The University of Southampton
University of Southampton Institutional Repository

EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels

EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels
EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels
Quantum-based transmission is an attractive solution conceived for achieving absolute security. In this quest, we have conceived an EXtrinsic Information Transfer (EXIT) chart aided channel code design for symbol-based entanglement-assisted classical communication over quantum depolarizing channels. Our proposed concatenated code design incorporates a Convolutional Code (CC), a symbol-based Unity Rate Code (URC) and a soft-decision aided 2-qubit Superdense Code (2SD), which is hence referred to as a CC-URC-2SD arrangement. We have optimized our design with the aid of non-binary EXIT charts. Our proposed design operates within 1 dB of the achievable capacity, providing attractive performance gains over its bit-based counterpart. Quantitatively, the bit-based scheme requires 60% more iterations than our symbol-based scheme for the sake of achieving perfect decoding convergence. Furthermore, we demonstrate that the decoding complexity can be reduced by using memory-2 and memory-3 convolutional codes, while still outperforming the bit-based approach
Babar, Zunaira
23ede793-1796-449d-b5aa-93a297e5677a
Ng, Soon Xin
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Babar, Zunaira
23ede793-1796-449d-b5aa-93a297e5677a
Ng, Soon Xin
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1

Babar, Zunaira, Ng, Soon Xin and Hanzo, Lajos (2014) EXIT-chart aided code design for symbol-based entanglement-assisted classical communication over quantum channels. IEEE Vehicular Technology Conference (VTC Fall), Vancouver, Canada. 13 - 16 Sep 2014. 5 pp . (doi:10.1109/VTCFall.2014.6965974).

Record type: Conference or Workshop Item (Paper)

Abstract

Quantum-based transmission is an attractive solution conceived for achieving absolute security. In this quest, we have conceived an EXtrinsic Information Transfer (EXIT) chart aided channel code design for symbol-based entanglement-assisted classical communication over quantum depolarizing channels. Our proposed concatenated code design incorporates a Convolutional Code (CC), a symbol-based Unity Rate Code (URC) and a soft-decision aided 2-qubit Superdense Code (2SD), which is hence referred to as a CC-URC-2SD arrangement. We have optimized our design with the aid of non-binary EXIT charts. Our proposed design operates within 1 dB of the achievable capacity, providing attractive performance gains over its bit-based counterpart. Quantitatively, the bit-based scheme requires 60% more iterations than our symbol-based scheme for the sake of achieving perfect decoding convergence. Furthermore, we demonstrate that the decoding complexity can be reduced by using memory-2 and memory-3 convolutional codes, while still outperforming the bit-based approach

Text
CC-URC-SD-conf-rev2.pdf - Accepted Manuscript
Download (145kB)

More information

Published date: September 2014
Venue - Dates: IEEE Vehicular Technology Conference (VTC Fall), Vancouver, Canada, 2014-09-13 - 2014-09-16
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 378686
URI: http://eprints.soton.ac.uk/id/eprint/378686
PURE UUID: 4253ba62-5b1a-4fe7-9eba-05b6abf0eb6c
ORCID for Zunaira Babar: ORCID iD orcid.org/0000-0002-7498-4474
ORCID for Soon Xin Ng: ORCID iD orcid.org/0000-0002-0930-7194
ORCID for Lajos Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 20 Jul 2015 11:24
Last modified: 07 Oct 2020 08:00

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×