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Abstract

Traditional univariate regression techniques assume independence between observations

so are therefore not appropriate for the analysis of multivariate responses. A multivariate

response refers to cases where there are more than one response for each unit (cluster).

In order to not violate the independence assumption, the entire response profile of each

unit is treated as the response. The focus of this thesis is on the analysis of multivariate

categorical data using likelihood-based approaches. In addition, population-averaged

models are of interest, whereby the effects of the explanatory variables are averaged

over the population. The nature of likelihood-based approaches means that the full

joint distribution of the multivariate categorical responses must be specified. This thesis

puts equal emphasis on both the univariate means (first-order moments) and the as-

sociations within a cluster. The likelihood-based approach used in this thesis uses the

dependence ratio association measure (Ekhlom, Smith and McDonald, 1995) as opposed

to the commonly used odds ratio. A key advantage of the dependence ratio is its ability

to cope computationally with larger cluster sizes than the odds ratio.

Papers 1 and 2 consider frequentist applications using maximum likelihood estimation.

Paper 1 considers the dependence ratio in the context of square tables (two-way contin-

gency tables with the same row and column categories) as well as extensions to larger

contingency tables. Existing models, such as symmetry, are discussed and expressed in

terms of dependence ratios where possible. Paper 2 of this thesis considers a specific

dataset on the hand joints of patients who are affected with psoriatic arthritis. The (bi-

nary) response of interest is damage in the hand joints of each patient (at their last clinic

visit). The dependence ratio approach gives equal emphasis to the first-order moments

and the associations within a patient. In addition to the dependence ratio approach, a

generalised estimating equations (GEE) approach is also presented and contrasted with

the dependence ratio approach. The GEE approach focuses on the first-order moments

and in this analysis misses some notable conclusions by treating the associations as a

nuisance.

Paper 3 considers a Bayesian approach with dependence ratios. Although dependence

ratios have been used in a Bayesian context before, it is believed that only empirical

Bayes approaches have been considered (Good, 1956; Du Mouchel and Pregibon, 2001).

Paper 3 considers a Bayesian approach using dependence ratios and traditional Bayesian

approaches whereby prior distributions are considered (for the first-order moments and

dependence ratios). The simplest bivariate binary response is the main focus of the

paper with emphasis on obtaining non-informative priors. Specifying the dependence

ratio to have a uniform prior between its upper and lower bounds was found to be the

most appropriate non-informative prior for the bivariate binary case.
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Chapter 1

Introduction

1.1 Background

Longitudinal or otherwise clustered data can be found in a range of disciplines. They

both relate to situations where there are more than one observation for each individual

unit (cluster). Longitudinal data are typically used to refer to studies where repeated

measurements are observed over time. A typical example of this would be patients in a

clinical trial who give a number of measurements over a given time period. In contrast,

clustered data typically refers to studies where there are repeated measurements with

no clear time element. For example, studies often involve subjects answering a number

of similar questions in a questionnaire.

Longitudinal and clustered data can also be referred to as multivariate data. Due to

the correlated nature of multivariate data, standard univariate techniques cannot be

used since they assume independence. One way to overcome this difficulty is to treat

each unit’s entire response profile as the response and use multivariate techniques. For

normally distributed data, substantial work has been undertaken and there are well

established methods (such as those described in Diggle et al. 2002). However, for cat-

egorical data, which is the focus of this thesis, research is being more actively carried

out. Categorical data refers to situations where the response of interest has only a small

number of categories. This could be either nominal or ordinal categorical data. Nominal

is when there is no order to the categories and this also includes dichotomous (binary)

data. An example of a nominal variable would be religion followed (Christianity, Mus-

lim, etc). In contrast, ordinal categorical data are when the order of the categories is

meaningful. A common example of an ordinal categorical variable is when subjects are

asked to rate each question in a questionnaire on a scale from 1-5 (ranging from strongly

agree to strongly disagree, for example). Ordinal categorical data can also be encoun-

tered when there is a discrete variable with few categories or when continuous variables

are grouped into categories (Agresti, 2002).

There are two main approaches to analysing multivariate categorical data. Firstly,

likelihood based approaches such as the population-averaged approach (discussed in

Section 1.2), where emphasis is typically placed on modelling the associations between

17
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the repeated responses (using an association model) and the marginal regression (first-

order moments). Secondly, the generalised estimating equations (GEE) approach (Liang

and Zeger, 1986) which is a multivariate extension of quasi-likelihood. This method

treats the association parameters as a nuisance and emphasis is placed on the marginal

regression. In contrast to likelihood approaches, the GEE approach does not specify the

entire joint distribution. This approach is discussed in greater detail in Section 1.2.1 as

well as paper 2 of this thesis. However, the focus of this thesis is on likelihood based

methods in both a frequentist context (papers 1 and 2) and Bayesian context (paper 3).

A detailed description of the outline to this thesis is given in Section 1.5.

The joint distribution of a multivariate normal response has the useful property that it

is completely specified by the first two moments (the univariate means and the variance-

covariance matrix respectively). In contrast, the joint distribution of a multivariate

categorical response is more complicated as it is not specified by the first two moments.

This is illustrated in Table 1.1 which shows the total number of parameters describing

the associations within a cluster (for the saturated case) increases dramatically as the

number of subunits within a cluster increases, for a binary response. If the number of

subunits within a cluster is of size q, the total number of association parameters is given

by 2q − q − 1.

Table 1.1: Number of association parameters by cluster size, for a binary re-
sponse

Cluster size Number of association parameters

2 1
3 4
4 11
5 26
6 57

Table 1.1 shows that when the response is binary and the number of subunits within a

cluster is five or more, that having one parameter for each degree of freedom (for the

saturated case) is often not feasible. This is due to potential computational difficulties

as well as making model interpretation difficult. Clearly restrictions need to be applied

in these cases to reduce the number of association parameters to a manageable amount.

When the categorical response has more than two categories, restrictions are particularly

relevant.

1.2 Maximum likelihood approaches to correlated categor-

ical data

Many statisticians prefer maximum likelihood approaches (Liang, Zeger and Qaqish,

1992) for analysing multivariate categorical data. One likelihood based approach is
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where the effects of the covariates are averaged over all subjects (units) in the dataset.

These models are known as population-averaged models. There are also subject-specific

(cluster-specific) based approaches. They differ from population-averaged models in the

sense that they estimate subject-specific effects. Conditional maximum likelihood is one

such approach, but it is limited since it can only estimate within-subject effects (Agresti,

2002). A preferable approach is generalized linear mixed models. This treats the subject

effects as random effects and can cope with both between and within-subject effects (for

the fixed effects).

Both population-averaged and subject-specific approaches have their use in particular

situations. Population-averaged models are preferable if marginal effects are of main

interest to the researcher. In contrast, subject-specific models are preferred if the re-

searcher would like to estimate subject-specific effects as well as their associated vari-

ability. Agresti (2002) gives a more detailed discussion of when to use each approach.

However, the focus of this thesis is on the use of population-averaged models.

1.2.1 Problems with maximum likelihood and the GEE approach

For many years, population-averaged models using maximum likelihood estimation (with

the traditional odds ratio as the measure of association) suffered from the drawback of

not being able to cope computationally with large cluster sizes. As a general rule,

maximum likelihood estimation of cluster sizes greater than five is not feasible with

odds ratios (Lesaffre et al. 2000). This lead to the development of the quasi-likelihood

(GEE) approach (Liang and Zeger, 1986). In recent years, this method has arguably

become the most popular method for the analysis of multivariate categorical data. This

is partly due to the fact that it can cope with larger cluster sizes, but also because it

is the default method for modelling multivariate categorical data in many statistical

packages, such as SPSS.

The GEE approach treats the associations as a nuisance with emphasis placed on the

marginal regression and moments of higher-order than two are not specified. It is often

referred to as a marginal model since emphasis is placed on the marginal regression.

Despite the fact the GEE approach is similar to the multivariate normal distribution in

the sense that the first two moments fully describe the joint distribution, many statisti-

cians believe that the association of the responses should be analysed further in order to

determine the mechanisms that are generating the associations within a cluster (Lindsey

and Lambert, 1998). Consequently, an alternative to the odds ratio association measure

for maximum likelihood estimation was sought and this is discussed in Section 1.2.2.
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1.2.2 Association measures for maximum likelihood estimation in

population-averaged models

A number of association measures have been proposed for analysing multivariate cat-

egorical data using population-averaged models and maximum likelihood estimation.

This section discusses the traditional odds ratio and the more recently proposed depen-

dence ratio (Ekholm, Smith and McDonald, 1995) which offers a solution to the problem

outlined in Section 1.2.1. In order to compare the two measures, consider the bivariate

binary response Y = (Y1, Y2). The nature of maximum likelihood approaches means

that the joint distribution must be specified. For all population-averaged approaches

that use maximum likelihood, the first-order moments are regressed on any relevant

explanatory variables (using a appropriate link function). For the bivariate binary case,

the first-order moments (assuming no explanatory variables) are specified as:

µk = pr(Yk = 1), (1.1)

where k = 1, 2.

Moments of second-order or higher inform us about the associations within a cluster

and are parameterised differently depending on the association measure considered. The

second-order moment for the bivariate binary case is given by:

µ12 = pr(Y1 = 1, Y2 = 1). (1.2)

Table 1.2 shows the relevant 2 by 2 table of cell probabilities for the bivariate binary

response with four possible response profiles: (1, 1), (1, 0), (0, 1), (0, 0). The joint distri-

bution is completely specified by the first-order moments (µ1, µ2) and the second-order

moment (µ12). Although µ12 represents the association between Y1 and Y2, it gives no

direct link to the baseline of independence. In contrast, the odds ratio and dependence

ratio do relate the higher order moments to independence and they are now discussed

in more detail.

Table 1.2: Cell probabilities for a bivariate binary response

Y2
Y1 1 0 Total

1 µ12 µ1 − µ12 µ1
0 µ2 − µ12 1 − µ1 − µ2 + µ12 1 − µ1

Total µ2 1 − µ2 1

The odds ratio is the traditional association measure for population-averaged approaches

to analysing multivariate categorical responses using maximum likelihood. Numerous

different odds ratio parameterisations have been suggested such as the mixed parame-

terisation by Fitzmaurice and Laird (1993). In this approach, the first-order moments
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are combined with conditional log-odds ratios. Fitzmaurice and Laird proposed a two-

stage iterative procedure for finding the maximum likelihood estimates. The odds ratio

parameterisations will often differ for moments of higher-order than two. However, in

the simplest bivariate binary case, the same odds ratio is obtained regardless of the

formulation. This is specified as:

χ = χ12 =
µ12(1 − µ1 − µ2 + µ12)

(µ2 − µ12)(µ1 − µ12)
=
pr(Y1 = 1, Y2 = 1)pr(Y1 = 0, Y2 = 0)

pr(Y1 = 0, Y2 = 1)pr(Y1 = 1, Y2 = 0)
. (1.3)

The dependence ratio was introduced by Ekholm et al. (1995) as an advantageous al-

ternative to the odds ratio. For the bivariate binary response, the dependence ratio is

given by:

τ = τ12 =
µ12
µ1µ2

=
pr(Y1 = 1, Y2 = 1)

pr(Y1 = 1) pr(Y2 = 1)
. (1.4)

If Yk = 1 is the probability of a success as opposed to failure (Yk = 0), the dependence

ratio is defined as the joint success probability divided by the joint success probability

under independence. For both the odds ratio and the dependence ratio, a value of 1

indicates independence. In addition, values less than 1 indicate negative association and

values greater than 1 indicate positive association.

The focus of this thesis is on the use of the dependence ratio and in particular extending

its use to relevant applications. A key advantage of the dependence ratio approach

(discussed in detail in Section 1.2.3) is its ability to cope computationally with large

cluster sizes. In addition to putting equal emphasis on modelling the marginal regression

and the associations, the dependence ratio approach uses relevant association structures

to reduce the number of association parameters (where necessary) and consequently to

provide a detailed account of the mechanisms behind the associations. These structures

are discussed in detail in Section 1.2.3.1.

1.2.3 The dependence ratio approach

The dependence ratio can be extended from the bivariate case described previously to

higher-order moments. For example, for the binary case with three repeated observa-

tions, the three-way dependence ratio is defined as:

τ123 =
µ123
µ1µ2µ3

=
pr(Y1 = 1, Y2 = 1, Y3 = 1)

pr(Y1 = 1)pr(Y2 = 1)pr(Y3 = 1)
. (1.5)

Higher-order dependence ratios can be expressed similarly. Dependence ratios for cases

where there are more than two response categories are discussed in paper 1 of this thesis.
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The dependence ratio approach combines a marginal regression model and an association

model using the profile probability, πi, which is defined as:

πi = pr(Yi1 = yi1, . . . , Yiq = yiq), (1.6)

where Yik represents the response for unit i = 1, . . . , n at subunit k = 1, . . . , q.

The marginal regression model consists of the first-order moments (univariate means)

regressed on explanatory variables using a relevant link function such as the logit link

function in the binary response case. The association model uses the second-order and

higher moments. A convenient feature of the dependence ratio approach is that these

moments can be expressed as the product of the first-order moments and dependence

ratios of all orders. This is because, in contrast to the second-order and higher moments,

dependence ratios are comparable to the baseline of mutual independence. In addition,

in contrast to the odds ratio, the profile probability can be expressed in closed form

in terms of the regression and association parameters, where the regression parameters

are the first-order moments and the association parameters are the dependence ratios

of all orders. This consequently allows the likelihood and log-likelihood functions to

be specified for maximum likelihood estimation and also gives the dependence ratio

approach a key advantage over the odds ratio approach (see Section 1.3 for more details).

1.2.3.1 Association structures

In many cases, particularly with large cluster sizes, the number of association parameters

will need to be reduced to a more manageable number. This is commonly undertaken

using a particular association structure such as those defined by Ekholm, Smith and

McDonald (2000). Alternatively, constraints may be imposed on the dependence ratios

based on the values of the observed dependence ratios or theoretical considerations.

The association structures that are considered in this thesis are now discussed.

Independence (I):

Independence assumes that the observations within a cluster are independent. Conse-

quently, all dependence ratios are equal to one. Independence is rarely applicable to

longitudinal or clustered data.

Necessary factor (N):

In certain studies, there may be a particular group of individuals (units) who always

give the same response throughout the study. In this situation, a necessary factor

association structure is often appropriate. This structure separates the dataset into

those individuals that have and those that do not have the factor that is necessary for

a (typically) positive response in the binary case or to be (typically) greater than the
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smallest response category for a multicategory response. The responses are conditionally

independent given the necessary factor. This association structure is discussed further

in papers 1 and 2 of this thesis.

Latent binary factor (L):

A latent binary structure is appropriate if every unit has a realisation of a latent binary

variable such that the population can be divided into two groups with different response

category probabilities (given the same covariate values for the regression model). In

addition, responses within a cluster are conditionally independent given L. The structure

is often appropriate if an important dichotomous covariate has been omitted (Ekholm

et al. 2003). See papers 1 and 2 of this thesis for more details.

Latent binary factor within a necessary factor (NL):

It may be useful to combine the N and L association structures. For example, after

fitting N , an improved model fit may be achieved by having a latent binary structure to

operate within a necessary factor association structure (denoted NL). In other words,

of those individuals that have the necessary factor, there are two groups of individuals

with different response probabilities (given the same values for the regression variables).

This association structure is considered in this thesis but often had a unsatisfactory fit

due to negative profile probabilities (see Section 1.2.4).

Markov structures

Although not relevant to this thesis, Markov structures are discussed. When there is

a natural ordering to the responses such as over time, a first-order Markov structure

may be appropriate. This is denoted by M1. The structure has the condition that a

particular observation at time tk+1 is only influenced by the response at time tk and is

independent of all previous observations, given the response at time tk. For a binary

response, this condition can be expressed as:

pr(Yitk+1
= 1 | Yit1 , . . . , Yitk) = pr(Yitk+1

= 1 | Yitk), (1.7)

where Yitk represents the response for unit i = 1, . . . , n at subunit k = 1, . . . , q.

For a first-order Markov structure with a binary response, (q − 1) adjacent two-way

dependence ratios have to be specified, where q is the number of subunits within a

cluster. If we extend this to multicategory responses, (q − 1)(f − 1)2 two-way adjacent

dependence ratios have to be specified, where f is the number of categories in the

response. Various constraints can be imposed on the dependence ratios in addition to

the first-order Markov structure outlined above such as equality of dependence ratios over

time and equality of dependence ratios for certain response categories. The structure

is appropriate when there are more than two repeated observations and in order to
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satisfy the Markov condition, the 3-way dependence ratios should satisfy the following

expression (for a binary response):

τtk−1tktk+1
= τtk−1tkτtktk+1

. (1.8)

This can be used as a diagnostic check that the first-order Markov structure is adequate.

Another structure which can be used is a second-order Markov structure, denoted M2.

For binary responses, (q − 2) trivariate dependence ratios are specified (Ekholm et al.

2000).

Finally, another model that is often considered is to have a particular Markov structure

(typically first-order) occurring within a necessary factor. In other words, given the

individual has the necessary factor, the responses within a cluster follow a first-order

Markov structure. This structure is denoted NM and is discussed in detail in Ekholm,

Jokinen and Kilpi (2002).

1.2.4 Comparing the odds ratio and the dependence ratio

The following points now aim to summarise in detail the advantages and drawbacks of

both the dependence ratio and the odds ratio approaches.

• Interpretation: The dependence ratio does not grow in complexity for the higher-

order moments. In contrast, the interpretation of the odds ratio does grow in

complexity for these cases since, for example, a 3-way odds ratio is the ratio of

two conditional two-way odds ratios (Ekholm, 2003).

• Explicit solution: The odds ratio approach suffers from the drawback of having no

closed form solution for the joint distribution (in terms of the first-order moments

and odds ratios) when the number of subunits in a cluster (q) is greater than

2 (Ekholm, 2003) since these have to be solved iteratively. In fact, even the

simplest bivariate binary case requires the solving of a quadratic in order for the

joint distribution to be specified in terms of µ1, µ2 and χ. In contrast, the joint

distribution can still be expressed in closed form for the dependence ratio approach

(in terms of the first-order moments and dependence ratios) when q > 2. For the

bivariate binary case, the joint distribution is completely specified by µ1, µ2 and

τ by utilising the transformation µ12 = µ1µ2τ so it therefore does not require

the solving of a quadratic. This gives the dependence ratio approach a major

computational advantage (see Section 1.3 for more details).

• Large cluster sizes: The dependence ratio approach has the distinct advantage

of being able to cope computationally with large cluster sizes. In contrast, the
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odds ratio approach typically cannot cope with cluster sizes that are larger than

approximately five (Lesaffre et al. 2000).

• Event specific association: The dependence ratio measures the strength of the as-

sociation between specific events whereas the odds ratio focuses on the association

between the random variables. The dependence ratio is therefore more similar to

the relative risk than the odds ratio since it is based on a ratio of probabilities.

The relative risk is often considered to have a more favorable interpretation than

the odds ratio (Greenland 1987; Sackett, Deeks and Altman 1996; Davies, Crombie

and Tavakoli 1998).

• Association structures: As discussed in Section 1.2.3.1, one of the most useful

features of the dependence ratio approach is that, depending on the application, an

association structure can often be chosen that represents the underlying mechanism

that is generating the responses within a cluster.

• Coding of the response: Unlike the odds ratio, the dependence ratio is influenced by

the coding of the response. In other words, if the baseline category of the response

is changed, a different set of association parameters is obtained. This issue is due to

the fact that the dependence ratio measures event specific association. Some may

see this as a disadvantage, but often there is specific interest in coding the response

in a specific way. For example, if the response is binary with 1 representing disease

and 0 representing no disease, then the researcher will often be more interested in

focusing on the probability of disease and therefore having zero as the baseline. In

these cases, the dependence ratio measures solely the association of interest.

• Orthogonality: In contrast to the odds ratio approach, the regression and associ-

ation parameters are not orthogonal in the dependence ratio approach (Ekholm,

2003). Therefore, calculating the correlations of the parameter estimates is recom-

mended (Ekholm et al. 1995). Ekholm (2003) states that high correlations were

rarely found in previous analyses.

• Negative profile probabilities: Rather than using the logits of probabilities, the

dependence ratio approach uses the profile probabilities (1.6) to combine the re-

gression and association models. Consequently, the dependence ratio approach

can produce negative fitted profile probabilities for the unobserved profiles. Posi-

tivity constraints are imposed on the observed profiles in the maximum likelihood

estimation (discussed in Section 1.3). However, Ekholm (2003) discusses this issue

and concludes that it should not be treated as a drawback of the dependence ratio

approach since negative profile probabilities act as a way of detecting if the model

is incorrectly specified. In other words, they provide a tool for model validation.

• Range: The dependence ratio is constrained by the marginal probabilities (Ekholm,

2003). For example, for a two-way dependence ratio of a binary response, denoted

τ , the range is given by:
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max

{
0,

1

µ1
+

1

µ2
− 1

µ1µ2

}
≤ τ ≤ min

{
1

µ1
,

1

µ2

}
. (1.9)

This shows further the similarity between the dependence ratio and the relative

risk since both are based on the ratio of probabilities and the range of the relative

risk is also constrained by the marginal probabilities. In contrast, the odds ratio

is not constrained by the marginal probabilities and it has a range from zero to

infinity. The range of the dependence ratio has received some criticism due to

its varying upper bound. However, the fact the dependence ratio has a finite

upper bound is also arguably beneficial over the odds ratio. In addition, research

in computer science found the range of the dependence ratio (or the lift/interest

statistic as it is known in this area) only to be a problem for small counts (see

Section 1.4.6 for more details). As shown in section 4.3.4 of this thesis, when

the marginal probabilities are less than approximately 0.5, they are reasonably

variation independent of the dependence ratio. Ekholm (2003) shows this for the

marginal homogeneity case. In other words, this point advocates modelling the

rarer of the response values using the dependence ratio approach. See Section 4.3.4

for more details.

At this point, it is worth discussing the marginal probability dependent Frechet

bounds (Frechet, 1951) that impose constraints on the dependence ratio. In fact,

for any bivariate distribution function (F ) of two discrete random variables (Y1, Y2)

with corresponding marginal distribution functions F1 and F2:

max {0, F1(y1) + F2(y2) − 1} ≤ F (y1, y2) ≤ min {F1(y1), F2(y2)} . (1.10)

From (1.10), (1.9) can be obtained by noting the following:

F1(0) = 1 − µ1, F2(1) = 1 − µ2, F (0, 0) = 1 − µ1 − µ2 + µ12.

• Conditional probability interpretation: If there is a natural ordering to the subunits

within a cluster such as over time, then there is an alternative expression for the

dependence ratio in terms of conditional probability (Ekholm, 2003), which is given

by (for the bivariate binary case):

τ12 =
pr(Y2 = 1|Y1 = 1)

pr(Y2 = 1)
. (1.11)

In this case, the dependence ratio has the interpretation that given Y1 = 1, how

many times more likely is it that Y2 = 1 compared to the corresponding marginal

probability. For a more detailed discussion of the dependence ratio in relation to

the odds ratio, see Ekholm (2003).
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1.2.5 The dependence ratio for case-control studies

Case-control studies are common in health-related applications (Agresti, 2002) for in-

vestigating whether exposure to a potential risk factor is associated with a particular

disease. In contrast to cohort studies they use past data and thus a retrospective design.

Individuals in the population who develop the disease are defined as cases. Each case

is typically matched with an individual who did not develop the disease (control) based

on characteristics such as age and gender. The cases and controls are denoted as D

and D̄ respectively with E and Ē denoting the presence and absence of exposure to a

risk factor. Consider the following hypothetical example of a case-control study from

Wacholder (1996).

Table 1.3: Simple hypothetical example of a case-control study: Data extracted
from Table 1 of Wacholder, S (1996).

E E total

D 10 10 20

D 5 15 20

total 15 25 40

Suppose the population size is 100 000. In addition, assume that 20 of these individuals

develop the disease (cases) and that 20 controls are randomly sampled from all those

who do not develop the disease in the population. Furthermore, 50% of the cases and

25% of the controls are found to be exposed, as shown in Table 1.3.

A disadvantage of case-control studies such as those displayed in Table 1.3 is that it

is not possible to estimate the probability of disease given exposure status since the

marginal distributions of disease status are fixed by design. It is only possible to esti-

mate the probability of exposure given disease status which is not typically of interest to

the researcher. Consequently, measures of association that are based on ratios of prob-

abilities such as the relative risk cannot be calculated in the direction of main interest.

Similarly, the dependence ratio cannot be calculated for the data in Table 1.3 due to

the fact that the marginal distributions of disease status are fixed by design. The odds

ratio has the advantage that it can be calculated for case-control studies since it can be

determined by conditional distributions in either direction (Agresti, 2002).

However, Wacholder (1996) showed that a case-control study can also be viewed as

having data missing by design and that there are advantages to be gained in doing so.

For the data in Table 1.3, the population size is known to be 100 000, therefore we

know that there are 99 960 individuals with unknown exposure status, all of which are

controls. If the missing exposure data is deemed to be missing at random, one would

expect 24 990 to be exposed (25% of the 99960) and 74 970 to be not exposed. In order
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for the missing at random assumption to hold, the controls need to be randomly drawn.

Table 1.4 shows the disease by exposure table at the population level.

Table 1.4: Hypothetical example of case-control study accounting for all 100000
persons in the population, when missing exposure information is inferred: Data
extracted from Table 1 of Wacholder, S (1996).

E E total

D 10 10 20

D 24 995 74 985 99 980

total 25 005 74 995 100 000

Thus the marginal distributions for disease status are no longer fixed by design and

the joint distribution can be estimated. In other words, the dependence ratio can be

estimated for case-control studies if the total population who are at risk of the disease

is known and the missing at random assumption is met. The dependence ratio estimate

is therefore given by:

τ =
10

100 000

( 20
100 000) × ( 25 005

100 000)
= 1.9996 (1.12)

The odds ratio estimate is given by 3. The fact the dependence ratio is less than the

odds ratio is due to the fact that the dependence ratio is always bounded towards

zero association (independence) by the odds ratio except for the case of no association

(Ekholm, 2003).

1.3 R package drm

A key feature of the dependence ratio approach is the freely available R package drm

that was written by Jukka Jokinen (2007). The package can be obtained from:

www.helsinki.fi/∼jtjokine/drm/

In addition, the package can also be obtained from within R using install.packages

(“drm”). The full list of features within the drm package can be viewed by clicking

on the help pages tab, which is displayed on the above web page. Most notably, this

includes details on the key functions (drm and depratio) and information on relevant

datasets.

The drm function is the main function since it provides the framework for modelling

multivariate categorical data using dependence ratios. This function provides estimates

for the regression and association parameters (dependence ratios), fit statistics such
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as Akaike’s Information Criterion (AIC), and the correlation matrix of the parameter

estimates, amongst others. It can cope with binary responses as well as extensions to

multicategory responses (ordinal or nominal) through the specification of the relevant

link function. However, one of the most convenient aspects of the function is the ability

to specify the different association structures from Section 1.2.3.1. If a satisfactory fit

cannot be achieved with any of the structures available in drm, alternative constraints

can be imposed on the dependence ratios, typically based on the observed dependence

ratios or theoretical considerations. If negative profile probabilities are encountered with

a particular model, drm warns the user that the model will need to be respecified.

The depratio function is a useful additional function that calculates the observed ad-

jacent w-way dependence ratios for the data in question, where w is specified by the

user in advance. Although the depratio function does not allow the calculation of the

observed non-adjacent dependence ratios, these can be calculated with some additional

R code, as demonstrated in paper 2 of this thesis. Jokinen (2006: PhD Thesis) discusses

in detail the way in which the maximum likelihood estimation process works in drm.

The key points are now discussed.

As discussed in Section 1.2.3, the profile probability can be expressed in closed form for

the dependence ratio approach (in terms of the first-order moments and the dependence

ratios of all orders). However, rather than modelling the complete joint distribution,

constraints will often need to be applied to the regression and association parameters,

especially when there are a large number of subunits within a cluster. Consequently,

in these cases the score functions for the dependence ratio approach are nonlinear and

need to be solved using iterative methods. Despite this, the fact the profile probability

can be expressed in closed form gives the dependence ratio approach a major advantage

over the odds ratio approach with regards to the number of iterations required. The

profile probabilities cannot (typically) be expressed in closed form in terms of the first-

order moments and odds ratios. As a consequence, in order to determine the maximum

likelihood estimates for the odds ratio approach, two steps are needed within each round

of the iterations for updating the parameter estimates. However, the dependence ratio

approach requires only one step in the iterations (within each round) for updating the

parameter values.

Jokinen (2006: PhD Thesis) states that the MAREG software package (Kastner et al.

1997), which uses the mixed odds ratio parameterisation and R functions based on the

local odds ratio parameterisation (Lang, 2004) are the only other software available for

population-averaged modelling of multivariate categorical data, using maximum likeli-

hood estimation. The author is not aware of any other relevant packages being released

in recent years. Jokinen (2006: PhD Thesis) does however emphasise that drm is be-

lieved to be the only available software for taking into account the handling of missing

values (using maximum likelihood). Although this thesis only encounters datasets that

have no missing values, the options drm gives for this are now briefly discussed. Within
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the drm function, the ‘missing’ option allows the user to specify a particular structure

for the dropout mechanism. The drm package allows for MCAR (missing completely at

random), MNAR (missing not at random) and MAR (missing at random).

1.4 The history of the dependence ratio

Although the dependence ratio was not proposed for the purpose of modelling multi-

variate categorical data until Ekholm et al. (1995), previous research prior to this (and

since) has used the dependence ratio formulation for other purposes and in different

application areas, using different names for the dependence ratio. For example, the mo-

bility ratio in sociology and the lift statistic in computer science. The dependence ratio

concept has proved useful in some application areas whereas others have acknowledged

the advantages, but sought different measures. The following sub-sections now describe

(chronologically by area) the methods used in the different application areas.

1.4.1 Genetics

1.4.1.1 Coefficient of coincidence

The earliest known use of the dependence ratio formulation was in a genetic context by

Muller (1916). Muller proposed the coefficient of coincidence (COC) as a measure of

interference with regards to the crossovers that occur at chromosomes during the cell

division process of meiosis. Typically, the coefficient of coincidence is based upon the

recombination (crossover) rates between three genes. Consider three genes (A, B and C),

where B is located between A and C. The two events of interest are whether crossovers

occur between A and B (AB), and whether crossovers occur between B and C (BC).

The coefficient of coincidence is defined as the joint probability of a double crossover

(crossovers at both AB and BC) divided by the joint probability under statistical in-

dependence, so it is clearly the same as the dependence ratio formulation (1.4). The

coefficient of coincidence is therefore given by:

COC =
Pr(AB,BC)

Pr(AB)Pr(BC)
= τAB,BC. (1.13)

A COC of 1 represents independence between the crossovers and in this case, the inter-

ference is 0 since:

Interference = 1 − COC. (1.14)

In other words, the interference is a measure of how a crossover between A and B

interferes with a crossover between B and C (and vice versa).
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1.4.1.2 Sex ratio

Another use of the dependence ratio formulation in a genetic context was in Kullback

(1971). A dataset of 36,536 families was considered with the sex ratio of the first

four births analysed for independence and homogeneity. A four-way contingency table

was considered and the four marginals analysed. The sex ratio is not the same as

the dependence ratio since it is simply the ratio of males to females. In order to test

hypotheses concerning independence and homogeneity, a number of test statistics were

proposed (generally taking into account the dependence between families). Of particular

note for the context of this section is the test statistic for independence presented by

Kullback (1971), which is given by:

2
∑
i

∑
j

∑
k

∑
l

nijkl log

[
nijkl

n
ni+++n+j++n++k+n+++l

n4

]
, (1.15)

where nijkl represents the frequency in the ijkl-cell of the four-way contingency table,

ni+++ represents the marginal distribution of the ith birth and n is the grand total.

It is clear that the (observed) dependence ratio forms part of the test statistic in (1.15):

nijkl

n
ni+++n+j++n++k+n+++l

n4

= τ̂ijkl. (1.16)

It is noted that the work of Kullback (1971) concentrated on the marginal distributions

and does not consider the associations between families. However, the relative risk

recurrence ratio considers the associations (between relatives) and this is discussed in

the next section.

1.4.1.3 Relative recurrence risk

In genetics, the relative recurrence risk is defined as the risk of disease in relatives of

affected individuals. This led to the development of the relative recurrence risk ratio

(Risch, 1990a), λR, which is given by the relative recurrence risk divided by the risk of

disease in the general population. For the case of two affected relatives, this is given by:

λR =
pr(D2 = 1|D1 = 1)

pr(D2 = 1)
=

pr(D1 = 1, D2 = 1)

pr(D1 = 1)pr(D2 = 1)
= τD1D2 , (1.17)

where D1 and D2 represent the disease status of two relatives (1 = affected by the

disease, 0 = unaffected).
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Equation (1.17) makes use of the conditional probability interpretation that was de-

scribed in Section 1.2.4. Following the conditional probability interpretation, λR > 1

means that the relative of an affected individual is at greater risk than the general

population.

It is clear that (1.17) is the same as the dependence ratio formulation. The sibling

recurrence risk ratio (λS , which is λR for siblings) is often of particular interest. A

common use of λS is in exclusion mapping. This involves regions of chromosomes being

excluded if they give a λS that is less than a specified number. For example, Duffy et

al. (2001) used 1.5 as the cut off.

Guo (2000) showed that estimates of λR are inflated if relevant environmental factors

are ignored. Wallace and Clayton (2003) showed that λR can account for these factors.

For example, if X1 and X2 are the only required environmental factors:

λR =
pr(D1 = 1, D2 = 1|X1, X2)

pr(D1 = 1|X1)pr(D2 = 1|X2)
. (1.18)

Wallace and Clayton (2003) focused on leprosy and used a marginal model with logistic

margins (to take into account the environmental factors). In terms of dealing with the

association between pairs of relatives, they used an extension of Plackett’s copula (Plack-

ett, 1965) and this allows for the fitted λS values to be obtained (although not directly

since Plackett’s copula is based upon an odds ratio parameterisation). Copula’s were

first proposed in Sklar (1959). Consider two random variables (Y1, Y2) with correspond-

ing continuous marginal distribution functions F1(y1) and F2(y2) and joint distribution

function F (y1, y2). Sklar’s theorem states that the joint distribution function F can be

expressed as:

F (y1, y2) = C(F1(y1), F2(y2)), (1.19)

where C is a distribution function with uniform marginals on [0, 1]. It is referred to as

a copula function that describes the dependence between Y1 and Y2.

Copulas are of particular use when the researcher has knowledge of the form of the

marginal distributions but not the joint distribution (Wallace and Clayton, 2003). They

allow for joint distributions to be developed with given margins. A wide variety of copula

functions are possible. Plackett’s copula contains a single odds ratio parameter (χpl) for

measuring the association between Y1 and Y2 and this satisfies the following:

χpl =
F (1 − F1 − F2 + F )

(F1 − F )(F2 − F )
(1.20)
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Wallace and Clayton preferred the range of the odds ratio but show a clear preference

for using λR for interpretation. This is because the odds ratio has the more difficult

interpretation of being the ratio of the odds of disease for someone who has an affected

relative (of a given type) to the odds of disease for someone who does not have an

affected relative (of the same type).

In contrast to Plackett (1965), Wallace and Clayton (2003) used maximum likelihood

estimation. They focused on only two relatives and note that the approach does not

easily generalise to three or more relatives. In order to cope with a larger number

of relatives, they were split in to all possible pairs with robust standard errors used

to account for the dependence. Since the dependence ratio approach discussed in this

thesis can cope with larger cluster sizes, it may be useful for modelling three or more

relatives in a genetic context. In addition, the dependence ratio approach would allow

for the λR to be calculated directly.

1.4.2 Social mobility

The earliest known use of the dependence ratio formulation in sociology was in the

analysis of social mobility tables in the 1940’s. As described in Tyree (1973), three

sociologists (Natalie Rogoff, David Glass and Gosta Carlsson) in different countries,

working on similar datasets, wished to understand the issue of intergenerational occupa-

tional mobility. Typically, interest lies in comparing the occupations of respondents to

that of their fathers, using mobility tables. Two main problems were found by the three

sociologists. Firstly, the selecting of appropriate occupational categories for the fathers

and sons was challenging as they were found to differ drastically in size. Secondly, the

marginal distributions of the two generations were found to differ greatly. The aim of

the three sociologists was to come up with a measure that made the time periods of the

two generations comparable with regards to occupational structure (Rogoff, 1953).

Rogoff (1953), Glass (1954) and Carlsson (1958) all developed the same measure to deal

with this problem. Rogoff called it the ‘social distance mobility’ ratio whereas Glass

referred to it as the ‘index of association’ and Carlsson used simply ‘c’. In this section,

the term mobility ratio is used, as in Tyree (1973). Let nij represent the count of a

particular cell in the two-way mobility table. The mobility ratio (for the (i, j) cell in a

k by k mobility table) is specified as:

Mij =
nijn

ni+n+j
, (1.21)

where ni+ and n+j are the marginal counts of row i and column j respectively and n is

the grand total of the mobility table. In addition, i, j = 1, . . . , k with k representing the

number of occupational categories of the son and father.
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Tyree (1973) described the interpretation of the mobility ratio in terms of the cell counts

rather than the cell probabilities. Consequently, the mobility ratio is interpreted as the

ratio of the observed frequency in a particular cell to the corresponding frequency that

is expected under statistical independence. By denoting µ̂ij as the cell probability of a

particular cell, where µ̂ij =
nij

n , it can be shown that (1.21) is the same as the (observed)

dependence ratio formulation:

Mij =
nijn

ni+n+j
=

n2µ̂ij
ni+n+j

=
µ̂ij

µ̂i+µ̂+j
= τ̂ij . (1.22)

Consequently, the mobility ratio can be interpreted in the same way as the dependence

ratio. In other words, the joint probability in a cell divided by the corresponding prob-

ability expected under statistical independence.

The mobility ratio received some criticism (Tyree, 1973). Recall from Section 1.2.4 that

the dependence ratio (mobility ratio) has a range that is constrained by the marginal

probabilities. In other words, different mobility ratios have different maximums. Con-

sequently, the variable upper limit of the mobility ratio makes comparisons between the

mobility ratios more difficult.

A solution to the variable upper limit of the mobility ratio is to use a proportion of

max measure such that the mobility ratios are divided by their corresponding maximum

(
Mij

max(Mij)
), where the maximum is the minimum of the reciprocal of the two marginal

probabilities (Tyree, 1973). However, this proportion of max measure does not relate to

independence since values of independence depend on the marginal probabilities. Tyree

(1973) proposed the Yule statistic (Yule, 1912) Q to combat this difficulty. For the

simple 2 by 2 mobility table:

Q =
n11n22 − n12n21
n11n22 + n12n21

. (1.23)

Q solved some of the difficulties with mobility ratios. For example, Q has a range

between −1 and 1 with 0 corresponding to independence. However, Q may be a poor

measure for comparing two social mobility tables (Tyree, 1973).

Bibby (1975) also gives a very good discussion on the measures of mobility. The disad-

vantages in using the mobility ratio to compare different mobility ratios are acknowledged

and the proportion of max measure (
Mij

max(Mij)
) is proposed, as in Tyree (1973). Bibby

calls this proportion of max measure the standardised index.

The Durbin statistic (1955) is also mentioned to combat the fact that the standardised

index has no fixed value for independence and is given by:
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Mij − 1

max(Mij) − 1
=

τ̂ij − 1

max(τ̂ij) − 1
. (1.24)

In other words, (1.24) is equal to the (observed) dependence ratio minus 1 divided by the

maximum dependence ratio minus 1. This measure is used in paper 2 of this thesis. The

Durbin statistic has the nice property that zero represents independence and 1 represents

the maximum. However, the minimum does depend on the marginal probabilities.

1.4.3 Information theory and linguistics

Information theory refers to the measuring of information and was first introduced by

Shannon (1948). It has been used in many disciplines including computational linguis-

tics, which is the focus of this discussion. Shannon and Weaver (1949) introduced the

concept of mutual information to information theory. Consider two random variables

(X and Y ). Mutual information is defined as the amount of information that one of the

random variables contains about the other and is given by:

I(X;Y ) =
∑
x;y

pr(x, y) log
pr(x, y)

pr(x)pr(y)
. (1.25)

Theil (1970) proposed the uncertainty coefficient (U), which is found by dividing the mu-

tual information by the entropy (Shannon, 1948). Entropy is defined as −
∑
y
pr(y) log[pr(y)].

The uncertainty coefficient is defined by:

U = −

∑
x;y

pr(x, y) log
pr(x, y)

pr(x)pr(y)∑
y
pr(y) log[pr(y)]

. (1.26)

U takes values between 0 and 1, where 0 corresponds to independence between X and

Y, and 1 corresponds to no conditional variation (perfect prediction) such that, for each

x, pr(y|x) = 1, for a given y.

The numerator in (1.26) is in fact the logarithm of the dependence ratio (for given x and

y) weighted by the joint probability of x and y. The denominator (entropy) in (1.26)

normalises U so that it takes values between 0 and 1.

In computational linguistics, interest often lies in identifying pairs of events such as

word collacations that are strongly associated. Collacations are sequences of words that

occur together. It is well known that using the simple co-occurrence probability is not a

sufficient measure of association since it does not relate to independence. The pointwise

mutual information (PMI) is a popular association measure in linguistics. Church and
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Hanks (1990) introduced PMI to the area of linguistics (they call it the association

ratio). PMI is defined over specific values of the random variables. In contrast, mutual

information is defined as the expected value of the PMI evaluated over all possible

values of the random variables. PMI can be positive or negative whereas the mutual

information can only be positive. PMI is defined as the logarithmic ratio of the joint

probability of the two events (typically words) co-occurring to the joint probability

under independence (Church and Hanks, 1990). In other words, the PMI is the log of

the dependence ratio. Church and Hanks (1990) proposed the measure with a base of

2 whereas other researchers use the natural logarithm (e.g., Bouma, 2009). The PMI

between two events x and y is defined as:

PMI = log
pr(x, y)

pr(x)pr(y)
= log(τxy). (1.27)

The PMI has a well known problem that it tends to over estimate the association between

low frequency words (Church and Hanks, 1990; Pantel and Lin, 2002). Same as the

dependence ratio, PMI has a fixed value for independence (in this case 0) and the upper

bound is constrained by the marginal probabilities. Church and Hanks (1990) removed

all pairs with counts ≤ 5 to rectify this problem and noted that the PMI produces very

credible results once this has been done. In addition, Bouma (2009) stated that the PMI

performs relatively well when the low counts are removed. In other words, these results

imply that the lack of a fixed upper bound for the PMI is only an issue in cases when

there are low counts.

Rather than removing pairs with low counts, it is often preferable to use statistics

that are valid for smaller counts. For example, Bouma (2009) proposed a normalised

pointwise mutual information. This statistic has a range between −1 and 1 with 0

corresponding to independence and is given by:

i(x, y) =
log pr(x,y)

pr(x)pr(y)

− log(pr(x, y))
=

log(τxy)

− log(pr(x, y))
. (1.28)

In order to prove the range of (1.28) first consider the situation of independence. Under

independence, τxy equals 1 and consequently the numerator in (1.28) equals 0. Therefore

0 corresponds to independence. Next, consider the case where a given two words only

occur together. In this situation, log(pr(x, y)) = log(pr(x)) = log(pr(y)). Equation

(1.28) therefore becomes − log(pr(x,y))
− log(pr(x,y)) = 1, in other words proving that the maximum of

(1.28) is 1. Finally, consider the case where a given two words never occur together.

Under this scenario, (1.28) approaches −1 when the joint probability pr(x, y) approaches

0 and pr(x), pr(y) are fixed (Bouma, 2009), therefore proving that the minimum of (1.28)

is -1.
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1.4.4 Bayesian use of the dependence ratio

Paper 3 of this thesis considers the dependence ratio association measure in a Bayesian

framework. Although the reader is referred to paper 3 for a more detailed discussion,

the work of Good (1956) is discussed here due to the fact the dependence ratio formu-

lation was used. Good (1956) used a Bayesian approach to smooth cell counts in large

sparse contingency tables and he referred to dependence ratios as association factors.

Log-normal and gamma priors were used in order to estimate association factors for

each cell in the table. In contrast to the work of paper 3 and traditional Bayesian ap-

proaches, Good (1956) used empirical Bayes approaches whereby the prior parameters

are estimated from the data. Good (1956) stated that this method may well be natural

to those familiar with PMI and he also discusses the fact that the association factor

was called the coefficient of dependence by Keynes and Johnson (Keynes, 1921). Du

Mouchel and Pregibon (2001) also proposed an empirical Bayes approach for dealing

with small samples, which is discussed in Section 1.4.6.

1.4.5 Correspondence analysis

Goodman (1996) introduced a general method for the analysis of nonindependence be-

tween row and column categories in two-way contingency tables. For an I (row) by J

(column) contingency table, let pij represent the probability of an observation being in

cell ij. Goodman’s method used the Pearson ratios (Goodman, 1996), which are defined

as:

ψij =
pij

pi+p+j
=

µij
µi+µ+j

= τij , (1.29)

where i = 1, . . . , I and j = 1, . . . , J .

It is clear that the Pearson ratios are the same as the dependence ratios. However, the

Pearson ratios main use is in correspondence analysis, so consequently this discussion

focuses on this application.

Correspondence analysis is a multivariate tool used for graphically displaying the asso-

ciations between two or more categorical variables in a contingency table. It provides

a more intuitive view of the associations between categorical variables than consider-

ing numerical summaries alone (Beh, 2008). Correspondence analysis can be applied

to two-way or multi-way contingency tables. Two-way refers to the fact that there are

two categorical variables and this is also known as simple or classical correspondence

analysis. Both methods traditionally assume that the categorical variables have no or-

der to them (nominal) but relevant extensions are available for ordinal variables or a
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combination of ordinal and nominal variables (Beh, 2008). This discussion focuses on

the simple two-way (nominal) case.

