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ABSTRACT 
Background: There has been a substantial decline in malaria burden in the last decade owing to 

an increase in funding for malaria control. At every stage of the malaria elimination and control 

pathways, maps of malaria risk are required for planning and for resource allocation. These have 

traditionally been modelled from parasite prevalence data. However, in low malaria 

transmission, parasite prevalence surveys from household surveys are insufficient because they 

are of low sample sizes. Undertaking parasite rate surveys of adequate sample sizes is expensive 

and remains unaffordable by most national malaria control programmes. Moreover, these point 

prevalence surveys are not suitable for tracking changes in burden because malaria becomes 

highly seasonal driven by climatic conditions. In this thesis, alternative approaches of estimating 

risk are explored. These approaches model malaria incidence using Health Management 

Information System (HMIS) data.  

 

Methods: Three low transmission countries were selected as case studies namely: Namibia, 

Eritrea and Afghanistan. HMIS data was assembled from the respective national malaria control 

programmes as well as nationally representative household surveys providing information on 

febrile cases and treatment seeking behaviour. For each case study, analysis of healthcare 

utilisation pattern for fever treatment from national representative household surveys was 

undertaken to derive denominators (population in health facility catchments). Data on malaria 

cases from health facility were combined with the catchment population and environmental 

drivers of malaria transmission to model incidence using a hierarchical Bayesian spatio-temporal 

conditional autoregressive model (CAR). Facility level data was adjusted based on reporting 

rates, the rate of utilisation and a slide positivity rate applied to suspected cases.  
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Results: The proportion of febrile children seeking treatment decreased with increasing distance 

to the nearest public health facility and this rate was different in the three case studies. In terms 

of catchment population, the majority of population was within three hours of travel to nearest 

health facility. This translated to coverage rates of 67% in Namibia, 79% in Eritrea and 85% in 

Afghanistan. The mean Plasmodium falciparum malaria incidence in Namibia was 12.5 (95% 

Crl 10.4-15.5) per 1000 population. P. vivax was the major malaria parasite in Afghanistan with 

an incidence of 5.4 (95% Crl 3.2-9.2) per 1000 population compared to P. falciparum incidence 

of 1.2 (95% Crl 0.4-2.9) per 1000 population.  In Eritrea, the incidence of P. falciparum and P. 

vivax was 3.4 (95% Crl 2.2-5.2) per 1000 population and 2.5 (95%Crl 1.5-3.9) per 1000 

population, respectively. Malaria Incidence in the three countries tended to be higher in the 

border areas. For Namibia, there was elevated incidence at the border with Angola. In Eritrea, 

incidence was higher in regions that bordered Ethiopia while for Afghanistan these were in 

districts bordering Pakistan. Relating the modelled incidence to current maps of parasite 

prevalence showed areas with higher incidence also exhibited high prevalence.  

 

Conclusion: This thesis provides a novel approach to using household and health facility case 

data to model malaria incidence more precisely in countries with very low malaria transmission 

intensity. The modelling approach is vital for disease mapping in countries aiming for 

elimination in reduced malaria transmission, increasing level of parasitological diagnosis and 

improved level of reporting through HMIS. By using incomplete HMIS, the thesis demonstrates 

its usefulness in producing reliable estimates of malaria incidence as well as identifying high 

burdened regions to direct malaria interventions.



I 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................................... I 

LIST OF TABLES ......................................................................................................................................... I 

LIST OF FIGURES ....................................................................................................................................... I 

ACKNOWLEDGEMENTS ........................................................................................................................... I 

CHAPTER 1: Introduction and literature review .................................................................................................. 2 

1.1 Background ............................................................................................................................................. 1 

1.2 Health in developing countries ................................................................................................................ 4 

1.2.1 The Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs) ..................... 4 

1.2.2 Review of progress in malaria control in SSA post Global Malaria Eradication Plan (GMEP) era ............ 8 

1.2.3 Rationale for using fever for studying treatment seeking behaviour ......................................................... 13 

1.2.4 Measuring malaria morbidity: Epidemiological models ............................................................................ 16 

1.2.5 The role of surveillance as a method for assessing morbidity and control ................................................. 20 

1.3 Review on delivery of healthcare in low income countries ..................................................................... 22 

1.3.1 Delivery of healthcare in Sub-Saharan African countries: Public or private providers?............................ 22 

1.3.2 The role of Health Management Information Systems (HMIS) in Africa ................................................. 26 

1.3.3 The role of health facilities as a component of the health system and in disease burden estimation ......... 30 

1.3.4 The role of national household surveys as a source of data for health in low income countries ................ 32 

1.3.5 The role of Service Provider Assessment surveys (SPAs) in developing countries ................................... 35 

1.4 Access and utilisation ............................................................................................................................. 36 

1.4.1 Definitions and concepts of healthcare access ........................................................................................... 36 

1.4.2 Review of geographic access concept ........................................................................................................ 39 

1.4.3 The measurement of distance in GIS ......................................................................................................... 44 

1.4.4 Analysing utilisation of health facilities .................................................................................................... 45 

1.4.5 Various types of health facility catchments ............................................................................................... 47 

1.4.6 Factors affecting the measurement of healthcare access and utilisation .................................................... 50 

1.5 Disease Mapping .................................................................................................................................... 51 

1.5.1 Review of disease mapping approaches in Africa ..................................................................................... 51 

1.5.2 Introduction to frequentist methods ........................................................................................................... 55 

1.5.3 Geostatistical models ................................................................................................................................. 59 

1.5.4 Areal-data models ...................................................................................................................................... 60 

1.5.5 Review of Spatiotemporal methods ........................................................................................................... 62 

1.5.6 Spatiotemporal geostatistical and areal models ......................................................................................... 64 

1.6 Purpose and scope of the study .............................................................................................................. 67 



   

II 

 

1.6.1 Justification of the study ............................................................................................................................ 67 

1.6.2 Objectives .................................................................................................................................................. 68 

1.7 Thesis outline ......................................................................................................................................... 69 

1.8 Modelling approach used in the thesis ................................................................................................... 73 

1.8.1 A mini review on methods of identifying high risk populations in low transmission settings ................... 73 

1.8.2 Issues in statistical modelling disease data ................................................................................................ 74 

1.8.3 Integrated Nested Laplace Approximation (INLA) and Gaussian Markov Random Fields (GMRFs) ...... 76 

1.8.4 Analytical protocol and the Bayesian modelling approach adopted in the thesis ...................................... 80 

CHAPTER 2: Case Study 1 ................................................................................................................................... 84 

Estimation of malaria incidence in northern Namibia in 2009 using Bayesian Conditional-Autoregressive 

(CAR) spatio-temporal models .................................................................................................................... 84 

2.1 Background ............................................................................................................................................ 85 

2.2 The Namibia context .............................................................................................................................. 87 

2.2.1 Geography .................................................................................................................................................. 87 

2.2.2 Namibia progress on MDGs and health targets ......................................................................................... 88 

2.2.3 History of malaria control in Namibia ....................................................................................................... 91 

2.2.4 Organisation of Namibia’s healthcare system and delivery ....................................................................... 92 

2.2.5 A review of public health facility coverage and utilisation in Namibia in 2009 ........................................ 94 

2.3 Analysis of malaria in 2009 in northern Namibia ................................................................................... 97 

2.3.1 Description of HMIS data .......................................................................................................................... 97 

2.3.2 Development of population denominator for analysis of incidence ........................................................... 99 

2.3.3 Assembly of environmental or ecological covariates for malaria risk in Namibia .................................. 101 

2.3.4 Preliminary analysis of environmental covariates and crude incidence ................................................... 102 

2.3.5 Bayesian model specification for malaria incidence ................................................................................ 106 

2.3.6 Bayesian model specification for slide positivity rates at health facilities ............................................... 108 

2.3.7 Model validation and scoring rules .......................................................................................................... 112 

2.4 Results .................................................................................................................................................. 114 

2.4.1 Summary of assembled data .................................................................................................................... 114 

2.4.2 The malaria incidence model results and validation ................................................................................ 115 

2.4.3 Plasmodium falciparum incidence in northern Namibia in 2009 ............................................................. 117 

2.4.4 Assessing the population at risk of malaria in 2009 in northern Namibia ............................................... 121 

2.4.5 The predicted slide positivity rate in 2009 ............................................................................................... 122 

2.5 Discussion ............................................................................................................................................. 126 

2.5.1 Introduction .............................................................................................................................................. 126 

2.5.2 Implications for malaria control and elimination in Namibia based on estimated incidence ................... 127 

2.5.3 Comparison of estimated incidence, parasite prevalence and slide positivity rates ................................. 128 

2.5.4 The model based approach for P. falciparum incidence compared to crude incidence ........................... 130 



   

III 

 

2.5.5 Limitations ............................................................................................................................................... 132 

2.6 Conclusion............................................................................................................................................ 134 

CHAPTER 3: Case Study 2 ................................................................................................................................. 136 

Examining coverage and utilisation of healthcare in Afghanistan to estimate the incidence of Plasmodium 

vivax and Plasmodium falciparum malaria ................................................................................................. 136 

3.1 The Afghanistan context ...................................................................................................................... 137 

3.1.1 Background .............................................................................................................................................. 137 

3.1.2 Geography ................................................................................................................................................ 140 

3.1.3 Organisation of Afghanistan’s Healthcare system and financing ............................................................ 141 

3.1.4 Population health and the MDGs in Afghanistan ..................................................................................... 143 

3.1.5 Review of healthcare access in Afghanistan ............................................................................................ 145 

3.2 Estimating the spatial coverage and utilisation of public healthcare facilities for treatment of fever in 

Afghanistan ............................................................................................................................................... 146 

3.2.1 Data .......................................................................................................................................................... 146 

3.2.2 Developing surface of travel time and probability of attendance ............................................................. 150 

3.2.3 Developing health facility catchments used in the analysis of malaria incidence and assessing spatial 

coverage ............................................................................................................................................................ 152 

3.2.4 Results of analysis of spatial coverage and utilisation of public health facilities in Afghanistan ............ 153 

3.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment .............................. 156 

3.4 Analysis of incidence of P. vivax and P. falciparum in Afghanistan ...................................................... 164 

3.4.1 Assembly of HMIS data ........................................................................................................................... 164 

3.4.2 Assembly of environmental or ecological covariates for malaria risk ..................................................... 165 

3.4.3 Bayesian model specification for analysis of malaria incidence in Afghanistan ..................................... 166 

3.4.4 Bayesian model specification of slide positivity rates at health facilities in Afghanistan ........................ 168 

3.4.5 Model choice and validation for incidence and SPR analysis .................................................................. 169 

3.4.6 Results of estimating the incidence of P. falciparum and P. vivax in Afghanistan .................................. 171 

3.4.7 Results of slide positivity prediction for P. falciparum and P. vivax in Afghanistan .............................. 176 

3.4.8 Assessing the population at risk of malaria based on estimated incidence .............................................. 180 

3.5 Discussion on the incidence and slide positivity rates of P. vivax and P. falciparum in Afghanistan ..... 186 

3.5.1 Implications for malaria control and elimination in Afghanistan ............................................................ 186 

3.5.2 Modelling gains for incidence analysis in Afghanistan ........................................................................... 190 

3.5.3 Limitations in Afghanistan context .......................................................................................................... 191 

3.6 Conclusion............................................................................................................................................ 191 

CHAPTER 4: Case study 3 ................................................................................................................................. 194 

Mapping the seasonal transmission of P. falciparum and P. vivax in Eritrea using HMIS ......................... 194 

4.1 Eritrea context ..................................................................................................................................... 195 

4.1.1 Background .............................................................................................................................................. 195 

4.1.2 Geography ................................................................................................................................................ 197 



   

IV 

 

4.1.3 Healthcare system in Eritrea: Organisation and delivery ......................................................................... 198 

4.1.4 Health goals and progress on MDGS ....................................................................................................... 200 

4.1.5 History of malaria control in Eritrea ........................................................................................................ 202 

4.2 Analysis of coverage and utilisation of health services for treatment of fever ...................................... 204 

4.2.1 Data .......................................................................................................................................................... 205 

4.2.2 Developing surface of travel time and probability of attendance for fever treatment in Eritrea .............. 210 

4.2.3 Developing health facility catchments in GIS and assessing coverage of health facilities ...................... 213 

4.2.4 Results of analysis of coverage and utilisation of health facilities ........................................................... 213 

4.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment .............................. 216 

4.4 Mapping malaria incidence and slide positivity rates in Eritrea .......................................................... 220 

4.4.1 Assembly of malaria data (2010-2012) .................................................................................................... 220 

4.4.2 Assembly of environmental and ecological covariates in Eritrea ............................................................ 221 

4.4.3 Preliminary analysis of covariates and matching to malaria cases at health facility ................................ 224 

4.4.4 Bayesian model specification for incidence and slide positivity rate ....................................................... 225 

4.4.5 Results ...................................................................................................................................................... 229 

4.4.6 Assessing the population at risk in Eritrea using incidence ..................................................................... 240 

4.5 Discussion on incidence and slide positivity rate in Eritrea .................................................................. 243 

4.5.1 Implication for malaria control and elimination in Eritrea ....................................................................... 243 

4.5.2 Slide positivity rates for 2012 and health facility utilisation .................................................................... 246 

4.5.3 Modelling gains for malaria incidence and slide positivity analysis in Eritrea ........................................ 246 

4.5.4 Limitations ............................................................................................................................................... 247 

4.6 Conclusion............................................................................................................................................ 248 

CHAPTER 5: Discussion and Conclusion ............................................................................................................ 251 

Discussion on advances in mapping malaria in low transmission using HMIS .......................................... 251 

5.1 Summary .............................................................................................................................................. 252 

5.2 Thesis contribution to malaria strategies in low malaria transmission ................................................ 255 

5.3 Common emerging themes across the three case study countries ........................................................ 259 

5.3.1 Denominator estimation for modelling incidence by country .................................................................. 259 

5.3.2 Implications for malaria control and elimination based on estimated incidence in the three case study 

countries ............................................................................................................................................................ 260 

5.3.3 Reaction of the case study countries to findings ...................................................................................... 264 

5.4 Transferability,  scalability and challenges for malaria elimination .................................................... 265 

5.4.1 Data availability ....................................................................................................................................... 265 

5.4.2 Development of Reactive Case Detection approaches in low transmission settings for elimination ....... 266 

5.4.3 Implications for mapping P. falciparum and P. vivax in low transmission settings ................................ 267 

5.5 Limitations ........................................................................................................................................... 269 

5.5.1 Thesis limitations and recommendations ................................................................................................. 269 



   

V 

 

5.6 Future research .................................................................................................................................... 272 

5.6.1 Improved Bayesian approach to downscaling incidence in low transmission settings ............................ 274 

5.7 Conclusion............................................................................................................................................ 276 

REFERENCES ......................................................................................................................................... 278 

APPENDICES .......................................................................................................................................... 313 

APPENDIX: 1 Publications ...................................................................................................................... 314 

APPENDIX 2: Useful mathematical relations .......................................................................................... 337 

A2.1: Conjugate prior for Poisson distribution ................................................................................................. 337 

A2.2: Jeffrey prior for Poisson .......................................................................................................................... 338 

A2.3: The inverse Gamma Prior on Poisson ..................................................................................................... 338 

A2.4: Conjugate prior for Binomial distribution ............................................................................................... 339 

APPENDIX 3: Data tabulation: sources, spatial and temporal resolutions and application ..................... 341 



I 

 

LIST OF TABLES 
Table 1.1: Summary of study sites characteristics ...................................................................................... 69 

Table 2.1: Estimated coverage and utilisation of public health facilities in northern Namibia .................. 96 

Table 2.2 Summary of number of suspected and confirmed malaria cases in northern Namibia by region.

 .................................................................................................................................................................. 115 

Table 2.3: Comparison of the implemented Bayesian models .................................................................. 116 

Table 2.4: Posterior distribution of parameters for incidence model. ....................................................... 117 

Table 2.5: Comparison of crude malaria incidence and estimated incidence from a Bayesian approach 121 

Table 2.6: Population at risk in Namibia based on estimated incidence. .................................................. 122 

Table 2.7: Bayesian geostatistical model parameters of Slide positivity rates for Namibia in 2009 ........ 123 

Table 2.8: Posterior distribution of parameters for slide positivity rate.................................................... 124 

Table 2.9 Slide Positivity Rate by region in Namibia. .............................................................................. 125 

Table 3.1: Input data for analysis of utilisation of public health facilities in Afghanistan ....................... 151 

Table 3.2: Logistic Model parameters by hospital type and for the universe of all facilities in Afghanistan

 .................................................................................................................................................................. 154 

Table 3.3: Population within health facility catchments in Afghanistan. ................................................. 161 

Table 3.4: Summary of assembled malaria case data ............................................................................... 165 

Table 3.5: Bayesian model comparison for incidence .............................................................................. 171 

Table 3.6: Bayesian estimates of model parameters. ................................................................................ 172 

Table 3.7: Models for slide positivity rate in Afghanistan. ....................................................................... 176 

Table 3.8: Posterior estimates of parameter for slide positivity rate. ........................................................ 177 

Table 3.9: Mean slide positivity rate by region in Afghanistan ................................................................ 179 

Table 3.10: Estimated population at risk in 2009 by Province for Plasmodium falciparum and 

Plasmodium vivax ..................................................................................................................................... 182 

Table 4.1: Public-based health facilities in each Zoba in Eritrea by type ................................................. 205 

Table 4.2: Description data for modelling healthcare utilisation in Eritrea. ............................................. 211 

Table 4.3: Estimated population in Catchments by region ....................................................................... 214 



   

II 

 

Table 4.4: An assessment of coverage of health facilities in relative to population and travel time in 

Eritrea in 2012........................................................................................................................................... 216 

Table 4.5: Summary of assemble HMIS data in Eritrea. .......................................................................... 221 

Table 4.6: Regression coefficients for the best combination variables selected in a generalized linear 

model for P. falciparum and P. vivax ....................................................................................................... 225 

Table 4.7: Model validation results for incidence analysis. ...................................................................... 231 

Table 4.8: Posterior estimates of the parameters of Bayesian spatio-temporal Poisson model with 95% 

credible interval ........................................................................................................................................ 232 

Table 4.9: Model of slide positivity rate in Eritrea. .................................................................................. 237 

Table 4.10: Posterior distribution of parameters of slide positivity rate. .................................................. 238 

Table 4.11: Slide positivity rate by region in Eritrea. ............................................................................... 239 

Table 4.12: Estimated clinical burden of P. falciparum based on incidence. ........................................... 242 

Table 4.13: Estimated clinical burden of P. vivax based on incidence. .................................................... 242 



I 

 

LIST OF FIGURES 
Figure 1.1: Countries eliminating or controlling malaria ............................................................................ 10 

Figure 1.2 Fever burden treatment protocol ................................................................................................ 16 

Figure 1.3: Percentage of public, private and out-of-pocket expenditure on health in SSA ....................... 24 

Figure 1.4 HMIS data flow diagram ........................................................................................................... 29 

Figure 1.5: Global coverage of nationally representative household surveys ............................................. 35 

Figure 1.6: Semi-variogram and Covariance .............................................................................................. 59 

Figure 1.7 Schematic analysis flow ............................................................................................................ 83 

Figure 2.1: Map of Namibia showing administrative boundaries and limits of P. falciparum risk ............ 88 

Figure 2.2: Distribution of Health facilities in Namibia in 2009 ................................................................ 95 

Figure 2.3: Probability of fever treatment and health facility catchments in Namibia ............................... 97 

Figure 2.4: Box plot of malaria cases in 2009 in Namibia .......................................................................... 99 

Figure 2.5 Map of population density in Namibia .................................................................................... 100 

Figure 2.6: Plot of environmental covariates with malaria cases for Namibia ......................................... 102 

Figure 2.7: Scatterplot matrix showing association between covariates and crude incidence .................. 104 

Figure 2.8: Covariate selection based on cross-validation error ............................................................... 106 

Figure 2.9: Comparison of observed and the estimated incidence in Namibia ......................................... 117 

Figure 2.10: Temporal plot of estimated incidence .................................................................................. 118 

Figure 2.11: Monthly maps of P. falciparum incidence in 2009 in northern Namibia ............................. 119 

Figure 2.12: Mean incidence of P. falciparum in northern Namibia in 2009 ........................................... 120 

Figure 2.13: Standard deviation map of annualised incidence for 2009 ................................................... 120 

Figure 2.14: Scatter plot of predicted and observed slide positivity rate and semi-variogram of residuals

 .................................................................................................................................................................. 123 

Figure 2.15: Posterior mean predictions of slide positivity rate at 1 km x 1 km ...................................... 125 

Figure 2.16: Standard deviation map of slide positivity rate .................................................................... 125 

Figure 2.17: Comparison of incidence, slide positivity and parasite prevalence ...................................... 130 



   

II 

 

Figure 3.1: Google map of Afghanistan .................................................................................................... 141 

Figure 3.2: Distribution of public-based health facilities in Afghanistan ................................................. 147 

Figure 3.3: Population density map of Afghanistan for 2010 ................................................................... 149 

Figure 3.4: Distance decay curves for public health facility use in Afghanistan ...................................... 154 

Figure 3.5 Probability of health facility use for fever treatment in Afghanistan ...................................... 156 

Figure 3.6: Delineated public-based health facility catchments ............................................................... 163 

Figure 3.7: Time series plot of estimated incidence for 48 months in Afghanistan ................................. 173 

Figure 3.8: Posterior mean monthly incidence of P. vivax per 1000 population ...................................... 174 

Figure 3.9 Posterior mean monthly incidence of P. falciparum per 1000 population .............................. 175 

Figure 3.10: Posterior mean annual incidence maps ................................................................................. 176 

Figure 3.11: Semi-variograms of residuals in spatial and temporal domain ............................................. 178 

Figure 3.12: Posterior mean predictions of slide positivity rate ............................................................... 179 

Figure 3.13 Comparison of incidence and slide positivity rate with parasite prevalence ......................... 181 

Figure 4.1: Map of Eritrea ........................................................................................................................ 198 

Figure 4.2: Distribution of health facilities in Eritrea ............................................................................... 206 

Figure 4.3: Population density map of Eritrea for 2010 ............................................................................ 208 

Figure 4.4: Digital elevation model (DEM) for Eritrea ............................................................................ 210 

Figure 4.5: Distance decay curve of probability of fever treatment in Eritrea .......................................... 212 

Figure 4.6 Probability of health facility use for fever treatment and delieanated catchments .................. 215 

Figure 4.7 Covariate selection model based on cross validation error in Eritrea ...................................... 225 

Figure 4.8: Comparison of observed and estimated incidence ................................................................. 230 

Figure 4.9: Semi-variogram plots of residuals for incidence analysis in Eritrea ...................................... 231 

Figure 4.10: Non-linear effect of covariates on P. falciparum ................................................................. 233 

Figure 4.11: Non-linear effect of covariates on P. vivax .......................................................................... 233 

Figure 4.12: Spatio-temporal maps of incidence of P. falciparum per 1000 population in Eritrea .......... 234 

Figure 4.13: Spatio-temporal maps of incidence of P. vivax per 1000 population in Eritrea ................... 235 



   

III 

 

Figure 4.14: Annualised incidence of P. falciparum and P. vivax per 1000 population ........................... 236 

Figure 4.15: Comparison of incidence with community parasite prevalence ........................................... 236 

Figure 4.16: Semi-variogram of residuals of slide positivity rate ............................................................. 237 

Figure 4.17: Posterior mean predictions of slide positivity rate in Eritrea ............................................... 239 

Figure 4.18: Comparison of predicted slide positivity rate and community-level parasite prevalence .... 240 

Figure 5.1: Burden estimation model. ................................................................................................... 259 

Figure 5.2: Comparisons of incidence and with community parasite prevalence ............................. 264 

Figure 5.3: Global roll out of DHIS initiative ........................................................................................... 266 



I 

 

DECLARATION OF AUTHORSHIP 

I, Victor Adagi Alegana,  

declare that this thesis and the work presented in it are my own, and has been generated by me as 

the result of my own original research.   

 

Developing empirical space-time models of health services for the treatment of malaria to 

estimate disease incidence 

 

I confirm that: 

 

1. This work was done wholly or mainly while in candidature for a research degree at this 

University; 

2. Where any part of this thesis has previously been submitted for a degree or any other 

qualification at this University or any other institution, this has been clearly stated; 

3. Where I have consulted the published work of others, this is always clearly attributed; 

4. Where I have quoted from the work of others, the source is always given. With the exception 

of such quotations, this thesis is entirely my own work; 

5. I have acknowledged all main sources of help; 

6. Where the thesis is based on work done by myself jointly with others, I have made clear 

exactly what was done by others and what I have contributed myself; 

7. Either none of this work has been published before submission, or parts of this work have 

been published as: 

  

Alegana, V. A., Atkinson, P. M., Wright, J. A., Kamwi, R., Uusiku, P., Katokele, S., Snow, R. 

W. and Noor, A. M. (2013) Estimation of malaria incidence in northern Namibia in 2009 using 

Bayesian conditional-autoregressive spatial-temporal models. Spatial and Spatio-temporal 

Epidemiology, 7, 25-36. 

Alegana, V. A., Wright, J. A., Nahzat, S. M., Butt, W., Sediqi, A. W., Habib, N., Snow, R. W., 

Atkinson, P. M. and Noor, A. M. (2014) Modelling the Incidence of Plasmodium vivax and 

Plasmodium falciparum Malaria in Afghanistan 2006 - 2009. PLoS One, 9, e102304. 

 

 Signed: ……………………………………………………. 

  

Date: …………...……………………………………………



I 

 

ACKNOWLEDGEMENTS 
Many individuals and institutions have contributed to the success of this PhD. My sincere 

gratitude goes to the Commonwealth Scholarship Commission, the Wellcome Trust, and the 

University of Southampton for providing financial and institutional support for this PhD. The 

PhD was tenured at Southampton University, UK, through commonwealth grant #KECS-2012-

601. Additional support was obtained through the Wellcome Trust strategic award to KEMRI-

WTRP and fellowship awards to Professor Abdisalan Noor (#WT095127) and Professor Robert 

Snow (#WT079080).  

 

The years I have spent at the Kenya Medical Research Institute-Wellcome Trust Research 

Programme (KEMRI-WTRP) under the mentorship of Professor Noor laid the foundation for this 

PhD. I would like thank Professor Noor for his continued role as a supervisor on this thesis. I am 

also thankful to my other supervisors, Professor Peter Atkinson and Dr Jim Wright at the 

University of Southampton. I am extremely grateful to have had Professor Atkinson’s humble 

introduction to Bayesian modelling. The advice, insight, and mentorship offered by my 

supervisors throughout the writing of this thesis were invaluable. I would also like to thank 

Professor Snow for his advice on different aspects of the thesis.  

 

My gratitude also goes to the National Malaria Control Programmes of Namibia, Afghanistan 

and Eritrea who shared their data. I also thank various people who worked behind the scenes to 

provide various information and to the staff at the University of Southampton University and 

KEMRI-Wellcome Trust Research. 

 

Finally, I most grateful to my family! My parents instilled in me the value of education, and the 

freedom to pursue my dream. I hope I can instil the same in my children and inspire them to 

pursue their dreams, one just ever so new to this world. My special thanks go to my spouse 

Harriet for being so understanding and supportive unconditionally. Thank you. 

 



1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

2 

 

 

 

 

 

 

 

 

 

CHAPTER 1: Introduction and literature 

review 



1 

 

1.1 Background 

Malaria is a major contributor to mortality and morbidity across sub-Saharan Africa (SSA) 

(Black et al., 2003, Hay et al., 2008, Snow and Marsh, 2010). While considerable progress has 

been made globally on reducing malaria related deaths according to the 2013 Millennium 

Development Goals (MDG) report, progress in SSA remains slow and disproportionate (Noor et 

al., 2014). In SSA countries, the burden of malaria remains a significant public health problem 

and a realistic assessment is that the 2015 MDG health targets are unlikely to be achievable due 

to slow economic development and poverty (Snow et al., 2010b, Snow et al., 2012). The 

sustainable development goals (SDGs) integrate the MDGs into a post-2015 agenda following 

the Rio de Janeiro declaration (UN, 2012a). To sustain progress on the main health indicators, it 

is important to define the population at risk and improve surveillance, planning and cost-

effective allocation of resources guided by country level maps of malaria transmission (Noor et 

al., 2014). 

Malaria endemic countries have had sustained investment in malaria control since early 2000s 

(Snow et al., 2010b, World Health Organization, 2013b) and coverage of key interventions has 

increased with reports showing a significant decline in malaria infections and disease burden 

across several sites suggestive of an epidemiological transition (Ceesay et al., 2008, O'Meara et 

al., 2010). Many countries have responded to the call by the Roll Back Malaria (RBM) initiative 

for universal coverage of malaria prevention strategies and some now aim for malaria 

elimination (Global Health Group, 2007, Malaria Elimination 8 Ministerial Meeting, 2009, The 

Malaria Elimination Group, 2009). Each stage on the control-elimination continuum requires 

accurate epidemiological assessment of infection risk to adapt operational strategies and revise 

impact predictions (Hay et al., 2008, Smith et al., 2009). Maps of malaria risk are important tools 
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for countries to define the changing risks, but, there is little research evidence on the 

development, integration and application of these maps in the context of sustained low risk or 

malaria elimination. Community parasite prevalence of 1% is currently considered the 

benchmark for countries to decide between sustaining conditions of low endemic control or 

moving towards an agenda that includes elimination (World Health Organization, 2007a, Snow 

and Marsh, 2010). Current mapping approaches to define these benchmarks in areas of low 

transmission, however, are faced with both data and methodological challenges that require 

research into developing more reliable, efficient and less costly mechanisms of assessing the 

shrinking malaria map (The Malaria Elimination Group, 2009, Feachem et al., 2010).   

 

In this thesis, determinants of health facility access, utilisation and disease modelling approaches 

were reviewed. Household survey data for treatment of fever were assembled for three low 

transmission countries (Namibia, Afghanistan and Eritrea) and used to model spatial catchments 

to derive catchment populations.  A model based on self-reported fever at household level was 

linked to population and facility characteristics to derive, spatially, the treatment-seeking 

patterns within the facility catchment zone. For Afghanistan, the second case study, this analysis 

was stratified by health facility type. The purpose of stratification was to compare a mean 

utilisation pattern based on all the health facilities (i.e. the distance decay model) to the patterns 

derived based on facility type. The Afghanistan analysis suggested that a mean distance decay 

pattern based on facility type stratification was similar to that derived from all health facilities 

without stratification. Subsequently, the analysis in Eritrea was not stratified by health facility 

type.  
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Population within the health facility catchments were calculated and adjusted using the 

probability to seek treatment for fever before being used to derive malaria case incidence, via a 

Bayesian spatio-temporal condition autoregressive (CAR) model, using cases observed at health 

facilities. Data on population were obtained from Worldpop (Worldpop, 2010) while disease 

cases were obtained from various national malaria control programmes (NMCPs). The Bayesian 

spatio-temporal CAR model complexity increased from one case study to the next. Thus, there 

was a variation in model set-up based on experiences of previous case study. For example, the 

Namibia CAR model did not incorporate random effects at regional levels compared to the 

Afghanistan and Eritrean model, while, nonlinear priors were used in Eritrea compared to a fixed 

effect assumption in both Namibia and Afghanistan. These approaches used in this thesis 

together with their limitations are subsequently described. 

 

This chapter reviews health goals and the MDGs in SSA outlining the burden of malaria and 

fever (section 1.2). Section 1.3 provides an overview of healthcare delivery in SSA with section 

1.3.2 providing a description of Health Management Information Systems (HMIS) followed by 

roles of national household and health facility surveys for measuring and monitoring population 

health (section 1.3.4 and section 1.3.5). Methods for measuring access and utilisation of 

healthcare services are reviewed in section 1.4. Geographic access (section 1.4.2), distance as a 

metric of access (section 1.4.3) and catchments (section 1.4.5) form the body of this section. 

Lastly, disease-modelling approaches are reviewed (section 1.5) starting with historical 

developments in spatial and spatio-temporal disease mapping methods (sections 1.5.1 and 1.5.2) 

then the spatial-only methods used for point data (section 1.5.4) and areal data (section 1.5.5). 
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The latter part focuses on spatio-temporal approaches and concludes by outlining the scope of 

the thesis, providing a justification for selection of the study countries. 

 

1.2 Health in developing countries 

1.2.1 The Millennium Development Goals (MDGs) and Sustainable Development Goals 

(SDGs)  

Over the past two decades, the human global development agenda has been shaped by two 

components. The first is the Millennium Development Goals (MDGs), initially mooted in 1990 

and adopted by the 189 UN member states in 2000 (UN General Assembly, 2000). The second, 

the Sustainable Development Goals (SDGs) came to the fore at the Earth summit in Rio de 

Janeiro in 1992 and recently took centre stage at Rio + 20 summit in 2012 to generate concepts 

similar to the MDGs but looking beyond 2015. The current aim is to merge these two parallel but 

very similar concepts when it comes to human sustainable development agenda post-2015 (UN, 

2012b). This section briefly outlines both the MDGs and SDGs particularly focusing on health 

goals and the agenda beyond 2015.  

 

In general, there are eight broad MDGs (poverty, food security, education, health and family 

planning, infrastructure (energy, housing, water and sanitation), environment, security, and 

governance). The MDGs were agreed upon by UN member states after it was realized that many 

low-income countries could not achieve the necessary economic growth and eliminate 

widespread poverty. Thus, the main strength of the MDGs is that they constitute direct and 

measurable goals and this ignited interest from developed countries to put resources forward to 

foster growth and development.  Consequently, funding initiatives and interventions were set up 
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with the aim of improving economic development, health, sanitation, access to education, better 

housing and basic infrastructure in developing countries (UNDP, 2003). 

 

The health goals focused on reducing the child mortality rate by two thirds (MDG 4), improving 

maternal health (MDG 5) and combating HIV/AIDS, malaria and other diseases (MDG 6). MDG 

4 aims at reducing, by two thirds, the rate of child and infant mortality. MDG 6 targets include 

(a) halting and reversing the spread of HIV/AIDS, (b) achieving universal access to antiretroviral 

therapy for HIV/AIDS patients, and (c) halting and reversing the incidence of malaria and other 

major infectious diseases. Indicators for malaria include the prevalence and deaths associated 

with malaria and the proportion of population at risk of malaria using appropriate preventive and 

treatment methods. Some of the recommended strategies at achieving the malaria targets by 

RBM partnership include the universal coverage and use of LLIN,  indoor residual spraying, the 

use of diagnostic testing under the T3 (Test-Treat-Track) initiative and preventive therapies 

during pregnancy, in infants and young children (World Health Organization, 2014d). 

 

According to the WHO malaria report 2014, there has been, globally, a reduction in malaria 

death by 47% and by 54% in Africa between 2000 and 2013. This trend goes hand in hand with 

an overall reduced parasite prevalence in Africa (Noor et al., 2014). However, national and sub-

national variation exists, especially in SSA (O'Meara et al., 2010, Snow et al., 2010b). The 2014 

MDG report suggest that, in SSA, close to half of the population (48%) live on less than $1.25 

per day, child mortality rate remains high at 98 deaths per 1000 live births with annual rates of 

decline well below 8% (the required rate). Thus, poverty and economic development remain a 

major challenge since most national governments in these low-income countries are unable to 
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meet the financial requirements to attain the MDG targets (Fortney et al., 2001, Neuman et al., 

2011).  Outside SSA, Bangladesh provides an example of a country on track to achieve MDG 4 

(Chowdhury et al., 2012) (World Health Organization and UNICEF, 2012) and China, despite 

significant strides in reducing poverty, is still ranked second behind India with 13% of the global 

extreme poor population (UN, 2014).   

 

The Lozano multi-country study (Lozano et al., 2011) pooled data from household surveys and 

censuses including complete vital registration data, surveillance, Complete Birth Histories 

(CBH), Summary of Birth Histories (SBH) and maternal mortality rates extrapolated beyond 

2015 using rates of change between 1990 and 2011. Results from this study suggested few 

countries were likely to achieve MDG 4 or MDG 5 in SSA by 2015 based on observed rates of 

change. Eight countries were likely to meet these targets within 10 years after 2015 (Lozano et 

al., 2011). The example of Bioko Island, Equatorial Guinea, showed remarkable gains on MDG 

4 following scale up of interventions (Kleinschmidt et al., 2009). Similar observations have been 

highlighted in other country-specific studies such as in Ghana (Nakamura et al., 2011, Zere et 

al., 2012), Niger (Amouzou et al., 2012) and Papua New Guinea (PNG) where substantial 

differences in child mortality rates were observed based on the 2000 national census and 2006 

DHS (Bauze et al., 2012).   

 

The main criticism of the MDG concept is that it is viewed as narrow in scope that culminates 

with specific targets to be evaluated by 2015. Thus, many view the MDGs as short and medium 

term goals with a focus on development and poverty at a micro-level and in some case with 

metrics that are difficult to assess. For instance, MDGs fail to address in a comprehensive way 
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issues of sustainability, youth unemployment, violence and conflict, good governance and human 

rights. Many of these issues emerged later after the 2000 declaration. There are other issues 

inherent in the MDGs related to metrics and how these are evaluated in terms of comparison with 

baseline measures and to other developed countries. The United Nations General Assembly, in 

2010, put in place a high level panel to coordinate activities and consultations beyond 2015. This 

was followed by the launch of a task team by the UN Secretary-General in 2012 to coordinate 

activities of a high-level panel on policy beyond 2015. The post-2015 agenda is shaped by the 

political document (UN, 2012a) produced as one outcome of the Rio +20 conference on 

sustainable development (UN, 2012a) and reaffirms political commitment to achieving various 

MDG goals post-2015. The post-2015 agenda addresses some of the weaknesses in the MDGs 

and integrates the strength into the SDGs (UN, 2012b).  

 

The SDGs attempt to address these issues by incorporating the micro-level metrics (MDGs 

essentially) at a global (macro) level and in a sustainable way (long-term). Some of the 

challenges to be addressed in general stem from the changing population age-structure dynamics, 

environmental sustainability, human resource and labour, global markets and governance. The 

Rio +20 declaration raised more than 20 targets and in terms of health, the indicators on child 

mortality, malaria, HIV/AIDS, Tuberculosis remain unchanged post-2015 as specified in the 

MDGs (UN, 2012a, b). The SDGs however emphasise the need to strengthen health systems, and 

promote preventive and effective treatment to non-communicable diseases (NCD) since NCDs 

pose a major challenges to sustainable development in both developed and developing countries.  
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1.2.2 Review of progress in malaria control in SSA post Global Malaria Eradication Plan 

(GMEP) era 

The failure of the GMEP in the 1950s and 1960s, particularly in stable transmission areas in 

Africa (Nájera et al., 2011) coupled with resistance to both parasite and vector, led to resurgence 

of the disease in the 1980s through to the 1990s (Nájera et al., 2011, Snow et al., 2012). Malaria 

control during and post the GMEP era involved largely the use of chloroquine for treatment and 

spraying using insecticides such as dichloro-diphenyl-trichloroethane (DDT) (Snow et al., 2012).  

By 1978, several countries, particularly in Europe and the Americas (27 in total), had been 

declared malaria-free (Mendis et al., 2009). In Asia, in countries such as India and Sri Lanka, the 

burden decreased significantly during the GMEP era. For example, Sri Lanka reduced the 

number of reported cases within a 20 year period from several millions in the 1940s to just 18 

cases by the late 1960s (Organizastion, 1969). In October 1992, a ministerial conference 

constituted by the World Health Organisation (WHO) with participants from 102 malaria 

endemic countries adopted a declaration on malaria control and expressed commitment to 

implementing a global strategy aimed at reducing morbidity, mortality and addressing emerging 

resistance. The Roll Back Malaria (RBM) programme was later launched in 1998 to mobilize 

support (Roll Back Malaria partnership, 2011). Malaria was also included in the global MDGs in 

the year 2000 (United Nations, 2000).  

 

With the exception of 36 countries at the margins of stable transmission, the majority of the 

malaria endemic countries (99) focus on control (Feachem et al., 2010, Tatem et al., 2010). 79 

countries have eliminated malaria, most during the GMEP (1955 to 1969) (Global Health Group, 

2011). The current gains are as a result of funding commitments of international, multilateral and 
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bilateral organisations to support malaria control activities. This include funding from the 

Department for Internal Development (DFID), the World Bank, the launch of the Global Fund in 

2002 and the President’s Malaria initiative (PMI) in 2006 (Snow et al., 2010b). Although 

funding in general has increased in the past decade (from < US$ 100 million in 2000 to the 

projected US$ 1.9 billion in 2013 (World Health Organization, 2013b)), it is likely to fall short 

of the US$ 5 billion required to achieve global targets (Snow et al., 2010b, World Health 

Organization, 2011). In addition, it is unlikely that domestic financing will bridge the resource 

needs gap in the near future. The Global Fund currently accounts for nearly half of funding 

commitment to endemic countries. Other support is from the Presidential Malaria Initiative 

(PMI) and the United Kingdom Department for International Development (DFID) and other 

agencies. In addition to a call for universal coverage of ITNs in 2008 by the UN-Secretary 

general, there is a renewed focus on elimination (defined as the state where endemic local 

transmission has been interrupted to zero incidence with risk of re-establishment due to imported 

cases minimized (The Malaria Elimination Group, 2009, Feachem et al., 2010) and eradication 

(i.e. complete or permanent removal of incidence or malaria parasites) (Roberts and Enserink, 

2007, The Malaria Elimination Group, 2009). In 2007, the Malaria Elimination Group (MEG) 

was launched to support and provide to countries that intend to eliminate malaria (Global Health 

Group, 2007) while the Malaria Eradication and Research Agenda (maIERA) (The malERA and 

Diagnostics, 2011) mandate is to lead a research agenda. Presently, 36 countries aim at 

eliminating malaria (Global Health Group, 2011). Nine countries in Asia Pacific and in Europe-

Middle East-Central Asia; and 11 countries in Asia Pacific, are pursing elimination. In Africa, 

seven countries are pursuing elimination: four in southern Africa (Namibia, Botswana, South 
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Africa and Swaziland (Southern African Development Community, 2012)); Algeria in North 

Africa; Cape Verde; and São Tomé and Príncipe (Figure 1.1)). 

