 70% and 100% if the distance 

between the streetlight and road user is 20 m and 10 m respectively.  

Zoning [23] This lighting scheme assumes that the pedestrians are tracked via GPS- and Internet-enabled 

smartphones. The streetlights within the user-defined radius are switched on at 100% and 

those beyond the defined radius are switched off completely. For comparison purposes, the 

radius of 150 m is considered during the simulations. Motorists are not tracked by the scheme, 

but gain some consequential benefit from lighting intended for the pedestrians. 
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4.4 Wireless Sensor Network 

As discussed in section 3, the illuminance of the streetlights is individually controlled by a wireless sensor node, 

based on the presence of road users. To enable the effective detection of road users, these nodes are assumed to be equipped 

with a multi-sensor array. Details of the sensor array, however, are outside the scope of this research. The sensing range 

and sample rate vary considerably between technologies [22]. For the purposes of evaluation, Table 3 summarises the 

parameters that are adopted in our simulations.   

Table 3 

Sensor parameters and values. 

Parameter Value 

Sensing range 13 m [22] 

Sensor sampling rate 20 Hz 

 

Information on detected road users is time-sensitive, so it has to be relayed to neighbouring sensor nodes with minimal 

delay. If this information is relayed too late, the performance of TALiSMaN will be reduced, because streetlights will 

respond less quickly to road users’ movements, reducing utility and/or increasing energy consumption. To address this 

need, we assume that all the sensor nodes operate using an IEEE 802.15.4 non-beacon enabled mode and adopt carrier 

sense multiple access (CSMA) with collision avoidance as their media access control layer protocol [47]. While operating 

in this mode, sensor nodes are always active and ready to relay any information as required. Table 4 summarises the 

communication parameters adopted during the simulations. Since the focus of this work is on the energy efficiency of street 

lighting schemes and their respective streetlight utility, the simple path loss radio propagation model from the MiXiM 

framework was used in this work. To account for random variation in the channel, log-normal shadowing is also applied.  

Table 4 

IEEE 802.15.4 parameters and their values. 

Parameter Value 

Bit rate 250 kbps 

Radio propagation model1 Simple path loss model with log-normal shadowing effect 

Minimum bit error rate 1 x 10-8 

Radio transmission power2 -3 dBm  

 1. An alpha value of 2.5, and a standard deviation of 6 with mean attenuation of 0 are used for the simple path loss and 

log-normal models respectively [48]. 

2. Based on the IEEE 802.15.4 model provided by the MiXiM framework [48], a transmission power of -3 dBm allows 

all the streetlights to communicate with their adjacent neighbours with a 99.9% successful packet delivery rate.  
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During simulations, the necessary information for TALiSMaN’s operation is communicated using a 19 byte packet: 

4 bytes for the packet source and destination address, 1 byte for the message type coding, message versioning, command 

coding, command data length and data, 4 bytes for the packet timestamp, and 2 bytes for the packet checksum. Given that 

the travel direction of the detected road users is not available to TALiSMaN, and to allow sensor nodes to create the lighting 

conditions that offer optimum streetlight utility collaboratively, information on detected road users is relayed to any sensor 

node within a 150 m radius of the source node. However, this requires a network protocol to govern end-to-end information 

routing at the network layer of the WSN. As information on the detected road users is delay-sensitive, retransmission or 

guaranteed delivery of this information is not the focus of this protocol, but it should allow propagation of the information 

to all the sensor nodes within the confined distance with minimum delay. Therefore, a flooding protocol is adopted in our 

simulations. Nevertheless, uncontrolled flooding can lead to unnecessary network congestion and increased delays, which 

would consequently affect the performance of TALiSMaN. Therefore, the flood is constrained to discard packets once they 

have reached a distance of 150 m from the source node. During simulations, propagation errors and packet collision are 

introduced which cause packets to be discarded prematurely (see [49] for the details of radio propagation errors and packet 

collision). 