The chi-squared statistic (X2) is also commonly used for assessing the association be-

tween two categorical variables in a contingency table. It can be expressed in terms of

the Pearson ratios (Beh, 2004):

n

I∑
i=1

J∑
j=1

pi+p+j(ψij − 1)2. (1.30)

However, in contrast to correspondence analysis, X2 does not give information on simi-

larities and differences between the categories (Beh, 2004). In addition, the chi-squared

statistic (X2) increases as n increases, consequently affecting tests of association. How-

ever, correspondence analysis uses X2

n (the total inertia) to deal with this issue. In

correspondence analysis, this total inertia is decomposed using (typically) the singular

value decomposition. Correspondence analysis is achieved by applying the singular value

decomposition to the Pearson ratios, such that:

ψij =
pij

pi+p+j
= 1 +

K∑
m=1

λmaimbjm, (1.31)

where m = 1, . . . ,K;K = min (I, J) − 1, aim is a singular vector associated with the

ith row category, bjm is a singular vector associated with the jth column category and

λm represent the mth singular value of the Pearson ratio.

1.4.6 Computer science-data mining

Data mining is a branch of computer science that determines patterns in large datasets

using a computational process. It is used in artificial intelligence and database systems

(amongst others). Agrawal, Imielinski and Swami (1993) introduced the idea of inter-

estingness measures for determining associations in data mining. In contrast to other

application areas, data mining uses the term interestingness measures as opposed to

association measures.

In data mining, one often wants to determine items that co-occur frequently. Typically

this concentrates on pairs of items and this will be the focus of this discussion. For

example, in supermarket basket data, one is often interested in determining items that

frequently occur together.

Agrawal, Imielinski and Swami (1993) proposed the confidence and support interesting-

ness measures for associations in data mining. Associations were considered interesting

if the confidence and support measures exceeded some pre specified cut-off. The support
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measure is defined as the proportion of observations in the dataset that contain both of

the pair of items under consideration. In other words, the support is equal to the joint

probability in the dependence ratio formulation (the numerator). For two items X and

Y, the support is given by:

Support = pr(x, y). (1.32)

In contrast, the confidence statistic is the conditional probability of one item given the

other. For two items X and Y:

Confidence =
pr(x, y)

pr(x)
. (1.33)

However, the support and confidence measures received criticism for their use in deter-

mining interesting associations in the dataset (Aggarwal and Yu, 1998). For example,

researchers (Aggarwal and Yu, 1998; Brin, Silverstein and Motwani, 1997) discussed the

fact that the confidence statistic does not take into account the marginal probability of

Y . In addition, neither the confidence nor the support relates to independence.

This led to the development of the lift (interest) measure by Brin et al. (1997). The lift

measure is the same as the dependence ratio since it is defined as the joint probability of

both items divided by the joint probability of both items under independence. In other

words, in contrast to the confidence and support measures, the lift measure is relative

to independence. It is defined as:

Lift =
pr(x, y)

pr(x)pr(y)
=

Confidence

pr(y)
=

Support

pr(x)pr(y)
= τxy. (1.34)

DuMouchel (1999) and DuMouchel, Pregibon (2001) noted some limitations with the lift

statistic. Most notably, when the support is low, the lift measure becomes unstable. In

other words, there appears to be evidence that the variable upper limit of the dependence

ratio formulation is only a problem when the counts are small. This coincides with the

conclusions for the pointwise mutual information that is used in linguistics (discussed in

Section 1.4.3). However, Du Mouchel and Pregibon (2001) proposed an empirical Bayes

approach which smoothes the lift statistic (denoted R in their work) and consequently

gives more reliable estimates when the support is low. The nature of empirical Bayes

approaches means that the prior parameters are estimated from the data. The common

prior distribution that is assumed for all R values enables the values of R with smaller

support to borrow strength from those with stronger support.

The empirical Bayes approach is conducted separately for different sized item sets (pair-

wise associations, three-way associations and so on). The focus on this discussion is on
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pairwise associations. Let n denote the observed count for a particular set of two items

and e denote the corresponding count under independence. The observed counts n are

assumed to follow a Poisson distribution with mean µ = λe. Interest lies is determining

the posterior distribution of λ = µ
e , which is the expected value of R. The λ values

are assumed to follow a continuous prior (parametric) density function given by p(λ|θ),

for fixed θ. This parameter vector θ is estimated from the data such that every λ is

assumed to have a prior distribution given by p(λ|θ̂), where θ̂ is the maximum likelihood

estimate. The posterior distribution of λ is computed via Bayes rule before quantities

such as the posterior mean of λ (denoted δ) can be obtained. To conclude, δ is much

more reliable than R when n and e are small but close to R when n and e are sufficiently

large (Du Mouchel and Pregibon, 2001).

1.4.7 Use of the dependence ratio approach

The discussion so far has concentrated on uses of the dependence ratio in other contexts

to that of the approach proposed by Ekholm et al. (1995). However, the dependence ratio

approach introduced by Ekholm et al. (1995) has been used for modelling multivariate

categorical data by researchers that were not the original founders of the approach. Most

notably, Anatolyev (2008) used the dependence ratio approach to model the dependence

across stock markets. The response of interest for each market was binary (successful

if the market return went up or not successful if the market return went down). A

key difference between this paper and previous modelling approaches using the depen-

dence ratio approach (such as Ekholm et al. 1995) was that Anatolyev (2008) had time

periods as units rather than the typical individual. Consequently, rather than using

the traditional logistic model for the first-order moments, Anatolyev (2008) proposed a

multivariate generalised autoregressive logit model to account for the time ordering and

the fact that the units are not independent. Separate analyses were conducted for each

of the European, Chinese and Baltic markets. The development of the R package drm

(described in Section 1.3) by Jukka Jokinen (2007) should encourage more use of the

dependence ratio approach in relevant application areas (such as genetics) since the lack

of any available package prior to 2007 made implementation more difficult for those not

familiar with the approach.

1.4.8 Conclusion

The dependence ratio formulation has been used in a number of application areas, some

of which were proposed before the dependence ratio approach for modelling multivariate

categorical data was proposed (Ekholm et al. 1995). The mobility ratio used in social

mobility tables (two-way) was shown to be the same as the dependence ratio formulation.

This measure received criticism for its use in comparing different mobility ratios since



Chapter 1 Introduction 41

the upper limit of the measure is constrained by the marginal probabilities. However,

researchers in computer science and linguistics found this to only be an issue for small

counts. Linguistics used the pointwise mutual information (although this is the log of the

dependence ratio) and computer science used the lift measure. In social mobility, relevant

measures were proposed to deal with the varying upper limit such as the proportion of

max (Tyree, 1973) and Yule’sQ (Yule, 1912). Du Mouchel and Pregibon (2001) proposed

an empirical Bayes approach which smoothed the values of the dependence ratio in small

samples.

With the exception of the empirical Bayes approaches by Good (1956) and Du Mouchel

and Pregibon (2001), the dependence ratio formulation has only been considered in

an exploratory sense in the different application areas mentioned. When a modelling

approach was adopted in genetics (e.g. Wallace and Clayton, 2003), the parameterisation

used was based on the odds ratio. Consequently, the association measure of interest

(λR = dependence ratio) cannot be obtained directly. Wallace and Clayton (2003)

noted that their odds ratio based approach was limited to two relatives (two subunits in

a cluster) due to difficulties with maximum likelihood estimation. In genetics, it would

therefore be of benefit to use the dependence ratio approach by Ekholm at al. (1995)

and described in Section 1.2.3 when interest lies in modelling three or more relatives

since it copes with more than two relatives and λR can be obtained directly.

To conclude, the dependence ratio formulation has been used in a number of application

areas, some of which were prior to the development of the dependence ratio approach

(Ekholm et al. 1995) for modelling multivariate categorical data. These applications

used alternative names to the dependence ratio and used the dependence ratio largely

in an exploratory sense with modelling approaches using different methods rather than

utilising the advantages of the dependence ratio approach.

1.5 Outline of the thesis

As previously discussed, this thesis focuses on the dependence ratio as an association

measure for multivariate categorical data in population-averaged models, as opposed to

using the traditional odds ratio. Instead of treating the associations as a nuisance and

concentrating on the marginal regression (such as the GEE approach), this approach

aims to use specific association structures that adequately model the associations within

a cluster. This thesis extends the dependence ratio to relevant applications where the

dependence ratio has not been applied. This will be undertaken in the form of three

papers, which are each outlined below. It should be noted that there is some repetition

between the introduction and the papers since it is assumed that some readers may only

read certain parts of the thesis and not others.

Paper 1: The dependence ratio association measure for square tables
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Paper 1 focuses on how the dependence ratio can be applied to square tables as well

as relevant extensions. For a categorical response, whether that be binary, ordinal or

nominal, square tables are two-way contingency tables that have the same row and

column categories. In other words, square tables refer to multivariate categorical data

that is observed only twice. The traditional models for square tables, such as marginal

homogeneity and symmetry, are replicated directly in terms of dependence ratios, where

possible.

Three datasets are analysed using the dependence ratio approach. Firstly, a straightfor-

ward bivariate binary case (2 by 2 table) that assesses bilirubin abnormalities following

drug treatment by comparing an active treatment to a placebo treatment (Walker, 2002).

In addition, the two well-known eye grade datasets are analysed in detail. These two

datasets relate to males (Stuart, 1953) and females (Stuart, 1955). The datasets concern

males and females having both their left and right eye graded (on a four level categorical

scale). For each dataset, if a satisfactory fit cannot be achieved with one of the tradi-

tional models for square tables, relevant constraints are imposed on the dependence

ratios.

The second part of the paper focuses on extending the dependence ratios use in square

tables to matched sets categorical data. In other words, using the dependence ratio

as a measure of association when there are more than two observations within a clus-

ter (multi-way contingency tables). A dataset on the rater agreement between seven

pathologists is analysed (Landis and Koch, 1977). The paper uses the R package drm

developed by Jokinen (2007) as well as additional R code where necessary.
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Paper 2: Applications of the dependence ratio to psoriatic arthritis

In paper 2, the dependence ratio is used as an association measure for analysing the

presence of damaged joints in the hands of patients who are affected with psoriatic

arthritis. A specific dataset from a study conducted in Toronto, Canada is used for

analysis. The patients were followed longitudinally over time. The dataset contains

responses for each of the 28 hand joints in a patient (at each clinic visit and excluding

the wrist), where the response is a binary indicator of whether the patient’s joint is

clinically damaged or not (see paper 2 for a definition of clinical damage). However,

this analysis focuses on only the last clinic visit since damage is an irreversible process.

The dependence ratio approach puts equal emphasis on the marginal regression and

the associations within patients. The aim of the marginal regression is to determine if

clinical damage differs with regards to explanatory variables such as the age that the

patient was diagnosed with psoriatic arthritis and the gender of the patient. A key

aim of studying the associations is to determine whether there is stronger association of

clinical damage between or within hands, or between certain groups of joints. The drm

package is used for analysis along with some additional R code.

Paper 3: Prior and posterior distributions for dependence ratios

Bayesian methods have been developed for multivariate categorical data. However, it

is believed that they have not been considered using the dependence ratio association

measure and traditional Bayesian approaches. As discussed in Section 1.4.4 and paper

3 of this thesis, Good (1956) used an empirical Bayes approach in order to estimate

association factors (dependence ratios). This paper develops a Bayesian approach using

dependence ratios and traditional Bayesian approaches whereby prior distributions are

put directly on the parameters of interest (first-order moments and dependence ratios)

rather than being estimated from the data. The simplest bivariate binary response (2×2

contingency table) is considered in detail. The software R and BUGS are used to fit the

models.
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1.6 Discussion

This thesis focuses on the use of the dependence ratio for multivariate categorical data

with population-averaged coefficients, using maximum likelihood estimation (papers 1

and 2) and Bayesian techniques (paper 3). The work focuses on applying the dependence

ratio to applications that have not previously been considered. The dependence ratio

approach has some notable advantages over other approaches. A key benefit is that it can

cope computationally with larger cluster sizes whereas the odds ratio cannot typically

cope with cluster sizes larger than approximately five (Lesaffre et al. 2000). Although the

popular quasi-likelihood GEE approach can deal with larger cluster sizes, it focuses on

the marginal regression with associations being treated as a nuisance. Many statisticians

argue that the whole response profile should be taken into account by determining the

mechanisms that are generating the associations within a cluster (Lindsey and Lambert,

1998).

The GEE approach relies on large samples. However, datasets may not have this prop-

erty. In addition, if there are missing values, the GEE approach may not be adequate

for taking into account the dropout mechanism since it relies on the MCAR (missing

completely at random) assumption, which may not hold (Jokinen, 2006: PhD Thesis).

Consequently, the GEE approach is therefore often only appropriate for datasets with

large samples and limited or no missing values. The odds ratio approach is often only

appropriate for datasets with small cluster sizes as well as limited or no missing val-

ues. In contrast, the dependence ratio approach can cope with larger cluster sizes, and

cases where there are missing values. For dealing with missing values, drm allows for

MCAR, MAR (missing at random) and MNAR (missing not at random), which permits

a more thorough analysis of the dropout mechanism. The reader is referred to Jokinen

(2006: PhD Thesis) for a more detailed discussion of these features. Since datasets will

often have one or more of: small sample sizes, large cluster sizes and missing values, the

dependence ratio approach with the use of drm is often an appropriate method to use.

There are some issues with the dependence ratio approach that should be considered

before the approach can be implemented, none of which should be considered serious

drawbacks. Firstly, negative profile probabilities can be produced for the unobserved

profiles. Instead of treating this as a drawback, the issue should be treated as a method

of model validation (Ekholm, 2003), particularly given the fact that drm warns the user

that the model is incorrectly specified in these cases. However, it should be noted that

negative profile probabilities typically only occur in large cluster sizes. In addition, even

in these cases, the GEE approach is the only other method that can typically be used

since the odds ratio and other solutions for maximum likelihood run into computational

difficulties. Secondly, the range of the dependence ratio has received some criticism due

to the fact it is constrained by the marginal probabilities. Ekholm (2003) argued against

this being a disadvantage. Interestingly, researchers in linguistics and computer science
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(see Section 1.4) found the lack of a fixed upper limit to only be a problem when the

counts are small. However, when comparing the magnitude of dependence ratios, it can

be sensible to standardise each measure so that they are each a proportion of their max.

In addition, further standardisation is desirable to ensure that there is a sensible value

for independence and suitable lower and upper bounds. This procedure is demonstrated

in paper 2.

Jokinen (2006: PhD Thesis) believed that the MAREG package (Kastner et al. 1997)

based on the mixed odds ratio parameterisation and a series of other R functions (Lang,

2004) based on the local odds ratio are the only additional software to drm that are

available for modelling multivariate categorical data using maximum likelihood estima-

tion (population-averaged coefficients). The author is not aware of any more recent

packages that been released to alter this claim. In addition, drm is believed to be the

only software available for modelling the dropout mechanism using maximum likelihood

estimation.

To conclude, the three papers in this thesis focus on applications of the dependence ratio

to both frequentist (papers 1 and 2) and Bayesian (paper 3) situations. Paper 1 of this

thesis focuses on specifying the traditional models for square tables (and extensions) in

terms of dependence ratios. Paper 2 uses the dependence ratio approach to analyse a

dataset on psoriatic arthritis. Finally, paper 3 demonstrates a Bayesian approach using

dependence ratios, which is not thought to have been considered before.





Chapter 2

Paper 1: The dependence ratio as-

sociation measure for square tables

2.1 Introduction

Multivariate categorical data are commonly found within the Social Sciences, whether

that be in a longitudinal sense over time or in a general clustered sense whereby responses

are clustered without necessarily having a time element. The former could involve a

series of measurements for each respondent over time, whereas the latter may involve

family members giving a series of responses such as in social mobility studies. The

correlated nature of the data means that applying traditional regression methods are

often inadequate since they assume independence. However, by using the response profile

of each unit (cluster) as the response variable, multivariate techniques can be used to

overcome this problem.

This paper focuses on the analysis of population-averaged models as opposed to subject-

specific models. In other words, the regression effects are averaged over the entire pop-

ulation rather than estimating subject-specific effects. In terms of taking into account

the associations within a cluster (using maximum likelihood estimation), population-

averaged models based on the traditional odds ratio parameterisation suffer from the

disadvantage of not being able to adequately cope with cluster sizes that are larger than

approximately five (Lesaffre et al. 2000). Although the quasi-likelihood generalised esti-

mating equations (GEE) approach (Liang and Zeger, 1986) helped to solve some of the

problems encountered with a odds ratio parameterisation, its emphasis is purely on the

marginal regression since it treats the associations within a cluster as a nuisance. The

term marginal model is used to refer to cases where only the marginal effects are of in-

terest. However, the present paper gives equal emphasis to both the marginal regression

and the associations. Many statisticians argue that equal emphasis should be given to

the marginal regression and the associations such as Lindsey and Lambert (1998) who

argued that determining the mechanisms that generate the associations within a cluster

is vital to obtain a complete analysis of the data. Consequently, alternatives to the odds

ratio parameterisation for population-averaged, likelihood-based methods were sought.

Ekholm, Smith and McDonald (1995) proposed the dependence ratio as a measure of

47
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association. For the simplest bivariate binary case, Y = (Y1, Y2), there are four possible

response profiles: (1,1), (0,0), (1,0) and (0,1) with 1 regarded as the response of interest

or success and 0 regarded as the baseline or failure. For this case, the dependence ratio

is defined as:

τ12 =
µ12
µ1µ2

=
pr(Y1 = 1, Y2 = 1)

pr(Y1 = 1) pr(Y2 = 1)
. (2.1)

The dependence ratio for a bivariate binary response is defined as the joint success

probability divided by the joint success probability assuming independence. Similar to

the odds ratio, a value of 1 indicates independence, whereas values less than 1 and greater

than 1 represent negative and positive associations respectively. Section 2.2 discusses

the dependence ratio approach in detail including the case of higher-order dependence

ratios and when there are more than two categories in the response. For a full discussion

of the advantages and disadvantages of the dependence ratio relative to the odds ratio,

the reader is referred to Section 1.2.4 of this thesis or Ekholm (2003). Some of the key

points are now discussed:

• Large cluster sizes: The dependence ratio approach can cope computationally

with large cluster sizes, using maximum likelihood estimation (as discussed in

Section 2.2). In contrast, maximum likelihood estimation is typically not feasible

for approaches based on a odds ratio parameterisation when clusters are larger

than approximately five (Lesaffre et al. 2000).

• Association structures: Dependence ratios allow for convenient association struc-

tures to be imposed in order to reduce the number of association parameters (where

necessary) to a more manageable number. These are discussed in Section 2.3.

• Negative fitted profile probabilities: The dependence ratio approach combines a

marginal regression model and an association model using the profile probability

(see Section 2.2). By parameterising in terms of probabilities as opposed to the

logits of probabilities, negative fitted profile probabilities can occur. They can

only occur for the unobserved profiles since positivity constraints are imposed on

the observed profiles in the maximum likelihood estimation. This should not be

treated as a serious disadvantage of the dependence ratio approach since it acts as

a method of model validation (Ekholm, 2003).

• Orthogonality: The regression and association parameters (dependence ratios) are

not orthogonal in the dependence ratio approach. Consequently, the correlations

between these parameters need to be assessed. Ekholm (2003) stated that high

correlations were rarely found in previous research. However, when using the odds

ratio, the parameters are variation independent and orthogonal.

The dependence ratio approach facilitates the combining of a regression and an associ-

ation model and this is discussed in Section 2.2. In addition, another convenient aspect
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of the approach is the R package drm written by Jukka Jokinen (2007). The software

conveniently allows the user to use the dependence ratio approach with certain default

association structures. If a satisfactory fit cannot be obtained with these structures,

alternative constraints can be imposed on the dependence ratios. These constraints are

typically based on the observed dependence ratios as well as theoretical justifications.

The dependence ratio approach has been used to analyse datasets in recent years.

Ekholm, Smith and McDonald (1995) introduced the dependence ratio with some ini-

tial association structures and used it to analyse two datasets with a binary response.

The first dataset concerned pulmonary function and the second concerned the presence

of wheeze in young children. Ekholm, McDonald and Smith (2000) then derived more

relevant association structures and these were then applied to datasets on rheumatoid

arthritis, obesity as well as the wheeze dataset from before, all with a binary response.

Ekholm, Jokinen, McDonald and Smith (2003) then extended the dependence ratio to

ordinal data and analysed a dataset on the use of the drug Fluvoxamine as a drug for

the reduction of psychiatric symptoms. Further work has been undertaken on additional

datasets by Ekholm and Skinner (1998); Ekholm, Jokinen and Kilpi (2002); Jokinen,

McDonald and Smith (2006) and Jokinen (2006).

One application where the dependence ratio has not been extensively applied to is square

tables. Square tables refer to cases where there are only two observations within a cluster.

Consequently, they can be represented as a two-way contingency table with the same row

and column categories. Square tables are often regarded as a separate area to cases where

there are more than two observations in a cluster. Agresti (2002) referred to the square

table case as matched pairs data, whereas matched sets (multi-way tables) are used to

refer to cases where there are more than two observations in a cluster. Agresti (2002,

chapter 10) provided a detailed discussion of the models that are particularly applicable

to square tables such as marginal homogeneity and symmetry. He then discusses models

relevant to matched sets. However, this discussion either treats the associations as a

nuisance or uses the odds ratio as the association measure. As a consequence, this paper

introduces the dependence ratio measure as an association measure for square tables and

aims to enhance the models discussed in Agresti (2002) in terms of dependence ratios.

There is also a section in the present paper that extends the models discussed for square

tables to matched sets.

Four datasets are analysed with the dependence ratio approach in the present paper.

Firstly, a 2 by 2 contingency table (bivariate binary response) example is considered

on bilirubin abnormalities following drug treatment (Walker, 2002). Secondly, the well

known eye grade datasets are analysed (Stuart, 1953 and Stuart, 1955), where individuals

had their right and left eyes graded according to a four point scale, so the dataset can

be represented in a 4 by 4 contingency table. Males and females are analysed separately

since they follow different association structures. The final dataset focuses on a rater
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agreement study with seven repeated responses, and extends methods for square tables

to matched sets.

The outline of the paper is as follows. Section 2.2 discusses the dependence ratio ap-

proach for both binary and multicategory responses. Section 2.3 then outlines the main

association structures that are considered for the dependence ratio approach. Section

2.4 specifically considers square tables and how the dependence ratio can be applied to

existing models. Extensions of these models to matched sets data are discussed in Sec-

tion 2.5. Section 2.6 applies the dependence ratio approaches discussed to the datasets.

The discussion Section 2.7 draws appropriate conclusions.

2.2 The dependence ratio approach

2.2.1 Binary responses

The dependence ratio approach combines a marginal regression model with an associa-

tion model using the profile probabilities πi, which are defined as:

πi = pr(Yi1 = yi1, . . . , Yiq = yiq), (2.2)

where Yik represents the response for unit i = 1, . . . , n at subunit k = 1, . . . , q.

The profile probability can be expressed in terms of the univariate marginal probabilities

(first-order moments) and dependence ratios of all orders. The first-order moments are

given by:

pr(Yik = 1 | xik). (2.3)

where xik is a vector of the explanatory variables.

The marginal regression model is obtained by regressing the first-order moments on rel-

evant explanatory variables, using an appropriate link function. For the binary response

case, the logistic link function is typically used and the model is defined as:

logit[pr(Yik = 1)] = θ + βxT
ik, (2.4)

where β is a vector of the regression coefficients.

The second-order and higher moments inform us about the association structure within

a cluster. However, in contrast to the dependence ratio, they do not relate to the baseline

of independence. Consequently, for a more interpretable measure, they are replaced by
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the product of first-order moments and dependence ratios. For the case of a binary

response, the dependence ratios of all orders are defined as:

τ12 =
µi12
µi1µi2

=
pr(Yi1 = 1, Yi2 = 1)

pr(Yi1 = 1) pr(Yi2 = 1)

...

τ1...q =
µi1...q

µi1 . . . µiq
=

pr(Yi1 = 1, . . . , Yiq = 1)

pr(Yi1 = 1) . . . pr(Yiq = 1)
. (2.5)

It should be noted that the dependence ratio of a given order is assumed to be the same

across all units whereas the moments vary between units. Given q observations within

a cluster, constraints will often need to be imposed on the dependence ratios to reduce

the number of association measures, particularly when q is large. With association

parameters defined by the vector α, the association model is defined as:

τ = g(α). (2.6)

Consequently the regression model (2.4) and the association model (2.6) are combined

using the profile probability in (2.2). The profile probability from (2.2) can also be

written as:

πi = pr(Yi1 = yi1, . . . , Yiq = yiq) = h(θ,β,α;xik), (2.7)

where h(θ,β,α;xik) is a function of θ,β,α and xik.

In other words, πi can be expressed in closed form in terms of the regression and associ-

ation parameters. The likelihood function, and consequently the log-likelihood function,

can then be specified for maximum likelihood estimation. In contrast, approaches based

on a odds ratio parameterisation generally require iterative procedures to specify the

joint distribution.

2.2.2 Multicategory responses

In some situations the response will have more than two categories. This could either

be nominal data or if there is an ordering to the response, ordinal data. In each case,

the procedure required to combine a regression and association model is more complex

than for the binary response case. Ekholm et al. (2003) discuss the approach in detail

for an ordinal response. This section summarises this approach as well as incorporating

the multinomial case.

The f values taken by the response are defined as a = 1, . . . , f and it is further assumed

that 1 < 2 < . . . < f (if the response is ordinal). In addition, yik = a is defined as
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the response for unit i = 1, . . . , n at subunit k = 1, . . . , q. Binary indicators are used as

dummy variables for the f response values and these are defined as:

Y
(a)
ik = 1 if Yik = a, else = 0, for a = 1, . . . , f − 1, (2.8)

where:

Y
(f)
ik = 1 − Y

(f−1)
ik − · · · − Y

(1)
ik . (2.9)

As in the binary case, the profile probability is used to combine the relevant marginal

regression and association models and this is given by:

πi = pr(Yi1 = a1, . . . , Yiq = aq). (2.10)

Furthermore, the 1 × (f q − 1) vector of moment parameters from first-order up to qth-

order are defined as:

µi = (µ
(1)
i1 , . . . , µ

(f−1)
iq , µ

(2,2)
i12 , . . . , µ

(f,...,f)
i1...q ), (2.11)

where µ
(ak)
ik = pr(Yik = ak) and µ

(a1,...,ak)
i1...k = pr(Yi1 = a1, . . . , Yik = ak).

It was shown by Ekholm et al. (2003) that there is a one-to-one mapping from µi to πi

that allows the joint distribution to be expressed in terms of the moment parameters.

The first-order moments are regressed using a relevant link function on appropriate

explanatory variables and form the marginal regression model, as in the binary case.

For the ordinal case, where there is an ordering to the response, the proportional odds

model is defined as:

log[pr(Yik ≤ a)/(1 − pr(Yik ≤ a))] = θa + βxT
ik, a = 1, . . . , f − 1, (2.12)

where θa are the intercept terms.

For the nominal case, where there is no ordering to the response, the traditional multi-

nomial extension of logistic regression is defined as:

log[pr(Yik = a)/pr(Yik = f)] = θa + βax
T
ik, a = 1 . . . , f − 1. (2.13)

The second-order and higher moments are treated differently to those of first-order

since these inform us about the associations within a cluster. They are replaced by the
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product of first-order moments and dependence ratios, as in the binary case. This is

because dependence ratios provide a more useful measure of association than the second

order or higher moments since they are comparable to independence. The second-order

dependence ratios for both the nominal and ordinal cases are defined as (Jokinen et al.

2006):

τ
(ak,al)
kl =

µ
(ak,al)
ikl

µ
(ak)
ik µ

(al)
il

=
pr(Yik = ak, Yil = al)

pr(Yik = ak) pr(Yil = al)
, (2.14)

for ak, al = 2, . . . , f and k, l = 1, . . . , q; k ̸= l.

Higher-order dependence ratios can be expressed in a similar way. Constraints will

typically be imposed on the dependence ratios so that the associations within a cluster

can be adequately summarised by a relatively small number of association parameters,

particularly when q is large. This forms the association model which is defined as in (2.6).

The profile probability (2.10) is used to combine the relevant marginal regression model

(ordinal or nominal) with the association model (2.6). As for the binary case, (2.10)

can be expressed in closed form in terms of the regression and association parameters,

which enables maximum likelihood estimation.

The main interest of this paper is in the application of the dependence ratio to square

tables. For square tables, which are considered in detail in Section 2.4, we only have

first and second-order moments since there are only two observations within a cluster.

However, the response of interest may be either binary or multicategory, as described in

this section. The higher-order moments are relevant to situations where there are more

than two observations within a cluster and these are discussed in Section 2.5.
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2.3 Association structures

As discussed in Section 2.2, it is often necessary to impose constraints on the depen-

dence ratios in order to reduce the number of association parameters. This enables the

associations within a cluster to be explained adequately from only a small number of

association parameters. Ekholm, McDonald and Smith (2000) proposed a number of

association structures that achieve this, some of which are now discussed.

Independence (I):

The most straightforward structure to mention is independence since it assumes that

all observations within a cluster are independent. It is therefore rarely appropriate to

multivariate categorical data. All dependence ratios are equal to one in this case.

Necessary factor (N):

In some studies, there may be a subset of individuals (units) who will always produce

the same response. This can be accounted for by using a necessary factor association

structure (N). This structure separates the responses into those individuals that have

and those that do not have the factor that is necessary for a response to be (typically)

greater than the lowest response category. Responses within a cluster are conditionally

independent given the necessary factor. If the necessary factor is present for a given

individual, Ni = 1 otherwise Ni = 0, for i = 1, . . . , n. For individuals with Ni = 0, they

will always give the lowest response category regardless of the individuals corresponding

values for the explanatory variables. As a consequence, the explanatory variables are

typically regressed conditional on the individual having the necessary factor (Jokinen et

al. 2006). There is one association parameter given by pr(Ni = 1) = v. Consequently,

1− v represents the proportion of observations that will always give the lowest response

category for each subunit. The dependence ratios for the association structure are

defined as:

τ (a1,...,aw) = τ (w) = γw−1, (2.15)

where γ = 1
v ; a1, . . . , aw = 2, . . . , f and w = 2, . . . , q. In other words, the w-way depen-

dence ratios, τ (w), are equal.

Latent binary factor (L):

It may be appropriate for the population to be divided into two groups such that each

has different probabilities for the response categories (given the same values for the

explanatory variables in the marginal regression model). This can be accounted for by

using a latent binary factor association structure. Each individual either does (Li = 1)

or does not have (Li = 0) the latent binary factor (L) and responses within a cluster
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are conditionally independent given L. The structure is often appropriate if a relevant

dichotomous covariate has not been included in the model (Ekholm et al. 2003). The

association model has f parameters, where f is the number of response categories, and

is defined as:

α = (v2, κ
(2), . . . , κ(f)), (2.16)

where v2 = pr(Li = 1) and κ(a) = pr(Yik = a | Li = 0)/pr(Yik = a | Li = 1), for k =

1, . . . , q and a = 2, . . . , f .

In other words, v2 represents the proportion of observations with the latent binary factor

(latent group 1) and 1 − v2 represents the proportion without the factor (latent group

0). The (f−1) different κ parameters are equal to the conditional univariate probability

for those in latent group 0 divided by the corresponding probability for those in group

1. The dependence ratios are specified as follows (Jokinen et al. 2006):

τ (a1,...,aw) =
v2 + (1 − v2)κ

(a1) . . . κ(aw)

(v2 + (1 − v2)κ(a1)) · · · (v2 + (1 − v2)κ(aw))
, (2.17)

where a1, . . . , aw = 2, . . . , f and w = 2, . . . , q.

For given response categories, the w-way dependence ratios are equal. However, these

will differ for different response categories. The necessary factor and latent binary

association structures may also be combined (as discussed in Section 1.2.3.1 of this

thesis).

2.4 Square tables

As described in Sections 2.1 and 2.2, the main focus of this paper is on the application

of the dependence ratio to square tables and in particular showing that existing models

for square tables can be expressed in terms of dependence ratios. Recall that for square

tables, we only have two observations in a cluster, whether that be over time or in

a general clustered sense and that data of this form is commonly known as matched

pairs data. Hence data of this form can be represented in a two-way table with the

same row and column categories. There are two main approaches to the analysis of

square tables, as described in Agresti (2002, Chapter 10). Firstly, the marginal model

approach which focuses on the marginal distributions. Secondly, the joint distribution

can be modelled directly using loglinear models. These approaches are now discussed

in Sections 2.4.1 and 2.4.2 respectively before the dependence ratio approach to square

tables is considered in Section 2.4.3.
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2.4.1 Marginal models for square tables

Consider an f × f square contingency table with cell counts nab and corresponding cell

probabilities (joint distribution) πab = pr(Y1 = a, Y2 = b), where f is the number of

categories in the response. Note that the subscripts now refer to the profile and not the

ith individual as in πi from Section 2.2.

In this subsection, the focus is on models for square tables that focus on the marginal

distributions rather than the complete joint distribution. They are usually considered

when the associations are of secondary interest. One approach is to assume independence

between the marginal distributions (Y1, Y2) but this is usually not a viable assumption

for multivariate categorical data, as discussed in Section 2.1. A preferred approach is to

take into account the associations by treating the marginal distributions as dependent.

Details of the maximum likelihood estimation for this are discussed at the end of Section

2.4.1 and in Agresti (2002, chapter 11.2.5).

In contrast to subject-specific approaches, the effects in marginal models are population-

averaged. One marginal model that is often considered for square tables is marginal

homogeneity. For square tables, marginal homogeneity refers to the equality of the

marginal distributions for Y1 and Y2. Depending on the data in question, the researcher

may be interested in testing for marginal homogeneity. For example, consider a social

mobility study where each cluster refers to a family with two observations on social

class status, one for the father and one for the son. In this case, it is reasonable to test

for marginal homogeneity in order to determine if the distribution changes from one

generation to another.

2.4.1.1 Binary responses

Let Y = (Y1, Y2) represent the binary responses. The following marginal model is defined

for square tables:

logit[pr(Yk = 1)] = θ + βxk, (2.18)

where 1 denotes the category of interest and 0 denotes the baseline; k = 1, 2; x1 = 0

and x2 = 1. The parameter β is interpreted as the log odds of a response (=1) for Y2

relative to Y1. Marginal homogeneity is equivalent to:

pr(Y1 = 1) = pr(Y2 = 1). (2.19)

Consequently, marginal homogeneity corresponds to the case where β = 0. Model

(2.18) is saturated for the marginal probabilities since the two marginal probabilities

are specified by two parameters (Agresti, 2002). However, it is not saturated for the
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square table since it does not specify the complete joint distribution, as there is no

parameter for the associations. Table 2.1 gives the cell counts for a 2 by 2 square table

(bivariate binary response), where:

Table 2.1: Cell counts for a bivariate binary response

Y2
Y1 1 0 Total

1 n11 n10 n1+
0 n01 n00 n0+

Total n+1 n+0 n

n1+ = n10 + n11 and n+1 = n01 + n11.

Marginal homogeneity can be tested using McNemar’s score test (McNemar, 1947):

Z =
n10 − n01√
n10 + n01

, (2.20)

where n01 and n10 are the off-diagonal counts of the 2 by 2 table.

The square of Z is asymptotically chi-squared with one degree of freedom.

2.4.1.2 Multicategory responses

Similarly, responses with more than two categories can be generalised to only two ob-

servations in a cluster. Marginal homogeneity can be thought of as:

pr(Y1 = a) = pr(Y2 = a), (2.21)

for a = 1, . . . , f .

If there is no ordering to the response, the nominal model for square tables is defined

as:

log[pr(Yk = a)/pr(Yk = f)] = θa + βaxk, (2.22)

where k = 1, 2, a = 1, . . . , f − 1 and x1 = 0.

Marginal homogeneity is specified by β1 = · · · = βf−1 = 0. The β parameters are

interpreted in a similar way to the single β parameter from the binary model (2.18)

with each representing the log odds of a response relative to the baseline (the highest

category) for Y2 relative to Y1. Model (2.22) is saturated for the marginal probabilities

since there are 2(f −1) parameters for the 2(f −1) unconstrained marginal probabilities
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(Agresti, 2002). Since there are no parameters specified for the associations, the model

is not saturated for the joint distribution.

Although McNemar’s test of marginal homogeneity is only applicable to bivariate bi-

nary responses, Stuart (1955) proposed a generalised version of McNemar’s test that is

suitable for nominal responses with more than two levels. In addition, Bhapkar (1966)

also proposed a Wald test of marginal homogeneity. The reader is referred to Agresti

(2002, Chapter 10) for more details.

If the response is ordinal, the cumulative probabilities are used as opposed to the

marginal probabilities. The proportional odds model from (2.12) can be specified for

square tables as follows:

logit[pr(Yk ≤ a)] = θa + βxk, (2.23)

where k = 1, 2, a = 1, . . . , f − 1 and x1 = 0.

In contrast to the nominal model, the proportional odds model has the same covariate

effect for each level of the response. This is known as the proportional odds assumption

and needs to be satisfied for this model to be valid. In terms of interpreting the β

parameter, the log odds of Y2 ≤ a is equal to β times the log odds of Y1 ≤ a. This

model is not saturated for the marginal probabilities since there are f parameters for

the 2(f − 1) unconstrained marginal probabilities (Agresti, 2002). However, it is nested

within the saturated model for the multinomial case (2.22) so hence there are (f − 2)

degrees of freedom for testing fit. In addition, β = 0 represents marginal homogeneity.

In order to fit the marginal models discussed for binary and multicategory responses in

this section (and treat the marginal distributions as dependent), the maximum likelihood

approach maximises the multinomial likelihood for the joint distribution. However, as

discussed in detail in Agresti (2002, chapter 11.2.5), this is not straightforward. This

is because only the marginal distributions are specified, which cannot be substituted

in the log-likelihood since it refers to the joint distribution πab. Although this method

makes no assumptions about the joint distribution, the marginal effects are consistent

provided the marginal model is correctly specified (Agresti, 2002). The method suffers

from similar disadvantages to approaches based on the odds ratio association measure in

the sense that maximum likelihood estimation is generally not feasible for cases where

there are large cluster sizes, too many predictors or continuous predictors (Agresti, 2002).

However, none of these issues are relevant for square tables.

2.4.2 Loglinear approaches to square tables

An alternative approach to analysing square tables is to directly model the joint distri-

bution using loglinear models. It provides a more thorough analysis than the marginal
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approaches discussed in Section 2.4.1 since parameters for the associations are specified.

Marginal homogeneity cannot be expressed in this form. However, some of the other

models that use this approach have marginal homogeneity as a special case. This section

discusses the most common of these models with the reader being referred to Agresti

(2002, Chapter 10) for a more detailed discussion.

2.4.2.1 Symmetry

The simplest model to consider using this approach is symmetry. For a particular

response, the joint distribution is said to satisfy symmetry if:

pr(Y1 = a, Y2 = b) = pr(Y1 = b, Y2 = a) or equivalently πab = πba, (2.24)

for all a ̸= b.

The symmetry model can be expressed in both logit and loglinear form. The loglinear

form, as defined in Agresti (2002), is given by:

log(µab) = λ+ λa + λb + λab, (2.25)

where λab = λba, µab =nπab and log(µab) = log(µba).

The main effects are equal for the symmetry model. When symmetry occurs, marginal

homogeneity also occurs and when the response is binary, symmetry is equivalent to

marginal homogeneity (Agresti, 2002). However, when the response has more than

two categories, it is possible for marginal homogeneity to occur without symmetry. It

should be noted that the symmetry model is often not applicable, particularly when the

marginal distributions are substantially different. However, as demonstrated in Section

2.6.2.2 when relevant datasets are analysed, it is possible for the symmetry model to

give a good fit.

2.4.2.2 Quasi-symmetry

One model that often fits much better than symmetry is quasi-symmetry (Caussinus,

1966). This allows the main effects from the symmetry model to differ. The model takes

a loglinear form that is defined as:

log(µab) = λ+ λ1a + λ2b + λab, (2.26)

where λab = λba for all a < b.
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As discussed previously, marginal homogeneity cannot be expressed as a loglinear model.

However, if marginal homogeneity and quasi-symmetry both hold, then this is equiv-

alent to symmetry (Caussinus, 1966). In other words: quasi symmetry + marginal

homogeneity = symmetry.

Marginal homogeneity can therefore be tested by comparing the fit statistics of the

symmetry and quasi-symmetry models using a likelihood ratio test (degrees of freedom

= f − 1). In other words, although marginal homogeneity cannot be expressed as a

loglinear model, it can be tested using this approach as opposed to the tests described

in Section 2.4.1.

2.4.2.3 Quasi-independence

The final model to mention is quasi-independence (for the off-diagonal cells). The quasi-

independence model for square tables can be parameterised in different ways, one of

which has a perfect fit on the main diagonal with all non-diagonal cells satisfying quasi-

independence. The rationale behind this form of the model is that square tables will

often have larger counts on the main diagonal compared to the independence model.

In addition, for all 2 by 2 tables within the overall square table (excluding diagonal

elements), the odds ratios are consequently equal to 1. The model is only applicable to

responses with three or more levels (Agresti, 2002). Quasi-independence has a loglinear

model form given by:

log(µab) = λ+ λ1a + λ2b + δaI(a = b), (2.27)

where I(a = b) = 1 if a = b, else = 0.

The three models described in Section 2.4.2 along with marginal homogeneity are the

most common models for square tables. There are numerous other models that have

been proposed for square tables, typically extensions of the quasi-symmetry model. For

example, the ordinal quasi-symmetry model is particularly applicable when the response

is ordered since the loglinear models discussed so far do not use any ordinal information.

Agresti (2002) discussed this model in detail as well as ordinal extensions for symmetry

(conditional symmetry, McCullagh 1978) and quasi-independence (quasi-uniform asso-

ciation, Goodman 1979a). The models discussed in Sections 2.4.1 and 2.4.2 focused on

treating the associations as a nuisance and using odds ratios as the association measure

respectively. Section 2.4.3 discusses these models for the dependence ratio approach and

expresses the models directly in terms of dependence ratios where possible.



Chapter 2 Paper 1: The dependence ratio association measure for square tables 61

2.4.3 The dependence ratio approach to square tables

In Section 2.2, the dependence ratio approach was discussed in detail for both binary and

multicategory responses. However, this related to the general case as opposed to square

tables where there are only two observations within a cluster. This section describes

the approach for square tables and discusses the models mentioned in Sections 2.4.1 and

2.4.2.

2.4.3.1 Marginal homogeneity

Marginal homogeneity was discussed in Section 2.4.1 and was shown to be a feature

of the marginal models described for both binary (2.18) and multicategory responses

(2.22, 2.23), when the β coefficient(s) are set equal to 0. Recall that for the dependence

ratio approach, the profile probabilities (joint distribution) can be expressed in closed

form in terms of the first-order moments (marginal regression model) and dependence

ratios (association model) of all orders. For this case, marginal homogeneity is specified

by combining the relevant marginal regression model (with β coefficient(s) set equal to

zero) from Section 2.4.1 with a relevant association model, using the profile probability.

One form of the marginal homogeneity model is one that has no constraints on the

association parameters (the dependence ratios). In other words, it assumes a saturated

association structure. However, marginal homogeneity is still present with constraints

on the dependence ratios.

The maximum likelihood estimates under marginal homogeneity can be calculated. This

is now discussed for the simplest situation of a bivariate binary response Y = (Y1, Y2).

Recall from Section 2.1 that there are four possible response profiles: (1,1), (0,0), (1,0)

and (0,1) with 1 regarded as the response of interest or success and 0 regarded as the

baseline or failure. These can consequently be represented in a 2 by 2 table. Assuming

a multinomial sampling scheme, the joint distribution is completely specified by µ1, µ2

and τ . It is the saturated model. However, marginal homogeneity assumes µ1 = µ2 = µ

so consequently has one fewer parameter than the saturated model. Table 2.2 shows

the cell probabilities for marginal homogeneity and the corresponding counts are as in

Table 2.1.

Table 2.2: Cell probabilities for a bivariate binary response under marginal
homogeneity

Y2
Y1 1 0 Total

1 µ12 µ− µ12 µ
0 µ− µ12 1 − 2µ+ µ12 1 − µ

Total µ 1 − µ 1
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The second-order moment is given by µ12 = pr(Y1 = 1, Y2 = 1). Under marginal

homogeneity, constraints on the association parameters are not relevant since there is

only a single dependence ratio parameter, which is as specified in (2.28).

τ12 =
µ12
µ2

. (2.28)

Assuming a multinomial sampling scheme, the likelihood function for (µ, µ12), for a

sample of size n, is given by:

 L(µ, µ12) ∝ (1 − 2µ+ µ12)
n00 (µ− µ12)

n01 (µ− µ12)
n10 (µ12)

n11 . (2.29)

The likelihood expressed in terms of τ12 (denoted τ) rather than µ12 is given by:

 L(µ, τ) ∝ (1 − 2µ+ µ2τ)n00 (µ− µ2τ)n01 (µ− µ2τ)n10 (µ2τ)n11 . (2.30)

It can be shown (see Appendix for proof) that the maximum likelihood estimates of µ

and τ , under marginal homogeneity, for a bivariate binary response, are given by:

µ̂ =
n1+

n + n+1

n

2
=
n1+ + n+1

2n
, (2.31)

τ̂ =
µ̂12
µ̂2

=
n11
n

µ̂2
=

4nn11
(2n11 + n10 + n01)2

. (2.32)

Ekholm (2003) also discussed the issue of marginal homogeneity for a bivariate binary

response. He showed that µ is reasonably variation independent of τ when µ is less than

0.5. However, as µ approaches 1, τ also approaches 1. The expected Fisher information

for these estimates is also calculated in the Appendix at the end of the current paper.

2.4.3.2 Symmetry

Symmetry is equivalent to marginal homogeneity for 2 by 2 square tables. Clearly

when 3 by 3 square tables or larger are considered, constraints can be imposed on the

dependence ratios and marginal homogeneity can occur without symmetry. However,

symmetry cannot occur without marginal homogeneity. Given marginal homogeneity,

the symmetry model can be directly expressed in terms of dependence ratios. The proof

is now discussed.

Given (2.14) and (2.24), we know that for the symmetry model:

τ
(a,b)
12 µ

(a)
1 µ

(b)
2 = τ

(b,a)
12 µ

(b)
1 µ

(a)
2 , (2.33)
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where µ
(a)
k = pr(Yk = a).