 

Figure 1.1: Countries eliminating or controlling malaria 

Countries that are free of malaria (grey colour), controlling malaria (red) and are eliminating malaria or have 

declared elimination (light yellow). Data from the Global Health Group (Global Health Group, 2007). 

 

Improved funding for malaria control has, for instance, increased the coverage of ITNs in Kenya 

to 44% by the end of 2007 (Noor et al., 2009a) compared to only 3% in 2003, based on the 

Multiple Indicator Cluster Survey (MICS). Another example in SSA is Bioko Island which 

achieved MDG goal 4 in a single year due to a scale up of interventions (ITN and Indoor 

Residual Spraying (IRS)) (Kleinschmidt et al., 2009) and in Rwanda which observed a decrease 

in malaria incidence following scale-up of ITNs (Ministry of Health, 2010). Countries in the 

WHO Eastern Mediterranean and European Regions stepped up efforts of elimination in the 

1990s and by 2008 only Algeria of the Northern Africa countries reported an autochthonous case 

(World Health Organizastion, 2009). Further, United Arab Emirates and Morocco were certified 

by the WHO as malaria free in 2007 (World Health Organisation, 2007, Regional Office for 

Eastern and Mediteranean Region, 2013) and Egypt, Armenia, Turkmenistan, Syria Arab 
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republic all reported zero local acquired cases by the mid 2000s (Mendis et al., 2009). Indeed 

within the WHO/EMRO region three countries (Saudi Arabia, Iraq and Islamic republic of Iran, 

Afghanistan) have significantly reduced burden in the last 10 years. Djibouti has also reduced its 

burden significantly in recent years (Noor et al., 2011). The remaining countries (Pakistan, 

Somalia, Sudan, South Sudan and Yemen) still witness a varying burden of Malaria (World 

Health Organisation, 2007). The burden has also reduced in Europe and recent evidence 

indicates the region is on track of achieving elimination by 2015. Similarly there is reduced 

burden in South-East Asia (10 countries with ongoing transmission) and the western Pacific 

regions (Mendis et al., 2009). In SSA several countries such as Eritrea, Djibouti and Namibia 

have reduced burden significantly (by >75%) since 2000. Ethiopia and Zambia are also projected 

to reduce burden by at least 50% by 2015.  

 

ACTs are now recognized and used as first line treatment of Plasmodium falciparum malaria in 

every endemic country and the majority (for example in Ethiopia, Kenya and the Gambia) are in 

the process of achieving high coverage (World Health Organization, 2010a). The WHO 

recommends diagnosis of all febrile cases before treatment with ACTs to avoid treatment of non-

malaria cases. As a result, malaria endemic countries have or are in the process of scaling up the 

use of rapid-diagnostic tests (RDTs) in health facilities with some deployment through 

community health workers (CHW) (DOMC, 2010, Ministry of Health, 2010, Ministry of Health 

and Social Services, 2010c). 

 

This increase in the coverage of interventions has led subsequently to a decrease in the burden of 

malaria at national and sub-national levels, for example, in Kenya and the Gambia (Ceesay et al., 
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2008, Okiro et al., 2009) and in Disease Surveillance Sites (DSS) (O'Meara et al., 2008). Despite 

the reported decline, variation in burden exists between and within countries.  

 

A recent publication by Noor et al. (2014) highlighted reduction in falciparum malaria across 

SSA. The study utilised parasite rate surveys across the 49 malaria endemic countries in Africa 

and predicted age-standardised (2-10 years) parasite prevalence (PfPR2-10) at fine spatial (1 x 1 

km) and temporal resolution (2000 and 2010). One of the major findings of the study suggested a 

reduction in population at risk in 2010 when compared to 2000, although, this varied within and 

across the countries. In some areas, malaria transmission had reduced to a level requiring a re-

orientation of national malaria control programme focus from sustained control to elimination or 

pre-elimination. These included regions where PfPR2-10 remained at <3% in 2010 when 

compared to 2000 (Noor et al., 2014). Some of the countries where national mean PfPR2-10 is  < 

3% included Namibia, Eritrea, Swaziland, Djibouti, Rwanda, Mayotte and Cape Verde with the 

first two countries being case studies in this thesis. 

 

In such low transmission areas, the distribution of risk is highly focal, or clustered in time and 

space, and identifying foci requires considerably greater sampling effort and cost using the 

method for mapping malaria risk used in Noor et al. (2014). The surveys are single time-point, 

cross-sectional community-based parasite prevalence surveys. Other measures that can be used 

to define risk include the use of health facility reported cases and become more valuable to 

define risk in space and time when asymptomatic infection prevalence becomes rare. However, 

there are few examples of using imperfect health facility reported data to map malaria risk in 

space and time that is a subject of this thesis (Gething et al., 2008). Further, there are no 
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examples of where these have been used in combination with other household surveys to adjust 

for utilisation rate of febrile cases. This thesis applies a Bayesian hierarchical model-based to 

HMIS data to estimate malaria incidence at national level combined with a novel approach of 

estimation the denominator (catchment population) based on malaria treatment seeking 

behaviour. This modelling strategy should support the ambitions of national malaria control 

programmes in low malaria transmission and support elimination strategies. 

1.2.3 Rationale for using fever for studying treatment seeking behaviour 

Fever is one of the clinical symptoms associated with malaria and is a common presentation in 

health facilities, and has been the basis of treatment of uncomplicated malaria in endemic regions 

(Einterz and Bates, 1997, Snow et al., 2003). This makes fever an entry point in studying malaria 

treatment practices. The identification of fever as a morbid event and its treatment varies within 

and between communities (Einterz and Bates, 1997, Beiersmann et al., 2007, Chibwana et al., 

2009, Oyakhirome et al., 2010). For example,  the word  ‘homa’ is common to Kenya and 

Tanzania (Winch et al., 1996), ‘asra’ to Ghana (Agyepong, 1992) and ‘oluludi’ to Namibia 

(Davies, 1994). This variation of terminology also means that the symptoms associated with its 

description may also vary between communities. For example ‘asra’ (mild fever) not only refers 

to a rise in body temperature but may also be associated with bitterness in the mouth, yellow 

eyes and deep coloured urine, all symptoms of severe malaria. In the same local context, in 

Ghana, significantly high fever is identified as ‘asraku’ (Agyepong and Manderson, 1994).  

 

The nature and occurrence of malaria and related fever varies according to the intensity of 

transmission (Snow and Marsh, 2002, Guerra et al., 2008). Thus, the number of fever cases 

attributed to malaria will vary depending on the transmission intensity. Figure 1.2 shows a fever 
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treatment protocol common in most settings. Fever in most patients can be a mild event and 

subsequently resolve itself without any treatment. In many other settings, fever is usually first 

managed at home or informally by purchasing medicines from drug shops, vendors or 

pharmaceuticals (McCombie, 1996, 2002, Amin et al., 2003, Goodman et al., 2007). Past studies 

have shown that mothers or care givers’ education level, socio-economic status and availability 

and quality of care determine the use of formal health facilities (Kazembe et al., 2007, Chuma et 

al., 2009a, Rutebemberwa et al., 2009). A review by Goodman and others in countries across 

SSA estimated that over 50% of fever cases are usually treated informally (Goodman et al., 

2007). Breman (2001) referred to this phenomenon as “ears of hippopotamus” and it is also 

commonly known as ‘the iceberg effect’ in some public health literature (Donaldson and Gabriel, 

2009), where only a few cases are formally treated in the public sector and a significantly larger 

burden is untreated or managed at community level (Breman, 2001). Many findings from studies 

carried out in Kenya (Amin et al., 2003, Guyatt and Snow, 2004), Rwanda (Saksena et al., 2011) 

and Malawi (Kazembe et al., 2007) support this observation. In the Sudan, a country with low 

infection rates, a household survey showed that only about 40% of the surveyed population 

sought treatment from the public sector where the self-reported two week fever prevalence rate 

was approximately 20% (Elmardi et al., 2011). Currently, many national malaria control 

programmes discourage presumptive treatment of fever following the WHO recommendation to 

the use of parasitological diagnosis using either microscopy or RDTs (World Health 

Organization, 2010b, Elmardi et al., 2011, Gitonga et al., 2012). 

 

Severe or complicated malaria can be grouped largely into severe malaria anaemia and cerebral 

malaria (Taylor and Molyneux, 2002). The former is characterized by presence of both P. 
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falciparum as well as a haemoglobin level of less than or equal to 5 g 100ml
-1

 or up to 7 g 100ml
-

1
 in low transmission settings  (Taylor and Molyneux, 2002, World Health Organization, 2010a). 

For cerebral malaria P. falciparum is present in addition to clinical features of convulsions and 

loss of consciousness, usually coma (Marsh and Snow, 1999, Taylor and Molyneux, 2002). 

Marsh & Snow (1999) caution that these clinical descriptions although useful, are rather coarse 

because in high endemicities, P. falciparum is usually present while at the same time there are 

possible multiple causes of anaemia.  Other forms of the disease have previously been shown to 

overlap with severe respiratory infections such as pneumonia (Akpede et al., 1992, Rooth and 

Bjorkman, 1992, Akpede et al., 1993, English et al., 1996, Crawley et al., 1998, Kallander et al., 

2004, Thurmond et al., 2005). 
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Figure 1.2 Fever burden treatment protocol 

Framework for studying fever treatment behaviour showing the different pathways to treatment and some of the 

fever cases self-resolve with no action taken. Treatment may be sought based on several factors broadly classified as 

predisposing (age, sex), enabling (socio-economic status (SES) and need (availability, cost) (Aday and Andersen, 

1974a). The choice (formal sector or informal sector) vary between different settings.  Those that seek treatment in 

formal public sector are classified within the public health facility catchments. 

 

1.2.4 Measuring malaria morbidity: Epidemiological models 

Malaria risk refers to exposure to the malaria parasite (infection) through the bite of the female 

Anopheles mosquitoes that have sporozoites in their salivary glands (Ross, 1910). The morbidity 

of a disease is often measured using prevalence or incidence indices (Donaldson and Gabriel, 

2009). The former is effectively defined as a ratio of cases observed in a population (point 

prevalence), while the latter deals with new cases arising over a time frame (Donaldson and 

Gabriel, 2009). Prevalence is usually stated as a rate (Gething et al., 2011b), while incidence 
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indices, such as the Annual Parasite Index (API), is useful in identifying the determinants of the 

disease in the general population and expressed as number of cases per 1000 population (Pull, 

1972, Ray and Beljaev, 1984). This section reviews the common approaches of measuring 

transmission. 

1.2.6.1 Spleen rate (SR) and parasite rate (PR) 

The oldest technique for measuring malaria prevalence in a population (endemicity) is the 

occurrence of enlarged spleens, splenomegaly,  introduced in 1847 by Demster in India (Gilles, 

2002). One of the main functions of the spleen in the human body is to remove infected cells 

(Abdalla and Pasvol, 2004). Thus, the prevalence of enlarged spleen or ‘spleen rate’, usually 2-3 

times the normal size,  is a useful indicator of intensity of malaria transmission (Walter Carr, 

1892, Shukla et al., 2011). Historically, the highest incidence of hyper-reactive malaria 

splenomegaly (HMS), was reported in West Africa (Adedoyin and Fagbule, 1992, Allam et al., 

2008), in Zambia (Lowenthal et al., 1980) and for Kassalla province in the Sudan (Allam et al., 

2008). Some previous studies have also shown that spleen enlargement can vary based on 

genetic factors (Greenwood et al., 1987).  Spleen rates have lost importance in modern practice 

with advances in malaria parasitological molecular and serological measures that can isolate the 

malaria parasites (Shukla et al., 2011).  

 

A popular measure of population prevalence is the percentage of blood smears with malaria 

parasites measured using microscopy or RDTs (Hay and Snow, 2006, Hay et al., 2008). 

Microscopy is regarded as the gold standard in identifying, detecting and quantifying malaria 

parasites (World Health Organizastion, 2011). The advantage of parasite prevalence surveys is 

that they can potentially cover large geographical areas (Guerra et al., 2007) even though they 
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may fail to provide precise estimates of infection rates as transmission declines. At a national 

level, surveys such as the Malaria Indicator Survey (MIS) and the Demographic Health Survey 

(DHS) incorporate parasitaemia testing, even though they are primarily powered to provide 

information on the coverage of malaria interventions (Roll Back Malaria Monitoring and 

Evaluation Reference Group et al., 2005, MEASURE DHS, 2011). Microscopy or RDTs are 

used to measure parasitaemia in these surveys. One drawback of surveys in low transmission 

settings is the need for larger sample sizes as well as a need for a greater temporal frequency to 

adequately capture infection rates (Yekutiel, 1960, Beier et al., 1999). 

1.2.6.2 The Force of infection (FOI) 

The Force of Infection (FOI), defined as the rate of new infection in the population  (Bekessy et 

al., 1976, Charlwood et al., 1998), is used as an alternative measure of transmission intensity 

although in practice it requires a follow up of a specific population group over a certain period of 

time (Yukich et al., 2012). FOI can be measured using different approaches. One approach is the 

infant conversion rate, the rate at which prevalence increases in young children. This has been 

demonstrated in studies carried out since the 1970s (MacDonald, 1950) and in the example of the 

Gambia (Snow et al., 1997). Alternatively, molecular measures have been used (Mueller et al., 

2012). This is usually by genotyping parasites of infected individuals such that an occurrence of 

a super-infection, can uniquely be isolated and monitored (Falk et al., 2006, Yukich et al., 2012). 

In some low transmission settings, serology has been used to derive FOI using prevalence of 

antibodies, since infected individuals can remain sero-positive for a long time after infection 

(Drakeley et al., 2005, Corran et al., 2007, Cook et al., 2011). Yukich et al. (2012) show that a 

reversible catalytic model (Corran et al., 2007) can be used to transform the age profiles of 

previously infected populations to history of infection, thus, deriving the FOI index. 
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1.2.6.3 Entomological indices 

The reproductive number (R0) is defined as the number of new individuals infected as a result of 

introducing a single case to a susceptible population covering a given period, usually annually 

(Dietz, 1993, Smith et al., 2007). The index is therefore better at measuring spread of disease, 

and has a historical basis in population and demography (Harrison, 1978) (Macdonald, 1956). 

The R0 has important implications for malaria control, especially when it comes to estimating the 

effort required to eliminate the disease. Several authors have shown that if R0 is kept low based 

on control (R0 <1) then the disease can be eliminated (Smith et al., 2007, Gething et al., 2011b). 

Smith et al. (2007) discuss the factors that affect the calculation of R0 such as population density, 

population movement, larvae habitat and vector host seeking behaviour including factors that 

drive individual biting rate and provide a mathematical model for estimating R0 based on 

Entomological Inoculation Rate (EIR)  and parasite prevalence.  

The EIR is defined as the number of infective mosquito bites per individual for a defined period 

of time, for example per annum or day (Macdonald, 1956, 1957). The EIR is therefore measured 

as the product of the number of infectious mosquitoes (the sporozoite rate) and the biting rate 

(Beier et al., 1999, Hay et al., 2000b) but in practice it is challenging to use this index because of 

the challenges posed by non-standardised entomological techniques (Hay et al., 2000b). For 

instance, the most direct method of measuring the biting rate is by using human bait and catching 

the number of mosquitoes that attempt to feed on the person (Hay et al., 2000b). This, however, 

raises ethical concerns around exposing individuals to infections while alternative techniques, 

such as light traps, are less attractive because they do not involve direct contact between the 

mosquito and humans (Le Goff et al., 1997, Hay et al., 2000b, Smith et al., 2005). In addition, 

there are other uncertainties related to the sporozoite rate. For instance, not all sporozoite-
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infected mosquito bites lead to an infection because the amount of sporozoites injected may be 

insufficient (Smith et al., 2005). Moreover, there are difficulties in ascertaining whether the 

additional bites in an already parasitemic population (in high endemicity) (Snow and Marsh, 

2002, Smith et al., 2005) result in super-infections (Charlwood et al., 1998). In low transmission 

settings, the reduced number of mosquito catches reduces the effectiveness of using EIR 

(Githeko et al., 1996, Hay et al., 2000b). 

 

Of the two indices, EIR is more commonly used compared to R0, despite it being labour intensive 

to estimate and challenging to compare across different sites (Gething et al., 2011b). One study 

in two communities in Senegal compared the infant mortality rate (IMR) and the EIR (estimated 

through field entomological surveys) and showed that the two were directly proportional, 

suggesting a reduction in EIR was related to reduction in IMR (Smith et al., 2004).  

 

1.2.5 The role of surveillance as a method for assessing morbidity and control 

The evolution of the word surveillance started in the 1950s as part of eradication programmes 

and was used as a means of preventing re-emergence of malaria (World health Organizastion, 

1957). According to the WHO, surveillance included the identification of infections, 

investigation, elimination of transmission and prevention as well as cure (World Health 

Organization, 2007a, 2012a). This could be done on a routine basis in high endemicity areas, 

thus, constituting a tool for malaria control (Mueller et al., 2011).  The WHO recommended 

surveillance to focus interventions in order to eliminate foci transmission in very low 

endemicities or where prevalence has been reduced to very low levels to the point that the 

disease is not considered a major public health problem (WHO/Regional Office for Africa, 2001, 
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WHO/Regional Office for South-East Asia, 2003). Examples include countries in the pre-

elimination or in early consolidation phase (Pull, 1972). There are two broad areas with regard to 

surveillance. The first is concerned with determining the incidence of disease including the 

identification of cases and foci infections while the second deals with elimination of the 

identified cases (Pull, 1972, Ray and Beljaev, 1984).  

 

Identification of incidence comprises both active and passive case detection as well as 

parasitological screening of both the febrile and non-febrile cases in foci areas (Ray and Beljaev, 

1984). Screening of all individuals ensures that even asymptomatic infections are identified 

(Yekutiel, 1960). In high endemicity areas febrile cases are a common phenomenon and have for 

a long time been treated as symptomatic infections (Owusu-Agyei et al., 2001). Currently, 41 out 

of 44 countries in Africa have adopted the use of parasitological diagnosis of suspected fever 

cases prior to treatment under the 2012 WHO T3 (Test, Treat, Track) initiative (World Health 

Organization, 2013b, Bastiaens et al., 2014). Approximately 26 countries in SSA have deployed 

the use of RDTs at community level. Active case detection involves screening febrile cases at 

household or community level at regularized time intervals (weekly or monthly) during 

transmission months. Passive case detection identifies cases through health facilities at tertiary 

level (hospitals), secondary and at primary level facilities (dispensaries and clinics) (Jie et al., 

1998, Perry et al., 2007). In some health systems community health workers attached to primary 

level facilities and private practitioners are additional sources of case identification (Jones et al., 

2008). The current WHO guideline recommends treatment of confirmed uncomplicated cases of 

P. falciparum using ACTs. Different guideline exists for special groups such as pregnant women 

in the first trimester while a combination of quinine plus tetracycline or doxycycline is 
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recommended as the second line (World Health Organization, 2010a). For severe P. falciparum 

malaria, intravenous artesunate or quinine is acceptable for both children and adults (World 

Health Organization, 2010a). The recommended treatment for P. vivax is a combination of 

chloroquine (CQ) and primaquine.  

 

1.3 Review on delivery of healthcare in low income countries 

1.3.1 Delivery of healthcare in Sub-Saharan African countries: Public or private 

providers?  

Healthcare in both high and low income countries is delivered mainly through a mixture of 

public and private sectors. Both these sectors refer to organisations as well as institutions that are 

responsible for both provision and financing of health services (Bennett, 1992). Thus, public-

sector institutions are usually fully within state control compared to the private sector, where the 

state has no exclusive control. Debate has recently developed over the balance of public and 

private sector provision with calls to recognize the role of the private sector in developing 

countries (Basu et al., 2012).  Basu and others report two major lines of arguments with those in 

favour of strengthening the public sector pointing to inequalities resulting from private sector 

provision since private provision is tailored on the ability to pay (Basu et al., 2012). In contrast, 

those championing the private sector system suggest that government-based institutions are 

unable to provide sufficient coverage of health services in addition to factors such as poor quality 

of services within government facilities (Prata et al., 2005). In terms of utilisation for fever 

treatment, approximately 40% of the population globally use the private sector based on 

estimates from the household surveys, although the actual estimates vary by country (World 

Health Organization, 2013b). Although reliable data on private sector is not usually available, 
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estimates from malaria indicator surveys in some countries suggest that the uses of 

parasitological diagnosis of suspected fever cases is lower compared to the public sector. Lack of 

data on cases seen in the private sector affects the estimates of malaria burden which results in 

uncertainty in estimating appropriate treatment needs and surveillance. This rest of this section 

outlines the mechanisms and interaction of these two systems in countries in SSA, focusing 

mainly on provision rather than financing. 

 

Inefficiency, declining quality of services, long waiting times, lack of hospital beds and 

irresponsiveness of providers are some of the challenges facing the public sector in SSA 

countries (Bennett, 1992, Quaye, 2010, Flessa et al., 2011, Laudicella et al., 2012). The increase 

in demand for services (e.g. from the middle-class population (Berman et al., 1995)) coupled 

with reduced expenditure on health has undermined the ability of many public facilities to 

provide efficient medical care (Barnighausen and Bloom, 2009, Zikusooka et al., 2009). Figure 

1.3 (Page 24) shows general expenditure on health in Sub-Saharan African countries and 

suggests public sector expenditure is the smallest component of the total health allocations in 

SSA. Policies such as cost sharing and user fees have had a negative impact on utilisation of 

publically funded facilities (Gilson, 1997, Nabyonga-Orem et al., 2008, Chuma et al., 2009b, 

Hadley, 2011). For instance, public health facilities are limited in coverage in some countries and 

operate at regional or district level (Noor et al., 2009b, Noor et al., 2009d). A survey of 

providers in three districts in Uganda showed 4.3% constituted publically funded facilities 

(Konde-Lule et al., 2010). Noor et al. (2009) showed, in Kenya, the distribution of providers 

closely followed the population distribution, but the northern sparsely populated regions were 

underserved (Noor et al., 2009b). Another study in three districts in Somalia showed that the 
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public sector comprised approximately 20% of facilities surveyed, but the majority were poorly 

equipped, lacked essential medicine and the majority of staff lacked essential training (Noor et 

al., 2009d). The latter highlighted some of the challenges faced by the public sector in many 

other settings. In Kenya, for example, current policy allows practitioners to render specialist 

consultative services to the public within public facilities, after attempts to remove an earlier 

directive that allowed physicians to operate private clinics failed (Muthaka et al., 2004). Lessons 

from Kenya and other African countries showed that outsourcing of services may often result in 

competition in tendering and amongst providers for various services which also may lead to 

unfair practices (Bennett, 1992). 
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Figure 1.3: Percentage of public, private and out-of-pocket expenditure on health in SSA 

Sub-Saharan African data showing the percentage of public, private and out-of-pocket expenditure on health as a 

percentage of total GDP at all income levels. Data source: World Bank (World Bank, 2014). 

 

There are two main categories of private providers namely: those for profit, and not-for-profit. 

The private for profit sector comprises of independent providers that aim to provide services 

based on the ability to pay (Prata et al., 2005). In SSA countries the sector accounts for 30% to 
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40% of total health sector expenditure (Figure 1.3 above) and includes private clinics, privately 

owned hospitals and nursing homes, pharmaceuticals, drug shop, vendors and informal 

traditional practioners, healers or birth attendants (Stekelenburg et al., 2005, Konde-Lule et al., 

2010, Basu et al., 2012).  These service providers tend to be located in urban centres with their 

location determined by supply-and-demand factors. Carapinha et al. (2011) reviewed the private 

healthcare sector in five different countries (Kenya, Uganda, Tanzania, Ghana and Nigeria) 

along with financing. In Nigeria, for example, the majority of providers were located in urban 

zones and operated independently from government in terms of provision as well as control 

(such as staff employment) (Carapinha et al., 2011). Government involvement in private owned 

facilities in countries such as Zimbabwe and Tanzania has been through social franchising (such 

as training, accreditation, certification and voucher schemes), where clinics and other entities 

operated within defined guidelines and subsidies (Kumaranayake et al., 2000, Fiedler and Wight, 

2003, Prata et al., 2005). However, regulation by the state has in other settings impacted 

negatively on the private sector. For instance, Kumaranayake et al. (2000) indicated that 

hospitals reduces staff numbers or removed services in response to various government 

regulations aimed at regulating costs.   Examples outside Africa on successful application of 

franchising were demonstrated in Vietnam (Ngo et al., 2010) and Myanmar (O'Connell et al., 

2011) on reproductive health. In the African context, therefore, the suggestion is to strengthen 

regulations and legislation governing healthcare practices (Muthaka et al., 2004).  

 

The private not-for-profit sector consists of charitable, religious and non-governmental 

organisation-based healthcare facilities. The private not-for-profit sector may be privately 

financed by a charitable or religious organisation but provide services to the general public in a 
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similar way to government hospitals (Bennett, 1992). Therefore, there may be some level of 

collaboration with state-owned facilities, since the objectives of the charitable or religious 

organisations tend to be similar to those within state control. The sector has largely grown in 

many countries for various reasons. For instance, the majority are viewed to be more effective in 

service delivery compared to government facilities and there is elevated confidence by external 

donors, who provide financial support, due to increased accountability (Bennett, 1992, Berman et 

al., 1995). In addition, these providers tend to be located in remote rural areas that tend to reach 

out to the marginalized populations. Studies that have examined performance of the religious or 

charitable facilities have identified duplication as a major concern due to poor coordination 

within the sector (Brugha and Zwi, 1998, Kumaranayake et al., 2000, Muthaka et al., 2004, 

Flessa et al., 2011). Another group of facilities that may be identified within this category 

includes mobile units, special treatment facilities as well as health driven programmes (Muthaka 

et al., 2004). These facilities are usually listed as part of health management information 

systems. 

 

1.3.2 The role of Health Management Information Systems (HMIS) in Africa 

Typically, a Health Management Information System (HMIS) coordinates the routine acquisition 

of data from health facilities (public and private) and compilation of these data through district, 

regional and national levels (Abouzahr and Boerma, 2005, Gething et al., 2006, Boerma and 

Stansfield, 2007) (Figure 1.4). An ideal HMIS, therefore, requires all health facilities to submit 

reports in all months throughout the year. These include routine disease morbidity data through 

facilities (passive case detection) and any cases detected at household level (active case 

detection), mortality rates, determinants such as access, coverage, quality of care, costs and 
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expenditure. Such data form an integral part of healthcare delivery and are useful for planning, 

resource allocation as well as assessment of interventions and disease monitoring (WHO/AFRO, 

2001, Abouzahr and Boerma, 2005). Within different healthcare systems, tools such as 

registration forms, patient admission records and clinic data collection forms, district and 

household surveys are used routinely to gather such data (Teich, 1998, Husk and Waxman, 

2004). In reality, however, HMIS are often incomplete in many African countries and many 

health facilities never report (Gething et al., 2006). In addition, only a proportion of cases 

present in the formal sector a phenomenon known as the ‘iceberg effect’ (Donaldson and 

Gabriel, 2009).  Some of the factors contributing to low facility utilisation include availability of 

health services, financial factors, geographic access and waiting times at facilities (Breman, 

2001). Studies carried out in Kenya suggested cost, distance and opening times as some of the 

main factors influencing choice and decision to seek treatment in either a public or private sector 

(Noor et al., 2006, Chuma et al., 2010). Another study in four sites of varying endemicity in 

Ethiopia by Mustafa et al. (2009) found that only about 27% of suspected febrile cases sought 

treatment from the informal sector and a similar percentage chose self treatment while in a rural 

district in Zambia, Kalabo district, Stekelenburg study suggested high preference to seek 

treatment from a traditional healer (62% for women), although not as a result of fever 

(Stekelenburg et al., 2005). Indeed,  in many settings in SSA, multiple treatment from multiple 

providers is a common occurrence (Kizito et al., 2012) and these in addition to under-reporting 

make the use of HMIS data difficult for applications such as estimating the disease burden or 

commodity needs. 
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Recently, efforts have been placed on identifying the type, extent and causes of failings of HMIS 

in developing countries and on developing strategies for improvement. Examples of these 

include the Health Metrics Network (HMN) (World Health Organization, 2008), 

PARIS21(OECD, 2012), the INDEPTH network (INDEPTH, 2012) and the Integrated Disease 

Surveillance and Response (IDSR) initiative (WHO/AFRO, 2001). These initiatives are aimed at 

strengthening health systems in developing countries to be able to generate timely health 

information useful for decision making at facility, district or national levels. An example of such 

a collaboration that was launched in 2006 was between the Zambia Ministry of Health (MoH) 

and the HMN. The HMN supported the Zambia and Eritrea in improving the status of its health 

information system (HIS) and formulating plans to streamline the HIS to improve performance 

(Ministry of Health and HMN, 2007). However, until the HMIS improves, various ministries of 

health in sub-Saharan Africa have little choice but to make critical public health decisions based 

on grossly inadequate data, often using crude estimates of national and regional burdens 

(Cibulskis et al., 2011, Mueller et al., 2011). To overcome some of the failings of HMIS or vital 

registration systems nationally representative demographic and health household surveys have 

been conducted in almost all countries in SSA since the 1980s. 
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Figure 1.4 HMIS data flow diagram 

Data flow within the HMIS showing data assembly flow. The number of cases assemble within the HMIS is affected 

by rate of utilisation, and nature of reporting to the national system 
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1.3.3 The role of health facilities as a component of the health system and in disease burden 

estimation 

Health facilities form an important component of a health system as they serve as the main 

centres for provision of services and also are used to depict system organization spatially (World 

Health Organization, 2000a). They provide information on the supply side. Information on 

healthcare need is predominantly provided through household surveys such as the DHS 

(Lindelow and Wagstaff, 2003). Increased attention is now being targeted at health facilities, in a 

bid to understand inefficiency, quality of service provision, inequalities of distribution and 

financing (Lu et al., 2014). Policies such as direct financing are being piloted in an effort to 

improve utilisation (Chuma and Okungu, 2011).  

 

 Although the use of facilities is influenced by different factors, the extent to which individuals 

interact with formal healthcare facilities reflects their availability and accessibility. In most rural 

settings in low income countries, family and friends provide first care before treatment is sought 

either from the private sector or the public sector (Clausen et al., 2000, Dzator and Asafu-

Adjaye, 2004, Deressa, 2007, Abu-Mourad et al., 2008). Understanding of issues of planning and 

inequality in service provision can be improved with knowledge on service providers.  

 

Health facilities provide an alternative data source for measuring disease burden and complement 

the existing community-based parasite prevalence. They also form the first line surveillance 

mechanisms for detecting disease epidemics within the population. In low transmission malaria 

settings, passive cases recorded at health facility can complement the deficiencies of the parasite 

rate approach. One advantage in using health facility data for disease burden estimation relates to 
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data being abundant in space since the spatial distribution of health facilities is likely to be 

congruent with the population distribution, for example, in Kenya (Noor et al., 2009b). The other 

advantage is data are often collected in an ongoing manner (Mueller et al., 2011). The 

implication is that data are likely to cover a wider geographic area, relate to the population and 

be useful in identifying seasonal dynamics of disease.  

 

However, there are challenges in using health facility data. First, available health facility data 

from most malaria-endemic countries are based on clinical diagnosis of malaria. Approximately 

26 countries out of 44 malaria-endemic countries in SSA have only rolled out the use of RDTs. 

Secondly, even where HMIS is better, only a sub-set of health facilities regularly report data and 

of these even fewer report every month of year and mainly from the public health sector 

(Gething et al., 2006, Boerma and Stansfield, 2007, Gething et al., 2007) resulting in incomplete 

data both spatially and temporally. Additionally, only a subset of fever cases is seen in the formal 

sector. The variation in utilisation (public and private) affects malaria burden estimation. 

Utilisation is driven by both human and health system factors.  

1.3.3.1 Organisation and spatial location of health facilities 

There is a difference between the location of a health facility and location of health services. 

Health facility location deals with the physical location while the latter requires an additional 

input of services offered at the facility (Cromley and McLafferty, 2002). Services could, 

therefore, operate within the confines of other services.  The World Health Organisation 2006 

report suggested that poor organisation contributes to poor delivery of healthcare (World Health 

Organizastion, 2006). One of the reasons for poor service delivery is that facility location may be 

based on pragmatic decisions that fail to consider user behaviour, distance and other 
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determinants of utilisation (Kiwanuka et al., 2008). In Kenya, the northern region had the least 

coverage of health facilities even after a considerable growth in the number of facilities over a 

five year period (Noor et al., 2009b). In Bangladesh a survey in 1997 showed that only about 

40% of the population were covered in 1997 through a special government survey (Government 

of Bangladesh, 1998, Rahman and Smith, 1999) and the results were subsequently used to 

improve primary healthcare (Omer et al., 2011). The study in Bangladesh demonstrated that 

provider location information can be useful in understanding healthcare need and can be used in 

the allocation of health workers to specific population groups. Location can be optimized based 

on provider-to-population ratios or using algorithms that minimize the distance between 

population and health facility (Cromley and McLafferty, 2002).  

 

1.3.4 The role of national household surveys as a source of data for health in low income 

countries 

Household surveys are increasingly being used to provide information on demographics and 

disease burden (Donaldson and Gabriel, 2009). These surveys, for example, the DHS and the 

MICS, can be used to compare various demographic and health indicators between different 

countries. Other household surveys are carried out by the national statistical bureaus such as the 

integrated household budget surveys, welfare monitoring surveys and economic surveys that 

provide specific information useful to national planning departments. This section will examine 

the DHS in depth along with the MIS. 

 

The DHS were initiated in mid-1984 by the United States Agency for International Development 

(USAID) as an extension to the World Fertility Surveys (WFS) and the Contraceptive Prevalence 



   

33 

 

Surveys (CPS) to monitor key population and health indicators in developing nations 

(MEASURE DHS, 2011, Short Fabic et al., 2012). The WFS and CPS mainly provided 

indicators on reproductive health in the 1970s and early 1980s (Short Fabic et al., 2012). The 

DHS are nationally representative with large sample sizes, usually more than 30,000 individuals, 

targeting both gender groups using standardised questionnaires. Currently, the DHS is conducted 

in 90 countries worldwide, 44 in Sub-Saharan Africa (Figure 1.5 Page 35). Other regions include 

central, south and south east Asia, Latin America and the Caribbean as well as some countries in 

the Euro-Asia region such as Turkey (MEASURE DHS, 2011). To date, over 250 surveys have 

been completed, providing information on reproductive health, fertility, population 

demographics and general health status, nutrition, household characteristics, socio-economic 

status and infant and child mortality rates (MEASURE DHS, 2011). The HIV module was 

introduced in 2001 as an additional component while a malaria parasitaemia module was added 

in 2006 (Short Fabic et al., 2012).  The MEASURE DHS programme also supports other surveys 

such as the AIDs Indicator Survey (AIS), the MIS,  Key Indicator Survey (KIS) and the Service 

Provision Assessment survey (SPA) (MEASURE DHS, 2011).  

 

The AIS provide data for monitoring HIV/AIDS indicators and may include blood testing but 

usually has a smaller sample size compared to DHS. Some AIS surveys also incorporate malaria 

testing, for example, the Tanzania 2007-2008 AIS (Tanzania Commission for AIDS (TACAIDS) 

et al., 2008). The tools used in the MIS module were developed by the Monitoring and 

Evaluation Reference Group (MERG) or Roll Back Malaria (RBM) (Roll Back Malaria 

Monitoring and Evaluation Reference Group et al., 2005). In most countries MIS are carried out 

during malaria transmission months and they also provide key information on malaria 
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interventions such as the use of mosquito nets amongst high risk groups (children under the age 

of five years as well as pregnant women), access and use of effective anti-malarial drugs and 

coverage of IRS (Roll Back Malaria Monitoring and Evaluation Reference Group et al., 2005). 

Over 20 MIS surveys have to date been completed since 2006 and data are provided through the 

malaria surveys data portal as well as through the Measure DHS. KIS is designed to provide 

information about health programs at regional or district levels on planning, child and maternal 

health and infectious diseases but not relevant for providing data on treatment seeking behaviour 

for fever (MEASURE DHS, 2011). 

 

Modern DHS survey design is based on two-stage cluster sampling in which clusters, usually 

Enumeration Areas (EAs), are selected in a first stage and a sample of households selected at the 

second stage from a household list within the selected cluster (Macro International Inc., 1996). 

Sampling is usually based on proportion-to-population size in the cluster although in some 

countries clusters are oversampled in sparsely populated regions to obtain sufficient estimates of 

indicators, for example, in the Malawi 2010 DHS (National Statistical Office (NSO) and ICF 

Macro, 2011). These may also apply to urban clusters for areas where urban centres are small 

(Macro International Inc., 1996). A cluster usually consists of approximately 15 to 30 households 

geo-referenced using a global positioning systems (GPS) receivers (Macro International Inc., 

1996) with an induced positional error of up to 5 km for rural clusters and 2 km in the urban 

clusters (MEASURE DHS, 2011). It is worth noting that some MIS surveys provide geographic 

coordinates at the household level. As data from these surveys become available in the public 

domain, they have increasingly been used to study different research questions (Short Fabic et 

al., 2012). 
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Figure 1.5: Global coverage of nationally representative household surveys  

Map showing countries that have conducted a DHS, MIS or AIS survey since 2005 and those with no malaria risk 

masked out in grey. 

 

1.3.5 The role of Service Provider Assessment surveys (SPAs) in developing countries 

Unlike the MIS, DHS or AIS that are carried out at the household level, the SPA surveys are 

carried out in health facilities. SPAs are part of the MEASURE DHS and provide information on 

health facility characteristics, child and maternal health, family planning, diseases such as 

malaria, TB and HIV/AIDS and sexually transmitted infections (STIs) (MEASURE DHS, 2011). 

The aim of SPAs is to assess the ability of health facilities to provide various services to the 

population.  

 

Usually a sample of approximately 400-600 facilities is selected from a national census list of 

health facilities for countries with a greater density of health facilities. In countries with a small 

number of providers, such as Namibia, all health facilities are usually surveyed (Ministry of 

Health and Social Services, 2010a) (MEASURE DHS, 2011). Survey tools include: (a) facility 

audit questionnaires meant to provides information on drug availability, equipment, cost and 

infrastructure; (b) an observational questionnaire that provides information on patient-physician 
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interactions and family planning; (c) a health worker questionnaire aimed at providing 

information on training, qualifications and supervision and (d) the patient exit interview 

questionnaire on client perception and satisfaction with health services (MEASURE DHS, 2011).  

In some surveys, additional country-specific questions are included, for example, in Zambia 

where HIV/AIDs modules were incorporated and in Kenya on obstetrics services (MEASURE 

DHS, 2011). SPA datasets are disseminated in a similar manner to the DHS and MIS surveys. In 

this thesis, Namibia analysis utilise data from SPA survey. 

 

1.4 Access and utilisation 

1.4.1 Definitions and concepts of healthcare access 

In many sub-Saharan countries, poor access to healthcare services contributes to poor health 

outcomes (World Health Organization, 2000b, O'Meara et al., 2009, Moisi et al., 2011). An 

important factor in measuring the performance of a healthcare system is the understanding of 

provision, access and use of healthcare facilities. Aspects of informal healthcare delivery 

(treatment at home) were discussed in section 1.3.  This section outlines in general the concepts 

of access to formal healthcare service through public or private sectors. 

 

Access is a concept in geographic health that refers to the ability and willingness to use a 

healthcare facility when there is a need, thus gaining entry into the healthcare system (Aday and 

Andersen, 1974a, Cromley and McLafferty, 2002). This definition is adopted in this thesis and 

encompasses the five concepts defined by Penchansky and Thomas (1981). This include: 

availability, geographic (physical) accessibility, accommodation, affordability and acceptability 

(Penchansky and Thomas, 1981).  Availability relates to the ability of various health authorities 
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or governments to supply health services to the population when in demand (Aday and 

Andersen, 1974a, Joseph and Phillips, 1984, Cromley and McLafferty, 2002). It includes not 

only the physical location of a health facility but also the services offered at that facility (Higgs, 

2004). Accessibility refers to physical or geographic barriers such as distance or travel time as 

well as direct costs such as those incurred from commuting (Gething et al., 2004, Noor et al., 

2006, Schuurman et al., 2006, Tanser et al., 2006, Moisi et al., 2011). Accommodation refers to 

the organisation of these services in order to meet demand, often measured using waiting times 

(Aday and Andersen, 1974a, Cromley and McLafferty, 2002). Waiting time not only refers to the 

delay in seeking care but could also refer to the time taken at a health facility before seeing a 

physician (Dzator and Asafu-Adjaye, 2004, Deressa, 2007). Affordability is the ability to meet 

financial obligations related to medical services (Aday and Andersen, 1974a, Penchansky and 

Thomas, 1981). Modes of financing healthcare vary based on national health policies and control 

from the state (Joseph and Phillips, 1984, Bullen et al., 1996). Policies such as out-of-pocket 

payment may impact negatively on healthcare provision (Dzator and Asafu-Adjaye, 2004, 

Chuma and Okungu, 2011). Lastly, acceptability generally refers to choice based on gender, 

culture, ethnicity and many other social factors (Haas et al., 2004). These factors influence the 

behaviour and ability to access health services in different contexts. Of these five dimensions, 

accessibility and availability are spatial measures. Availability relates to provider physical 

location while accessibility can be derived spatially using metrics such as distance. The other 

three dimensions of access are considered to be a-spatial because they are dependent on non-

spatial metrics such as cost, socio-demographics and health system organisation (Guagliardo, 

2004).  
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Utilisation is a far less well understood concept. There are several methods of analysing 

utilisation, one of them being the calculation of potential use as an indicator of probable entry 

into a healthcare system (Shannon et al., 1975, Khan, 1992, Khan and Bhardwaj, 1994, 

Guagliardo, 2004, Apparicio et al., 2008). Previous research on utilization has been carried out 

mainly at the village level or in specific lower level administrative boundaries such as districts or 

counties (Leonard et al., 2002, Noor et al., 2006, Tanser et al., 2006).   In addition, the focus is 

usually on a single or combination of factors categorized as ‘enabling’, ‘predisposing’ or ‘need’ 

as proposed by Andersen (1983) (Andersen et al., 1983). Integrating these factors into a single 

model is challenging. For example, it is difficult to quantify factors based on individual 

perceived level of illness or disease severity, while quality of care, for instance, has been defined 

based on patient satisfaction or health system infrastructure (Rosenberg and Hanlon, 1996, Kizito 

et al., 2012). A study in Nigeria defined technical quality of care as effectiveness in achieving 

desired health gains, showing that when quality of care is based on patient satisfaction, this does 

not necessarily imply quality (Onwujekwe et al., 2011). Even though the actual utilisation is 

defined by a complex interaction of several factors, most users seek treatment from multiple 

sources. Secondly, treatment seeking often starts with the use of the informal sector such as drug 

shops and home management (Littrell et al., 2011).   