To prevent the WSN from generating and forwarding redundant information, nodes only propagate the streetlight’s 

operational state when a road user is detected.  After a detection, nodes continually report their operational state to 

neighbouring streetlights at rate of 2 Hz, while the road user continues to be within its sensing range. 2 Hz was chosen 

based on the simulation scenario considered, i.e. a 30 m average distance between two adjacent streetlights and a residential 

road with a speed limit of 30 mph (48 km/h); therefore allowing each passing road user to be detected at least twice. Due 

to the routing protocol adopted (packet flooding) and the high network congestion that results (packet loss of between 23-

29% was experienced during simulations), nodes are programmed to continue to generate and forward packets for an 

additional 15 seconds after a road user is detected within its the sensing range.  This extra forwarding mechanism increases 

the probability of streetlights receiving the latest operational state from the streetlights; as shown in the results below, this 

can be seen to deliver streetlight utility to all road users of greater than 90% (see Figure 8a). 

5. Simulation Results 

In this section the performance of each lighting scheme is presented in terms of the streetlight utility experienced by 

simulated pedestrians and motorists, and the total energy consumed by 112 streetlights over a week (5 days for weekday 

traffic and 2 days for weekend traffic).  
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5.1 Streetlight Utility Experienced by Road Users 

To illustrate the behaviour of TALiSMaN, Figure 6 shows the lighting conditions of a road segment at different times 

𝑡 as a result of a simulated pedestrian travelling towards streetlight 𝑠12. At 𝑡 = 2, the presence of the pedestrian is detected 

by streetlight 𝑠8 and this information is shared between neighbouring streetlights, i.e. 𝑠3 to 𝑠12.  Upon receiving the 

information, the brightness levels of these streetlights are adjusted to create the lighting pattern needed by the pedestrian.  

As the pedestrian travels towards streetlight 𝑠12, these optimum lighting conditions are shifted to the right along with 

presence detected by streetlight 𝑠9 to 𝑠12.  Under such lighting conditions, TALiSMaN offered near-optimal streetlight 

utility to the pedestrian. 
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Figure 6. The dynamics of lit road segments (from top view) when a pedestrian travels from left to right. 

Figure 7 shows the power output of a streetlight while operating TALiSMaN.  During early operational hours, the 

power output of the streetlight is consistently 25 W.  This trend is due to the near-continuous stream of road traffic during 

these ‘rush hours’ preventing streetlights from switching off. The same trend can be observed as it approaches the morning 

rush hour. The streetlight is mostly switched off between midnight and the early morning as road traffic is lower compared 

to other operational hours. Although the streetlight is mostly switched off during these hours, TALiSMaN still retains the 

near-optimal usefulness of lighting to its users, as shown in Figure 8 (g). 

Figure 8 shows the distribution of average streetlight utility experienced by each simulated road user from 16:00 to 

08:00 the next day, when streetlights operate using the different lighting schemes. From the simulation results, none of the 

evaluated lighting schemes are able to offer perfect streetlight utility (100%) in any of the streetlight operational hours for 

both the simulated pedestrians and motorists. This is even the case for streetlights that are always switched on at 100% 

illuminance output while operating the Conventional lighting scheme. This result, however, is expected as some of the road 



18 

 

segments between two adjacent streetlights are larger than streetlight beam pattern (30 m) can cover. Owing to this, there 

are small sections of unlit road that have prevented perfect streetlight utility being achieved. In general, the streetlight 

utility experienced by the simulated motorists is higher than those experienced by the simulated pedestrians. This is due to 

StreetlightSim’s placement of streetlights at the centre of roads, and their circular beam pattern. Therefore, simulated 

pedestrians encounter larger unlit road sections compared to simulated motorists.  

 

Figure 7. Power output modulation of a streetlight (25W) during operational hours from 16:00 until 08:00 the next day 

while TALiSMaN is evaluated with traffic volume of 438 vehicles per day.  

It can be seen that all simulated road users experience at least 90% utility during operational hours when using the 

Conventional lighting scheme. Similar trends can be observed when TALiSMaN is in use. Although Zoning has a similar 

performance in terms of pedestrian utility, motorist utility is severely impacted (this is to be expected, as it is not designed 

for these users).  While motorists are not tracked by the scheme, their experienced utility was evaluated based on the 

lighting intended for pedestrians. Thus, the utility experienced by motorists is not consistent across streetlight operational 

hours (it varies between 0 – 95%), and reduces when pedestrian traffic is low, i.e. during early morning. For Multi-sensor, 

all streetlights are always at 40% illuminance, and this is increased to 70% and 100% illuminance output when a motorist 

or pedestrian is 20 m and 10 m away respectively. Thus, it is unable to create the lighting conditions that can satisfy both 

the requirements of the pedestrians and the motorists, and has a reduced utility when compared to the Conventional and 

TALiSMaN lighting schemes. The increased traffic volume between the hours of 16:00 – 20:00 and 06:00 – 08:00 causes 

streetlights to constantly switch on at higher illuminance output, and hence higher utility can be observed at these times. 