In addition, in Section 2.4.2 it was stated that symmetry implies marginal homogeneity.

Consequently, for the symmetry model:

µ
(a)
1 = µ

(a)
2 for all a, µ

(b)
1 = µ

(b)
2 for all b. (2.34)

From (2.33) and (2.34), the symmetry model can therefore be specified in terms of

dependence ratios as follows:

τ
(a,b)
12 = τ

(b,a)
12 , for all a ̸= b. (2.35)

The symmetry model can be fitted in drm by specifying (2.35) as constraints in the

marginal homogeneity model, where the marginal homogeneity model has no constraints

on the dependence ratios.

2.4.3.3 Quasi-symmetry and Quasi-independence

In contrast to the symmetry model, quasi-symmetry and quasi-independence cannot be

naturally expressed in terms of dependence ratios. However, by using the fitted values

from the loglinear models in Section 2.4.2, the dependence ratio parameters can be

estimated.

In some cases, a satisfactory fit may not be achieved with any of the common models

for square tables. In such cases, it is appropriate to apply relevant constraints to the

dependence ratios based on the observed dependence ratios or theoretical justifications.

2.5 Extensions to matched sets

The models described for square tables in Section 2.4 do not allow for the inclusion of

additional explanatory variables. In contrast, the models described in Section 2.2 are

applicable to more than two observations within a cluster and do allow for the inclusion

of such variables. This section extends the models from Section 2.4 to matched sets

data (multi-way contingency tables) so in these cases explanatory variables are not

included. However, the datasets that are typically analysed with these models normally

have limited covariate information available anyway. In addition, given the fact that

males and females often follow different association patterns, they are often analysed

separately, if such information is available. To be consistent with Section 2.4, existing

approaches are discussed first before the dependence ratio is considered.
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2.5.1 Marginal models for matched sets data

The marginal models described in Section 2.4.1 can be extended to matched sets. Here

the extension for just binary responses is presented since the nominal and ordinal re-

sponses can be extended similarly. The binary response model for square tables (2.18)

can be extended to matched sets data (Agresti 2002, chapter 11) as follows:

logit[pr(Yk = 1)] = θ + βk, (2.36)

where k = 1, . . . , q and β1 = 0.

Model (2.36) is saturated for the marginal probabilities since the q marginal probabil-

ities are represented by q parameters, with no association parameter specified for the

associations. Marginal homogeneity is achieved by β2 = · · · = βq = 0. Under marginal

homogeneity:

pr(Y1 = 1) = · · · = pr(Yq = 1). (2.37)

Marginal homogeneity can be tested with a likelihood ratio test that compares model

(2.36) to the marginal homogeneity model. In this case there are (q − 1) degrees of

freedom. As discussed in Section 2.4.1, maximum likelihood estimation that treats the

marginal distributions as dependent is not straightforward. Although the difficulties

encountered were not an issue for square tables, they are more problematic for matched

sets data with larger cluster sizes. Some alternative methods have been proposed that

specify odds ratio parameters for the associations such as the mixed parameterisation by

Fitzmaurice and Laird (1993) in which the joint distribution is specified in terms of the

marginal distributions and conditional log-odds ratios. However, maximum likelihood

estimation is still often not feasible for large cluster sizes. Lesaffre et al. (2000) stated

that maximum likelihood estimation with odds ratios is not feasible for cluster sizes

larger than five.

In terms of dealing with large cluster sizes (as well as a large number of predictor vari-

ables and continuous variables), some statisticians would advocate the use of the GEE

approach. For example, Agresti (2002) discussed the GEE approach in detail for deal-

ing with this issue. However, as discussed in Section 2.1, the GEE approach treats the

associations as a nuisance whereas the focus of this thesis is on putting equal emphasis

on the marginal regression and the associations. The dependence ratio approach dis-

cussed in Section 2.2 achieves this as well as being able to cope with large cluster sizes.

Although not relevant to the matched sets discussion in Section 2.5.3, the dependence

ratio approach can often cope with a larger number of predictor variables and continuous

variables.
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2.5.2 Loglinear approaches to matched sets data

In Section 2.4.2, loglinear approaches were discussed for square tables. This section

focuses on the extensions for matched sets data and concentrates on the extension of

symmetry. For this case, (Y1, . . . , Yq) is defined as the q responses in a cluster, for subunit

k = 1, . . . , q. Agresti (2002) also discusses extending quasi-symmetry for matched sets

data.

2.5.2.1 Complete symmetry

The symmetry model for square tables can be extended to matched sets data through

the complete symmetry model, which is specified as:

πi = πj , (2.38)

for any permutation j = (j1, . . . , jq) of i = (i1, . . . , iq), where πi, πj represent the

profile probabilities.

For example, for a binary response and three observations within a cluster, π(1,0,0) =

π(0,1,0) = π(0,0,1). The complete symmetry model can be expressed in loglinear form (as

given in Agresti, 2002):

log(µi) = λab...m, (2.39)

where a is the minimum in i, b is the second smallest and m is the largest. In addition,

µi = nπi.
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2.5.3 The dependence ratio approach to matched sets

2.5.3.1 Marginal Homogeneity

As for the discussion on square tables in Section 2.4.3.1, marginal homogeneity is speci-

fied by combining a relevant marginal model (with β coefficients set to zero) with an asso-

ciation model. Consider the simplest scenario for matched sets data in which there is a bi-

nary response with 3 repeated observations, denoted by Y = (Y1, Y2, Y3). There are con-

sequently 8 possible response profiles: (1,1,1),(1,1,0),(1,0,1),(0,1,1),(0,0,1),(0,1,0),(1,0,0)

and (0,0,0). As discussed in Section 2.2, the profile probabilities (joint distribution) can

be expressed in closed form in terms of the marginal probabilities (first-order moments)

and dependence ratios of all orders.

Assuming a multinomial sampling scheme, 7 parameters are required in order to com-

pletely specify the joint distribution of a 23 response since one is redundant. Firstly, the

marginal regression model consists of 3 marginal probabilities: µ1 = pr(Y1 = 1), µ2 =

pr(Y2 = 1), µ3 = pr(Y3 = 1). Under marginal homogeneity, these are set equal. The as-

sociation model consists of 3 dependence ratios of order 2: τ12 = pr(Y1=1,Y2=1)
pr(Y1=1)pr(Y2=1) , τ13, τ23

and one of order 3: τ123 = pr(Y1=1,Y2=1,Y3=1)
pr(Y1=1)pr(Y2=1)pr(Y3=1) . For marginal homogeneity, additional

constraints may be imposed for the association model (if appropriate). For example, the

3 second-order dependence ratios of order 2 may be constrained to be equal.

2.5.3.2 Complete Symmetry

In addition to the symmetry model, the complete symmetry model can also be specified

directly in terms of dependence ratios. The proof is now discussed for three repeated

observations and three response values: a, b, c. Given the discussion on the symmetry

model from Section 2.4.3.2, we know that:

τ
(a,b,c)
123 µ

(a)
1 µ

(b)
2 µ

(c)
3 = τ

(a,c,b)
123 µ

(a)
1 µ

(c)
2 µ

(b)
3 = · · · = τ

(c,b,a)
123 µ

(c)
1 µ

(b)
2 µ

(a)
3 , (2.40)

where µ
(a)
k = pr(Yk = a), µ

(b)
k = pr(Yk = b) and µ

(c)
k = pr(Yk = c).

Complete symmetry implies second-order marginal symmetry (Agresti, 2002). Second-

order marginal symmetry states that Pr(Yk = a, Yl = b) for all k and l and for all pairs

(a, b). Second-order marginal symmetry also implies marginal homogeneity. In other

words, for the complete symmetry model:

µ
(a)
1 = µ

(a)
2 = µ

(a)
3 , µ

(b)
1 = µ

(b)
2 = µ

(b)
3 , µ

(c)
1 = µ

(c)
2 = µ

(c)
3 . (2.41)
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From (2.40) and (2.41), the complete symmetry model can therefore be specified in terms

of dependence ratios as follows:

τ
(a,b,c)
123 = τ

(a,c,b)
123 = τ

(b,a,c)
123 = τ

(b,c,a)
123 = τ

(c,a,b)
123 = τ

(c,b,a)
123 for all a ̸= b ̸= c. (2.42)

The complete symmetry model will rarely fit well, but it has been discussed due to

its convenient formulation in terms of dependence ratios. Quasi-symmetry and quasi-

independence may give a satisfactory fit, although they cannot be directly expressed in

terms of dependence ratios. However, they can be fitted in terms of dependence ratios

by using the fitted values from the corresponding loglinear model.

2.6 Application to datasets

In this section, four relevant datasets are analysed with the dependence ratio approach,

using the relevant models from Sections 2.3, 2.4 and 2.5. The first three datasets relate

to square tables so use the models described in Section 2.4. The final dataset considers a

rater agreement dataset with seven repeated observations within a cluster so models from

Section 2.5 are considered for this. In each case, if a satisfactory fit cannot be obtained

with one of the models described in the previous sections, appropriate constraints are

imposed on the dependence ratios. Association structures as described in Section 2.3

are also used where applicable. The R package drm is used, with additional calculations

being performed where necessary.

2.6.1 Bilirubin abnormalities dataset

The following dataset from Example 18.1 of Walker (2002) assesses bilirubin abnormal-

ities following drug treatment. Each of the 86 patients in the study had their bilirubin

levels measured before the start of the study (pre-treatment) and following three months

of treatment with an experimental drug (post-treatment). In each case, the response of

interest is binary with 1 representing an abnormally high bilirubin rate that is higher

than the upper limit of the normal range and 0 representing values below this limit. The

aim of the study was to determine if there is a significant difference between the pre

and post bilirubin abnormality rates. In other words, testing for marginal homogeneity.

Since the study has a bivariate binary response, the data can be represented in a 2 by

2 table, as shown in Table 2.3.

In order to specify the joint distribution using the profile probability, two univariate

probabilities and one dependence ratio are required. The estimates of the saturated

model with these three parameters are given in Table 2.4.
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Table 2.3: Bilirubin abnormality: pre and post drug treatment

Post-Treatment

Pre-Treatment 1 0 Total

1 6 6 12
0 14 60 74

Total 20 66 86

For marginal distributions Y1 (pre-treatment) and Y2 (post-treatment), the single de-

pendence ratio parameter is given by:

τ12 =
pr(Y1 = 1, Y2 = 1)

pr(Y1 = 1) pr(Y2 = 1)
. (2.43)

Similarly, the two univariate marginal probabilities are given by:

µ1 = pr(Y1 = 1), µ2 = pr(Y2 = 1). (2.44)

Table 2.4: Parameter estimates for the saturated model

Sub model Parameter Estimate Standard error

Regression model µ̂1 0.1395 0.0374

µ̂2 0.2326 0.0456

Association model τ̂12 2.1500 0.5757

Table 2.4 shows that the bilirubin rate is higher at post-treatment (0.2326) than pre-

treatment (0.1395), thus suggesting that the drug is actually a hindrance. Testing for

marginal homogeneity will enable an assessment of this claim. The dependence ratio

parameter shows that the probability of having two abnormally high bilirubin rates is

2.15 times higher than the corresponding probability under independence. Although the

standard error for the dependence ratio was naturally available from drm, the standard

errors for the univariate marginal probabilities were not since the logistic link func-

tion was used for the marginal regression model. The standard errors for the marginal

probabilities were obtained by paramterising the Fisher information matrix in terms of

the marginal probabilities and the dependence ratio and then inverting this matrix (see

Appendix).

As a comparison, the odds ratio is also calculated. For a bivariate binary response, all

odds ratio formulations are the same and are given by:

χ12 =
µ12(1 − µ1 − µ2 + µ12)

(µ2 − µ12)(µ1 − µ12)
=
pr(Y1 = 1, Y2 = 1)pr(Y1 = 0, Y2 = 0)

pr(Y1 = 0, Y2 = 1)pr(Y1 = 1, Y2 = 0)
. (2.45)
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The odds ratio estimate for the saturated model is 4.29. In other words, the odds of an

abnormally high bilirubin rate are 4.29 times higher for patients at post-treatment than

pre-treatment.

The main aim of the study was to test for marginal homogeneity between the treatments.

This model has one fewer parameter than the saturated model since µ1 = µ2 = µ. The

likelihood ratio test statistic for testing marginal homogeneity is 3.291 (1df) compared

to the saturated model, yielding a p-value of 0.0697. Similarly, McNemar’s test gives a

test statistic of 3.2 and a p-value of 0.0736. In other words, there is some weak evidence

that marginal homogeneity between the pre and post treatments does not hold at the

5% significance level. Table 2.5 shows the parameter estimates for this model.

Table 2.5: Parameter estimates under marginal homogeneity

Sub model Parameter Estimate Standard error

Regression model µ̂ 0.1860 0.0329

Association model τ̂12 2.0156 0.5590

The conclusion to make is that the probability of an abnormally high bilirubin rate

is 0.1860, for each of the pre and post treatments. In addition, the dependence ratio

parameter tells us that the probability of having two abnormally high bilirubin rates is

approximately two times the corresponding probability under independence. In contrast,

the odds ratio estimate is given by 14
6 = 2.33 (Breslow and Day, 1980 pg 165).

Due to the smaller counts that make the asymptotic chi-squared assumption more ques-

tionable, McNemar’s exact test (Fay, 2011) was also used to test for marginal homogene-

ity since it is more applicable to these cases. This test gave a p-value of 0.1153 so thus

not altering the previous conclusions (5% significance level). The conclusions obtained

with regards to marginal homogeneity coincide with Sun and Yang (2008). However,

Sun and Yang did not consider McNemar’s exact test or a dependence ratio approach.

It can be shown that τ̂MH ≤ τ̂S , where τ̂MH represents the dependence ratio under

marginal homogeneity and τ̂S represents the dependence ratio for the saturated case.

In order to prove this, first recall that the arithmetic mean (AM) of a list of non-negative

real numbers is greater than or equal to the geometric mean (GM) of the same list. In

addition, the two means are equal if and only if every number in the list is identical.

Consider two non-negative numbers x and y:

(x− y)2 = x2 − 2xy + y2 ≥ 0 =⇒ x2 + y2 ≥ 2xy.

Let x =
√
a and y =

√
b:

(
√
a−

√
b)2 =

√
a
2 − 2

√
a
√
b+

√
b
2 ≥ 0 =⇒

√
a
2

+
√
b
2 ≥ 2

√
a
√
b.

Therefore, a+ b ≥ 2
√
ab =⇒ a+b

2 ≥
√
ab.
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Hence, AM ≥ GM with equality if and only if a = b.

Or alternatively:

1

ab
≥ 1(

a+b
2

)2 . (2.46)

Recall:

τ̂S =
µ̂12
µ̂1 µ̂2

=

n11
n

n1+
n

n+1

n

,

τ̂MH =
µ̂12

µ̂MH
1 µ̂MH

2

=

n11
n(n1+

n
+
n+1

n

)
2

(n1+
n

+
n+1

n

)
2

=

n11
n n1+

n
+
n+1

n
.

2

2 ≤ τS .

From (2.46):

1 n1+
n

+
n+1

n
2

2 ≤ 1
n1+
n

n+1

n

= τ̂S .

In other words, the dependence ratio estimate assuming marginal homogeneity is less

than or equal to the dependence ratio estimate under the saturated model.

2.6.2 Eye grade datasets

The following section focuses on 4 by 4 square tables by considering the commonly

analysed eye grade datasets. Females (Stuart, 1955) and males (Stuart, 1953) had each

of their right and left eyes graded, according to a four point scale ranging from lowest

(1) to highest (4). Note that the right eye is treated as the first measurement and the

left eye as the second measurement.

2.6.2.1 Eye grade females dataset

This dataset concerns females who were aged 30 to 39 and worked in British facto-

ries from 1943 to 1946. This was first analysed by Stuart (1955) and has since been

analysed by numerous statisticians including Caussinus (1966), Bishop et al. (1975,

p.284), McCullagh (1978), Goodman (1979b), Agresti (1983), Tomizawa (1989) and

Bergsma (1997). Table 2.6 shows the data and Table 2.7 shows the estimates for the

saturated model. The saturated model has six regression parameters (assuming the

highest marginal probability category to be the baseline) and nine dependence ratios
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(association parameters), with the dependence ratios as expressed in (2.14). These are

highlighted in bold in Table 2.7. Since this is the saturated model, which replicates the

observed data, estimates for the baseline categories are also included.

Table 2.6: Unaided distance vision of British women (Stuart, 1955)

Left Eye Grade

Right Eye Grade Highest (4) Second (3) Third (2) Worst (1) Total
Highest (4) 1520 266 124 66 1976
Second (3) 234 1512 432 78 2256
Third (2) 117 362 1772 205 2456
Worst (1) 36 82 179 492 789

Total 1907 2222 2507 841 7477

Table 2.7: Parameter estimates for the saturated model

Left Eye Grade

Right Eye Grade Highest (4) Second (3) Third (2) Worst (1) Marginal

Highest (4) τ̂
(4,4)
12 = 3.0160 τ̂

(4,3)
12 = 0.4530 τ̂

(4,2)
12 = 0.1872 τ̂

(4,1)
12 = 0.2970 µ̂

(4)
1 =0.2643

Second (3) τ̂
(3,4)
12 = 0.4067 τ̂

(3,3)
12 = 2.2553 τ̂

(3,2)
12 = 0.5711 τ̂

(3,1)
12 = 0.3074 µ̂

(3)
1 = 0.3017

Third (2) τ̂
(2,4)
12 = 0.1868 τ̂

(2,3)
12 = 0.4960 τ̂

(2,2)
12 = 2.1518 τ̂

(2,1)
12 = 0.7421 µ̂

(2)
1 = 0.3285

Worst (1) τ̂
(1,4)
12 =0.1789 τ̂

(1,3)
12 =0.3497 τ̂

(1,2)
12 = 0.6766 τ̂

(1,1)
12 = 5.5440 µ̂

(1)
1 = 0.1055

Marginal µ̂
(4)
2 = 0.2550 µ̂

(3)
2 = 0.2972 µ̂

(2)
2 = 0.3353 µ̂

(1)
2 = 0.1125 1

As a starting point, marginal homogeneity between left-eye vision and right-eye vision is

considered as a potential model, with three fewer parameters than the saturated model

since the three marginal probabilities for the right eye are constrained to be equal to

the corresponding marginal probabilities on the left eye. The model does not give a

satisfactory fit (likelihood ratio test statistic = 11.987, degrees of freedom = 3, p-value

= 0.0075). The symmetry model imposes the following additional constraints on the

association parameters:

τ
(3,4)
12 = τ

(4,3)
12 , τ

(3,2)
12 = τ

(2,3)
12 , τ

(4,2)
12 = τ

(2,4)
12 . (2.47)

The symmetry model also gives a poor fit when compared to the saturated model (like-

lihood ratio test statistic = 19.25, degrees of freedom = 6, p-value < 0.001). From the

literature, quasi-independence also gives a poor fit (p-value < 0.001). Quasi-symmetry

gave a satisfactory fit with a p-value of 0.0637. However, a better fit in terms of depen-

dence ratios is desirable. Given the ordinal nature of the data, the proportional odds

model (2.23) is now considered for the regression model (the first-order moments) since

the models considered so far do not exploit the ordinal nature of the data. The model

has two fewer parameters than the saturated model. In contrast to marginal homogene-

ity, the probabilities vary between eyes though of course the proportional odds model

is based upon cumulative probabilities. The parameter estimates are given in Table 2.8

with the regression model as described in (2.23) and the association model consisting of
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the nine dependence ratios (no constraints on the dependence ratios). The model gives

a satisfactory fit (likelihood ratio test statistic = 0.394, degrees of freedom = 2, p-value

= 0.8212). However, it is advantageous to reduce the number of association parameters,

to aid the interpretation of the model and also increase efficiency. In order to do this,

the observed dependence ratios were assessed to determine appropriate constraints that

could be imposed on the dependence ratios. Table 2.9 shows the observed dependence

ratios.

Table 2.8: Parameter estimates for the proportional odds regression model with
an unconstrained association model (denoted PO unconstrained)

Sub model Parameter Estimate Standard error

Regression model θ̂1 −2.1278 0.0337

θ̂2 −0.2645 0.0227

θ̂3 1.0212 0.0257

Left eye −0.0539 0.0158

Association model τ̂
(2,2)
1,2 2.1522 0.0305

τ̂
(3,3)
12 2.2547 0.0347

τ̂
(4,4)
12 3.0164 0.0523

τ̂
(2,3)
12 0.4966 0.0207

τ̂
(3,2)
12 0.5704 0.0208

τ̂
(2,4)
12 0.1855 0.0160

τ̂
(4,2)
12 0.1886 0.0157

τ̂
(3,4)
12 0.4032 0.0220

τ̂
(4,3)
12 0.4569 0.0226

Table 2.9: Observed dependence ratios

Observed dependence ratio Value

τ
(2,2)
12 2.1518

τ
(3,3)
12 2.2553

τ
(4,4)
12 3.0160

τ
(2,3)
12 0.4960

τ
(3,2)
12 0.5711

τ
(2,4)
12 0.1868

τ
(4,2)
12 0.1872

τ
(3,4)
12 0.4067

τ
(4,3)
12 0.4530
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Table 2.9 shows which of the observed dependence ratios are similar to one another. A

stepwise procedure was used in the sense that all potential constraints were applied to the

model as a starting point: τ
(2,2)
12 = τ

(3,3)
12 , τ

(2,3)
12 = τ

(3,2)
12 , τ

(2,4)
12 = τ

(4,2)
12 , τ

(3,4)
12 = τ

(4,3)
12 with

fewer constraints being applied (if required), until a satisfactory fit is obtained. Applying

the constraints: τ
(3,4)
12 = τ

(4,3)
12 and τ

(2,4)
12 = τ

(4,2)
12 to the model from Table 2.8 was found

to give the best fit (likelihood ratio test statistic = 5.599, degrees of freedom = 4, p-

value = 0.2311) and is the chosen model for the females, denoted POWC (proportional

odds with constraints). Including the additional constraint τ
(2,3)
12 = τ

(3,2)
12 , denoted PO

Symmetry, gave a poor fit (likelihood ratio test statistic = 12.432, degrees of freedom

= 5, p-value = 0.0293). The parameter estimates for the POWC model are given in

Table 2.10.

Table 2.10: Parameter estimates for the proportional odds regression model
with constraints on the association model (POWC)

Sub model Parameter Estimate Standard error

Regression model θ̂1 −2.1124 0.0328

θ̂2 −0.2505 0.0215

θ̂3 1.0354 0.0248

Left eye −0.0271 0.0085

Association model τ̂
(3,4)
12 = τ̂

(4,3)
12 0.4304 0.0182

τ̂
(2,4)
12 = τ̂

(4,2)
12 0.1873 0.0117

τ̂
(2,3)
12 0.5148 0.0190

τ̂
(3,2)
12 0.5514 0.0186

τ̂
(2,2)
12 2.1528 0.0305

τ̂
(3,3)
12 2.2544 0.0347

τ̂
(4,4)
12 3.0166 0.0523

The regression model can be used to estimate the univariate cumulative probabilities

with right eye treated as the baseline for the covariate effect. The main conclusion to

make is that the right eye is, on average, better than the left eye. The main point to make

for the association model is that the probability of a female rating both her right and

left eyes highest is 3.02 times higher than if the two events were independent. Table 2.11

shows a comparison of the models considered. The PO Unconstrained and POWC mod-

els clearly give a substantially better fit over the traditional models for square tables

(marginal homogeneity, symmetry, quasi-symmetry and quasi-independence). However,

it is of interest to see how they compare to other models that have been proposed for the

eye grade females dataset, some of which are also shown in Table 2.11. The conditional

symmetry ordinal extension of the symmetry model (McCullagh, 1978) yields a satis-

factory fit but not as satisfactory as the PO Unconstrained and POWC models. The
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diagonals-parameter symmetry model (Goodman, 1979b) did however yield a superior

fit.

Table 2.11: Comparison of model fit for the females

Model G2 df p-value
Marginal homogeneity 11.987 3 0.0075

Symmetry 19.25 6 < 0.001
Quasi-independence 199.1 5 < 0.001

PO Symmetry 12.432 5 0.0293
Quasi-symmetry 7.271 3 0.0637

Conditional Symmetry 7.23 5 0.2041
POWC 5.599 4 0.2311

PO Unconstrained 0.394 2 0.8212
Diagonals-parameter symmetry 0.5 3 0.9978

2.6.2.2 Eye grade males dataset

The eye grade dataset for the males from Stuart (1953) is now analysed. The dataset

concerns 3242 males having each of their right and left eyes rated according to the same

four point scale as the females. Table 2.12 shows the data and Table 2.13 gives the

parameter estimates for the saturated model.

Table 2.12: Unaided distance vision of British men (Stuart, 1953)

Left Eye Grade

Right Eye Grade Highest (4) Second (3) Third (2) Worst (1) Total
Highest (4) 821 112 85 35 1053
Second (3) 116 494 145 27 782
Third (2) 72 151 583 87 893
Worst (1) 43 34 106 331 514

Total 1052 791 919 480 3242

Table 2.13: Parameter estimates for the saturated model

Left Eye Grade

Right Eye Grade Highest (4) Second (3) Third (2) Worst (1) Marginal

Highest (4) τ̂
(4,4)
12 =2.4027 τ̂

(4,3)
12 =0.4359 τ̂

(4,2)
12 =0.2848 τ̂

(4,1)
12 =0.2245 µ̂

(4)
1 =0.3249

Second (3) τ̂
(3,4)
12 =0.4571 τ̂

(3,3)
12 =2.5891 τ̂

(3,2)
12 =0.6541 τ̂

(3,1)
12 =0.2332 µ̂

(3)
1 =0.2412

Third (2) τ̂
(2,4)
12 =0.2485 τ̂

(2,3)
12 =0.6930 τ̂

(2,2)
12 =2.3031 τ̂

(2,1)
12 =0.6580 µ̂

(2)
1 =0.2754

Worst (1) τ̂
(1,4)
12 =0.2578 τ̂

(1,3)
12 =0.2711 τ̂

(1,2)
12 =0.7275 τ̂

(1,1)
12 =4.3495 µ̂

(1)
1 =0.1585

Marginal µ̂
(4)
2 =0.3244 µ̂

(3)
2 =0.2440 µ̂

(2)
2 =0.2835 µ̂

(1)
2 =0.1481 1

In contrast to the females, marginal homogeneity (with no constraints on the dependence

ratios) gives a satisfactory fit for males when compared to the saturated model (likelihood

ratio test statistic = 3.68, degrees of freedom = 3, p-value = 0.2982). In other words,

there is no significant difference between the vision of the right and left eye in males.
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The parameter estimates for this model are given in Table 2.14. It is also of interest to

reduce the number of association parameters using appropriate constraints. Table 2.15

shows the observed dependence ratios.

Table 2.14: Parameter estimates under marginal homogeneity with an uncon-
strained association model

Sub model Parameter Estimate Standard error

Regression model θ̂1 −0.7502 0.0496

θ̂2 −0.1498 0.0410

θ̂3 −0.2912 0.0418

Association model τ̂
(2,2)
12 2.3025 0.0574

τ̂
(3,3)
12 2.5887 0.0719

τ̂
(4,4)
12 2.4032 0.0533

τ̂
(2,3)
12 0.6903 0.0427

τ̂
(3,2)
12 0.6565 0.0421

τ̂
(2,4)
12 0.2505 0.0254

τ̂
(4,2)
12 0.2826 0.0260

τ̂
(3,4)
12 0.4626 0.0337

τ̂
(4,3)
12 0.4309 0.0328

Table 2.15: Observed dependence ratios

Observed dependence ratio Value

τ
(2,2)
12 2.3031

τ
(3,3)
12 2.5891

τ
(4,4)
12 2.4027

τ
(2,3)
12 0.6930

τ
(3,2)
12 0.6541

τ
(2,4)
12 0.2485

τ
(4,2)
12 0.2848

τ
(3,4)
12 0.4571

τ
(4,3)
12 0.4359
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Based on the observed dependence ratios and using the same stepwise procedure as the

females, a good fitting model was found by applying the following constraints to the

marginal homogeneity model from Table 2.14:

τ
(2,4)
12 = τ

(4,2)
12 , τ

(2,3)
12 = τ

(3,2)
12 , τ

(3,4)
12 = τ

(4,3)
12 . (2.48)

This is the symmetry model. Recall that marginal homogeneity is still present after

applying constraints to the association parameters of the model in Table 2.14. The

symmetry model gives a good fit (likelihood ratio statistic = 4.77, 6 degrees of freedom,

p-value = 0.5736) when compared to the saturated model, with parameter estimates

given in Table 2.16. For the regression model, the marginal probabilities are assumed

equal for both the left and the right eyes. The highest category (the baseline) has the

largest marginal probability (0.3246). In terms of the association model, the probability

of a male rating both their right and left eyes as highest is 2.40 times higher than

independence. However, the probability of a male rating both their eyes as second

highest is 2.59 times higher than independence. Table 2.17 shows a comparison of the

models considered.

Table 2.16: Parameter estimates for the symmetry model

Sub model Parameter Estimate Standard error

Regression model θ̂1 −0.7504 0.0496

θ̂2 −0.1499 0.0410

θ̂3 −0.2913 0.0418

Association model τ̂
(2,3)
12 =τ̂

(3,2)
12 0.6734 0.0359

τ̂
(2,4)
12 =τ̂

(4,2)
12 0.2669 0.0204

τ̂
(3,4)
12 =τ̂

(4,3)
12 0.4465 0.0278

τ̂
(4,4)
12 2.4027 0.0533

τ̂
(3,3)
12 2.5891 0.0719

τ̂
(2,2)
12 2.3026 0.0574

Table 2.17: Comparison of model fit for the males

Model G2 df p-value
Marginal homogeneity 3.68 3 0.2982

Symmetry 4.77 6 0.5736
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2.6.3 Pathologist dataset

The following dataset is an example of matched sets data. One area where the de-

pendence ratio approach has not been applied to is rater agreement studies. Rater

agreement is particularly applicable to this paper since, for example, it is typically of in-

terest to test for marginal homogeneity between the raters. In addition, the dependence

ratio approach also provides an assessment of the associations. This dataset has seven

pathologists as the raters, each of which classified 118 slides according to the presence

or absence of carcinoma of the uterine cervix. In other words, the response is binary

and there are seven observations in a cluster. The dataset was first presented in Lan-

dis and Koch (1977). The dependence ratio approach is particularly applicable for this

dataset since existing approaches using maximum likelihood estimation and based on a

odds ratio parameterisation typically cannot cope with large cluster sizes such as this.

Table 2.18 shows the data with 1 representing presence and 0 representing absence.

Table 2.18: Diagnosis of carcinoma by seven pathologists

Pathologist
A B C D E F G Count

0 0 0 0 0 0 0 34
0 0 0 0 1 0 0 2
0 1 0 0 0 0 0 6
0 1 0 0 0 0 1 1
0 1 0 0 1 0 0 4
0 1 0 0 1 0 1 5
1 0 0 0 0 0 0 2
1 0 1 0 1 0 1 1
1 1 0 0 0 0 0 2
1 1 0 0 0 0 1 1
1 1 0 0 1 0 0 2
1 1 0 0 1 0 1 7
1 1 0 0 1 1 1 1
1 1 0 1 0 0 1 1
1 1 0 1 1 0 1 2
1 1 0 1 1 1 1 3
1 1 1 0 1 0 1 13
1 1 1 0 1 1 1 5
1 1 1 1 1 0 1 10
1 1 1 1 1 1 1 16

118

Since we have seven repeated responses, 27−7−1 = 120 dependence ratios and 7 marginal

probabilities are required to specify the complete joint distribution. The number of

association parameters is therefore much larger than the datasets considered previously

for square tables. Hence, substantial constraints need to be imposed on the dependence

ratios to reduce the number of association parameters. In order to do this, the most

appropriate approach is to consider the association structures described in Section 2.3
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since these describe the association structure in a relevant way, using only a small number

of parameters. The regression model in (2.36) with pathologist as the covariate effect will

be combined with association structures from Section 2.3. The best fitting association

structure will be taken forward to assess the fit of marginal homogeneity. Models such

as complete symmetry will not be considered for this dataset but may be appropriate

in other situations. Since the association structures from Section 2.3 are not nested,

Akaike’s Information Criterion (AIC) is used to compare the models as opposed to the

likelihood ratio test. Table 2.19 shows the AIC for the association models considered.

The Markov structures described in Section 2.3 are not appropriate for this dataset since

there is no ordering to the repeated responses.

Table 2.19: Comparison of model fit for association structures using AIC, with
pathologist covariate

Association Structure AIC

Independence (I) 1062.93
Necessary factor (N) 772.519

Latent binary factor (L) 689.149

Of the 118 slides, 34 were rated zero by all seven pathologists (28.8%). This suggests

that the necessary factor association structure N may be appropriate. In other words,

the pathologist’s classifications are conditionally independent given the necessary factor.

Although N gave a superior fit compared to independence, the latent binary structure

gives the best fit of the association structures considered. The latent binary factor within

a necessary factor association structure (described in Section 1.2.3.1 of this thesis) pro-

duced negative profile probabilities, which is unsatisfactory. Given the latent binary

factor association structure, a likelihood ratio test was used to compare the regression

models with and without the pathologist covariate. Marginal homogeneity gave a poor

fit (likelihood ratio test statistic = 170.426, degrees of freedom = 6, p-value < 0.001).

Table 2.20 gives the parameter estimates for the chosen combined regression and asso-

ciation model (denoted PLB=pathologist latent binary), where the regression model is

as described in (2.36) with pathologist as the covariate effect and the association model

is the latent binary association structure (L).

The conclusion for the regression model is that pathologists 2, 5 and 7 are associated

with higher probabilities (although not significantly) of presence than pathologist 1 (the

baseline). In contrast, pathologists 3, 4 and 6 are associated with (significantly, at the

5% level) lower probabilities of presence than pathologist 1. For the association model,

the parameter v2 indicates that approximately 56% of observations (slides) are in latent

group 1. Consequently, approximately 44% of observations are in the latent group 0.

The κ parameter shows that the probability of presence in group 0 is approximately

9% of those in group 1. In other words, the latent binary factor is showing that there

appears to be two groups, one that constitutes 44% of the population with a low presence
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Table 2.20: Parameter estimates for model PLB

Sub model Parameter Value Standard error z-value

Regression model intercept 0.2420 0.1780 1.3597
pathologist 2 0.1547 0.0916 1.6898
pathologist 3 −0.6544 0.1750 −3.7388
pathologist 4 −1.1896 0.2100 −5.6634
pathologist 5 0.1155 0.0990 1.1668
pathologist 6 −1.5267 0.2337 −6.5336
pathologist 7 0.1063 0.1012 1.0513

Association model v2 0.5649 0.0473 11.9533
κ 0.0939 0.0204 4.5979

rate and the other that accounts for 56% of the population with a much higher presence

rate. In order to come up with an explanation for this, groups of the population that

satisfy these criteria will need to be found (Jokinen et al. 2006). Table 2.21 shows the

estimated probability of presence for each pathologist conditional on the latent group.

From Table 2.21, latent group 1 appears to contain slides where there is strong agreement

between at least pathologists A, B , E and G on the presence of carcinoma. Latent

group 0 appears to contain slides where the pathologists largely agree on the absence of

carcinoma.

Table 2.21: Estimated presence probabilities conditional on the latent group

Pathologist
Estimated Probability A B C D E F G

Pr(Presence | L = 1) 0.9248 0.9870 0.6576 0.4612 0.9714 0.3578 0.9677

Pr(Presence | L = 0) 0.0868 0.0926 0.0617 0.0433 0.0912 0.0336 0.0908

As a check of the adequacy of the model, the fitted marginal probabilities were com-

pared to the observed marginal probabilities, for each pathologist. These are shown in

Table 2.22. The conclusion to make from this is that the marginal probabilities are

largely very similar with the exception of pathologist 2 who has a slightly lower fitted

value than what was observed.

Table 2.22: Comparison of observed and fitted marginal probabilities for model
PLB

Pathologist Observed Fitted

1 0.5593 0.5602
2 0.6695 0.5979
3 0.3814 0.3983
4 0.2712 0.2794
5 0.6017 0.5884
6 0.2119 0.2168
7 0.5593 0.5862
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The association parameters of a latent variable structure, such as the latent binary, are

not observable. As a consequence, there is no clear way to assess the adequacy of the

association structure. Jokinen (2006: PhD Thesis) discusses the issue and concludes

that all latent structures should be treated with caution and also notes that this issue

is not just relevant to the dependence ratio approach.

This analysis has shown that the dependence ratio approach can be used to analyse

rater agreement. The approach is particularly relevant to datasets with large cluster

sizes that may not be feasible to analyse with a odds ratio parameterisation. Although

only two latent classes were considered for the latent binary association structure in

this analysis, the dependence ratio approach can also be extended to 3 or more latent

classes. For the pathologist dataset, considering 3 latent classes led to negative fitted

profile probabilities, an unsatisfactory fit.
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2.7 Discussion

When analysing multivariate categorical data using population-averaged models and

maximum likelihood, odds ratios are often used as the association measure. However,

odds ratios suffer from the drawback of not being able to cope computationally with

large cluster sizes. Although the GEE approach helped to solve this issue, the method

focuses on the marginal regression with associations being treated as a nuisance. The

rationale of the GEE approach is that it is difficult to model the higher-order moments

(Diggle et al. 2002). However, the dependence ratio approach can cope computationally

with larger cluster sizes.

The focus of this paper was on square tables and extensions to matched sets. Common

models from the analysis of square tables using existing methods were discussed in terms

of dependence ratios. Marginal homogeneity was discussed in detail. The unconstrained

marginal homogeneity model in terms of dependence ratios was shown to be equivalent

to combining a saturated association model with a marginal model (no explanatory

variables). Marginal homogeneity can be still present when the association structure is

not saturated such as in the symmetry model where additional constraints are imposed

on the dependence ratios. Of course, for the simplest bivariate binary case, marginal

homogeneity and symmetry are equivalent and no constraints on the association model

are necessary. It was also shown that the symmetry model can be expressed directly in

terms of dependence ratios for square tables. A convenient feature of the dependence

ratio approach is that constraints can easily be imposed on the dependence ratios in

order to reduce the number of parameters and aid the interpretability of the model. For

example, although marginal homogeneity with a saturated association structure gave a

satisfactory fit for the eye grade males dataset, additional constraints were still imposed

on the dependence ratios to reduce the number of association parameters. This can also

lead to more efficient estimates of the effects.

The secondary aim of the paper was to extend the common models for square tables

to matched sets, using the dependence ratio approach. The dependence ratio approach

offers a clear advantage for matched sets data since it can cope with large cluster sizes

as opposed to the odds ratio approaches which typically encounter difficulties with max-

imum likelihood estimation. Marginal homogeneity and complete symmetry were dis-

cussed in detail. Complete symmetry will rarely give a satisfactory fit, although it was

discussed because of its convenient formulation in terms of dependence ratios. Marginal

homogeneity is typically of more interest to the researcher and is more likely to give

a satisfactory fit. In contrast to square tables, determining the saturated association

structure can be a difficult task. Consequently, a reasonable approach to follow (as

demonstrated with the pathologist dataset in Section 2.6.3) is to firstly determine the

best fitting association structure based on the AIC, since the models will typically not

be nested. The best fitting association structure can then be taken forward to assess the
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assumption of marginal homogeneity (if relevant). Once the most appropriate model is

found, the regression model can be assessed by comparing the observed and marginal

probabilities and the association model can be assessed if the model is not based on a

latent structure. Some datasets may have additional covariate(s) to include. In such

cases, marginal homogeneity can be assessed given the presence of the covariate(s).
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Appendix

Proof of maximum likelihood estimates from Section 2.4.3.1

In Section 2.4.3.1, the maximum likelihood estimates (µ̂ and τ̂12) for a bivariate binary

response Y = (Y1, Y2) under marginal homogeneity were presented. The proof that

these are the maximum likelihood estimates is now given.

Consider a sample of size n from Y =(Y1, Y2). This can be classified in a 2 by 2 con-

tingency table with cell counts (n00, n01, n10, n11) and corresponding cell probabilities

(π00, π01, π10, π11). Under the multinomial sampling scheme, the likelihood function for

(π00, π01, π10, π11) is given by:

L(π00, π01, π10, π11) ∝ πn00
00 πn01

01 πn10
10 πn11

11 .

Consequently, the log-likelihood function can be expressed as:

l(π00, π01, π10, π11) = n00 log (π00) + n01 log (π01) + n10 log (π10) + n11 log (π11) + c,

where c = log
{

n!
n00!n01!n10!n11!

}
.

Table 2.2 gives the cell probabilities for the bivariate binary case in terms of µ and

µ12. The profile probabilities above can be replaced by these cell probabilities, as shown

below:

l(µ, µ12) = n00 log (1 − 2µ+ µ12) + n01 log (µ− µ12) + n10 log (µ− µ12) + n11 log (µ12).

In order to find the maximum likelihood estimates of µ and τ12, the log-likelihood is

differentiated with respect to µ and µ12 respectively since it is easier to work with µ12

for this proof. These are then set equal to zero.

∂l

∂µ
=
n10 + n01
µ− µ12

− 2n00
1 − 2µ+ µ12

,

∂l

∂µ12
=
n11
µ12

− n10 + n01
µ− µ12

+
n00

1 − 2µ+ µ12
.

However, rather than solving the above equations for µ and µ12, it is easier to substitute

the appropriate maximum likelihood estimates from Section 2.4.3.1 and show that the

above equations are equal to zero. These maximum likelihood estimates came from prior

belief but are proven to be correct by this method.
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From the above:

n10 + n01
µ̂− µ̂12

=
n10 + n01

2n11+n10+n01
2n − n11

n

,

=
n10 + n01
n10+n01

2n

= 2n.

In addition:

n00
1 − 2µ̂+ µ̂12

=
n00

1 − (n10+n01+n11)
n

,

=
n(n00)

n− n10 − n01 − n11
=
n(n− n10 − n01 − n11)

n− n10 − n01 − n11
,

= n.

Consequently:

∂l

∂µ
= 2n− 2n = 0,

∂l

∂µ12
=
n11
n11
n

− 2n+ n = n− 2n+ n = 0.

Therefore proving that the maximum likelihood estimates of µ and µ12 are:

µ̂ =
n1+

n + n+1

n

2
=
n1+ + n+1

2n
,

µ̂12 =
n11
n
.

Therefore,

τ̂ =
µ̂12
µ̂2

=
n11
n

(n1++n+1)2

4n2

=
4nn11

(2n11 + n10 + n01)2
.

Therefore proving that the maximum likelihood estimates of µ and τ12 are as stated in

(2.31) and (2.32).
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Proof of the expected Fisher information for estimates from Section 2.4.3.1

The expected Fisher information for a bivariate binary response under marginal ho-

mogeneity is now found. For this case, the focus is on τ12 (denoted τ) as opposed to

µ12. Hence the expected Fisher Information is given by:

IE = −E

(
∂2l
∂µ2

∂2l
∂µ∂τ

∂2l
∂τ∂µ

∂2l
∂τ2

)
.

The log-likelihood with τ as opposed to µ12 is given by:

l(µ, τ) = n00 log (1 − 2µ+ τµ2) + n01 log (µ− τµ2) + n10 log (µ− τµ2) + n11 log (τµ2).

In order to prove the above, the first stage is to derive the first order derivatives with

respect to µ and τ . These are given by:

∂l

∂µ
=

2n11
µ

+
(1 − 2µτ)(n10 + n01)

µ− µ2τ
+

(2µτ − 2)n00
1 − 2µ+ µ2τ

,

∂l

∂τ
=
n11
τ

− µ(n01 + n10)

1 − µτ
+

µ2n00
1 − 2µ+ µ2τ

.

The second order derivatives are consequently given by:

∂2l

∂µ2
=

2τn00

(1 − 2µ+ µ2τ)
− (2µτ − 2)2n00

(1 − 2µ+ µ2τ)2
− 2τ(n10 + n01)

µ(1 − µτ)
− (1 − 2µτ)2(n10 + n01)

(µ− µ2τ)2
− 2n11

µ2
,

∂2l

∂τ2
= − n11

τ2
− (n10 + n01)µ2

(1 − µτ)2
− n00µ

4

(1 − 2µ+ µ2τ)2
,

∂2l

∂µ∂τ
=

∂2l

∂τ∂µ
=

2µ(1 − µ)n00
(1 − 2µ+ µ2τ)2

− (n10 + n01)

(1 − µτ)2
.

The expected values for the above quantities are specified as:

E

{
∂2l

∂µ2

}
=

2τE[n00]

(1− 2µ+ µ2τ)
− (2µτ − 2)2E[n00]

(1− 2µ+ µ2τ)2
− 2τE[(n10 + n01)]

µ(1− µτ)
− (1− 2µτ)2E[n10 + n01]

(µ− µ2τ)2
− 2E[n11]

µ2
,

E

{
∂2l

∂τ2

}
= −E[n11]

τ2
− µ2E[n10 + n01]

(1 − µτ)2
− µ4E[n00]

(1 − 2µ+ µ2τ)2
,

E

{
∂2l

∂τ∂µ

}
= E

{
∂2l

∂µ∂τ

}
=

2µ(1 − µ)E[n00]

(1 − 2µ+ µ2τ)2
− E[n10 + n01]

(1 − µτ)2
.
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From Tables 2.1 and 2.2 in Section 2.4, the expected values for each of the four cells of

the table can be specified:

E[n11] = τµ2, E[n10] = E[n01] = µ(1 − µτ), E[n00] = 1 − 2µ+ µ2τ.

Consequently:

E

{
∂2l

∂µ2

}
= − 4τ − (2µτ − 2)2

1 − 2µ+ µ2τ
− 2(1 − 2µτ)2

µ(1 − µτ)
,

E

{
∂2l

∂τ2

}
= − µ2

τ
− 2µ3

(1 − µτ)
− µ4

(1 − 2µ+ µ2τ)
,

E

{
∂2l

∂τ∂µ

}
=E

{
d2l

dµdτ

}
=

2µ(1 − µ)

1 − 2µ+ µ2τ
− 2µ

1 − µτ
.