 

As a result, measuring access and utilisation are usually dependent on the level at which data are 

collected and they may not incorporate all behavioural aspects of use. Existing national survey 

data usually lack information on the name of facility used by household members although this 

may be modelled by triangulating data on use with information on location reported type of 

health facility to derive catchments. 
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1.4.2 Review of geographic access concept 

People make the decision to seek medical care when there is a perceived need based on the 

nature of an illness (Rosenberg and Hanlon, 1996).  In most cases, it depends on the nature of the 

illness and knowledge which may determine whether diagnosis and subsequent treatment will be 

sought (Girt, 1973, Young, 2004). The choice of a particular provider depends on several factors 

such as health provider characteristics, financing (user fees) or travel cost, availability of health 

insurance, cultural and other socio-demographic factors (Nemet and Bailey, 2000, Cromley and 

McLafferty, 2002). Patient flow from households to providers creates a spatial pattern in 

geographic space. The pattern can be characterised based on different approaches such as 

distance or travel times (Cromley and McLafferty, 2002). Proximity is one such measure of 

spatial access (Stouffer, 1940) and the distance decay curve, a plot of distance (x-axis) against 

probability of using a healthcare provider (y-axis) has previously been demonstrated in numerous 

studies and reviews (Jehlik and McNamara, 1952, Shannon et al., 1969, Girt, 1973, Connor et 

al., 1994, Apparicio et al., 2008). The hypothesis of using this curve is that utilisation declines 

with increasing distance between provider and client (patient) (Cromley and McLafferty, 2002). 

Thus, it is highly unlikely that patients will use a facility located farther from place of residence 

due to the increasing cost of travel.  

 

Several metrics that use distance have been devised to measure access. The first is distance to the 

nearest provider using a straight line (Euclidean) measure between patient location (household) 

and health provider. A review by Shannon et al. (1969) suggests that this is the oldest technique 

in using distance that has remained popular since the 1950s (Wilson and Metzler, 1938, Jehlik 

and McNamara, 1952, Ciocco et al., 1954). Wilson and Meltzer (1938) discuss utilization of 
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healthcare facilities in the Arkansas area and demonstrate distance as the main limiting factor 

using a decay function. Jehlik and McNamara (1952) describe the utilization of facilities amongst 

rural and semi-rural populations, demonstrating the association of distance with incidence of 

morbidity in Missouri. Similar studies were also carried out by Ciocco and Altman (1954) in 

Pennsylvania albeit with use of a sophisticated technique of a hyperbolic function while 

investigating distances travelled by patients in accessing medical services and physicians. The 

notable contribution by Ciocco and Altman was that utilisation varied inversely with distance 

(Shannon et al., 1969). Girt (1973)  investigated the use of distance using a similar technique in 

Newfoundland, Canada, employing three different distance decay curves while characterizing 

patients’ consultation patterns (Girt, 1973). Ingram and colleagues (1978) investigated aspects of 

time as well as distance decay while examining the relationship between access to emergency 

services and distance. A distance decay curve was subsequently used in the study to derive a 

catchment area as a concentric circle, around Humber memorial hospital (Ingram et al., 1978).  

 

In Africa, Stock (1983) used distance models in Kano state, Nigeria, to characterise different 

access patterns based on facility ownership, gender and seasonality. Stock’s study depicted 

different effects of distance on use of health facilities (Stock, 1983).  Okafor (1984) similarly 

used straight line distances to measure accessibility to general hospitals and subsequently 

delineated rural local government health regions in Bendel state, Nigeria. Muller et al. (1998) 

also used the concept of distance decay in Papua New Guinea, observing that attendance dropped 

by 50% after 3.5 km to the facility and subsequently introduced the use of non-linear curves in 

measuring utilization (Müller et al., 1998).   
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Studies carried out in the 1990s continued to demonstrate the importance of distance in access to 

health service even after controlling for other socio-demographic factors. Haynes and others 

(1999) controlled for age, nature of illness (acute, psychiatric, emergency), socio-economic 

factors and showed that inpatient utilisation dropped with increasing distance (Haynes et al., 

1999). An investigation amongst the elderly population in Orleans County in Vermont State, 

U.S, showed that the majority of the elderly population that sought care travelled shorter 

distances (Nemet and Bailey, 2000). Buor (2003) also showed that distance is an important factor 

explaining utilization after controlling for service and transport cost, education level of patient, 

income and waiting time in Ghana (Buor, 2003). Studies in Kenya by Gething et al. (2004) used 

straight line distance (Thiessen polygons) while delineating catchments for various facilities 

based on fuzzy logic while Noor et al. (2006) compared straight line distances to those calculated 

using a sophisticated transect algorithm. The latter study by Noor and colleagues highlighted 

deficiencies in the use of Euclidean distances as they tended to overestimate coverage (Gething 

et al., 2004, Noor et al., 2006). In recent times, the use of drive times, distance along roads, and 

cost surface has been used in access based models (Schuurman et al., 2006, Tanser et al., 2006, 

Apparicio et al., 2008) (Schuurman et al., 2006, Owen et al., 2011, Alegana et al., 2012).  These 

approaches highlight proximity as a factor in utilisation but the approach of using the Euclidean 

model, as illustrated by Noor et al., (2006) amongst other studies, assumes the phenomenon of 

interaction with other service providers and may overestimate coverage or remoteness within the 

defined geographic space. 

 

A different approach of using provider-to-population ratios does not measure distance directly 

but requires description of the population served by a provider.  The number of providers in a 
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predefined geographic space is usually combined with population estimates to create a ratio of 

number of people to one provider or physician. Such ratios were used by De Vise (1966) in a 

study of the distribution of personnel and health facilities in Chicago, U.S., (DeVise and 

Chicago, 1966) and by Schonfeld et al. (1972)  in assessing the number of physicians required. 

The latter study was used to propose measures such as decreasing physicians’ patient noncontact 

time and increasing the number of medical students in an attempt to increase coverage 

(Schonfeld et al., 1972). In America, provider-population ratios were prescribed as one of 

several criteria for allocating human resources (stated as 3,500 people to 1 physician) by the 

Health Education and Welfare (HEW) department in 1978 (Dutt et al., 1986). This approach was 

also used in the NHS while identifying the local health authority areas as reviewed by Bullen et 

al. (1996). The disadvantage of this method, however, relates to assigning precise population 

estimates for a spatial region (Bullen et al., 1996). Census data are usually assigned to a polygon 

while the actual population may vary spatially (Briggs et al., 2007), thus, a single ratio for each 

polygon is a crude measure of actual case loads per physician or provider. In addition, the actual 

flow of patient from place of residence to provider is not taken into account when using this 

approach. The latter will also apply where a mean distance to n number of providers is used 

(Apparicio and Seguin, 2006, Apparicio et al., 2008), and can also be used as a density measure 

(Cromley and McLafferty, 2010). Density approaches also vary depending on the size and shape 

of polygons (Parenteau and Sawada, 2011). Raster approaches using the kernel density method 

(Guagliardo, 2004) are not appropriate for rural areas where providers are sparsely distributed 

(Cromley and McLafferty, 2010). 
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The flow of patients from place of residence to provider is spatially measured using spatial 

interaction models (Shannon et al., 1969, Bailey and Gatrell, 1995, Apparicio et al., 2008). 

Bailey and Gatrell (1995) compare such spatial models to Newton’s gravitational model of the 

form: 

     )/( 

ijjij dsY   

Where, a household member could travel from the origin i  to destination j ; the attractiveness s  

is analogous to the masses in a gravity model and the distance component d  depends on a 

coefficient   which also dictates the shape of the decay curve. Thus, the greater the distance or 

travel time, the smaller the interaction term )( ijY . The summation in the equation is analogous to 

area potential. An early attempt at such a model was by Ciocco and Altman (1954), in 

Pittsburgh, while investigating flow between counties using hyperbolic functions of the form 

bxaY /  with Y  in the equation representing the frequency of visits to general practioners, which 

varied inversely to the distance )(x  and some exponential parameter b  (negative if the frequency 

decreased with increasing distance) (Anderson, 1956).  If no provider characteristic is used, the 

numerator )(a  reduces to unity. Girt (1973) discusses the exponential quadratic forms deriving 

conditional probabilities based on consultation patterns in sample data from Newfoundland. 

Linear forms were discussed by Anderson (1996) by introducing an exponential constant. Thill 

and Kim (2005) illustrated the versatility of the gravity modelling approach using different forms 

(exponential, log-exponential, power and Gaussian) in characterizing travel by individuals.  

Statistical methods have in the past been used to depict the optimal spatial pattern (Thill and 

Kim, 2005) some approaches favouring the log-logistic decay form (De Vries et al., 2009) while 
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others like in Kwan (1998) proposing a Gaussian instead of power or exponential models (Kwan, 

1998, Wang, 2007, Cromley and McLafferty, 2010).   

 

1.4.3 The measurement of distance in GIS  

The distance component is the most important in any selected geographic access model. It 

represents the separation between the origin and destination. The simplest form reviewed in the 

preceding section is the straight line distance, calculated using spatial locations ),( ba xx  and ),( ba yy  

as: 

         22

baba yyxxD   

The above equation applies for two points close enough in space such that the Earth’s curvature 

can be ignored. Otherwise, spherical distances are usually calculated using polar coordinates 

with an additional correction for the Earth’s curvature (Cromley and McLafferty, 2010). The 

weakness in this form of distance calculation is that physical barriers (topographic effects) are 

not taken into account. Network distances based on network grids are an alternative (Schuurman 

et al., 2006, Apparicio et al., 2008) or Manhattan distances measured along a coordinate grid 

(Cromley and McLafferty, 2010). The Manhattan distance is calculated as:  

|)(||)(| baba yyxxD   

Internet based tools such as Google Maps ® and Bing Maps ® can estimate the network-based 

distance readily in addition to mainstream software applications such as ArcGIS (ESRI, 

Redlands, CA). The disadvantage of the internet tools is that the light-weight software only 

handle single query calculations, for example, estimating journey distance from one origin to a 

destination. The ArcGIS (ESRI, Redlands, CA) network analyst extension tool can calculate 

service areas for facilities with a road network grid as input data, although it is difficult to 
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calculate actual distance over complex networks with overpasses and intersections or when 

information on terminal changes, bus stops or waiting times is unavailable (Martin et al., 1998, 

Martin et al., 2008).  

 

Other studies have preferred the use of measures such as drive times (Jordan et al., 2004). Clark 

et al. (1969) used an economic index model, analogous to the gravity model (Clark et al., 1969), 

while calculating the economic potential of regions in Western Europe. The study derived maps 

showing line of equal economic potential (Clark et al., 1969). The study by Jordan and others 

(2004) in south west England showed a high correlation between drive time to health services 

and straight line distance. Modern use of trip data in developed countries aims at using modal 

splits where trips made using a train, for example, are assigned to train routes, buses to bus 

routes or walking to a limited road network (de Dios Ortzar and Willumsen, Black, 1981). The 

method, thus relies heavily on the nature of the transport network within a country and 

availability of information on different types of transport modes used by a patient. In other 

approaches, friction surfaces have been preferred (Leonard et al., 2002, Martin et al., 2002, 

Tanser et al., 2006, Ray and Ebener, 2008). Martin et al. (2002) derived a cost surface using 

travel time to public and private health providers in Cornwall, in England. Friction surfaces have 

also been shown to perform better where different modes of transport are used such as vehicular 

as well as walking and travel speeds for these categorized modes can be varied (Tanser et al., 

2006, Rodrigue et al., 2009, Alegana et al., 2012).  

1.4.4 Analysing utilisation of health facilities 

A classical measure of utilization is by observing true rates of use at a health facility and 

comparing the rate against expected population (Densen, 1972, Aday and Andersen, 1974a). This 
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approach is referred to as realized or revealed access (Cromley and McLafferty, 2002). This 

method relies on recording the number of visits on a monthly basis and comparing to the 

expected utilisation based on the catchment population.  Aday and Andersen (1974) observe that 

such usage rates can be analysed based on facility type, site, purpose (preventive or curative) and 

frequency of visits. Although this method is attractive to use since it is based on actual patient 

data, generalization is not straight forward. For instance, in low income countries, the treatment 

seeking pattern is not uniform, there are multiple sources of drugs and there is the problem of 

defining expected population (Agyepong and Manderson, 1994, McCombie, 1996, Goodman et 

al., 2007).  

  

A different approach of measuring utilisation is by using potential access (Khan, 1992, Khan and 

Bhardwaj, 1994, Ensor and Cooper, 2002, Guagliardo, 2004).
 
The terms potential spatial access 

and potential aspatial access have been used previously, with the first derived based on spatial 

metrics such as distance while the second approach uses non-spatial metrics such as cost, socio-

economic status, gender, age and cultural factors (Khan, 1992, Khan and Bhardwaj, 1994). 

Implementations of both approaches vary substantially from simple distance models (NoorAli et 

al., 1999, Noor et al., 2003, Jordan et al., 2004), gravity models (Wang, 2007, De Vries et al., 

2009) to statistical and qualitative assessment (Rutebemberwa et al., 2009, Comber et al., 2011, 

Hadley, 2011) or using small area estimation (Joseph and Phillips, 1984, Cromley and 

McLafferty, 2002).  

 

In summary, the classifications are based on the healthcare systems as well as a description of 

the denominator population. Thiessen polygons and provider-to-population ratios assume 
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uniform use and fail to account for interaction between different service providers.  Statistical 

and gravity models may be more accurate if population and provider characteristics are 

accounted for. They may also be used subsequently to derive health facility service areas.  

 

1.4.5 Various types of health facility catchments 

A catchment represents a zone around an entity (such as a health facility) that draws the majority 

of users (patients)  (Cromley and McLafferty, 2002, Schuurman et al., 2006). The natural size of 

the catchment area may vary depending on factors such as the underlying population distribution, 

population utilisation pattern and facility attractiveness (Ensor and Cooper, 2002, Gething et al., 

2006, Noor et al., 2006). In some cases, the size of the catchment is fixed (a mandated 

catchment) based on government regulation (Jenkins and Campbell, 1996).  However, 

catchments may overlap where facilities are close to each other in space, a phenomenon that 

depicts competition between providers (Schuurman et al., 2006). In health related studies, 

knowledge of catchment areas is useful in understanding access, utilisation and in estimating 

disease burden. 

 

1.4.5.1 Natural catchments 

Natural catchments delineate regions from which patients are drawn  given enabling factors such 

as distance, travel time, cost, quality of service or cultural factors (Cromley and McLafferty, 

2002). Natural catchments have been discussed in a school context (Parsons et al., 2000, Martin 

and Atkinson, 2001) but far less in health research with complexities in representing spatial and 

non-spatial dimensions. In sparsely populated regions where only one facility may exist, the 

natural catchment may draw the whole population of the region. Natural catchments may  also 



   

48 

 

overlap especially where there is a dense distribution of facilities (Cromley and McLafferty, 

2002). Tanser et al. (2001) represented natural catchments for facilities in various rural districts 

in South Africa by plotting the households where patients originated. The natural catchments in 

the study areas overlapped where two facilities were located in close proximity as well as at the 

border of the study district (Tanser et al., 2001). At such boundaries, utilisation was effectively 

evaluated using household surveys (Tanser et al., 2001). A similar approach was carried out in 

Kenya but using a fuzzy classification based on reported use (Gething et al., 2004).  

1.4.5.2 Mandated catchments 

Mandated catchments are common in systems where patients are assigned to various healthcare 

providers through a registration system. An example of the mandated catchment could be drawn 

from the implementation of the National Health Service (NHS) in Great Britain where general 

practitioners (GPs) were required to serve certain population groups (Bullen et al., 1996, Jenkins 

and Campbell, 1996). The GPs were generally required to provide the geographic extent of areas 

served although no regulation was provided to control size of the service areas (Jenkins and 

Campbell, 1996). In modern practice, such service areas can easily be allocated using Thiessen 

(Voronoi) polygons with the aim of having an equal area share (Burrough and McDonnell, 1998) 

or using buffers based on distance. Mandated catchment populations are usually affected by 

changes in residential addresses (e.g. postcode) or population movement (Cromley and 

McLafferty, 2002). Moreover, methods such as Voronoi polygons may also fail to account for 

competition between different providers (Jenkins and Campbell, 1996, Cromley and McLafferty, 

2002). 
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1.4.5.3 Empirical catchments 

Empirical catchments are based on observational relationships between a patient’s location and 

use of health facilities (Cromley and McLafferty, 2002). Although the form of geographic 

analysis deployed is usually based on constraining of a spatial interaction model (Bailey and 

Gatrell, 1995) based on distance or travel time, they are generally not very different from natural 

catchments especially in sparsely spatially distributed facility locations (Bullen et al., 1996). 

Where information on patient flow is unavailable, theoretical analysis based on Thiessen 

polygons may be adopted (Noor et al., 2006). In a developing country context, such as Kenya 

and Namibia, empirical catchments were derived from household surveys that define patient 

location, triangulated with facility location information (Noor et al., 2006, Tanser et al., 2006). 

In developed countries, such as Canada and Great Britain, such catchment areas have in the past 

been derived based on population movement between place of residence and facility location 

(Roos, 1993, Bullen et al., 1996, Schuurman et al., 2006, Zinszer et al., 2010).  

1.4.5.4 Two-Step floating catchment area (2SFCA) 

The 2SFCA method was proposed by Luo and Wang (2003) to measure relative accessibility 

between different service areas in Chicago. The method as summarized by Cromley and 

Mclafferty (2010) requires input of service provider locations, population centres as well as some 

measure of facility capacity. First, a threshold distance or travel time is determined and used to 

calculate service areas around facilities. Provider-to-populations ratios are subsequently derived 

for each provider. Secondly, the population centres are used to search for number of providers 

within a pre-defined threshold distance. Provider-to-population ratios calculated in the first step 

are then summed for the number of providers within the population centroid, thereby, 

highlighting regions with greater access (Luo and Wang, 2003, Luo, 2004, Cromley and 
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McLafferty, 2010). Luo (2004) used this method to measure relative physician need in north 

Illinois by first drawing catchments (buffers) based on the maximum distance that an individual 

is willing to travel and measuring relative accessibility based on census tract centroids. The 

method as outlined by Luo and Qi (2009) has two main deficiencies related to the use of 

Euclidean distance measures or the use of circular buffers while calculating the provider ratio 

leaves out providers outside the catchment. An enhanced approach to this method involves 

incorporating distance decay functions by introducing a weighted distance from provider to 

population (Luo and Qi, 2009) while other methods have incorporated demand as well as 

provider characteristics for optimization (Ngui and Apparicio, 2011).  

 

1.4.6 Factors affecting the measurement of healthcare access and utilisation 

Several factors affect utilization of healthcare services. These can be grouped largely into three 

categories classed as need or individual (perception of illness, age, gender, cultural); enabling 

(cost and socio-economic) and provider specific (Distance, quality of care, size, attitude of 

physician, waiting time) (Aday and Andersen, 1974b, Joseph and Phillips, 1984).   

 

Distance or travel time has already been studied at great length with most studies demonstrating 

it as the most important factor before an individual decides to seek medical care (Airey, 1989, 

1992, Buor, 2003, Moisi et al., 2011). Thus, patients are unlikely to travel a larger distance to a 

provider due to increasing cost in addition to other factors such as cultural identification or lack 

of familiarity with farther providers (Kloos, 1990). Studies by Airey (1989 and (1992) showed 

that improving road condition may improve utilisation rates observed at health facilities. Another 

example by Miosi et al. (2012) showed that increasing travel time to health facility was 
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associated with greater disease severity. However, some studies have also identified the 

phenomenon of by-passing of facilities (Akin and Hutchinson, 1999, Leonard et al., 2002). The 

majority of such cases are usually either due to referral to a higher level facility with specialized 

treatment or seeking better quality of care (Girt, 1973, Roghmann and Zastowny, 1979, NoorAli 

et al., 1999). Kloos (1990) illustrated that women are unlikely to seek medical treatment when 

certain services are administered by male practitioners. Other behavioural factors relate to staff 

attitudes towards clients, opening hours and availability of medicine (Jayawardene, 1993, 

Williams and Jones, 2004).  

 

1.5 Disease Mapping 

1.5.1 Review of disease mapping approaches in Africa 

Disease maps are being used increasingly as tools for decision making in many malaria control 

programmes. They are useful tools for assessing the impact of various interventions and 

understanding populations at risk. Historical disease maps were based on expert opinion with 

simple geographic representation and lacked modern spatiotemporal analysis (Lysenko and 

Semashko, 1968). Recently, there has been a remarkable improvement in the assembly of 

malaria data as well as in mapping risk (Snow et al., 2005, Hay and Snow, 2006, Guerra et al., 

2008, Gething et al., 2011b) at continental and global level (Guerra et al., 2007, Snow et al., 

2012). At county level, household surveys such as the MIS are useful (Roll Back Malaria 

Monitoring and Evaluation Reference Group et al., 2005) in providing disease data and 

complement the national level surveillance system data from health facilities.  
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Remote sensing and GIS tools emerged in the late 1990s and early 2000s in the production of 

disease maps (Omumbo et al., 1998, Craig et al., 1999, Kleinschmidt et al., 2000). Remote 

sensing is a scientific tool that broadly involves the study of phenomena at a distance, but focus 

on Earth observation based on reflected or emitted electromagnetic energy (Campbell and 

Wynne, 2011). GIS on the other hand is an information system involving collection, assembly, 

storage, analysis, interpretation, output and dissemination of spatially referenced data (Burrough 

and McDonnell, 1998). Omumbo et al. (1998) used GIS to map malaria risk in Kenya while 

Craig et al. (1999) produced a climate suitability map of malaria transmission at continental level 

that involved remotely sensed data. The MARA/ARMA project was the first attempt at 

modelling malaria seasonality at continental level (MARA/ARMA, 2004). Kleinschmidt et al. 

(2000) used a combination of regression and spatial statistical approaches (kriging on residuals) 

to predict malaria risk in Mali. The use of remote sensing techniques was further demonstrated in 

several studies (Hay et al., 1998, Hay et al., 2000a, Omumbo et al., 2000, Omumbo et al., 2004, 

Omumbo et al., 2005) in mapping vector distributions (Coetzee et al., 2000) and  parasitic 

disease (Brooker et al., 2001, Brooker et al., 2002, Rinaldi et al., 2004). What was common to 

these studies was the integration of GIS and remote sensing techniques and in some cases 

incorporating external statistical approaches, since the majority of standard GIS software 

packages have limited statistical modelling capability and are not able to analyse statistically the 

relationship between environmental covariates and disease. 

 

Model-based geostatistical approaches are able to analyse geocoded data in space and time as 

well as relate these data to environmental variables (Christakos, 2000, Barnerjee et al., 2004). 

This approach goes beyond the normal assumption of independence between observations by 
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quantifying spatial autocorrelation, usually modelled as a function of distance (Cressie, 1993). 

Covariance between spatial points is quantified as a function of distance, for example, in the 

analysis of malaria in Kenya and Somalia (Noor et al., 2008, Noor et al., 2009c) and childhood 

malaria in the Gambia (Diggle et al., 2002). Data may also be referenced to areas or 

administrative provinces or districts. Areal data models (lattice methods) are commonly used 

with such data sets by relating two spatial regions using neighbourhood matrices (Barnerjee et 

al., 2004). Common approaches include the simultaneous autoregressive (SAR) (Whittle, 1954) 

and the conditional autoregressive (CAR) models (Clayton and Kaldor, 1987). Kleinschmidt et 

al. (2002) used the CAR modelling approach while analysing the incidence of malaria in Kwa-

Zulu Natal in South Africa (Kleinschmidt et al., 2002).  Point patterns may also be used to 

evaluate disease clustering as well as determine risk factors associated with disease events 

(Brooker et al., 2004, Mirghani et al., 2010) but are not discussed in this context.  

 

Post-2005 has seen the development of Bayesian Hierarchical Models (BHM) where inference is 

based on a posterior distribution ]|[ Z  which requires the likelihood and a prior ][ (with Z  as the 

data and   are parameters) (Gething et al., 2008, Vounatsou et al., 2009, Schrödle and Held, 

2010, Duncan, 2011, Reid et al., 2012). The likelihood based approach relies on marginal 

probabilities of the unknown quantities given the data (Barnerjee et al., 2004, Cressie and Wikle, 

2011), for example, in Craig et al. (1999). BHM models partition the mapping process into data 

models ],|[ YZ  (involving distribution of observations), an underlying biological process model 

]|[ Y  (for example, in the case of disease) that leads to the observed phenomenon, and the 

unknown quantities ][  (parameters) associated with the process (Barnerjee et al., 2004, Banerjee 

and Fuentes, 2011). In this way, the process  is represented separately and the uncertainties are 
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quantified systematically in terms of conditional distributions (Barnerjee et al., 2004). The 

important differences here relate to uncertainties recognized in the BHM compared to the 

frequentist approach where a model is simply fitted to data based on likelihood. Bayes theorem 

(Bayes, 1763) is used to provide a posterior distribution (a conditional distribution of both the 

process and unknown quantities given the data). Thus; 









dydYYZ

YYZ
ZY

]][|][,|[

]][|][,|[
)|,(  

where ],|[ YZ  is the data model and ]|[ Y  is the underlying process model given the unknown 

quantities .  The numerator is a direct product of these quantities but the normalizing quantity 

requires numerical analysis usually via a simulation approach such as Markov chain Monte Carlo 

(MCMC). Other approaches include the Laplace approximations, rejection sampling, slice 

sampling and importance sampling (Rue and Martino, 2007, Cressie and Wikle, 2011). Examples 

using MCMC at a national level are in analysing malaria transmission in Mali (Gemperli et al., 

2006) in mapping the risk of malaria infection in Somalia and Kenya (Noor et al., 2008, Noor et 

al., 2009c). These methods have also been applied at continental and global scales (Hay et al., 

2009b, Gething et al., 2011b, Noor et al., 2014). Lattice methods using a Bayesian framework 

were used in Malawi and South Africa in analysing fever treatment and malaria incidence 

(Kazembe, 2007, Kazembe et al., 2007) and in South Africa (Kleinschmidt et al., 2002). The 

development of numerical statistical analysis using Laplace approximations (Rue and Martino, 

2007) may well increase the use of Bayesian approaches in disease mapping (Schrödle and Held, 

2010, Ramiro Ruiz-Cárdenas et al., 2012).  
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1.5.2 Introduction to frequentist methods 

Early geostatistical applications were applied in geology and mining, although there are other 

applications in other disciplines (Zhou et al., 2007, Hengl et al., 2009). Zhou et al. (2007) and 

Hengl et al. (2009) review various research studies involving geostatistical applications and 

suggest that the majority of published articles are applied in the geosciences. These classical 

methods have rapidly evolved since the 1960s in line with the emergence of statistical computer 

packages that can easily implement models. They are also useful exploratory data analysis 

techniques for formulating complex hierarchical modelling approaches (Barnerjee et al., 2004). 

The concept underlying geostatistical application is that each observation s  in a two dimensional 

(2D) space, 2RD  , is a drawn from a distribution (usually Gaussian). Thus, the Random 

Variable (RV) 
uZ at a point u  can have a series of outcomes (realizations) in space and relate to 

another point at a different location based on a function of distance (generally Euclidean 

distance) (Cressie, 1985a, 1986).  The collection of random variables and realizations has strict 

stationarity if for any set 1n , the distribution of )(...,),........(( 1 nuZuZ is equal to that of 

)(...,),........(( 1 huZhuZ n  where h  is the lag vector in 2RD   (Cressie, 1985a, Isaacks and 

Srivastava, 1989, Cressie, 1990). Second order stationarity is implied if the process has a 

constant mean, thus, )(( uZE  and )()}(),({ hChuZuZCov   where Ds , Dhs  . Second 

order stationarity is not strictly required since the desired property is that the mean and variance 

are homogeneous within a distance h  (intrinsic stationarity). Thus (Cressie, 1985a, Barnerjee et 

al., 2004): 

)(2))()((()]()([( 2 huZhuZVaruZhuZE    
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where )(2 h   defines a variogram (Figure 1.6 Page 59). The semivariogram )(h  is a graphical 

representation of autocorrelation with the lag distance (Cressie and Zimmerman, 1992, Cressie, 

1993, Hudson and Wackernagel, 1994) and given weak second-order stationarity relates to the 

covariance as: 

))()(()(2 uZhuZVarh    

            ))(),((2))(()](( uZhuZCovuZVarhuZVar   

)(2)0()0()(2 hCCCh    

thus, 

)()0()( hCCh   

Cressie (1993) discusses methods of estimating valid variograms using the covariance. One way 

of dealing with non-stationarity is assuming that at large values of h  then covariance 0)( hC , 

thus, treating the model as having second order stationarity or constant mean if the drift 

)()( tzEtd    (Cressie, 1985a, Barnerjee et al., 2004).  Another approach of dealing with non-

stationarity includes the use of low order polynomials and stratification by dividing the area of 

interest into sub-regions (Cressie, 1985a).  

 

A plot of   against lag distance results in a variogram cloud which is usually diffuse and 

difficult to interpret scientifically (Isaacks and Srivastava, 1989, Goovaerts, 1997). The 

semivariogram is a preferred visual plot compared to the variogram cloud because it is averaged 

at specific distances for )(hN  data pairs (Cressie, 1985b, Cressie, 1993). It represents a summary 

of autocorrelation with a specific distance (radius) (Cressie, 1990) and is valid as long as there is 

no trend (isotropy), along a certain direction. Otherwise, the trend has to be removed before 
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estimation of a semivariogram (Isaacks and Srivastava, 1989). In addition some discontinuities 

(measurement errors) may be observed at the origin (where lag distance is zero), usually known 

as a nugget effect (Isaacks and Srivastava, 1989). The term originates from differences observed 

between two sample locations in gold mining now attributed to spatial, sampling or random 

errors. Some models advocate for a full nugget effect, thus, a nugget incorporated at zero 

distance, in some cases zero nugget effect is included at zero distance (Goovaerts, 1997, 2006, 

2010).  

 

Zonal anisotropy is usually rare in practice but it can be assessed by plotting variograms in 

different directions and assessing their similarities (Goovaerts, 1997). Zimmerman (1993) 

describes different forms of anisotropy related to the range, nugget and sill. For range anisotropy 

a general suggestion is to increase the range along the axis of variation to reduce the effect of 

covariance structure perpendicular to the minor axis while dealing with (Goovaerts, 1997) or 

incorporating a nested model (combination of two different models) (Zimmerman, 1993). The 

other empirical variogram is calculated by: 

  



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2)]([
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1
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The values of 
hm
 and 

hm
 correspond to lag means of the tail and head values, while ordered 

values of )(,),........( 1 nhChC  are referred to as an auto-covariance function or spatial covariance 

(Goovaerts, 1997). The correlation between various data values can be summarized using a 

correlogram (Isaacks and Srivastava, 1989, Goovaerts, 1998). Gooverts (1997) provides a 

generalized function for the above equation representing the variogram, which is simply the first 

moment of inertia according to Isaaks and Srivastava (1989), by changing the power from 2 (the 

classical form of estimation) to a value 1 (madogram) or 5.0 (rodogram) (Goovaerts, 1997). 

Thus,  





)(

1

)]([
)(2

1
)(

hN

i

ii huZZu
hN

h   

Permissible semivariogram models can be fitted such as the linear, spherical, exponential, power, 

Gaussian, and dampened hole amongst other model forms. Mathematical formulations of these 

models are illustrated in Isaaks and Srivastava (1989) and Banerjee et al. (2004). For example 

the exponential model takes the form:  



 


0

)exp(1(
)(

22 h
h


   

otherwise

tfor 0
 

Where   is the nugget,   is the sill while  is the range, the distance above which there is no 

spatial autocorrelation between pairs (Cressie, 1985a).  
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Figure 1.6: Semi-variogram and Covariance 

Figure (a) Illustrates the relationship between semi-variance and covariance (y-axis) with lag distance (x-axis) while 

(b) shows the variogram parameters.  

 

1.5.3 Geostatistical models 

Geostatistical modelling has two broad objectives, the first relating to characterisation of spatial 

structure in data relating to the mean and variability between observations. The second aim of 

these models is to carry out predictions at unobserved locations (Cressie and Zimmerman, 1992). 

Interpolation is assumed if prediction is carried out within the data range DssY :)( ) for sites 

Sn and Y(s) observables or extrapolation if predictions are carried out beyond the data range. The 

latter is often discouraged due to uncertainties associated with prediction (Isaacks and 

Srivastava, 1989). The spatial linear predictor is expressed as 
0)(  ii sY  (Barnerjee et al., 

2004). In general, (.)0  corresponds to errors with 0(.)}{ 0 E  and }(.){ 2

0E for all Ds  

(Cressie and Zimmerman, 1992). Thus estimating )(h  (the variogram) without any covariates, 

is often termed as ordinary kriging.  
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Universal kriging (Cressie, 1993) applies when covariates are incorporated into the model. Thus 

the linear predictor, maintaining the same notation for  (covariance) as above with nugget effect 

can be expressed as: 

  XY     where ),0(~ N further discussions in (Barnerjee et al., 2004) (section 

2.4) 

Many sets of models can be used in practice for spatial prediction. These include the generalized 

linear models (GLMs), general additive models (GAM), semi-parametric regression approaches 

and geo-additive models (such as Bayesian Maximum Entropy) (Shepard, 1968, Christakos, 

2000, Hengl et al., 2009).  Model choice largely depends on the problem at hand, and validation 

can often be assessed using an independent control dataset or by cross-validation with a subset of 

the original data. For ordinary kriging, for example, the mean prediction error 

 yyfSYE |))()(( 2

0   is often assessed along with the root mean square error (RMSE) 

(Isaacks and Srivastava, 1989, Barnerjee et al., 2004). Cross-validation can be carried out by (a) 

dividing the data set into k parts (validation and prediction set), (b) leave-one-out approach 

where each point is used iteratively and (c) jack-knife procedure that is similar to leave-one-out 

approach but estimates biases in the statistical method rather than the data points (Cressie and 

Zimmerman, 1992).  

 

1.5.4 Areal-data models 

Spatial data may often be referenced to irregular polygons such as districts, regions or census 

units or regularized grid cells. Spatial patterns in such measurements are modelled via area 

models, typically the conditional autoregressive (CAR) or the simultaneous autoregressive 
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approach (SAR) (Brook, 1964, Besag, 1974). This section will briefly discuss the CAR models 

which are more popular. Indeed literature considers SAR as a special case of CAR (see the 

discussion by Cressie, (1993). The CAR analytical framework involves spatial smoothing where 

observations in neighbouring spatial units are often pushed up (in small observation and large 

neighbours) or pushed down (for large observations and small neighbours) (Cressie, 1993, Stern 

and Cressie, 1999). The level of smoothing applied depends on the modelling framework as well 

as the physical phenomenon under study. Benerjee et al. (2004) observes that maximal 

smoothing yields common value estimates between the spatial units under study and a more 

suitable smoothing approach should take into consideration the arrangement of spatial units to 

yield optimal spatial variation. A general problem common to this approach, however, relates to 

change of statistical outputs as a result of change in shape or size of the geographic unit, the 

modifiable areal unit problem (MAUP) (Robinson, 1950) although hierarchical models have in 

the past been proposed to mitigate outcomes related to MAUP (Barnerjee et al., 2004) (pg 182 to 

pg 205). 

The general formulation of areal data models is the introduction of a spatial structure via a 

neighbourhood matrix ijw  assuming that 
nYY ,.......,1
 corresponds to a set of observations for 

spatial areal units n.,,.........1  (Barnerjee et al., 2004).  The neighbourhood matrix ijw  represents 

weights that have been introduced based on different functions, such as, 1ijw  for i  and j  with 

a common boundary or 0ijw  (otherwise). Examples of such formulations were illustrated in 

mapping rates of cancer (Bernardinelli and Montomoli, 1992) and in incidence of malaria 

(Kleinschmidt et al., 2002).  Other forms of the weight matrix can be based on distance between 

centroids of various geographic regions (Barnerjee et al., 2004). 
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The basic idea of the CAR model lies in the joint dependencies provided by a neighbourhood 

matrix as formulated by Besag (1974). The conditional dependencies among a set of RVs result 

in a Markov Random Field (MRF) such that the probability ),.....,,,....,|( 111 niii xxxxxP   

depends on 
jx for jj   site and )( ij  is a neighbour of i . An imposed condition is that of 

positive definiteness where probability 0)0( P (Besag, 1974).  

 

1.5.5 Review of Spatiotemporal methods 

Spatiotemporal modelling involves measuring processes that occur both in spatial and temporal 

domains (Christakos, 2000, Barnerjee et al., 2004). Earlier attempts at modelling spatiotemporal 

fields resulted in static maps based on different time )(t  instances. Tobias and Salas (1985), for 

example, compared different mechanical and statistical interpolation techniques for precipitation 

data spanning 30 years with the aim of comparing outcomes at different times (Tabios and Salas, 

1985). Hudson and Wackernagel (1994) also modelled temperature for the month of January in 

Scotland using kriging with external drift while Goovearts and Chiang (1993) investigated soil-

nitrogen mineralization over the winter period (Goovaerts and Chiang, 1993). Other earlier 

studies used spatial time series (Cliff et al., 1975, Bennett, 1979) which could not be interpolated 

at unobserved locations and required external computation. Furthermore, time-series approaches 

could not sufficiently relate the spatial aspect of data (ordered or random) with time which is 

usually ordered (past to present to future) (Cressie, 1993).   

 

In the late 1980s, the spatiotemporal geostatistical models incorporated time as an additional 

domain to existing spatial statistical numerical methods by assuming a separable correlation 
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structure of residuals (Egbert and Lettenmaier, 1986, Rohuani and Hall, 1989). Rouhani and Hall 

(1989), for example, used this approach in summing two variograms. A similar method was used 

by Egbert and Lettenmaier (1986) when modelling atmospheric variables in the U.S., Rouhani 

and Myers (1990) later identified caveats when multiplying to space and time variograms due to 

dimensions (2D for space and 1D in time domain) as well as due to scale or units of 

measurements. Secondly, earlier experiments indicated that geostatistical properties such as 

isotropy were easier implemented when in the spatial domain compared to the temporal domain 

(Rouhani and Myers, 1990).  

 

A slight deviation from these models used a product of the correlation structure in space and 

time. For example, in (Guttorp et al., 1994) on ozone-monitoring applications and on rainfall 

acidity levels (Loader and Switzer, 1992). Dimitrakopoulos (1994) proposed a product-sum 

covariance structure that was non-separable and where units of measurements were converted to 

a common measure (Dimitrakopoulos and Lou, 1994). The conversion of units (space and time) 

to a common measure, however, meant that interpretation of autocorrelation was lost. Several 

permissible product-sum covariance functions were proposed subsequently in  the 1990s (Cressie 

and Huang, 1999, Kyriakidis and Journel, 1999) and later on with trend modelling using 

polynomials, Fourier transformations and a mixture of the two approaches (Kyriakidis and 

Journel, 1999). Cressie and Huang (1999) reviewed space-time covariance functions starting 

with the limiting case of the product separable models, without space and time interaction, to full 

product-sum models that support interaction. It was not until the early 2000s, given the 

contributions by De Iaco et al. (2001), that these stationary non-separable models (generalized 

product-sum covariance) became easily implementable (De Cesare et al., 2001, De Iaco et al., 
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2001, Kyriakidis and Journel, 2001, De Cesare et al., 2002). The main constraint imposed on 

coefficients of the product-sum model involved the requirement for positive definiteness (global 

sill ≥ 0) (De Iaco et al., 2001). De Cesare (2002) published several FOTRAN related programs 

for implementing product-sum covariance structures modified from earlier GSLIB application 

(Deutsch and Journel, 1998). Examples of such model formulations were also provided in 

Kyriakidis and Journel (2001). There has been a recent improvement to the original programs 

published by De Iaco in 2001 by incorporation of multivariate variables or covariates (De Iaco et 

al., 2005) and through subsequent published code  (De Iaco et al., 2010, De Iaco et al., 2011, De 

Iaco and Posa, 2011). The increasing availability of software in recent times (post 2000s) has 

also seen more applications involving space-time interactions as well as hierarchical model based 

approach.  

 

1.5.6 Spatiotemporal geostatistical and areal models 

The introduction of time into spatial process models introduces model complexity due to 

specifications regarding spatial autocorrelation and temporal autocorrelation (Egbert and 

Lettenmaier, 1986, Rouhani and Myers, 1990). In this context, as is similar to spatial methods, 

distinctions are made based on the type of data where Gaussian process models are typically 

used for point referenced data while CAR specifications apply to the areal data types. Another 

complexity related to modelling spatiotemporal data is that of missing data (Christakos, 2000, 

Barnerjee et al., 2004). Banerjee et al. (2004) discuss the problem of missing data as (a) that of 

spatial positions where predictions are performed to points with no observations as in kriging, (b) 

missing time points and (c) based on both space and time. The latter may be treated as cases of 

both interpolation and extrapolation and a hierarchical modelling approach adopted. 