Philips Chronosense, Part-night and Dynadimmer are considered to be time-based dimming lighting schemes, as their 

illuminance is regulated according to predefined timetables. Owing to this, streetlight utility experienced by simulated road 

users also fluctuates according to their predefined timetable. For Part-night, all streetlights are switched on with 100% 

illuminance output except between midnight and early morning when they are switched off completely. Thus, Part-night 

has a similar utility to Conventional and TALiSMaN lighting schemes except during this period.  
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Pedestrians Motorists  

  

 

(a) Conventional (a)  

  

 

(b) Chronosense (b)  

  

 

(c) Part-night (b)  

  

 

(d) Dynadimmer (c)  

  

 

(e) Multi-sensor (c)  

  

 

(f) Zoning (d)  

  

 

(g) TALiSMaN (d)  

Figure 8. Streetlight utility experienced by pedestrians (left) and motorists (right) during different streetlight operational 

hours with two percentile bands (inner band from 25th to 75th percentile, outer band from 5th to 95th percentile) with 

streetlights operating different lighting schemes. 
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Philips Chronosense allows illuminance to be reduced to a predefined value at a predefined time. In our simulations, 

we consider this to be reduced to 65% between the hours of 22:00 and 05:00 (a typical setting of Philips Chronosense [8]). 

Correspondingly, the utility provided during these hours is also reduced to 68%-72% and 60%-65% for the simulated 

pedestrians and motorists respectively. For the remaining hours, this scheme offers similar utility to the Conventional and 

TALiSMaN lighting schemes. Compared to Philips Chronosense, Philips Dynadimmer allows multiple predefined 

illuminance output as summarised in Table 2. As shown Figure 8 (d), streetlight utility experienced by the simulated 

pedestrians and motorists varies according to five different streetlight operational periods. As the maximum illuminance 

output of the lighting scheme is set at 90%, none of the simulated pedestrians or motorists are able to experience streetlight 

utility above 90% as demonstrated by other lighting schemes evaluated in this paper. 

5.2 Energy Consumption of Various Street Lighting Schemes 

To evaluate the energy demand of various street lighting schemes, the energy model shown in Eq. (11) is developed, 

where 𝑒(𝑁) is the energy consumed by a streetlight after 𝑁 discrete timesteps, 𝜑 is the illuminance output of the streetlight 

(%), 𝑃𝑚𝑎𝑥 is the maximum power rating of the light source (W), and 𝑇 is the duration of a single timestep 𝑛.  

𝑒(𝑁) =∑ 𝑃𝑚𝑎𝑥𝜑𝑇
𝑁

𝑛=0
 

(11) 

This model assumes that the streetlight energy consumption is directly proportional to its illuminance output, e.g. 

when the streetlight illuminance output is reduced to 80%, the streetlight energy consumption is also reduced to 80% based 

on its maximum power rating, 𝑃𝑚𝑎𝑥.  

Figure 9 shows the total energy consumption of 112 streetlights in one week for different traffic volumes while 

operating different lighting schemes. The results show that the energy consumption of time-based dimming schemes, i.e. 

Conventional, Chronosense, Part-night and Dynadimmer is not dependent on traffic volume. Thus, their energy 

consumption remains constant while evaluated with different traffic volumes. As expected, Conventional is the least energy 

efficient of the lighting schemes considered. This is expected since the streetlights are always switched on at 100% 

illuminance. Chronosense, Part-night and Dynadimmer reduce illuminance at specific hours, hence reducing the energy 

consumption by 15%, 34% and 37% respectively, compared to Conventional. 
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Figure 9. Mean weekly energy consumption of 112 streetlights while operating various street lighting schemes from 16:00 

to 08:00 next day. The error bars represent the maximum and minimum energy consumption over ten repeated simulations. 

In general, the energy consumption of the streetlights when operating traffic-aware lighting schemes, i.e. Multi-

sensor, Zoning and TALiSMaN, increases with larger traffic volumes. This trend, however, is anticipated since these 

lighting schemes are designed to save energy by turning off or dimming lights when less traffic is present. As a result of 

increasing traffic volumes, a near-continuous stream of traffic is developed within the detection range of each sensor. 