The expected Fisher information for a bivariate binary response under marginal homo-

geneity is therefore given by:

IE =

(
4τ + (2µτ−2)2

1−2µ+µ2τ +
2(1−2µτ)2

µ(1−µτ)
2µ

1−µτ −
2µ(1−µ)

1−2µ+µ2τ
2µ

1−µτ −
2µ(1−µ)

1−2µ+µ2τ
µ2

τ + 2µ3

(1−µτ) +
µ4

(1−2µ+µ2τ)

)
.
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Proof of the expected Fisher information for the saturated case

For completeness, the expected Fisher information for the saturated bivariate binary

case is now derived. There is one additional parameter to the marginal homogeneity

case since the two marginal probabilities are no longer constrained to be equal. The cell

probabilities for this case are shown below:

Cell probabilities for a bivariate binary response

Y2
Y1 1 0 Total

1 τµ1µ2 µ1 − τµ1µ2 µ1
0 µ2 − τµ1µ2 1 − µ1 − µ2 + τµ1µ2 1 − µ1

Total µ2 1 − µ2 1

The log-likelihood is given by:

l(µ1, µ2, τ) = n00 log (1− µ1 − µ2 + τµ1µ2) + n10 log (µ1 − τµ1µ2) + n01 log (µ2 − τµ1µ2) + n11 log (τµ1µ2).

Consequently:

∂l

∂µ1
=

(−1 + τµ2)n00
(1 − µ1 − µ2 + τµ1µ2)

+
(1 − τµ2)n10
µ1 − τµ1µ2

− (τµ2)n01
µ2 − τµ1µ2

+
n11
µ1

,

∂l

∂µ2
=

(−1 + τµ1)n00
(1 − µ1 − µ2 + τµ1µ2)

− (τµ1)n10
µ1 − τµ1µ2

+
(1 − τµ1)n01
µ2 − τµ1µ2

+
n11
µ2

,

∂l

∂τ
=

(µ1µ2)n00
(1 − µ1 − µ2 + τµ1µ2)

− (µ1µ2)n10
µ1 − τµ1µ2

− (µ1µ2)n01
µ2 − τµ1µ2

+
n11
τ
,

∂2l

∂µ2
1

=
−(τµ2 − 1)2n00

(1 − µ1 − µ2 + τµ1µ2)2
− (1 − τµ2)2n10

(µ1 − τµ1µ2)2
− (−τµ2)2n01

(µ2 − τµ1µ2)2
− n11

(µ1)2
,

∂2l

∂µ2
2

=
−(τµ1 − 1)2n00

(1 − µ1 − µ2 + τµ1µ2)2
− (−τµ1)2n10

(µ1 − τµ1µ2)2
− (1 − τµ1)2n01

(µ2 − τµ1µ2)2
− n11

(µ2)2
,

∂2l

∂τ2
=

−(µ1µ2)2n00
(1 − µ1 − µ2 + τµ1µ2)2

− (−µ1µ2)2n10
(µ1 − τµ1µ2)2

− (−µ1µ2)2n01
(µ2 − τµ1µ2)2

− n11
(τ)2

.

The second-order mixed derivatives are given by:

∂2l

∂µ1∂µ2
=

∂2l

∂µ2∂µ1
=

(τ)n00
(1 − µ1 − µ2 + τµ1µ2)

− [(τµ2 − 1)(τµ1 − 1)]n00
(1 − µ1 − µ2 + τµ1µ2)2

− (τ)n10
µ1 − τµ1µ2

+
(1 − τµ2)(τµ1)n10

(µ1 − τµ1µ2)2
− (τ)n01

(µ2 − τµ1µ2)
+

(1 − τµ1)(τµ2)n01
(µ2 − τµ1µ2)2

,

∂2l

∂τ∂µ1
=

∂2l

∂µ1∂τ
=

(µ2)n00
(1 − µ1 − µ2 + τµ1µ2)

− [(τµ2 − 1)(µ1µ2)]n00
(1 − µ1 − µ2 + τµ1µ2)2

− (µ2)n10
µ1 − τµ1µ2

+
(1 − τµ2)(µ1µ2)n10

(µ1 − τµ1µ2)2
− (µ2)n01

(µ2 − τµ1µ2)
− (µ1µ2)(τµ2)n01

(µ2 − τµ1µ2)2
,

∂2l

∂τ∂µ2
=

∂2l

∂µ2∂τ
=

(µ1)n00
(1 − µ1 − µ2 + τµ1µ2)

− [(τµ1 − 1)(µ1µ2)]n00
(1 − µ1 − µ2 + τµ1µ2)2

− (µ1)n10
µ1 − τµ1µ2

− (τµ1)(µ1µ2)n10
(µ1 − τµ1µ2)2

− (µ1)n01
(µ2 − τµ1µ2)

+
(µ1µ2)(1 − τµ1)n01

(µ2 − τµ1µ2)2
.
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In addition:

E[n00] =1 − µ1 − µ2 + τµ1µ2,

E[n10] =µ1 − τµ1µ2,

E[n01] =µ2 − τµ1µ2,

E[n11] =τµ1µ2.

The expected values of the second-order derivatives are given by:

E

{
∂2l

∂µ2
1

}
= − (τµ2 − 1)2

(1 − µ1 − µ2 + τµ1µ2)
− (1 − τµ2)2

(µ1 − τµ1µ2)
− (−τµ2)2

(µ2 − τµ1µ2)
− τµ2

µ1
,

E

{
∂2l

∂µ2
2

}
= − (τµ1 − 1)2

(1 − µ1 − µ2 + τµ1µ2)
− (−τµ1)2

(µ1 − τµ1µ2)
− (1 − τµ1)2

(µ2 − τµ1µ2)
− τµ1

µ2
,

E

{
∂2l

∂τ2

}
= − (µ1µ2)2

(1 − µ1 − µ2 + τµ1µ2)
− (−µ1µ2)2

(µ1 − τµ1µ2)
− (−µ1µ2)2

(µ2 − τµ1µ2)
− µ1µ2

τ
,

E

{
∂2l

∂µ1∂µ2

}
=E[

∂2l

∂µ2∂µ1
] = − (τµ2 − 1)(τµ1 − 1)

(1 − µ1 − µ2 + τµ1µ2)
− (1 − τµ2)(−τµ1)

µ1 − τµ1µ2
− (1 − τµ1)(−τµ2)

µ2 − τµ1µ2
− τ,

E

{
∂2l

∂µ1∂τ

}
=E[

∂2l

∂τ∂µ1
] = − (τµ2 − 1)(µ1µ2)

(1 − µ1 − µ2 + τµ1µ2)
− (1 − τµ2)(−µ1µ2)

µ1 − τµ1µ2
− (−µ1µ2)(−τµ2)

µ2 − τµ1µ2
− µ2,

E

{
∂2l

∂µ2∂τ

}
=E[

∂2l

∂τ∂µ2
] = − (τµ1 − 1)(µ1µ2)

(1 − µ1 − µ2 + τµ1µ2)
− (−τµ1)(−µ1µ2)

µ1 − τµ1µ2
− (1 − τµ1)(−µ1µ2)

µ2 − τµ1µ2
− µ1.
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The expected Fisher information for the saturated bivariate binary case is given by:

IE = −E


∂2l
∂µ2

1

∂2l
∂µ1∂µ2

∂2l
∂µ1∂τ

∂2l
∂µ2∂µ1

∂2l
∂µ2

2

∂2l
∂µ2∂τ

∂2l
∂τ∂µ1

∂2l
∂τ∂µ2

∂2l
∂τ2

 ,

where the expectations of the partial second derivatives are given above. Interestingly,

by substituting µ1 = µ2 = µ in to ∂2l
∂τ2

from the saturated case, ∂2l
∂τ2

from the marginal

homogeneity case is obtained.
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R code

In order to calculate the standard errors of the marginal probabilities in the bilirubin
dataset, firstly the Fisher information matrix was parameterised in terms of µ1, µ2 and
τ , as shown previously in the Appendix. This matrix can then be inverted to find the
variance-covariance matrix and consequently the standard errors. The R code below
shows this for both the saturated and marginal homogeneity cases.

The following R function calculates the expected Fisher information

for the saturated case and the variance-covariance matrix.

#Expected Fisher information for 3 by 3 table for the saturated case,

# parameters mu1, mu2 and tau, sample of size n.

VarCovSaturated<-function(mu1hat,mu2hat,tauhat,n){

# part1

p1<-(tauhat*mu2hat)-1

# part2

p2<-1-mu1hat-mu2hat+(tauhat*mu1hat*mu2hat)

# part3

p3<-1-(tauhat*mu2hat)

# part4

p4<-mu1hat-(tauhat*mu1hat*mu2hat)

# part5

p5<-tauhat*mu2hat

# part6

p6<-mu2hat-(tauhat*mu1hat*mu2hat)

# part7

p7<-(tauhat*mu1hat)-1

# part8

p8<-tauhat*mu1hat

# part 9

p9<-1-(tauhat*mu1hat)

# part 10

p10<-mu1hat*mu2hat

# Calculating the negative expected value of the second-order derivative

# of the log-likelihood with respect to mu1

a<-((n*(p1^{2}))/(p2))+((n*(p3^{2}))/(p4))+((n*(p5^{2}))/(p6))+(n*p5)/(mu1hat)

# Calculating the negative expected value of the second-order derivative

# of the log-likelihood with respect to mu2

e<-((n*(p7^{2}))/(p2))+((n*(p8^{2}))/(p4))+((n*(p9^{2}))/(p6))+((n*p8)/(mu2hat))

# Calculating the negative expected value of the second-order derivative

# of the log-likelihood with respect to tau

i<-((n*(p10^{2}))/(p2))+((n*(p10^{2}))/(p4))+((n*(p10^{2}))/(p6))+((n*p10)/(tauhat))

# Calculating the negative expected value of the second-order mixed derivative

# of the log-likelihood with respect to mu1 and mu2

b<-((n*p1*p7)/(p2))-((n*p8*p3)/(p4))+(n*tauhat)-((n*p9*p5)/(p6))

# Calculating the negative expected value of the second-order mixed derivative

# of the log-likelihood with respect to mu1 and tau

c<-((n*p1*p10)/(p2))-((n*p10*p3)/(p4))+(n*mu2hat)+((n*p10*p5)/(p6))
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# Calculating the negative expected value of the second-order mixed derivative

# of the log-likelihood with respect to mu2 and tau

f<-((n*p7*p10)/(p2))+((n*p10*p8)/(p4))+(n*mu1hat)-((n*p10*p9)/(p6))

FisherInformation<-matrix(c(a,b,c,b,e,f,c,f,i),nrow=3,ncol=3,byrow = TRUE)

VarCovMatrix<-solve(FisherInformation)

return(VarCovMatrix)

}

# Specifying the parameter values for the bilirubin dataset saturated model.

VarCovSat<-VarCovSaturated(12/86,20/86,2.15,86)

#Standard error of mu1hat

sqrt(VarCovSat[1])

#Standard error of mu2hat

sqrt(VarCovSat[5])

#Standard errof of tauhat

sqrt(VarCovSat[9])

# The following R function calculates the expected Fisher information

# for the marginal homogeneity case and the variance-covariance matrix.

# Expected Fisher Information for 2 by 2 table under marginal homogeneity,

# parameters mu and tau, sample of size n.

VarCovMH<-function(muhat,tauhat,n){

# Calculating the negative expected value of the second-order derivative

# of the log-likelihood with respect to tau

d<-(n*(muhat)^4)/(1-2*muhat+(tauhat*(muhat^2)))+((2*n*(muhat^3))/(1-muhat*tauhat))

+((n*(muhat^2))/(tauhat))

# Calculating the negative expected value of the second-order derivative

# of the log-likelihood with respect to mu

a<-(n*4*tauhat)+((n*((2*muhat*tauhat)-2)^2)/(1-2*muhat+tauhat*(muhat^2)))

+((2*n*(1-2*muhat*tauhat)^2)/(muhat*(1-muhat*tauhat)))

# Calculating the negative expected value of the second-order mixed derivative

# of the log-likelihood with respect to mu and tau

b<-((-2*n*muhat)*(1-muhat))/(1-2*muhat+(tauhat*(muhat^2)))

+((2*n*muhat)/(1-muhat*tauhat))

# Specifying the Fisher information matrix

FisherInformation<-matrix(c(a,b,b,d),nrow=2,ncol=2,byrow = TRUE)

#Inverting the Fisher information matrix

VarCovMatrix<-solve(FisherInformation)

return(VarCovMatrix)

}

Specifying the parameter values for the bilirubin dataset marginal homogeneity model.

VarCov<-VarCovMH(16/86,129/64,86)

#Standard Errror of muhat

sqrt(VarCov[1])

#Standard Errror of tauhat

sqrt(VarCov[4])
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Paper 2: Applications of the de-

pendence ratio to psoriatic arthri-

tis

3.1 Introduction

Arthritis is a common chronic condition that results in inflammation and pain within

a joint and in some cases permanent joint damage. The condition often causes a great

deal of suffering to those affected so a better understanding of the disease process is of

huge benefit. The focus of the current paper is on psoriatic arthritis in the hand joints

(excluding the wrist). Psoriatic arthritis is an inflammatory arthritis which is associated

with the skin condition psoriasis and is commonly found in the hand joints. However,

only some individuals with psoriasis will develop psoriatic arthritis. Both males and

females are equally likely to be affected (Gladman et al. 2005; O’Keeffe et al. 2011).

Data for this paper were jointly provided by the MRC Biostatistics Unit in Cambridge

and the Toronto Psoriatic Arthritis Clinic. The clinic was established in 1978 by Profes-

sor Dafna Gladman and contains the largest cohort of patients with psoriatic arthritis

in the world. A detailed explanation of the data used is given in Section 3.1.2.

Although not of direct interest for this paper, another common form of arthritis that

often affects the hand joints is rheumatoid arthritis. It is discussed due to its contrasting

features compared to psoriatic arthritis. Rheumatoid arthritis is an autoimmune disease

since the body’s immune system attacks the joints, leading to inflammation and pain.

In contrast to psoriatic arthritis, rheumatoid arthritis more commonly affects females

than males (Gladman et al. 2005; O’Keeffe et al. 2011). Although both conditions can

be difficult to diagnose, individuals with psoriatic arthritis will typically test negative

for rheumatoid factor (a blood test for rheumatoid arthritis), whereas individuals with

rheumatoid arthritis will typically test positive for rheumatoid factor.

Figure 3.1 shows a diagram of the 14 joints in a hand. There are therefore 28 individual

joints across the two hands. The numbering assigned to the joints in Figure 3.1 (1-14)

corresponds to the right hand throughout the paper. Joint numbers 15-28 are used to

93
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Figure 3.1: Location of the hand joints (Outline of hand reprinted with permis-
sion from Aidan O’Keeffe)

refer to the corresponding joints in the left hand. For example, joints 1 and 15 refer to

the metacarpophalangeal (MCP) thumb joint on the right and left hands respectively.

The joints within a hand can be split into three different types, as shown in Figure

3.1. The distal interphalangeal (DIP) joints are the closest to the fingertips and are

present in all digits except the thumb. They are commonly affected in psoriatic arthritis

(Gladman et al. 2005).

The proximal interphalangeal (PIP) joints and the MCP joints are present in all digits.

The MCP joints (excluding the thumb), commonly known as knuckles, are the largest

joints. Table 3.1 shows a breakdown of joint numbers by hand, joint type and digit.

The patterns of affected joints can be used to determine which of psoriatic arthritis and

rheumatoid arthritis an individual is more likely to have. The DIP joints (closest to the

fingernails) are commonly affected in psoriatic arthritis. In contrast, the MCP and PIP

joints are more commonly affected in rheumatoid arthritis (Gladman et al. 2006). The

joints in patients with rheumatoid arthritis are often affected in a symmetrical pattern

(Gladman et al. 2005). In other words, the same joints in each hand are affected.

In contrast, patients with psoriatic arthritis often have an asymmetrical pattern (differ-

ent joints affected in each hand). In particular, asymmetrical patterns often exist with

regards to the DIP joints (closest to the fingertips) and the larger MCP joints (O’Keeffe

et al. 2011). In addition, individuals with psoriatic arthritis will often have their joints

affected in a ray pattern such that joints of the same digit are affected (Gladman et al.

2005).
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Table 3.1: Joint numbers by hand, joint type and digit

Right hand Left hand Joint type Digit

1 15 MCP thumb
2 16 MCP index
3 17 MCP middle
4 18 MCP ring
5 19 MCP little
6 20 PIP thumb
7 21 PIP index
8 22 PIP middle
9 23 PIP ring
10 24 PIP little
11 25 DIP index
12 26 DIP middle
13 27 DIP ring
14 28 DIP little

It should be noted that once a hand joint is considered to be affected with psoriatic

arthritis (following diagnosis), it can then reach two further states (as defined in O’Keeffe

et al. 2011): disease activity and clinical damage. Disease activity is a reversible process

and is defined on a binary scale such that a joint is described as active if it is either tender

(stress pain and/or tenderness) or effused (swelling and/or tenderness). In contrast,

clinical damage is an irreversible process meaning that once a joint is damaged, it will

remain damaged. It is also defined on a binary scale with a joint defined as clinically

damaged if there is a limitation in its movement of more than 20% of the range not

related to joint swelling (Gladman et al. 1990; Cresswell and Farewell, 2010). It is also

considered damaged if it ankylosed (Siannis et al. 2006), deformed, flail or if the joint is

a replacement (Cresswell and Farewell, 2010). Note that a joint can reach the clinically

damaged state without ever having disease activity present. Once a patient is diagnosed

with psoriatic arthritis (it will usually only affect a small subset of joints at any time),

every effort should be made to find a relevant treatment that reduces the possibility of

permanent joint damage in the future.

Only clinical damage in patients with psoriatic arthritis is considered in this analysis.

This is performed using the dependence ratio association measure (Ekholm, Smith and

McDonald, 1995). The dependence ratio is an advantageous alternative to the odds

ratio for analysing multivariate categorical data (such as the psoriatic arthritis data

described in Section 3.1.2), using maximum likelihood based population-averaged mod-

els. Population-averaged refers to the fact that the regression coefficients are averaged

over the whole population. In contrast, conditional (or subject-specific) approaches es-

timate subject-specific effects. The dependence ratio approach puts equal emphasis on

the marginal regression and the associations within a cluster (patient) as opposed to the
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popular generalised estimating equations (GEE) approach which concentrates on the

marginal regression with the associations of secondary interest. The current paper con-

sequently has two research questions. Firstly, which explanatory variables significantly

predict clinical damage? Secondly, what are the association patterns between joints?

The dependence ratio approach is discussed in detail in Section 3.2.

3.1.1 Previous research on psoriatic arthritis in the hand joints

Clinical damage is typically the measure of primary interest, with previous research on

psoriatic arthritis in the hand joints (such as Cresswell and Farewell, 2010; O’Keeffe et

al. 2011) largely concentrating on symmetrical damage. In the context of arthritis of the

hand joints, the term symmetry is used to refer to the same joints on each hand being

damaged. The relationship between disease activity and clinical damage has also been

considered in previous research (for both psoriatic arthritis and rheumatoid arthritis),

with evidence found of an association between disease activity and progression to clinical

damage, regardless of the activity measure used (such as Gladman et al. 1995; O’Keeffe

et al. 2011). For example, the total number of tender/effused joints may be used as a

measure of disease activity or alternatively biochemical markers (O’Keeffe et al. 2011).

The work of this paper is similar to that of Cresswell and Farewell (2010) in the sense that

only clinical damage is considered. In addition, only the last clinic visit for each patient,

for each joint is analysed (as with some of the methods in Cresswell and Farewell).

This is a reasonable approach when only clinical damage is considered since the process

is irreversible. The dependence ratio approach adopted here focuses on looking for

association patterns in the damaged joints, both symmetrical and non-symmetrical.

Although symmetry is often of primary interest, determining other patterns of clinical

damage such as asymmetrical tendencies is also useful, particularly given that psoriatic

arthritis in the hands is recognised for demonstrating asymmetrical patterns. In contrast

to the work of O’Keeffe et al. (2011), longitudinal patterns of damaged joints over time

and disease activity are not considered in this paper.

Since clinical damage is being considered in the current paper as opposed to simply

whether the joint is affected with psoriatic arthritis or not (following diagnosis), patterns

of the clinically damaged joints can consequently differ from those described previously

for affected joints. For example, although males and females are equally likely to be

affected with psoriatic arthritis, females have been found to progress to clinical damage

quicker (Gladman et al. 2005). In addition, although at least 50% of patients with

psoriatic arthritis have DIP joint(s) affected (Gladman, 2006), the percentage is much

lower when clinical damage is considered (as shown in Section 3.6).

There is strong agreement among rheumatologists that clinical damage in patients with

rheumatoid arthritis is highly symmetric (Gladman et al. 2005; O’Keeffe et al. 2011).
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Recent studies have demonstrated that symmetrical patterns of clinical damage do also

exist in the hand joints of individuals with psoriatic arthritis (Cresswell and Farewell,

2010; O’Keeffe et al. 2011). However, there is some debate among rheumatologists with

regards to the extent of this symmetry (Gladman et al. 2005; Gladman et al. 2006) since

symmetry is generally regarded as less common in psoriatic arthritis than in rheumatoid

arthritis (Gladman et al. 2006).

Work in the last few years has helped to dispute this claim. At this point, it is worth

discussing measures of symmetric damage that have been proposed in recent years for

psoriatic arthritis. Cresswell and Farewell (2010) considered a number of different meth-

ods, all of which demonstrated evidence of symmetric damage in psoriatic arthritis. For

example, one method is based upon the definition of symmetry from Helliwell et al.

(2000) which defines symmetric damage as present if 50% or more of the damaged joints

form symmetric pairs (a particular joint and its corresponding joint on the other hand

are damaged). This is done separately for each possible number of damaged joints (N)

with the observed proportion of patients that meet Helliwell’s definition being compared

to an expected proportion. The expected proportions assume that joints progress inde-

pendently to damage. Symmetrical damage is therefore indicated by greater observed

proportions than expected. Although no formal significance test is presented, Cress-

well and Farewell noted that observed proportions are consistently higher than expected

proportions, with the exception of N = 9. In the present paper, symmetric damage is

assessed using the observed dependence ratios (see Section 3.5).

A notable paper by Bond et al. (2007) assessed which variables significantly predict the

progression to clinical damage in the hand and feet joints. The response of interest was

the increase in the total number of clinically damaged joints between clinic visits with a

negative binomial regression model used. The GEE approach was used in order to take

into account the within-patient correlation and provide robust standard errors. Sex was

found to be non-significant whereas the initial ESR (erythrocyte sedimentation rate)

value was found to significantly predict progression to clinical damage with a low value

protective of damage. The ESR is a test that is used to indirectly measure inflammation

in the body. In addition, time in the clinic was found to significantly predict progression

to clinical damage.

Bond et al. (2007) concluded that the same predictors of clinical damage are seen re-

gardless of how damage is detected. Since the analysis by Bond et al. (2007) included

the feet joints (which are not of interest in this analysis), it is of interest to see if simi-

lar conclusions are obtained for the analyses in this paper (using the GEE approach in

Section 3.4 and the dependence ratio approach in Section 3.6). These analyses use the

binary formulation of clinical damage (as defined in Section 3.1) so a logistic regression

model is used instead for the marginal regression in future sections. In addition, Bond

et al. (2007) considered longitudinal patterns over time as opposed to the last clinic

visit. However, the explanatory variables considered in the current analysis reflect the
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fact that only the last clinic visit is used. For example, disease activity is not relevant

to include in this paper since it is a reversible process over time so including it as an

explanatory variable for the last clinic visit is inappropriate. It is also worth noting that

the GEE analysis conducted by Bond et al. (2007) has the association structure as a

secondary interest so the dependence ratio approach provided in this paper provides a

more thorough analysis.

3.1.2 Data used

Data for 386 patients who enrolled in the Toronto Psoriatic Arthritis Clinic between

1978 and 2000 were made available. As part of the consent process, the dataset will not

be reproduced in the current paper. Of the 386 patients, there were 214 males (55.4%)

and 172 females (44.6%). The mean age at entry to the clinic was 51 years and 5 months

whereas the mean age of diagnosis with psoriatic arthritis was 34 years and 10 months.

The current paper only considers the last clinic visit of each patient (for each each joint)

with the number of visits per patient varying from 2 to 47. Each of the 386 patients

therefore gives 28 responses. Table 3.2 shows the gender patterns by age, where age

refers to when the patient was diagnosed with psoriatic arthritis.

Table 3.2: Age of diagnosis and gender distributions of the Toronto PsA dataset

Gender
Age Group Females (%) Males (%) Total (%)

10-19 22 (12.8%) 10 (4.70%) 32 (8.30%)
20-29 46 (26.7%) 63 (29.4%) 109 (28.2%)
30-39 43 (25.0%) 71 (33.2%) 114 (29.5%)
40-49 38 (22.1%) 42 (19.6%) 80 (20.7%)

50+ 23 (13.4%) 28 (13.1%) 51 (13.2%)

Total 172 214 386

Table 3.2 shows that the diagnosis of psoriatic arthritis is less common in the youngest

and oldest age groups (in both males and females). This is not surprising since the onset

of psoriatic arthritis is most common in middle age. Gladman et al. (2005) state that

the onset is most common in those in their fourth decade of life.

In order to make the patients comparable, all patients in the dataset provided had no

clinical damage in any of their 28 joints at entry to the clinic. In addition, only patients

with a minimum of two clinic visits were included. The patients were assessed at regular

intervals (approximately every 6-12 months) during this time with each of their joints

being assessed for clinical damage at each visit. There were no missing values. Recent

investigations using the data (Cresswell and Farewell, 2010; O’Keeffe et al. 2011) had a

larger cohort of patients since they use data up to 2006. Data from 2001 to 2006 were
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not available for the current paper. Explanatory variables were available such as the age

that the patient was diagnosed with psoriatic arthritis and gender. The effect of these

variables on clinical damage (the response) will be assessed in subsequent sections.

The structure of the paper is as follows. In Section 3.2, the dependence ratio approach

is discussed in detail. In Section 3.3, some initial exploratory analysis of the marginal

patterns of clinical damage is conducted, irrespective of the associations. This is then

built on in Section 3.4 which contains a detailed GEE analysis in order to assess in more

detail the marginal patterns of clinical damage. Exploratory analysis of the association

patterns of clinical damage using the observed dependence ratios is then performed in

Section 3.5. Using information from Section 3.5, Section 3.6 uses the dependence ratio

approach such that the association structure is taken into account. Section 3.7 concludes

the paper.

Previous work that has looked at clinical damage in patients with psoriatic arthritis

has largely focused on symmetrical patterns. In the current paper, association patterns

within a hand as well as asymmetrical patterns are also considered. It is also of interest

to determine how the patterns of damaged joints in this analysis differ from the patterns

described in the literature for joints that are simply affected by psoriatic arthritis. It

should be noted that the main aim of this paper is to advocate the use of the dependence

ratio approach for analysing multivariate categorical data, such as the psoriatic arthritis

data, rather than determining any key medical conclusions.

3.2 The dependence ratio approach

Due to the correlated nature of multivariate categorical data, standard univariate regres-

sion techniques cannot be used because they assume independence. However, by treating

all the patients responses within a cluster as the response, multivariate techniques can

be used to overcome this issue. This paper focuses on the use of population-averaged

based models, as opposed to conditional (or subject-specific) models, for analysing the

psoriatic arthritis data outlined in Section 3.1.2, using maximum likelihood estimation.

The focus of this paper is on multivariate binary data since the response of interest

(clinical damage) has only two categories.

The analysis of a multivariate categorical response is more complicated than the tra-

ditional multivariate normal response. This is because, unlike the multivariate normal

distribution, the first two moments do not specify the complete joint distribution of

a multivariate categorical response (unless there are only two responses in a cluster).

Consequently, constraints will often need to be imposed on the higher-order moments.

In terms of taking into account the associations within a cluster (or patient in the

psoriatic arthritis data), the odds ratio is typically used for population-averaged based
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maximum likelihood estimation. Although the odds ratio has some convenient prop-

erties, such as the orthogonality between the regression and association parameters, it

suffers from the inability to cope computationally with cluster sizes larger than approx-

imately five (Lesaffre et al. 2000). The quasi-likelihood GEE approach helps to deal

with this issue. However, this approach focuses on the marginal regression and treats

the associations as a secondary interest since moments of higher-order than two are not

specified. Lindsey and Lambert (1998) argued that determining the mechanisms that

generate the associations within a cluster is vital to obtain a complete analysis of the

data. This is particularly important if interest lies in the associations, such as the psori-

atic arthritis data in this paper. As a consequence, the dependence ratio was proposed

(Ekholm et al. 1995) as an alternative to the odds ratio for population-averaged based

maximum likelihood estimation. As well as being able to cope computationally with

larger cluster sizes than the odds ratio, the dependence ratio also allows for relevant

association structures to be imposed, which is not available with the GEE approach.

In order to demonstrate the dependence ratio, the simplest bivariate binary case is

considered (Y = (Y1, Y2)). For this case, there are four possible response profiles: (1,1),

(0,0), (1,0) and (0,1) with 1 regarded as the response of interest and 0 as the baseline.

For this case, the dependence ratio is defined as:

τ12 =
µ12
µ1µ2

=
pr(Y1 = 1, Y2 = 1)

pr(Y1 = 1) pr(Y2 = 1)
. (3.1)

The dependence ratio for a bivariate binary response is defined as the joint success

probability divided by the joint success probability assuming independence. A value

of 1 indicates independence, whereas values less than 1 and greater than 1 represent

negative and positive associations respectively. In the context of the psoriatic arthritis

data, a two-way dependence ratio refers to the probability of a patient having both

joints damaged divided by the joint probability of damage under independence. Higher-

order dependence ratios as well as dependence ratios for when there are more than two

response categories can be expressed similarly and are discussed in detail in paper 1 of

this thesis. The third-order dependence ratio for a binary response is given by:

τ123 =
µ123
µ1µ2µ3

=
pr(Y1 = 1, Y2 = 1, Y3 = 1)

pr(Y1 = 1) pr(Y2 = 1) pr(Y3 = 1)
. (3.2)

An advantage of the dependence ratio is that it does not grow in complexity for the

higher-order dependence ratios. In contrast, the interpretation of the odds ratio grows

in complexity for the higher-order moments. For example, a three-way odds ratio is the

ratio of two conditional two-way odds ratios (Ekholm, 2003).
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The dependence ratio approach facilitates the combining of a marginal regression model

with an association model, using the profile probabilities πi. For a binary response, the

profile probabilities are defined as:

πi = pr(Yi1 = yi1, . . . , Yiq = yiq), (3.3)

where Yik represents the response for unit i = 1, . . . , n at subunit k = 1, . . . , q.

For the psoriatic arthritis data, unit is patient and subunit is joint. The profile proba-

bility can be expressed in closed form in terms of the univariate marginal probabilities

(first-order moments) and dependence ratios of all orders (association model).

The first-order moments are given by:

pr(Yik = 1 | xik). (3.4)

where xik is a vector of the explanatory variables.

For a binary response, the marginal regression model is obtained by regressing the first-

order moments on relevant explanatory variables, using the logistic link function, which

is given by:

logit[pr(Yik = 1)] = θ + βxT
ik, (3.5)

where β is a vector of the regression coefficients.

The methods for dealing with the first-order moments do not typically differ between

the different approaches for population-averaged based methods that use maximum like-

lihood estimation. However, the second-order or higher moments inform us about the

association structure within a cluster, so consequently the methods differ depending

on the association measure considered. For the dependence ratio paramterisation, the

second-order or higher moments are replaced by the product of first-order moments

and dependence ratios of the appropriate order. This is because the dependence ratio

provides a more interpretable measure of association than the second-order or higher

moments since it is relative to independence.

Given q observations within a cluster, constraints will often need to be imposed on the

dependence ratios to reduce the number of association parameters, particularly when q

is large. This is discussed in detail in Section 3.2.1. With association parameters defined

by the vector α, the association model is defined as:

τ = g(α). (3.6)
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Consequently, the marginal regression model (3.5) and the association model (3.6) are

combined using the profile probability in (3.3). The profile probability from (3.3) can

also be written as:

πi = pr(Yi1 = yi1, . . . , Yiq = yiq) = h(θ,β,α;xik), (3.7)

where h(θ,β,α;xik) is a function of θ,β,α and xik.

In others words, the profile probability can be expressed in closed form, in terms of the

regression and association parameters. The likelihood function, and consequently the

log-likelihood function can then be specified. This gives the dependence ratio approach

a key advantage over odds ratio approaches for maximum likelihood estimation since

the odds ratio generally requires iterative procedures to specify the joint distribution

(Jokinen, 2006: PhD Thesis). For more details, see Section 1.3 of the introduction to

this thesis.

3.2.1 Association structures

Constraints will often need to be imposed on the association parameters (dependence

ratios). For example, for a binary response with 6 observations in a cluster, 26−6−1 =

57 dependence ratios need to be specified. Clearly this is too many to be estimated so

relevant constraints will need to be imposed on the dependence ratios. In the psoriatic

arthritis data, each patient has 28 joints which leads to a very large number of possible

association parameters (268,435,427).

A nice feature of the dependence ratio approach is that association structures can easily

be constructed that adequately represent the association structure using only a small

number of association parameters. In addition to computational issues with estimating

a large number of association parameters from the data, a small number is also desirable

for the interest of model parsimony and interpretation. Ekholm, Smith and McDonald

(2000) specified a series of useful association structures, some of which are relevant

to the psoriatic arthritis data in this paper. Constraints may also be imposed on the

dependence ratios based on the values of the observed dependence ratios or theoretical

considerations.

Some of the association structures from Ekholm et al. (2000) are now discussed.

Independence (I):

Independence assumes that the observations within a cluster are independent. Conse-

quently, all dependence ratios are equal to one. Independence is rarely applicable to

multivariate categorical data.
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Exchangeable structures (E):

Association structures from Ekholm et al. (2000) that are relevant to the context of the

current paper are exchangeable structures. In contrast to Markov structures that were

discussed in the introduction of this thesis, they do not assume a time ordering to the

responses. The exchangeable structures considered in this paper are formulated through

the use of latent variables.

Necessary factor (N):

In some studies, there may be a particular group of individuals (units) who will always

give the same response throughout the study. This feature can be accounted for by using

a necessary factor association structure. For a binary response with 1 as the response

of interest and 0 as the baseline, there will often be a group of individuals who always

respond 0. For the psoriatic arthritis data, 1 represents a clinically damaged joint for a

given individual at a given joint and 0 represents no damage present. In this case, the

structure separates the individuals that have the factor from those that do not have the

factor that is necessary for the response of interest.

If a given individual has the necessary factor then Ni = 1, otherwise Ni = 0, for i =

1, . . . , n. There is one association parameter given by v = pr(Ni = 1). Consequently, 1−v
represents the proportion of observations that will always respond 0 for each subunit.

In the case of the psoriatic arthritis data, v represents the proportion of individuals that

are susceptible to clinical damage, whereas 1−v represents the proportion of individuals

that are not susceptible to clinical damage in any of their joints.

The responses are conditionally independent given the necessary factor. Under this

structure, all w-way dependence ratios, τ (w), are equal, such that:

τ (w) = γw−1, (3.8)

where γ = 1/v and w = 2, ....., q.

This structure is particularly relevant to the psoriatic arthritis data (see Section 3.6)

since 64.5% of patients have no clinical damage in any of their joints, where clinical dam-

age is the response of interest. In addition, the explanatory variables for the regression

model are (typically) regressed conditional on Ni = 1 (those susceptible to damage).

It may also be beneficial to have the necessary factor varying by a between subject

factor such as gender or age. This consequently increases the number of association

parameters.
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Latent binary factor (L):

A latent binary structure is appropriate if the population can be divided into two groups

such that each group has different response category probabilities (given the same values

for the explanatory variables in the regression model). Each individual either does

(Li = 1) or does not have (Li = 0) the latent binary factor. Responses within a cluster

are conditionally independent given L. The structure is often appropriate if an important

dichotomous covariate has been omitted (Jokinen, McDonald and Smith, 2006).

For a binary response, this association model has 2 parameters, and is defined as:

α = (v2, κ), (3.9)

where v2 = pr(Li = 1) and κ = pr(Yik = 1 | Li = 0)/pr(Yik = 1 | Li = 1), for k = 1, . . . , q.

In other words, v2 represents the proportion of observations with the latent binary factor

(latent group 1) and 1 − v2 represents the proportion without the factor (latent group

0). The κ parameter represents the conditional univariate probability for those in latent

group 0 divided by the corresponding probability for those in group 1. All the w-way

dependence ratios (τ (w)) are equal for this structure and are specified as follows:

τ (w) =
v2 + (1 − v2)κ

w

(v2 + (1 − v2)κ)w
, (3.10)

where w = 2, ....., q.

Latent binary factor within a necessary factor (NL):

The N and L exchangeable structures can also be extended further since it may be

appropriate for a latent binary structure to operate within a necessary factor association

structure (denoted NL). In other words, of those individuals that have the necessary

factor, there are two groups of individuals with different response probabilities (given

the same values for the regression variables).

3.2.2 Comparing the odds ratio and the dependence ratio

It has been noted that the dependence ratio has some key benefits over the odds ratio.

Most notably, the fact it can cope computationally with much larger cluster sizes and

allows for relevant association structures to be imposed. However, there are some issues

with the dependence ratio approach that should be fully understood before the approach

can be adequately implemented. These points are summarised below.

• Orthogonality: In contrast to the odds ratio, the regression and association

parameters are not orthogonal to each other in the dependence ratio approach
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(Ekholm, 2003). Therefore, estimating the correlations between the parameter

estimates is recommended (Ekholm et al. 1995). Ekholm (2003) states that high

correlations were rarely found in previous analyses and they are not found to be an

issue for modelling the psoriatic arthritis data using the dependence ratio approach

in Section 3.6.

• Negative profile probabilities: One of the main differences between the odds

ratio and dependence ratio approaches is that the dependence ratio approach uses

the profile probabilities to combine the regression and association models. Al-

though the dependence ratio approach imposes positivity constraints on the ob-

served profiles in the maximum likelihood estimation, negative fitted profile prob-

abilities can occur for the unobserved profiles. However, this should not be treated

as a drawback of the dependence ratio approach since negative profile probabilities

act as a way of detecting if the model is incorrectly specified (Ekholm, 2003).

• Range: It is well known that the range of the odds ratio is from 0 to infinity with

1 representing independence. In contrast, the dependence ratio is constrained by

the marginal probabilities (Ekholm, 2003). For example, for a two-way dependence

ratio, for a binary response, denoted τ12, the range is given by:

max

{
0,

1

µ1
+

1

µ2
− 1

µ1µ2

}
≤ τ12 ≤ min

{
1

µ1
,

1

µ2

}
. (3.11)

The range of the dependence ratio has consequently received some criticism. How-

ever, as discussed in the introduction to this thesis, the fact the dependence ratio

has a finite upper bound is arguably beneficial over the odds ratio. In addition,

research in computer science found the range of the dependence ratio to only be

a problem for small counts (see Section 1.4.6 for more details). The range of the

dependence ratio is discussed again in Section 3.5 with a proportion of max mea-

sure proposed for the psoriatic arthritis data to assess the impact of the marginal

probabilities on the conclusions obtained. For a full discussion of the range of the

dependence ratio in comparison to the odds ratio, see Ekholm (2003).
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3.2.3 R package drm

Prior to 2007 there was no statistical package readily available that allowed for the use of

the dependence ratio approach. Hence, despite the advantages of the dependence ratio

for population-averaged based approaches to multivariate categorical data using max-

imum likelihood estimation, the approach was not directly available for use in applied

work. However, in 2007 the R package drm was released by Jukka Jokinen. Conse-

quently, the dependence ratio can now be easily applied to relevant applications. The

package is available free through CRAN or from the author’s website:

http://www.helsinki.fi∼jtjokine/drm/

The development of the package should help advance the use of the dependence ratio

in applied work, particularly in cases where there are a large number of subunits in a

cluster, such as the psoriatic arthritis data. The dependence ratio has recently been

used in the paper by Anatolyev (2008) which uses the dependence ratio approach for

looking at the dependence across European, Chinese and Baltic stock markets.

The package conveniently allows for the use of all the association structures from Sec-

tion 3.2.1, amongst others. In addition, relevant fit statistics such as the deviance and

Akaike’s Information Criterion (AIC) are produced for model comparison. In cases where

there are negative profile probabilities, the user is warned that the model needs to be

respecified. For a full discussion of the features of the package, the reader is referred to

the help pages on the website above. The psoriatic arthritis data are analysed using the

dependence ratio approach in Section 3.6 and this is performed using drm with some

additional code being used where necessary.

3.3 Marginal patterns of clinical damage: an exploratory

analysis

This section performs some basic exploratory analysis on the Toronto psoriatic arthritis

data in order to gain a better understanding of the marginal patterns of clinical damage

(ignoring the associations).

In total there are 10,808 binary responses of clinical damage (where 1 represents damage

and 0 represents no damage) since each of the 386 patients have 28 joints across their two

hands. Recall that only the last clinic visit per patient is included since clinical damage

is an irreversible process. Of the 10,808 joints, only 745 were damaged (6.89%). Splitting

this further by gender in Table 3.3 shows a slightly higher proportion of damaged joints

in females.

It has been well documented that males and females are equally likely to be affected

with psoriatic arthritis. However, it should be noted that being affected simply relates to
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Table 3.3: Clinical damage by gender

Gender

Damage Females Males Total
no 4393 5670 10063

yes 423 322 745

Total 4816 5992 10,808
Proportion damaged 8.78% 5.37% 6.89%

being diagnosed with the disease and therefore differs from the issue of clinical damage

discussed in this paper. In fact, females tend to progress quicker to damage than males

(Gladman et al. 2005) and this is supported by the results shown in Table 3.3 although

the significance of this is not assessed until the GEE analysis of Section 3.4.

It is also of interest to look at the probabilities of clinical damage at each individual

joint since they form the basis of the GEE approach in Section 3.4 and the regression

side of the models in the dependence ratio approach of Section 3.6. Table 3.4 shows this

for the right hand and Table 3.5 for the left hand with marginal patterns by gender also

included. The probabilities are given in percentage form for ease of interpretation.

Table 3.4: Right hand marginal percentages by gender

Joint Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Joint Type MCP MCP MCP MCP MCP PIP PIP PIP PIP PIP DIP DIP DIP DIP

Overall 10.9 4.7 3.9 2.1 2.3 4.4 7.8 8.0 4.4 8.0 10.9 9.3 7.8 11.4

Males 9.8 3.7 3.3 1.4 0.9 3.3 4.2 5.6 2.8 3.7 8.4 9.4 5.6 8.9

Females 12.2 5.8 4.7 2.9 4.1 5.8 12.2 11.1 6.4 13.4 14.0 9.3 10.5 14.5

Table 3.5: Left hand marginal percentages by gender

Joint Number 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Joint Type MCP MCP MCP MCP MCP PIP PIP PIP PIP PIP DIP DIP DIP DIP

Overall 9.8 4.9 4.7 2.9 2.6 5.4 8.0 7.8 6.5 6.5 11.9 9.1 8.6 8.6

Males 9.4 4.2 3.7 1.9 0.9 4.7 6.1 4.2 3.7 4.7 12.2 9.4 7.9 6.5

Females 10.5 5.8 5.8 4.1 4.7 6.4 10.5 12.2 9.9 8.7 11.6 8.7 9.3 11.1

Females have higher marginal probabilities of clinical damage in 25 of the 28 joints. The

marginal patterns also seem to be very similar for each hand. In general, the MCP joints

have the smallest marginal probabilities of damage (with the exception of the thumb)

and the eight joints closest to the fingertip (the DIP joints) have the largest. This is

not surprising since previous research has shown that the joints closest to the fingertip

are commonly affected in psoriatic arthritis (Gladman et al. 2005). The above tables

are limited in the sense that they do not take into account the effect of all explanatory

variables. However, the significance of explanatory variables such as gender, hand and

joint type is assessed in detail in the GEE approach of Section 3.4. The GEE approach
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also takes the within-patient correlation into account. The marginal probabilities give

no indication of the patterns of association in the data. In other words, a joint with

a higher marginal probability of damage may not be substantially associated with any

other joints. The associations are considered in detail in Sections 3.5 and 3.6.

3.4 GEE analysis

Before considering the association patterns using the dependence ratio approach, a GEE

analysis of all 28 joints across both hands was conducted in order to determine which

explanatory variables significantly predict the probability of clinical damage (using a

5% significance level). This is firstly done for all patients and secondly for patients who

had at least one joint damaged, for reasons discussed in due course. The GEE approach

(Liang and Zeger, 1986) concentrates on the marginal regression with the associations of

secondary interest since moments of higher-order than two are not specified. Hence the

full likelihood is not available and the approach is a quasi-likelihood based method. The

GEE approach specifies a working correlation matrix for dealing with the second-order

moments and has the advantage that even if this matrix is misspecified, the parameter

estimates are consistent (Liang and Zeger, 1986). However, robust standard errors based

on the sandwich estimator are preferred to the model based standard errors since they

guard against misspecification of the working correlation matrix.

A disadvantage of using correlations for the pairwise associations of binary data in

the GEE approach is that they are constrained by the marginal probabilities. As a

consequence, they may yield estimates that are outside the range of possible values.

This issue is discussed in detail in Chaganty and Joe (2004). One way to combat

this is to use the independence working correlation matrix with robust standard errors,

as recommended in Hanley et al. (2000). This approach is reasonable provided the

correlations are not too strong. Liang and Zeger (1986) stated that the independence

working correlation matrix has good efficiency provided the actual correlations are weak

to moderate. Agresti (2002) also stated that all working correlation matrices should

yield similar results when the correlations are modest. This is what was found for the

analyses in this section so the choice therefore does not seem overly crucial. However, to

avoid any potential difficulties with the correlation bounds, the independence working

correlation matrix with robust standard errors was chosen.

3.4.1 GEE analysis of all patients

The explanatory variables available for this analysis were sex, age (in years) that the

patient was diagnosed with psoriatic arthritis, hand (right or left), finger (5 level cate-

gorical variable with little finger as the baseline), joint type (MCP, PIP or DIP, with DIP
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as the baseline) and time (in years) since diagnosis, with the response of interest being

the presence of clinical damage (for each joint of each patient at their last clinic visit).