   

65 

 

Joint space-time formulation requires simultaneous observations in space and time, based on 

RF TDtstsZ ),(),,( , separated by lag vector ),( h  where 'ssh   and 'tt   refer to spatial 

and temporal lags respectively. Kyriakidis et al. (1999) reviewed the single and multiple 

separable spatiotemporal RF models along with limitations attached to these modelling 

frameworks such as lack of interaction in separable structures (Kyriakidis and Journel, 1999). In 

general, assuming stationarity, the Gaussian spatiotemporal process model is decomposed into a 

global mean ),( ts  and a residual component ),( ts based on a linear combination of residuals 

(Loader and Switzer, 1992, Kyriakidis and Journel, 1999, Gelfand et al., 2003). Thus: 

  TDtstststsZ  ,),(),(),(   

 

The hierarchical models may include a vector of covariates ),( tsx such that 

 Ttsxts ),(),(  with   coefficients. Further, ),( ts  may be decomposed into a Gaussian white 

noise component ),( tse and a mean-zero Gaussian parameter ),( ts  (Barnerjee et al., 2004, 

Banerjee et al., 2008).   

 

Often the assumption of stationarity is violated in many space-time models. Examples of these 

include disease mapping applications where data may often exhibit non-stationarity due to 

ecological or external factors such as the impact of interventions (Diggle et al., 1998, Diggle et 

al., 2002, Gemperli, 2003, Gemperli et al., 2006). For non-stationary models, the mean part can 

be decomposed such that  ),(),({ tsmtsE  is a spatially and temporally varying function 

(Kyriakidis and Journel, 1999, Barnerjee et al., 2004). Deterministic models may also be 

included and written in regression form as (Goovaerts, 1997): 
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  TDtstsfbts
I

i

J

j

ijij 
 

,),(),(
0 0

  

Where the ijb are unknown coefficients and ),( tsf ij
are basis functions suitably selected to model 

the mean for data spanning Ii ,.......,1 in space and Jj ,.......,1 in the temporal domain.  

Inference on non-stationary cases based on the above deterministic model is usually problematic 

because the covariance structure of the residual component is usually not readily available. 

Rouhani and Hall (1989) proposed the use of Intrinsic Random Functions (IRF) to determine the 

generalized covariance by considering the linear combination of differences in space and time of 

the data. Another possible remedy, although not simple, is to base inference based on data points 

that do not exhibit drift (Kyriakidis and Journel, 1999).  

A similar model is adopted for areal data, where
ititit eZ   for the thi polygon at time t (Barnerjee 

et al., 2004). Using the same notation for covariates and decomposing the residual part: 

it

T

itit xZ     

With the 
it representing the spatiotemporal random effects often modelled via CAR while the 

it  

represent the unstructured unobserved effects. Area unit data may be based on counts. Thus, the 

Gaussian specifications are usually replaced with a Poisson model in such cases (Bernardinelli et 

al., 2007).  

 



   

67 

 

1.6 Purpose and scope of the study 

1.6.1 Justification of the study 

There has been an increase in funds targeted towards healthcare programmes in many sub-

Saharan African countries (Snow et al., 2010b, World Health Organization, 2014d). This has 

been aimed at improving the delivery of interventions and extending primary care to the poor 

population to achieve the MDGs on reducing under-five child mortality by two thirds (MDG 4) 

and combating malaria and other infectious diseases by 2015 (MDG 6) (United Nations 

Development Programme, 2003, United Nations, 2010). In areas of low malaria transmission, 

such as the selected case studies (Namibia, Eritrea and Afghanistan), parasite prevalence 

estimates may be inefficient due to: (a) a requirement for large sample sizes to detect the low 

infection rates, and (b) the high seasonal variability of infections in low transmission settings 

(Hay et al., 2008, Gething et al., 2011b). Passive and active case detection is recommended by 

WHO in such settings (World Health Organizastion, 2007).  

 

Most low transmission countries do not have functioning active case detection systems. These 

countries rely on passive case detection. Ideally, the use of such data for accurate estimation of 

disease incidence requires that all cases are parasitological diagnosed at health facility level and 

are reported through the HMIS; the denominator catchment population of the health facilities is 

known; and knowledge of the overall burden of fever within the community can be quantified 

(Breman and Holloway, 2007, Mueller et al., 2011). However, as discussed in Section 1.3, 

countries report a mixture of confirmed and suspected cases, data is usually reported through the 

public health sector, the reporting rates are spatially and temporally incomplete and a 

considerable proportion of fevers are treated outside of the public health sector at home or in 
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private health facilities. In addition, few countries have mapped their health facilities making it 

difficult to link cases to catchment population to quantify incidence. 

 

Therefore the aim of this study was to tap into the vast array of available national household 

survey data to model health facility catchment population and model disease incidence based on 

HMIS data in selected low malaria transmission countries. Some of the challenges in using the 

HMIS data are subsequently addressed in this thesis. For example, the adjustment for health 

facility utilisation by the population, imputation of missing data and adjustment for reported 

suspected malaria cases using slide positivity rates. The results were shared with country-specific 

ministries of health and national malaria control programmes to support planning and malaria 

elimination efforts. 

 

1.6.2 Objectives 

1.6.2.1 Main objective  

The main objective of this thesis was to estimate the spatio-temporal distribution of malaria 

incidence for Namibia, Afghanistan, and Eritrea based on the treatment of fever by developing 

models of public health facility utilisation and deriving the catchment population.   

1.6.2.2 Specific objectives 

The specific objectives were: 

1. To assemble geospatial health facility databases for Namibia, Eritrea and Afghanistan, 

malaria case data within the health facilities, household survey data on their use and other 

spatial ancillary data. 
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2. To model health facility catchments and catchment populations using treatment-seeking 

patterns from household surveys, travel times, facility characteristics, and population 

distributions.  

3. To evaluate the occurrence and distribution of malaria cases in public health facilities over 

time and space. 

4. To estimate malaria clinical burden at decision making units for the national malaria control 

programmes in the study countries. 

 

1.7 Thesis outline 

This thesis focuses on three low malaria transmission case studies: Namibia (Southern Africa), 

Afghanistan (South West Asia) and Eritrea (Horn of Africa). Table 1.1 provides summary 

characteristics of the three study countries. These countries were selected because they are all at 

a similar level in terms of malaria transmission. For example, P. falciparum prevalence in 

Namibia was 1.3% in 2010, in Eritrea 1% and <1% in Afghanistan. Therefore, the study 

countries provided relevant examples where research on mapping malaria in low transmission 

settings at a national level, could be explored using data on the number of presumed and 

confirmed malaria cases from HMIS. The national malaria control programmes were also keen in 

facilitating assembly of the HMIS data. In addition, the household data useful in modelling the 

utilization of health facilities were available in the public domain from the wealth of national 

household surveys of MIS, DHS or MICS surveys. For each country, geographic access to health 

services via probabilistic approaches was analysed followed by estimation of malaria burden.  

Table 1.1: Summary of study sites characteristics 

 



   

70 

 

Country 

Malaria 

parasites Main malaria vector(s) 

Mean parasite 

prevalence (percentage) 

[2010] 

Overall 

percentage 

persons who 

slept under 

ITN
1
 last 

night [year] 

Estimated 

percentage 

public health 

sector use for 

fever 

treatment 

  

  Pf Pv MIS 

 

Eritrea 

P. falciparum; 

P. vivax Anopheles arabiensis 1 No data 55.1 [2012] 60.9 

Namibia P. falciparum 

An. arabiensis; An. 

gambiae; An. funestus  1.3 NA 22.9 [2009] 65.3 

Afghanistan 

P. falciparum; 

P. vivax 

An. superpictus; An. 

culicifacies; An. 

hycranus; An. 

pulcherimus; An. 

fluviatilis; An. 

stephensi. 0.1 0.6 15.0 [2011] 44.3 

1. Insecticide Treated Net (ITN) is (a) a permanent net that does not require any treatment or (b) a pre-treated net obtained 

within the last 6-12 months or (c) a net that has been soaked with insecticide within the past 6-12 months. 

2. NA – Not applicable 

 

Chapter 2 of this thesis is a case study of Namibia.  Namibia declared an elimination ambition, 

being part of the elimination-eight (E8) initiative (Southern Africa Roll Back Malaria Network 

(SARN), 2010). The elimination-eight comprised four first-tier countries aiming for elimination 

(Botswana, Namibia, South Africa and Swaziland) and four second-tier countries (Angola, 

Mozambique, Zambia and Zimbabwe) in a control phase (Malaria Elimination 8 Ministerial 

Meeting, 2009, Ministry of Health and Social Services, 2010c). In 2010, Namibia launched a 

national malaria strategy for the period 2010 to 2016 with the goal of achieving pre-elimination 

by 2016, thus reducing malaria case incidence to less than 1 per 1000 population (Ministry of 

Health and Social Services, 2010c, d). The aim of the study in namibia was to assess the baseline 

incidence in 2009 upon which future disease trends can be compared. The chapter focused 

mainly on modelling of Plasmodium falciparum malaria incidence in northern Namibia using 

Bayesian approaches to assess feasibility of pre-elimination  by 2016. The pre-requisite of this 

analysis was the analsis of public health facility utilisation described in Master’s thesis and 
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subsequently published in 2012
1
. Therefore, the section on modelling public healthcare 

utilisation was only mentioned, briefly, to provide context and uniformity with other country 

case studies. P. falciparum, the main malaria species in Namibia, incidence was modelled using 

HMIS data for 2009 at the constiuency level and summaries provided at health district level 

useful for NMCP planning and decision making. The findings
2
 on incidence were discussed in 

the broad context of feasilibility of achieving pre-elimination targets by 2016 highlighting 

regions where concerted control is required in Namibia.  

 

Chapter 3 is a case study of Afghanistan in Asia where, despite instability and poor 

infrastructure, substantial resources have been invested in malaria control in Afghanistan since 

2000 with financial support from external agencies, notably the Global Fund to fight AIDS, 

Tuberculosis and Malaria and the United States Agency for International Development (USAID) 

(Ministry of Public Health, 2008b). An immediate aim by the National Malaria and 

Leishmaniasis Control Programme was to reduce case incidence by 60% by 2013 in addition to 

improving case management and vector control. The focus here was to track progress towards 

the national target between 2006 and 2009 and provide estimates of clinical burden of P. 

falciparum and P. vivax.  A Similar analytical framework to Namibia was adopted except that 

there were two main malaria parasites in Afghanistan, the P. falciparum and the P. vivax. The 

analysis of incidence aimed at identifying the co-distribution of the two parasites and 

                                                            
1 Alegana VA, Wright JA, Uusiku P, Noor AM, Snow RW, Atkinson PM (2012). Spatial modeling of healthcare     

  utilization for treatment of fever in Namibia. International Journal of Health Geographics, 11: e6. 

 
2 Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P,Katokel S, Snow RW, Noor AM (2013). Estimation of malaria incidence 
in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spatial and Spatio-temporal 
Epidemiology 7: 25-36. 
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implications for malaria control and elimination. The findings in from of spatio-temporal 

incidence maps were discussed at the end of the chapter. 

 

Chapter 4 focuses on Eritrea in the horn of Africa. Eritrea is one of few countries in Africa that 

have recently reduced malaria burden by >75%. Eritrea has been in a consolidation phase since 

the mid 2000s and the NMCP is aiming for pre-elimination. The national malaria control 

programme has been in consolidation phase, but has set ambitions for pre-elimination in current 

malaria strategy (East Africa Roll Back Malaria Network (EARN), 2013). Eritrea was similar to 

Afghanistan in terms of prevalence of both P. falciparum and P. vivax. However, majority of the 

burden is from P. falciparum. This chapter, therefore, explored implications for moving to pre-

elimination given the trends incidence. 

 

The discussion in chapter 5, summarises findings from the three case studies and assesses the 

possibilities for sustained control on pre-elimination. The policy implications for each case study 

based on household and HMIS data, modelling healthcare access as well as disease incidence are 

also discussed. The future potential of the methods, particularly on the use of HMIS data to 

describe malaria incidence in low endemic regions rather than prevalence from community 

surveys is also discussed. The last section of the chapter points out some limitations of the 

modelling approaches used in this thesis and outlines recommendations for future studies. 
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1.8 Modelling approach used in the thesis 

1.8.1 A mini review on methods of identifying high risk populations in low transmission 

settings  

A literature search was conducted from Pubmed and the Web of Science to identify research 

related to low malaria transmission settings from 2005 to 2014. The search generated 2,335 

articles including journal publications, book sections, and conference proceedings. These were 

reduced to 88 after screening the titles and abstracts to include only research related to malaria 

risk in low transmission settings. Commonly excluded themes were malaria interventions, 

clinical trials, travel health, drug efficacy and resistance, biological and physiological studies as 

well as diagnostics.  

 

Of the 88 studies, 70 had been published during or after 2010. The majority involved parasite 

prevalence either directly estimating prevalence or comparing the performances of different 

approaches (RDTs, microscopy, PCR and serology). Three studies in Sri Lanka (Rajakaruna et 

al., 2010), Zambia (Davis et al., 2011) and Swaziland (Sturrock et al., 2013a) demonstrated the 

usefulness of combining passive case surveillance with reactive case detection to identify 

asymptomatic infections.  Except for the study in Swaziland, most studies were conducted over 

small areas focusing on one district or province and in some cases involving only one health 

facility. This illustrates the challenge of conducting (sero)-prevalence or molecular-based studies 

at the national level. In summary, there was an improvement in techniques (such as using PCR 

and advanced statistical methods) with time. The studies contributed by this thesis highlight 

advances in modelling (including in modelling spatial decay in health facility utilisation to 

estimate denominators) for estimating malaria incidence from routine data.  



   

74 

 

 

1.8.2 Issues in statistical modelling disease data 

There are several issues related to data and methods when modelling disease data. First, there has 

been an increase in the availability of spatio-temporal datasets in last ten years from widely 

available household surveys at a national level and independent studies that are becoming 

increasingly available to the public domain. These data exist at varying spatial and temporal 

scales which makes it challenging to compare directly between countries and sites as well as 

imputing the missing data points. Secondly, the increasing availability of remotely sensed data 

has given rise to large set of spatio-temporal climatic or ecological covariates. Modelling these 

datasets using kriging, for example, requires assembly of large databases and requires inversion 

of large variance-covariance matrices generally of order )( 3nO  (Barnerjee et al., 2004). Numerical 

algorithms such as MCMC are slow computationally and may result in poor mixing of chains as 

well as convergence issues. 

 

Several approaches have been proposed in the literature to handle large datasets including 

reducing the dimension of the covariance matrix to a sparse nature using methods such as 

covariance tapering (Furrer et al., 2006, Kaufman et al., 2008). Vecchia (1988) proposed the 

partitioning of the density matrix into sub-vectors and computing the likelihood as a joint 

conditional product (Vecchia, 1988, Stein et al., 2004). Slightly different approaches involved 

the use of reduced rank Kriging using basis functions (Cressie and Johannesson, 2008), 

modelling in the spectral domain using the Whittle likelihood (Fuentes, 2002) and the use of 

lattice methods (Whittle, 1963, Rue and Held, 2005). The sparseness property of the covariance 

was an earlier popular approach (see methods such as rejection sampling under MCMC (Gelman 
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and Rubin, 1992, Gelman and Rubin, 1996)). The lattice approaches used in this thesis involve 

expressing a random field model as a solution to Stochastic Partial Differential Equations 

(SPDEs). The use of Gaussian Markov Random Fields (GMRF) represented via linear basis 

functions has been proposed as a replacement to the Gaussian Field (GF) (Lindgren et al., 2011). 

The implication is that the GMRF enjoys Markovian properties, such as the sparseness of 

variance-covariance matrixes that are computationally efficient compared to the dense 

covariances associated with a GF.  

 

The assumptions of stationarity can be violated for large geographic domains (Fuentes, 2002, 

Stein, 2005, Gosoniu et al., 2006). Stationary refers to a constant parameter mean (  )(s ) for a 

spatial process dDssZ )(  (i.e. the )())(( ssZE  ). Weak stationarity is implied if for a 

Euclidean distance
21 ssh  , the covariance )()( hCC  . This implies that the covariance 

between two locations depends only on the Euclidean distance. For disease mapping (such as 

malaria), non-stationarity (by allowing spatial structure or spectral density to vary by location) 

may be useful property of the model given that processes such as malaria interventions that 

affect the disease vary spatially  (Gemperli et al., 2006, Gosoniu et al., 2006). There are several 

forms of investigating the requirements for stationarity, for example, using nonlinear approaches 

(Fuentes, 2005). Gemperli (2003) divided the study area into tiles in an attempt to introduce 

space-varying parameters. This, however, may result in boundary or edge effects when stitching 

the tiles back together and the independence assumptions of tiles may not be appropriate 

(Gosoniu et al., 2006). With advances in computer programming and software, it is easier to 

introduce non-stationarity by supplying a vector of coordinates to the model of space varying 

parameters. Such models have been proposed with separable or non-separable covariance 
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structures (Gneiting, 2002, Stein, 2005, Cressie and Johannesson, 2008, Gething et al., 2011b) 

with separable structure most favoured because it easily handles the two domains (space and 

time) as Kronecker products. Kronecker products are easier to handle computationally due to 

their good mathematical properties for computing quantities such as determinants or matrix 

inversion.  

 

Lastly, it is not always the case that the relationship between the covariates and disease data is 

linear. This, however, could be investigated using nonlinear approaches that relax the linearity 

assumptions and fitting using a modelling strategy without linear assumptions. Examples of such 

algorithms include polynomial regressions (Cleveland, 1979, Cleveland, 1981), kernel 

smoothing (Silverman, 1981, 1986) and splines (Eilers and Marx, 1996). High-order curves such 

as B-splines are also proposed to represent the functional relationship between disease 

prevalence and climatic covariates (Lindgren and Rue, 2008). Thus, the nonlinear approaches 

provide an additional computational aid that is better than the usual reliance on categorizing 

environmental covariates. These higher order curves can also be applied to modelling seasonality 

that is driven largely by climatic conditions (such as low prevalence in extremely arid 

environments).  

 

1.8.3 Integrated Nested Laplace Approximation (INLA) and Gaussian Markov Random 

Fields (GMRFs) 

The goal of Bayesian inference is to learn about the posterior mean and perhaps variance of some 

unknown parameters given some observed data. A distributional model is, thus, based on 

likelihood )|( yf where y  is the observed data with   as unknown parameters and prior 
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distribution )|(   with additional hyperparameters . Thus, from Bayes theorem the posterior 

distribution is product of prior and the likelihood given the observed data as: 
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where h  and   can be conjugate prior information (see the appendix section for examples of 

conjugate priors). The attractive properties of the posterior are the mean, mode and median of the 

posterior )|( yp   . The mode  

)|ˆ()|ˆ(:ˆ ypSupyP    

 

does not require an integration algorithm and is central in Bayesian analysis using INLA where 

the marginal is Gaussian. A popular approach to computing the above integrants is to use 

MCMC (Kloek and Dijk, 1978) which is non-deterministic by drawing samples (often 

correlated) from the posterior to arrive at closed values. A histogram distribution of the posterior 

is usually sufficient for inference. Common recursive algorithms are the Gibbs sampler and 

Metropolis-Hastings (Barnerjee et al., 2004). The INLA method, used in this thesis, arrives at a 

closed solution using curvature of the mode evaluated at suitable sampling points (Rue et al., 

2009). The difference between these two approaches lies in computational efficiency and only 

applies for a class of Latent Gaussian Models (LGM) such as spatial and spatio-temporal models 

using GMRFs (Martins et al., 2013). 
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GMRFs are widely used in Bayesian hierarchical models for lattice data due to their relative ease 

of implementation and they also possesses desirable Markov properties (Rue and Held, 2005). 

For example, they are useful at representing dependence of an unobserved process (the latent 

effect) at the second stage of a hierarchical Bayesian model. A random vector 
T

nxxx ),........( 1 can 

be defined as a GMRF with mean   and positive definite precision matrixQ  with density: 

)]()(
2

1
exp[||2)( 2/12/    xQxQx Tn

 

 

where Q  is the precision matrix with covariance matrix 1 Q . The computational advantage of 

Markov properties arise from the sparcity ofQ . If two random variables (RV) 
ix  and 

jx  )( ji  are 

conditionally independent with conditional density .)|(.  for )|()|()|,( ijjijiijji xxxxxxx    then, 

it also follows that, for the two RVs, 0ijQ  if ),( iNij for a neighbourhood 
iN  and matrix 

operations reduced to order of )( 2nO for spatio-temporal applications (Rue and Held, 2005). For 

geostatistical applications a Gaussian Field (GF) with a Matérn covariance is represented as a 

GMRF through a Stochastic Partial Differential Equation (SPDE) approach based on a basis 

function representation (Lindgren et al., 2011). Thus, the dense structure of the covariance 

matrix in a GF is reduced when using a GMRF with a neighbourhood structure.  The 

representation using a neighbourhood structure makes it possible and efficient to use INLA 

(Lindgren et al., 2011, Cameletti et al., 2012, Lindgren, 2013). 

 

In INLA, the linear predictor 
i  can generally be modelled with covariate effects in an additive 

manner (Rue and Martino, 2007, Rue et al., 2009, Schrödle and Held, 2010) with the response 
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coming from a selected family linking to the predictor through some link function ),( xg , thus, 

ii  )(g with 

iki

n

k

kji

nf
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i zuf 

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 11

)( )(  

where 
)( jf  is a some function (could be linear or non-linear such as penalized splines or random 

walks (Fahrmeir and Kneib, 2009)) on a variable u , k are the coefficients for the 

covariates z ,and represents the residual error effects. The variables   ,,, f  together 

define the latent field associated with some hyperparameters . The joint posterior 

density ),|(  xy  given a set of parameters is given as,  

    ),|()|()()|,(  ii xyxyx  
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where y  are the observations, x  latent Gaussian variables with   hyperparameters. Bayesian 

implementation, in INLA for small   (< 12) typically computes the conditional distribution of a 

latent field given the hyperparameters (Fahrmeir and Lang, 2001, Rue and Martino, 2007, Rue et 

al., 2009). The desired posterior marginal distribution given observations is then calculated as: 

    dyyxyx iii )|(~),|(~)|(~
  

   
jj dyy   )|(~)|(~  

with the integral evaluated via a finite sum in INLA as (Rue et al., 2009) 
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with 
k as weights calculated at appropriate values of k computed iteratively. The first procedure 

computes )|(~ y as an approximation to )|( y  followed by ),|(~ yxi   as an approximation to 

the conditional marginal distribution to ),|( yxi  . Lastly, given full conditional distributions,   is 

integrated out. The first approximation is obtained as; 
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where ),|(~ yxG  is the Gaussian approximation to the conditional of x  evaluated at the 

mode )(* x obtained by an optimization algorithm using a quasi-Newton approach (Fahrmeir and 

Lang, 2001, Rue et al., 2009). This is the Laplace approximation of the marginal posterior 

distribution (Martins et al., 2013) and is usually accurate as long as the expected posterior is 

dominated by one mode. Thus, locating the mode (using an optimization algorithm) is key in the 

successful application of the INLA method. The error, proposed to be of order )( 2/3

dnO (Rue et 

al., 2009), is minimal especially where the full Laplace option is selected when using the INLA 

algorithm (Tierney and Kadane, 1986, Martins et al., 2013). The quantity ),|( yxi  is then 

evaluated using a Laplace approximation (Rue et al., 2009). Further details of the INLA 

numerical algorithms can be found in Martins et al. (2013). 
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1.8.4 Analytical protocol and the Bayesian modelling approach adopted in the thesis 

The overall analysis flow is presented schematically in Figure 1.7 which shows the data input 

and processing leading to a Bayesian framework. This includes adjusting for rates of attendance 
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or health facility utilisation, rate of reporting within the HMIS based on number of returned 

reports at each health facility and an adjustment of the suspected cases using a slide positivity 

rate. The focus of the rest of this section is to outline the Bayesian modelling framework. 

 

CAR and geostatistical models were used to assess the burden of Malaria in the selected case 

studies. The INLA methodology was adopted for each study with actual models slightly 

modified to better fit the data and underlying disease dynamics to answer specific research 

questions, and also increase understanding of different modelling frameworks. The model 

specification for each study is included in the relevant chapters of the thesis and includes 

information on type and magnitude of priors used as well as assumptions attached to the 

parameters (for example, linear assumptions for Namibia and Afghanistan compared to non-

linear assumptions for Eritrea). To understand the effect of including extra random effects, one 

level was specified in the Namibia CAR model compared to three different levels in Afghanistan 

and Eritrea (where facility, district and province independent effects were used). In Eritrea, non-

linear effects included a seasonal model with spatio-temporal covariates (rainfall, and 

temperature). For Namibia, random effects were modelled at constituency and facility level only.  

 

For modelling slide positivity rate, the model parameters such as range were estimated using the 

size of the geographic domain (country boundary). Covariates in each case study were selected 

based on previous knowledge from other studies and statistically via a best fitting generalized 

linear mixed model with lowest Bayesian Information Criterion (BIC). This resulted in different 

covariates in each model setup. Intervention effects such as ITN distribution were not included 

as part of the covariate set to reduce circularity and avoid over-fitting (Illian et al., 2012). Edge 



   

82 

 

effects were minimized by expanding the study domain by at least 100 km. The Kronecker 

product feature )( ts QQQ   was used to construct a separable covariance structure 

 )()()},({ uChCuhZCov TS   

and the non-separable covariance function (De Iaco et al., 2001, Gneiting, 2002): 

TuhuChCuChCuhC d

TSTS  ),()()()()(),( 210   

where 
0 ,

1 and
2 are non-negative coefficients while 

SC  and 
TC  are spatial and temporal 

covariance functions respectively. Thus, non-separable covariance functions were constructed to 

improve the mixing of two domains (Knorr-Held, 2000). However, the results for the separable 

covariance function are given in all the three case studies. The mean component in the modelling 

specification follows an independent autoregressive component )))1((,0(~ 12  Nx  with two 

hyperparameters on  (gamma prior) and 1 with normal prior.   

 

Where several models were fitted, model selection was based on the significance of the 

parameters and Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). The effective 

number of parameters for a model is defined by Spiegelhalter et al. (2002) as  )()(  DDpD   

where D  is the posterior mean model deviance,  )|( yE is the posterior mean of parameters, 

)(D  is the Bayesian deviance at the posterior estimate of parameters . Other quantities such as 

the Root Mean Square Error (RMSE), the mean error and the cross validation statistics were used 

to assess the selected model. 
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Figure 1.7 Schematic analysis flow 

The overall methodology used in the thesis where main data inputs are at the top and the major sections are those in 

brown in terms of modelling probability of attendance for fever treatment, the Bayesian modelling framework as 

well as validation Bayesian model outputs.  
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CHAPTER 2: Case Study 1 
Estimation of malaria incidence in northern Namibia in 2009 using 

Bayesian Conditional-Autoregressive (CAR) spatio-temporal models 
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2.1 Background 

Namibia declared ambition to eliminate malaria by 2020 after reducing the burden significantly 

with sustained control (Southern African Development Community, 2012, Noor et al., 2013a, 

Noor et al., 2013b). In 2009, the Elimination Eight (E8) initiative was launched, under which 

eight southern African countries decided to collaborate to eliminate malaria in Namibia, 

Botswana, South Africa, and Swaziland. These ambitions were not only motivated both by 

reported substantial declines in malaria burden in the four countries but also by the renewed 

interest in malaria elimination following the global call in 2008 (World health Organizastion, 

2008). In 2010, Namibia launched a national malaria strategy for the period 2010 to 2016 with 

the goal of reducing malaria case incidence to 10 persons per 1000 population by 2013 and to 

move the country to pre-elimination status by 2016 with a case incidence of no more than 1 

person per 1000 population (Ministry of Health and Social Services, 2010c, d). Evidence from 

the malaria indicator survey (MIS) conducted in 2009 showed a mean community Plasmodium 

falciparum prevalence of less than 3% nationally (Ministry of Health and Social Services, 

2010b) which is also a threshold at which countries are advised to consider pre-elimination as 

well strengthen surveillance. At this threshold, one of the proposed appropriate approaches is the 

use of case incidence data for measuring malaria risk since parasite prevalence surveys maybe 

inadequate (Yekutiel, 1960, Hay et al., 2008).  

 

Namibia, like other malaria eliminating countries in SSA, is yet to adopt active case-detection 

(ACD) systems (World Health Organization, 2012b) and the main surveillance data are from 

passive case detection (PCD), assembled through the public health sector. HMIS data, as 

outlined previously in the introduction chapter, have deficiencies that limit their use for 
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estimating malaria incidence. For example, a proportion of malaria cases in Namibia may be 

treated outside of the public health sector (Cibulskis et al., 2007, Cibulskis et al., 2011) while a 

proportion of health facilities in the public sector may fail to report. Those health facilities that 

report to HMIS may not do this consistently, thus, making data spatially and temporally 

incomplete (Murray et al., 2004, Stansfield, 2005, Gething et al., 2006, Gething et al., 2008). 

The use of HMIS data requires approaches that adjust for  non-utilisation of the public health 

sector; incomplete data reporting which underestimate burden and the presumptive diagnosis of 

malaria which inflate incidence (Cibulskis et al., 2011, Alegana et al., 2012). In addition, these 

approaches must harness the spatial and temporal autocorrelation of the available data to areas 

and periods where data are missing and estimate robustly the uncertainties of these estimates 

(Loha and Lindtjorn, 2010, Reid et al., 2012). 

 

Bayesian hierarchical conditional auto-regressive (CAR) models were used to smooth incidence 

using HMIS data while incorporating a set of environmental or ecological variables (Gelfand and 

Vounatsou, 2003, Barnerjee et al., 2004, Gething et al., 2006). This approach has been used 

previously in modelling spatial-temporal variation of disease risk in Yunnan province in China 

(Clements et al., 2009) and in identifying social and ecological factors driving malaria risk in 

Vietnam (Manh et al., 2011).  The main advantage of this approach is that it can handle 

uncertainty in a coherent manner, is able to smooth risk in areas where data are not recorded and 

smooth variability where the denominator (population catchment) is small (Gelfand and 

Vounatsou, 2003, Reid et al., 2012). These approaches are used in this study with the primary 

aim of smoothing the incidence of P. falciparum at second administrative unit level 

(constituencies) in northern Namibia where malaria is considered endemic. 
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The chapter provides an overview of Namibia in terms of geography and health goals and the 

healthcare system. A review of healthcare utilisation in section 2.5.5 provides a platform for 

analysis of P. falciparum incidence in Northern Namibia based on cases reported in 2009. The 

smoothing of incidence is based on a Bayesian conditional-autoregressive (CAR) zero-inflated 

Poisson model. The rationale for using zero-inflated model is provided prior to model 

specification. The last section discusses findings in context of malaria pre-elimination in 

Namibia and highlights regions where malaria control should be focused.  

 

2.2 The Namibia context 

2.2.1 Geography 

Namibia is located in southern Africa at approximately latitudes 17
o
 S and 29

o 
S and longitudes 

11
o 
E and 26

o 
E. It is bordered by Angola and Zambia to the north, Botswana and Zimbabwe to 

the east and Atlantic Ocean to the west (Figure 2.1). The country’s total surface area is 

approximately 824,116 km
2
 (ranked as 34

th
 in the world in terms of size) and is divided into 13 

regions (administrative level 1 boundaries), 34 health districts and 108 constituencies (Zere et 

al., 2006, Ministry of Health and Social Services, 2010c). Namibia is one of least densely 

populated country in the world after Mongolia, with approximate density of 2.5 inhabitants per 

square km. Population is estimated at just over 2.2 million. Majority live in the northern regions 

of the country (National Planning Commission, 2012). The common geographic features are the 

Namib Desert in the west and the Kalahari Desert in the East (with Botswana and South Africa) 

extending to Orange River in the south. Aridity constrains malaria risk to the northern regions 

(Ministry of Health and Social Services, 2010c, Snow et al., 2010a). The central plateau extends 
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from north to south in the western part of the country. The West and coastal parts receive 

approximately 5 mm and 20 mm of rain respectively. The average daily temperatures range from 

20 °C to 34 °C in the summer and 18 °C to 22 °C in the in winter. Temperatures at the coast are 

driven largely by the cold Benguela currents from the Atlantic Ocean.  

 
Figure 2.1: Map of Namibia showing administrative boundaries and limits of P. falciparum risk 

Map of Namibia showing administrative 1 boundary (regions) and constituencies and the locations of the major 

urban areas. The zoned area in the north (bold line) show regions where IRS was conducted (1965 to 1980s) while 

the grey regions have no malaria risk mainly due to extreme aridity (Alegana et al., 2013, Noor et al., 2013b). 

 

2.2.2 Namibia progress on MDGs and health targets 

Namibia has made steady economic progress since independence in 1990 with GDP per capital 

estimated at 4.9 in 2012 (National Planning Commission Secretariat, 2013, The World Bank, 
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2013). It is ranked 128 out of 187 countries on the Human Development Index (HDI) (UNDP, 

2013b). Despite recent economic progress, there still exist large inequalities in income (estimated 

Gini coefficient of 0.6 in 2010 (CIA, 2013)) and the majority of rural population remain poor. 

The overall life expectancy has declined to 48 years. Namibia is  unlikely to achieve MDG 4 

targets on child mortality and maternal mortality (MDG 5) (National Planning Commission and 

UNDP, 2010, Mbeeli et al., 2011). For example, according to the 2006-07 DHS, the maternal 

mortality ratio (MMR) was 449 per 100,000 live births compared to 271 per 100,000 live births 

estimated in the 2000 DHS. The high MMR has been attributed to various factors including lack 

of skilled birth attendance and HIV/AIDS (Ministry of Health and Social Services, 2008b, 

National Planning Commission and UNDP, 2010, Mbeeli et al., 2011). In 2008, the infant 

mortality rate was 46 deaths per 1000 live births while the under-five mortality rate was 69 

deaths per 1000 live births (Ministry of Health and Social Services, 2008b, National Planning 

Commission, 2008). The reported rate of child mortality for SSA in 2010 (121 per 1000 live 

births) (United Nations, 2012) and a target of 28 deaths per 1000 live births for Namibia is less 

likely to be achieved by 2015.  

 

However, progress has been made on reducing extreme poverty (estimated at 28%) and on 

malaria where the burden has been reduced significantly (National Planning Commission and 

UNDP, 2010). The reported incidence of malaria fell from 207 cases per 1000 population in 

1996 compared to 63 cases per 1000 population in 2008 (National Planning Commission and 

UNDP, 2010). The rate of stunting (height-for-age) in the 2006-07 DHS was 29% and wasting 

(weight-for-height) was 7.5%. The level of malnutrition decreased with increasing wealth index 

(Ministry of Health and Social Services, 2008b). An improvement in the agricultural sector has 
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contributed to reduced poverty rates (Ministry of Health and Social Services, 2008b, National 

Planning Commission and UNDP, 2010) while aggressive malaria control strategies has reduced 

the malaria burden (Ministry of Health and Social Services, 2010b). Universal coverage of LLIN 

is yet to be achieved. The ownership of ITNs in the 2009 MIS was 54.8% with utilisation rates 

low at 34.2% amongst children under the age of five years.  

 

The Namibia health goals are outlined in vision 2030 document targeting equity of access to 

quality healthcare services. The National health policy framework outlines the key health targets 

for Namibia for period 2010 to 2020 (Ministry of Health and Social Services, 2010d). It also 

outlines the management and strategic plans for malaria and other diseases under vision 2030 

(National planning Commission, 2004). Examples of the targets in vision 2030 policy include: 

reducing the prevalence of HIV/AIDS and infectious diseases (malaria, TB and STIs); reducing 

vaccine preventable diseases; increasing family planning uptake and contraceptive use; and 

improving the provision of clean water and sanitation (National Planning Commission 

Secretariat, 2013). 

 

With a substantial decline in malaria cases in recent years, the ministry of health and social 

services targets a pre-elimination status by 2015 and elimination by 2020 (Southern African 

Development Community, 2012, Noor et al., 2013a, Noor et al., 2013b). Current malaria 

strategies include the strengthening of the diagnosis of malaria, effective case management, 

increasing the coverage of insecticide treated bed nets (ITNs) in malaria endemic border areas, 

strengthening of community level surveillance and maintaining a malaria-free buffer extending 

across the border with neighbour countries (Ministry of Health and Social Services, 2010c, d, 
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Trans-Zambezi Malaria Initiative (TZMI), 2012, Noor et al., 2013b). The 2008 DHS, for 

example, estimated 25% ownership of mosquito nets in a national representative sample of about 

9,200 households. These are distributed mainly through mass campaigns, in hospitals and during 

immunizations.  

 

2.2.3 History of malaria control in Namibia 

Namibia introduced indoor spraying using DDT in 1965 with chloroquine used for treatment 

upon infection (Hansford, 1972). DDT was used in Ovambo land (present regions: Ohangwena, 

Oshana, Oshikoko and Omusati), Kavango and Caprivi. By 1979, IRS had contributed to a 

substantial decrease of malaria vectors namely the An. Gambiae complex and the An. Funestus. 

The period between 1975 and 1990 was marked by instability during the war of independence 

and malaria control activities reduced significantly. Chloroquine resistance was also reported 

during this period and a combination of these factors (instability and reduced malaria control) led 

to an increase in malaria cases in the late 1980s (Noor et al., 2013b, Noor et al., 2013c).  

 

After the 1990 independence, the National Vector-borne and Disease Prevention (NVDCP) 

increased malaria control activities. An increase in funding particularly after the launch of the 

Global fund to Fight AIDS, Tuberculosis and Malaria (GFATM), increased the coverage of 

interventions. To date, MoHSS has received over  USD 26 million in funding since January, 

2005 (The Global Fund, 2013c). ITN ownership, for example, has increased and was estimated 

as 54.8% in the 2009 MIS. The first line treatment for malaria using ACTs was adopted in 2006 

and AL is now used as treatment for confirmed P. falciparum cases with SP or Fansidar used 

during pregnancy (Ministry of Health and Social Services, 2010c).  
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2.2.4 Organisation of Namibia’s healthcare system and delivery 

The Ministry of health and social services is responsible for provision of all forms of healthcare 

in Namibia including rehabilitative, preventive and curative services.  The main target is to 

provide primary care to the population via clinics, health centres, district and regional (referral) 

hospitals (Ministry of Health and Social Services, 1998, 2008a). Financing of healthcare is 

mainly by government (approximately 12%) and donors although the general public pay for 

some services (out of pocket payments) (Ministry of Health and Social Services, 2010c). 

 

The regional and district administration manage referral facilities at the regional level as well as 

support management at the district level (34 health districts) (Ministry of Health and Social 

Services, 1995). The role of the national-level administration include planning, formulating 

healthcare policies including legislation and  regulation (Ministry of Health and Social Services, 

1995). There are 13 regional administrative areas headed by a deputy permanent secretary and 

responsible for policy implementation in the 34 health districts (Ministry of Health and Social 

Services, 1995, El Obeid et al., 2001). Majority of in-patient services are provided by the tertiary 

higher-level facilities with outpatient care is mostly provided at the first-tier facilities such as 

clinics, VCTs and sick-bays.  

 

Clinics and health centres constitute the first-tier facilities providing basic services to the 

population. There is also an involvement of community health workers in some regions. These 

basic facilities, however, lack skilled labour and provide limited services on neonatal care, 

emergency obstetrics, infant and maternal nutrition, Integrated Management of Neonatal and 

Childhood Illnesses (IMNCI) and breastfeeding programmes. Few outreach centres are linked to 
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clinics in rural areas (Ministry of Health and Social Services, 1995, 2007). Private facilities and 

private for non-profit (mission facilities) are run predominantly by private individuals. There 

exists church or faith based health facilities that provide healthcare services to general public (El 

Obeid et al., 2001, Ministry of Health and Social Services, 2007).  

2.2.4.1 Description of health facilities census in Namibia in 2009 

Namibia conducted a national health facility census in 2009 in an effort to understand service 

provision and improve resource allocation (Ministry of Health and Social Services, 2010a). In 

total, there were 46 hospitals (10.3%), 49 (11%) health centres, 327 (73.3%) clinics, 15 (3.3%) 

stand-alone voluntary counselling centres (VCTs) and 9 (2.1%) sick-bays that provide various 

child and HIV/AIDS related services. Majority were managed by the MoHSS (70.4%), 48 (10.8) 

by missions and NGOs, 14 (3.1%) belonged to the ministry of defence (MoD) and 70 (15.7%) 

were private. Only two health facilities in Kavango region out of the 446 facilities listed were not 

visited. The geographic location of each facility was recorded using a global positioning system 

(GPS). For health facilities, where the GPS coordinates were not taken, the longitude and latitude 

was established through a geographic place name or village name from a geo-database of place 

names in Namibia (Geonames, 2010). 

 

Majority of tertiary facilities were located in urban centres and on main access roads (Figure 2.2 

below). The spatial distribution of health facilities is similar to population distribution with 

majority of facilities located in the north. The analysis of utilisation and malaria incidence did 

not include the specialised facilities managed by the MOD/police, the private facilities and VCT 

since the focus was on public healthcare utilisation and disease burden estimation within these 

health facilities. 
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2.2.5 A review of public health facility coverage and utilisation in Namibia in 2009 

The analysis of coverage and utilisation in 2009 was based on public health facility data 

described in the section 2.2.4 and the rate of fever treatment for children under the age of five 

years based on the 2008-09 Namibia MIS. Relevant analytical procedures and discussion on 

public healthcare utilisation are outlined in Alegana et al. (2012). In brief, travel times were 

derived between population centres (households) and health facilities. Utilisation pattern was 

then modelled based on reported patterns of attendance (assumed at the nearest facility) for fever 

treatment and the theoretical derived patterns. The analysis focused on universe of all facilities 

and there was no stratification by facility type. 
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Figure 2.2: Distribution of Health facilities in Namibia in 2009 

Public health facilities in Namibia in 2009 showing the majority of major hospitals are located in main urban centres 

and on the main roads. The grey areas are non-malaria due to extreme aridity (Alegana et al., 2013, Noor et al., 

2013b) 

 

The analysis of public health facility coverage showed that a greater number of facilities were 

located in northern Namibia (Alegana et al., 2012). Assessment of health facility coverage using 

a 3-hour travel time cut off suggested high coverage rates of greater than 80% for most regions. 