Hence, the time each streetlight spends active is also prolonged, and thus energy consumption is also increased. The effect 

of increasing traffic volumes to Multi-sensor, however, is less pronounced compared to other traffic-aware lighting 

schemes. This is due to the streetlights operating Multi-sensor being constantly switched on at 40% illuminance output 

even when a road user is not detected. 

Amongst all the evaluated lighting schemes, Zoning consumes the least energy for all the scenarios but its energy was 

expended for only a small proportion of road users, i.e. the pedestrians (14%). This is because it was originally designed 

to address the needs of pedestrians. Owing to this, Zoning failed to provide a streetlight utility comparable to that of other 

schemes (see Figure 8). TALiSMaN required almost 3x more energy compared to Zoning. This result is justifiable because 

TALiSMaN aims to provide optimum lighting conditions that fulfil different road users’ needs for street lighting. While 

Zoning may have application to areas with pedestrian-only traffic, for example some commercial areas and parks, it is 

clearly not applicable to those that have a mix of pedestrians and motorists. Furthermore, while Zoning requires pedestrians 

to carry GPS-enabled smartphones, TALiSMaN provides reasonable energy savings without any such demands. Therefore, 

the adoption of TALiSMaN in residential areas is more viable when compared to Zoning because traffic in such places 

normally comprises both pedestrians and motorists.  Therefore, disregarding Zoning, TALiSMaN can be seen to consume 

between 2-55% (depending on traffic volume) of the energy required by Multi-Sensor, the best-performing state-of-the-art 
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technique. Furthermore, compared to conventional (or ‘always-on’) lighting scheme, TALiSMaN only consumes 1-2% of 

the energy.   

Both Zoning and TALiSMaN exchange information between streetlights via a radio communication network. To 

evaluate the worst-case energy overhead of this, we consider that each streetlight has an IEEE 802.15.4 transceiver which 

is active for up to 16 hours per day, consuming 100 mW for both data transmission and reception [50]. This represents an 

overhead of 1.25 kWh per week for both schemes, which is only 2-3% of the 40 – 65 kWh of energy saved by TALiSMaN 

compared against the Multi-sensor lighting scheme. 

Figure 10 shows the weekly energy consumption of various lighting schemes according to seasonal change in different 

months of year while evaluated with a traffic volume of 6554 vehicles per day. The operational hours of the streetlights are 

based on average sunset and sunrise times in Southampton, UK [51]. As the energy consumption of the streetlights is 

partially influenced by duration of streetlight operation, all the lighting schemes exhibit a trend with summer months having 

the lowest energy consumption over a year, and reach their peak during winter months.  The length of daytime (i.e. when 

the streetlights are not switched on) is typically longer in summer months than winter months, hence shortening the required 

operational hours of the streetlights.  In addition, road traffic during these hours is also expected to be lower (see Figure 

5). Owing to these, energy consumption during these months is significantly lower compared to other months.  Although 

energy consumption is reduced during summer months, traffic-aware lighting schemes still outperform comparable time-

based lighting schemes.  

 

Figure 10. Weekly energy consumption of 112 streetlights for different months of year.  The error bars represent the 

maximum and the minimum energy consumption for Multi-sensor, Zoning, and TALiSMaN lighting schemes over 10 

repeated simulations while with traffic volume of 6554 vehicles per day. 
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6. Conclusions 

In this paper, we proposed a distributed Traffic-Aware Lighting Scheme Management Network (TALiSMaN) to 

create lighting conditions that maximise the utility of the streetlights, and improve their energy efficiency by minimising 

their energy use. TALiSMaN was simulated and its performance analysed and compared with state-of-the-art lighting 

schemes. We demonstrate that streetlights using TALiSMaN have a lower energy consumption than existing schemes, 

while offering comparable utility to conventional (or ‘always-on’) lighting. Based on the simulation results, TALiSMaN 

provides an energy saving of 45-98% (depending on traffic volume) compared to the state-of-the-art schemes evaluated. 

While the Zoning lighting scheme has a relatively low energy consumption, it typically cannot offer comparable streetlight 

utility to TALiSMaN. Our future work is currently investigating (1) novel communication protocols which are better suited 

to TALiSMaN’s network architecture and traffic patterns, and (2) the extension of TALiSMaN to consider energy-

management for off-grid streetlights; these have become popular in areas where access to mains power is restricted.  
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