The logistic link function was used for the binary response of clinical damage. Recall

that the thumb digit has only the MCP and PIP joint types present whereas the other

four fingers have each of the MCP, PIP and DIP present. In other words, the finger and

joint type variables are not perfectly crossed. The covariates age since diagnosis and

time since diagnosis were both mean centered to aid interpretability. Table 3.6 shows

the results from a model with all the main effects and no interactions.

Table 3.6: Parameter estimates for the GEE analysis of all patients: main effects
model

Effects Estimate Standard error

Intercept −2.565 0.188

Joint type MCP −0.882 0.165

PIP −0.526 0.130

Sex Female 0.2720 0.262

Age at diagnosis (centered) (in years) 0.0150 0.010

Finger Thumb 0.4500 0.166

Index 0.2340 0.114

Middle 0.0940 0.117

Ring −0.231 0.107

Hand Left 0.0150 0.075

Time since diagnosis (centered) (in years) 0.0680 0.009

Although sex is non-significant, females are associated with a higher probability of dam-

age than males. This coincides with previous research on psoriatic arthritis that has

acknowledged that females progress quicker to damage than males even though males

and females are equally likely to be affected with psoriatic arthritis (Gladman et al.

2005). Gender is of specific interest in this paper so will consequently be included

throughout regardless of its significance. Hand and age of diagnosis were found to be

non-significant. Joint type was found to be significant with the MCP and PIP joints

(significantly) associated with lower probabilities of damage than the DIP joints. Finger

is also significant with the thumb and index finger both being (significantly) associated

with higher probabilities of clinical damage than the little finger. In addition, the ring

finger is (significantly) associated with lower probabilities of clinical damage than the

little finger. Time since diagnosis is also significant with increased time since diagnosis

being (significantly) associated with a higher probability of clinical damage.

Since the full likelihood is not available in the GEE approach, likelihood based model

selection methods such as likelihood ratio tests and the AIC are not available. Con-

sequently, Pan (2001) proposed an alternative to suit the GEE approach (Quasi Infor-

mation Criterion = QIC). The QIC is used throughout the GEE analyses to confirm
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conclusions obtained by the Wald test. Stepwise selection procedures using the QIC

revealed the same conclusions as those shown in Table 3.6. However, the main effects

model presented in Table 3.6 does not take into account interactions between variables.

This is discussed in the following section.

3.4.1.1 GEE analysis of all patients: interactions

Following the assessment of the main effects, the age and hand explanatory variables

were excluded from the further analysis of the interactions, but gender was included due

to the theoretical reasons described previously. A detailed analysis of all the two-way

interactions was conducted. The QIC was used to determine which, if any, interactions

should to be included. This led to the inclusion of the interactions for joint type with

each of gender and finger. The final chosen model for the GEE analysis of all patients

across all 28 joints therefore has the main effects for sex (sexi = 1 (female), 0 = (male)),

joint type (j = 1 (MCP), 2 (PIP) or 3 (DIP = baseline)), finger (f = 1(thumb), 2

(index), 3 (middle), 4 (ring) or 5 (little finger = baseline)) and time since diagnosis

(centered), as well as the mentioned interactions. This model can be expressed as:

logit[pr(Yijf = 1)] = β0 + β1sexi + β2j + β3f + β4timei + β12jsexi + β23jf , (3.12)

where i = 1, . . . , 386, j = 1, 2, 3 and f = 1, . . . , 5.

Table 3.7 summaries the parameter estimates for the main effects in the model. Ta-

bles 3.8 and 3.9 show the parameter estimates for the interactions. Interaction plots are

displayed in Figures 3.2 and 3.3.
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Table 3.7: Parameter estimates for the chosen model of all patients: main effects

Effects Estimate Standard error

Intercept −2.385 0.189

Joint type MCP −1.626 0.293

PIP −0.687 0.184

Sex Female 0.0580 0.278

Finger Thumb −0.442 0.211

Index 0.1590 0.130

Middle −0.095 0.141

Ring −0.234 0.136

Time since diagnosis (centered) (in years) 0.0630 0.008

Table 3.8: Parameter estimates for the chosen model of all patients: sex by joint
type interaction with standard errors in parentheses

JOINT TYPE

SEX MCP PIP DIP
Female 0.138 (0.308) 0.575 (0.212) 0
Male 0 0 0

Table 3.9: Parameter estimates for the chosen model of all patients: finger by
joint type interaction with standard errors in parentheses

JOINT TYPE

FINGER MCP PIP DIP
Thumb 2.044 (0.337) 0 0
Index 0.563 (0.219) −0.059 (0.178) 0

Middle 0.691 (0.229) 0.1950 (0.171) 0
Ring 0.234 (0.212) −0.095 (0.173) 0
Little 0 0 0

Table 3.7 shows that time since diagnosis is again significant with an increase associated

with a higher probability of damage. In fact, for every one year increase in the time since

diagnosis, the odds of clinical damage are 1.065 times greater (holding other variables

constant). The significance of the interactions means that interpretations regarding the

sex, joint type and finger variables should be in terms of the interactions in order to

obtain sensible conclusions.
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Figure 3.2: Sex by joint type interaction: all patients
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Figure 3.3: Finger by joint type interaction: all patients
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The estimated marginal damage probabilities in Figures 3.2 and 3.3 take into account

the other terms in the model. The time since diagnosis variable is fixed at its mean

value (0) since it is mean centered. The mean of the non-centered time since diagnosis

variable is 16.58 years. Figure 3.2 shows that the DIP joints have the highest probability

of damage in both males and females (approximately 0.08) and the MCP joints have

the lowest probabilities of damage in both males and females (approximately 0.03).

However, the significant interaction between sex and joint type appears to be due to the

differing patterns with regards to the PIP joints. This was confirmed by post hoc tests

with a 5% significance level (controlling the overall type 1 error). Post hoc tests revealed

that males had significantly higher probabilities of damage in their DIP joints than both

the PIP and MCP joints. In contrast, there was no significant difference between the

probability of damage in the DIP and PIP joints of females. In addition, the DIP and

PIP joints both have significantly higher probabilities of damage than the MCP joints

in females.

Figure 3.3 shows that the interaction between finger and joint type appears to be due

to the differing patterns of the thumb in comparison to the other fingers since the lines

are approximately parallel when the thumb is ignored. Although the thumb has no DIP

joint, its patterns with regards to the MCP and PIP joints differ in relation to the other

fingers. The thumb has a larger estimated probability of damage for the MCP joint

(0.09) than it does for the PIP joint (0.04) whereas other fingers see the reverse pattern.

Post hoc tests again confirm the conclusions. The MCP thumb joint has a significantly

higher probability of damage than the PIP thumb joint (as well as the MCP joints in

the other four fingers). In contrast, the MCP joint has a lower probability than the

PIP joint in the other four fingers although only the little finger was significantly lower.

Excluding the thumb which has no DIP joint, the DIP joints have significantly higher

probabilities of damage than the MCP joints in all four fingers. Although the DIP joints

had consistently larger probabilities of damage than the PIP joints at every finger, none

were significantly greater.

3.4.2 Further GEE analysis

Of the 386 patients in the dataset, 249 had no damage in any of their 28 joints (64.5%).

This acts as a strong reason for considering the necessary factor association structure

discussed in Section 3.2.1. This structure is considered in detail in Section 3.6 when

the dependence ratio approach is considered for taking into account the association

structure. However, one of the features of the necessary factor association structure is

that the marginal regression model is (typically) estimated conditional on the patients

having the necessary factor for damage (being susceptible to damage). This therefore

brings about the thought that the patients with no damage in any of their 28 joints are

in fact not susceptible to clinical damage. In other words, only the 35.5% who have
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at least one joint damaged are susceptible. Consequently, this section applies the GEE

approach to just this 35.5% in order to see if the conclusions differ.

Of the 137 patients who had at least one joint damaged, 69 were male (50.4%) and

68 were female (49.6%). This shows that females are associated with greater clinical

damage since in the analysis with all 386 patients, 214 were male (55.4%) and 172 were

female (44.6%).

Table 3.10 shows the results from a model with just the main effects from Table 3.6.

The conclusions were the same as those obtained in Table 3.6 when all patients were

included. Finger, joint type and time since diagnosis (mean centered) were significantly

associated with predicting clinical damage. Although sex was non-significant, females

were associated with a greater probability of damage than males. Hand and age of

diagnosis (mean centered) were again non-significant.

Table 3.10: Parameter estimates for the GEE analysis of patients with at least
one joint damaged: main effects model

Effects Estimate Standard error

Intercept −1.114 0.187

Joint type MCP −0.997 0.181

PIP −0.604 0.147

Sex Female 0.1660 0.246

Age of diagnosis (centered) (in years) -0.003 0.010

Finger Thumb 0.5040 0.186

Index 0.2700 0.132

Middle 0.1080 0.134

Ring −0.258 0.119

Hand Left 0.0180 0.086

Time since diagnosis (centered) (in years) 0.0370 0.009
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Prior to considering the two-way interactions, hand and age of diagnosis were removed

from the model, but sex was kept in the model for theoretical reasons. A further investi-

gation of the two-way interactions using the QIC led to the inclusion of the interactions

between joint type and each of sex and finger, as before. The final chosen model for

the subset of patients with at least one joint damaged is therefore the same as when

all patients were included (3.12). Table 3.11 shows the parameter estimates for the

main effects in this model. Tables 3.12 and 3.13 show the parameter estimates for the

interactions with Figures 3.4 and 3.5 showing the corresponding interaction plots.

Table 3.11: Parameter estimates for the chosen model of patients with at least
one joint damaged: main effects

Effects Estimate Standard error

Intercept −0.909 0.195

Joint type MCP −1.796 0.318

PIP −0.798 0.213

Sex Female −0.115 0.280

Finger Thumb −0.491 0.233

Index 0.1970 0.161

Middle −0.115 0.170

Ring −0.278 0.160

Time since diagnosis (centered) (in years) 0.0390 0.009

Table 3.12: Parameter estimates for the chosen model of patients with at least
one joint damaged: sex by joint type interaction

JOINT TYPE

SEX MCP PIP DIP
Female 0.177 (0.354) 0.665 (0.247) 0
Male 0 0 0

Table 3.13: Parameter estimates for the chosen model of patients with at least
one joint damaged: finger by joint type interaction

JOINT TYPE

FINGER MCP PIP DIP
Thumb 2.253 (0.356) 0 0
Index 0.561 (0.238) −0.082 (0.211) 0

Middle 0.738 (0.246) 0.230 (0.201) 0
Ring 0.278 (0.230) −0.090 (0.198) 0
Little 0 0 0

Time since diagnosis is again significant with an increase associated with a higher proba-

bility of damage. For a one year increase in the time since diagnosis, the odds of clinical

damage are 1.040 times greater (holding other variables constant). The significance
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Figure 3.4: Sex by joint type interaction: at least one joint damaged
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Figure 3.5: Finger by joint type interaction: at least one joint damaged
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of the interactions means that interpretations regarding the sex, joint type and finger

variables should be in terms of the interactions.

Figure 3.4 shows similar patterns as in Figure 3.2 when all patients were considered.

However, the estimated probabilities of damage are unsurprisingly much greater in Fig-

ure 3.4 since only those with at least one joint damaged are considered. Figure 3.4

shows the highest probabilities of damage are in the DIP joints (for both males and

females) with estimated probabilities of damage of approximately 0.26 (although males

are now slightly higher). The lowest probabilities of damage are in the MCP joints with

both males and females having an estimated damage probability of 0.12. The significant

interaction seems to be due to the differing patterns in males and females with regards

to the PIP joints. Females have an estimated damage probability of 0.22 whereas males

have a much lower estimate of 0.14. Post hoc tests (controlling for multiple comparisons)

confirmed the conclusions since males have significantly higher probabilities of damage

in their DIP joints than both the PIP and MCP joints. However, females had no signif-

icant difference between their DIP and PIP joints but both of which were significantly

larger than the MCP joints.

Figure 3.5 shows the same patterns as when all patients were included in Figure 3.3

although the probabilities are much greater in Figure 3.5 as expected. The significant

interaction appears to be due to the differing patterns in the thumb with regards to

the MCP and PIP joints. Post hoc tests confirmed this conclusion. The estimated

probability of damage in the MCP joint of the thumb (0.29) is significantly larger than

the PIP thumb joint (0.13). In contrast, the other fingers have larger probabilities

in the PIP joint than the MCP joint although only the ring and little fingers were

significantly larger. Excluding the thumb which has no DIP joint, the other four fingers

have significantly higher probabilities in their DIP joint than the corresponding MCP

joint (but not the corresponding PIP joint).

3.4.2.1 Conclusions for the GEE analyses

The GEE analyses in this section have allowed for a detailed analysis of the marginal

patterns of clinical damage, irrespective of the association structure. The first analysis

considered all 386 patients, whereas the second analysis focused on only those patients

who had at least one of their 28 joints damaged. The reason for the second analysis

was that patients with no damage in any of their 28 joints is a strong justification for

believing that these patients may not be susceptible to damage and should be excluded

from the GEE analysis.

However, both approaches led to the same conclusions in terms of which variables sig-

nificantly predict clinical damage and the same final model was obtained in each case
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(3.12). Although sex was found to be non-significant when only main effects were consid-

ered, it was kept in the model for theoretical reasons. The sex by joint type interaction

showed the differing paterns with regards to the PIP joints in males and females. In

addition, the finger by joint type interaction showed the differing patterns of the thumb

in comparison to other fingers. Excluding the thumb (which has no DIP joint), the DIP

joints have the highest probability of damage for each finger (significantly greater than

the corresponding MCP joint but not the corresponding PIP joint). The DIP joints are

well known to be affected in psoriatic arthritis so it not surprising that the same patterns

emerge when clinical damage is considered as opposed to simply whether the joint is

affected. Time since diagnosis was found to significantly predict clinical damage with

increases in this covariate associated with higher probabilities of clinical damage. Hand

and age of diagnosis were found to not significantly predict the probability of clinical

damage.

Although both GEE analyses led to the same final model, the probabilities of damage

were clearly much higher in the second analysis since individuals with no damage in any

of their joints were excluded. Recall that only patients who had no clinical damage in any

of their 28 joints upon entry to the clinic were included in the dataset with the response

of interest being whether they have clinical damage at their last clinic visit (for each

joint). Consequently, the GEE analysis which includes all individuals is therefore more

relevant to assessing clinical damage in those who are affected with psoriatic arthritis,

but may not necessarily be susceptible to clinical damage. In contrast, the GEE analysis

which only includes patients with at least one joint damaged is more relevant to assessing

clinical damage in those who are susceptible to clinical damage.

The results in this section also agree with the results from Bond et al. (2007) that

were discussed in Section 3.1.1 in the sense that females are associated with greater

progression to damage than males (although not significantly). Bond et al. (2007) also

found time in the clinic to significantly predict the progression to damage (although time

since diagnosis is considered in this paper). Bond et al. (2007) found age to significantly

predict the progression to damage, but this could be due to age at entry being considered

as opposed to the age of diagnosis considered in this paper. It should be noted that

the assessment by Bond et al. (2007) was in a longitudinal sense over time rather than

considering the last clinic visit (for each patient). In addition, Bond et al. (2007) included

the feet joints as well as the hand joints.

The analyses conducted so far in Sections 3.3 and 3.4 concentrated purely on the

marginal patterns of clinical damage and ignore the associations. The following sec-

tions use the dependence ratio approach, which gives equal emphasis to the marginal

regression and the associations within a cluster (patient).
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3.5 Association patterns of clinical damage: exploratory

analysis

In order to assess the association patterns of clinical damage, the observed two-way

dependence ratios were assessed for pairs of joints. This is performed separately for

the within and between-hand dependence ratios. The between-hand dependence ratios

include the symmetric dependence ratios for an assessment of symmetry, where symme-

try refers to the same joint(s) on both hands being affected. The symmetric two-way

dependence ratio for a given joint is defined as the joint probability of an individual

having both the given joint and the same joint on the other hand damaged divided by

the corresponding probability under independence.

Some previous analyses with the dependence ratio have analysed males and females

separately, e.g. Jokinen et al. (2006), because they were found to follow different asso-

ciation structures. In the case of the psoriatic arthritis data, males and females were

found to follow similar association patterns from the observed dependence ratios. Conse-

quently, the observed dependence ratios that follow in this section will not be separated

by gender. However, given the theoretical interest in the gender variable and the higher

marginal probabilities of clinical damage for females from Sections 3.3 and 3.4, gender

is included in the marginal regression models of Section 3.6.

As discussed in Section 3.4, 249 of the 386 patients (64.5%) had no clinical damage in

any of their 28 joints. There was a similar pattern by gender since, of the 214 males,

145 had no clinical damage in any of their joints (67.76%) and, of the 172 females, 104

had no damage in any joints (60.47%). In other words, there appears to be a group

of patients that are not susceptible to clinical damage. Consequently, the necessary

factor association structure that was described in Section 3.2.1 is likely to appropriate

for modelling the association structure. This is discussed further in Section 3.6.

In addition to considering the observed two-way dependence ratios, a proportion of max

measure is also considered for assessing the association between joints. In Section 3.2.2,

it was stated that the dependence ratio has a range that is constrained by the marginal

probabilities. Consequently, the proportion of max measure (denoted τPOM ) ensures

that conclusions are not majorly influenced by the marginal probabilities. It should also

be noted that research in computer science (see Section 1.4.6 of the introduction to this

thesis) found the range of the two-way dependence ratio to only be an issue when the

counts (for the numerator) are small (less than approximately five). Although all counts

were greater than five for the psoriatic arthritis data, some counts were relatively small

in comparison to others. One proportion of max measure that could be used is:

τPOM =
τ

max(τ)
. (3.13)
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In other words, the value of the dependence ratio divided by its potential maximum,

where the potential maximum is given by the minimum of the reciprocals of the two

marginal probabilities (as shown in (3.11)). However, although this measure has a

minimum value of 0 and an maximum value of 1, there is no fixed value for independence.

Consequently, a preferable measure is:

τPOM2 =
τ − 1

max(τ) − 1
. (3.14)

Since all dependence ratios are 1 under independence, zero represents independence for

this measure. Although the minimum value is less than 0, the maximum is still attained

at 1. So, the interpretation of the measure is based upon values from independence (0)

to its maximum (1). No proportion of max values were found to be less than or equal to

zero in the psoriatic arthritis data. Although the conclusions were the same regardless

of whether (3.13) or (3.14) were used, (3.14) is used throughout the subsequent parts

of this section due to the advantage mentioned. Proportion of max values greater than

0.80 are given in bold throughout. In fact, (3.14) is the same as the statistic proposed

by Durbin (1955) for the context of social mobility tables (see Section 1.4.2).

Observed dependence ratios of higher-order than two are not considered. Firstly, the

numerators in some of the higher-order dependence ratios were zero. An analysis of

the three-way dependence ratios revealed similar conclusions to those obtained from

inspecting the two-way dependence ratios. The within-hand two-way dependence ratios

are considered first along with their proportion of max.

3.5.1 Within-hand dependence ratios

The right hand observed two-way dependence ratios are considered first in Table 3.14

with the corresponding proportion of max displayed in Table 3.15. Tables 3.16 and

3.17 show the corresponding values for the left hand. Since all the dependence ratios

are much larger than 1, the independence association structure is clearly not applicable

for modelling the data using the dependence ratio approach in Section 3.6. However,

although all of the dependence ratios are large relative to independence, interest lies in

determining the greatest within-hand association patterns of clinical damage.

The largest two-way observed dependence ratios in the right hand are highlighted in

bold in Table 3.14. Of particular note is the larger values of all the two-way dependence

ratios involving only the MCP joints 2, 3, 4 and 5. These joints are the larger MCP

joints (excluding the thumb) and are commonly known as knuckles. This is confirmed

by looking at the proportion of max values in Table 3.15. In addition, similar patterns

are seen in the left hand with the MCP knuckle joints having the greatest association.

Overall, the two hands seem to follow similar association patterns. In other words, these



Chapter 3 Paper 2: Applications of the dependence ratio to psoriatic arthritis 121

results suggest there is no need to have different association structures for the two hands

in Section 3.6.

Table 3.14: Right hand observed two-way dependence ratios

Joint 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 - 5.106 4.902 5.744 6.127 6.487 3.370 3.854 4.866 3.558 4.158 4.085 4.595 3.760

2 5.106 - 20.015 21.440 19.060 8.830 7.148 6.918 12.61 6.226 4.595 6.552 6.433 4.386

3 4.902 20.015 - 25.733 20.010 7.569 7.720 7.471 15.140 5.811 4.902 7.148 6.862 4.679

4 5.744 21.440 25.733 - 37.528 11.350 9.650 9.339 19.870 7.782 5.744 8.042 9.650 6.580

5 6.127 19.060 20.010 37.528 - 12.614 10.010 8.301 17.660 9.685 5.106 7.148 10.010 6.823

6 6.487 8.830 7.569 11.350 12.614 - 4.541 5.860 9.349 7.324 7.028 6.307 9.839 6.709

7 3.370 7.148 7.720 9.650 10.010 4.541 - 8.301 10.596 5.396 5.208 5.719 6.004 4.679

8 3.854 6.918 7.471 9.339 8.301 5.860 8.301 - 11.719 6.025 5.929 7.609 7.471 5.094

9 4.866 12.610 15.140 19.870 17.660 9.349 10.596 11.719 - 8.789 8.109 9.461 11.350 7.225

10 3.558 6.226 5.811 7.782 9.685 7.324 5.396 6.025 8.789 - 4.447 5.188 6.226 5.377

11 4.158 4.595 4.902 5.744 5.106 7.028 5.208 5.929 8.109 4.447 - 7.148 7.659 5.013

12 4.085 6.552 7.148 8.042 7.148 6.307 5.719 7.609 9.461 5.188 7.148 - 8.22 5.361

13 4.595 6.433 6.862 9.650 10.010 9.839 6.004 7.471 11.350 6.226 7.659 8.220 - 6.433

14 3.760 4.386 4.679 6.580 6.823 6.709 4.679 5.094 7.225 5.377 5.013 5.361 6.433 -

Table 3.15: Right hand proportion of max

Joint 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 NA 0.501 0.476 0.579 0.626 0.670 0.289 0.348 0.472 0.312 0.386 0.377 0.439 0.355

2 0.501 NA 0.930 1 0.883 0.383 0.518 0.517 0.568 0.456 0.439 0.571 0.458 0.436

3 0.476 0.930 NA 1 0.769 0.303 0.566 0.565 0.651 0.420 0.476 0.632 0.494 0.473

4 0.579 1 1 NA 0.872 0.477 0.729 0.728 0.869 0.592 0.579 0.724 0.729 0.718

5 0.626 0.883 0.769 0.872 NA 0.535 0.759 0.638 0.768 0.758 0.501 0.632 0.759 0.749

6 0.670 0.383 0.303 0.477 0.535 NA 0.298 0.424 0.385 0.552 0.736 0.546 0.745 0.734

7 0.289 0.518 0.566 0.729 0.759 0.298 NA 0.638 0.809 0.384 0.514 0.485 0.422 0.473

8 0.348 0.517 0.565 0.728 0.638 0.424 0.638 NA 0.936 0.439 0.602 0.680 0.565 0.527

9 0.472 0.568 0.651 0.869 0.768 0.385 0.809 0.936 NA 0.680 0.868 0.870 0.872 0.801

10 0.312 0.456 0.420 0.592 0.758 0.552 0.384 0.439 0.680 NA 0.421 0.431 0.456 0.563

11 0.386 0.439 0.476 0.579 0.501 0.736 0.514 0.602 0.868 0.421 NA 0.751 0.813 0.516

12 0.377 0.571 0.632 0.724 0.632 0.546 0.485 0.680 0.870 0.431 0.751 NA 0.743 0.561

13 0.439 0.458 0.494 0.729 0.759 0.745 0.422 0.565 0.872 0.456 0.813 0.743 NA 0.699

14 0.355 0.436 0.473 0.718 0.749 0.734 0.473 0.527 0.801 0.563 0.516 0.561 0.699 NA
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Table 3.16: Left hand observed two-way dependence ratios

Joint 15 16 17 18 19 20 21 22 23 24 25 26 27 28

15 - 5.881 5.643 6.464 8.126 7.256 4.587 4.402 3.657 3.251 4.416 4.063 4.002 3.078

16 5.881 - 19.187 16.62 18.28 7.739 9.83 8.804 6.501 5.688 6.625 6.385 6.156 3.694

17 5.643 19.187 - 19.495 19.3 7.148 10.38 9.293 6.862 6.862 6.527 6.74 6.498 3.899

18 6.464 16.62 19.495 - 28.073 10.03 10.19 9.358 8.422 9.825 6.103 6.016 6.38 5.317

19 8.126 18.28 19.3 28.073 - 12.867 11.21 11.58 10.81 10.81 6.713 6.617 8.188 8.188

20 7.256 7.739 7.148 10.03 12.867 - 5.929 6.74 7.352 5.882 5.994 5.777 7.798 5.57

21 4.587 9.83 10.38 10.19 11.21 5.929 - 9.546 7.471 6.973 5.955 6.759 6.037 3.773

22 4.402 8.804 9.293 9.358 11.58 6.74 9.546 - 7.72 7.72 5.594 6.985 6.238 5.069

23 3.657 6.501 6.862 8.422 10.81 7.352 7.471 7.72 - 9.882 4.699 5.294 7.486 4.679

24 3.251 5.688 6.862 9.825 10.81 5.882 6.973 7.72 9.882 - 4.363 3.97 6.082 6.082

25 4.416 6.625 6.527 6.103 6.713 5.994 5.955 5.594 4.699 4.363 - 7.432 6.611 5.086

26 4.063 6.385 6.74 6.016 6.617 5.777 6.759 6.985 5.294 3.97 7.432 - 8.021 5.681

27 4.002 6.156 6.498 6.38 8.188 7.798 6.037 6.238 7.486 6.082 6.611 8.021 - 6.38

28 3.078 3.694 3.899 5.317 8.188 5.57 3.773 5.069 4.679 6.082 5.086 5.681 6.38 -

Table 3.17: Left hand proportion of max

Joint 15 16 17 18 19 20 21 22 23 24 25 26 27 28

15 NA 0.533 0.507 0.597 0.778 0.683 0.392 0.371 0.290 0.246 0.462 0.334 0.328 0.227

16 0.533 NA 0.942 0.809 0.895 0.388 0.771 0.658 0.381 0.325 0.761 0.537 0.482 0.252

17 0.507 0.942 NA 0.905 0.895 0.354 0.819 0.699 0.406 0.406 0.748 0.572 0.514 0.271

18 0.597 0.809 0.905 NA 0.794 0.519 0.802 0.704 0.514 0.611 0.690 0.500 0.503 0.404

19 0.778 0.895 0.895 0.794 NA 0.683 0.891 0.892 0.679 0.679 0.773 0.560 0.672 0.672

20 0.683 0.388 0.354 0.519 0.683 NA 0.430 0.484 0.440 0.338 0.676 0.476 0.636 0.427

21 0.392 0.771 0.819 0.802 0.891 0.430 NA 0.746 0.565 0.522 0.670 0.574 0.471 0.259

22 0.371 0.658 0.699 0.704 0.892 0.484 0.746 NA 0.566 0.566 0.622 0.597 0.490 0.380

23 0.290 0.381 0.406 0.514 0.679 0.440 0.565 0.566 NA 0.615 0.500 0.428 0.606 0.344

24 0.246 0.325 0.406 0.611 0.679 0.338 0.522 0.566 0.615 NA 0.455 0.296 0.475 0.475

25 0.462 0.761 0.748 0.690 0.773 0.676 0.670 0.622 0.500 0.455 NA 0.870 0.759 0.553

26 0.334 0.537 0.572 0.500 0.560 0.476 0.574 0.597 0.428 0.296 0.870 NA 0.700 0.467

27 0.328 0.482 0.514 0.503 0.672 0.636 0.471 0.490 0.606 0.475 0.759 0.700 NA 0.503

28 0.227 0.252 0.271 0.404 0.672 0.427 0.259 0.380 0.344 0.475 0.553 0.467 0.503 NA
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3.5.2 Between-hand dependence ratios

This section considers the between-hand dependence ratios. These are displayed in Ta-

ble 3.18 with the diagonal elements of the table representing the symmetric dependence

ratios. Although all of the dependence ratios in Table 3.18 are large relative to inde-

pendence, the greatest associations again largely involve the larger MCP knuckle joints.

However, these associations appear to not be as strong as the within-hand dependence

ratios involving these joints. This is shown by the smaller proportion of max values in

Table 3.19.

Table 3.18: Between-hand dependence ratios

Joint 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 7.497 4.515 4.740 6.349 5.643 5.378 3.725 3.604 4.780 3.604 4.353 3.950 4.063 3.694

16 4.837 12.415 12.189 15.237 15.801 7.170 8.804 6.553 11.950 5.243 5.805 6.208 6.772 4.617

17 5.106 13.105 12.867 16.083 16.679 7.569 9.293 7.609 12.614 6.226 6.127 6.552 7.148 4.386

18 5.013 13.646 16.376 21.932 19.495 8.257 9.358 9.056 14.449 7.924 5.848 7.798 7.018 4.785

19 6.433 15.011 15.440 24.125 25.733 11.353 11.580 8.716 15.894 9.961 6.433 8.578 7.720 6.141

20 6.127 6.127 6.127 9.190 8.169 11.894 4.902 5.336 7.569 4.743 5.689 5.616 6.127 5.431

21 4.447 7.609 8.301 9.339 8.301 5.860 7.886 7.632 10.254 4.820 5.336 5.880 6.226 3.962

22 4.289 7.148 7.720 9.650 10.007 6.055 8.578 9.131 10.596 6.226 5.821 6.076 6.862 4.971

23 3.676 5.147 5.147 9.650 8.578 8.174 6.691 6.475 9.991 6.475 5.882 4.718 6.691 4.913

24 3.676 5.147 5.147 7.720 6.862 7.266 6.691 6.475 8.174 5.977 4.411 3.860 5.147 4.913

25 3.996 4.662 5.035 6.293 5.594 5.923 4.755 5.143 7.404 4.602 6.393 6.527 6.433 5.531

26 4.464 6.127 5.882 8.271 7.352 7.136 5.147 6.759 9.082 4.981 7.090 7.965 8.823 6.016

27 4.456 5.199 5.459 8.773 7.798 8.945 5.459 6.414 8.945 5.660 6.684 7.148 8.578 6.380

28 2.785 3.249 3.119 4.386 5.199 6.193 3.899 5.283 6.881 4.905 5.291 5.524 5.848 5.051

The results in Sections 3.5.1 and 3.5.2 suggest that the greatest association patterns

of clinically damaged joints involve the 8 larger MCP knuckle joints and in particular

within a hand rather than between hands. Although the symmetric dependence ratios

(the diagonal elements of Table 3.18) are all large relative to independence, the results

in these sections suggest that these symmetric association patterns of damaged joints

are not a strong as the within hand and between hand association patterns involving the

MCP knuckle joints. The results suggest that the MCP knuckle joints at least appear to

follow a different association pattern to the other joints. O’Keeffe et al. (2011) mention

that strong association patterns involving the MCP knuckle joints (the larger joints) is

common in psoriatic arthritis.

Although Sections 3.3 and 3.4 showed that the MCP knuckle joints had lower marginal

probabilities compared to the other joints, this section has demonstrated that stronger

association patterns exist with regards to these joints. To illustrate this point, consider

the two-way dependence ratio for the MCP joints in the index and middle fingers (joint

numbers 2 and 3) in the right hand. The marginal probabilities for these joints are 0.0466
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Table 3.19: Between-hand proportion of max

Joint 1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 0.7933 0.3838 0.4084 0.5841 0.5070 0.4780 0.2975 0.2844 0.4128 0.2844 0.4094 0.3222 0.3345 0.3466

16 0.4685 0.5910 0.5793 0.7371 0.7663 0.3194 0.6576 0.4850 0.5669 0.3705 0.5866 0.5356 0.4864 0.4654

17 0.5013 0.5921 0.5804 0.7378 0.7669 0.3213 0.6988 0.5772 0.5681 0.4563 0.6260 0.5711 0.5181 0.4357

18 0.4900 0.6186 0.6217 0.6140 0.5425 0.3343 0.7043 0.7035 0.6196 0.6046 0.5920 0.6992 0.5072 0.4870

19 0.6634 0.6853 0.5838 0.6150 0.6578 0.4770 0.8916 0.6738 0.6862 0.7825 0.6634 0.7794 0.5663 0.6614

20 0.6260 0.2950 0.2950 0.4712 0.4125 0.6268 0.3288 0.3787 0.3779 0.3269 0.5725 0.4748 0.4320 0.5700

21 0.4209 0.5772 0.6376 0.7282 0.6376 0.4244 0.6013 0.5791 0.8081 0.3336 0.5294 0.5019 0.4563 0.3811

22 0.4016 0.5181 0.5663 0.7289 0.7591 0.4260 0.6386 0.7100 0.8087 0.4563 0.5886 0.5221 0.4940 0.5109

23 0.3267 0.2872 0.2872 0.5990 0.5248 0.4968 0.4796 0.4781 0.6226 0.4781 0.5960 0.3824 0.4796 0.5034

24 0.3267 0.2872 0.2872 0.4654 0.4060 0.4339 0.4796 0.4781 0.4968 0.4346 0.4165 0.2942 0.3494 0.5034

25 0.4053 0.4954 0.5459 0.7162 0.6216 0.6661 0.5080 0.5605 0.8664 0.4873 0.7297 0.7477 0.7351 0.6130

26 0.4229 0.5112 0.4868 0.7251 0.6334 0.6119 0.4135 0.5743 0.8059 0.3969 0.7435 0.7164 0.7801 0.6453

27 0.4220 0.3925 0.4168 0.7266 0.6355 0.7427 0.4168 0.5062 0.7427 0.4356 0.6940 0.6324 0.7084 0.6922

28 0.2179 0.2103 0.1981 0.3166 0.3925 0.4854 0.2710 0.4003 0.5497 0.3651 0.5240 0.4653 0.4533 0.5212

(18 out of 386) and 0.0389 (15 out of 386) respectively, as shown in Table 3.4. Of the 15

who had clinical damage in the MCP joint in the middle finger, 14 of these individuals

also had the MCP joint in the index finger damaged. This led to a dependence ratio of

20.015 (Table 3.14) and a proportion of max of 0.930 (Table 3.15). As a comparison,

consider the corresponding two-way dependence ratio for the DIP joints in the right

hand. The marginal probabilities for these joints are 0.1088 (42 out of 386) and 0.0933

(36 out of 386) respectively. However, out of the 36 who had the DIP joint in the middle

finger clinically damaged, only 27 also had the DIP joint in the index finger damaged.

This led to a lower dependence ratio of 7.148 (Table 3.14) and a lower proportion of

max value of 0.751 (Table 3.15).

3.6 Modelling the data: The dependence ratio approach

This section presents modelling of the data using the dependence ratio approach that

was discussed in detail in Section 3.2. Recall that the approach puts equal empha-

sis on the marginal regression (discussed in Sections 3.3 and 3.4) and the associations

(discussed in Section 3.5). The exploratory analysis of the associations in Section 3.5

showed the differing association patterns of clinical damage for the MCP knuckle joints

in comparison to other joints. In addition, the GEE analysis of the marginal patterns of

clinical damage in Section 3.4 revealed significant interactions involving the joint type

variable and consequently made interpretations with regards to the marginal patterns of

clinical damage more difficult. One of the main aims of the dependence ratio approach

is to provide a model that is easy to understand with a relatively small number of pa-

rameters for maximum likelihood estimation so consequently having a large number of
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parameters for the interactions as in Section 3.4 is not sought after. It is noted that

conclusions relating to the inclusion of a large number of interaction parameters was

based upon GEE methodology. However, this may not be the case for the dependence

ratio approach.

In Section 3.5, the association patterns of clinical damage involving only the 8 MCP

knuckle joints were shown to be the strongest. Consequently, this section treats these 8

joints separately to the other joints. Although Section 3.5 revealed no clear association

patterns among the other 20 joints, the PIP, DIP and thumb joints will be considered

separately in order to see how their association structures differ from the MCP knuckle

joints. In other words, the association patterns in Section 3.5 suggest that the MCP

thumb joint should be treated separately from the other MCP knuckle joints so the

thumb is treated separately. It should be noted that treating the joint type variable as

a four level variable (thumb, MCP, PIP and DIP) in the GEE approach led to the same

conclusions as when it was considered as a three level variable (MCP, PIP and DIP) in

Section 3.4. Having these four separate models allows for a detailed assessment of the

DIP joints, since these joints are often of particular interest in psoriatic arthritis. In

addition, the DIP joints are the closest to the nails and known to be the most commonly

affected (as shown in Sections 3.3 and 3.4). In addition, the thumb is of particular

interest given the results in Section 3.4 and the fact it has no DIP joint. It should be

noted that these models do not allow for an assessment of the associations between joint

type, but these were assessed in an exploratory nature in Section 3.5.

In Section 3.4, the high proportion of patients with no damage in any of their 28 joints

was advocated as a strong justification for the use of the necessary factor association

structure that was described in Section 3.2.1. This is further shown by Table 3.20 which

shows the proportion of individuals with no damaged joints, for each of the four joint

types. Although they all have large proportions, the MCP knuckle joints have the largest

proportion with 92% of patients having no damage in any of these 8 joints.

Table 3.20: Proportion of individuals with no damaged joints for each model

Joint type Proportion no damaged joints (sample size) Number of joints

MCP knuckle 0.920 (3088) 8
thumb 0.852 (1544) 4

PIP 0.806 (3088) 8
DIP 0.769 (3088) 8

Separate models for each of the four joint types in Table 3.20 are now presented, using the

dependence ratio approach. Clinical damage is the response of interest. The following

explanatory variables were considered for the marginal regression model (as specified in

detail in Section 3.4) in each case: sex, age (in years) of diagnosis with psoriatic arthritis,

hand, finger and time (in years) since diagnosis. Since the thumb has both MCP and

PIP joints, an additional variable was included in this model to account for this. The
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same procedure was followed as in the GEE approach in the sense that only variables

that significantly predict the probability of clinical damage were included in each case

with the exception of sex which was included regardless of its significance. Due to issues

with the convergence of the parameter estimates and negative profile probabilities, the

time since diagnosis covariate was treated as a categorical variable with 3 levels (0-10

years (baseline), 10-20 years, over 20 years).

Given the high proportions of individuals with no joints damaged in Table 3.20, the

necessary factor association structure is considered for the association structure in each

model as well as other exchangeable structures described in Section 3.2.1 (L and NL). In

the case of the necessary factor association structure, the marginal regression model will

be estimated conditional on the patient being susceptible to damage. This is therefore

more similar to the second GEE analysis of Section 3.4 although this approach uses all

patients (for a given joint type) without excluding those with no damaged joints.

Since the exchangeable association structures are not nested, the AIC is used to compare

the fit of the combined regression and association models in the subsequent sections. In

addition to the AIC, the selection of the final model is also based upon the interpretabil-

ity of the association model as well as the fit of the profile probabilities. For example,

even though a model may give a superior fit in terms of the AIC, it may produce negative

profile probabilities for the unobserved profiles, which is unsatisfactory. The likelihood

ratio test was used to confirm any conclusions obtained using the Wald test with regards

to the regression coefficients (using a 5% significance level).

3.6.1 Model for the MCP knuckle joints

An analysis of the explanatory variables assuming independence between and within

patients (irrespective of the association structure) found that finger and time since di-

agnosis significantly predict the probability of damage in the MCP knuckle joints (joint

numbers 2-5 and 16-19). These two variables along with sex were included as explana-

tory variables for the regression model. Hand and age of diagnosis were not significant

so were not included in the final model. There were no significant interactions.

Since 92% of individuals had no damage in any of these joints (as shown in Table 3.20),

the necessary factor structure described in Section 3.2.1 was fitted as a starting point

for modelling the association structure. The same conclusions were obtained from as-

sessing the regression model under this structure as under independence. This model

gave a much superior fit compared to independence (taking into account the regression

model). The AIC’s of independence and the necessary factor were 860.288 and 526.812

respectively. Although the latent binary association structure gave a slightly better fit,

the necessary factor structure was chosen due to its more convenient interpretation. The
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combined necessary and latent binary structure (NL) produced negative profile proba-

bilities for the unobserved profiles so was not considered. Having the necessary factor

varying by gender was considered but this model did not give an improvement (AIC =

528.223). In other words, there is negligible difference between males and females being

susceptible to clinical damage. This is not surprising given that males and females did

not follow different association patterns in terms of the observed dependence ratios in

Section 3.5.

The parameter estimates for the chosen necessary factor association structure combined

with the chosen regression model are shown in Table 3.21. Recall that the regression

coefficients are estimated conditional on patients having the necessary factor for dam-

age in the MCP knuckle joints. Table 3.22 shows a comparison of the AIC’s for the

association structures considered (taking into account the chosen regression model).

Table 3.21: Parameter estimates for the MCP knuckle joints model

Sub model Parameter Estimate Standard error

Regression model Intercept −2.950 0.749

Sex (female) 0.460 0.305

Finger (middle) −0.273 0.370

Finger (ring) −1.273 0.390

Finger (little finger) −1.273 0.390

Time since diagnosis (10-20 years) 2.750 0.745

Time since diagnosis (over 20 years) 3.505 0.737

Association model v = pr(N = 1) 0.103 0.018

Table 3.22: Comparison of model fit for association structures of the MCP
knuckle joints using AIC

Association Structure AIC

Independence (I) 860.288
Necessary factor (N) by gender 528.223

Necessary Factor (N) 526.812

The regression model shows that females are associated with a greater probability of

clinical damage than males in the MCP knuckle joints (although not significantly). The

odds of damage for females are 1.584 times greater than for males (holding other variables

constant). The finger variable has only 4 levels since the thumb is not present in this

model. The ring and little fingers are (significantly) associated with lower probabilities

of damage than the index finger (the baseline). The middle finger is associated with a

lower probability of damage than the index finger (although not significantly). Despite

the categorisation of the time since diagnosis variable, the same conclusion is found

as the GEE analysis in the sense that increased time since diagnosis is (significantly)

associated with a higher probability of damage.
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In terms of interpreting the association model, the probability of a patient having the

factor necessary for clinical damage in the MCP knuckle joints is given by the parameter

v and is estimated to be 0.103. In other words, the proportion of patients that are not

susceptible to clinical damage in their MCP knuckle joints is given by 1 − v which is

approximately 0.90.

Despite the MCP knuckle joints having low marginal probabilities compared to other

joints as well as the largest proportion of patients with no damage in any of their joints,

they still showed the strongest association pattern of all joints in Section 3.5. In other

words, if a patient has one of these MCP knuckle joints damaged, there is a strong

chance they will have other MCP knuckle joints damaged also. This was shown in the

analysis of the observed two-way dependence ratios in Section 3.5. For the necessary

factor association model, all w-way dependence ratios are equal. Using (3.8), the 2-

way dependence ratio along with its standard error in parentheses (calculated using

the delta method, see Appendix) is estimated to be 9.679 (1.732) for the MCP knuckle

joints. This estimate is larger than the estimates for the models later in this section

so this model therefore takes into account the higher dependence of clinical damage

between these MCP knuckle joints. However, the larger standard error shows there is

more uncertainty with this estimate. The 95% confidence interval is (6.28,13.07).

3.6.2 Model for the thumb joints

Since the MCP thumb joints followed a different association pattern to the MCP knuckle

joints, it was decided that the four thumb joints (two MCP joints: joint numbers 1 and

15 and two PIP joints: joint numbers 6 and 20) would be modelled separately.

The effect of the explanatory variables on clinical damage was assessed assuming inde-

pendence within and between patients. An additional joint type variable was included to

take into account the fact that the thumb has both MCP and PIP joints present. Time

since diagnosis and joint type significantly predicted the probability of clinical damage.

These two variables along with sex were included as explanatory variables. Hand and

age were non-significant and there were no significant interactions.

An assessment of the association structure of the thumb joints showed that there was

limited difference between the necessary factor and latent binary factor association struc-

tures in terms of AIC (taking into account the chosen regression model) but the necessary

factor association structure was chosen due to its more straightforward interpretation.

In addition, Table 3.20 showed that approximately 85% of patients had no damage in

any of their thumb joints, thus advocating the use of the necessary factor association

structure. The combined necessary and latent structure (NL) produced negative pro-

file probabilities so was not considered. The necessary factor varying by gender was

also considered but this did not yield a significant improvement. Table 3.23 shows the
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parameter estimates for the combined regression and association model and Table 3.24

shows a comparison of the AIC’s for the association structures considered (taking into

account the chosen regression model).

Table 3.23: Parameter estimates for the thumb joints model

Sub model Parameter Estimate Standard error

Regression model Intercept −3.208 0.559

Sex (female) 0.011 0.329

Joint type (MCP) 1.438 0.282

Time since diagnosis (10-20 years) 1.787 0.566

Time since diagnosis (over 20 years) 2.844 0.563

Association model v = pr(N = 1) 0.2009 0.0274

Females are associated with a greater probability of clinical damage than males in the

thumb joints but the effect is negligible. The MCP thumb joint is (significantly) associ-

ated with a greater probability of clinical damage than the PIP joint (the baseline). The

odds of clinical damage in the MCP thumb joint is 4.21 times greater than in the PIP

thumb joint (holding other variables constant). This is not surprising given the results

from the GEE analysis in Section 3.4. Time since diagnosis is again significant with an

increase associated with a greater probability of clinical damage.

The association model shows that the probability of an individual having the necessary

factor for clinical damage in the thumb joints is 0.2009. This shows that patients are

more susceptible to damage in the thumb joints than the MCP knuckle joints consid-

ered previously. Consequently, the probability of an individual not being susceptible to

damage in the thumb joints is approximately 0.8. Using (3.8), the estimated two-way

dependence ratio with associated standard error (in parentheses) for the thumb joints

model is 4.977 (0.679). The 95% confidence interval is (3.65, 6.31).