However, public healthcare utilisation varied for each region (Table 2.1 below). Of the estimated 

162,286 children under the age of five years in the northern Namibia, 160,294 (98.8%) were 

estimated to be within a public health facility catchment (Figure 2.3 Page97) and the burden of 

fever was approximately 24,830 cases in 2009. The proportion of fevers within the catchments 
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was 90.8% (22,553) and 16,195 (65.3%) were likely to seek treatment in the public health sector. 

This suggested that approximately 8,616 (34.7%) febrile children were unlikely to use at a public 

health facility in northern Namibia including the 4,030 (47%) fever cases that lived outside of a 

health facility catchment (Table 2.1). The lowest utilisation rates were in Kunene (41.3%) while 

the highest were in Oshana (75.4%).  

Table 2.1: Estimated coverage and utilisation of public health facilities in northern Namibia 

The table is for children under the age of five years based on derived catchment population and fever treatment 

pattern 

  Estimated 

number of 

children 

under five 

years of age 

in 2009 

Estimated 

number of 

children under 

five years of 

age within a 

PHF
1
 

catchment 

Estimated number of 

fever cases among 

children under five 

years of age based on 

MIS prevalence 

Number(Percentage) of 

children under five years of age 

with fever likely to attend a 

PHF
1
 

Region     

Caprivi 8,881 8,741 2,433 1,637(67.3) 

Kavango 20,244 20,374 4,825 3,264(67.6) 

Kunene 8,192 7,363 1,425 588(41.3) 

Ohangwena 32,167 30,863 3,793 2,695(71) 

Omaheke 11,550 11,051 1,974 1,060(53.7) 

Omusati 27,386 26,993 3,478 2,522(72.5) 

Oshana 14,973 13,088 2,186 1,648(75.4) 

Oshikoto 19,918 236,612 1,395 932(66.8) 

Otjozondjupa 18,977 18,160 3,321 1,868(56.3) 

Travel time 

< 30 minutes 51,791 51,791 8,021 6,056(75.5) 

> 30 minutes  -< 1 hour 98,620 98,620 14,902 11,218(75.3) 

>1 -< 2 hours 138,219 138,219 19,035 14,136(74.3) 

>2 -< 3 hours 160,294 160,294 20,799 15,279(73.5) 

>3 hours 1,992 - 4,031 934(23.2) 

Probability of attendance 

< 0.50 13,698 11,808 2,277 19(0.8) 

>0.50 - < 0.60 7,820 7,908 1,356 717(52.9) 

>0.60- < 0.70 18,944 18,963 2,928 1,925(65.7) 

>0.70- < 0.75 120,862 121,615 18,269 13,553(74.2) 

     Total 162,286 1,602,94
3
 24,830 16,214 (65.3) 

1. PHF is an abbreviation for ‘Public Health Facility’, which in this case does not include private facilities or privates for 

profit. 

2. For Oshikoto region, the estimated number of children (0-4 years) slightly exceeds the overall population estimate for 

the region. This is because the catchment boundaries in some cases overlap the regional boundaries. 

3. The total number of children 0-4 years old in catchment boundaries was lower than the total estimated under fives 

population because of (a) not all children within the catchment were assumed to use the public health facility (b) the 

catchment boundaries did not covering 100% of the entire population by limiting maximum travel time to 3 hours from 

the decay model. 

 

Figure 2.3 shows the modelled facility catchments nationally, although, for incidence analysis 

only northern based facilities were used.  
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Figure 2.3: Probability of fever treatment and health facility catchments in Namibia 

The probability of using public health facility for fever treatment at 1 x 1 km based on the MIS data superimposed 

with the delieanated facility catchments. 

2.3 Analysis of malaria in 2009 in northern Namibia 

2.3.1 Description of HMIS data 

HMIS data for 2009 was obtained from MoHSS for 273 public health facilities in the northern 

Namibia after the national Service Provision Assessment (SPA) survey (Ministry of Health and 

Social Services (MoHSS) and ICF Macro, 2010). Of the 273 facilities in the north, 13 were 

private health facilities located in the urban centres and these were not included in the 

subsequent analysis of incidence. Three constituencies had no data (public health facilities) and 

were used as missing data after linking each facility to administrative areas. Missing data were 
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imputed as NAs. Data represented all age population of suspected and blood-slide confirmed 

malaria cases for 2009.  

 

A monthly aggregate of all cases had been recorded for each health facility resulting in 3,120 

facility-month records excluding the 13 private facilities. For majority of primary facilities, 

RDTs were used routinely to examine blood samples from most patients although a few, mostly 

at tertiary facilities, were examined using microscopy (Ministry of Health and Social Services, 

2010a). Thus, since it was not possible to distinguish cases that had been confirmed using an 

RDT or via microscopy, there was no stratification based on diagnosis. A reporting rate, 

calculated as a proportion of received reports over the expected number was applied to facility 

catchments while the slide positivity rate at each health facility was used to adjust the suspected 

cases. The latter was necessary to avoid overestimating incidence (where true cases are treated as 

a summation of clinical and confirmed case while ignoring the SPR at the facility). The opposite 

is also true, thus: 

edexanumberTotal

casesConfirmed
SPR

min
   

Where,   SPRcasesSuspectedCaseConfirmedcases   

In total, malaria reports were available for most but the 17 facilities in 2009 (missing data). Thus, 

the data was considerably complete (over 90%), in terms of reporting rates, for the majority of 

facilities with a zero recorded where there was no confirmed or a suspected case. Figure 2.4 

(below) shows a temporal plot of the malaria cases in 2009 by month.  
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Figure 2.4: Box plot of malaria cases in 2009 in Namibia 

Figure 2.4 (a) shows the suspected cases of malaria by months in Namibia in 2009 with a Gaussian fit (line) through 

the median cases. A peak occurred in March and was lowest towards the end of the year while (b) is based on 

confirmed malaria cases. 

 

2.3.2 Development of population denominator for analysis of incidence 

The Namibia population surface from Worldpop (Worldpop, 2010) (Figure 2.5) was derived 

from a combination of census, population settlements and land cover data using dasymetric 

approaches (Briggs et al., 2007). Dasymetric techniques involve the disaggregation of census 

data to improve their spatial resolution (Bhaduri et al., 2007). A Land cover surface for Namibia 

was obtained from the MEdium Resolution Imaging Spectrometer (MERIS) GlobCover product 

and combined with fine spatial resolution data on settlements to produce an improved surface 

that represented where people lived (Linard et al., 2010). GlobCover was originally provided at a 

spatial resolution of 300 m and its land cover classification is compatible with the UN land cover 

classification system (LCCS) (FAO, 2000). Settlements data for northern regions of Caprivi and 

Kavango were obtained from the environmental atlas project (Mendelsohn and Roberts, 1997, 

Mendelsohn et al., 2000, Mendelsohn and El Obeid, 2001) while an estimation of urban 

population in Windhoek was based on the census of 1991 and water demand report from water 
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resources management review (Water Resource Programme, 2007). A finer land cover or land 

use layer was created to include detailed information on roads, rivers and settlements extents. 

The land cover classes were then assigned a population weight based on density which was used 

to re-distribute population polygon data in 1 x 1 km spatial pixels (Linard et al., 2010). The 

resulting national population map was then projected forward to 2009 using the United Nations’ 

(UN) urban and rural inter-censual growth rates (http://esa.un.org/unup/).  

 

Figure 2.5 Map of population density in Namibia 

Map of Namibia showing areas where population is greater than 0.001 per 1 km2. The grey mask of aridity 

corresponds to regions where MODIS EVI>0.1. 

 

http://esa.un.org/unup/
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2.3.3 Assembly of environmental or ecological covariates for malaria risk in Namibia 

Malaria is driven by environmental and ecological factors such as rainfall, vegetation, altitude, 

humidity, temperature and human habitation that affect the development and survival of the 

malaria parasite and vector (Molineaux, 1988). Thus inclusion of these covariates is an important 

step in modelling malaria incidence.  

 

The mean enhanced vegetation index (EVI) in Namibia for 2009 was derived from the 

MODerate-resolution Imaging Spectroradiometer (MODIS) sensor imagery as a measure of 

vegetation (Hay et al., 2006, Scharlemann et al., 2008) while monthly 2009 precipitation data 

were obtained from the Tropical Rainfall Measuring Mission (TRMM 3B43) (Huffman and 

Bolvin, 2011, NASA, 2011) (Figure 2.6). TRMM 3B43, a gridded mean monthly average 

precipitation product in mmhr
-1

 at 0.25
o
 x 0.25

o
 spatial resolution (Huffman, 1997), was used. It 

is produced from multi-satellite precipitation analysis (TMPA) approach (Huffman and Bolvin, 

2011) that combines satellite-sensor data and rain gauge (ground measurements) observations. A 

temperature suitability index (TSI) was obtained from the Malaria Atlas Project 

(http://www.map.ox.ac.uk) was used as temperature covariate. The TSI ranged from 0 (not 

suitable) to 1 (most suitable) and showed areas where temperature support parasite sporogony in 

Namibia (Gething et al., 2011a). The average values of EVI, precipitation and TSI were then 

computed for each constituency. Finally, urban areas were based on the Global Rural Urban 

Mapping Project (GRUMP) (Balk et al., 2004, Center for International Earth Science 

Information Network (CIESIN), 2004). Proportion of urban population was calculated by 

intersecting the urban grid with the population grid.  Processing of this environmental grids 

http://www.map.ox.ac.uk/


   

102 

 

involve resampling to 1 x 1 km spatial resolution and extracting a value at each facility location 

in ArcGIS 10 (ESRI, Redlands, CA, USA).  
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Figure 2.6: Plot of environmental covariates with malaria cases for Namibia 

Plot showing the assembled total malaria cases in 2009 ( ) and the extracted mean monthly 

environmental covariates: EVI ( ) and precipitation ( ). 

2.3.4 Preliminary analysis of environmental covariates and crude incidence 

Preliminary model selection of covariates that best describes the response (incidence) is a widely 

accepted exercise in statistical modelling (Murtaugh, 2009). The choice of covariates should be 

guided by the principle of parsimony (identifying few and easily interpretable covariates) 

(Murtaugh, 2009).  Secondly, covariates improve statistical model fit and increase the precision 

of predicted estimates. Their inclusion increases the model parameter space (complexity) and, if 

not carefully selected, risk over-fitting (Babyak, 2004). For example, too many covariates may 

introduce artificial relations (due to interactions) with the outcome variable that are not easy to 

tease out. In addition, covariates often increase the R
2
 value of regression models, especially if 

the number of observations compared to predictors is small, without significantly increasing 

prediction accuracy. This problem can be pronounced when data assembled are from 
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observational studies based on different study designs, sampling considerations and sample sizes 

which are then combined to describe a random process (Babyak, 2004).  

There are several approaches in ecology reviewed by Murtaugh (2009) including widely 

criticised stepwise procedures see (Whittingham et al., 2006, Mundry and Nunn, 2009, 

Murtaugh, 2009) and references therein. Subset selection based on a statistical criterion, such as 

the Akaike information criterion (AIC), is the most commonly used in statistical modelling. 

These criterion methods aim to penalize model complexity (McLeod and Xu, 2008).  

 

In this study, preliminary non-spatial generalised linear regression analysis with response 

variable (crude incidence) was conducted. Figure 2.7 show the association of assembled 

environmental covariates with crude incidence using a scatter plot analysis in R version 14 

[http://www.r-project.org/]. The extracted values, for each covariate at each health facility, were 

used in continuous form in a generalized (multivariate) linear regression model with the response 

variable being the observed crude incidence rates.  

http://www.r-project.org/
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Figure 2.7: Scatterplot matrix showing association between covariates and crude incidence 

Association between crude incidence per 1000 population (log-transformed) with the standardised environmental 

covariates. The first row shows the crude incidence (response) against each explanatory variable. None of the 

predictor variable is categorical. 

 

A set of covariates were selected using the bestglm package in R (McLeod and Xu, 2008, Xu, 

2010) using the Bayesian information criterion (BIC). The final model was based on prediction 

error of the response and from candidate models based on covariates. For a response variable 

nyyy ..............1 with 
kXXX ........1 matrix of covariates and letting dkSk .....1,   be subset of 

models of size k:  
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NklikBIC loglog2   

For a given set of candidate models, 
mM , with parameters m , the posterior probability can be 

given by: 

mmmmmmm dMMZMZM  )|Pr(),|Pr()(Pr)|Pr(   

where )|Pr( mm M is the prior distribution. Xu (2010) use the BICq model with an imposed 

Bernoulli prior and compared with normal BIC model with flat normal prior. The BICq is written 

as:  

 )1/(log2log])(ˆ[log2 qqknkSLBIC kq    

where ])(ˆ[ kSL   is the likelihood,  q is the prior with probability lying between 0 and 1 )1( qqp  .  

 

The best parsimonious model was selected based on K-fold cross validation approach where the 

data were split into k-fold partitions and performance evaluated using one fold validation set 

(Hastie et al., 2009).  The lowest validation sum of squares 
kS , were obtained after minimizing 

the prediction error with   qKSKE k )( . The cross-validation was evaluated as:  


k

kS
n

CV
1

1   

Univariate non-spatial regression analysis showed that the EVI (coefficient of regression, 95% 

CI: 0.37, 0.31 – 0.44, p<0.001), TSI (0.77, 0.59 – 0.96, p<0.001) and precipitation (0.15, 0.08 – 

0.21, p=0.002) were important explanatory variables of crude incidence. The percentage of urban 

resident population produced a negative association with incidence (–0.02, -0.10 – 0.50, 

p<0.001). From multivariate models, only EVI (coefficient of regression: 0.0867; p<0.001) and 

TSI (coefficient of regression: 0.0959; p<0.001) was selected as best combination set of 
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covariates. However, EVI (coefficient of regression: 0.0969; p<0.001) was selected in the final 

parsimonious model after cross-validation and minimizing the cross-validation error (Figure 2.8). 

Thus, only this covariate was used in subsequent modelling work. 
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Figure 2.8: Covariate selection based on cross-validation error 

Estimated prediction error curve (red) and cross validation error (bars). The model complexity increased on the x-

axis while the estimate of standard error and prediction error was based on fivefold cross-validation. The best fit 

model within one standard error (standard deviation rule )( KsCV  ) was indicated by broken line. 

 

2.3.5 Bayesian model specification for malaria incidence 

Preliminary exploratory analysis revealed that zero cases were reported in 65.3% of the facility 

level monthly returns (Figure 2.4 Page 99). Overall, 43% of facilities reported no cases in March 

and over 60% from May to December. Following other studies in low transmission settings 

(Lambert, 1992, Manh et al., 2011), a Zero-inflated Poisson (ZIP) model was used to handle the 

excess zero counts. The ZIP models have also been applied previously in mapping the malaria 

vector sporozoite rate (Nobre et al., 2005, Amek et al., 2011) and in schistosomiasis (Vounatsou 

et al., 2009). They are formulated as two component mixture model given as (Lambert, 1992, 

Angers and Biswas, 2003, Ghosh et al., 2006); 
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where ),,(  are the parameters of interest requiring prior distributions to estimate the 

posterior. 

 

 A conditional auto-regressive (CAR) spatio-temporal model was implemented using EVI as 

covariate at constituency level. Bayesian hierarchical conditional auto-regressive (CAR) models 

was used to smooth incidence by constituency in northern Namibia where routine surveillance is 

inefficient and incorporating a set of environmental or ecological factors and random effects 

(Gelfand and Vounatsou, 2003, Barnerjee et al., 2004, Gething et al., 2006). Random effects 

were included at facility and constituency level to improve spatial variability in smoothing such 

that the linear predictor was written as: 

)()()()log(log 21 tfsfsfXE iuuij

T

ijii    
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Where 
iE  is the expected number of cases adjusted for utilisation at facility i ,   is the intercept 

and the unstructured components at facility )(1 usf and )(2 usf and facility and constituency level 

respectively. The )(tf  represents the temporal mean component modelled as an auto-regressive 

process with first term ),0(~ 2

0100  Nxx i   obtained from a stationary 

distribution ),0( 2 wN  . The fixed effects were assigned flat (non-informative) priors 1P . The 

random effects were assigned zero-mean Gaussian priors ),0(~ 2 Nunstr  with the 

hyperparameters assigned Inverse Gamma ),( baIG  priors 00005.0,0  ba  in line with other standard 

studies (Kazembe, 2007). The conditional spatial prior was used to model contiguous areas 

where the risk will be similar. Thus: 
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where 
iS and 

iS
are adjacent constituencies with 

ik number of neighbours and 2

s  is the variance. 

Conditional adjacency matrix of weights was modelled as Wij = 1 for two neighbouring regions 

or Wij = 0 otherwise following Bernardinelli et al. (1997) (Bernardinelli et al., 1997). The 

likelihood with inclusion of the terms and covariates is:  
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2.3.6 Bayesian model specification for slide positivity rates at health facilities 

2.3.6.1 Overview of slide positivity analysis 

A slide positivity rate based on the cases diagnosed parasitologically at each health facility was 

analysed using a Bayesian hierarchical geostatistical model. The modelling challenge involved 
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interpolating point referenced spatio-temporal data to 1 x 1 km fine spatial resolution estimates 

of P. falciparum positivity rates in 2009. The data on slide positivity rates comprised 260 public 

health facilities of which 26 (10%) were selected as a validation set. This resulted in 

approximately 2,808 spatio-temporal unique points. EVI was used a covariate. Modelling 

involved the use of Gaussian Markov Random Fields (GMRF) via Stochastic Partial Differential 

Equation (SPDE) approach outlined in section 1.8, chapter 1. 

 

2.3.6.1 Model specification using the SPDE approach 

Let ),( tsY i denote the response (slide positivity) at facility
iS , Ni ,......,2,1  in month t , Tt ,.......,1 . 

The ),( tsY i
 arise from a binomial likelihood such that the probability that a case is positive for a 

single blood test for P. falciparum was; ),(~| iiii pnBinomialpy  with a logit link function 

)}exp(1/){exp()(  p .  

 

Model specification followed the approach proposed by Lindgren et al. (2011) where an SPDE is 

an approximation to a continuous domain Gaussian field using a GMRF with a matérn 

covariance function (section 1.8), to produce a continuous map of slide positivity rate at 1 x 1 km 

spatial resolution. GMRFs result in sparse covariance matrices that are computationally faster. 

The model is a realisation of a spatio-temporal process of the outcome variable (incidence) at 

each facility location defined by longitude and latitude, month, covariates and a measurement 

error defined by Gaussian white noise. The resulting space-time covariance matrix from the 

spatial and temporal domains informs the spatial range and temporal lag of the prediction model. 

The SPDE/GMRF for spatial-temporal field is given as (Lindgren, 2013): 
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



),(),,()),()(())(( 2/2 tstsWtsxssk

t
  

where k  is spatial scale adjustment parameter of the field, 2/dv   controls the amount of 

smoothing and   the variance.  Non-stationarity was introduced by allowing for spatial varying 

parameter on )(s  (i.e. using the coordinates of health facilities). To obtain the desired Markov 

structure representation the SPDE is projected to the domain using the spatial and temporal basis 

function ),( tsx , 

k

k

k xtstsx ),(),(    

where the distribution of ),( tsx approximates the distribution of solution to SPDE in the spatio-

temporal domain with )()(),( tsts t

j

s

i   . 2-D piece-wise linear basis functions were used in the 

spatial domain and one degree B-splines for temporal domain.  

 

The general Bayesian model has the linear mixed model form; 

),(),(),( tsetstsY iii   

Where ),( tsi  denotes the overall mean structure (or linear predictor) and ),( tse i
the residual 

error term. This model constituted a general form of regression models of the exponential family. 

The mean component ),( tsi  was set to  T

i tsxts ),(),(   to allow for spatial-temporal varying 

covariate (EVI). The additional component ),( tse i
 were further decomposed into 

),(),()(),( tstswttse iisi    following Barnerjee et al. (2004), where ),( tsw i
 is a mean-zero 

spatio-temporal process modelled from matérn covariance function and ),( tsi is Gaussian white 

noise process. This specification separates the spatial-temporal effects from pure error effects.  
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The space-time covariance was modelled as a Kronecker product ts QQQ  . The projection of 

the space-time SPDE to the basis representation approach ensures that the GMRF maintains 

markovian properties with its evaluation resulting in a sparse precision matrix (Q ). The 

realizations of above domain have spatial Matérn covariance function which is flexible within 

the many families of covariance functions (Barnerjee et al., 2004). For example, the marginal 

variance parameter 
222/2 )4)((/)((  vd k  is related to the smoothing parameter via 

2/d . Furthermore, the popular exponential function can be identified by setting 5.0v and 

5.1  (Lindgren, 2013). The following covariance specification was used:  


'

'

0

)(2)},(),,({
tt

tt

if

if
tswtswCov

hCji
w 




  

where 
ji ssh  is the Euclidean spatial distance and 2)( wwVar   (the marginal variance). 

The matérn covariance function for 0h  : 

)()(
)(2

)(
1

2

khKkhC v

vw




 




        

 where 
vK  is Bessel function of second kind and of order  (the smoothing parameter), k  as a 

scaling parameter and 2

w  is the marginal variance. Values of 2/1  corresponds to exponential 

covariance function )exp()( 2 uuC    (Barnerjee et al., 2004, Zhang, 2004, Sahu et al., 

2013). INLA implementation takes values of 20  for 2/d  with marginal variance 

parameter as ))4)((/()( 222/2  kh  and spatial range defined as k/8   (Lindgren et 

al., 2011).  
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The 2

  prior specification was )0005.0,1(~2 IG . The )(ts  term in ),(),()(),( tstswttse iisi    

was modelled as first order auto-regressive terms ( 1 ; ))(,0(~ 2   AN ) with a time interval of 

12 months (Lindgren and Rue, 2008). Thus, indexed time points Tt ,.......,1  were associated with a 

dummy time variable such that ),()()1( tstt i  .   

 

Priors for )),(,0(~ 2  kQNW w
with 

st QQQ   was a sparse precision matrix (Lindgren, 

2013) with two parameters 1)log(    and 2)log( k with ),( 21  having joint independent normal 

default priors. Value for  was set to one ( 1 , i.e. 0log  ) and an approximate range as 1/5 

of the domain used as initial parameters. Thus from (Lindgren and Rue, 2013), parameterisation 

was based on approximate prior information for field standard deviation )( and the range )(r  .  

k

p

k

k sbsbs   )()()(log
1

0 


  

k

p

k

r

k

r sbsbsr )()()(log
1

0 


  

The above specification the joint distribution can be written as: 

TnTnTTwnnw IIIIIANY   2'

11

2'

11

2222 )(,(~,,,,|     

where 
nI  is an identity matrix of order n  and  is the Kronecker product.  

 

2.3.7 Model validation and scoring rules 

Model comparison was done using deviance information criterion (DIC) (Spiegelhalter et al., 

2002). A linear Pearson correlation coefficient was calculated for selected model to compare the 

estimates to the observed values. This was based on 26 health facilities selected randomly as 
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validation set. Model calibration (statistical consistency) and sharpness (concentration) was 

conducted using the probability integral transform (PIT) and the conditional predictive ordinate 

(CPO), a leave-one-out cross-validation approach in which a estimate is validated based on the 

fitted model and the remaining data only (Spiegelhalter et al., 2002, Czado et al., 2009). The 

CPO, the probability of observing a value given all other data, was examined for all observations 

in a full Laplace model (Martins et al., 2013). Model scoring rules such as the square error score 

(SES) and the ranked probability score (Gneiting and Raftery, 2007) were also computed. 

Gneiting and Raftery (2007) discuss model scoring procedures such as the standard error score 

(SES) and the ranked probability score (RPS). To predict a value py  given other values, the 

predictive posterior density )|( pp yyP   is given by: 

ppppp dyyyyyP  )|(),|()|(    

and obtained via a finite sum with weights 
j : 

jpjpj

j

ppp yyyyyP    )|(),|()|(
1

  

A score is then said to be proper if there is consistency between the news estimates and the 

observations (model is correctly calibrated). The SES and RPS are computed as: 

2
)(),( PyyPSES   

    
2

0

1),( 





k

kykYPyPRPS  

where P  is the predictive posterior distribution with mean p and standard deviation p  and y  is 

the observed count (Gneiting and Raftery, 2007).  
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The SES is comparable to square mean error 2
)( y  except that it applies to a predictive 

distribution. Lastly, sensitivity analyses for the slide positivity rate were conducted using the root 

mean square error (RMSE), the absolute mean error (MAE) that summarised the closeness of 

validation set data to observed values. These two quantities also estimate model bias and 

accuracy. Additionally, nominal model coverage of 95% credible intervals was assessed based 

on the validation set. The MAE and the RMSE is given by: 




 
n

i

xZxZ
n

MAE
1

)()(
1  









 




n

i

xZxZ
n
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1

2))()((
1  

2.4 Results 

2.4.1 Summary of assembled data 

Table 2.2 provides a summary of assembled health facility data and mean slide positivity rates by 

region in northern Namibia. 17 health facilities had no malaria reports in 2009, but, the 

remaining health outlets returned complete reports every month with no cases reported as a zero. 

In total, 134,851 cases were diagnosed clinically while 90,835 individuals were examined for 

malaria parasites of which, 9,893 were positive. Higher case loads were reported in regions 

bordering Angola compared to the southern regions. The unadjusted mean slide positivity rate 

was 11.2 [95% CI 6.7 - 15.7] (Table 2.2) and crude annual incidence was 16 cases per 1000 

population.  
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Table 2.2 Summary of number of suspected and confirmed malaria cases in northern Namibia by region.  

The last column show the percentage of population likely to use a health facility for fever treatment based on the 

reported pattern form household survey (MIS) 

Region 

Health 

district 

Number 

of health 

facilities 

(number 

with 

missing 

data) 

Number of 

constituencies 

Confi

rmed 

malar

ia 

cases 

Suspecte

d 

malaria 

cases 

Mean slide 

positivity rate 

(95% CI) 

Populati

on 2009 

Percent 

of 

populati

on 

attendin

g a PHF
1
 

modelled 

Caprivi Katima 27(2) 6 954 10,605 21.1 (17.9-24.3) 87,088 68.0 

Kavango Andara 10(0) 1 309 4,293 9.2 (7.0-11.3) 26,677 71.1 

Nankudu 11(1) 2 244 7,662 8.4 (6.0-10.8) 48,715 64.2 

Nyangana 8(0) 1 665 3,063 25 (20.1-29.9) 19,815 71.9 

Rundu 23(1) 5 1,176 34,608 16.4 (13.4-19.4) 119,855 71.1 

Kunene Khorixas 8(0) 1 1 89 2.7 (-0.5-6.1) 12,469 61.4 

Opuwo 14(0) 3 539 856 47.3 (40.7-53.8) 52,485 52.5 

Outjo 4(0) 2 1 53 1.1 (-0.2-2.5) 20,395 53.4 

Ohangwena Eenhana 10(1) 4 379 3,956 7.1 (4.8-9.4) 80,419 68.2 

Engela 16(0) 6 916 13,774 9.8 (7.8-11.9) 131,744 74.2 

Kongo 4(1) 1 529 1,788 24.3 (15.8-32.8) 24,744 61.5 

Omaheke Gobabis 14(2) 7 11 96 13.8 (9.5-18.1) 68,433 62.1 

Omusati Okahao 9(1) 2 384 9,066 4.1 (2.1-6.1) 29,964 73.6 

Oshikuku 19(0) 5 436 10,315 3.6 (2.6-4.7) 101,587 75.2 

Outapi 10(0) 2 1,970 9,846 8.4 (6.6-10.2) 48,812 70.8 

Tsandi 10(1) 3 617 5,339 8.4 (6.2-10.6) 54,418 70.1 

Oshana2 Oshakati2 19(4) 10 353 9,133 3.1 (1.9-4.3) 169,053 75.4 

Oshikoto Onandjokw

e 16(0) 8 266 8,516 2.3 (1.6-3.1) 146,436 69.8 

Tsumeb 5(1) 2 28 628 5.1 (1.8-8.4) 29,094 67.4 

Otjozondjup

a 

Grootfontei

n 6(0) 2 59 547 13.7 (7.1-20.3) 33,347 61.3 

Okahandja 2(1) 2 3 110 5.2 (0.2-10.1) 40,209 64.2 

Okakarara 5(0) 1 17 189 11.6 (5.0-18.2) 21,748 56.6 

Otjiwarongo 10(1) 2 36 319 5.4 (2.6-8.1) 42,336 67.3 

Total   260(17) 78 9,893 134,851 11.2 (6.7-15.7) 

1,409,84

1 65.3
3
 

1. PHF is an abbreviation for ‘Public Health Facility’, which in this case does not include private facilities or privates for 

profit 

2. Two constituencies in Oshana region (Okatyali and Ompundja) did not have any health facilities, thus, the polygons 

where treated as missing data. 

3. Public health facility attendance for treatment of fever based on probability of attendance and the distance decay effect. 

Description outlined in Alegana et al., 2012. 

 

2.4.2 The malaria incidence model results and validation 

Table 2.3 shows comparison of two models Model 1(without covariates) and Model 2 (with 

covariates) based on the DIC, SES and RPS. Model 2 was marginally better compared to Model 

1. The standard deviation of predictive distribution for Model 2 was also lower compared to 

Model 1. The lower the predictive score the better the model. The conditional predictive ordinate 

(CPO) for both models was 0.22 (Table 2.3) and since a smaller CPO value usually indicates 
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greater predictive accuracy (Schrödle and Held, 2010), the result suggested a small difference 

between the two fitted models. Model 2 (with EVI) was, however, used as the basis for 

presenting subsequent model outputs since covariate could be included when smoothing for 

unknown areas.  

 

Table 2.3: Comparison of the implemented Bayesian models 

Comparison is based on the deviance information criterion (DIC), the rank probability score (RPS) and the squared 

error score (SES). M2 had lower score of the DIC, RPS and SES 

Model DIC Mean 

deviance 

Number of 

effective 

parameters 

CPO RPS SES Standard 

deviation of 

predictive 

distribution 

Mean of 

predictive 

distribution 

Model 1 (without covariate) 3123.90 3113.22 9.79 0.23 0.6922 1.7039 1.3053 1.1526 

Model 2 (with covariate) 3123.80 3112.08 10.68 0.23 0.6662 1.6093 1.2686 1.1343 

 

Figure 2.9 shows a scatter plot of the estimates compared to the observed cases based on Model 

2. This Pearson correlation coefficient for the model was 0.56.  The correlation was based on the 

26 health facilities selected randomly in northern Namibia. Table 2.4 lists parameters for the two 

CAR models. The seasonal effect parameter (2.02 with Crl 0.16 – 5.79), health facility random 

effect (6.95, Crl 2.65 – 13.22) and the constituency effect (0.20, CrI 0.02 – 0.57) were all 

significant at 95% Crl (Bayesian credible interval). There was marginal difference in the mean 

intercept: -1.80 Crl (-1.98 - -1.64) and -1.76 Crl (-1.93 - -1.58) for model with and without 

covariate information, respectively. The spatial effect parameter ( ) was significant in both 

models.  
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Figure 2.9: Comparison of observed and the estimated incidence in Namibia 

Scatter plot of the observed cases on a log scale compared to the estimated case for the Bayesian model with 

environmental covariate (EVI).The Pearson correlation was 0.56. 

 

Table 2.4: Posterior distribution of parameters for incidence model. 

Posterior means and the 95% Bayesian credible intervals (Crl) of the parameters for the two zero-inflated CAR 

models of malaria incidence in northern Namibia on a log scale 

Parameter Model 1 Model 2 

Without covariates: Posterior 

mean, median, (95% CrI) 

With environmental covariate: 

Posterior mean, median, (95% 

CrI) 

µ (Intercept) -1.763, -1.760 (-1.932 - -1.581) -1.803,-1.800 (-1.980 - -1.639) 

Enhanced Vegetation Index (EVI) - 0.093, 0.093 (-0.028 - 0.211) 

ϑ  (parameter for Zero-inflation) 0.843, 0.843 (0.833 - 0.856) 0.843, 0.843 (0.833 - 0.854) 

τm (seasonal random effect) 1.546, 1.023 (0.137 - 4.692) 2.015, 1.427 (0.161 - 5.789) 

τf (facility random effect) 6.912, 5.836 (2.605 - 14.830) 6.952, 6.388 (2.641 - 13.220) 

ϒ (unstructural random effect) 0.190, 0.136 (0.020 - 0.542) 0.200, 0.144 (0.019 - 0.568) 

ф (structural random effect) 0.081, 0.045 (0.003 - 0.278) 0.080, 0.004 (0.030 - 0.276) 

 

2.4.3 Plasmodium falciparum incidence in northern Namibia in 2009 

Figure 2.10 (below) compares the estimated monthly incidence per 1000 population of P. 

falciparum with the calculated crude incidence based on the reported cases by month in 2009. 

Table 2.5 shows a comparison between the crude incidence and estimates based on the Bayesian 

approach. Incidence peaked in March and April period compared to later months of the year. The 
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Bayesian estimates for September to December period was higher, possibly due to the inclusion 

of spatial interaction effects and the environmental covariate. Figure 2.9 showed that the highest 

incidence was in Kunene, Kavango, Caprivi and in a few constituencies in Ohangwena region 

that borders Angola.  
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Figure 2.10: Temporal plot of estimated incidence 

Plot showing the observed cases by month (dark grey vertical bars), the calculated crude incidence (green line) 

based on the reported cases and estimated population and the predicted incidence per 1000 population of P. 

falciparum malaria in northern Namibia in 2009 (dashed red line with upper and lower limits at 95% Crl). 

 

Crude incidence estimates varied widely across the regions compared to a smoothed incidence 

from the Bayesian model that incorporated environment covariate. Crude estimates can over-

estimate incidence where the denominator population is small, and do not account for spatial and 

temporal dependencies in the data. For example, crude annual incidence in Katima district in 

Caprivi region was 133 cases per 1000 population compared to a smoothed estimate of 12 cases 

per 1000 population when using a Bayesian model.  The predicted annual mean incidence from 
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the Bayesian CAR model was 13 cases per 1000 population in the 78 constituencies in northern 

Namibia.  

 

Figure 2.11 shows the predicted mean spatio-temporal maps of malaria incidence in northern 

Namibia in 2009. The annualised incidence for 2009 is shown in Figure 2.12 with corresponding 

standard deviations in Figure 2.13. The highest estimated incidence was between 15 and 20 cases 

per 1000 population during January to April period and in constituencies bordering Angola. A 

similar pattern of incidence was depicted in the annual mean maps. The lowest risk was in 

southern most constituencies of Omaheke. The estimates in the southern constituencies also had 

higher standard deviations compared to northern constituencies. 

 
Figure 2.11: Monthly maps of P. falciparum incidence in 2009 in northern Namibia 

estimated incidence of P. falciparum malaria at constituency level using Bayesian spatio-temporal CAR zero-

inflated models with environmental covariates (Model 2) 
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Figure 2.12: Mean incidence of P. falciparum in northern Namibia in 2009  

The mean annual incidence of P. falciparum malaria based on Bayesian CAR with environmental covariates (Model 

2). 

 

 
Figure 2.13: Standard deviation map of annualised incidence for 2009 

Figure 2.11: The standard deviation map based on Bayesian model. The largest values were in regions where no or 

less data was reported. 
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Table 2.5: Comparison of crude malaria incidence and estimated incidence from a Bayesian approach 

Crude incidence was derived based on total malaria cases and the population likely to attend treatment while the 

Bayesian spatio-temporal approach was used to smooth this incidence across regions in northern Namibia. 

Region Health district 

Number of 
health 

facilities 
(number 

with missing 
data) 

Number of 
constituencies 

Crude incidence 
per 1000 

population 

Mean estimated malaria 
incidence per 1000 population 

via Bayesian approach 

Caprivi Katima 29(2) 6 132.7 11.5 (9.8-13.9) 
Kavango Andara 10(0) 1 24.5 9.3 (7.5-11.9) 

Nankudu 13(1) 2 15.5 12.5 (10.5-15.4) 

Nyangana 8(0) 1 78.7 15.1 (13.2-17.7) 

Rundu 23(1) 5 51.1 12.7 (10.8-15.2) 
Kunene Khorixas 8(0) 1 0.2 14.6 (12.5-17.6) 

Opuwo 16(0) 3 20.6 11.8 (9.7-15) 

Outjo 4(0) 2 0.1 14.5 (12.6-17.3) 
Ohangwena Eenhana 10(1) 4 9.7 14.8 (12.9-17.4) 

Engela 17(0) 6 16.8 14.3 (12.5-16.9) 

Kongo 4(1) 1 48.5 15.6 (13.5-18.8) 

Omaheke Gobabis 16(2) 7 0.3 11.5 (9.6-14.4) 
Omusati Okahao 9(1) 2 31.9 12.3 (10.4-14.9) 

Oshikuku 19(0) 5 10.8 14.5 (12.8-16.9) 

Outapi 10(0) 2 65.6 14.8 (12.9-17.5) 

Tsandi 10(1) 3 21.7 10.3 (8.5-12.7) 

Oshana2 Oshakati2 20(4) 10 4.2 8.8 (7.6-10.6) 
Oshikoto Onandjokwe 16(0) 8 4.4 12.8 (11.1-15.5) 

Tsumeb 6(1) 2 1.9 6.7 (5.0-9.3) 
Otjozondjupa Grootfontein 7(0) 2 3.6 13.4 (11.6-16.3) 

Okahandja 3(1) 2 0.1 9.2 (7.5-12.1) 

Okakarara 5(0) 1 1.6 13.6 (11.7-16.5) 

Otjiwarongo 10(1) 2 1.3 9.7 (7.9-12.6) 

Total   273(17) 78 17.4 12.5 (10.3-14.6) 

 

 

 

2.4.4 Assessing the population at risk of malaria in 2009 in northern Namibia 

 

Table 2.6 (below) shows the estimated population at risk of P. falciparum malaria by region in 

2009. Based on the Bayesian model, 383,632 people (27.2%) lived in areas where case incidence 
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was greater than 15 cases per 1000 population; slightly more than half 745,903 (52.9%) lived in 

areas where case incidence was between 10 to 15 cases per 1000 population; approximately 

216,512 (15.4%) resided in regions with an average of 5 to 10 cases per 1000 population; 49,005 

(3.5%) in areas with greater than 1 case, but less than 5 cases per 1000 population and 1% of 

population lived in regions with less than 1 case per 1000 population.  

 

Table 2.6: Population at risk in Namibia based on estimated incidence. 

Estimated population in northern Namibia at risk of P. falciparum in 2009 by region. Each classification class 

represent estimated incidence per 1000 population 

Region < 1.0 >1.0 -< 5.0 >5.0 -< 10.0 >10.0 -< 15.0 > 15.0 Total 

Caprivi 0 0 25,614 61,474 0 87,088 

Kavango 0 0 75,393 26,097 113,572 215,062 

Kunene 0 0 0 85,348 0 85,348 

Ohangwena 0 0 0 91,438 145,469 236,907 

Omaheke 7,249 9,376 0 7,153 44,656 68,433 

Omusati 0 0 27,741 127,104 79,935 234,780 

Oshana 7,539 3,866 32,573 125,074 0 169,053 

Oshikoto 0 19,041 24,938 131,550 0 175,529 

Otjozondjupa 0 16,722 30,254 90,664 0 137,640 

Total 14,789 49,005 216,512 745,903 383,632 1,409,841 

 

 

2.4.5 The predicted slide positivity rate in 2009 

2.4.5.1 Model validation results for slide positivity rate 

Table 2.7 shows parameters of the slide positivity rates model. The model had an absolute mean 

error of 1.1 which measured the overall magnitude of predictions and a RMSE of 2.1. The 

Pearson correlation coefficient which measured the linear association between the predicted and 

the observed values was 0.7 as shown by the scatter plot (Figure 2.14 (A)). The absolute error of 

1.1 indicates a small variation (in terms of magnitude) between observed and predictions. The 

analysis of standardized residuals using a semi-variogram showed minimum spatial structure 

(Figure 2.14 (B)) i.e. the residual spatial autocorrelation unexplained by the model after 

accounting for spatial effects. 
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Table 2.7: Bayesian geostatistical model parameters of Slide positivity rates for Namibia in 2009 

 
DIC PD

1
 MAE R.M.S.E 

Probability of 

prediction 

interval (%)
2
 

Pearson 

correlation 

(%) 

SPR Model 372.98 115.03 1.06 2.10 93.82 0.6985 
1. PD  represent the effective number of parameters 

2. The nominal probability of prediction is 95%  

 

The actual coverage probability of a prediction interval was used on a validation set to test how 

well the posterior distributions captured uncertainty at nominal 95% credible interval. Thus for a 

perfect model, 95% of value should fall within 95% of credible interval predicted at each 

location. The actual coverage probability was 93.8% indicating a slight underestimation of 

uncertainty. The RMSE was 2.1 % and corresponding AR(1) coefficient for structure time 

component was 0.8430. The model spatial range was 54.8 Km.  Further parameters from the 

model such as the marginal variances 2

w  are tabulated (Table 2.8). 
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Figure 2.14: Scatter plot of predicted and observed slide positivity rate and semi-variogram of residuals 

 (A) Scatter plot of the predictions and the actual values (B) standardized residual semi-variogram 
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Table 2.8: Posterior distribution of parameters for slide positivity rate 

Posterior estimates (mean, standard deviation and quantiles) of the fixed components (intercept and EVI), the matérn 

marginal variance component), the AR(1) coefficient and the model range 

Parameter Mean Std. dev 5% 50% 95% 

β0 0.2648 0.0612 0.0164 0.2647 0.3660 

β1 0.0404 0.0090 0.0255 0.0404 0.0551 

σw
3 0.1576 0.0476 0.0945 0.1496 0.2475 

ρ 0.843 0.0981 0.6555 0.8626 0.9627 

ф 0.3093 0.0750 0.2095 0.2965 0.4510 

 

2.4.5.2 Predicted slide positivity rate 

Figure 2.15 shows the predicted continuous and binned maps of slide positivity rate weighted by 

the probability of seeking treatment at the nearest public health facility when sick with fever. 

Slide positivity was higher in regions bordering Angola, consistent with predicted incidence 

prediction. The positivity rates in Omaheke regions were low. Table 2.9 shows the average 

positivity by region. The mean slide positivity rate for northern Namibia was 4.5% (minimum 

0.2%, maximum 19.2%). The constituency with highest slide positivity rate was Eenhana in 

Ohangwena region. Figure 2.16 show the associated standard deviations of the predictions which 

were higher in areas with no data. Overall, majority of regions had slide positivity of less than 

5%, which is a threshold for pre-elimination. Three regions, Capirivi, Ohangwena and Kavango 

had more than 5% positivity threshold. 
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Figure 2.15: Posterior mean predictions of slide positivity rate at 1 km x 1 km 

Posterior mean estimates of the slide positivity rate in northern Namibia in 2009 on a continuous scale (the first 

map) and categorized map (5 classes of : <5%; 5%-<10%; 10% -< 20%; 20% -< 40% and ≥40%).The grey mask is 

the aridity corresponding to regions were EVI<0.1 

 

 
Figure 2.16: Standard deviation map of slide positivity rate 

 
Table 2.9 Slide Positivity Rate by region in Namibia. 

Comparison of predicted slide positivity rates (%) by region in northern Namibia in 2009 

Region Mean SPR Minimum (SPR) Maximum (SPR) Range (SPR) 

Omusati 4.4 0.0 9.1 9.1 

Oshikoto 4.0 0.1 15.4 15.3 

Oshana 4.3 0.4 7.9 7.4 

Ohangwena 8.2 0.0 22.8 22.8 

Otjozondjupa 3.0 0.0 7.7 7.7 

Kunene 2.3 0.0 36.1 36.1 

Kavango 6.1 1.2 51.8 50.6 

Caprivi 6.0 0.0 14.6 14.6 

Omaheke 2.4 0.0 7.4 7.4 

Average 4.5 0.2 19.2 19.0 
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2.5 Discussion 

2.5.1 Introduction 

The evaluation of malaria pre-elimination or elimination programme requires a detailed 

description of local epidemiology. These descriptions are required as baseline upon which 

evaluation and transition of risk is estimated. This study investigated two important aspects on 

baseline malaria incidence in 2009 and comparison of this incidence with the slide positivity 

rates. The smoothing of incidence and prediction of slide positivity rates was carried out using 

Bayesian model based approaches with the former including a CAR prior to smooth risk at 

constituency level. A higher incidence of malaria was observed between January and April in the 

constituencies bordering Angola and Zambia while lower values were estimated between the 

months of July and December. The mean malaria incidence estimated for northern Namibia was 

13 cases per 1000 population for 2009. For the same northern regions a 4.5% mean slide 

positivity rate was predicted using a model based geostatistical approach. Both modelling 

approaches included environmental covariates. According to the WHO, the target threshold for 

pre-elimination based on incidence is less than 1 case per 1000 population or in areas where slide 

positivity rates are less that 5% (World Health Organization, 2007a). Incidence was estimated 

based on reported clinical and confirmed cases in 2009 in northern Namibia while slide positivity 

rate only looked at cases examined at the facility. The two indices are different but can be useful 

indicators to establish baseline makers of malaria elimination in Namibia.  
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2.5.2 Implications for malaria control and elimination in Namibia based on estimated 

incidence 

From the monthly maps of Namibia (Figure 2.9), a higher incidence of malaria was observed 

between January and April, while, lower values were observed for the July and December 

period. Thus, malaria control efforts should be lagged with the peak observed in early months of 

the year. These include the distribution of ITNs, parasitological diagnosis and treatment (World 

Health Organization, 2014d). Universal ITN coverage should target areas with high malaria 

incidence such as Caprivi, Omusati and Kavango.  

 

Malaria transmission in Namibia is likely to be highly seasonal with precipitation months 

between November and March. The findings also suggest that malaria cases peak early in the 

year in March and April. However, precipitation patterns could vary from year to year and this 

may lead to low number of malaria cases in drought years or epidemics in a rain year in the 

northern Namibia (De Meillon, 1951, Ministry of Health and Social Services and World Health 

Organization, 1996). Aridity limits transmission on the western coast with the Atlantic ocean and 

in the southern desert fringe regions. These have been masked in the maps presented (Figure 2.9 

and Figure 2.10). The southern regions of Hardap, Karas, Erongo and Khomas are masked 

because they are defined as malaria free, although, Khomas and Erongo may support unstable 

transmission (Snow et al., 2010a).  

 

The mean incidence observed for 2009 was highest in regions bordering Angola, Zambia and 

Botswana.  Historical Plasmodium falciparum data for Namibia between 1969 and 1992 (Noor et 
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al., 2013a, Noor et al., 2013b) suggest a parasite prevalence of greater than 5% in Kavango and 

other northern regions along the border with Angola. In addition, Craig and others showed that in 

Botswana, the area along the north-western border areas with Namibia had relatively high 

prevalence (Craig et al., 2007). For these border constituencies concerted efforts with 

neighbouring countries have to be put in place to realize the pre-elimination targets (Noor et al., 

2013b, Noor et al., 2013c). It is important to note that the malaria parasite can be imported as a 

result of residence returning after travelling to other endemic regions (Angola, for example), by 

visitors from across the border, permanent migration or by infected mosquitoes moving to the 

area (Cohen et al., 2012). A higher Incidence in the border regions could well be driven by cross 

border population movement (Cosner et al., 2009, Noor et al., 2013b). Similar suggestions were 

made for two districts in South Africa close to the Mozambique border (Kleinschmidt et al., 

2002) and in Yunnan province in China that borders Myanmar, Laos and Vietnam (Clements et 

al., 2009). 

 

2.5.3 Comparison of estimated incidence, parasite prevalence and slide positivity rates 

Figure 2.17 (below) shows comparisons between the estimates (incidence and slide positivity 

rate) with parasite prevalence at community level. Parasite prevalence maps were produced by 

interpolating community prevalence data (Noor et al., 2014). There few points to consider. First, 

the parasite prevalence is representative of specific age group for children (2-10 years) but 

modelled using Bayesian approaches. Secondly, data for the parasite prevalence was assembled 

from independent surveys randomly within the population, the denominator being number of 

people examined within the community. There was a positive correlation (Pearson correlation 

coefficient 0.5) between the estimated incidence per 1000 population and the age specific (2-10 
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years) parasite prevalence. This suggested that areas with higher incidence of P. falciparum in 

Namibia were associated positively with parasite prevalence. Similar results were observed for 

the slide positivity rate (Pearson correlation coefficient 0.5). 

 

Namibia NMCP has already deployed the use of RDTS and microscopy at health facilities for 

diagnosis of suspected cases prior to treatment (Ministry of Health and Social Services, 2010c). 

In low transmission settings, where malaria is highly seasonal and unstable, fevers due to malaria 

are less common and low parasite density is not detectable easily by routine diagnostic tools such 

as RDTs.  The mean slide positivity rate for Namibia in 2009 was 4.5%. In northern Namibia, 

only Kavango, Caprivi and Ohangwena had slide positivity exceeding the 5% threshold for pre-

elimination after adjusting for utilisation of facilities for fever treatment. The rest of regions in 

the north appear to be within pre-elimination targets based on baseline rate of slide positivity. At 

low parasite densities, the slide positivity rate may well be an indicator of endemicity in 

population using the health facility and has been illustrated in São Tomé and Príncipe (Lee et al., 

2010) and in Yuunan province in China (Bi et al., 2012). Namibia was also one of the countries 

in SSA where only small proportion of cases is treated in the private sector (Cohen et al., 2012). 

Another characteristic of low transmission settings is that malaria may be in marginalised 

population e.g. at the borders (World health Organisation, 2012a). For Namibia, this was also 

evident from the posterior mean of the slide positivity for 2009 (Figure 2.13) where 

constituencies in Kunene, Ohangwena and Kabe constituency in Caprivi region had the highest 

slide positivity rates.  
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Figure 2.17: Comparison of incidence, slide positivity and parasite prevalence 

Scatter plot of community measured parasite rate with the modelled slide positivity rate at health facility level.  

 

2.5.4 The model based approach for P. falciparum incidence compared to crude incidence 

The spatio-temporal model included the random effects at facility and constituency level as well 

as introduced dependencies spatially and temporally using the CAR prior affect and auto-

regressive component respectively. Thus the modelled risk was not only as a function of 

smoothing but also taking into account of spatial autocorrelation via the GMRF (Banerjee and 

Carlin, 2003, Rue and Held, 2005). In general there was smoothing of incidence towards the 

overall mean. This contributed to wider differences between crude incidence and the smooth 

estimates in some regions. This is likely to be a factor of using 0-1 weights as neighbour matrix 

during the model set up (Section 2.3.5). This means that neighbour areas are correlated and 

treated as independent if not a neighbour of the region of interest. Other studies have found 

differences in level of smoothing based on specification of the neighbourhood matrix (Earnest et 

al., 2007). It is possible to mitigate this effect by introducing higher level random effects while 

maintaining a local CAR prior effect to control local-mean smoothing (Lee, 2011), in addition to 
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the facility level effects. This alternative methodology is explored in next chapter on 

Afghanistan. 

 

Crude incidence estimates are overestimated where the denominator population is small and 

malaria cases are few. The hierarchical Bayesian zero-inflated CAR model addressed several 

sources of uncertainty in comparison to the crude incidence estimates. First, the model was 

applied at facility level and, therefore, the method not only takes into account the nature of the 

facility, but also season and environmental factors (at facility level) in adjusting for under-

reporting. Secondly, incidence was smoothed across the facility reports, thereby addressing the 

potential impact of model instability resulting from small numbers of reported cases, apparent in 

the facility data. Smoothing incidence also reduces the potential impacts of under-reporting of 

cases by facilities. Third, incorporating the environmental covariate (EVI) explained spatial 

variation where data were absent in addition to providing information on the climatic suitability 

of malaria transmission, for example, in Omaheke region (Craig et al., 1999, Guerra et al., 

2008). This suggested that the inclusion of environmental covariates improved the model 

estimates for a few constituencies (in Kunene and Omaheke), but only marginally as suggested 

by the DIC between the two models implemented.   

 

The cross-validation approach used in this case study draws from predictive distribution of the 

model. This deviates from large literatures that mainly use statistics such as the mean error 

(Clements et al., 2009, Raso et al., 2012, Noor et al., 2013c, Sahu et al., 2013). The mean error, 

for instance, summarise the overall model performance which could deviate from individual 

estimates. The analysis in this thesis largely employs the use of model scoring rules to validate 
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the predictive performance (Gelfand and Ghosh, 1998, Gneiting and Raftery, 2007, Czado et al., 

2009). Since the goal is estimation and at unknown locations, the validation procedures used here 

are likely to assess the predictive performance in a better way. Moreover, the R-square value is 

likely to improve with increasing number of covariates without improving model performance 

(Gething et al., 2011b). The Namibia approach used a single covariate and with relatively 90% 

complete reporting.  

 

2.5.5 Limitations  

The approach presented here drew upon a comparatively data rich setting based mainly of RDT 

and microscopy diagnosis. First these diagnostic tools are documented to have different 

sensitivities (WHO-FIND, 2009). RDT, for example, may record false positives resulting in 

overestimation of cases (Bell et al., 2005). Improvement in diagnosis in low transmission areas 

may involve the use of polymerase chain reaction (PCR) (Zakeri et al., 2010, Noor et al., 2011, 

Gething et al., 2012).  The recent improvements in case management in Namibia in which all 

suspected malaria fevers are diagnosed parasitologically before treatment will reduce the need 

for adjustment for test positivity rate. In addition, planned improvements in HMIS reporting and 

quality and transition to active case detection mean smaller adjustments for treatment seeking 

and reporting will be required in future. This is may also be useful for external validation of the 

zero-inflated Bayesian models. Precise incidence estimates should provide a basis for targeting 

active case detection efforts at specific locations and in specific months, potentially making such 

resource-intensive efforts more cost-effective. A comparison of  resulting estimates with the 

standard non-spatial WHO approach (Cibulskis et al., 2011) shows that the latter estimates a 

higher annual malaria incidence of 23 per 1000 population and is likely to be less imprecise. The 
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main difference between the WHO approach and the one used in this thesis is inclusion of extra 

parametrisation in Bayesian modelling in addition to dealing with spatial (and temporal) auto-

correlation. 

One drawback of many studies analysing areal data, and one common to the Bayesian approach 

used in this study, is the modified areal unit problem (MAUP), a well-known analytical problem 

in geography that could affect the observed statistical results with a change in shape or size of 

spatial polygons used in the analysis (Robinson, 1950, Wakefield, 2003, Barnerjee et al., 2004). 

In this study constituencies were selected as the basis for presenting estimates, with the aim of 

providing information at this level to health authorities, though the model was fitted at facility 

level. There is therefore a potential impact of MAUP both in terms of the shape of constituencies 

and in smoothing at constituency level from facility level data. Secondly, the data used for this 

study were obtained from the Namibia HMIS which covers the majority of public health 

facilities in the north. This means that the findings are relevant only for the 12-month time-series 

in 2009. The results could be improved by inclusion of more data and at different time points to 

draw more stable long-term spatio-temporal patterns (Zhou et al., 2005). In addition, the 

modelling approach excluded the effects of population movements between regions, especially 

across borders, while the relations between the environmental variables could change across 

space and at(WHO-FIND, 2009) shorter time periods than those considered (Hay et al., 2008). 

Finally, some sources of uncertainty remain. In particular, the underlying the care-seeking 

behaviour data used to adjust denominator populations relate to children under 5 years, not the 

whole population. Utilisation rates were estimated from cross-sectional surveys and therefore 

may not capture temporal changes in care-seeking behaviour. The underlying utilisation data also 

relate to fever rather than malaria per se. 
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2.6 Conclusion 

The current efforts of the NVDCP to focus aggressive malaria control activities around the 

border regions with Angola, Zambia and Botswana are likely to play an important role in 

achieving malaria elimination by 2020 in Namibia (Ministry of Health and Social Services, 

2010c, Trans-Zambezi Malaria Initiative (TZMI), 2012, Noor et al., 2013b). Current results 

suggest that the country may be within the pre-elimination targets in most parts of the northern 

region. This study provides additional information to identify the highest malaria risk areas in 

Namibia and when used together with evidence from modelled community parasite prevalence 

surveys on receptive and contemporary malaria risk, should support malaria control and 

elimination initiatives in the country. However, long term spatio-temporal trends in incidence 

will be useful to assess progress over time. 
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CHAPTER 3: Case Study 2 
Examining coverage and utilisation of healthcare in Afghanistan to 

estimate the incidence of Plasmodium vivax and Plasmodium 

falciparum malaria 
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3.1 The Afghanistan context  

3.1.1 Background 

In this chapter, passive case data from HMIS was used to estimate the burden of Plasmodium 

vivax and Plasmodium falciparum in Afghanistan. Of the 10 countries in World Health 

Organisation Eastern Mediterranean Region (WHO/EMRO) with ongoing malaria transmission, 

Afghanistan has the second highest malaria burden after South Sudan, predominantly due to P. 

vivax species with only a small proportion of cases due to P. falciparum (Safi et al., 2009a, Safi 

et al., 2009b). Being a mountainous country, previous studies suggested that malaria risk is 

higher in regions of altitude ≤ 2000m and in river valleys where irrigation and rice cultivation is 

practiced (Kolaczinski et al., 2005, Safi et al., 2009b). P. vivax is predominant in Asia and only 

patchy in Sub-Saharan Africa due to absence of Duffy antigen that is usually required for red 

blood cell invasion stage (Gething et al., 2012). P. vivax is also known as relapsing malaria 

because it can stay dormant for long periods (months or years) in the liver (hypnozoite stage) 

(Douglas et al., 2011, White, 2011).  

 

Southeast Asia has the most malaria vectors compared to SSA. The main malaria vectors in 

Afghanistan are about six, namely: Anopheles superpictus, An. culicifacies, An. stephensi, An. 

hycranus, An. pulcherimus and An. Fluviatilis; although An. stephensi and An. culicifacies are 

predominantly found in the east of the country (Rowland et al., 2002, Safi et al., 2009b). In 

Afghanistan, earlier vector control using dichlorodiphenyltrichloroethane (DDT) during the 

eradication programme (1957-1969) had reduced vector abundance (Ramachandra, 1951, Dy, 

1954, Kolaczinski et al., 2005). However, malaria vectors re-emerged as a result of resistance to 

insecticides (Eshghy and Nushin, 1978, Delfini, 1989) and a decline in malaria control due to 
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instability after the Soviet invasion in 1979.  The alternative use of malathion and larvivorous 

fish (Gambusia affinis) had limited success (Eshghy and Nushin, 1978, WHO/EMRO, 2003). In 

addition to re-emergence of malaria vectors, chloroquine resistance and population movement 

mainly from returning refugees contributed to an increase in malaria burden in Afghanistan 

(Delfini, 1989, Rowland et al., 1997, Shah et al., 1997). 

 

The national malaria and Leishmaniasis control programme (NMLCP) was re-constituted in 

2002 and formulated a national malaria strategic plan (2006 to 2010). Artemisinin-based 

combination therapies (ACTs), mainly using AS+SP for P. falciparum, were adopted in 2004 to 

replace the SP monotherapy. Chloroquine remains effective for treatment of diagnosed cases of 

P. vivax. Funding from the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) 

(The Global Fund, 2013a) (round 8) has increased procurement and social marketing of ITNs. By 

2012, the malaria programme had benefited from approximately US $ 50.2 million in 

disbursements from the GFATM since 2004.  

 

To track progress towards national targets, the National Malaria and Leishmaniasis Control 

Programme (NMLCP) and partners established a routine information system to report monthly 

malaria cases by health facility (Ministry of Public Health, 2006). The health information 

system, however, captured passively detected case data from only public-based health facilities 

which contained both suspected and parasitologically confirmed cases. Although healthcare 

delivery has improved recently in Afghanistan after introduction of the Basic Package for Health 

Services (BPHS) (Edward et al., 2011), a significant challenge facing Afghanistan is effective 

delivery of interventions to population at risk. Access and utilisation of public health facilities 
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are not well understood at a national level especially for remote and conflict-affected provinces. 

Past and recent service provision assessments were constrained to only a few provinces and 

cannot be generalized for entire country (Reilley et al., 2004, Edward et al., 2011). Lastly, HMIS 

is hindered by challenges of low parasite confirmation rates which inflate malaria cases. In 

addition, low reporting rates tend to underestimate disease burdens because of the spatially and 

temporally incomplete data (Gething et al., 2006).  

 

The aim of this study is to provide reliable estimates of P. vivax and P. falciparum at a sub-

national level in Afghanistan to enhance decision making. The first section of the chapter 

provides an overview of healthcare in Afghanistan, including geography, the health system and a 

review of healthcare access in Afghanistan (section 3.1). Geographic access is subject of section 

3.2 that looks into aspects of utilisation and coverage of health services. In terms of modelling 

utilisation of public health facilities, there is a slight difference from Namibia analysis. Here, 

analysis was stratified by facility type. The purpose of stratification was to investigate whether 

non-stratification resulted in a mean distance-decay model compared to health facility specific 

patterns. Section 3.4 outlines incidence and slide positivity analysis based on Bayesian model 

based approaches. The slide positivity analysis here was similar to Namibia analysis. A different 

model parametrisation, for malaria incidence, was used compared to Namibia. The Bayesian 

hierarchical model here included random effects at facility, district and province levels. In 

Namibia, random effects were specified only at facility and constituency levels. The aim of extra 

parametrisation was to improve spatial smoothing of incidence. The results of both healthcare 

access and incidence modelling are subsequently discussed in section 3.5.  
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3.1.2 Geography 

Afghanistan is a landlocked country located in south central Asia with an estimated land surface 

area of 640,000 km
2
. Its estimated population is 30 million with majority living in the northern 

and south eastern regions of the country (World Health Organization, 2013a).  It is boarded by 

the commonwealth states of Tajikistan, Turkmenistan and Uzbekistan in the north, Iran to the 

west, Pakistan to the south east and China in the north east (Figure 3.1). Afghanistan is divided 

into 34 administrative provinces and 398 districts. It is a highly mountainous country dominated 

by Hindu Kush range from the central to the north eastern regions. The major rivers are the 

Helmand in the south, the Kabul river system that passes through the capital to the east, the Hari 

Rud to the west and the Amu river to the north. The south west regions of Afghanistan bordering 

Pakistan and Iran are predominantly desert compared to the south east regions that experience 

some low rainfall. Population is highly dependent on irrigation for Agricultural productivity with 

the main cultivated crop as rice, in the valley regions. Irrigation in the valleys is aided by melting 

snow at high mountain ranges from the central regions which in turn provide breeding areas for 

Anopheles. Temperature in the summer can reach as high as 45 °C and fall below 0°C in the 

winter months.  
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Figure 3.1: Google map of Afghanistan 

Source: Google Maps (Google, 2013) 

 

3.1.3 Organisation of Afghanistan’s Healthcare system and financing 

Healthcare system in Afghanistan exhibits a hierarchical structure categorised as primary level, 

the secondary level and the tertiary level. The primary level forms the Basic Package for Health 

Services (BPHS) constituting clinics, health posts and Maternal Child Health (MCH) centres, 

basic and Comprehensive Health Centres (CHC). District hospitals form the secondary level, 

while, provincial and regional facilities form the tertiary level. Secondary and tertiary level 

facilities constitute the Essential Package for Hospital Services (EPHS) and serves as referrals 

for the BPHS-level facilities (Ministry of Public Health, 2008b).  The BPHS and the EPHS were 

constituted in 2002 by the Ministry of Public Health (MoPH) (Ministry of Public Health, 2003, 

Waldman et al., 2006, Ministry of Public Health, 2010a). Prior to the formation of the BPHS and 
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the EPHS, community outreach programmes served at the village level and were supported by 

sub-health centres and MCHs. District hospitals were previous known as rural-level facilities and 

were intermediary to the lower-tier health centres.   

 

The BPHS provides primary care to the rural population and was expanded by contracting 

services to NGOs and MoPH partners (Waldman et al., 2006, Steinhardt et al., 2011). Priority 

areas included maternal and new born health (e.g family planning, ANC, PNC); child health 

(expanded program for immunization (EPI) and integrated management of childhood illness 

(IMCI)), general nutrition (malnutrition); communicable diseases (malaria, TB and HIV/AIDS); 

mental health; disability and supply of essential medicine (Ministry of Public Health, 2010a). 

Health service delivery in Afghanistan is hampered by poor  infrastructure following years of 

conflict, unequal distribution of health facilities, costs of providing medical care and lack of 

personnel (Acerra et al., 2009, Ministry of Public Health, 2010a). At village level community 

health workers manage the health posts which provide basic preventive and curative services. In 

remote areas Mobile Health Teams (MHTs) are used, especially for immunization programmes 

such as EPI (Belay, 2010, Ministry of Public Health, 2010a). The basic health centres link basic 

service providers at the community level with the next service tier (the CHC) that are in turn 

linked to higher level hospitals providing both inpatient and outpatient services. Thus, where no 

regional or tertiary facility exists, district hospitals are the main referral centres. Inpatient 

facilities are provided mainly at the tertiary level (Ministry of Public Health, 2010a). At health 

posts, only clinical diagnosis of malaria is provided along with other basic services. Severe and 

complicated illness is referred to higher-level district hospitals (Ministry of Public Health, 

2010a).  
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Financing of healthcare is shared partly by government, private and external sources (Palmer et 

al., 2006, Ministry of Public Health, 2009b, Belay, 2010). The public financing schemes include 

social insurance offered mainly to government employees or through public based organisations. 

Other forms of insurance is also provided by private companies or organisations (Ministry of 

Public Health, 2011). Private financing is through direct out of pocket payments at the peripheral 

health facilities or through charity or private insurance. Government funds in Afghanistan are 

channelled through the provincial and regional directorates that manage and coordinate activities 

at the district level. The general per capita expenditure on healthcare in 2008 was estimated to be 

US $ 42 (Ministry of Public Health, 2011) which was lower than the proposed minimum amount 

of US $ 44 per annum on an individual for basic and life saving health services (World Health 

Organisation, 2012b). Majority (75%) of direct healthcare costs is provided by household 

through OOP payments (Ministry of Public Health, 2011).  

 

3.1.4 Population health and the MDGs in Afghanistan 

Afghanistan has been plagued by conflict since the soviet invasion in (1979 -1996) and during 

the Taliban reign (1996-2001). This has led to destruction of basic infrastructure, rise in poverty 

and contributed to low economic development (The PLoS Medicine Editors, 2011, Jacobs et al., 

2012, The World Bank, 2012, Singh et al., 2013). Afghanistan endorsed the Millennium 

declaration in 2004 which extended the country deadline to 2020 rather than the 2015. It also 

included an extra ninth goal ‘to enhance security’ which remains a major problem (Ministry of 

Finance, 2010).  
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Afghanistan was ranked as one of the bottom countries (175 out of 186 countries) according to 

human development index (0.374) in 2012 (UNDP, 2013a) and has only made little progress in 

addressing the problems of poverty, illiteracy, infrastructure and healthcare provision. Conflict 

and poor health has contributed to low life expectancy at birth which is estimated currently at 47 

years for males and 50 years for the female population; the infant mortality rate is estimated at 

129 per 1000 live births; while the under-five mortality rate stands at 191 per 1000 children not 

surviving age 1 (Afghan Public Health Institute et al., 2011). A mortality survey conducted in 

2010 showed higher all-cause mortality in adult population aged over 50 years. Pregnancy-

related mortality was estimated to be 327 (95% confidence interval: 260-394) and was four times 

higher in rural areas compared to urban areas (Afghan Public Health Institute et al., 2011). It is 

less likely that progress will be made to reduce the current MMR which is compounded by 

factors such as illiteracy and lack of autonomy in the households amongst the female population 

as well as poor access to quality healthcare (Acerra et al., 2009, Ministry of Finance, 2010, Trani 

et al., 2010).   

 

The burden and deaths due to malaria have declined as a result of recent intervention strategies 

as a result of increased funding from the Global Fund (The Global Fund, 2013a). This includes 

increasing use of ITNs as protection against malaria. The burden of Tuberculosis however 

remains one the highest in the Eastern Mediterranean Region (Mauch et al., 2010, Delawer et al., 

2013). These challenges may be improved by better targeting of external aid, reducing poverty, 

improving primary care and quality of healthcare.     
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3.1.5 Review of healthcare access in Afghanistan 

Access and utilisation of health services continues to be a subject of debate in high (Department 

of Health, 2009, Laudicella et al., 2012) and low income countries (Jacobs et al., 2012, Singh et 

al., 2013). The situation is even more severe in Afghanistan following decades of conflict that 

has led to destruction of basic infrastructure (Ameli and Newbrander, 2008, The PLoS Medicine 

Editors, 2011, The World Bank, 2012). The Basic Package for Health Services (BPHS) was 

introduced in 2004 to expand coverage (Edward et al., 2011) using contracting mechanisms 

through NGOs. Many NGO based health facilities in Afghanistan are supported by the World 

Bank, the USAID and the European Union (Sabri et al., 2007, Ameli and Newbrander, 2008). 

Contracting has been used previously to improve healthcare delivery in other settings such as: 

Asia (Pakistan, India, Cambodia and Bangladesh); Africa (Senegal and Madagascar) and Central 

and South America (Bolivia, Haiti and Guatemala) (Loevinsohn and Harding, 2005, Liu et al., 

2008).  

 

Previous studies on healthcare access in Afghanistan were based on demand factors such as the 

perceived need, cost and quality of care (Edward et al., 2011). Examples of demand-based 

studies in Afghanistan include an investigation on the use of preventive and curative services 

(Newbrander et al., 2007, Ameli and Newbrander, 2008, Steinhardt et al., 2011), which 

suggested presence of female health worker as an attractive factor influencing use. A survey 

conducted in 2004 after the introduction of BPHS in 2004 found low utilisation of health 

services (25%) amongst vulnerable population (the disabled) (Trani et al., 2010, Trani and 

Barbou-des-Courieres, 2012) and identified cultural perception , availability and cost as 

important factors. A different study examining affordability showed an increase use of health 
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facilities where user fee had been abolished in 2008 (Steinhardt et al., 2011). These studies 

although were important in identifying other forms of access did not measure spatial access at a 

national level. A general health survey conducted in few regions in 2006 estimated that 60% of 

the population were within 2-hour walking time to the nearest facility (Ministry of Public Health, 

2008a). 

 

3.2 Estimating the spatial coverage and utilisation of public healthcare facilities for 

treatment of fever in Afghanistan  

3.2.1 Data 

3.2.1.1 Assembly of spatial health facility database in Afghanistan 

A health facility database was obtained from the national health management information system 

(HMIS) through the Afghanistan National Malaria and Leishmaniasis Control Programme 

(NMLCP). Routine health facility assessments are carried out by the Ministry of Public Health 

(MoPH) through the subsequent National Health Service Performance Assessment (NHSPA) 

surveys (Waldman et al., 2006, Peters et al., 2007). The surveys aim to assess performance of the 

BPHS. Health facilities were classified into three broad categories that combined the BPHS and 

EPHS as: basic facilities made up of HPs, clinics and MCHs; health centres (the comprehensive 

health centres) and a third category representing tertiary facilities, the hospitals (Figure 3.2 

below). The spatial coordinates were established using a non-differential handheld global 

positioning systems (GPS) receiver during the assessment surveys or in some cases using a 

database of placenames.  
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Figure 3.2: Distribution of public-based health facilities in Afghanistan 

Distribution of active health facilities in Afghanistan by comprising of: basic health centres (n=773), comprehensive 

health centres (n=354), sub-health centres (n=344), district hospitals (n=95), special emergency hospitals (n=30), 

provincial hospitals (n=29) and regional or national referral hospitals (n= 5). 

 

 

3.2.1.2 Population 

An Afghan gridded population surface was obtained from Asiapop at 0.000833
o
 x 0.000833

o
 

spatial resolution (Gaughan et al., 2013) (Figure 3.3). In brief, a fine spatial resolution 

population map was produced from a combination of settlement, land use or land cover and basic 

infrastructure data (Gaughan et al., 2013). The method of mapping population distribution 

involved disaggregating census counts in areal units via weights derived from land cover and 

land use data (Bhaduri et al., 2007, Tatem et al., 2007, Linard et al., 2012). For each region, 

population density was calculated based on land cover class, rurality, census counts and an 
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adjustment factor that ensures the total population sums to a known value. Urban extents were 

derived from the Global Rural and Urban Mapping (GRUMP) project (Center for International 

Earth Science Information Network (CIESIN), 2004, Tatem et al., 2007),  but adjusted for urban 

extent based on the MDA Geocover (MDA, 2013), and reclassified to conform to the UN Land 

Cover Classification system (UNLCC) (FAO, 2000, Tatem et al., 2012). An updated finer spatial 

resolution land cover map was created to include detailed information on roads, settlements and 

inhabitable areas. The resulting classes were then used to disaggregate count data based on a 

weight value assigned to each land cover pixel. Population densities were derived as a ratio of 

the known population count and the total habitable land area normalized by an adjustment factor 

(Linard et al., 2012, Gaughan et al., 2013). The resulting 2010 national population map was 

projected using the United Nations’ (UN) Population Division national inter-censual growth 

rates (UN Population Division, 2013). For measuring utilisation rates, 2011 population estimates 

were used and these were back projected to 2009 when estimating population at risk of P. 

falciparum and P. vivax. 
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Figure 3.3: Population density map of Afghanistan for 2010 

Population distribution in Afghanistan from Asia pop at approximately 100 m x 100 m spatial resolution.  

 

3.2.1.3 National household survey data for analysing malaria treatment seeking behaviour 

Data for modelling healthcare utilisation for treatment of fever was obtained from the MIS 

carried out between September and October 2011 (n = 15,442 individuals) (Ministry of Public 

Health, 2012). The MIS was conducted in 21 provinces, across different malaria strata in 

Afghanistan, but excluded the southern regions for security reasons. A multi-stage probability 

sampling design was adopted in line with other MIS surveys conducted in other low income 

countries (RBM-MERG, 2008) where clusters or villages were first selected randomly in a 

district via probability sampling and then households within the selected clusters were sampled 

randomly (Ministry of Public Health, 2012). Through self-reporting (except for children below 

15 years), two-week fever prevalence and treatment seeking behaviour were recorded for all the 
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respondents that had been invited to participate. The Geographic location of all clusters was 

recorded using a hand-held GPS receiver (Garmin International Inc., Olathe, KS, USA). 

3.2.1.4 National level GIS data 

Ancillary GIS data used for healthcare access and utilisation analysis included roads and rivers 

obtained from an online resource (MapCruzin, 2013) distributed through the GNU General 

Public License (GPL) (Free Software Foundation, 2007) and constituted initially by AIMS 

(http://www.aims.org.af/). Elevation data were obtained from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER-GDEM) (Huggel 

et al., 2008) while the land use-land cover layer was downloaded from the MEdium Resolution 

Imaging Spectrometer (MERIS) GlobCover product (ESA, 2010). 

 

3.2.2 Developing surface of travel time and probability of attendance 

A combination of land cover, elevation, road and river data layers was used to generate a cost 

surface of travel times between public health facilities and population locations in AccessMod 

(version 3.0) (Ray and Ebener, 2008). A gridded (raster) surface was generated based on 

cumulative travel speed between patient origins (households) and destinations (public health 

facilities) at 1 km by 1 km spatial resolution. Travel speeds (Table 3.1) were assigned to each 

land cover pixel based on recommendations from previous studies, for example, by using 

motorized transport on tarmac roads and walking on bare land (Ray and Ebener, 2008, Alegana 

et al., 2012, Huerta Munoz and Kallestal, 2012). The derived friction raster was used to extract 

travel times between cluster locations and health facilities using ArcGIS (ESRI, Redlands, CA). 

Thus, all the individuals in a cluster were assigned an average community travel time to the 

nearest public health facility. Since all age-cohort data was available, a preliminary analysis that 

http://www.aims.org.af/
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included age (regression coefficient -0.448, 95%CI: -0.904 – 0.003, p=0.07), gender (regression 

coefficient -0.003, 95%CI: -0.015 – 0.007, p=0.5) and derived travel time (regression coefficient 

-0.170, 95%CI: -0.3000 – -0.043, p<0.001) suggested that the latter had a larger effect on the use 

of public health facilities. Thus, age and sex were not considered subsequently when modelling 

the distance decay curve. A three parameter logistic regression models of the form  /)(1/ xeY   

(Pinheiro and Bates, 2002) were then fitted to estimate health facility attendance based on the 

extracted theoretical travel times, assuming utilisation was for the nearest health facility. Four 

models representing the universe of all public health facilities, hospitals (District, regional and 

national referral), health centres (sub-health centres and CHC) and basic facilities (MCHs, clinics 

and HPs) were fitted separately to the survey data in the R statistical software (R Development 

Core Team, 2010). The model coefficients:   an asymptote factor at an inflection point , a 

distance decay parameter and , a limiting function on the y-axis that measured the probability of 

attendance when distance was zero, were recorded along with the goodness-of-fit statistic, t, and 

the p-values. A gridded surface of probability of attendance was derived by applying the logistic 

model to the gridded cost surface in ArcGIS (ESRI, Redlands, CA, version 10). 

Table 3.1: Input data for analysis of utilisation of public health facilities in Afghanistan 

Description of various data and their sources used as inputs in calculating travel time to the active public health 

facilities in Afghanistan. The assumed travel speeds for each input feature are also shown 
Map 

Layer Description Classification 

Speed 

(km/h) Mode
1
 

Land 

use/ land 

cover 

Spatial representation of all different land use and 

land cover types. Two land cover grids were 

processed (1) a basic land cover grid (2) a 

combined grid that incorporates roads and rivers 

with the same resolution as the DEM 

Irrigated, rain fed, mosaic or 

vegetated croplands 3.0 Walking 

Open or closed broadleaved, needle 

leaved, deciduous or evergreen tree 

cover 3.0 Walking 

open or closed mixed broadleaved 

forest/tree cover 1.5 Walking 

Mosaic, closed to open 

grassland/shrubland 1.5 Walking 

Sparse Vegetation 1.5 Walking 

Open or closed broadleaved 

regularly flooded 0.5 Walking 

Artificial/urban areas 30.0 None 

Bare areas/desert 1.0 Walking 

Ice/ permanent snow 0 None 
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Roads Classified into five categories; class A 

(highways), class B (secondary roads), tertiary 

Class C and Class D roads as well as street level 

urban roads. Each road class was assigned a 

different speed limit. 

Class A roads 60.0 Motorised 

Class B roads 30.0 Motorised 

Class C roads 10.0 Cycling 

Class D roads 4.0 Walking 

Street level roads in urban areas 20.0 None 

Rivers GIS layer representing barrier to movement. Only 

major rivers were used to reduce the complexity 

of running the algorithms 

NA3 0 NA2 

Digital 

elevation 

model 

Altitude values that are used in anisotropic 

calculation; Original DEM 30 m ASTER grid; 

resampled to 1 km pixel size 

Degree of Slope (< 0.5o)  4.88 Walking 

Degree of Slope (5.0o) 3.71 Walking 

Degree of Slope (10.0o) 2.71 Walking 

Degree of Slope (20.0o) 1.41 Walking 

Degree of Slope (30.0o) 0.66 Walking 

1. Assumed mode of travel to health facility, as either walking on foot, cycling, using motorise transport as on roads or a 

combination of the different modes. Anisotropic movement for walking based on Tobler’s equation, (V=6*exp(-

3.5abs[Tan(slope in degrees/57.296) + 0.05]) (Tobler, 1993) where V is the speed with slope derived from DEM or for 

cycling (Walter, 2008), was applied for traversing across a pixel. For example, on a flat terrain, the walking speed is 5.0 

km hr-1. 

2. NA is an abbreviation for ‘ Not Applicable’ 

 

3.2.3 Developing health facility catchments used in the analysis of malaria incidence and 

assessing spatial coverage   

Catchment areas were derived for various public health facilities using the ‘cost allocation’ 

Spatial Analysis tool in ArcGIS (ESRI, Redlands, CA). The distance decay model based on the 

universal facility list was selected to zone catchment areas while limiting the maximum travel 

time to 2 hours. This time limit has been used to measure physical accessibility in Afghan BPHS 

reports and in related research (Loevinsohn B, 2008, Acerra et al., 2009, Ministry of Public 

Health, 2010a). Population counts in various catchments were extracted using the hard catchment 

boundaries and multiplied by the probability of attendance for fever treatment to derive the 

proportion of population likely to attend a public health facility. These counts were subsequently 

used in the analysis of incidence. Similarly, the population outside the two hour threshold was 

estimated. The rate of fever reported from the MIS at province level was multiplied by the 

population to generate a fever burden map. The number of fever cases within each catchment 

was estimated based on the fever burden. Lastly, the number of fever cases likely to attend a 
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public health facility was calculated by multiplying the estimated number of cases by the 

probability of attendance. 

 

3.2.4 Results of analysis of spatial coverage and utilisation of public health facilities in 

Afghanistan 

3.2.4.1 Fever prevalence in 2011 and treatment seeking behaviour 

In total 1,629 public health facilities were assembled (Figure 3.2 Page 147) and these were 

distributed across the 34 provinces in Afghanistan. Only Kabul and Nangahar provinces had 

more than 100 public health facilities while no facilities were recorded for Day Kundi province 

in the central highlands. The number of basic health facilities (n=754) was similar to the number 

of health centres (n=698). 11,307 people in 185 clusters were interviewed in the 2008 MIS. 

Overall, fever prevalence was estimated as 3.4% (95%CI: 3.1 – 3.7) in all age populations in 

2008, of which 59.8% (95%CI: 54.9 – 64.7) sought treatment. Of those who sought treatment, 

29.0% (95%CI: 24.4 – 33.6) used the public sector compared to the 30.8% (95%CI: 26.2 – 35.5) 

who used other sectors including the private health facilities. Thus, fever treatment in the public 

and other sectors in 2008 was low generally. From the estimated fever cases, Hirat and Nangahar 

provinces had a burden greater than 30.0%.  

3.2.4.2 Distance decay model fitting results 

Figure 3.4 (below) shows the distance decay curves by facility type for utilization of public 

health facilities with increasing travel time on the x-axis for Afghanistan. Table 3.2 lists the 

various parameters of the fitted distance-decay models along with their respective p-values. In all 

the four models, treatment-seeking behaviour decayed rapidly after 90 minutes. The coefficients 

of the various decay curves were all significant with p<0.001 and the sum of squared residuals 
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indicating a good model fit with the observed fever treatment patterns. Treatment seeking 

patterns for the basic facilities tended to be similar to hospital utilisation patterns. Health centres 

pattern was close to the universal “all” model (Figure 3.4). In addition, the maximum probability 

of use was higher for HCs (0.789) compared to the other facility types. The universal model was 

used subsequently to delineate catchment areas to estimate coverage. Secondly, this model had 

lower values of sum of squared residuals and standard error as shown in Table 3.2.  

Table 3.2: Logistic Model parameters by hospital type and for the universe of all facilities in Afghanistan 

  

 

Model Parameter 

   

Number of facilities 

   

p-value  (all 

parameters) 

Residual standard 

error 

sum of 

squared 

residuals 

All 1,581 3.1906 -0.2908 0.8681 <0.000 0.0021 0.0015 

Hospitals 129 3.8439 -0.3139 0.8702 <0.000 0.0218 0.0176 

Health Centres 698 2.8896 -0.2863 0.8768 <0.000 0.0182 0.0121 

Basic  754 2.8066 -0.2843 0.8805 <0.000 0.0175 0.0113 

 

  
Figure 3.4: Distance decay curves for public health facility use in Afghanistan 

  
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Distance decay curves for the MIS survey (2011) showing probability of public health facility use for fever 

treatment in Afghanistan (y-axis) against increasing travel times (x-axis). The model was run using log-transformed 

travel time (x-axis) then back-transformed for presentation purposes. The attendance pattern (1 = attendance and 0 = 

non-attendance) is also superimposed on the decay curve.  