Table 3.24: Comparison of model fit for association structures of the thumb
joints using AIC

Association structure AIC

Independence (I) 762.586
Necessary factor (N) by gender 595.531

Necessary factor (N) 593.638
Latent binary factor (L) 592.289
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3.6.3 Model for the PIP joints

The 8 PIP joints (joint numbers 7-10 and 21-24) are now considered. A regression

analysis (independently of the association structure) revealed significant effects of time

since diagnosis and finger. However, in contrast to previous models, sex was found to be

significant with females again associated with higher probabilities of damage than males.

This is not surprising given the results for the GEE analysis in Section 3.4. Hand and

age of diagnosis were again non-significant and there were no significant interactions.

Table 3.20 showed that approximately 81% of individuals had no damage in any of these

8 joints (less than both the MCP knuckle and thumb joints). The necessary factor asso-

ciation structure gave a superior fit compared to independence (taking into account the

chosen regression model). However, both the latent binary association structure (L) and

the combined necessary/latent binary association structure (NL) both produced nega-

tive profile probabilities. Following the exclusion of the time since diagnosis variable, a

suitable model was obtained using the latent binary association structure. Since interest

lies more in the finger and sex variables and the fact this model gave a much superior

fit over the necessary factor with all regression variables present, this was consequently

chosen as the final model. Table 3.25 shows the parameter estimates for the chosen

combined regression and association model and Table 3.26 shows a comparison of the

AIC for the different association structures (taking into account the chosen regression

model).

Table 3.25: Parameter estimates for the PIP joints model

Sub model Parameter Estimate Standard error

Regression model Intercept −2.700 0.187

Sex (female) 0.414 0.154

Finger (middle) 0.043 0.118

Finger (ring) −0.384 0.152

Finger (little finger) −0.177 0.131

Association model v2 = pr(L = 1) 0.103 0.017

κ 0.027 0.005

Females are (significantly) associated with a higher probability of clinical damage than

males in the PIP joints. The odds of clinical damage are 1.51 times greater for females

than males (holding other variables constant). The ring finger is (significantly) associ-

ated with a lower probability of clinical damage than the index finger (the baseline).

In terms of interpreting the association model, it can be concluded that there are two

groups of individuals in the population that each have different probabilities of clinical

damage (given the same covariate values). The probability of being in the latent group

0 is given by 0.897 (= 1−0.103). The κ parameter shows that the probability of clinical
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damage for those in latent group 0 is only 2.7% of the probability of those in latent group

1. In other words, there appears to be two distinct group with one having a much higher

probability of clinical damage than the other. Applying the results to (3.10) gave an

estimated two-way dependence ratio (with standard error in parentheses, see Appendix)

for this model of 6.46 (0.72). The 95% confidence interval is (5.05, 7.87).

Table 3.26: Comparison of model fit for association structures of the PIP joints
using AIC

Association structure AIC

Independence (I) 1547.532
Necessary factor (N) 1155.542

Latent binary factor (L) 1067.298

3.6.4 Model for the DIP joints

The final model considered is for the 8 DIP joints that are located closest to the finger-

tip. These joints are commonly affected in psoriatic arthritis, as discussed in previous

sections. However, results in Section 3.5 showed that although the DIP joints had large

marginal probabilities at each individual joint in comparison to other joints, their asso-

ciations were not as strong as the MCP knuckle joints.

A regression analysis under independence revealed similar conclusions to those observed

in previous models with time since diagnosis and finger being significantly associated

with the probability of clinical damage. These variables were included in the regression

model along with sex. Hand and age of diagnosis were non-significant and there were

no significant interactions.

An assessment of the association structures found the latent binary structure to be

the most appropriate. It gave a much superior fit compared to the necessary factor

(taking the regression model into account). The NL structure was not chosen since

it consistently produced negative profile probabilities. Table 3.27 shows the parameter

estimates for this model and Table 3.28 shows the comparison of model fit.

The regression model shows that females are again associated with a greater probability

of damage, but not significantly. The odds of clinical damage are 1.20 times greater for

females than males (holding other variables constant). Both the ring and little fingers

were associated with significantly lower probabilities of clinical damage than the index

finger. The conclusions for the time since diagnosis variable remain the same.

The association model can be interpreted in the same way as for the PIP joints. There

are two different groups in the population with different probabilities of clinical dam-

age (given the same regression values). The latent group 0 accounts for 89.2% of the

population and of those in this group, the probability of clinical damage is 4.3% of the
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Table 3.27: Parameter estimates for the DIP joints model

Sub model Effect Estimate Standard error

Regression model Intercept −2.833 0.398

Sex (female) 0.185 0.102

Finger (middle) −0.100 0.103

Finger (ring) −0.251 0.114

Finger (little finger) −0.211 0.097

Time since diagnosis (10-20 years) 0.502 0.417

Time since diagnosis (over 20 years) 0.834 0.411

Association model v2 = pr(L = 1) 0.108 0.019

κ 0.043 0.007

probability of damage in the latent group 1. Applying (3.10) to this model shows that

the estimated two-way dependence ratio (with standard error in parentheses) is 5.09

(0.54). The 95% confidence interval is given by (4.04, 6.15).

Table 3.28: Comparison of model fit for association structures of the DIP joints
using AIC

Association structure AIC

Independence (I) 1793.226
Necessary factor (N) 1375.683

Latent binary factor (L) 1247.991
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3.7 Discussion

The dependence ratio approach for (population-averaged) maximum likelihood estima-

tion of multivariate categorical data provides an intuitive way of modelling the presence

of clinical damage in patients with psoriatic arthritis. The approach puts equal em-

phasis on the marginal regression and the associations within a patient. In addition, it

can cope computationally with larger cluster sizes than the odds ratio (Lessafre et al.

2000 states that the odds ratio struggles with cluster sizes that are larger than approx-

imately five). The regression model uses population-averaged coefficients for the the

explanatory variables and the approach also allows for relevant association structures

to be devised that adequately summarise the association structure using only a small

number of parameters.

The focus of the GEE approach is on the marginal regression with the associations of

secondary interest. Given that the associations are of strong interest for analysing clinical

damage in patients with psoriatic arthritis, the dependence ratio approach therefore

provides a more comprehensive analysis than the GEE approach. The GEE approach is

arguably the most commonly used method for analysing multivariate categorical data.

This is largely due to the fact that it is implemented in many statistical software such

as SPSS but also because it can also cope with much larger cluster size than the odds

ratio.

The GEE approach was used in Section 3.4 in order to assess the marginal patterns of

clinical damage across all 28 joints, irrespective of the associations. This was under-

taken for all patients as well as for those with at least one joint damaged with the same

conclusions obtained in each case. An analysis of the main effects showed that time

since diagnosis (in years), finger and joint type were the explanatory variables that sig-

nificantly predict clinical damage. The DIP joints had significantly greater probabilities

of clinical damage than the MCP and PIP joints. This coincides with previous research

since the DIP joints are closest to the nail and are known to be commonly affected in

psoriatic arthritis. Hand and age at diagnosis were consistently non-significant. Al-

though the main effect of sex was non-significant, females were associated with greater

probabilities of damage than males and it was retained in the model for theoretical

reasons.

An analysis of the interactions revealed a significant interaction between each of finger

and sex with joint type. The interaction between sex and joint type was due to the

differing patterns of males and females with regards to the PIP joints. Previous research

has acknowledged that females tend to progress quicker to clinical damage than males

(Gladman et al. 2005) even though males and females are equally likely to be affected

(diagnosed) with psoriatic arthritis. However, previous research has not pinpointed the

PIP joints. It would be of interest to see if this holds true in other studies.
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Although the GEE approach provided some useful conclusions in terms of the marginal

patterns of clinical damage, it gave no insights in to the association structure and con-

sequently missed some notable conclusions. Previous research on clinical damage in the

hand joints of patients with psoriatic arthritis has largely focused on symmetrical as-

sociations (e.g. Cresswell and Farewell 2010). Symmetry is generally regarded as less

common in psoriatic arthritis than in rheumatoid arthritis (Gladman et al. 2006). In

contrast, the dependence ratio approach presented in Sections 3.5 and 3.6 considered

both symmetrical and non-symmetrical patterns of clinical damage.

The exploratory analysis of the association structure that was conducted in Section 3.5

showed that all the dependence ratios were much larger than one, therefore indicating

that independence was clearly not applicable for modelling the association structure.

The strongest association patterns of clinical damage involved the 8 MCP knuckle joints

and in particular within a hand rather than between hands. These joints are the largest

joints and previous research has stated that these joints are associated with clinical

damage in psoriatic arthritis (O’Keeffe et al. 2011). However, the results of Section 3.5

found the within-hand association patterns of clinical damage involving these joints to

be stronger than the asymmetrical and symmetrical patterns. Despite the symmetric

dependence ratios all being much larger than 1, the symmetric patterns were not as

strong as the within-hand patterns concerning the MCP knuckle joints. No clear as-

sociation patterns emerged amongst the other 20 joints in Section 3.5. Although the

DIP and PIP joints had larger marginal probabilities at each joint, the MCP knuckle

joints had the stronger associations. In other words, given that a patient has a joint of

each type damaged, they are most likely to have another MCP knuckle joint damaged.

In addition, the two hands were found to follow similar association patterns. In other

words, the two hands were found to follow similar patterns in terms of both the marginal

probabilities at each joint (as demonstrated in the GEE approach) and the association

patterns.

In terms of modelling the dataset using the dependence ratio approach, it was decided

that four separate models would be considered. Firstly, the MCP knuckle joints were

analysed separately due to the strong association patterns they conveyed in Section 3.5.

Although no clear patterns were found amongst the DIP, PIP and thumb joints, they

were analysed separately for theoretical reasons. In addition, the DIP joints are often

of particular interest in psoriatic arthritis since they are commonly affected. Hence, an

individual analysis of these joints was of interest. It is acknowledged that these models

do not allow for an assessment of the associations between joint type. However, these

were assessed in an exploratory nature in Section 3.5.

The conclusions for the four regression models were similar. Time since diagnosis (in

years) and finger were consistently significant for predicting clinical damage. However,

sex was only significant in the PIP joints model with females associated with having a
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significantly higher probability of clinical damage than males. Hand and age at diag-

nosis were consistently non-significant. In other words, the conclusions obtained for the

marginal regression models coincided with the GEE analyses of Section 3.4. However,

the conclusions for the four association models differed as expected. The necessary factor

association structure was found to be most appropriate for the MCP knuckle and thumb

models. This is not surprising given the fact that 92% and 85% of patients respectively

had no damage in any of these joints. However, a latent binary association structure was

found to be the most appropriate association structure for modelling the PIP and DIP

joints. A potential explanation for this is that these structures had lower proportions of

patients with no damaged joints (81% and 77% respectively), consequently causing there

to be two groups with different susceptibilities to damage (as opposed to the necessary

factor structure which only has one group susceptible).
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Appendix

Proof of the delta method used for calculating standard errors

In section 3.6, the delta method was used to calculate the standard errors for the

maximum likelihood estimates of the (two-way) dependence ratio parameter (τ̂)

in each of the four models.

Maximum likelihood estimates are known to be asymptotically normal. For a

parameter η:

η̂ ∼ N(η, I(η)−1),

where I(η)−1 is the variance of η̂ which is also the inverse of the Fisher information.

The delta method states that for any function of η, denoted g(η), whose derivative

g
′
(η) exists:

g(η̂) ∼ N(g(η), I(η)−1[g
′
(η)]2).

The delta method estimator of the variance of g(η̂) is found by substituting in the

maximum likelihood estimator of η in to the above.

For the necessary factor association structure that was used for the MCP knuckle

and thumb joints models in Section 3.6, τ is a function of a single parameter (v),

given by τ = g(v) = 1
v
. Although the standard error of v̂ was naturally available

from drm, the standard error of τ̂ was not. Applying the delta method yields the

following estimate for the variance of τ̂ :

I(η̂)−1[g
′
(v̂)]2 =

I(η̂)−1

v̂4
.

The standard error of τ̂ is therefore found by square rooting the above expression.

For the latent binary association structure that was used for the PIP and DIP joint

models in Section 3.6, τ is a function of two parameters (v2, κ). It is discussed in

Jokinen (2006: PhD thesis) and is given by:

τ = g(v2, κ) =
v2 + (1− v2)κ

2

(v2 + (1− v2)κ)2
.

Although the standard errors of v̂2 and κ̂ were naturally available from drm, the

multivariate delta method was required to calculate the standard error of τ̂ .
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The multivariate delta method states that τ̂ is asymptotically normal with mean

τ and variance given by:

∇(v2, κ)I(v2, κ)
−1∇(v2, κ)

T ,

The delta method estimator is found by substituting in the maximum likelihood

estimators in to the above equation.

Note: ∇(v2, κ) = ( ∂g
∂v2

, ∂g
∂κ
) and I(v2, κ)

−1 is given by:(
var(v2) cov(v2, κ)

cov(v2, κ) var(κ)

)
.

In addition:

g
′
(v2) =

[v2 + (1− v2)κ]
2[1− κ2]− 2[v2 + (1− v2)κ

2][1− κ][v2 + (1− v2)κ]

[v2 + (1− v2)κ]4
,

g
′
(κ) =

[v2 + (1− v2)κ]
2[2κ(1− v2)]− 2[v2 + (1− v2)κ

2][1− v2][v2 + (1− v2)κ]

[v2 + (1− v2)κ]4
.





Chapter 4

Paper 3: Prior and posterior dis-

tributions for dependence ratios

4.1 Introduction

Multivariate categorical data are found in a range of disciplines such as clinical

trials and epidemiology. In order to follow good statistical practice, traditional

univariate regression techniques cannot be used for analysis of such data since

they assume independence. However, multivariate techniques can be used to deal

with this problem by treating each unit’s (cluster’s) response profile as the re-

sponse. The analysis of a multivariate categorical response is more complicated

than the traditional multivariate normal response since the first two moments do

not completely specify the joint distribution (unless there are only two units in a

cluster).

Papers 1 and 2 of this thesis focused on analysing multivariate categorical data

with the dependence ratio association measure (Ekholm, Smith and McDonald,

1995). The dependence ratio was proposed as an advantageous alternative to the

odds ratio. The work in papers 1 and 2 was performed using traditional frequentist

approaches, with maximum likelihood estimation. However, this paper focuses on

using the dependence ratio for likelihood-based methods in a Bayesian context.

As in papers 1 and 2, population-averaged models are used as opposed to random-

effects or conditional models. The dependence ratio is discussed in detail in Section

4.1.1.

A requirement of all likelihood approaches for multivariate categorical data is

that the joint distribution must be specified. For population-averaged models, the

first-order moments are treated in the same way (regardless of which association

measure is considered for the second-order and higher moments) since they are

regressed on any relevant explanatory variables using an appropriate link function.

However, the approaches differ in their parameterisations of the second-order and

higher moments.

139
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4.1.1 Association measures for likelihood-based approaches

In addition to the dependence ratio, this section also discusses the correlation

coefficient and the commonly used odds ratio in order to give a comparison to the

dependence ratio and because of their relevance in later sections.

To illustrate the three association measures, consider the bivariate binary response

Y = (Y1, Y2). The first-order moments (marginal probabilities) are specified as

follows (assuming no explanatory variables):

µk = pr(Yk = 1), (4.1)

where k = 1, 2.

Although the second-order moment of the bivariate binary case represents the associa-

tion between the two random variables (Y1 and Y2), it gives no link to the baseline of

independence whereas the three association measures discussed in this section do relate

to independence. The second-order moment is given by:

µ12 = pr(Y1 = 1, Y2 = 1). (4.2)

There are four possible response profiles: (1,1), (0,0), (1,0) and (0,1). Consider a sam-

ple of size n from Y =(Y1, Y2). This can be classified in a 2 by 2 contingency ta-

ble with cell counts n = (n00, n01, n10, n11) and corresponding cell probabilities π =

(π00, π01, π10, π11). Under the multinomial sampling scheme, the likelihood function for

π is given by:

L(π;n) ∝ πn00
00 πn01

01 πn10
10 πn11

11 . (4.3)

The odds ratio is the most commonly used association measure for analysing multivariate

categorical data. It has a number of different formulations such as the conditional log

odds ratio by Fitzmaurice and Laird (1993). However, for the bivariate binary case, the

same result is obtained regardless of the chosen formulation. This is given by:

χ = χ12 =
µ12(1 − µ1 − µ2 + µ12)

(µ2 − µ12)(µ1 − µ12)
=
pr(Y1 = 1, Y2 = 1)pr(Y1 = 0, Y2 = 0)

pr(Y1 = 0, Y2 = 1)pr(Y1 = 1, Y2 = 0)
. (4.4)

The odds ratio has a range from 0 to infinity with 1 representing independence. Positive

association is indicated by values greater than 1 and negative association by values less

than 1. Typically iterative methods are required for specifying the joint distribution in
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terms of the marginal probabilities and the odds ratio parameter(s). In fact, even for the

simplest bivariate binary case, specification of the joint distribution in terms of µ1, µ2

and χ requires the solving of a quadratic. From (4.4), it can be shown (for χ ̸= 1) that:

µ12 =
χ(µ1 + µ2) + (1− µ1 − µ2)−

√
[χ(µ1 + µ2) + (1− µ1 − µ2)]2 − 4(χ− 1)µ1µ2χ

2(χ− 1)
. (4.5)

The correlation coefficient has also been proposed as an association measure for mul-

tivariate categorical data by Bahadur (1961). For the bivariate binary response, it is

given by (as specified in Albert and Gupta, 1983a):

ρ = ρ12 =
µ12 − µ1µ2

R
, (4.6)

where R =
√
µ1(1 − µ1)µ2(1 − µ2).

The range of the correlation coefficient for multivariate categorical data is not between

−1 and 1 since it is constrained by the marginal probabilities. However, under marginal

homogeneity with the marginal probabilities set equal to 0.5 (µ1 = µ2 = 0.5), the range

is between −1 and 1. This point is discussed again in Section 4.2 when discussing the

work of Albert and Gupta (1983a). The joint distribution can be specified in terms of the

marginal probabilities and the correlation coefficient with the following transformation:

µ12 = ρR+ µ1µ2. (4.7)

The final association measure to discuss is what forms the basis of this paper. The

dependence ratio was introduced by Ekholm, Smith and McDonald (1995). It was

originally proposed for the purpose of maximum likelihood estimation and as a solution

to the fact that the commonly used odds ratio could not deal with large cluster sizes.

For the bivariate binary case, the two-way dependence ratio is given by:

τ = τ12 =
µ12
µ1µ2

=
pr(Y1 = 1, Y2 = 1)

pr(Y1 = 1) pr(Y2 = 1)
. (4.8)

It is similar to the odds ratio in the sense that 1 represents independence with values

greater than 1 representing positive association and values less than 1 representing neg-

ative association. If Yk = 1 represents a success, the dependence ratio is interpreted as

the joint probability of success divided by the joint probability of success under indepen-

dence. Dependence ratios for higher-order moments can be expressed similarly. Lesaffre

et al. (2000) state that likelihood-based estimation of population-averaged models with

odds ratios is typically not feasible for cluster sizes that are greater than five. In contrast,

in the dependence ratio approach, the likelihood functions can be expressed in closed

form in terms of the marginal probabilities and dependence ratios of all orders which
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gives the dependence ratio a key advantage over the odds ratio for maximum likelihood

estimation (see Sections 1.2.4 and 1.3 of the introduction to this thesis for more details).

The cell probabilities from (4.3) can therefore be reparameterised in terms of (µ1, µ2, τ).

The likelihood function for this case is given by:

L(µ1, µ2, τ ;n) ∝ (1 − µ1 − µ2 + µ1µ2τ)n00 (µ2 − µ1µ2τ)n01 (µ1 − µ1µ2τ)n10 (µ1µ2τ)n11

= (1 − µ1 − µ2 + µ1µ2τ)n00 (1 − µ1τ)n01(1 − µ2τ)n10µn10+n11
1 µn01+n11

2 τn11 . (4.9)

Consequently, models are relatively easy to fit using maximum likelihood estimation.

Datasets with cluster sizes larger than five can be analysed with dependence ratios. For

example, paper 1 of this thesis analysed a rater agreement study with seven subunits

(pathologists) in a cluster (Landis and Koch, 1977). In addition, see papers 1 and 2 as

well as Ekholm (2003) for details of the advantages and disadvantages of the dependence

ratio relative to the odds ratio.

The range of the dependence ratio is of particular relevance in the current paper. It is

similar to the correlation coefficient in the sense that it is constrained by the marginal

probabilities. In other words, τ is not variation independent of µ1 and µ2. The corre-

lations of the parameter estimates also need to be monitored since the marginal proba-

bilities and dependence ratios are not orthogonal. The range of τ is given by:

max

{
0,

1

µ1
+

1

µ2
− 1

µ1µ2

}
≤ τ ≤ min

{
1

µ1
,

1

µ2

}
. (4.10)

Although the dependence ratio was not proposed for the purpose of modelling multi-

variate categorical data until Ekholm et al. (1995), the dependence ratio formulation

was used prior to this (and since) in different application areas with different names for

the dependence ratio (see the introduction to this thesis for a history of the dependence

ratio). It should be noted that with the the exception of Good (1956) and Du Mouchel

and Pregibon (2001), other uses of the dependence ratio were in a exploratory nature

rather than for modelling purposes. In addition, it is believed that all other uses of the

dependence ratio were in a frequentist setting other than Good (1956) and Du Mouchel

and Pregibon (2001). The work of Ekholm et al. (1995) was extended by Ekholm, Smith

and McDonald (2000) amongst others (see Section 1 of paper 1 for more details). The

literature review in Section 2 of the current paper discusses Good (1956) further. It

should be noted that the approaches by Good (1956) and Du Mouchel and Pregibon

(2001) were empirical Bayes approaches, something which is not of interest in this work.

This is because interest lies in developing suitable prior distributions for the parameters

rather than estimating them from the data. Consequently, Bayesian approaches to mul-

tivariate categorical data using dependence ratios and traditional Bayesian approaches
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as opposed to empirical Bayes approaches are not thought to have been undertaken

before.

The current paper makes the first steps towards Bayesian estimation of the models pro-

posed by Ekholm et al. (1995). The outline of the paper is as follows. In Section 4.2, a

literature review of Bayesian methods for categorical data is given. Section 4.3 considers

the simplest case of a bivariate binary response with relevant prior distributions con-

sidered for the marginal probabilities and the two-way dependence ratio. The resulting

posterior distributions for datasets are then discussed. In addition, prior and posterior

distributions for the case of marginal homogeneity (the two marginal probabilities are

constrained to be equal) are also considered. Section 4.4 discusses possible extensions to

include covariate information. Section 4.5 draws appropriate conclusions and discusses

extensions to larger contingency tables. For all the prior distributions considered, em-

phasis is on non-informative priors for both the marginal probabilities and dependence

ratio(s) to reflect ignorance about the location of these parameters. By non-informative,

it is meant that the prior distributions should at least have little impact on the posterior

inference. However, a discussion is given in Section 4.3.4 as to how informative priors

could be incorporated.

4.2 Literature Review

This section gives a review of Bayesian approaches to analysing categorical data with

particular emphasis on papers that are relevant to the work of this paper. The review

is done largely chronologically. Similar to the review paper by Agresti and Hitchcock

(2005), emphasis of this discussion is mainly on contingency table analysis. The focus

of the current paper is on estimating cell probabilities in contingency tables under the

multinomial sampling scheme. Loglinear approaches and Dirichlet priors are discussed

but are not of interest for this paper since emphasis is on specifying prior information

directly for the marginal probabilities and dependence ratio(s). This point is discussed

further in due course.

4.2.1 Early Bayesian approaches to categorical data

The starting point is the work by Bayes (1763) and Laplace (1774) who were both inter-

ested in estimating a single binomial parameter p. For this case, they used the conjugate

beta prior. If Y denotes a binomial random variable with n trials and parameter p, the

conjugate beta prior for p, denoted beta(a, b), is proportional to:

pa−1(1 − p)b−1, (4.11)
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where a and b > 0.

Both Bayes and Laplace used a uniform prior distribution for estimating p. In this case

a and b are both set equal to 1 and this prior is often referred to as the Bayes-Laplace

prior. Perks (1947) and Fisher (1956) were critical of this prior. For example, Fisher

noted that uniform priors on different scales would give different results. To combat

this difficulty, Jeffreys (1946) proposed a prior which is invariant to reparameterisations

of the parameter(s). This prior was consequently known as the Jeffreys prior (Jeffreys,

1946) and in the binomial case it corresponds to a = b = 0.5. Haldane (1948) considered

the improper beta prior in which a = b = 0. The posterior mean for this case is

equivalent to the maximum likelihood estimator and Haldane argued in favour of this

prior for work in genetics where log(p) is thought to be roughly uniform for p near 0.

The Bayes-Laplace, Jeffreys and Haldane priors can all be naturally extended to the

multinomial case using a Dirichlet prior distribution.

The focus of Good’s work in the 1950s and 1960s was largely in using Bayesian estimation

to smooth cell counts in contingency tables where the data are sparse. Good (1956)

smoothed the cell counts in large sparse two-way contingency tables by using log-normal

and gamma priors in order to estimate association factors (dependence ratios) for each

cell in the table. As discussed in Section 4.1, the approach was an empirical Bayes

approach since the prior parameters are iteratively estimated from the data with the

marginal probabilities being set equal to their observed values. The iterative process for

determining the prior parameters was based upon finding the sample mean and variance

of the non-zero sample dependence ratios. Good (1956) mentions that this method may

well be natural to those who are familiar with the logarithm of the association factor, also

known as the pointwise mutual information (PMI). In addition, Good (1956) discusses

that the association factor was called the “coefficient of dependence” (COD) by Keynes

and Johnson (Keynes, 1921). Both the PMI and the COD are discussed in the history

of the dependence ratio section in the introduction to this thesis. Another point of

particular interest is that Good (1956) allowed the prior distribution of the association

factor to take values outside the range (4.10) and argued that this did not greatly affect

the final posterior inference. In the current paper, emphasis is given to constraining the

prior distribution of the dependence ratio to be between its upper and lower bounds from

(4.10) with empirical Bayes approaches not considered. However, log-normal and gamma

priors are considered for the dependence ratio in Section 4.3 with relevant constraints to

the range applied. Good (1956) also states the lower bound of the two-way dependence

ratio to be zero as opposed to the lower bound given in (4.10).

Other work by Good includes his 1967 paper in which he considered priors that were

suitable for estimating multinomial probabilities in significance tests. Good (1967) con-

sidered the natural extension of the binomial distribution to the multinomial distribution

with c categories as opposed to contingency tables. Suppose there are counts ni which
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follow a multinomial distribution with corresponding probabilities π = (π1, . . . , πc);

i = 1, . . . , c. For this case, the conjugate Dirichlet prior for π is given by:

p(π) ∝
c∏

i=1

παi−1
i , (4.12)

where αi > 0.

Good focused on Dirichlet priors in which α1 = α2 = · · · = αc = α and he referred

to these as symmetric Dirichlet priors. The Bayes-Laplace (α = 1), Jeffreys (α = 0.5)

and Haldane priors (α = 0) described previously are all examples of symmetric Dirichlet

priors. Perks (1947) also suggested a symmetric prior in which α is 1
c . Good did not

regard one-stage Dirichlet priors as sufficiently flexible for use in significance tests so he

instead considered hierarchical priors in which α is assigned a second stage distribution.

He considered an improper prior for α, given by 1
α and often referred to as the Haldane-

Jeffreys density (Good, 1967). Good argued that approximating this improper prior by

a proper distribution was more appropriate, with the log-Cauchy distribution being one

such example that was considered. Hierarchical Dirichlet priors are discussed further in

the literature review of Albert and Gupta’s work in the 1980s. Although hierarchical

Dirichlet priors are no longer of conjugate form, they allow for greater flexibility (Agresti

and Hitchcock, 2005).

The notable work of Lindley (1964) focused on Bayesian inference using odds ratios.

Consider the case of a two-way contingency table with cell probabilities πij . In addition,

suppose the corresponding cell counts nij have a single multinomial distribution. Lindley

considered the posterior distribution of the log contrast λ =
∑
i,j
cij log(πij), where

∑
i,j
cij =

0. Consider the simplest case of a 2 by 2 contingency table with cell probabilities

π = (π00, π01, π10, π11). One possible log contrast is the log-odds ratio, which is given

by:

log(π11) + log(π00) − log(π10) − log(π01). (4.13)

The log-odds ratio is commonly used for measuring the association between categorical

variables, one reason being that it is symmetric with regards to success and failure.

Lindley used the conjugate Dirichlet prior density for π, which is given by:

p(π) ∝
∏
i,j

π
αij−1
ij , (4.14)

where αij > 0.

Lindley consequently showed that the posterior distribution of λ is approximately normal

with mean
∑
i,j
cij log(αij + nij) and variance

∑
i,j
c2ij(αij + nij)

−1. He then used this
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approximation to determine an approximate posterior distribution for the log-odds ratio

in 2 by 2 tables. Lindley used the improper Dirichlet prior in which all the αij are set

equal to zero. He argued in favour of this prior by noting that the smaller the values

of these prior parameters, the less prior information there is about πij . Despite the

improper nature of the prior, this was not an issue in this context since approximations

were being used (with sufficiently large sample sizes) and the posterior distributions

were proper. Novick (1969) also argued in favour of improper priors. The posterior

distribution of the log-odds ratio in a 2 by 2 table is therefore approximately normal with

mean log(n11n00
n10n01

) and variance
∑
i,j
n−1
ij . Improper priors are not considered in Sections

4.3 and 4.4. Notable reasons for this are to avoid the potential for improper posterior

distributions and because the BUGS software used for posterior inference in this paper

does not allow for the use of improper priors.

The asymptotic behaviour of the log-odds ratio has also been examined by a number of

other authors in recent years. For example, Bloch and Watson (1967), Altham (1969),

and Fredette and Angers (2002). In contrast to Lindley (1964), the advances in compu-

tational methods in recent years (as discussed at the end of this literature review) allow

for posterior inference to be based on simulating samples from the posterior distribution

rather than relying on approximations for large samples.

Leonard (1972) considered an alternative prior distribution for estimating several inde-

pendent binomial parameters (pi). Instead of the conjugate beta prior, he considered

a two-stage logistic-normal distribution on pi. Although this approach was used briefly

by other researchers in the 1960s, such as Cornfield (1966), it was was not strongly pro-

moted until the work by Leonard (1972). At stage 1, each logit(pi) is assumed to follow a

N(µ, σ2) distribution. At stage 2, the mean µ is assumed to follow an improper uniform

prior over the real line and vλ
σ2 has a chi-squared distribution on v degrees of freedom

(independently of µ). This corresponds to an inverse chi-squared distribution on σ2.

In addition, v and λ are specified by the user, where λ is a prior estimate of σ2 and v

represents the sureness of this. Since the current paper does not focus on estimating

several independent binomial parameters, this approach will not be discussed further.

However, Agresti and Hitchcock (2005) discussed the more simple case of estimating

a single binomial parameter (p) using a logistic-normal distribution, which is of more

relevance to this work. They discuss the use of a N(0, σ2) prior distribution for logit(p)

and the implications of the choice of σ2 on the prior for p. For example, when σ2 is

approximately equal to 2.5, the prior distribution for p is approximately uniform except

near the boundaries and is therefore reasonably non-informative. The user therefore

specifies the value of σ2 based on their prior beliefs. Sections 4.3 and 4.4 of this paper

consider a logistic-normal prior distribution for the marginal probabilities in contingency

tables with µ = 0 and σ2 = 2.5. The logistic-normal distribution for a given marginal

probability (p) is proportional to:
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e−
(logit(p)−µ)2

2σ2
1

p(1 − p)
, (4.15)

where µ and σ2 are the mean and variance of logit(p).

When µ = 0 and σ2 = 2.5, (4.15) therefore simplifies to:

e−
1
5
(logit(p))2 1

p(1 − p)
. (4.16)

Leonard (1973) considered a multivariate extension of the logistic-normal distribution

from his 1972 paper. The approach uses a multivariate normal prior distribution for

multinomial logits and consequently gives a multivariate logistic-normal distribution for

the multinomial parameters. Leonard proposed this prior distribution as an advanta-

geous alternative to the Dirichlet prior for the multinomial parameters. He stated that

despite the fact that the Dirichlet prior allows for the specification of the prior means

and variances, it does not allow for correlations to be altered whereas the multivariate

logistic-normal prior does allow such flexibility. This prior distribution is particularly

relevant to multivariate categorical data since the user may have a prior belief that the

marginal probabilities are correlated, making this prior more appropriate than assuming

prior independence. When there are only two dimensions, this prior can be referred to

as the bivariate logistic-normal distribution.

All of the approaches discussed so far concentrated on specifying prior distributions in

terms of probabilities. At this point, a brief discussion is given for the alternative loglin-

ear approaches for I by J contingency tables despite the fact they are not considered in

this work. Leonard (1975) focused on the saturated loglinear model for two-way tables,

which is given by:

log[E(nij)] = λ+ λ1i + λ2j + λ12ij , (4.17)

where E(nij) represents the expected cell count for a particular cell in row i and column

j; i = 1, . . . , I; j = 1, . . . , J .

Leonard (1975) assumed prior independence and therefore separate priors for each of

the row, column and interaction effects. He followed a similar approach to Leonard

(1972) in the sense that he considered a two-stage approach in which each of the row,

column and interaction effects were given their own N(µ, σ2) distribution at stage 1.

Similarly, at stage 2 each mean was assumed to have an improper uniform distribution

over the real line and each σ2 was assumed to have an inverse chi-squared distribution.

However, prior independence of the loglinear parameters has not always been assumed.

For example, Knuiman and Speed (1988) generalised Leonard (1975) by considering a

multivariate normal prior for all parameters collectively, in multi-way tables. Loglinear
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approaches will not be considered in this paper since specifying prior information about

the marginal probabilities and association parameters appears difficult with the loglinear

parameterisation (Albert and Gupta, 1983a).

Albert and Gupta wrote a number of papers in the 1980s. Their 1982 paper fo-

cused on hierarchical Dirichlet priors for estimating multinomial cell probabilities in

2 by 2 contingency tables. For this case, the conjugate Dirichlet prior density for

π = (π00, π01, π10, π11) is given by:

p(π) ∝ π00
α00−1 πα01−1

01 πα10−1
10 πα11−1

11 . (4.18)

This can be expressed equivalently in terms of the parameters γ11, γ10, γ01 and K, where

K = α00 + α10 + α01 + α11. The γ parameters represent the prior means for the

corresponding cell probabilities and are found by dividing the corresponding α parameter

by K, where K reflects the sureness of these prior means. Albert and Gupta (1982)

consider hierarchical Dirichlet priors using this form as opposed to (4.18). They state

that hierarchical Dirichlet priors (first introduced by Good, 1967) provide a natural way

of enlarging the class of Dirichlet distributions. At stage 1, the user selects a formulation

that they believe for the prior means along with a value for K. Larger values of K

represent more belief in the particular formulation. Albert and Gupta (1982) considered

the prior beliefs of symmetry and independence for the prior means. For the symmetry

formulation, γ10 = γ01 and for independence, γ11 = γ1γ2, where γ1 = γ11 + γ10 and

γ2 = γ11 + γ01. At stage 2, a non-informative uniform distribution was placed on the

prior means to reflect prior ignorance.

Albert and Gupta (1983a) again consider 2 by 2 tables and note that a Dirichlet prior

distribution does not contain enough parameters to enable separate prior information to

be specified for the marginal probabilities and associations. Consequently, the Dirichlet

priors from Good (1967) and Albert and Gupta (1982) will not be considered in Sections

4.3 and 4.4. Albert and Gupta (1983a) adopted a similar approach to the current paper

in the sense that the joint distribution is specified in terms of the marginal probabilities

and an association measure of interest. However, they considered the odds ratio and

the correlation coefficient for the association as opposed to the dependence ratio. In

this discussion, focus is on their use of the correlation coefficient (ρ) since it is of more

relevance to the work of the current paper.

The cell probabilities from (4.3) can also be reparameterised in terms of (µ1, µ2, ρ), as

shown in Albert and Gupta (1983a), where ρ is as specified in (4.6). The likelihood

function for this case is given by:

L(µ1, µ2, ρ) ∝ (1−µ1 − µ2 + ρR+µ1µ2)
n00 (µ2 − µ1µ2 − ρR)n01 (µ1 − µ1µ2 − ρR)n10 (µ1µ2 + ρR)n11 . (4.19)
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Albert and Gupta (1983a) suggested a prior for ρ that is conditional on µ1 and µ2. This

conditional prior was based on a convenient parameterisation of the likelihood function

from (4.19) and is given by:

P (ρ | µ1, µ2) ∝ (1−µ1 −µ2 + ρR+µ1µ2)
v00 (µ2 −µ1µ2 − ρR)v01 (µ1 −µ1µ2 − ρR)v10 (µ1µ2 + ρR)v11 . (4.20)

Although Albert and Gupta (1983a) considered beta prior distributions for µ1 and µ2,

they instead focused on the case where µ1 and µ2 were set equal to 0.5. Under this case,
ρ+1
2 has a beta (v00 + v11 + 1, v01 + v10 + 1) distribution. A similar result is obtained

when the dependence ratio is considered instead of ρ. It can be shown that τ
2 has a beta

(v00 + v11 + 1, v01 + v10 + 1) distribution when µ1 = µ2 = 0.5. This consequently allows

prior information about ρ to be inputted through a standard distribution. In addition, by

setting the marginal probabilities equal to 0.5, ρ has the same favourable range as it does

for normally distributed responses since it is between −1 and 1. However, constraining

the marginal probabilities in this way may not be sensible in some applications since it

is often preferred to allow the marginal probabilities to take values uniformly over the

entire (0, 1) range when no prior information is available. In addition, it can be seen

from (4.10) that constraining µ1 = µ2 = 0.5 leads to τ being constrained between only

0 and 2, which is not ideal. Consequently, this approach will not be considered as a

conditional prior distribution for τ in Sections 4.3 and 4.4.

4.2.2 Computational advances in Bayesian approaches to categorical

data

The Bayesian approaches discussed in Section 4.2.1 were often hindered by not being

able to calculate the posterior distribution in situations where the prior is not conjugate.

In addition, these approaches typically had to rely on large sample approximations for

the posterior distribution (such as Lindley, 1964) or calculating relevant posterior sum-

maries such as the posterior mode rather than being able to sample from the posterior

distribution. However, the computational advances of the last 30 years have helped

greatly to rectify these problems, some of which are now discussed.

The first computational breakthrough to mention is the importance sampling Monte

Carlo simulation that was proposed by Zellner and Rossi (1984). With the focus on

binary regression models, Zellner and Rossi aimed to determine suitable posterior den-

sities for the regression parameters β. They consequently proposed their importance

sampling method as an alternative to existing methods which typically ran into difficul-

ties. For example, numerical integration was sometimes difficult for high dimensional

integrals (Agresti and Hitchcock, 2005). The importance sampling method was shown

to be more efficient for obtaining a sufficient approximation to the posterior distribution
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of β. Zellner and Rossi (1984) considered both improper uniform distributions on β as

well as some informative priors. Gelfand and Smith (1990) proposed Gibbs sampling for

sampling from complex multiparameter distributions. Gibbs sampling is a Markov chain

Monte Carlo (MCMC) method which samples iteratively from the conditional (usually

single parameter) distributions. Some or all of these conditional distributions may not

follow a standard distribution. In which case, an algorithm such as Metropolis-Hastings

may be used, which is discussed in Tierney (1994). Other methods have been proposed

such as adaptive rejection sampling by Gilks and Wild (1992).

Recall that the focus of this paper is on estimating parameters in contingency tables as

opposed to developing regression models such as in Zellner and Rossi (1984). This will

be performed using the BUGS and R software. In order to relate this discussion on com-

putational advances to these software, consider the process that WinBUGS uses. For

each parameter, if the full conditional (continuous) distribution is not of a known distri-

bution, direct simulation cannot be used and alternative methods are sought. Adaptive

rejection sampling is used provided the conditional distribution is log-concave, otherwise

slice sampling (Neal, 2003) is used provided there is a restricted range, with Metropolis-

Hastings being used if the range is unrestricted. Both WinBUGS and OpenBUGS are

used for posterior inference in this paper, for reasons discussed in Section 4.3.2.

Model selection methods have also seen some notable contributions for Bayesian ap-

proaches. Raftery (1986) proposed using Bayes factors instead of p-values and noted

that −2 times the log of the Bayes factor is approximately equal to the Bayesian Informa-

tion Criterion (BIC) proposed by Schwarz (1978). Spiegelhalter et al. (2002) suggested

the deviance information criterion (DIC). An advantage of the DIC over Akaike’s In-

formation Criterion (AIC), proposed by Akaike (1973), and the BIC is that it is easily

obtained from MCMC samples. The DIC is therefore useful in Bayesian model selection,

is readily available in the BUGS software and will be used for choosing between potential

models in the examples of Sections 4.3 and 4.4.

4.2.3 Other recent developments

Square tables refer to contingency tables with the same row and column categories

so are consequently relevant to the analysis of multivariate categorical data with two

units in a cluster. They were discussed in detail (from a frequentist point of view) in

paper 1 of this thesis. Paper 1 discussed models for square tables such as marginal

homogeneity and symmetry. Some of the main Bayesian contributions to square tables

are now briefly discussed. Vounatsou and Smith (1996) considered square contingency

tables and focused on intraclass tables, something which was not discussed in Paper 1

of this thesis. Intraclass tables refer to square tables where the cells for the same pair of

categories are not distinguishable. Forster (2004a) discussed how to construct invariant

prior distributions for the parameters of a square table, using a log-linear approach.
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Although intraclass tables and log-linear approaches are not considered in the work of

the current paper, traditional square tables are considered for the example datasets in

Section 4.3 since they are a natural occurrence in multivariate categorical data with

only two observations in a cluster. As in paper 1 of this thesis, models such as marginal

homogeneity and symmetry are considered with suitable non-informative priors for the

model parameters (marginal probabilities and dependence ratios) proposed. Marginal

homogeneity refers to the equality of the marginal distributions in terms of probability

whereas symmetry refers to the joint probabilities of a particular set of two categories

being equal regardless of their order. As discussed in paper 1, marginal homogeneity

and symmetry are equivalent in 2 by 2 contingency tables.

4.3 Bayesian inference for the two-way dependence ratio

This section considers the bivariate binary response Y = (Y1, Y2) that was discussed

in Section 4.1 and the corresponding 2 by 2 contingency table for the cell probabilities

(π = (π00, π01, π10, π11)) with emphasis on obtaining non-informative prior distributions

for the marginal probabilities (µ1 and µ2), and the two-way dependence ratio (τ). Ideally,

the prior distributions will therefore assign values uniformly over all possible values of the

parameter in question. However, a minimum requirement is that the prior distributions

chosen have little or no impact on the posterior inference. Section 4.3.1 focuses on

the prior distributions that will be considered for µ1, µ2 and τ , taking into account the

literature review of Section 4.2. Section 4.3.2 discusses the methods and software used

for posterior inference as well as considering datasets in order to estimate the resulting

posterior distributions. Section 4.3.3 considers the prior distributions for the special

case of marginal homogeneity, where µ1 = µ2, as well as posterior inference for this

case. It is of interest to determine whether non-informative priors differ under marginal

homogeneity to under the saturated model. Section 4.3.4 discusses how informative

priors could be incorporated.

4.3.1 Prior Distributions

To enable Bayesian estimates of µ1, µ2 and τ , a prior distribution for a parameterisation

of the cell probabilities (π) must be chosen. As discussed in the literature review of

Section 4.2, the natural Dirichlet prior (4.18) will not be considered since it only enables

prior information to be specified for the cell probabilities as opposed to the marginal

probabilities and the two-way dependence ratio. This paper focuses on specifying prior

distributions directly for µ1, µ2 and τ . In contrast to Good (1956), emphasis is on

constraining the dependence ratio to be between its upper and lower bounds from (4.10).

In other words, the prior distributions considered for τ are conditional on µ1 and µ2.
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Recall from (4.9) that the likelihood function for π can be specified in terms of µ1, µ2

and τ . The 2 by 2 contingency table of the cell probabilities for this case is shown in

Table 4.1.

Table 4.1: Cell probabilities for a bivariate binary response

Y2
Y1 1 0 Total

1 τµ1µ2 µ1 − τµ1µ2 µ1
0 µ2 − τµ1µ2 1 − µ1 − µ2 + τµ1µ2 1 − µ1

Total µ2 1 − µ2 1

Prior distributions can then be specified directly on these parameters. Prior indepen-

dence is assumed for the marginal probabilities throughout although in situations where

substantive prior information is available, the informative priors that are discussed

in Section 4.3.4 are preferred. Given the marginal probabilities range from 0 to 1,

uniform(0, 1) priors are an obvious choice to consider as non-informative priors for µ1

and µ2. In addition, taking into account the discussion of Agresti and Hitchcock (2005)

from Section 4.2.1, independent logistic-normal priors are also considered for each of the

marginal probabilities. For this case, Normal(0, σ2) priors are assigned to the logit of

each marginal probability, with σ2 = 2.5 used for this case since this leads to acceptable

non-informative priors for µ1 and µ2.

A series of different prior distributions are considered for τ , each of which is constrained

to be within the range of τ given in (4.10). A few key points were noted when con-

sidering potential prior distributions for τ . Firstly, it was important to consider prior

distributions that at least account for a large proportion of the possible values for τ

(pre-truncation) since otherwise the simulation algorithms will be inefficient. Secondly,

it is noted that some of the common non-informative distributions considered from the

statistical literature may turn out to be overly informative after truncation. In such

cases, it was decided that these distributions would be excluded from the posterior in-

ference. A useful feature of WinBUGS and OpenBUGS is that constraints can easily be

put on the ranges of distributions by using the in built ‘I(lower,upper)’ constraint, where

lower and upper represent the lower and upper bounds that are specified by the user.

Since τ cannot take negative values, only conditional priors that can take non-negative

values will be considered for τ . For example, the log-normal and gamma priors used by

Good (1956) will be considered since they satisfy this requirement. Prior distributions

of the form given in (4.21) are therefore considered:

p(τ, µ1, µ2) ∝ p(τ |µ1, µ2)p(µ1)p(µ2). (4.21)

Table 4.2 outlines the 10 prior formulations that were considered for µ1, µ2 and τ . The

software R was used for simulating from these prior formulations as opposed to BUGS
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(used for posterior inference). The reason for this is that BUGS is based upon the

MCMC method Gibbs sampling (discussed in Section 4.2.2) which does not sample

from the prior distributions exactly. In contrast, the method of factorisation can be

used in R to sample from a combination of marginal and conditional distributions in

order to sample from the prior distributions exactly, as shown in (4.21). In other words,

after drawing µ1 and µ2 from their separate prior distributions, τ is then drawn from its

conditional distribution given µ1 and µ2. For each of the uniform and logistic-normal

priors assumed for the marginal probabilities, 5 conditional prior distributions were

considered for τ . Firstly, prior formulations 1 and 2 involve τ being assigned a uniform

distribution between the lower and upper bounds in (4.10). Prior formulations 3 and

4 relate to τ being given a gamma distribution, denoted Γ(r, ω), between its lower and

upper limits from (4.10), as noted by ‘I(lower, upper)’ in Table 4.2. This distribution

has a shape parameter (r) and an inverse scale parameter (ω), as given below:

p(τ) ∝ τ r−1e−τω, (4.22)

where τ > 0.

When there is no prior knowledge, the gamma parameters are often assigned values

close to zero. The Γ(0.01, 0.01) was considered since values much smaller than this

led to simulated estimates of τ consistently being outside the range of possible values

from (4.10). Prior formulations 5 and 6 are the same as 3 and 4 except a Γ(1, 1) was

considered instead for τ , for reasons which will be discussed in due course.

Prior formulations 7 and 8 relate to τ following a log-normal(µ, σ) distribution. On the

logarithmic scale, this prior distribution has a location parameter (µ), a scale parameter

(σ) and is given by:

p(τ) ∝ 1

τ
e−

1
2σ2 (log(τ)−µ)2 , (4.23)

where τ > 0.

The parameters µ and σ relate to the mean and standard deviation of the logarithm

of τ respectively. This prior for τ is also constrained between the range in (4.10). In

terms of the values to assign to the log-normal parameters, µ was set at zero given that

it can take any negative or positive values (on the log scale). The scale parameter σ

was given a second-stage uniform(0,100) distribution (a commonly used non-informative

prior). Prior formulations 9 and 10 are the same as 7 and 8 except both µ and σ were

set equal to 1, the reasons for which are discussed below.
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Table 4.2: Prior formulations for µ1, µ2, τ

Prior Formulation Marginal Probabilities (µ1, µ2) Dependence ratio (τ)

1 Both ∼ uniform(0,1) τ ∼ uniform(lower,upper)

2 Both ∼ logistic-normal(0,2.5) τ ∼ uniform(lower,upper)

3 Both ∼ uniform(0,1) τ ∼ Γ(0.01, 0.01) I(lower,upper)

4 Both ∼ logistic-normal(0,2.5) τ ∼ Γ(0.01, 0.01) I(lower,upper)

5 Both ∼ uniform(0,1) τ ∼ Γ(1, 1) I(lower,upper)

6 Both ∼ logistic-normal(0,2.5) τ ∼ Γ(1, 1) I(lower,upper)

7 Both ∼ uniform(0,1) τ ∼ log-normal(0, uniform(0,100)) I(lower,upper)

8 Both ∼ logistic-normal(0,2.5) τ ∼ log-normal(0, uniform(0,100)) I(lower,upper)

9 Both ∼ uniform(0,1) τ ∼ log-normal(1, 1) I(lower,upper)

10 Both ∼ logistic-normal(0,2.5) τ ∼ log-normal(1, 1) I(lower,upper)

For each prior formulation, 10, 000 simulations were run in R. For each simulated pair

of marginal probabilities, a value is simulated from the relevant conditional distribution

for τ . In cases where a simulated τ lies outside the range of (4.10), the value of τ is

rejected and then resampled until it lies within (4.10). In other words, more than 10, 000

simulations of τ may be required in order to ensure that each τ consistently lies between

the range in (4.10). This is only relevant to priors 3-10 since no resampling is necessary

for priors 1 and 2.

The estimated density plots obtained for the marginal probabilities from the simula-

tions were consistently similar to the theoretical density plots. In other words, they

approximately favoured all values between 0 and 1 equally.

Figure 4.1 shows the prior densities for τ , for each of the prior formulations considered.

The conditional prior distributions for τ consistently favoured values near the indepen-

dence value of 1. However, this is reasonable when there is no prior knowledge. Consider

the formula for τ in (4.8). If there is no prior knowledge, the four cell probabilities from

Table 4.1 will often be assumed to be equally likely with µ12 = τµ1µ2 = 0.25. In addi-

tion, if the marginal probabilities are set at their mean value of 0.5 (assuming a uniform

distribution), then the denominator in (4.8) is also 0.25 and τ is consequently given by

the independence value of 1. The conditional Γ(0.01, 0.01) prior for τ in prior formu-

lations 3 and 4 led to values near zero being favoured as well as independence, which

is less desirable. This underlines the fact that prior distributions that are typically

non-informative may not be once truncation has been applied. Priors 3 and 4 are conse-

quently not considered for posterior inference in Section 4.3.2. Prior formulations 5 and

6 were also considered since the conditional Γ(1, 1) prior led to only independence being

favoured (largely). However, there still appears to be too much prior probability given

to values near zero. Priors 5 and 6 are retained for posterior inference in order to assess

the consequences of this. The conditional log-normal priors for τ in prior formulations

7 and 8 also favour zero as well as independence so will consequently not be considered

for posterior inference in Section 4.3.2. Prior formulations 9 and 10 were considered
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as an alternative log-normal conditional distribution for τ since only independence was

favoured. Prior formulations 1, 2, 5, 6, 9 and 10 will therefore be taken forward for pos-

terior inference in Section 4.3.2. The ‘From=0’ command in the density function of R

was used to ensure all values of τ were non-negative in Figure 4.1 since the smoother

used in R gave negative values on occasions (see the R code in the Appendix).



156 Chapter 4 Paper 3: Prior and posterior distributions for dependence ratios

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 1

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 2

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 3

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 4

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 5

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 6

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 7

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 8

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 9

tau

De
ns

ity

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 10

tau

De
ns

ity

Figure 4.1: Prior distributions for τ
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4.3.2 Posterior inference

The following section considers posterior inference for the 6 prior formulations taken

forward from Section 4.3.1. Desirable non-informative priors are those with posterior

estimates that are dominated by the data in the examples considered in Section 4.3.2.1.

The prior formulations in Section 4.3.1 did not require MCMC methods since they could

be simulated from directly by simulating from a combination of marginal and conditional

distributions (4.21) in R. However, once they are combined with the likelihood from (4.9),

denoted L(τ, µ1, µ2), they do not give a known distributional form for the joint posterior

distribution. In addition, direct sampling is not possible for posterior inference. The

same is also true for the conditional distributions of each parameter. In addition, the

fact τ is constrained by (4.10) adds a further complication. This contrasts with the

conjugate Dirichlet distribution which allows for direct simulation from the posterior,

although as discussed previously, the Dirichlet distribution is not considered due to its

inability to include prior information for the marginal probabilities and the association

measure of interest (dependence ratio). Table 4.3 shows the joint posterior distributions

for the 6 prior formulations taken forward from Section 4.3.1.

Table 4.3: Prior formulations and corresponding joint posterior

Prior Joint Posterior: p(τ, µ1, µ2|n)
1 L(τ, µ1, µ2)× 1

upper−lower
= L(τ, µ1, µ2)× 1

f(µ1,µ2)

2 L(τ, µ1, µ2)× 1
f(µ1,µ2)

× e−
1
5 (logit(µ1))

2 × e−
1
5 (logit(µ2))

2 × 1
µ1(1−µ1)

× 1
µ2(1−µ2)

5 L(τ, µ1, µ2)× e−τ

6 L(τ, µ1, µ2)× e−τ × e−
1
5 (logit(µ1))

2 × e−
1
5 (logit(µ2))

2 × 1
µ1(1−µ1)

× 1
µ2(1−µ2)

9 L(τ, µ1, µ2)× 1
τ
× e−

1
2
(log(τ)−1)2

10 L(τ, µ1, µ2)× 1
τ
× e−

1
2
(log(τ)−1)2 × e−

1
5 (logit(µ1))

2 × e−
1
5 (logit(µ2))

2 × 1
µ1(1−µ1)

× 1
µ2(1−µ2)

Note: upper and lower in prior formulations 1 and 2 represent the upper and lower

bounds of τ from (4.10). Both the upper and lower bounds of (4.10) are functions of

both µ1 and µ2. Hence the uniform prior for τ in prior formulations 1 and 2 can be

denoted by 1
f(µ1,µ2)

, where f(µ1, µ2) is a function of µ1 and µ2.

Given the above points, posterior inference will be conducted using the MCMC methods

in the BUGS software. In Section 4.2.2, the sampling methods that WinBUGS uses for

sampling from the posterior was discussed. Both WinBUGS and OpenBUGS use the

principal of Gibbs sampling in the sense that the full conditional distribution for each

parameter is obtained before an appropriate sampling method can be chosen. In addi-

tion to the sampling methods available in WinBUGS (direct sampling, adaptive rejection

sampling, slice sampling and Metropolis-Hastings), OpenBUGS also allows for various

other sampling methods such as a multivariate extension of Metropolis. OpenBUGS
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generally proved more useful than WinBUGS for sampling from the posterior distribu-

tions in the current paper. For example, posterior inference was sometimes found to

be difficult for certain prior formulations in WinBUGS. However, WinBUGS was pre-

ferred for certain prior formulations such as in Section 4.4. Hence, both WinBUGS and

OpenBUGS are used for posterior inference in Sections 4.3 and 4.4.

Slice sampling is of particular relevance to the current paper since this was the sampling

method that was consistently chosen by BUGS for posterior inference in Sections 4.3

and 4.4. The key points are now discussed with the reader referred to Neal (2003)

for more details. The principal of slice sampling is as follows. Suppose interest lies

in sampling from the density f(X) of a random variable X (which cannot be directly

sampled from). Slice sampling introduces an auxiliary variable Y , such that the joint

distribution of X and Y is uniform over a region U = (x, y) : 0 < y < f(x). The final

stage is to sample from the joint distribution of X and Y and then discard Y to obtain

simulated values of X. However, it can be difficult to obtain independent draws from U .

Neal (2003) proposed a univariate slice sampler for obtaining draws from f(X), using

the following three step procedure. Firstly, for the current value x0, a value of y is drawn

from the uniform region (0, f(x0)). This consequently gives a horizontal slice, denoted

S = (x : y < f(x)) and shown in bold in Figure 4.2.

Secondly, an interval around x0 is constructed such that it contains all (or at least

most) of the slice. Neal (2003) describes two approaches for selecting this interval. The

stepping out procedure constructs an interval of size w at random around x0, where

w is an estimate of the typical width of the slice. This interval is then expanded by

size w until both ends of the interval are outside the slice. Although the alternative

doubling procedure also starts with an interval of size w, it is instead doubled in size

until both ends of the interval are outside the slice. The final stage of the slice sampler

is to sample a new value x1 from the part of the slice that lies within the chosen interval.

The simplest approach to selecting a new value x1 is to sample values uniformly from

within the given interval until a value within the slice is obtained. However, this can be

inefficient if the slice does not account for a particularly large proportion of the interval

(Neal, 2003). An alternative approach proposed by Neal (2003) initially samples from

the selected interval as before but each time a value is selected that does not lie within

the slice, this interval is shrunk until a point within the slice is found. The following

subsection now applies the 6 prior formulations to datasets.
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Figure 4.2: Slice Sampling

4.3.2.1 Application to datasets

The first dataset considered for posterior inference is the dataset from Braungart (1971)

that was also analysed by Albert and Gupta (1983a). The dataset assesses the associ-

ation between political affiliation and family structure by cross classifying 271 college

students, as shown in Table 4.4.

Table 4.4: Parental decision making and political affiliation

Political affiliation
Parental Decision Making Students for a democratic society (SDS) Young Americans for freedom (YAF)
Authoritarian 29 33
Democratic 131 78

The cell probabilities corresponding to the cell counts in Table 4.4 are the same as in

Table 4.1. In other words, µ1 represents the probability of a student being an authori-

tarian, µ2 represents the probability of a student belonging to SDS and τ represents the

probability of a student being both authoritarian and a member of SDS divided by the

corresponding probability under independence.

For this dataset, no clear prior information was available, thus justifying the use of the

priors in Table 4.2. In order for the priors to be considered non-informative, posterior

estimates for each of the 6 chosen prior formulations should be dominated by the data.

In other words, they should be similar to a frequentist analysis of the saturated model

using maximum likelihood estimation. Table 4.5 shows the estimates of the saturated

model (obtained using the R package drm that is described in the introduction to this

thesis). The standard errors of the marginal probabilities were not naturally available

from drm since the marginal regression model parameterises in terms of the logits of

probabilities. They were obtained by inverting the Fisher information matrix (see the
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Appendix of paper 1 for more details). The probability of a student being authoritarian

is therefore 0.2288 and the probability of a student belonging to SDS is 0.5904. The

probability of a student being both authoritarian and a member of the SDS is 0.7922

times the probability under independence, thus indicating negative association.

Table 4.5: Saturated estimates from a frequentist analysis

Parameter Value Standard error

µ1 0.2288 0.0255

µ2 0.5904 0.0299

τ 0.7922 0.0946

For each of the 6 prior formulations from Table 4.3, 100, 000 simulations were run in

BUGS, for each of two chains of initial values (excluding a suitable burn-in period).

Convergence was assessed using relevant diagnostics that are available in BUGS such

as making sure the Monte Carlo error is sufficiently low for each parameter compared

to its standard deviation (5% is the typical rule of thumb). Table 4.6 shows posterior

summaries for the 6 prior formulations. The 2.5, 50th and 97.5 percentiles are given

along with the posterior mean and also the sampling method that was used in BUGS.

All of the prior formulations gave similar results to the saturated model from Table 4.5.

However, prior formulations 1 and 2 that assume a uniform distribution for τ between

the range in (4.10) gave the closest results to Table 4.5 and therefore appear the most

appropriate non-informative priors to consider for this dataset at least. According to

these prior formulations, the probability of a student being both authoritarian and a

member of the SDS is 0.795 times the probability under independence, thus indicating

negative association. Prior formulations 5 and 6 appear to be the least appropriate since

the posterior estimate for τ was the furthest from the value in Table 4.5. This is perhaps

not surprising given the fact too much prior weight appears to be given to values of τ

near zero. Figure 4.3 shows the corresponding posterior densities. The densities appear

similar for each prior formulation, which is desirable given emphasis is on obtaining

non-informative priors that have little impact on the posterior inference.
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Table 4.6: Posterior summaries for the 6 prior formulations

Posterior mean 2.5 50th 97.5 Sampling method

µ1 0.2299 0.1821 0.2293 0.2815 Slice sampling
Prior 1 µ2 0.5895 0.5312 0.5896 0.6468 Slice sampling

τ 0.7947 0.6126 0.7948 0.9758 Slice sampling

µ1 0.2298 0.1818 0.2291 0.2815 Slice sampling
Prior 2 µ2 0.5897 0.5310 0.5900 0.6472 Slice sampling

τ 0.7948 0.6120 0.7952 0.9754 Slice sampling

µ1 0.2300 0.1823 0.2294 0.2815 Slice sampling
Prior 5 µ2 0.5877 0.5289 0.5879 0.6449 Slice sampling

τ 0.7853 0.6032 0.7854 0.9669 Slice sampling

µ1 0.2298 0.1819 0.2291 0.2815 Slice sampling
Prior 6 µ2 0.5878 0.5287 0.5880 0.6454 Slice sampling

τ 0.7856 0.6030 0.7857 0.9670 Slice sampling

µ1 0.2302 0.1823 0.2295 0.2819 Slice sampling
Prior 9 µ2 0.5882 0.5295 0.5884 0.6458 Slice sampling

τ 0.7969 0.6155 0.7970 0.9767 Slice sampling

µ1 0.2299 0.1822 0.2291 0.2812 Slice sampling
Prior 10 µ2 0.5883 0.5297 0.5884 0.6460 Slice sampling

τ 0.7968 0.6161 0.7969 0.9777 Slice sampling
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Figure 4.3: Posterior distributions for µ1, µ2, τ
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Prior distributions are known to have a stronger influence on posterior inference as

the sample size is reduced. It is of interest to determine if the 6 prior distributions

taken forward for posterior inference remain approximately non-informative in smaller

samples. In order to assess the robustness of these priors, the same dataset is considered

but with the hypothetical situation of half the sample size (approximately). The cell

counts of 29, 33, 131 and 78 are replaced by 14, 17, 66 and 39 respectively. The resulting

estimates for a frequentist analysis of this reduced sample are 0.2279, 0.5882 and 0.7677

for µ1, µ2 and τ respectively. The same process was followed as for the complete sample

in the sense that 100, 000 simulations were run in BUGS, for each of two chains of initial

values (excluding burn-in). Table 4.7 shows the posterior summaries. Posterior densities

are not given to avoid too much repetition.

Table 4.7: Posterior summaries for the 6 prior formulations of the reduced
sample

Posterior mean 2.5 50th 97.5 Sampling method

µ1 0.2302 0.1641 0.2290 0.3036 Slice sampling
Prior 1 µ2 0.5867 0.5044 0.5871 0.6665 Slice sampling

τ 0.7737 0.5214 0.7737 1.0270 Slice sampling

µ1 0.2299 0.1641 0.2285 0.3034 Slice sampling
Prior 2 µ2 0.5870 0.5043 0.5874 0.6673 Slice sampling

τ 0.7738 0.5213 0.7740 1.0250 Slice sampling

µ1 0.2304 0.1645 0.2291 0.3038 Slice sampling
Prior 5 µ2 0.5830 0.5000 0.5834 0.6634 Slice sampling

τ 0.7559 0.5050 0.7557 1.0090 Slice sampling

µ1 0.2299 0.1640 0.2285 0.3033 Slice sampling
Prior 6 µ2 0.5833 0.5066 0.5837 0.6636 Slice sampling

τ 0.7560 0.5033 0.7556 1.0110 Slice sampling

µ1 0.2306 0.1646 0.2293 0.3037 Slice sampling
Prior 9 µ2 0.5884 0.5013 0.5884 0.6646 Slice sampling

τ 0.7790 0.5297 0.7783 1.0310 Slice sampling

µ1 0.2303 0.1645 0.2290 0.3033 Slice sampling
Prior 10 µ2 0.5844 0.5015 0.5849 0.6647 Slice sampling

τ 0.7791 0.5307 0.7785 1.0300 Slice sampling

As expected, the prior distributions have a greater effect on posterior inference in this

reduced sample. Although all of the posterior estimates remain similar to the frequentist

estimates, it is clear that prior formulations 1 and 2 still give posterior estimates that are

closest to these and therefore appear to be the most appropriate non-informative priors

of those considered. In other words, constraining τ to be uniform between the lower and

upper bounds from (4.10) appears to be the most appropriate non-informative prior for

τ . In contrast to the other priors for τ , this prior also guarantees a simulated τ in the

range from (4.10), for every simulated pair of marginal probabilities. It also generally

requires less computational time.
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4.3.2.2 Simulation study

In order to give more definitive conclusions on the most appropriate non-informative

priors for the marginal probabilities and dependence ratio, a simulation study was con-

ducted. The marginal probabilities (µ1, µ2), dependence ratio (τ) and sample size (n)

were varied to give a number of different scenarios. The chosen marginal probabilities

were 0.2 and 0.4 since the dependence ratio approach has been shown to be most appli-

cable when the marginal probabilities are less than approximately 0.5 (see Section 4.3.4

or the introduction to the thesis for more details). The chosen values for the dependence

ratio were 1 (independence) and 2 with the sample sizes selected being 50, 100 and 200.

This consequently gives 18 different scenarios, as shown in Table 4.8.

Following a similar approach to the work of Lambert et al. (2005), one hundred datasets

were simulated for each scenario with each dataset being analysed using the six prior

distributions that were chosen for posterior inference. In addition, ten thousand itera-

tions were run for each dataset (after a burn-in of 4000 iterations). For each scenario,

the prior distributions were compared in terms of how closely the mean value of the

posterior median (of each parameter) matched the true value. In addition, the prior dis-

tributions were also compared on the frequentist property of bias, where bias is defined

as the difference between the mean of the posterior median and the true value. Table 4.8

shows the mean values of the posterior medians and Table 4.9 shows the bias.

The results of the simulation study indicate that the estimates of the marginal probabil-

ities are similar (and relatively unbiased) for each of the prior distributions considered

in each of the simulation scenarios. However, the choice of prior distribution appears

more crucial for the dependence ratio. Prior distributions 1 and 2 (which assume a

uniform distribution for the dependence ratio between its upper and lower bounds) gen-

erally produce the most unbiased estimates across the different simulation scenarios,

most of which being close to the true value. This coincides with the conclusions from

the datasets analysed previously. However, even priors 1 and 2 can yield somewhat

biased estimates when two or more of the following are apparent: small marginal prob-

abilities, small dependence ratio or small sample size. Some entries in the above tables

had to be left blank due to the fact that the gamma and log-normal priors for the de-

pendence ratio (priors 5,6,9 and 10) were unable to produce adequate estimates. This

appears to be due to these priors being unable to cope with zero counts in the simulated

datasets. Given all these points, prior distributions 1 and 2 appear to be the most ap-

propriate non-informative priors for the dependence ratio. However, the fact they have

the potential to produce more biased estimates in certain extreme scenarios underlines

the importance of conducting a sensitivity analysis in any Bayesian analysis in order to

assess how changing the prior distributions influences the posterior estimates obtained.
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Table 4.8: Simulation study: Mean of the Posterior medians for each parameter

True Parameter values n Parameter Prior 1 Prior 2 Prior 5 Prior 6 Prior 9 Prior 10

µ1 = 0.2, µ2 = 0.2, τ = 1 50 µ1 0.2017 0.2014 0.1964 0.1961 0.1959 0.1954
µ2 0.2110 0.2106 0.2053 0.2049 0.2047 0.2042
τ 1.0807 1.0789 0.8377 0.8376 1.1179 1.1182

µ1 = 0.2, µ2 = 0.2, τ = 1 100 µ1 0.2063 0.2060 0.2030 0.2028 0.2027 0.2025
µ2 0.2031 0.2026 0.2000 0.1999 0.1999 0.1997
τ 1.0705 1.0686 0.9320 0.9318 1.0854 1.0857

µ1 = 0.2, µ2 = 0.2, τ = 1 200 µ1 0.2031 0.2030 0.2014 0.2013 0.2013 0.2012
µ2 0.1996 0.1995 0.1980 0.1980 0.1979 0.1978
τ 1.0918 1.0906 1.0148 1.0149 1.0936 1.0927

µ1 = 0.2, µ2 = 0.2, τ = 2 50 µ1 0.2090 0.2088 0.2078 0.2073 0.2038 0.2032
µ2 0.2057 0.2054 0.2047 0.2042 0.2007 0.2003
τ 1.9686 1.9692 1.6265 1.6278 1.8992 1.9017

µ1 = 0.2, µ2 = 0.2, τ = 2 100 µ1 0.2046 0.2042 0.2038 0.2034 0.2015 0.2009
µ2 0.2022 0.2019 0.2017 0.2011 0.1994 0.1988
τ 1.9749 1.9772 1.7871 1.7880 1.9302 1.9344

µ1 = 0.2, µ2 = 0.2, τ = 2 200 µ1 0.2023 0.2023 0.2018 0.2017 0.2006 0.2004
µ2 0.2001 0.1999 0.1997 0.1994 0.1986 0.1983
τ 1.9877 1.9883 1.8900 1.8910 1.9621 1.9640

µ1 = 0.4, µ2 = 0.4, τ = 1 50 µ1 0.4020 0.4018 0.3966 0.3960 0.3964 0.3960
µ2 0.3955 0.3952 0.3904 0.3902 0.3905 0.3900
τ 1.0027 1.0027 0.9603 0.9601 1.0097 1.0103

µ1 = 0.4, µ2 = 0.4, τ = 1 100 µ1 0.3949 0.3948 0.3924 0.3923 0.3924 0.3923
µ2 0.4003 0.3999 0.3975 0.3972 0.3975 0.3973
τ 0.9951 0.9950 0.9728 0.9725 0.9975 0.9972

µ1 = 0.4, µ2 = 0.4, τ = 1 200 µ1 0.4024 0.4024 0.4009 0.4009 0.4009 0.4009
µ2 0.3956 0.3953 0.3943 0.3943 0.3942 0.3942
τ 1.0167 1.0166 1.0054 1.0056 1.0171 1.0173

µ1 = 0.4, µ2 = 0.4, τ = 2 50 µ1 0.4044 0.4037 0.4076 0.4068 0.3989 0.3983
µ2 0.4058 0.4056 0.4092 0.4083 0.4005 0.3998
τ 1.9356 1.9376 1.8910 1.8946 1.9451 1.9498

µ1 = 0.4, µ2 = 0.4, τ = 2 100 µ1 0.3968 0.3963 0.3994 0.3989 0.3944 0.3939
µ2 0.3977 0.3974 0.4003 0.3997 0.3953 0.3947
τ 1.9802 1.9816 1.9545 1.9572 1.9847 1.9880

µ1 = 0.4, µ2 = 0.4, τ = 2 200 µ1 0.4012 0.4010 0.4027 0.4025 0.4001 0.4001
µ2 0.4018 0.4014 0.4031 0.4030 0.4007 0.4006
τ 1.9792 1.9802 1.9669 1.9678 1.9810 1.9818

µ1 = 0.2, µ2 = 0.4, τ = 1 50 µ1 0.2052 0.2051 0.2054 0.2050 0.2050 0.2046
µ2 0.4011 0.4007 0.3918 0.3916 0.3914 0.3910
τ 1.0266 1.0265 0.9244 0.9245 1.0461 1.0460

µ1 = 0.2, µ2 = 0.4, τ = 1 100 µ1 0.1975 0.1973 0.1976 0.1972 0.1975 0.1971
µ2 0.4079 0.4076 0.4027 0.4025 0.4025 0.4025
τ 1.0366 1.0359 0.9820 0.9816 1.0443 1.0441

µ1 = 0.2, µ2 = 0.4, τ = 1 200 µ1 0.1976 0.1976 0.1977 0.1976 0.1977 0.1976
µ2 0.4033 0.4029 0.4005 0.4004 0.4005 0.4004
τ 0.9932 0.9929 0.9643 0.9632 0.9960 0.9952

µ1 = 0.2, µ2 = 0.4, τ = 2 50 µ1 0.2202 0.2195
µ2 0.4133 0.4130
τ 1.8644 1.8644

µ1 = 0.2, µ2 = 0.4, τ = 2 100 µ1 0.2020 0.2017 0.2039 0.2034 0.2014 0.2010
µ2 0.3965 0.3964 0.3979 0.3975 0.3932 0.3927
τ 1.9773 1.9776 1.9220 1.9236 1.9708 1.9736

µ1 = 0.2, µ2 = 0.4, τ = 2 200 µ1 0.2000 0.1997 0.2009 0.2006 0.1997 0.1993
µ2 0.3940 0.3937 0.3949 0.3945 0.3924 0.3921
τ 1.9941 1.9950 1.9670 1.9683 1.9908 1.9922
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Table 4.9: Simulation study: Bias of each parameter

True Parameter values n Parameter Prior 1 Prior 2 Prior 5 Prior 6 Prior 9 Prior 10

µ1 = 0.2, µ2 = 0.2, τ = 1 50 µ1 0.0017 0.0014 -0.0036 -0.0039 -0.0041 -0.0046
µ2 0.0110 0.0106 0.0053 0.0049 0.0047 0.0042
τ 0.0807 0.0789 -0.1623 -0.1624 0.1179 0.1182

µ1 = 0.2, µ2 = 0.2, τ = 1 100 µ1 0.0063 0.0060 0.0030 0.0028 0.0027 0.0025
µ2 0.0031 0.0026 0.0000 -0.0001 -0.0001 -0.0003
τ 0.0705 0.0686 -0.0680 -0.0682 0.0854 0.0857

µ1 = 0.2, µ2 = 0.2, τ = 1 200 µ1 0.0031 0.0030 0.0014 0.0013 0.0013 0.0012
µ2 -0.0004 -0.0005 -0.0020 -0.0020 -0.0021 -0.0022
τ 0.0918 0.0906 0.0148 0.0149 0.0936 0.0927

µ1 = 0.2, µ2 = 0.2, τ = 2 50 µ1 0.0090 0.0088 0.0078 0.0073 0.0038 0.0032
µ2 0.0057 0.0054 0.0047 0.0042 0.0007 0.0003
τ -0.0314 -0.0308 -0.3735 -0.3722 -0.1008 -0.0983

µ1 = 0.2, µ2 = 0.2, τ = 2 100 µ1 0.0046 0.0042 0.0038 0.0034 0.0015 0.0009
µ2 0.0022 0.0019 0.0017 0.0011 -0.0006 -0.0012
τ -0.0251 -0.0228 -0.2129 -0.2120 -0.0698 -0.0666

µ1 = 0.2, µ2 = 0.2, τ = 2 200 µ1 0.0023 0.0023 -0.0018 -0.0017 0.0006 0.0004
µ2 0.0001 0.0001 -0.0003 -0.0006 -0.0014 -0.0017
τ -0.0123 -0.0117 -0.1100 -0.1090 -0.0379 -0.0360

µ1 = 0.4, µ2 = 0.4, τ = 1 50 µ1 0.0020 0.0018 -0.0034 -0.0040 -0.0036 -0.0040
µ2 -0.0045 -0.0042 -0.0096 -0.0098 -0.0095 -0.0100
τ 0.0027 0.0027 -0.0397 -0.0399 0.0097 0.0103

µ1 = 0.4, µ2 = 0.4, τ = 1 100 µ1 -0.0051 -0.0052 -0.0076 -0.0077 -0.0076 -0.0077
µ2 0.0003 -0.0001 -0.0025 -0.0028 -0.0025 -0.0027
τ -0.0049 -0.0050 -0.0272 -0.0275 -0.0027 -0.0028

µ1 = 0.4, µ2 = 0.4, τ = 1 200 µ1 0.0024 0.0024 0.0009 0.0009 0.0009 0.0009
µ2 -0.0044 -0.0047 -0.0057 -0.0057 -0.0058 -0.0058
τ 0.0167 0.0166 0.0054 0.0056 0.0171 0.0173

µ1 = 0.4, µ2 = 0.4, τ = 2 50 µ1 0.0044 0.0037 0.0076 0.0068 -0.0011 -0.0017
µ2 0.0058 0.0056 0.0092 0.0083 0.0005 -0.0002
τ -0.0644 -0.0624 -0.1090 -0.1054 -0.0549 -0.0502

µ1 = 0.4, µ2 = 0.4, τ = 2 100 µ1 -0.0032 -0.0037 -0.0006 -0.0011 -0.0056 -0.0061
µ2 -0.0023 -0.0026 0.0003 -0.0003 -0.0047 -0.0053
τ -0.0198 -0.0184 -0.0455 -0.0428 -0.0153 -0.0120

µ1 = 0.4, µ2 = 0.4, τ = 2 200 µ1 0.0012 0.0010 0.0027 0.0025 0.0001 0.0001
µ2 0.0018 0.0014 0.0031 0.0030 0.0007 0.0006
τ -0.0208 -0.0198 -0.0331 -0.0322 -0.0190 -0.0182

µ1 = 0.2, µ2 = 0.4, τ = 1 50 µ1 0.0052 0.0051 0.0054 0.0050 0.0050 0.0046
µ2 0.0011 0.0007 -0.0082 -0.0084 0.0086 0.0090
τ 0.0266 0.0265 -0.0756 -0.0755 0.0461 0.0460

µ1 = 0.2, µ2 = 0.4, τ = 1 100 µ1 -0.0025 -0.0027 -0.0024 -0.0028 -0.0025 -0.0029
µ2 0.0079 0.0076 0.0027 0.0025 0.0025 0.0025
τ 0.0366 0.0359 -0.0180 -0.0184 0.0443 0.0441

µ1 = 0.2, µ2 = 0.4, τ = 1 200 µ1 -0.0024 -0.0024 -0.0023 -0.0025 -0.0023 -0.0024
µ2 0.0033 0.0029 0.0005 0.0004 0.0005 0.0004
τ -0.0068 -0.0071 -0.0357 -0.0368 -0.0040 -0.0048

µ1 = 0.2, µ2 = 0.4, τ = 2 50 µ1 0.0202 0.0195
µ2 0.0133 0.0130
τ -0.1356 -0.1356

µ1 = 0.2, µ2 = 0.4, τ = 2 100 µ1 0.0020 0.0017 0.0039 0.0034 0.0014 0.0010
µ2 -0.0035 -0.0036 -0.0021 -0.0025 -0.0068 -0.0073
τ -0.0227 -0.0240 -0.0780 -0.0764 -0.0292 -0.0264

µ1 = 0.2, µ2 = 0.4, τ = 2 200 µ1 0.0000 -0.0003 0.0009 0.0006 -0.0003 -0.0007
µ2 -0.0060 -0.0063 -0.0051 -0.0055 -0.0076 -0.0079
τ -0.0059 -0.0050 -0.0330 -0.0317 -0.0092 -0.0078
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4.3.3 Marginal Homogeneity

So far, the prior distributions that have been deemed non-informative for 2 by 2 contin-

gency tables were for the saturated model with 3 parameters (µ1, µ2, τ). Another model

which is often also considered is marginal homogeneity in which µ1 = µ2 = µ. It is

of interest to determine if similar conclusions are obtained with regards to which prior

distributions are deemed non-informative for the marginal homogeneity case. The cell

probabilities for marginal homogeneity are given in Table 4.10.

Table 4.10: Cell probabilities for a bivariate binary response under marginal
homogeneity

Y2
Y1 1 0 Total

1 τµ2 µ− τµ2 µ
0 µ− τµ2 1 − 2µ+ τµ2 1 − µ

Total µ 1 − µ 1

The likelihood function for the marginal homogeneity model (assuming a multinomial

sampling scheme) is therefore given by:

 L(µ, τ ;n) ∝ (1 − 2µ+ τµ2)n00 (µ− τµ2)n01 (µ− τµ2)n10 (τµ2)n11 . (4.24)

Following the same process as for the saturated model, prior distributions are assessed

first, using the R software. The same 10 prior formulations are considered as before but

this time, there is only one parameter for the marginal probabilities (µ). In addition, τ

is constrained by µ with the range given in (4.25).

max

{
0,

2

µ
− 1

µ2

}
≤ τ ≤

{
1

µ

}
. (4.25)

Prior distributions of the form given in (4.26) are therefore considered. Table 4.11 shows

the prior formulations.

p(τ, µ) ∝ p(τ |µ)p(µ). (4.26)
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Table 4.11: Prior formulations for µ, τ (marginal homogeneity)

Prior Formulation Marginal Probability (µ) Dependence ratio (τ)

1 µ ∼ uniform(0,1) τ ∼ uniform(lower,upper)

2 µ ∼ logistic-normal(0,2.5) τ ∼ uniform(lower,upper)

3 µ ∼ uniform(0,1) τ ∼ Γ(0.01, 0.01) I(lower,upper)

4 µ ∼ logistic-normal(0,2.5) τ ∼ Γ(0.01, 0.01) I(lower,upper)

5 µ ∼ uniform(0,1) τ ∼ Γ(1, 1) I(lower,upper)

6 µ ∼ logistic-normal(0,2.5) τ ∼ Γ(1, 1) I(lower,upper)

7 µ ∼ uniform(0,1) τ ∼ log-normal(0, uniform(0,100)) I(lower,upper)

8 µ ∼ logistic-normal(0,2.5) τ ∼ log-normal(0, uniform(0,100)) I(lower,upper)

9 µ ∼ uniform(0,1) τ ∼ log-normal(1, 1) I(lower,upper)

10 µ ∼ logistic-normal(0,2.5) τ ∼ log-normal(1, 1) I(lower,upper)

The 10 prior densities for τ (conditional on µ and based on 10, 000 simulations in R) are

given in Figure 4.4. The prior densities for µ roughly favour all values between 0 and 1

equally. The prior densities for τ are similar to those from Figure 4.1. Priors 3, 4, 7 and 8

are excluded from posterior inference since they favour zero in addition to independence

and do not allow for values of τ greater than approximately 2. Priors 1, 2, 5, 6, 9 and 10

are therefore retained for posterior inference.
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Figure 4.4: Prior distributions for τ under marginal homogeneity
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4.3.3.1 Application to datasets

The dataset considered for posterior inference of the marginal homogeneity model was

also considered in paper 2 of this thesis and was jointly provided by the MRC Bio-

statistics Unit in Cambridge and the Toronto Psoriatic Arthritis Clinic. It relates to

386 patients who enrolled in the Toronto Psoriatic Arthritis Clinic between 1978 and

2000. Each patient was followed longitudinally with regular assessments made on each of

their 28 hand joints (excluding the wrist). Clinical damage was the response of interest

considered in paper 2 of this thesis and in order to make the patients comparable, no

patients in the dataset had any clinically damaged joints upon entry to the clinic. A

joint is said to be clinically damaged if there is a limitation in its movement of more

than 20% of the range not related to joint swelling (Gladman et al. 1990; Cresswell and

Farewell, 2010). For a more precise definition, see paper 2 of this thesis.

Only the last clinic visit for each joint of each patient was considered in paper 2 since

clinical damage is an irreversible process. In paper 2 of this thesis, the probability of

clinical damage was found to be similar in both the right and left hands. Therefore, a

2 by 2 contingency table relating to clinical damage in the right and left hands seemed

a sensible choice for posterior inference of the marginal homogeneity model. Table 4.12

considers the association between clinical damage in the right and left hands by cross

classifying the 386 patients. A patient is classified as having clinical damage in a given

hand if at least one joint of the 14 in that hand are clinically damaged. It should be

noted that this is only a subset of the dataset with paper 2 of this thesis conducting a

more thorough analysis.

Table 4.12: Clinical damage by hand

Left Hand

Right Hand At least one joint damaged None damaged

At least one joint damaged 75 38
None damaged 24 249

In order for the prior formulations taken forward for posterior inference to be considered

non-informative for the marginal homogeneity model described in Section 4.3.3, posterior

inference should be dominated by the data. A frequentist analysis using maximum

likelihood estimation (using the R package drm) yielded the estimates in Table 4.13.
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Table 4.13: Maximum likelihood estimates from a frequentist analysis of the
marginal homogeneity model

Parameter Value Standard error

µ 0.2746 0.0203

τ 2.5765 0.1863

The estimates from a frequentist analysis of the saturated model were 0.2927, 0.2565 and

2.5878 for µ1, µ2 and τ respectively. The marginal homogeneity model therefore appears

to be a sensible choice with its model fit being assessed in a Bayesian context using the

DIC in due course. Similar to the case of the saturated model, direct simulation was

not possible for posterior inference when each prior formulation was combined with the

likelihood from (4.24). Therefore, for each of the 6 prior formulations taken forward for

posterior inference in this section, 100, 000 simulations were run in BUGS, for each of

two chains of initial values (excluding burn-in). Table 4.14 gives the posterior summaries

for each of the 6 prior formulations and Figure 4.5 gives the posterior densities.

Table 4.14: Posterior summaries for the 6 prior formulations for the marginal
homogeneity model

Posterior mean 2.5 50th 97.5 Sampling method

Prior 1 µ 0.2749 0.2364 0.2745 0.3152 Slice sampling
τ 2.5760 2.2380 2.5660 2.9690 Slice sampling

Prior 2 µ 0.2746 0.2363 0.2743 0.3146 Slice sampling
τ 2.5770 2.2390 2.5670 2.9700 Slice sampling

Prior 5 µ 0.2763 0.2377 0.2759 0.3167 Slice sampling
τ 2.5510 2.2180 2.5420 2.9370 Slice sampling

Prior 6 µ 0.2760 0.2374 0.2757 0.3161 Slice sampling
τ 2.5530 2.2200 2.5430 2.9400 Slice sampling

Prior 9 µ 0.2745 0.2358 0.2741 0.3149 Slice sampling
τ 2.5730 2.2350 2.5630 2.9660 Slice sampling

Prior 10 µ 0.2743 0.2356 0.2740 0.3144 Slice sampling
τ 2.5740 2.2360 2.5640 2.9700 Slice sampling
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Figure 4.5: Posterior distributions for µ, τ under marginal homogeneity
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Prior formulations 1, 9, 10 and in particular 2 gave posterior mean estimates that are

close to the maximum likelihood estimates from Table 4.13 and therefore appear non-

informative for this dataset at least. However, prior formulations 5 and 6 yielded poste-

rior estimates that differ more substantially from those in Table 4.13 and therefore do not

seem to be the most appropriate non-informative priors for the marginal homogeneity

model, most likely due to assigning too much prior probability to zero.

In order to assess the fit of the marginal homogeneity model, the DIC was used to

compare the fit to the saturated model, for reasons discussed in Section 4.2.2. Prior

formulation 2 was chosen for both models due to the conclusions from Figure 4.4 and

Table 4.14. The DIC statistic was 23.36 and 22.13 for the marginal homogeneity and

saturated models respectively. Spiegelhalter et al. (2002) suggested using the DIC like

AIC for model comparison with differences of between 0 and 2 described as essentially

none. The marginal homogeneity model therefore gives a satisfactory fit. From this

model, the posterior mean parameters indicate that the probability of a patient having

at least one joint damaged in a particular hand is 0.2746 and the probability of a pa-

tient having at least one joint damaged in both hands is 2.577 times the corresponding

probability under independence.

As for the saturated case, a further analysis was conducted on the hypothetical situation

of the same dataset but with (approximately) half the sample size in order to assess if

conclusions changed with a reduced sample. Thus, the sample counts of 75, 38, 24 and

249 were replaced with counts of 38, 19, 12 and 124. The frequentist maximum likelihood

estimates for this dataset were 0.2772 and 2.5623 for µ and τ respectively. Table 4.15

gives the posterior summaries for each of the 6 prior formulations.

Table 4.15: Posterior summaries for the 6 prior formulations of the reduced
sample for the marginal homogeneity model

Posterior mean 2.5 50th 97.5 Sampling method

Prior 1 µ 0.2775 0.2235 0.2769 0.3352 Slice sampling
τ 2.5620 2.1000 2.5420 3.1320 Slice sampling

Prior 2 µ 0.2772 0.2231 0.2765 0.3353 Slice sampling
τ 2.5640 2.1030 2.5460 3.1340 Slice sampling

Prior 5 µ 0.2804 0.2267 0.2797 0.3378 Slice sampling
τ 2.5120 2.0680 2.4950 3.0570 Slice sampling

Prior 6 µ 0.2800 0.2263 0.2791 0.3375 Slice sampling
τ 2.5160 2.0690 2.4980 3.0620 Slice sampling

Prior 9 µ 0.2765 0.2228 0.2759 0.3342 Slice sampling
τ 2.5580 2.0970 2.5390 3.1290 Slice sampling

Prior 10 µ 0.2763 0.2227 0.2754 0.3341 Slice sampling
τ 2.5590 2.0990 2.5410 3.1270 Slice sampling

Prior formulations 1 and 2 gave the closest (posterior mean) estimates to an analysis

of the data alone using maximum likelihood and therefore appear to be the most ap-

propriate non-informative priors to consider for the marginal homogeneity model. Prior
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formulations 5 and 6 again yield posterior mean estimates that lie furthest from the

maximum likelihood estimates.

4.3.4 Informative Priors

Section 4.2.1 discussed the use of the multivariate logistic-normal distribution for the

marginal probabilities if substantive prior information is available, as opposed to assum-

ing prior independence. This distribution assumes a multivariate normal distribution for

the multinomial logits of the marginal probabilities and consequently gives a multivari-

ate logistic-normal distribution for the multinomial parameters (marginal probabilities).

For the bivariate case (with marginal probabilities µ1 and µ2) that has been the focus

of this section, this distribution is referred to as the bivariate logistic-normal distribu-

tion. Consider two random variables (X,Y ) = (logit(µ1), logit(µ2)) that have a bivariate

normal distribution, which is specified as:

p(x, y) =
1

2πσxσy

√
1− ρ2

exp

{
− 1

2(1− ρ2)
[
(x− λx)

2

σ2
x

+
(y − λy)

2

σ2
y

− 2ρ(x− λx)(y − λy)

σxσy
]

}
, (4.27)

where λx and λy are the means of X and Y respectively, σx and σy are the standard

deviations of X and Y respectively, σx > 0 and σy > 0, ρ is the correlation between X

and Y,−1 ≤ ρ ≤ 1.

When ρ is 0, there is prior independence between X and Y , as was considered for the

logistic-normal priors in this section. In terms of what values to assign to the parameters

in (4.27), this will likely come from expert judgment in the relevant research area or

previous studies. However, a notable disadvantage with this prior is that it likely to be

difficult to specify prior information for the parameters on the logit scale, as noted in

Albert and Gupta (1983a).

An alternative approach is to specify prior distributions directly for the marginal prob-

abilities and dependence ratio, as was considered previously for the non-informative

priors. For example, the researcher may have a prior belief that the marginal proba-

bilities should not range between 0 and 1. Even if no prior information is available for

τ , its prior distribution may well be informative if an informative prior is used for the

marginal probabilities since τ is constrained by the marginal probabilities.