 

3.2.4.3 Probability of attendance for fever treatment 

Figure 3.5 shows the gridded probabilistic surface of attendance for fever treatment to all health 

facilities at 1 x 1 km spatial resolution. This gridded surface had been used to delineate the health 

facility catchments as shown in Figure 3.6. Of the estimated population (29.8 million) in 2008, 

25,574,396 (85.8%) were estimated to be within a public health facility catchment (Table 3.3 on 

Page 161 and Figure 3.6). Further, 15,987,842 (62.5%) of those within a public health facility 

catchment were within 30 minutes and 8,772,663 (34.3%) were within distances where the 

probability of attendance was ≥60%. 11,119,031 (43.5%) had much lower probabilities of 

attendance (≤0.20). From the modelled fever burden based on the distance decay curves, the 

estimated national fever burden was 3,440 cases assuming a single episode of fever in October 

2008 of which 3,146 (91.5%) were within 2 hours’ travel time to the nearest public health facility 

(Table 3.3). Finally, 832 (24.1%) of these fever cases were likely to have been treated in the 

public sector based on the distance decay model.  
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Figure 3.5 Probability of health facility use for fever treatment in Afghanistan 

Map of probability of attendance for treatment of fever for all age population in Afghanistan at the nearest public 

health facility based on the 2008 MIS survey. The lowest probability was 0.001 and the highest probability was 

0.768. 

 

3.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment 

This section assessed the coverage and utilisation of the existing active public health facility in 

Afghanistan.  First, health facility catchments based on a 2-hour cut-off to nearest health facility 

were derived and used to assess coverage in Afghanistan (Table 3.3). Secondly, a travel time 

metric was derived and used to derive a surface of probability of attendance for fever treatment 

(Figure 3.5). The main findings suggest that majority of existing active health facilities were 

located close to the population. 1,538 (94.4%) of health facilities were within 30 minutes of 

travel and 1,292 (79.3%) located in distances where probability of utilisation was ≥0.60. 
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Findings from the Afghanistan National Health Resource Assessment (NHRA) survey carried 

out in 2002 showed that most health facilities were located close to roads suggesting a shorter 

travel time if motorised transport is used (Ministry of public Health, 2002). A large proportion of 

population (85.8%) was also estimated to live within the derived health facility catchment 

boundaries, thus, suggesting that a substantial majority of population experience good coverage. 

The results were also similar to those reported by the national Afghanistan Health Survey (AHS) 

of 2006 which indicated that over 60% of the rural population was within 2 hours of a health 

facility (Ministry of Public Health, 2008a). This study included urban areas and modelled travel 

by including motorized and non-motorized modes. 

 

From the MIS survey, the reported two-week-period fever prevalence was low at 6.4% (95%CI: 

6.0 – 6.8) and reported rates of treatment in the public sector were 44.7% (95%CI: 38.8 – 50.6), 

but not different from overall use of the private sector which was 42.2% (95%CI: 36.3 – 48.1).  

In this study, the distance decay model predicted 44.3% of the estimated fever cases in 2011 

were likely to have been treated in the public sector. Thus, the predicted rate of utilisation in the 

public sector was similar to the observed utilisation rates. The small differences could be 

attributed to factors such as socio-economic status, gender, over-reporting and sampling in the 

MIS or the propagation of error from different data sources. Moreover, the severity of fever 

condition is likely to influence the decision to seek medical treatment in addition to above 

factors. For example, in the BPHS community health workers at community level treat mild 

conditions including fever (Acerra et al., 2009, Ministry of Public Health, 2010a).  In the 2006 

AHS survey, illness severity and distance were reported as the top two factors explaining failure 

to seek medical treatment. A study among the nomadic Fulani population in Nigeria reported 
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similar findings where treatment was either delayed or sought based on severity (Akogun et al., 

2012).  

 

From the universal distance decay model, utilisation of public health facilities declined rapidly 

after about 120 minutes regardless of the facility type (Figure 3.4). The 2-hour cut-off (taken 

from policy documents (Ministry of public Health, 2002, 2008a)) used previously in assessing 

coverage appears to correspond roughly to a mean rate of distance decay observed in Figure 3.4 

and may, therefore, be a reasonable choice. In addition, the rate of decay based on the derived 

travel time, was rapid for basic health facilities compared to that from previous studies (Noor et 

al., 2006, Alegana et al., 2012) which could reflect a reluctance to travel longer distances for 

security reasons (Acerra et al., 2009), cost as highlighted by Ameli and Newbrander (2008) or 

due to gender and cultural norms. A study conducted in Kabul by Mashal et al., (2008) identify 

factors such as mothers’ lack of autonomy in the household and level of education contributed to 

a poor health seeking behaviour resulting in poor health outcomes (Mashal et al., 2008).  

 

From the fitted logistic models, the use of basic facilities was very similar to the health centres 

but different for the hospitals. The modelled pattern suggested that population is likely to travel 

greater distances for hospital based services and shorter distances (travel times) for basic 

services. In addition, slightly higher probabilities of use at zero distance were observed for basic 

health facilities  (0.881, p<0.001) and for the health centres  (0.877, p<0.001) (Figure 3.4 and 

Table 3.2). This phenomenon could be attributed to proximity of the basic health facilities to 

population and tendency to use basic facilities for uncomplicated illness (Belay, 2010). Variation 

in travel modes could also affect pattern of use as well as the unobserved effects such as 
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perception of quality of services (Trani et al., 2010, Trani and Barbou-des-Courieres, 2012). 

Empirical data to test these assumptions are not available readily at the national level and 

analysis was restricted to interaction with the closest public health facility. 

 

Other sources of errors remain. These include the exclusion of factors explaining health facility 

utilisation such as household income, healthcare costs, wealth and cultural preferences (Joseph 

and Phillips, 1984, Akin and Hutchinson, 1999, Tanser et al., 2001, Leonard et al., 2002, Noor et 

al., 2006, Gething et al., 2007, Das et al., 2013). Access, as a multidimensional concept, is 

affected by these factors. Although the household data on reported rates of fever and treatment 

seeking behaviour were representative for all ages, the inclusion of the above factors could alter 

the probability of using the nearest health facility. Since this study has focused on patients’ 

interactions with the public health sector, the inclusion of private sector facilities may well alter 

the patterns of use observed here. Additionally, the different modes of transport such as walking 

or use of motorized transport could differ from those assumed in the model. Data on actual mode 

of transport used while travelling to a health facility are rarely available. Further, the calculated 

fever burden was based on a survey-derived regional period prevalence rate, when point 

prevalence may vary at community or facility catchment level (Youssef et al., 2010, Elmardi et 

al., 2011). This fine resolution point prevalence may be different significantly from the regional 

mean. The study did not account for the effects of conflict while modelling utilisation. It was 

assumed that conflict effects were inherent in respondent answers at the survey stage. Such 

effects required a time series of data on incidences of conflict to identify stable hotspot areas that 

was beyond the scope of this study. Future studies could investigate the probability of conflict as 

an adjustment variable in determining probability of health facility use in fragile provinces. A by 



   

160 

 

product of this study was an estimation of population in health facility catchment areas to enable 

estimation of incidence outlined in the next section. 
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Table 3.3: Population within health facility catchments in Afghanistan. 

Estimated population data for 2011 by province and modelled treatment seeking for fever at the nearest public health facility 

  

Hospitals 

(Provincial/Regional/Distri

ct) 

Health 

Centers 

(Comprehensi

ve and sub 

health 

Centers) 

Basic Health 

facility 

(HPs/Clinics/

MCH) 

Other 

Facilities 

Total 

health 

facilities 

Estimated 

Population 

in 2008 

(All ages) 

Population 

(percentag

e) in PHF
1
 

catchments 

Estimate

d fever 

burden 

for 2011 

from 

MIS 

prevalenc

e 

Number of 

fever cases 

likely to 

attend a 

PHF
1
 (%) 

Probability of 

attendance 

         ≤0.20 15 93 117 2 227 13,649,346 9,071,360 124,967 5,931 (4.7) 

>0.20 -< 0.50 5 26 45 4 80 3,267,810 3,267,810 39,725 13,124 (33) 

>0.50 -< 0.60 5 9 15 1 30 2,287,390 2,287,390 28,231 16,628 (58.9) 

≥ 0.60 104 570 577 41 1292 13,166,100 13,158,313 134,595 

109,402 

(81.3) 

Travel time 

         

≤ 30.00 minutes 121 661 708 48 1538 17,890,000 17,890,000 192,425 

136,890 

(71.1) 

>30.00 min - <1.00 

hours 7 27 28 0 62 23,306,950 23,306,950 66,141 7,495 (11.3) 

>1.00 hours -< 2.00 

hours 1 9 16 0 26 27,792,610 27,792,610 41,906 672 (1.6) 

≥ 2.00 hours 0 1 2 0 3 4,578,036 - 27,045 28 (0.1) 

Province 

         Badakhshan 3 35 34 1 73 1,351,920 974,008 11,324 1,749 (15.4) 

Badghis 2 10 23 0 35 584,251 488,069 10,897 2,222 (20.3) 

Baghlan 3 30 21 0 54 1,101,920 925,927 5,399 1,754 (32.4) 

Balkh 7 41 46 3 97 1,493,720 1,456,970 20,686 12,427 (60.0) 

Bamyan 4 27 18 1 50 534,916 288,573 34 3 (9.8) 

Day Kundi - - - - - 578,854 88,678 20,689 595 (2.8) 

Farah 2 21 6 1 30 615,616 402,153 0 0 

Faryab 3 26 22 0 51 1,153,790 1,048,770 25 4 (17.4) 

Ghazni 4 31 35 1 71 1,527,840 1,244,250 19 1 (6.2) 

Ghor 3 25 21 0 49 814,963 375,385 27 0 

Hilmand 4 25 27 1 57 1,100,790 805,764 6 0 

Hirat 5 42 40 1 88 2,221,470 1,973,640 12 1 (4.2) 

Jawzjan 4 13 16 0 33 665,411 644,905 8,974 4,036 (44.9) 

Kabul 41 39 61 25 166 4,872,250 4,840,000 20,601 16,365 (79.4) 

Kandahar 2 18 18 2 40 1,460,940 1,168,280 0 0 

Kapisa 2 17 16 2 37 488,739 466,414 33 8 (24.6) 

Khost 1 19 9 1 30 697,456 696,841 3,535 1,750 (49.4) 
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Kunar 1 18 13 0 32 547,826 532,095 42,121 14,645 (34.7) 

Kunduz 2 17 32 2 53 1,203,720 1,177,470 13,974 7,306 (52.2) 

Laghman 1 21 16 0 38 535,115 504,745 9,610 3,776 (39.2) 

Logar 3 11 20 0 34 479,402 432,285 21 2 (8.8) 

Nangarhar 6 33 63 1 103 1,828,820 1,751,860 119,758 63,249 (52.8) 

Nimroz 1 9 5 1 16 198,911 139,575 0 0 

Nuristan 0 12 12 0 24 187,256 136,591 77 8 (10.0) 

Paktika 3 10 18 0 31 538,622 475,151 6 1 (15.2) 

Paktya 3 17 17 0 37 683,023 675,139 4,851 2,116 (43.6) 

Panjshir 1 6 4 0 11 150,659 88,775 4 0 

Parwan 2 31 32 5 70 884,168 774,160 6,792 3,545 (52.1) 

Samangan 2 15 13 0 30 467,796 391,992 16 2 (15.3) 

Sari Pul 3 14 16 0 33 723,273 632,692 8,584 2,288 (26.6) 

Takhar 4 21 38 0 63 1,194,430 1,149,240 7,276 4,031 (55.4) 

Uruzgan 1 7 6 0 14 428,158 296,071 11 1 (6.0) 

Wardak 4 28 27 0 59 683,159 518,201 12,157 3,200 (26.3) 

Zabul 2 9 9 0 20 371,462 220,204 0 0 

Total 129 698 754 48 1629 32,370,646 27,784,873
2
 327,517 145085(44.3) 

1. PHF is abbreviation for Public Health Facility 

2. The total number of people in the catchment was lower than the overall estimated population because some population were outside the catchment boundary, thus not 

covering 100% population and not entire population is likely to use a PHF. 
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Figure 3.6: Delineated public-based health facility catchments 

Map of public health facility catchment areas for Afghanistan derived from modelled travel time superimposed on the probability of attendance of nearest public 

health facility when sick with fever 



164 

 

3.4 Analysis of incidence of P. vivax and P. falciparum in Afghanistan 

3.4.1 Assembly of HMIS data 

The Afghanistan Health Management Information Systems (HMIS) records the number and 

types of illness including malaria. All health facilities are required to report the number of 

malaria cases on a monthly basis including the suspected or cases confirmed through a laboratory 

test (RDT or Microscopy). In general, the use of parasitological diagnosis at basic facilities was 

low during the study period (2006-2009) (Ministry of Public Health, 2010a). Complicated or 

severe malaria cases are referred to higher-level facilities (comprehensive health centres, district, 

provincial and regional hospitals) where parasitological diagnosis is available.  

Table 3.4 shows a summary of the assembled malaria case data for P. falciparum and P. vivax 

for the 48 months from January 2006 to December 2009. Data were based on outpatient cases 

observed at each facility. The slide positivity rate was used to adjust the suspected cases similar 

to Namibia analysis (Section 2.3.1). Health facility utilisation rates and the rate of reporting (i.e. 

the number of received reports divided by the total expected) was used to adjust the catchment 

population (section 3.2.3). This was important since not all individuals use the public sector and 

there was sporadic reporting by health facility to the HMIS. Adjustment for slide positivity was 

necessary to avoid underestimating incidence (if suspected cases are ignored) or overestimating 

incidence (where true cases are treated as a summation of clinical and confirmed case while 

ignoring the SPR at the facility). Parasitological diagnosis (microscopy or RDTs) was conducted 

at higher-tier facilities (hospitals and health centres) where laboratory facilities exist while 

clinical diagnosis was predominantly used at lower-level facilities such as health posts 

(Supplementary Information (SI)). No cases were examined or reported for 228 facilities which 

were treated as missing data while data for mobile units (n=93) were omitted from the final 
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analysis since they serve as outreach centres from major facilities. The missing spatial and 

temporal structures of data were imputed as ‘NAs’ and predictions made at missing locations 

 

 SPRcasesSuspectedCaseConfirmedTMC   

Overall, Table 3.4 suggests a decline in slide positivity rates from 2006 to 2009. For example 

slide positivity for hospitals for Pf was 1.7% in 2006 compared to 0.9% in 2009 and similarly for 

Pv (10.1% and 5.0% respectively). A large proportion of reported cases are based on clinical 

diagnosis. 

Table 3.4: Summary of assembled malaria case data 

Number of malaria cases (Plasmodium falciparum (Pf), Plasmodium vivax (Pv) and clinical) assembled by year and 

average positivity rates 
  Malaria cases (Slide positivity Rate %) 

  2006 2007 2008 2009 

Type of Facility Pf Pv Clinical Pf Pv Clinical Pf Pv Clinical Pf Pv Clinical 

Provincial/Regional 

Hospitals 

1,122 

(1.7) 

6,800 

(10.1) 

10,866 1,318 

(1.5) 

8,679 

(10.0) 

13,636 177 

(0.4) 

3,658 

(8.0) 

5,964 950 

(0.9) 

5,437 

(5.0) 

8,597 

District Hospital  562 

(0.7) 

10,270 

(13.4) 

19,471 590 

(0.7) 

10,258 

(13.0) 

23,038 112 

(0.3) 

2,273 

(6.6) 

15,504 508 

(0.6) 

8,727 

(10.8) 

18,783 

Comprehensive 

Health Center (CHC) 

2,481 

(1.3) 

38,040 

(19.6) 

129,101 2,474 

(1.1) 

37,134 

(16.8) 

141,066 571 

(0.4) 

17,820 

(13.5) 

107,277 1,527 

(0.8) 

26,295 

(13.8) 

108,238 

Sub Health Center 

(SC) 

3 

(1.2) 

46 

(19.01) 

407 1 

(0.1) 

65 

(8.7) 

1,432 627 

(1.0) 

9,541 

(16.7) 

46,675 17 

(1.8) 

76 

(8.0) 

22,292 

Basic Health Center 

(BHC) 

(clinics/HPs/MCH) 

1216 

(1.3) 

17,744 

(18.3) 

169,272 978 

(0.8) 

22,823 

(19.8) 

200,197 2,391 

(1.0) 

36,451 

(14.4) 

208,949 683 

(0.5) 

18,898 

(14.5) 

165,858 

Total 5,384 

(1.2) 

72,900 

(16.7) 

329,117 5361 

(1.1) 

78,959 

(15.7) 

379,369 3,878 

(0.7) 

69,743 

(13.4) 

384,369 3,685 

(0.7) 

59,433 

(11.7) 

323,768 

 

3.4.2 Assembly of environmental or ecological covariates for malaria risk 

Malaria transmission in Afghanistan is constrained by altitude, temperature (Gething et al., 

2011a) and aridity (Guerra et al., 2008, Guerra et al., 2010) which affect parasite sporogony and 

vector development (Safi et al., 2009b). Environmental covariates were assembled from 

remotely sensed data and extracted for each health facility. For the districts where no health 

facilities existed, a mean value of the covariate was used. This district-level average was also 

edexanumberTotal

casesConfirmed
SPR

min

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used for health facilities where no geographic coordinates had been established (n=108). All the 

grid surfaces were resampled to a common spatial resolution (cell size 0.008333
o
 x 0.008333

o
). 

A temperature suitability index (TSI) (Gething et al., 2011a) rather than the actual temperature 

values were used since TSI was modelled from long-term mean monthly temperature data from 

global climate data (WoldClim, http://www.worldclim.org/) (Hijmans et al., 2005). TSI 

represented the optimum temperature suitability (from 0 (unsuitable) to 1 (most suitable)) for P. 

falciparum and P. vivax transmission based on the survival of malaria vectors and on the 

duration of sporogony (effect on the malaria parasite). An average monthly enhanced vegetation 

index (EVI) for the four year period was downloaded from the MODerate-resolution Imaging 

Spectroradiometer (MODIS) sensor imagery (available at http://modis.gsfc.nasa.gov/data/) as 

measure of vegetation cover (Hay et al., 2006, Scharlemann et al., 2008).  The rate of 

precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM 3B43) 

(Huffman and Bolvin, 2011, NASA, 2011). TRMM 3B43 is archived at 0.25
o
 x 0.25

o
 spatial 

resolution and represent average rate of precipitation in mmhr
-1

 produced after combining 

satellite data and information from ground stations (rain gauges) (Huffman, 1997, Huffman and 

Bolvin, 2011). The hourly rate was converted to a monthly average based on number of days per 

calendar month (i.e. by multiplying the gridded rate by 24 hours and by 30 days in a month).  

 

3.4.3 Bayesian model specification for analysis of malaria incidence in Afghanistan 

A zero-inflated Poisson model, similar to Namibia analysis, was implemented in Afghanistan 

based on observed cases for P. falciparum and P. vivax.Thus, 

)1()(

0
~

ij

ij

ij

ij Pyprobabilitwith

Pyprobabilitwith

Poisson
Y






 

http://www.worldclim.org/
http://modis.gsfc.nasa.gov/data/
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where !/)exp()( ij

y

ijijij yPoisson ij   with the )]1/(log[)(log ijijij pppit  .  

The general log linear mixture model was: 

)()()log(log tfsfXE iuij

T

ijii    

where Ei was the expected number of cases adjusted for utilisation at each facility i,   as the 

intercept, with the )(unstrf  terms representing the unstructured spatial effects at facility, district and 

province levels different to Namibia where random effects were only at district and facility level. 

The extra randomisation aimed to improve the spatial smoothing of incidence. The (.)tf  

represented the seasonal or temporal effects. Thus, the likelihood of the data assuming similar 

covariates for the zero-state and the Poisson state as: 

 

ij

ij

Z

ijijijij

Z

ijij

Ei

j

iji

ZyYp

ZYpyZL






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1
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
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Inverse Gamma priors 005.0,0.1),(  babaIG  were assigned to precision hyperparameters 2  for 

the unstructured effects components ),0(~ 2 Nunstr
 at facility and district and province level. For 

the temporal trend, a first-order auto-regressive process, ),( 1ii tsY  with the first term coming from 

a stationary distribution ),0( 2 wN  that depends on past values ),0(~ 2

1  Nxx iiii  
for 

10    was assigned (Sahu and Bakar, 2012). The conditional-autoregressive prior was used as 

a spatial effect at the district level. The conditional prior for neighbouring districts ),( ijj   was 

specified in a similar way to Namibia study as ),(~( 2

iii N    where )/ ijijjijiji WW   
 ; 

)/12

ijiji W    (Bernardinelli et al., 1997). The Wij represented an adjacency matrix of weights 

assigned as Wij = 1 for two neighbouring regions or Wij = 0 otherwise. Flat priors 1)(   were 

assigned on the fixed covariate effects. The posterior taking into account of the 

priors  },,,{  ii
,  
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3.4.4 Bayesian model specification of slide positivity rates at health facilities in Afghanistan 

Here, the interest was to investigate the distribution of malaria species based on the slide 

positivity rates. A hierarchical Bayesian geostatistical model was subsequently used to predict 

SPR at fine spatial resolution (1 x 1 km). Thus, let ),( tsZ i
denote the response (the SPR) for 

particular malaria species at facility 
iS  in a particular month, Ttni ,.......,1;,.....,1  . ),( tsZ i

 is a 

realisation from a binomial process i.e. the probability that a case is positive for a single blood 

test for either P. vivax or P. falciparum modelled separately,  ),(~| iiii pnBinomialpy  with a 

logit link function )}exp(1/){exp()(  p . The probability of ),( tsZ i
 was taken to be 

independently distributed samples, ),......,( 1 NzzZ   as; 

)()|(
1

kxNPpZP
i

ik

k
N

k
k     

and a likelihood function as  

xnx pp
xnx

n
pxf 


 )1(

)!(!
)|(  

 The hierarchical model was decomposed into the observations with measurement error term,  

TtnitststsZ iii ,....1,,...1),(),(),(                            

where ),( tsi represented the underlying spatio-temporal biological process with an error term 

),0(~),( 2
..

n

dii

i INts   with prior )0005.0,1(~2 IG . The mean component was modelled as a 
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combination of the first order auto-regressive process ),( 1ii tsY  and the covariates 

T

ipii tsxtsxtsx )},()........,({),( 1 with the first term coming from a stationary distribution 

),0( 2 wN  that depends on past values for 10   with a non stationary matérn covariance 

function (Sahu and Bakar, 2012). Thus,  

),(),(),( 1 tswtsxYts iiti     

An approximate range of 1/5 of the spatial domain was used while the initial values for the 

marginal variance parameter and the scaling parameter in the matérn model were set to 1 and 0.1 

respectively. Flat priors were used for fixed parameters 1)(   . The posterior is evaluated as 

the product of likelihood given all the model parameters. 

),(~,,,|),(  GMRFts tsi
 

With Gaussian Markov Random Field (GMRF) used as a representation of the Gaussian Field 

evaluated using finite element methods (Lindgren et al., 2011). The region of study was 

expanded by 100km at the border to reduce edge effects associated with Neumann boundaries in 

SPDE (Cameletti et al., 2012, Lindgren, 2013).   

 

3.4.5 Model choice and validation for incidence and SPR analysis 

Four spatio-temporal models were compared to assess effect of the introduced random effects at 

province, district and facility level as well as the inclusion of the covariates. Model choice was 

based on the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and marginal 

likelihood. Both modelling approaches included EVI, temperature suitability index and 

precipitation as covariates. Posterior mean predictions were carried out at 1 x 1 km spatial 

resolution with associated standard error maps.   
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Sensitivity analyses were conducted using the root mean square error (RMSE), the mean and the 

absolute mean error (MAE) that summarised the closeness of validation set data to observed 

values as well model scoring rules based on the probabilistic values from predictive distribution 

of the model compared to actual observations (Gneiting and Raftery, 2007). Model measures of 

uncertainty included the standard error score (SES), the Dawid-Sebastiani score (DSS) reviewed 

by Gneiting and Raftery (2007). These two parameters are calculated as: 

2
)(),( PyyPSES   

     22 /log
2

1
),( ppyyPDSS    

where P  is the predictive posterior distribution with a mean   and standard deviation p  

(Gneiting and Raftery, 2007). SES is similar to the mean square error (MSE) but applies to the 

predictive posterior distribution.  

 

For geostatistical model, the nominal model coverage of 95% credible intervals was assessed 

based on the validation set (see section 2.3.6). The MAE and the R.M.S.E were also calculated as 

to estimate bias and accuracy of the model. Thus,  


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Lastly, the spatial structure in the residuals was assessed using semivariogram plots of in the 

spatial and temporal domain. 
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3.4.6 Results of estimating the incidence of P. falciparum and P. vivax in Afghanistan 

Table 3.5 compares the four spatio-temporal models implemented along with associated model 

parameters for both P. vivax and P. falciparum. Comparison using the DIC showed that the 

fourth model (M4) provided the best trade-off between model fit and parsimony compared to the 

other three models. This model, however, had more number of effective parameters (
DP ). For both 

P. vivax and P. falciparum, the standard error in M4 of the predictive distribution was also lower 

and was used for further analysis both for P. vivax and P. falciparum.  

 

The mean error based on a 10% validation set was -0.30 and -0.44 for P. vivax and P. 

falciparum, respectively showing an overall tendency to under-estimate by less than 0.5 

incidence cases per 1000 population. The Pearson correlation was 0.63 for P. vivax and 0.62 for 

P. falciparum.  

Table 3.5: Bayesian model comparison for incidence 

Models with and without random effects and covariates (M1 with no random effects or environmental covariates; 

M2: with random effects but no environmental covariates; M3: with environmental covariates but no random 

effects; M4 with random effects and environmental covariates) 

  

Model DIC PD Mlik 

(Integration) 

Variance of 

predictive 

distribution 

Std error of 

predictive 

distribution 

Mean 

Error 

R
2
 

P. falciparum M1 3670.00 86.80 -1824.57 0.002 1.026 - - 

 

M2 3596.90 95.60 -1824.94 0.005 1.042 - - 

 

M3 3599.48 90.64 -1821.78 0.002 1.026 - - 

  M4 3570.76 96.85 -1804.94 0.002 1.022 -0.442 0.619 

P. vivax M1 20933.49 203.48 -10571.74 0.001 1.054 - - 

 

M2 20781.31 301.97 -10538.10 0.001 1.049 - - 

 

M3 20935.46 206.49 -10593.93 0.001 1.052 - - 

  M4 20780.64 301.46 -10554.87 0.001 1.047 -0.308 0.629 

DIC: Deviance Information Criteria, PD: effective number of parameters, mlik: maximum likelihood estimate 

 

 

Table 3.6 lists the posterior distributions of the fixed effects, the unstructured components, and 

the temporal and spatial parameters for both the P. vivax and P. falciparum (for model M4). 
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None of the environmental covariate were significant at 95% Crl based on the P. falciparum 

model but temperature suitability (0.123, 95% Crl 0.046 – 0.202) was significant based on the P. 

vivax model. All other model parameters were significant at 95% Crl. 

 

Table 3.6: Bayesian estimates of model parameters. 

Parameters of the selected Bayesian models (M4) for both P. falciparum and P. vivax (sequentially as intercept β0, 

EVI, TSI, Precipitation, random effects at (facility, district and province), temporal parameter and spatial effect ϕ) 
  Parameter Mean Sd 5% 50% 95% 

P. falciparum β0 -3.630 0.387 -4.244 -3.633 -3.008 

 

β1 -0.031 0.079 -0.162 -0.031 0.099 

 

β2 0.164 0.127 -0.042 0.163 0.334 

 

β3 0.008 0.051 -0.077 0.008 0.091 

 

τ1 1.940 1.903 0.192 1.380 5.534 

 

τ2 2.484 0.829 1.355 2.369 4.010 

 

τ3 3.668 1.164 2.040 3.521 5.838 

 

ρ 0.849 0.117 0.617 0.881 0.969 

  ϕ 5.492 4.535 0.698 2.376 20.970 

P. vivax β0 -2.065 0.240 -2.451 -2.069 -1.662 

 

β1 -0.026 0.019 -0.058 -0.026 0.005 

 

β2 0.124 0.048 0.046 0.124 0.202 

 

β3 0.013 0.011 -0.005 0.013 0.031 

 

τ1 8.383 1.778 6.095 8.057 11.750 

 

τ2 2.081 1.976 0.181 1.500 5.888 

 

τ3 7.972 3.953 3.897 6.922 15.530 

 

ρ 0.728 0.098 0.551 0.737 0.872 

  ϕ 3.141 0.983 1.759 3.024 4.933 

 

Figure 3.7 shows monthly (n = 48) variation of incidence for P. vivax and P. falciparum. The 

incidence of P. vivax was highest in August (7.611 95% Crl 4.849 – 11.721) compared to P. 

falciparum which was highest in November (mean incidence per 1,000 population 2.403 95% 

Crl 0.929 – 5.276) and lowest in May (0.830 95% Crl 0.303 – 1.783).  
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Figure 3.7: Time series plot of estimated incidence for 48 months in Afghanistan 

Monthly predicted cases per 1000 population for P. falciparum and P. vivax with error bars showing 95% Bayesian 

credible interval. P. vivax cases have a peak in July and August compared to P. falciparum that peaks in November. 

 

Figure 3.8 (below) and Figure 3.9 (Page 175) shows maps of monthly mean incidence of P. vivax 

and P. falciparum, respectively, at district level. The incidence of P. falciparum was very low 

generally compared to P. vivax. The results also showed that districts in south-east and eastern 

provinces with a high incidence of P. vivax also tended to have higher incidence of P. falciparum 

or vice versa. 
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Figure 3.8: Posterior mean monthly incidence of P. vivax per 1000 population 

Mean monthly maps of P. vivax incidence per 1000 population for Afghanistan using a Bayesian CAR model 

formulated at the facility level and included environmental covariates (Rainfall, TSI and EVI) and spatial random 

effects to account for regional heterogeneity. P. vivax constitutes a major burden in Afghanistan and experiences a 

peak in the July-August period 

 

The estimated mean annual incidence for P. vivax was 5.1 cases per 1,000 population and 1.2 

cases per 1,000 population for P. falciparum. Figure 3.10 (Page 176) shows the mean annual 

maps at the district level for P. vivax and for P. falciparum, respectively. Less than 1 case per 

1000 population of P. falciparum was estimated for most districts on annual basis compared to 

P. vivax. Similarly, annual estimates showed that incidence was highest in the southern, south-

eastern and the eastern regions for both parasites. The estimated mean incidence in the most 

recent data year (2009) for P. vivax was 5.4 (95% Crl 3.2 – 9.2) cases per 1,000 population and 

1.2 (95% Crl 0.4 – 2.9) cases per 1,000 population for P. falciparum. Comparison between the 
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baseline in 2006 and in 2009 showed small change in incidence (4.9, 95% Crl 3.0 - 7.8 and 5.1, 

95% Crl 3.2 – 8.1 respectively for P. vivax; 1.1, 95% Crl 0.3 – 2.4 and 1.1, 95% Crl 0.3 – 2.5 

respectively for P. falciparum). However, there was a slight increase in malaria incidence in 

2008 for both P. vivax and P. falciparum as estimated by the model, but, dropped subsequently 

to the 2006 level in 2009. The mean percentage change in incidence in the 34 provinces between 

the baseline year and 2009 for P. vivax was 3.0 and 5.9 for P. falciparum (Table 3). P. vivax 

reduced in 17 of the 34 provinces in Afghanistan while P. falciparum reduced in 13 provinces 

 
Figure 3.9 Posterior mean monthly incidence of P. falciparum per 1000 population 

Mean monthly maps of P. falciparum incidence per 1000 population for Afghanistan using a Bayesian CAR model 

formulated at the facility level and included environmental covariates (Rainfall, TSI and EVI) and spatial random 

effects to account for regional heterogeneity.  
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A B

 

Figure 3.10: Posterior mean annual incidence maps 

The mean annual incidence of (a) P. vivax and (b) P. falciparum by district in Afghanistan 

 

3.4.7 Results of slide positivity prediction for P. falciparum and P. vivax in Afghanistan 

Table 3.7 lists model parameters of the slide positivity rate. The MAE and the RMSE for the P. 

vivax was 0.42 and 0.81 and for P. falciparum 0.83 and 1.05. The 95% nominal coverage for P. 

vivax was 96.75% showing tendency to over predict at 95% nominal. The model range for P. 

vivax and P. falciparum was different (Table 3.7). Semivariogram plots of the small scale 

variation (residuals) in the spatial and temporal domain based on the validation set indicated 

minimum spatial and temporal autocorrelation (Figure 3.11). The semivariogram for residuals in 

the spatial domain for P. falciparum (Figure 3.11(a) (i)) data had shorter range but larger sill 

compared to P. vivax (Figure 3.11(b) (i)). The structures were also different marginally in the 

temporal domain Figure 3.11(a) (ii) and Figure 3.11(b) (ii) respectively.  

Table 3.7: Models for slide positivity rate in Afghanistan. 

Bayesian model comparison based on separable covariance function (Product) (M1) and no-separable form 

(Product-sum) (M2) for P. falciparum (Pf) and P. vivax (Pv).  

Species DIC PD
1
 MAE R.M.S.E 

Probability of 

prediction 

interval (%)
2
 

Model Range 

(m) 

Pf 27393.81 200.03 0.4218 0.8063 95.37 3,395.73 

Pv 34996.00 269.08 0.8368 1.0489 96.75 45,198.81 

1. PD  represent the effective number of parameters that represent model complexity 

2. The nominal probability of prediction is 95%  
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Table 3.8 shows the posterior summaries of the fixed effects along and the random effects. Of 

the three selected environmental covariates, only TSI (
3 ) was an important predictor of P. 

falciparum (0.05 95% Crl 0.02 – 0.08) while for P. vivax EVI (
1 ) (-0.04 95% Crl -0.07 - -0.02) 

and precipitation (
2 ) (0.02 95% Crl 0.00 – 0.11) were significant for P. vivax. The nominal 

range for P. falciparum was also shorter (3,395.7 m 95% Crl 1,521.78 – 6,196.59) compared to 

the model range for P. vivax (45,198.8 m 95% Crl 37,591.30 – 52,711.04). 

Table 3.8: Posterior estimates of parameter for slide positivity rate. 

Distribution of posterior estimates (mean, standard deviation and quantiles) of the fixed components (intercept (β0), 

EVI (β1), precipitation (β2) and TSI (β3), the matérn variance component (σw
2)) and the model range (ф) 

  Parameter Mean Std. dev 5% 50% 95% 

Pv β0 1.3466 0.3299 0.7979 1.3663 1.8223 

β1 -0.0448 0.016 -0.0711 -0.0448 -0.0185 

β2 0.0213 0.0127 0.0004 0.0275 0.1059 

β3 0.0274 0.0477 -0.0511 0.0275 0.1059 

σw
2 1.4204 0.0584 1.3319 1.4156 1.523 

ф 45,198.81 4,605.16 37,591.30 45,235.97 52,711.04 

Pf β0 0.323 0.0326 0.2696 0.3229 0.3768 

β1 -0.004 0.0109 -0.0219 -0.004 0.014 

β2 0.0076 0.009 -0.0072 0.0076 0.0224 

β3 0.051 0.0202 0.0179 0.0509 0.0843 

σw
2 18.8035 18.6075 3.271 12.954 53.6073 

ф 3,395.73 1,471.85 1,521.78 3,120.85 6,196.59 
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Figure 3.11: Semi-variograms of residuals in spatial and temporal domain 

Semivariogram plots of the residuals in spatial (i) and temporal (ii) domain for P. falciparum (a) and P. vivax (b) 

based on the predictions on the hold out set. The x-axis shows distance in degrees latitude and longitude (decimal 

degrees) whiles the y-axis shows semi-variance. There was only minimal spatial structure shown in both temporal 

domains compared to the spatial domain in both malaria species. 

 

Figure 3.12 shows the continuous and binned predictions at 1 x 1 km of Slide positivity rate for 

2009 along with standard errors for P. falciparum and P. vivax respectively.  

Table 3.9 provides summaries of slide positivity rate by province weighted by probability of 

health facility utilisation. For P. vivax, the mean slide positivity was >1% (mean 1.3%; minimum 

0.0%; maximum 14.3%) while for P. vivax, slide positivity was <1% (mean 0.01%; minimum 
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0.0%; maximum 0.3%). The slide positivity rate was highest in southern and south-east 

provinces. The highest uncertainties were in districts with no facilities and where the rate of 

reporting was poor. For P. falciparum majority of provinces had a positivity rate of 0% -< 0.1% 

compared to P. vivax where most provinces (28 out of 36) had mean estimate between 0.5% -< 

5.0% (Table 3.9).  

 
Figure 3.12: Posterior mean predictions of slide positivity rate 

Posterior mean predictions and standard error maps. Panel A the posterior mean for P. falciparum with first map on 

continuous scale, the second map classified in 5 endemicity classes of <0.1%; 0.1 -<0.5; 0.5 -< 1.0; 1.0 -<2.0 and 

≥2.0 and the third map being the standard error map. Panel B the posterior mean for P. vivax on continuous scale, in 

5 classes of <5.0; 5.0 -< 10.0; 10.0 -< 20.0; 20.0 -< 40.0 and ≥40.0 and a standard error map. Higher standard error 

was in regions with sparse or no data points. 

 

Figure 3.13 shows a comparison between incidence, community prevalence and slide positivity 

rate. Parasite prevalence estimates for Afghanistan were obtained from the global endemicity 

maps (Gething et al., 2011b, Gething et al., 2012). There was positive association of incidence 

and slide positivity comparison with parasite prevalence (Pearson correlation coefficient 0.6 and 

0.4 for P. vivax and 0.3 for P. falciparum, for incidence). 