There is an advantage to assuming the marginal probabilities lie between 0 and 0.5 as

a priori (if such prior information is available in advance of the data). Consider the

case where both the marginal probabilities are less than 0.5. In this situation, they are

reasonably variation independent of τ , as can be determined from (4.10). Ekholm (2003)

discusses this in detail for the marginal homogeneity case. Table 4.16 presents the range

of τ for differing values of µ1 and µ2.
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Table 4.16: Range of τ for differing values of µ1 and µ2

µ1 µ2 Range of τ

0.1 0.1 0 ≤ τ ≤ 10
0.25 0.25 0 ≤ τ ≤ 4
0.1 0.4 0 ≤ τ ≤ 2.5
0.4 0.4 0 ≤ τ ≤ 2.5
0.6 0.6 0.56 ≤ τ ≤ 1.67

0.75 0.75 0.89 ≤ τ ≤ 1.33
0.6 0.9 0.93 ≤ τ ≤ 1.11
0.9 0.9 0.99 ≤ τ ≤ 1.11

1 1 1

Table 4.16 shows that as the marginal probabilities increase, τ has a range that becomes

narrower around the independence value of 1. This therefore shows that the dependence

ratio is most appropriate for cases where the marginal probabilities are less than ap-

proximately 0.5, such as the arthritis dataset considered in Table 4.12. In other words,

modelling the rarer event of a bivariate binary response (either Yk = 1 or Yk = 0, k = 1, 2)

is more appropriate. For example, for the arthritis dataset in Table 4.12, modelling the

probability of having at least one joint damaged in a given hand (Yk = 1) was more ap-

propriate than modelling the probability of having no joints damaged in a given hand.

In addition to being the rarer of the two events, the probability of having at least one

joint damaged was of more interest than modelling the probability of having no joints

damaged.

In order to illustrate the way in which an informative prior could be applied in this

context, consider the hypothetical situation that the researcher had prior knowledge

that the marginal probabilities ranged between 0.2 and 0.4 as opposed to 0 and 1 in the

arthritis dataset from Table 4.12. It should be noted that this analysis is not advocating

the use of the empirical Bayes approach whereby prior distributions are influenced by

the data, it is purely for demonstrating how an informative prior could be applied. Prior

formulation 1 is the focus of this analysis, where τ is assigned a uniform distribution

between its lower and upper bounds. Figure 4.6 shows the prior density for τ .



176 Chapter 4 Paper 3: Prior and posterior distributions for dependence ratios

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Prior 1

tau

D
en

si
ty

Figure 4.6: Prior density for tau with prior information for the marginal prob-
abilities

Despite the added prior information for the marginal probabilities, values of τ between

0 and approximately 2 are favoured equally with larger values of τ being favoured less.

The same conclusions were obtained when considering the same prior under the marginal

homogeneity model. The marginal homogeneity model again gave a superior fit over the

saturated model in terms of DIC (23.38 compared to 22.12). In this case, the posterior

estimates do not differ greatly from the non-informative case considered previously how-

ever they are included in Table 4.17 for completeness. Figure 4.7 shows the posterior

densities.

Figure 4.7: Posterior densities with prior information for the marginal proba-
bilities
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Table 4.17: Posterior summaries for the marginal homogeneity model with prior
information

Posterior mean 2.5 50th 97.5 Sampling method

Prior 1 µ 0.2748 0.2363 0.2745 0.3153 Slice sampling
τ 2.5760 2.2370 2.5660 2.9690 Slice sampling

4.4 Extension to 2× 2× 2 contingency tables

The following section extends the models described for 2 × 2 contingency tables to

the inclusion of covariate information. This is undertaken for the simplest case of an

additional categorical variable with two categories, which therefore yields a 2 × 2 × 2

contingency table. In order to demonstrate this, the arthritis dataset from Section 4.3.3.1

is extended to account for gender. This dataset is given in Table 4.18.

Table 4.18: Clinical damage by hand and gender

Gender: Male Female

Right Hand: Left Hand At least one None At least one None Total

At least one joint damaged 38 15 37 23 113
None damaged 16 145 8 104 273

Total 54 160 45 127 386

Assuming a multinomial sampling scheme, f q multinomial probabilities have to be es-

timated for each covariate combination, where f is the number of categories in the re-

sponse and q is the number of subunits in a cluster. Thus, for the example in Table 4.18

2 × 22 = 8 multinomial probabilities have to be estimated. Since the probabilities must

sum to one for each covariate combination, 2 × (f q − 1) parameters are required to

completely specify the joint distribution. In other words, 6 parameters are required to

completely specify the joint distribution for the example in Table 4.18. The cell probabil-

ities for each covariate combination are shown in Table 4.19, in terms of the dependence

ratios and marginal probabilities.

Table 4.19: Cell probabilities for the arthritis dataset by gender

Males Left Hand

Right Hand At least one None Total

At least one τmµm1 µ
m
2 µm1 − τmµm1 µ

m
2 µm1

None µm2 − τmµm1 µ
m
2 1 − µm1 − µm2 + τmµm1 µ

m
2 1 − µm1

Total µm2 1 − µm2 1

Females Left Hand

Right Hand At least one None Total

At least one τ fµf1µ
f
2 µf1 − τ fµf1µ

f
2 µf1

None µf2 − τ fµf1µ
f
2 1 − µf1 − µf2 + τ fµf1µ

f
2 1 − µf1

Total µf2 1 − µf2 1
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In other words, 2 dependence ratios (τm, τ f ) and 4 marginal probabilities (µm1 , µ
f
1 , µ

m
2 , µ

f
2)

are required to completely specify the joint distribution, where m and f refer to males

and females respectively. There are consequently a number of possible models that can

be considered, ranging from the saturated model (6 parameters) in Table 4.19 to a model

that assumes an independent association structure (τf = τm = 1) and all marginal prob-

abilities are equal (1 parameter=µ). In terms of the prior distributions to assign to

the parameters, attention is focused on prior formulations 1 and 2 from Section 4.3 (for

both males and females) since these proved to be the most non-informative of those

considered. In other words, the marginal probabilities are assigned uniform(0,1) and

logistic-normal(0,2.5) distributions respectively whereas the dependence ratios are given

a uniform distribution between the relevant range for both formulations, using (4.10).

In order for the priors to be considered non-informative, it is expected that they should

yield similar estimates to a model from the data alone. The model in Table 4.19 is

chosen as a starting point. Table 4.20 shows the estimates from a frequentist analysis

of the saturated model.

Table 4.20: Saturated estimates from a frequentist analysis of the arthritis data
by gender

Parameter Value Standard error

µ1m 0.2477 0.0295

µ2m 0.2523 0.0297

µ1f 0.3488 0.0363

µ2f 0.2616 0.0335

τm 2.8414 0.2954

τf 2.3570 0.2325

For each of the 2 prior formulations considered, 100, 000 simulations were run in BUGS

(after burn-in), for each of two chains of initial values. Table 4.21 shows the posterior

estimates for this model and Figure 4.8 shows the posterior densities for the 6 parameters

of prior 1. The corresponding densities of prior 2 were similar so are therefore not

included to avoid too much repetition.
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Table 4.21: Posterior summaries for the 2 prior formulations for the arthritis
data by gender

Posterior mean 2.5 50th 97.5 Sampling method

Prior 1 µ1m 0.2495 0.1945 0.2487 0.3092 Slice sampling
µ2m 0.2542 0.1985 0.2534 0.3138 Slice sampling
µ1f 0.3496 0.2810 0.3492 0.4215 Slice sampling
µ2f 0.2627 0.2005 0.2619 0.3300 Slice sampling
τm 2.8050 2.2920 2.7840 3.4370 Slice sampling
τf 2.3300 1.9270 2.3140 2.8270 Slice sampling

Prior 2 µ1m 0.2494 0.1938 0.2485 0.3097 Slice sampling
µ2m 0.2541 0.1981 0.2533 0.3149 Slice sampling
µ1f 0.3492 0.2791 0.3489 0.4214 Slice sampling
µ2f 0.2623 0.1995 0.2615 0.3301 Slice sampling
τm 2.8060 2.2920 2.7840 3.4470 Slice sampling
τf 2.3330 1.9250 2.3150 2.8440 Slice sampling

Figure 4.8: Posterior distributions for µf1 , µ
m
1 , µ

f
2 , µ

m
2 , τ

f , τm
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Both prior formulations gave similar results to the saturated model from Table 4.20. As

discussed previously, there are a large number of possible models that can be considered.

The prior distributions will be kept consistent between the models in the sense that

for each of the uniform and logistic-normal priors for the marginal probabilities, the

dependence ratio(s) are assigned a uniform distribution between the relevant lower and

upper bounds from (4.10). The DIC is used to compare potential models. For the full

model with 6 parameters, the DIC’s were 39.98 and 40.055 for prior formulations 1 and

2 respectively. In order to assess the gender effect, consider a model with µf1 = µf2 =

µ1, µ
m
1 = µm2 = µ2 and separate dependence ratios for males and females. This model

gave a DIC of 42.6 and 42.61 for priors 1 and 2 respectively. Following Spiegelhalter

et al. (2002) who deem differences in DIC of less than 4 to be unimportant, it can be

concluded that having the marginal probabilities varying by gender is not necessary. By

further constraining µ1 = µ2 = µ, the DIC is given by 43.46 and 43.51 for priors 1 and 2

respectively. Constraining the dependence ratios of males and females to also be equal

yielded a DIC of 41.90 and 41.92 for priors 1 and 2 respectively. Table 4.22 shows the

DIC’s for all of these models as well as other potential models.

Table 4.22: Model comparison of DIC

Model Parameters Prior Formulation DIC

τf , τm, µ1m, µ1f , µ2m, µ2f 1 39.980
τf , τm, µ1m, µ1f , µ2m, µ2f 2 40.055
τf , τm, µ1, µ2 1 42.600
τf , τm, µ1, µ2 2 42.610
τf , τm, µ 1 43.460
τf , τm, µ 2 43.510
τ, µ1, µ2 1 40.720
τ, µ1, µ2 2 40.758
τ, µ 1 41.900
τ, µ 2 41.920
µ 1 170.700
µ 2 170.700

All of the models in Table 4.22 as well as other models (not shown) gave similar values for

the DIC except for the model with a single parameter (µ) which yielded a significantly

worse fit. In addition, prior 1 consistently gave smaller values than prior 2 (for each

model). Given this, the model with prior 1 and two parameters (τ, µ) is chosen as the

final model due to the interest of model parsimony. In other words, females and males

show no significantly different patterns with regards to the association structure or the

marginal probabilities. In addition, marginal homogeneity is also present. The final

chosen model is therefore the same as prior formulation 1 in Table 4.14. The probability

of an individual (male or female) having at least one joint damaged in both their right

and left hands is 2.576 times the probability under independence. In addition, the

probability of a patient having at least one joint damaged in a particular hand is 0.2749

(for both females and males).
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The Bayesian analysis of this dataset coincides with the conclusions from the frequentist

analysis of the dataset in paper 2 of this thesis in the sense that males and females

followed similar patterns in terms of the association structure and the marginal proba-

bilities. Of course, the analysis in paper 2 was performed in much greater detail since

additional covariates were included and the response of interest was the probability of

clinical damage at each individual joint as opposed to the probability of having at least

one joint damaged.

4.5 Conclusions

The key conclusion from Section 4.3 was that prior formulations 1 and 2 (and to a

lesser extent 9 and 10) are the most appropriate non-informative priors for the marginal

probabilities and τ (of those considered), for both the saturated and marginal homo-

geneity models in 2 by 2 contingency tables. In addition to consistently giving the

closest estimates to an analysis of the data alone, they also do not require resampling

for the conditional prior of τ since τ takes values uniformly between its upper and lower

bounds from (4.10). Although considered based on prior density plots, it is clear that

prior formulations 5 and 6 were too informative and should not be considered in future

analyses.

It is well known that prior distributions have more of an impact on posterior inference in

smaller samples. These analyses with reduced sample sizes still favoured prior formula-

tions 1 and 2 although clearly the smaller samples meant estimates deviated more from

the corresponding maximum likelihood estimates. In addition, priors 1 and 2 generally

yielded unbiased estimates in the simulation study that was conducted (and less biased

than the other priors).

Informative priors may also be of interest for future analyses. The researcher may have

a prior belief that the marginal probabilities (µ1 and µ2) are correlated rather than

independent, thus advocating the use of the multivariate logistic-normal distribution.

However, the researcher may find it difficult to assign values for the parameters on the

logit scale. In another situation, the researcher may have prior information that the

marginal probabilities should not range between 0 and 1, as discussed in Section 4.3.4.

4.5.1 Further extensions

Section 4.4 showed how the approach from Section 4.3 can be extended to include cate-

gorical variables with only two levels. There are a number of other possible extensions

for the approach. The extension to larger contingency tables is the focus of this discus-

sion (with no covariates). Consider a f × f contingency table, where f is the number of

categories in the response. There are f q − q(f − 1) − 1 dependence ratios and q(f − 1)
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marginal probabilities to completely specify the joint distribution, where q is the number

of subunits in a cluster. Consider a 3 × 3 contingency table with a bivariate response

Y = (Y1, Y2). There are thus 4 marginal probabilities and 4 dependence ratios to com-

pletely specify the joint distribution, as shown in Table 4.23.

Table 4.23: Cell probabilities for a 3 by 3 contingency table

Y2

Y1 3 2 1 Marginal

3 τ
(3,3)
12 µ

(3)
1 µ

(3)
2 τ

(3,2)
12 µ

(3)
1 µ

(2)
2 µ

(3)
1 − τ

(3,3)
12 µ

(3)
1 µ

(3)
2 −

τ
(3,2)
12 µ

(3)
1 µ

(2)
2

µ
(3)
1

2 τ
(2,3)
12 µ

(2)
1 µ

(3)
2 τ

(2,2)
12 µ

(2)
1 µ

(2)
2 µ

(2)
1 − τ

(2,3)
12 µ

(2)
1 µ

(3)
2 −

τ
(2,2)
12 µ

(2)
1 µ

(2)
2

µ
(2)
1

1 µ
(3)
2 − τ

(3,3)
12 µ

(3)
1 µ

(3)
2

−τ
(2,3)
12 µ

(2)
1 µ

(3)
2

µ
(2)
2 − τ

(3,2)
12 µ

(3)
1 µ

(2)
2 −

τ
(2,2)
12 µ

(2)
1 µ

(2)
2

1 − µ
(3)
2 − µ

(2)
2 − µ

(3)
1 −

τ
(3,3)
12 µ

(3)
1 µ

(3)
2 −τ

(3,2)
12 µ

(3)
1 µ

(2)
2 −

µ
(2)
1 − τ

(2,3)
12 µ

(2)
1 µ

(3)
2 −

τ
(2,2)
12 µ

(2)
1 µ

(2)
2

1 − µ
(3)
1 − µ

(2)
1

Marginal µ
(3)
2 µ

(2)
2 1 − µ

(3)
2 − µ

(2)
2 1

The marginal probabilities are given by:

µ
(a1)
1 = pr(Y1 = a1), µ

(a2)
2 = pr(Y2 = a2), (4.28)

for a1, a2 = 2, 3.

The dependence ratios are given by:

τ
(a1,a2)
12 =

µ
(a1,a2)
12

µ
(a1)
1 µ

(a2)
2

=
pr(Y1 = a1, Y2 = a2)

pr(Y1 = a1) pr(Y2 = a2)
, (4.29)

for a1, a2 = 2, 3.

In contrast to the 2 × 2 contingency table, it is no longer appropriate to consider uni-

form(0,1) prior distributions for all of the marginal probabilities. For example, assigning

uniform(0,1) priors to both µ
(3)
1 and µ

(2)
1 may yield prior estimates that exceed the fact

that µ
(3)
1 + µ

(2)
1 + µ

(1)
1 = 1. The same is true for µ

(3)
2 and µ

(2)
2 . One solution is to treat

µ
(3)
1 , µ

(2)
1 , µ

(1)
1 as Dirichlet and µ

(3)
2 , µ

(2)
2 , µ

(1)
2 as Dirichlet. This allows for prior informa-

tion to still be specified for the marginal probabilities. Similar to the bivariate binary

case, the prior distributions for the dependence ratios can be constrained between their

relevant range and depending on the application, some of the dependence ratios may be

constrained to be equal in the likelihood.
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4.5.1.1 Negative profile probabilities

Another area of further research is to determine whether the Bayesian approach can be

used to fit models that encounter negative profile probabilities in a frequentist setting.

Negative profile probabilities are discussed in detail in the introduction to this thesis.

They can arise due to the fact that the dependence ratio approach uses the probabilities

as opposed to the logits of the probabilities. Solving this issue will not be straightforward.

For example, if MCMC is being used to sample iteratively from the posterior distribution,

the positivity of the profiles will need to be checked after each iteration. The simplest

solution is to simply ignore the draws from the posterior distribution that produce

negative profile probabilities. However, if this leads to a large number of draws being

rejected, alternative methods will need to be sought.



184 Chapter 4 Paper 3: Prior and posterior distributions for dependence ratios

Appendix

R code for the prior formulations in Section 4.3.1

# Prior formulation 1

Prior1<-function(n){

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

mu1[i]<-runif(1,0,1)

mu2[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min((1/mu1[i]),(1/mu2[i]))

tau[i]<-runif(1,lower[i],upper[i])

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p1<-Prior1(10000)

mu1<-p1$mu1

mu2<-p1$mu2

tau1<-p1$tau

density<-plot(density(tau1,from=0),main="Prior 1",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 1",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 1",xlab="mu2"

,xlim=c(0,1))

# Prior formulation 2

Prior2<-function(n){

logitmu1<-NULL

logitmu2<-NULL

mu1<-NULL
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mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

logitmu1[i]<-rnorm(1, mean = 0, sd = 1.58)

logitmu2[i]<-rnorm(1, mean = 0, sd = 1.58)

mu1[i]<-exp(logitmu1[i])/(1+exp(logitmu1[i]))

mu2[i]<-exp(logitmu2[i])/(1+exp(logitmu2[i]))

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

tau[i]<-runif(1,lower[i],upper[i])

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p2<-Prior2(10000)

mu1<-p2$mu1

mu2<-p2$mu2

tau2<-p2$tau

density<-plot(density(tau2,from=0),main="Prior 2",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 2",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 2",xlab="mu2"

,xlim=c(0,1))

# Prior formulation 3

Prior3<-function(n,shape,rate){

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

mu1[i]<-runif(1,0,1)

mu2[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))
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upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rgamma(1,shape,rate)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p3<-Prior3(10000,0.01,0.01)

mu1<-p3$mu1

mu2<-p3$mu2

tau3<-p3$tau

density<-plot(density(tau3,from=0),main="Prior 3",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 3",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 3",xlab="mu2"

,xlim=c(0,1))

# Prior formulation 4

Prior4<-function(n,shape,rate){

logitmu1<-NULL

logitmu2<-NULL

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

logitmu1[i]<-rnorm(1, mean = 0, sd = 1.58)

logitmu2[i]<-rnorm(1, mean = 0, sd = 1.58)

mu1[i]<-exp(logitmu1[i])/(1+exp(logitmu1[i]))

mu2[i]<-exp(logitmu2[i])/(1+exp(logitmu2[i]))

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rgamma(1,shape,rate)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}
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}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p4<-Prior4(10000,0.01,0.01)

mu1<-p4$mu1

mu2<-p4$mu2

tau4<-p4$tau

density<-plot(density(tau4,from=0),main="Prior 4",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 4",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 4",xlab="mu2"

,xlim=c(0,1))

# Prior formulation 5

Prior5<-function(n,shape,rate){

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

mu1[i]<-runif(1,0,1)

mu2[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rgamma(1,shape,rate)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p5<-Prior5(10000,1,1)

mu1<-p5$mu1

mu2<-p5$mu2
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tau5<-p5$tau

density<-plot(density(tau5,from=0),main="Prior 5",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 5",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 5",xlab="mu2"

,xlim=c(0,1))

# Prior formulation 6

Prior6<-function(n,shape,rate){

logitmu1<-NULL

logitmu2<-NULL

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

logitmu1[i]<-rnorm(1, mean = 0, sd = 1.58)

logitmu2[i]<-rnorm(1, mean = 0, sd = 1.58)

mu1[i]<-exp(logitmu1[i])/(1+exp(logitmu1[i]))

mu2[i]<-exp(logitmu2[i])/(1+exp(logitmu2[i]))

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rgamma(1,shape,rate)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p6<-Prior6(10000,1,1)

mu1<-p6$mu1

mu2<-p6$mu2

tau6<-p6$tau

density<-plot(density(tau6,from=0),main="Prior 6",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 6",xlab="mu1"
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,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 6",xlab="mu2"

,xlim=c(0,1))

Prior7<-function(n){

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

b<-NULL

for (i in 1:n){

mu1[i]<-runif(1,0,1)

mu2[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

b[i]<-runif(1,0,100)

repeat {

tau[i]<-rlnorm(1,meanlog=0,sdlog=b[i])

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p7<-Prior7(10000)

mu1<-p7$mu1

mu2<-p7$mu2

tau7<-p7$tau

density<-plot(density(tau7,from=0),main="Prior 7"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 7",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 7",xlab="mu2"

,xlim=c(0,1))

Prior8<-function(n){

logitmu1<-NULL

logitmu2<-NULL

mu1<-NULL



190 Chapter 4 Paper 3: Prior and posterior distributions for dependence ratios

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

b<-NULL

for (i in 1:n){

logitmu1[i]<-rnorm(1, mean = 0, sd = 1.58)

logitmu2[i]<-rnorm(1, mean = 0, sd = 1.58)

mu1[i]<-exp(logitmu1[i])/(1+exp(logitmu1[i]))

mu2[i]<-exp(logitmu2[i])/(1+exp(logitmu2[i]))

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

b[i]<-runif(1,0,100)

repeat {

tau[i]<-rlnorm(1,meanlog=0,sdlog=b[i])

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p8<-Prior8(10000)

mu1<-p8$mu1

mu2<-p8$mu2

tau8<-p8$tau

density<-plot(density(tau8,from=0),main="Prior 8",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 8",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 8",xlab="mu2"

,xlim=c(0,1))

Prior9<-function(n,meanlog,sdlog){

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

mu1[i]<-runif(1,0,1)
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mu2[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rlnorm(1,meanlog,sdlog)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu1,mu2,tau,lower,upper))

p9<-Prior9(10000,1,1)

mu1<-p9$mu1

mu2<-p9$mu2

tau9<-p9$tau

density<-plot(density(tau9,from=0),main="Prior 9",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 9",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 9",xlab="mu2"

,xlim=c(0,1))

Prior10<-function(n,meanlog,sdlog){

logitmu1<-NULL

logitmu2<-NULL

mu1<-NULL

mu2<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

logitmu1[i]<-rnorm(1, mean = 0, sd = 1.58)

logitmu2[i]<-rnorm(1, mean = 0, sd = 1.58)

mu1[i]<-exp(logitmu1[i])/(1+exp(logitmu1[i]))

mu2[i]<-exp(logitmu2[i])/(1+exp(logitmu2[i]))

lower[i]<-max(0,(1/mu1[i])+(1/mu2[i])-(1/(mu1[i]*mu2[i])))

upper[i]<-min(1/mu1[i],1/mu2[i])

repeat {

tau[i]<-rlnorm(1,meanlog,sdlog)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}
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}

return(data.frame(mu1,mu2,tau,lower,upper))

}

p10<-Prior10(10000,1,1)

mu1<-p10$mu1

mu2<-p10$mu2

tau10<-p10$tau

density<-plot(density(tau10,from=0),main="Prior 10",xlab="tau"

,xlim=c(0,10),ylim=c(0,3))

density<-plot(density(mu1,from=0,to=1),main="Prior 10",xlab="mu1"

,xlim=c(0,1))

density<-plot(density(mu2,from=0,to=1),main="Prior 10",xlab="mu2"

,xlim=c(0,1))

# Note: The prior formulations used for marginal homogeneity in

# Section 4.3.3 can be determined by simple adjustments to the

# above code. For example, for prior formulation 3:

Prior3MH<-function(n,shape,rate){

mu<-NULL

lower<-NULL

upper<-NULL

tau<-NULL

for (i in 1:n){

mu[i]<-runif(1,0,1)

lower[i]<-max(0,(1/mu[i])+(1/mu[i])-(1/(mu[i]*mu[i])))

upper[i]<-1/mu[i]

repeat {

tau[i]<-rgamma(1,shape,rate)

if(tau[i]>=lower[i]&tau[i]<=upper[i]) {break}

}

}

return(data.frame(mu,tau,lower,upper))

}

p3MH<-Prior3MH(10000,0.01,0.01)

muMH<-p3MH$mu

tau3MH<-p3MH$tau

density<-plot(density(tau3MH,from=0),main="Prior 3",xlab="tau"
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,xlim=c(0,20),ylim=c(0,3))

density<-plot(density(muMH,from=0,to=1),main="Prior 3",xlab="mu"

,xlim=c(0,1))

Bugs code for the posterior formulations in Section 4.3.2

# Note: Although OpenBUGS was typically beneficial over WinBUGS,

# some models could only be fit in WinBUGS.

# data for the parental dataset:

list(x=c(29,33,131,78))

# Posterior 1 (Prior formulation 1):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

mu1 ~ dunif(0,1)

mu2 ~ dunif(0,1)

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau ~ dunif(lower,upper)

n <- sum(x[]) }

# Initial values for the parameters:

list(mu1=0.5,mu2=0.5,tau=1)

list(mu1=0.1,mu2=0.1,tau=1)

# Posterior 2 (Prior formulation 2):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)



194 Chapter 4 Paper 3: Prior and posterior distributions for dependence ratios

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

# Normal distribution assumed for the logit of each marginal probability

# BUGS uses the precision=1/variance=1/2.5=0.4

a~dnorm(0,0.4)

b~dnorm(0,0.4)

mu1<-exp(a)/(1+exp(a))

mu2<-exp(b)/(1+exp(b))

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau ~ dunif(lower,upper)

n <- sum(x[]) }

# Initial values for the parameters

list(a=0.5,b=0.5,tau=1)

list(a=0,b=0,tau=1)

# Posterior 3 (Prior formulation 5):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

mu1 ~ dunif(0,1)

mu2 ~ dunif(0,1)

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau~dgamma(1,1)I(lower,upper)

n <- sum(x[]) }

# Posterior 4 (Prior formulation 6):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)
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pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

# Normal distribution assumed for the logit of each marginal probability

# BUGS uses the precision=1/variance=1/2.5=0.4

a~dnorm(0,0.4)

b~dnorm(0,0.4)

mu1<-exp(a)/(1+exp(a))

mu2<-exp(b)/(1+exp(b))

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau~dgamma(1,1)I(lower,upper)

n <- sum(x[]) }

# Posterior 5 (Prior formulation 9):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

mu1 ~ dunif(0,1)

mu2 ~ dunif(0,1)

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau ~ dlnorm(1,1)I(lower,upper)

n <- sum(x[]) }

# Posterior 6 (Prior formulation 10):

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

# Normal distribution assumed for the logit of each marginal probability

# BUGS uses the precision=1/variance=1/2.5=0.4

a~dnorm(0,0.4)

b~dnorm(0,0.4)
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mu1<-exp(a)/(1+exp(a))

mu2<-exp(b)/(1+exp(b))

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau ~ dlnorm(1,1)I(lower,upper)

n <- sum(x[]) }

# Note: The posterior distributions for marginal homogeneity in Section

# 4.3.3 can be determined by simple adjustments to the above code.

# For example, for posterior distribution 3 (prior formulation 5):

model {

pi[1] <- tau*pow(mu,2)

pi[2] <- mu-(tau*pow(mu,2))

pi[3] <- mu-(tau*pow(mu,2))

pi[4] <- 1+(tau*pow(mu,2))-(2*mu)

x[1:4] ~ dmulti(pi[],n)

mu ~ dunif(0,1)

lower<-max(0,(1/mu)+(1/mu)-(1/pow(mu,2)))

upper<-1/mu

tau~dgamma(1,1)I(lower,upper)

n <- sum(x[]) }

# Data for the arthritis dataset:

list(x=c(75,38,24,249))

Bugs code for the posterior distributions of the arthritis dataset by gender

# Data for the arthritis dataset by gender (xF=females, xM=males):

list(xF=c(37,23,8,104),xM=c(38,15,16,145))

# Posterior distributions for the saturated model (prior formulation 1):

model {

piF[1] <- tauF*mu1F*mu2F

piF[2] <- mu1F-(tauF*mu1F*mu2F)
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piF[3] <- mu2F-(tauF*mu1F*mu2F)

piF[4] <- 1+(tauF*mu1F*mu2F)-mu1F-mu2F

piM[1] <- tauM*mu1M*mu2M

piM[2] <- mu1M-(tauM*mu1M*mu2M)

piM[3] <- mu2M-(tauM*mu1M*mu2M)

piM[4] <- 1+(tauM*mu1M*mu2M)-mu1M-mu2M

xF[1:4] ~ dmulti(piF[],nF)

xM[1:4] ~ dmulti(piM[],nM)

mu1F~ dunif(0,1)

mu2F ~ dunif(0,1)

lowerF<-max(0,(1/mu1F)+(1/mu2F)-1/(mu1F*mu2F))

upperF<-min(1/mu1F,1/mu2F)

tauF~dunif(lowerF,upperF)

mu1M~ dunif(0,1)

mu2M ~ dunif(0,1)

lowerM<-max(0,(1/mu1M)+(1/mu2M)-1/(mu1M*mu2M))

upperM<-min(1/mu1M,1/mu2M)

tauM ~ dunif(lowerM,upperM)

nF<- sum(xF[])

nM<- sum(xM[]) }

list(xF=c(37,23,8,104),xM=c(38,15,16,145))

# Initial values for the parameters

list(mu1F=0.5,mu2F=0.5,tauF=1,mu1M=0.5,mu2M=0.5,tauM=1)

list(mu1F=0.1,mu2F=0.1,tauF=1,mu1M=0.1,mu2M=0.1,tauM=1)

# Posterior distributions for the saturated model (prior formulation 2):

model {

piF[1] <- tauF*mu1F*mu2F

piF[2] <- mu1F-(tauF*mu1F*mu2F)

piF[3] <- mu2F-(tauF*mu1F*mu2F)

piF[4] <- 1+(tauF*mu1F*mu2F)-mu1F-mu2F

piM[1] <- tauM*mu1M*mu2M

piM[2] <- mu1M-(tauM*mu1M*mu2M)

piM[3] <- mu2M-(tauM*mu1M*mu2M)

piM[4] <- 1+(tauM*mu1M*mu2M)-mu1M-mu2M

xF[1:4] ~ dmulti(piF[],nF)

xM[1:4] ~ dmulti(piM[],nM)
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aF~dnorm(0,0.4)

bF~dnorm(0,0.4)

mu1F<-exp(aF)/(1+exp(aF))

mu2F<-exp(bF)/(1+exp(bF))

lowerF<-max(0,(1/mu1F)+(1/mu2F)-1/(mu1F*mu2F))

upperF<-min(1/mu1F,1/mu2F)

tauF~dunif(lowerF,upperF)

aM~dnorm(0,0.4)

bM~dnorm(0,0.4)

mu1M<-exp(aM)/(1+exp(aM))

mu2M<-exp(bM)/(1+exp(bM))

lowerM<-max(0,(1/mu1M)+(1/mu2M)-1/(mu1M*mu2M))

upperM<-min(1/mu1M,1/mu2M)

tauM ~ dunif(lowerM,upperM)

nF<- sum(xF[])

nM<- sum(xM[]) }

list(xF=c(37,23,8,104),xM=c(38,15,16,145))

# Intial values for the parameters:

list(aF=0.1, bF=0.1,aM=0.1,bM=0.1,tauF=1,tauM=1)

list(aF=0.5, bF=0.5,aM=0.5,bM=0.5,tauF=1,tauM=1)

# Note: The models from Table 4.22 can be obtained

by adapting the code above.

R code for the simulation study conducted in Section 4.3.2.2

#load in required packages

library(MASS)

library(R2OpenBUGS)

# Number of datasets

B<-100

# Number of parameters

p=3

# Create matrices to store the simulation results

results_MEDIAN=matrix(0,nrow=B,ncol=p)
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# R function to simulate the data

Sim<-function(mu1,mu2,tau,n){

pij = matrix(c(tau*mu1*mu2, mu2-tau*mu1*mu2,mu1-tau*mu1*mu2,

1-mu1-mu2+tau*mu1*mu2), nrow = 2, ncol = 2)

nij = rmultinom(1, size = n, prob = pij)

mat<-matrix(nij, nrow = nrow(pij))

return(c(nij[1],nij[3],nij[2],nij[4]))

}

# Set.seed() command used to ensure same datasets

# are used for each prior in each simulation scenario

set.seed(1)

for (i in 1:B) {

# simulate data for a given scenario

x <-Sim(0.2,0.2,1,50)

data<-list("x")

parameters <-c("mu1","mu2","tau")

init1 <-list(mu1=0.5,mu2=0.5,tau=1)

init2 <-list(mu1=0.1,mu2=0.1,tau=1)

#init1 <-list(a=0.5,b=0.5,tau=1)

#init2 <-list(a=0.1,b=0.1,tau=1)

print(x)

# Call OpenBUGS from R, .txt file changed for each prior

model<-bugs(data=data,inits=list(init1, init2),parameters.to.save=parameters,

model.file="C:/Users/Rob/Documents/PhD work/Paper 3/Simulations/Prior1.txt",

n.chains=2,n.iter=14000,n.burnin=4000,n.thin=1,

working.directory="C:/Users/Rob/Documents/PhD work/Paper 3/Simulations")

# Statistics of interest stored in matrices

results_MEDIAN[i,1:p]=model$summary[1:p,5]

}

# Calculate mean of the posterior medians

MEANMEDIAN = apply(results_MEDIAN,2,mean)

# True parameter values

TRUTH=c(0.2,0.2,1)

# Calculate bias

BIAS=MEANMEDIAN-TRUTH

STATS=t(rbind(TRUTH, MEANMEDIAN,BIAS))

rownames(STATS)<-c("mu1","mu2","tau")

colnames(STATS)<-c("TRUE", "MEANMEDIAN","BIAS")

summary=round(STATS,4)
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print(summary)

#$

# Example OpenBUGS code for prior 1, saved as .txt file.

model {

pi[1] <- tau*mu1*mu2

pi[2] <- mu1-(tau*mu1*mu2)

pi[3] <- mu2-(tau*mu1*mu2)

pi[4] <- 1+(tau*mu1*mu2)-mu1-mu2

x[1:4] ~ dmulti(pi[],n)

mu1 ~ dunif(0,1)

mu2 ~ dunif(0,1)

lower<-max(0,(1/mu1)+(1/mu2)-1/(mu1*mu2))

upper<-min(1/mu1,1/mu2)

tau ~ dunif(lower,upper)

n <- sum(x[]) }



Chapter 5

Conclusions and future work

This thesis has extended the use of the dependence ratio association measure for mul-

tivariate categorical data to relevant applications, using both frequentist and Bayesian

approaches. Paper 1 focused on square contingency tables as well as extensions to

matched sets data (multi-way contingency tables). Existing models from the literature

were discussed such as marginal homogeneity and symmetry with the symmetry model

replicated directly in terms of dependence ratios for both the square tables and matched

sets case.

For square tables there are only two subunits in a cluster. Although the dependence

ratio approach is particularly beneficial for larger clusters sizes (as discussed in Section

1.3 of the introduction to this thesis), it still has a number of benefits even for the

simpler case of square tables. For example, existing approaches to square tables that

are based on odds ratios are criticised for not being as easy to interpret as association

measures that are based on a ratio of probabilities such as the dependence ratio or the

relative risk. The relative risk has been favoured over the odds ratio by a number of

authors such as Sackett et al. (1996). Agresti (1999) states the importance of being

able to communicate results to nonstatisticians. As noted in Jokinen et al. (2006), the

dependence ratio is useful for achieving this goal, particularly to those familiar with

the relative risk. Consequently, the dependence ratio approach to square tables may be

preferred by nonstatisticians over existing approaches such as the marginal and loglinear

approaches described in Sections 2.4.1 and 2.4.2.

In addition, a convenient feature of the dependence ratio approach for square tables

is that constraints can easily be imposed on the dependence ratio parameters (using

the R package drm) if a satisfactory fit cannot be achieved with any of the common

models for square tables, such as marginal homogeneity and symmetry. The drm package

(Jokinen, 2007) was a major breakthrough for the dependence ratio approach (discussed

in Section 1.3 of the introduction to this thesis) since prior to this, the dependence ratio

approach was not readily available for use in applied work. For example, consider the

female (Stuart, 1955) and male (Stuart, 1953) eye grade datasets that were analysed

in detail using the dependence ratio approach in paper 1. For the eye grade female

dataset, a satisfactory fit was not achieved with the common models for square tables

(marginal homogeneity, symmetry, quasi-symmetry and quasi-independence). However,

a superior fit was achieved using the dependence ratio approach which combined a

201
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proportional odds regression model with an association model that contained constraints

on the dependence ratios. In contrast, the symmetry model was found to give a good

fit for the eye grade males dataset.

A notable advantage of the dependence ratio approach is its ability to cope with larger

cluster sizes than approaches based on a odds ratio parameterisation. Lesaffre et al.

(2000) state that maximum likelihood estimation using odds ratios as the association is

typically not feasible for cluster sizes greater than five. In the context of paper 1, this was

particularly advantageous for extensions of the dependence ratio approach from square

tables to matched sets data. Rater agreement had not previously been considered with a

dependence ratio approach until the analysis of the pathologist dataset. The dependence

ratio approach allowed for an assessment of both the marginal distributions of the raters

(pathologists) and the associations between the pathologists ratings. In terms of the

former, marginal homogeneity was not found to hold between the pathologists. In terms

of the latter, a latent binary factor association structure was found to give the best fit

of the association structures considered. There appeared to be two distinct groups, one

that accounted for 44% of the population with a low presence rate and the other that

accounts for 56% of the population with a much higher presence rate.

The models for square tables and matched sets in paper 1 of this thesis did not consider

the inclusion of additional explanatory variables. Paper 2 of this thesis focused on a

specific dataset that contained patients with psoriatic arthritis in their hand joints (14

in each hand). The response of interest (for each joint of each patient, at their last

clinic visit) was the binary presence of clinical damage. The dependence ratio approach

has been used to analyse datasets with large cluster sizes and explanatory variables

before, such as the government spending dataset in Jokinen et al. (2006). However, the

purpose of paper 2 was to further advocate the use of the dependence ratio approach for

analysing both the marginal regression and the associations within a cluster (patient) for

datasets with large cluster sizes that would otherwise be difficult to fit with alternative

approaches based on a odds ratio parameterisation. Although the GEE approach can

cope with larger cluster sizes (as shown in paper 2 of this thesis), the fact its emphasis is

purely on the marginal regression means the dependence ratio approach provides a more

thorough analysis. In addition to the dependence ratio approach, a GEE analysis was

also conducted to provide a comparison. This was performed separately for both all the

patients in the dataset and only those patients with at least one joint damaged, with the

same final model obtained in both cases (although clearly clinical damage probabilities

were higher for the latter). The conclusions obtained from the GEE approach generally

coincided with previous literature. For example, time since diagnosis was found to

significantly predict clinical damage with increased time since diagnosis associated with

a greater probability of damage. The DIP joints, which were known to be commonly

affected in psoriatic arthritis, were associated with higher probabilities of clinical damage

than the MCP and PIP joints, for each finger (excluding the thumb which has no DIP
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joint). However, they were only significantly higher than the MCP joints (for each

finger). More detailed conclusions are given in paper 2.

Although the GEE analysis allowed for a detailed assessment of the marginal patterns

of clinical damage, some conclusions were missed by not properly taking into account

the associations within a patient. The exploratory analysis of the associations in paper

2 showed that the strongest association patterns of clinical damage existed between the

MCP knuckle joints. In other words, although the DIP joints had the highest marginal

probabilities of clinical damage, the MCP knuckle joints had the strongest associations.

This underlines the importance of modelling the full joint distribution in order to obtain

a complete analysis of the data. The dependence ratio approach considered separate

models for each of the MCP knuckle joints, thumb joints, DIP joints and PIP joints

(each with relevant explanatory variables). The model for the MCP knuckle joints was

useful to consider given the strong association patterns they conveyed. Although no

notable association patterns existed amongst the other joints, separate models were

considered for the thumb, DIP and PIP joints. The model for the DIP joints is perhaps

of particular interest given their strong marginal patterns of clinical damage and the

fact they are commonly affected in psoriatic arthritis. It is noted that although these

models do not provide an assessment of the associations between the different joint

types, this was assessed in an exploratory sense. Paper 2 was also useful for showing

the use of plausible association structures, a notable advantage of the dependence ratio

approach. For example, the necessary factor association structure was found to be most

appropriate for the MCP knuckle joints, which is not surprising given the fact that 92%

of patients had none of their MCP knuckle joints damaged. The model also accounts

for the stronger association amongst these joints.

Paper 3 of this thesis provided the first known use of the dependence ratio using tradi-

tional Bayesian approaches whereby prior distributions are assigned to the parameters

as opposed to the empirical Bayes approaches by Good (1956) and Du Mouchel and

Pregibon (2001) which estimate the prior parameters from the data. The primary focus

of paper 3 was on identifying non-informative prior distributions for the marginal prob-

abilities and the single dependence ratio (τ) in the simplest bivariate binary case, with

emphasis placed on constraining τ to be between its lower and upper bounds. Of the

10 prior formulations considered, the 2 most appropriate non-informative formulations

both had τ being assigned a uniform distribution between its bounds, with the marginal

probabilities being assigned Uniform(0,1) and logistic-normal(0,2.5) distributions respec-

tively. The same conclusions were also obtained for the marginal homogeneity case in

which there is a single parameter for the marginal probabilities.

Extensions from the bivariate binary response were also considered. Firstly, the exten-

sion to include a single explanatory variable with two categories. The arthritis dataset

that was previously considered for posterior inference of the marginal homogeneity model

was extended to account for gender, with the chosen non-informative priors used for the
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marginal probabilities and dependence ratios. Interestingly, the conclusions obtained

from the Bayesian analysis of the arthritis dataset in paper 3 coincided with the con-

clusions from the frequentist analysis in paper 2. The Bayesian analysis found a model

with a single dependence ratio and single marginal probability to be the most appropri-

ate model to consider of those in Table 4.22. In other words, neither the association or

the marginal patterns differed by gender and the marginal probabilities did not differ by

hand. This coincided with paper 2 in the sense that the association structures considered

for the dependence ratio approach were not found to vary by gender. In addition, gender

and hand were not found to significantly predict clinical damage in paper 2. However,

it should be noted that paper 2 conducted a more thorough analysis than paper 3 in the

sense that more explanatory variables were included and the response of interest was

clinical damage at each individual joint as opposed to the probability of having clinical

damage in at least one joint of a given hand. A potential area for future work is to

use the Bayesian approach to conduct a full analysis of the arthritis dataset. Other ex-

tensions for the Bayesian approach include the inclusion of more explanatory variables,

larger contingency tables and considering association structures such as the necessary

factor. The extension to larger contingency tables was discussed briefly at the end of

paper 3. It is of interest to determine whether the same conclusions are drawn with

regards to non-informative priors in this case. The Bayesian approach with dependence

ratios also has the advantage over frequentist approaches of not relying on asymptotic

approximations. For example, the smaller sample size of the bilirubin dataset in paper

1 made the asymptotic approximations used more questionable.

The dependence ratio approach has some limitations, none of which should be treated

as serious disadvantages but should be properly understood before the approach can be

adequately implemented. Firstly, the maximum likelihood estimation procedure used in

the frequentist context of papers 1 and 2 can encounter negative profile probabilities for

some of the unobserved profiles. Although some may argue that this is a disadvantage of

the approach, it can also be seen as a tool for model validation (Ekholm, 2003). For the

occasions where negative profile probabilities were encountered in papers 1 and 2, the

models in question were clearly disregarded outright. As argued in Jokinen (2006: PhD

Thesis), negative profile probabilities typically only occur in datasets with large cluster

sizes, which cannot be fit using an odds ratio parameterisation anyway. An interesting

future investigation is whether models that produced negative profile probabilities in

a frequentist context can be fit using Bayesian approaches. In terms of the arthritis

dataset from paper 2, the final models had a maximum of 8 units in a cluster. In

order to assess the strength of the dependence ratio approach, some additional analyses

found the approach was viable for cluster sizes as large as approximately 13 but was

problematic for larger cluster sizes, partly due to negative profile probabilities. This is

still a considerable improvement over odds ratio approaches which struggle with cluster

sizes larger than five (Lesaffre et al. (2000)).
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The range of the dependence ratio has received criticism due to the fact that it is

constrained by the marginal probabilities. Research in computer science (discussed in

the history of dependence ratio section in the introduction of this thesis) found that this

was only an issue for small counts. In addition, as demonstrated in Section 4.3.4 and

discussed in Ekholm (2003), the range of the dependence ratio is reasonably variation

independent of the marginal probabilities when the marginal probabilities are less than

approximately 0.5. This therefore supports modelling the rarer event in the dependence

ratio approach. For example, in paper 2 of this thesis, the presence of clinical damage

(the rarer event) was treated as the response of interest as opposed to the absence of

clinical damage. The rarer event was also used in the bilirubin dataset (paper 1) as well

as the parental and arthritis datasets in paper 3. The fact the dependence ratio has a

finite upper bound can also be seen as an advantage over the odds ratio which has an

infinite upper bound.

To conclude, the dependence ratio approach has a number of advantages for modelling

multivariate categorical data using population-averaged based approaches. Paper 1 of

this thesis applied the dependence ratio to square tables, which may be particularly

advantageous for researchers who are more familiar with concepts based on probabilities

(such as the relative risk) as opposed to odds ratios. The extension of the approaches

for square tables to matched sets data also showed the benefit of the dependence ratio

approach for analysing rater agreement and large cluster sizes, something which is likely

to be unfeasible with approaches based on a odds ratio parameterisation. Paper 2 of this

thesis considered the dependence ratio approach for a specific application and further

showed the benefits the approach can offer for analysing larger cluster sizes. Although

a fair amount of research has been conducted on the dependence ratio in a frequentist

context using maximum likelihood estimation (see Section 1 of paper 1 for a discussion),

including papers 1 and 2 of this thesis, little has been done by researchers who were not

the original founders of the approach or actively involved with its development. This may

in part be due to the fact that the GEE approach is the only tool some researchers have

at their disposal in certain software, such as SPSS. However, the dependence ratio has

clear advantages for analysing population-averaged approaches in a frequentist context,

particularly in situations where the researcher has a large number of units in a cluster and

interest in modelling the associations such as the arthritis dataset in paper 2. Paper

3 of this thesis provided the first use of the dependence ratio in a Bayesian context

(excluding empirical Bayes approaches). Although paper 3 provided a starting point

for the Bayesian context, it is clear that more research is needed in order to make the

dependence ratio appropriate for a range of possible datasets.
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