 

Table 3.9: Mean slide positivity rate by region in Afghanistan 
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Summary (in percentage) of the mean predicted slide positivity rate (SPR) at health facilities weighted by 

probability of use for P. falciparum and P. vivax by Province in Afghanistan in 2009 
  P. vivax   P. falciparum 

Name Mean Minimum Maximum Range 

 
Mean Minimum Maximum Range 

Badakhshan 0.65 0.00 22.71 22.71 

 

0.01 0.00 0.21 0.21 

Badghis 0.64 0.00 7.03 7.03 

 

0.01 0.00 0.15 0.15 

Baghlan 0.50 0.00 14.85 14.85 

 

0.00 0.00 0.05 0.05 

Balkh 1.49 0.00 15.27 15.27 

 

0.02 0.00 0.21 0.21 

Bamyan 0.48 0.00 11.60 11.60 

 

0.01 0.00 0.14 0.14 

Day Kundi 0.13 0.00 5.00 5.00 

 

0.00 0.00 0.07 0.07 

Farah 0.35 0.00 7.83 7.83 

 

0.01 0.00 0.77 0.77 

Faryab 0.77 0.00 5.31 5.31 

 

0.01 0.00 0.06 0.06 

Ghazni 1.49 0.00 22.42 22.42 

 

0.02 0.00 0.77 0.77 

Ghor 0.42 0.00 19.86 19.86 

 

0.01 0.00 0.41 0.41 

Hilmand 0.39 0.00 4.18 4.18 

 

0.00 0.00 0.19 0.19 

Hirat 0.57 0.00 5.81 5.81 

 

0.01 0.00 0.08 0.08 

Jawzjan 1.42 0.00 22.93 22.93 

 

0.01 0.00 0.18 0.18 

Kabul 3.27 0.00 21.48 21.48 

 

0.01 0.00 0.05 0.05 

Kandahar 0.30 0.00 8.43 8.43 

 

0.00 0.00 0.18 0.18 

Kapisa 1.30 0.00 9.83 9.83 

 

0.00 0.00 0.07 0.07 

Khost 3.46 0.01 21.79 21.77 

 

0.05 0.00 0.28 0.28 

Kunar 3.42 0.00 17.66 17.66 

 

0.03 0.00 0.39 0.39 

Kunduz 1.08 0.00 4.88 4.88 

 

0.01 0.00 0.05 0.05 

Laghman 3.12 0.00 30.31 30.31 

 

0.00 0.00 0.05 0.05 

Logar 1.15 0.00 12.38 12.38 

 

0.02 0.00 0.68 0.68 

Nangarhar 4.10 0.00 27.26 27.26 

 

0.02 0.00 0.96 0.96 

Nimroz 0.38 0.00 4.20 4.20 

 

0.01 0.00 0.25 0.25 

Nuristan 0.35 0.00 9.47 9.47 

 

0.00 0.00 0.09 0.09 

Paktika 1.60 0.00 25.56 25.56 

 

0.02 0.00 0.37 0.37 

Paktya 2.29 0.01 11.55 11.54 

 

0.02 0.00 0.36 0.36 

Panjshir 0.93 0.00 16.27 16.27 

 

0.00 0.00 0.05 0.05 

Parwan 1.75 0.00 22.17 22.17 

 

0.01 0.00 0.09 0.09 

Samangan 0.67 0.00 13.44 13.44 

 

0.01 0.00 0.10 0.10 

Sari Pul 0.94 0.00 22.30 22.30 

 

0.00 0.00 0.12 0.12 

Takhar 1.46 0.00 8.04 8.04 

 

0.01 0.00 0.21 0.21 

Uruzgan 0.66 0.00 6.61 6.61 

 

0.01 0.00 0.45 0.45 

Wardak 0.84 0.00 10.68 10.68 

 

0.01 0.00 0.44 0.44 

Zabul 0.76 0.00 15.69 15.69 

 

0.01 0.00 0.41 0.41 

 Mean 1.27 0.00 14.26 14.26   0.01 0.00 0.26 0.26 

 

3.4.8 Assessing the population at risk of malaria based on estimated incidence  

Of the 30.6 million people in 2009, approximately 32.0% of the population lived in regions 

where P. vivax was greater than 1 case per 1000 population compared to 23.7% for P. 

falciparum. Table 3.10 provides summaries of population at risk by region. Overall, 1.3% of the 

population in Balkh province, were estimated to live in districts with <1 case per 1,000 

population, the majority (66.7%) in districts of 1 to < 5 vivax cases per 1,000 population, 23.3% 

in 5 to < 10 cases per 1,000 population, 8.4% in 10 to < 20 cases per 1,000 population and 0.3% 
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of the population, in eastern Afghanistan in Kunar and Nangarhar provinces, were classified as 

residing in districts with annual P. vivax case incidence of >20 cases per 1,000 population. For P. 

falciparum, 76.3% lived in districts where P. falciparum case incidence was <1 per 1,000 

population, while 20.9% lived in areas were incidence of P. falciparum was 1 to < 5 cases per 

1,000 population. A minority (2.8%) were classified to live in districts with an estimated annual 

incidence of 5 to < 10 P. falciparum cases per 1,000 population. 
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Figure 3.13 Comparison of incidence and slide positivity rate with parasite prevalence 

Scatter plots comparing the incidence per 1000 population for P. vivax (top left) and slide positivity (top right) with 

community parasite prevalence for 2010; P. falciparum is shown at the bottom. There was positive correlation with 

incidence P. vivax and P. falciparum. 
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Table 3.10: Estimated population at risk in 2009 by Province for Plasmodium falciparum and Plasmodium vivax 

 

  Plasmodium vivax incidence per 1,000 population   Plasmodium falciparum incidence per 1,000 population   

Province 
Estimated 
Pv Clinical 

burden 

crud
e 
incid
ence 

Estimat
ed 

mean 
inciden
ce 2009 

SD
1 

% 
change 
Baseline 
(2006 
and 
2009 

< 1 
(%) 

1 -< 5 
(%) 

5 -< 10 
(%) 

≥ 
10 
(%) 

 

Estima
ted Pf 

Clinical 
burden 

crude 
incide

nce 

Estimat
ed 

mean 
inciden
ce 2009 

SD
1 

% 
change 
Baseline 
(2006 
and 
2009 

< 1 (%) 
1 -< 5 

(%) 
5 -< 10 

(%) 
Total 

Population 

Kabul 19,788 4.7 4.3 1.1 0.59 0 

4,513
,039 
(98.1

) 
72,584 

(1.6) 

162
22 
(0.
4) 

 
5,016 2.7 1.1 0.7 -0.52 

4,132,17
0 (89.8) 

425,758 
(9.3) 

43,917 
(1) 4,601,845 

Kapisa 2,497 5.3 5.4 0.8 0.59 0 

215,8
25 

(46.8
) 

245,789 
(53.2) 0 

 
268 1.7 0.6 0.5 -0.21 

461,613 
(100) 0 0 461,613 

Logar 1,988 5.1 4.4 1.1 -2.01 0 

308,8
82 

(68.2
) 

143,913 
(31.8) 0 

 
317 2.2 0.7 0.6 -5.99 

425,918 
(94.1) 

26,877 
(5.9) 0 452,795 

Panjshir 777 6.3 5.5 1.5 1.24 0 0 
123,418 

(86.7) 

188
79 
(13
.3) 

 
203 5.1 1.4 0.8 1.74 

99,628 
(70.0) 

23,790 
(16.7) 

18,879 
(13.3) 142,298 

Parwan 2,806 3.4 3.4 0.9 -4.04 0 

778,0
82 

(93.2
) 

57,015 
(6.8) 0 

 
576 2.2 0.7 0.6 -3.74 

778,082 
(93.2) 

57,015 
(6.8) 0 835,096 

Wardak 2,439 4.9 3.8 1.1 -1.13 0 

515,6
33 

(79.9
) 

129,611 
(20.1) 0 

 
400 2.8 0.6 0.5 -3.68 

573,533 
(88.9) 

71,711 
(11.1) 0 645,244 

Bamyan 2,172 4.4 4.3 1.3 -4.79 0 

465,5
96 

(92.2
) 0 

396
33 
(7.
8) 

 
273 1.3 0.5 0.5 -8.76 

505,228 
(100) 0 0 505,228 

Day Kundi 2,280 6.1 4.2 1.5 0.19 0 

143,3
33 

(26.2
403,394 

(73.8) 0 
 

306 3.3 0.6 0.6 -0.02 
546,727 

(100) 0 0 546,727 
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) 

Kunar 6,897 7.5 13.3 2.0 2.61 0 0 0 

517
,42
1 

(10
0) 

 
2,013 4.9 3.9 1.3 -0.03 

175,647 
(33.9) 

182,013 
(35.2) 

159,76
2 

(30.9) 517,421 

Laghman 4,114 6.8 8.1 0.6 2.91 0 

48,93
5 

(9.7) 
456,482 

(90.3) 0 
 

510 3.1 1.0 0.5 1.68 
386,431 

(76.5) 
118,986 

(23.5) 0 505,417 

Nangarhar 23,043 7.5 13.3 0.9 5.48 0 0 
733,865 

(42.5) 

993
,46
0  

(57
.5) 

 
6,391 4.5 3.7 1.2 3.94 0 

1,453,89
7 (84.2) 

273,42
8 

(15.8) 1,727,324 

Nuristan 1,043 5.8 5.9 1.1 3.20 0 

35,83
0 

(20.3
) 

112,523 
(63.6) 

285
11 
(16
.1) 

 
108 2.1 0.6 0.5 2.67 

176,863 
(100) 0 0 176,863 

Badakhsha
n 6,895 4.7 5.4 1.4 0.59 0 

247,9
84 

(19.4
) 

785,904 
(61.5) 

243
,00
5 

(19
) 

 
1,302 2.4 1.0 0.8 0.93 

618,838 
(48.5) 

658,054 
(51.5) 0 1,276,892 

Baghlan 3,039 4.5 2.9 1.0 2.05 0 

1,040
,766 
(100) 0 0 

 
385 0.9 0.4 0.4 5.79 

1,040,76
6 (100) 0 0 1,040,766 

Kunduz 4,639 5.4 4.1 0.7 -0.82 0 

755,1
18 

(66.4
) 

381,799 
(33.6) 0 

 
432 1.6 0.4 0.4 2.59 

1,136,91
7 (100) 0 0 1,136,917 

Takhar 3,452 4.6 3.1 0.7 1.73 0 

1,128
,142 
(100) 0 0 

 
463 2.0 0.4 0.3 3.65 

1,128,14
2 (100) 0 0 1,128,142 

Balkh 4,091 2.9 2.9 1.1 10.56 

408,
202 
(28.
9) 

1,002
,618 
(71.1

) 0 0 
 

818 1.5 0.6 0.5 15.39 
1,410,82
0 (100) 0 0 1,410,820 

Faryab 5,209 5.4 4.8 1.3 -0.05 0 

498,5
75 

(45.8
) 

591,181 
(54.2) 0 

 
708 2.2 0.7 0.5 0.25 

971,677 
(89.2) 

118,079 
(10.8) 0 1,089,756 
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Jawzjan 2,583 3.8 4.1 1.3 -2.39 0 

521,9
18 

(83) 
106,563 

(17) 0 
 

760 2.3 1.2 0.9 8.69 
255,757 

(40.7) 
372,724 

(59.3) 0 628,480 

Samangan 1,219 2.6 2.8 1.0 -1.86 0 

441,8
33 

(100) 0 0 
 

239 1.2 0.5 0.5 -4.16 
441,833 

(100) 0 0 441,833 

Sari Pul 2,548 4.2 3.7 1.0 3.69 0 

604,4
85 

(88.5
) 

78,646 
(11.5) 0 

 
266 0.5 0.4 0.4 20.25 

683,132 
(100) 0 0 683,132 

Khost 5,613 6.0 8.5 1.3 10.31 0 

57,43
9 

(8.7) 
343,942 

(52.2) 

257
,36
6 

(39
.1) 

 
1,719 3.3 2.6 1.1 17.70 

13,623 
(2.1) 

426,758 
(64.8) 

218,36
6 

(33.1) 658,747 

Paktika 3,037 5.3 6.0 1.9 -4.60 0 

25,62
4 

(5.0) 
453,431 

(89.1) 

29,
674 
(5.
8) 

 
829 3.6 1.6 1.0 -13.29 

171,714 
(33.8) 

216,884 
(42.6) 

120,13
1 

(23.6) 508,729 

Paktya 4,458 5.8 6.9 1.1 -0.44 0 

115,0
91 

(17.8
) 

432,258 
(67) 

97,
766 
(15
.2) 

 
387 2.5 0.6 0.5 1.12 

645,114 
(100) 0 0 645,114 

Ghazni 9,033 5.1 6.3 1.2 2.46 0 

530,2
63 

(36.7
) 

739,121 
(51.2) 

173
,66
4 

(12
) 

 
2,165 2.7 1.5 1.0 16.31 

321,390 
(22.3) 

1,084,94
7 (75.2) 

36,711 
(2.5) 1,443,048 

Hilmand 2,859 3.4 2.8 1.1 -0.26 0 

1,039
,697 
(100) 0 0 

 
1,071 2.0 1.0 0.8 1.90 

930,158 
(89.5) 

109,539 
(10.5) 0 1,039,697 

Kandahar 5,644 4.9 4.1 1.2 -0.08 0 

1,161
,551 
(84.2

) 
178,308 

(12.9) 

40,
003 
(2.
9) 

 
1,421 2.7 1.0 0.8 -4.06 

1,130,77
4 (81.9) 

249,088 
(18.1) 0 1,379,862 

Nimroz 577 4.6 3.1 1.2 -2.38 0 

187,8
72 

(100) 0 0 
 

178 1.9 1.0 0.8 -7.58 
86,898 
(46.3) 

100,974 
(53.7) 0 187,872 

Uruzgan 1,601 4.2 4.0 1.1 -0.88 0 

306,7
99 

(75.9
97,595 
(24.1) 0 

 
311 1.9 0.8 0.7 0.87 

332,451 
(82.2) 

71,944 
(17.8) 0 404,395 
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) 

Zabul 2,621 6.3 7.5 1.6 -6.88 0 

20,58
6 

(5.9) 
144,845 

(41.3) 

185
,41
5 

(52
.8) 

 
379 2.7 1.1 0.8 -9.01 

149,910 
(42.7) 

200,936 
(57.3) 0 350,846 

Badghis 2,257 4.7 4.1 0.9 1.92 0 

534,1
83 

(96.8
) 

17,642 
(3.2) 0 

 
353 2.0 0.6 0.5 7.60 

551,825 
(100) 0 0 551,825 

Farah 1,459 2.8 2.5 1.0 -3.19 0 

581,4
49 

(100) 0 0 
 

494 1.7 0.9 0.8 0.59 
484,949 

(83.4) 
96,500 
(16.6) 0 581,449 

Ghor 3,141 4.5 4.1 1.4 -1.07 0 

468,8
09 

(60.9
) 

300,924 
(39.1) 0 

 
708 2.5 0.9 0.9 2.08 

459,819 
(59.7) 

309,915 
(40.3) 0 769,733 

Hirat 7,532 3.3 3.6 1.2 16.37 0 

2,098
,175 
(100) 0 0 

 
1,133 1.2 0.5 0.5 23.14 

209,817
5 (100) 0 0 2,098,175 

  165,712 5.0 5.4 1.2 1.62 408,
202 
(1.3

) 

20,39
4,129 
(66.7

) 

7,130,7
53 

(23.3) 

2,6
41,
017 
(8.
6) 

  36,077 2.7 1.2 0.7 2.26 23,326,5
22 (76.3) 

6,376,38
6 (20.9) 

871,19
4 (2.8) 

30,574,102 

1. SD: Starndard Deviation
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3.5 Discussion on the incidence and slide positivity rates of P. vivax and P. falciparum in 

Afghanistan 

In this chapter, the distribution of P. vivax and P. falciparum malaria species in Afghanistan was 

modelled using HMIS data to estimate disease burden. The findings confirm P. vivax malaria 

morbidity in Afghanistan exceeds that for P. falciparum. The incidence of P. vivax and P. 

falciparum was estimated to be higher in the southern, south-eastern and eastern parts of 

Afghanistan. On average, the incidence of P. falciparum was low with majority of districts 

classified as <1 case per 1000 population. The crude estimate was 2.7 cases per 1000 population. 

For P. vivax, the estimated incidence was 5.4 cases per 1000 population compared to a crude 

estimate of 5.0 per 1000 population. The spatial distribution of both species was similar. Thus, 

the results suggested that the incidence of P. vivax was highest in the population highly endemic 

with P. falciparum. What was striking was the distribution of both malaria species in southern 

and south-eastern provinces based on both incidence and slide positivity rates. The mean slide 

positivity rate predicted was 1.27 % (minimum 0%; maximum 14.26%) and 0.01% (minimum 

0%; maximum 0.26%) for P. vivax and P. falciparum, respectively. Given the additional spatial 

precision resulting from the facility, district and regional adjustments of incidence compared to a 

crude estimate, maps of both malaria species are useful for concerted planning. The smoothed 

incidence also incorporated environmental covariate to estimate incidence in districts where with 

no data.  

 

3.5.1 Implications for malaria control and elimination in Afghanistan 

Using the 2006 estimates as baseline, 17 and 13 provinces had already reduced P. vivax and P. 

falciparum incidence respectively by 2009. No reduction in incidence was estimated for 
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Nangahar, Balkh, Sari Pul, Khost and Hirat. Nangahar and Khost provinces in south-eastern 

regions of Afghanistan were amongst those with highest incidence for both parasites. From the 

MIS undertaken in 2008, Nangahar had an estimated long lasting insecticidal nets (LLINs) 

coverage of 19% while no LLINs use was observed in Hirat  (Ministry of Public Health, 2009a). 

Sari Pul district, for example, had some of lowest rates of long lasting insecticidal nets (LLINs) 

coverage and access to treatment of care. In districts where indoor residual spraying (IRS) is 

used as the main vector control approach or to complement LLINs, the targeting of this 

intervention should be informed by the lag in the peak season of the two main malaria parasites. 

P. vivax peaks in August while P. falciparum peaks in November. IRS campaigns should 

therefore be planned in such away the insecticide are efficacious through the two peak seasons.  

 

Of the 34 provinces of Afghanistan, five were considered to be malaria free based on altitude 

thresholds (Ministry of Public Health, 2010b). These provinces, however, accounted for 9.7% of 

all estimated cases in 2009 indicating a potential problem of importation of suspected cases due 

to human population movement in Afghanistan or foci transmission in valleys where climatic 

conditions are favourable. The available data, however, do not provide malaria case definitions 

and it is impossible to distinguish between imported and local cases.  In the malaria free 

provinces, suspected imported infections should be documented and algorithms, based on travel 

history, could be used as the basis for case definitions. In addition, health advice and 

chemoprophylaxis for travellers from the malaria free to endemic provinces should be initiated 

as an additional package for malaria prevention. An incidence of less than 1 P. falciparum case 

per 1000 individuals is considered to be the threshold for pre-elimination by the WHO (World 

Health Organization, 2007a). By 2009, 21 provinces in Afghanistan had already achieved such a 
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threshold. However, the biggest challenge is likely to be operational and a comprehensive 

analysis of overall feasibility of P. falciparum elimination (Feachem et al., 2010) 

 

The analysis also showed that malaria in Afghanistan exhibits a seasonal peak between July and 

November. P. vivax tended to peak in August (mean incidence of 7.611 95% Crl 4.849 – 11.721) 

compared to P. falciparum which peaked in November (mean incidence 2.403 95% Crl 0.929 – 

5.276). Incidence was lowest between January and May with variation resulting largely from 

climatic conditions in winter and spring. P. vivax hypnozoites are likely to survive the long 

winter season in Afghanistan, due to long latent periods, relapsing after the spring period in May. 

The result is a possible explanation of the early peak of vivax malaria for the July-August period. 

These maps may, therefore, provide a baseline for identifying areas where mixed infections are 

likely to occur.  

 

The slide positivity varied between the two malaria species in the endemic provinces. For P. 

falciparum, SPR was less than 3% while for P. vivax, the mean SPR was 6.2%. Pre-elimination 

of malaria can be achieved at less than 5% positivity rate (World Health Organizastion, 2007). 

The spatial distribution observed in Figure 3.12 is driven partly by climatic conditions (e.g. 

temperature, rainfall, humidity) which affect parasite survival.  The SPR is independent of 

population size and is a useful index in unstable areas where asymptomatic infections are not 

common. The Afghanistan analysis indicated that only TSI was an important covariate for 

estimating P. falciparum perhaps due for focal pattern observed compared to P. vivax where EVI 

and precipitation were more useful.  
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In terms of case management, the quantification of the co-distribution of P. vivax and P. 

falciparum in Figure 3.8 and Figure 3.9 may have useful implications for dual control approach 

for both species in endemic districts. Other studies elsewhere have shown an infection of P. 

vivax malaria subsequent to P. falciparum infection and cases of mixed infections may present a 

challenge for treatment (Looareesuwan et al., 1987, Mehlotra et al., 2000, Mayxay et al., 2004, 

Douglas et al., 2011).  P. vivax infections tend to relapse more often because the hypnozoites can 

lie dormant in an infected liver for months (White, 2011), a factor that has important 

implications for its control. An additional characteristic of P. vivax is that it can induce fever at 

relatively low parasite densities (Price et al., 2007, White, 2011), thus suspected cases require a 

parasitological diagnosis before treatment. The prevalence of glucose-6-phosphate 

dehydrogenase deficiency (G6PDd)  is estimated to be 8% in Afghanistan (Howes et al., 2012) 

which complicates the use of the reccomended 14 day regiment of primaquine (PQ) (World 

Health Organization, 2010a). The use of PQ in patients with G6PDd can cause severe haemolysis 

(Cappellini and Fiorelli, 2008, Leslie et al., 2008). We suggest that improved maps of prevalence 

of G6PDd may be helpful in reducing disease burden. Chloroquine is used as first line treatment 

of P. vivax in Afghanistan as recommended for countries where it remains efficacious and where 

parasites can be isolated (World Health Organization, 2012b), while Artesunate with 

Sulfadoxine-Pyrimethamine (AS+SP) is used for P. falciparum (Ministry of Public Health, 

2008b).  However, where both species are endemic, the use of artemisinin-based combination 

therapies (ACTs) has been proposed (Douglas et al., 2010, Sinclair et al., 2011) and other 

clinical studies have shown a faster parasite clearance rate when ACTs were used (Nguyen et al., 

1993, Hamedi et al., 2004, Dao et al., 2007). Figure 3.10 indicates where such a case 

management approach could be beneficial.  
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3.5.2 Modelling gains for incidence analysis in Afghanistan 

An independent linear approach was used when modelling both incidence and slide positivity 

rates for both parasites. While modelling large space-time data with gaps is a challenging task, 

the advantages of hierarchical model-based approaches lies in quantifying the mean process 

independently ),( tsi  while at same time including random effects (see also section 2.5.3). An 

autoregressive time varying factor was used in the model with an assumption that estimates 

evolves from previous values but modified by spatial and spatio-temporal set of covariates 

),(' tsX i
 (Sahu and Bakar, 2012). Crude estimates of incidence was much close to the smooth 

values in Afghanistan compared to Namibia. The advantages of smoothed incidence over crude 

estimates are discussed in section 2.5.4. However, the analytical gain in the Afghanistan study 

was the extra random effects included at province level while maintaining the CAR prior at the 

district level. Thus; 

jkkif   )(  

Where i are the facility level effects, k is the CAR prior at district level with random effects 

k  (with  ),0(~| 22  Nk  (Barnerjee et al., 2004, Lee, 2011)) and j represent higher 

level effects at the province level.  This specification improved the spatial smoothing toward a 

regional (province) mean. This evident in closeness of crude estimates at regional level 

compared to smooth estimates.  

 

The analysis in this section however did not explore the alternative approach of multivariate 

space-time random effects where the joint covariance for P. vivax and P. falciparum maybe be 
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based on linear transformation of the independent processes (Wagner and Tüchler, 2010, De Iaco 

et al., 2011). Such modelling approach is however not straight forward and as observed here. For 

example in the geostatistical approach, the spatial range   for both species was different which 

may complicate a joint modelling framework of both species.  

 

3.5.3 Limitations in Afghanistan context 

An important factor to consider while interpreting the results is that the data were based on either 

microscopy or RDTs, both of which have varying sensitivities (WHO-FIND, 2009). With such 

low infection rates and an increased likelihood of mixed infection in districts showing patterns of 

co-infection (Imwong et al., 2012). It was not possible to distinguish the proportion of observed 

cases at health facilities over the four year period that were a result of new infections or 

relapsing. Such analysis may require additional models of transmission, for example, 

incoporating the force of infection (Gemperli et al., 2006, Yukich et al., 2012). Another 

limitation of the maps presented here is that the effects of migration or travel between various 

regions were not incorporated into the modelling framework. A study in south-eastern 

Afghanistan showed higher asymptomatic infections in the migrant population (Nateghpour et 

al., 2011). Modelling migration patterns at national level was beyond the scope of this study. It 

was assumed that individuals would seek treatment at the nearest facility or at least within a 

district or one of its neighbours.  

 

3.6 Conclusion 

This study demonstrates how HMIS data can be assembled, integrated and interpolated to 

identify district with high malaria burden spatially and temporally. Maps were produced at the 
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level of decision-making units, which are useful to the malaria control programme in assessing 

the changing burden of disease in Afghanistan, targeting malaria interventions at the population 

most at risk, and planning health resources. It is likely that Afghanistan’s NMLCP faces a 

challenge in reducing the burden and management of P. vivax infections compared to P. 

falciparum. The districts identified with high burden can form the basis of targeting mass ITN 

distribution. For areas showing co-distribution of both species, mixed infections should be 

investigated and careful case management strategies adopted. Donor commitment to financing of 

the BPHS in Afghanistan since 2004 has had a positive effect on improving coverage of 

healthcare. The analysis of public health sector utilisation undertaken here suggests that the 

majority of the population is within two hours of a health facility, indicating an improvement in 

healthcare delivery and availability of services. 
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CHAPTER 4: Case study 3 
Mapping the seasonal transmission of P. falciparum and P. vivax in 

Eritrea using HMIS 
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4.1 Eritrea context  

4.1.1 Background 

The burden of malaria in Eritrea has reduced significantly in the recent past. Both Plasmodium 

falciparum and Plasmodium vivax are found in Eritrea, although, falciparum is the major 

contributor for most malaria related deaths. Plasmodium vivax is estimated to constitute 

approximately 46% of the total burden in Eritrea (World Health Organization, 2013b). The 2012 

health report indicates that malaria accounts for approximately 1.5% of inpatient morbidity (IPD) 

and 0.5% out-patient morbidity (OPD) in children under the age of five years (MoH, 2013). This 

is a ranking of about 10
th

 and 11
th

 respectively for all IPD and OPD cases, respectively. The 

estimates in ages above five years are slightly higher for OPD cases at 1.3% and 4.9% for IPD 

cases. 

 

The 2014 WHO malaria report highlighted Eritrea as one of the countries in SSA that reduced 

malaria cases by over 75% between 2000 and 2013 (World Health Organization, 2014d). The 

2012 MIS estimated a mean parasite prevalence of 2% nationally (Ministry of Health, 2012). 

Several factors have contributed to a decline in malaria burden in Eritrea. The RBM 

implemented aggressive malaria control between 1999 and 2004. During this period, there was 

an increase in coverage and use of ITNs and LLINs; larvae source reduction and the use of 

selective indoor residual spraying (IRS) of insecticides using dichloro-diphenyl-trichloroethane 

(DDT) and organophosphates (Malathion). By 2005, Eritrea had superseded the Abuja target of 

ITN coverage of >60%. There was a change in the antimalarial drug policy in 2007 from mono-

therapies to use of ACTs and these are now available freely in the public sector. Compulsory use 
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of diagnostics at health facilities was also introduced to improve case management (Nyarango et 

al., 2006, Mufunda et al., 2007).  

 

The national malaria control programme is targeting pre-elimination (MoH and RBM, 2005, 

Mufunda et al., 2007) which requires case incidence to be less than 1 case per 1000 per year 

(World Health Organizastion, 2007).  Routine HMIS could be used to target reactive Active Case 

Detection (ACD) usually deployed only during epidemics. Mass screening of population or ACD 

is yet to be adopted as a routine surveillance strategy (East Africa Roll Back Malaria Network 

(EARN), 2013). Therefore, there is a need to identify foci districts with high transmission to 

guide intervention and active case surveillance in order to achieve <1 case per 1000 population 

threshold.  

 

This chapter assesses the spatial and temporal distribution of malaria transmission in Eritrea 

from 2010 to 2012 using routine data. It qualifies as a low malaria transmission country targeting 

pre-elimination. The analysis is aimed at identifying low and moderate risk areas in Eritrea to 

support the changing malaria strategies of pre-elimination in addition to identifying seasonal 

trends in transmission of both P. falciparum and P. vivax. In terms of methodology, analysis of 

healthcare utilisation is a prerequisite for incidence analysis. There is also an adjustment of 

denominator population using health seeking behaviour pattern (section 4.2) and adjustment at 

facility level for slide positivity as well as the rate of health facility reporting (section 4.4). The 

analysis of incidence incorporates the use of nonlinear functions for covariates to improve the 

smoothing in temporal domain as well as the prediction of slide positivity rates. This approach is 

aimed at improving estimates in the temporal domain while maintaining gains in spatial domain. 
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4.1.2 Geography 

Eritrea lies in the horn of Africa with an estimated land surface area of approximately 123,200 

km
2
. It is divided into six administrative 1 units (Zobas) and 58 districts (Sub-Zobas). Eritrea is 

bordered to the East by Djibouti which is also in pre-elimination of malaria with low and 

unstable transmission (Noor et al., 2011, Ollivier et al., 2011). There is documented evidence of 

declining burden in Ethiopia in the south of Eritrea (Otten et al., 2009, Jima et al., 2012) while in 

Sudan, to the west, the regions of Kassala and Gedaref experience moderate transmission (Hay et 

al., 2009a, Gething et al., 2011b) (Figure 4.1).  

 

Malaria transmission in Eritrea is highly seasonal and unstable, driven by the climatic conditions 

that vary from the hot and dry desert strip coastline of approximately 2,234 km along the red sea 

to the cooler and wetter highland areas (inland) with an average 60mm of rainfall annually. The 

main rainy season is between June and September. The extended Ethiopian highlands dominate 

the central regions descending to the east to coastal plain, hilly to the north reaching 3000m 

above sea level and rolling plains to the west (towards Sudan). Temperatures in the summer 

months vary between 40 
0
C to 50 

0
C at the coastal strip and 16 

0
C to 30 

0
C inland throughout the 

year. These climatic conditions are favourable for malaria transmission in the highland regions. 

The extreme low rainfall in the lowlands causes aridity which is unfavourable for both malaria 

transmission and for agricultural needs of the population.  
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Figure 4.1: Map of Eritrea 

 

4.1.3 Healthcare system in Eritrea: Organisation and delivery 

The ministry of health is responsible for provision of preventive, curative and promotive 

healthcare services to the population. Like many other developing countries, the focus is on 

primary care to the rural populations in form of a Basic Healthcare Package (BHCP). This is 

outlined in the health policy which also aims at reducing disease burden, control communicable 

diseases, improve healthcare practices and implement a functional efficient healthcare system 

(MoH, 2010). In general, the healthcare system in Eritrea is hierarchical with management units 

set up at the national, regional and sub-regional level. The national level ensures the proposed 
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policies are implemented including: equitable distribution of health and social services; 

introducing national health insurance schemes; promoting healthcare services and good 

practices; and encourage participation of the private sector. Regional directories roles include the 

preparation of regulations, ensuring compliance with the national policy and encouraging 

regional level development. The coordination of development activities is carried out at district 

level including planning and implementation of policies.  

 

Development and expansion of healthcare providers (hospitals, health centres and the health 

stations) was a priority of the ministry of health from 1995. Expanding the health system 

improved access and utilisation of healthcare facilities. For instance in 1996, 6% of population 

was estimated to be within 10km of a health facility which had increased to 70% by 2006 (MOH, 

2008). By 2005 the number of health facilities was over 300 including both the public and 

private based facilities. There were approximately 21 major hospitals, four mini hospitals, 49 

health centres and 178 health stations. The health stations and clinics form the primary-level 

facilities, while district (sub-zoba) level facilities and the major regional level facilities form the 

secondary and tertiary facilities respectively. The tertiary-level facilities are managed mainly by 

a zoba (regional) medical office and serve as referral centre for secondary and primary care 

facilities. They also form as focal point for the zoba conducting teaching and training, supporting 

operational research and zoba level as well as providing specialised services. National referral 

hospitals offer all services in a similar way to the zoba referral hospitals but with additional 

specialised services. In 2010, at least 340 facilities reported to the national HMIS. The MoH 

owns approximately 75.9% of the facilities, faith-based organisations (Eritrea Catholic 
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Secretariat (8.9%), Evangelical church (0.3%)), Private (2.4%), Industry facilities (9.2%) and 

other Non-governmental organisation constitute about 3.3%.  

 

Primary care is provided through community-based health facilities with a catchment the size of 

a village (kebabi) (estimated population of 500 to 2000 people). Most of primary curative and 

preventive services are provided by CHA and skilled community health workers (CHW). Health 

station and clinics provide basic services for estimated 5000 to 10000 people. The health stations 

support the CHAs and CHWs and conduct regular training in addition to providing outreach 

services. Health centres and community based hospitals provide supervision to the health stations 

and clinics and are designed to serve a catchment population of approximately 30,000 to 50,000. 

They also form direct referrals to the clinics and health stations. The number of community 

health agents (CHA) has increased over the last few years. The CHAs provide basic curative and 

preventive services, for example, treatment of mild fever. Therefore a substantial number of 

people are treated at community level by the CHAs. It is estimated that between 2000 and 2004 

CHA treated on average 50% of febrile events. There is improved training by year in practice as 

well as with change of health policy.  

 

4.1.4 Health goals and progress on MDGS 

Eritrea is a low income country with a Gross National Income (GNI) of 550 and low human 

development index (HDI) of 0.35 (World Bank, 2014). It was ranked 182 out of the 187 

countries based on the HDI index. Current population is just under 7 million with a growth rate 

of approximately 2%. Health expenditure in 2011 formed approximately 2.6% of the total GDP 

(World Bank, 2014). Overall, life expectancy has increased to over 60 years which is higher than 
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the SSA average of 51 (MoH, 2010). The larges burden of disease comes from preventable and 

communicable diseases such as Acute Respiratory Infections (ARI) and maternal health-related 

problems. There is therefore an emphasis on health programs focusing on preventive activities in 

Eritrea. According to health assessment review in 2012, the top five cause of in-patient morbidity 

include Diarrhoea, HIV/AIDS, ARI, anaemia and heart diseases (MoH, 2013). Pneumonia, skin 

infections and ARIs are common in children under the age of five years. The under-five 

mortality rate was estimated to be 98 deaths per 1000 live births while infant mortality rate is 48 

deaths per 1000 live births. This has declined significantly compared to 1992-1996 estimates of 

121 deaths per 1000 live births and 67 deaths per 1000 live births respectively (National 

Statistics and Evaluation Office (NSEO) [Eritrea] and Macro, 2003).  

 

Despite tremendous achievement in reducing malaria burden, the threat of resurgence remains 

due to combination of environmental or climatic factors and cross-border movement. While 

MDG targets remain on track in regard to infant and child mortality especially with declining 

burden of malaria, the maternal mortality ratio (MMR) remain a problem with estimate of 240 

per 100,000 live births in 2011. Some of cultural factors and lack of skilled personnel contribute 

to maternal deaths (Sharan et al., 2011). There are current attempts to train more skilled 

community health workers and to increase ANC coverage. Health worker population ratios 

indicate the ratio of number of doctors to population is approximately 0.48/10,000 which is close 

to the WHO limit of 1/10,000. The nurses ratio of 3.2/10000 and 6.5/10000 for associate nurses 

is within the advisory limits (East Africa Roll Back Malaria Network (EARN), 2013). This 

staffing challenges affect quality and competency of healthcare professionals. 
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In summary, Eritrea has made strides on some MDGs such as reducing the malaria burden, but 

remains behind on other MDGs such as poverty. Most population remains poor with heavy 

reliance on agriculture which is undermined by drought. The next section reviews history of 

malaria control. 

 

4.1.5 History of malaria control in Eritrea 

Malaria control in Eritrea is coordinated by the National malaria control programme which was 

established in 1999 following epidemics between 1997 and 1998. IRS started in 1965 during the 

GMEP to the late 1960s when it was discontinued due to instability during the occupancy of 

Ethiopia from 1952-1991. During the period of instability, much of country’s infrastructure was 

destroyed and malaria control activities nearly stopped. A major re-building programme was 

initiated after independence declaration in 1993, which involve the re-construction of healthcare 

services and improving provision. Between 1997 and 1998 a severe epidemic was reported that 

resulted in over 200,000 cases. Previous reports indicate malaria cases in 1995 were less than 

90,000. The number of impatient deaths reported during this epidemic surged to over 500. 

Subsequently, the National malaria control program (NMCP) was constituted with support from 

the World Health Organisation, The U.S. Agency for International development (USAID) and 

the World Bank.  

 

A five year malaria attack phase was launched which commenced with DDT spraying in three 

Zobas worst hit during the epidemic (Debub, Garsh Barka and the Northern Red Sea). The RBM 

also supported the distribution of bed-nets through clinics to high risk groups (such as pregnant 

women) and through social marketing (Eisele et al., 2006). Integrated vector management (IVM) 
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was rolled out to other regions (Anseba, Maekel and Southern Red Sea). As a strategy of 

managing resistance, DDT spraying in Debub was replaced partly by malathion towards the end 

of transmission season due to its short half-life (WHO/AFRO, 2007). As a result of these efforts, 

between 1999 and 2003, the malaria burden was halved. Funding from the GFTAM commenced 

in 2003. The first GFTAM disbursement period was from November 2003 to March 2004 and 

was instrumental in scaling up the coverage of ITNs such that by 2005, Eritrea had exceeded the 

Abuja targets of greater than 60% ITN coverage nationally (Eisele et al., 2006).  In 2004 RBM 

conducted an assessment survey to identify key priority areas and ways of consolidating malaria 

control gains. Some of the weaknesses identified were in case management, late presentation of 

cases at periphery health facilities for treatment, a need to increase the number  of CHAs, 

sustaining ITN distribution and environmental management of IRS, improvement on awareness 

and integration of IMCI amongst other logistical issues. 

 

The 2005 to 2009 malaria policy focused on consolidation and strengthening the health system 

on issues around the use of RDTs, training of CHAs and improving logistic supply system to 

guard against stock outs at health facilities.  About USD 13 million was budgeted for case 

management, prevention, epidemic detection and prevention, operational research, program 

management and monitoring. Most of these funds were proposed during the sixth round of the 

GFTAM (The Global Fund, 2013b). About USD 11.05 million (94%) of proposed amount was 

disbursed commencing in November 2007 and that ended in 2012. This was deemed adequate 

for the malaria activities proposed during the consolidation phase. For instance, only 75 deaths 

were attributed to malaria in 2009 and over three million ITNs had been distributed by 2012.  In 

2007 there was a change in the antimalarial drug policy from the monotherapies. Chloroquine + 
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Sulfadoxine pyrimethamine (CQ+SP) was introduced as first line drug for uncomplicated 

malaria while Artesunate + Amodiaquine (AS + AQ) was introduced for first line treatment of 

confirmed falciparum malaria with quinine (QN) used if there was treatment failure. Chloroquine 

and Primaquine remained as first line treatment for confirmed vivax malaria. Progress has also 

been made in regard to the scale-up of LLINs. The 2012 MIS suggested availability of 1 LLIN 

for every 0.5 people. This, however, still falls short of the WHO recommendation of 1 LLIN for 

every 1.8 people (World Health Organization, 2012b). There was an 86% estimated ownership of 

LLINs and use at 67.4% for children under the age of five years in the same survey. The use of 

LLIN in all age population was 55% from the MIS (Ministry of Health, 2012).  The use of 

diagnostics has also increase at health facilities nationally which has had an impact on case 

management by identifying and treating febrile cases (Nyarango et al., 2006, Mufunda et al., 

2007). As a result of these activities malaria in Eritrea is ranked 10
th

 and 11
th

 in the IPD and 

OPD for the under-fives. Thus, the NMCP is re-orienting the programme to pre-elimination. The 

reduced burden has positive implications to indicators such as child mortality in Eritrea. The next 

section investigates access and utilisation of the public health sector in order to derive 

denominators of quantifying malaria incidence at facility level. 

 

4.2 Analysis of coverage and utilisation of health services for treatment of fever  

A national HMIS was first created in 1997 in Eritrea and this has strengthened over the years in 

terms of data collection and standardization. By 1998 a computerized information system had 

been set up for data storage and analysis. The health metric Network (HMN) continues to 

provide technical support to the MOH and in 2007 an assessment of data quality showed high 

accuracy (80.6%), timeliness (88.1%) and completeness (>90%) (MOH, 2008). There has been 
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no formal assessment of Eritrea healthcare service access and utilisation at a national level 

except for the designed population provider ratios. This section quantifies geographic access to 

health facilities in Eritrea in relation to physical distance and topography. The main objective is 

to assess health facility coverage and quantify utilisation. A second object is to delieanated 

catchments and estimate population within catchments for incidence analysis. 

 

4.2.1 Data 

4.2.1.1 Health facility database for Eritrea 

A health facility database was obtained from the national malaria control programme.  Health 

facilities in Eritrea were mapped using non-differential handheld GPS receivers as the same time 

with the computerized system. The process was supported by the health Metrics Network (MOH, 

2008). There were approximately 287 public-based health facilities assembled majority owned 

by the MoH (85.7%). 2.4% were owned by the faith-based organisations (mainly the catholic and 

evangelical church) and a further 1.7% owned by the NGOs. The rest were industrial based 

facilities (Table 4.1).   

 

Hospitals were ranked the highest with one as a referral facility, 19 regional based hospitals and 

five mini hospitals. Other levels included the health centres, health stations, clinics and 

specialised hospital. Providers included the government (majority), charity organizations, private 

individuals and other government agencies such as the police and ministry of defence (MOD). 

Each facility was linked to an administrative area (Administrative 1 boundary and district) 

(Figure 4.2).  

 
Table 4.1: Public-based health facilities in each Zoba in Eritrea by type 
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Zoba National Referral 

Hospital 

Hospital Mini 

Hospital 

Health 

Centre 

Health 

Station 

Clinic Special 

Hospital 

Total 

Anseba 0 1 0 9 26 3 0 39 

Debub 0 3 2 11 47 2 0 65 

Gash Barka 0 3 0 13 51 5 0 72 

Maekel 1 7 1 10 24 2 4 49 

Northern Red 

Sea 

0 4 0 11 29 4 0 48 

Southern Red 

Sea 

0 1 2 0 11 0 0 14 

Total 1 19 5 54 188 16 4 287 

 

 
Figure 4.2: Distribution of health facilities in Eritrea 

Map of health facilities in Eritrea by type. Hospitals (n=25), Health centres (n=54 and Health stations or clinics 

(n=204)  

4.2.1.2 Eritrea Population map 

An population surface (Figure 4.3) was obtained from Worldpop at 100 x 100 m spatial 

resolution (Worldpop, 2010). The methodology in modelling population distribution follows a 
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similar approach to the Namibia population surface and other countries in SSA (Linard et al., 

2012). In brief,  a  Dasymetric approach was used (Monmonier and Schnell, 1984, Briggs et al., 

2007), that involve the redistribution of census data (Tatem et al., 2007). No population census 

that has ever been conducted in Eritrea; therefore, most population estimates were based on 

government estimates and publication from the United Nations population division (UN 

Population Division, 2013). The inclusion of land use and land cover data from GlobCover 

(Arino et al., 2007) improves the representation of habitable land. The weights, calculated based 

on the density of habitable areas, were used to distribute census estimates at regional block level. 

The method assumes a direct relationship between the population density and land cover classes. 

Recent improvement of this technique using the random forest modelling approach suggest a 

linear relationship between the selected land cover covariates and population (Worldpop, 2010). 

The resulting national population map was then projected using the United Nations’ (UN) inter-

censual growth rates (UN Population Division, 2013).  
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Figure 4.3: Population density map of Eritrea for 2010 

Population density map superimposed to elevation map of Eritrea showing majority of population reside in central 

highland regions. 

4.2.1.3 National representative surveys in Eritrea 

Eritrea has to date conducted at least four nation representative household based surveys. Two 

DHS were conducted in 1995 and in 2002. The first MIS was conducted in 2008. The 2012 MIS 

was used in this study for analysis of fever treatment in the public sector. The MIS focused on 

malaria, and was powered primarily to measure the impact of interventions such as insecticides 

treated nets (ITNs) (Roll Back Malaria Monitoring and Evaluation Reference Group et al., 

2005).   

 

3,845 households (8,533 individuals) in all age cohorts were sampled in the MIS carried out 

between September and October 2012 in four zobas namely: Anseba, North Red Sea, Debub and 

Garsh Barka. A two-stage sampling design was adopted (RBM-MERG, 2008) where villages (or 

clusters) were first selected based on the number of households in a probability-to-proportional-
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size approach (PPS) and households were selected randomly at the second stage within the 

selected clusters (Ministry of Health, 2012). The geographic locations of the clusters were 

established using a handheld GPS receiver. A cluster comprised of approximately 19 households 

(variation of minimum 6 to a maximum of 21 households). The surveys provide information on 

fever prevalence amongst all-age cohorts and treatment seeking patterns in different sectors. The 

management of fever 2-weeks prior to the MIS was recorded for household members that 

reported a fever episode. The individual-level data were linked to administrative regions 

including information on type of residence (urban or rural status) and fever.  

4.2.1.4 Ancillary national-level GIS data 

Data on Land use and Land cover, elevation, road and rivers for Eritrea was downloaded from an 

online repository (DIVA-GIS, 2011) and from the data exchange platform for the Horn of Africa 

created by the UN (UNEP, 2002). Elevation (Figure 4.4) was obtained from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model 

(ASTER-GDEM) (NASA, 2012). ASTER-GDEM. The elevation data had a 30 m spatial 

archived using 1° by 1°
 
tiles in GeoTIFF format. A land cover surface for 2009 was obtained 

from the Medium Resolution Imaging Spectrometer (MERIS) GlobCover product (ESA, 2010) 

at 300 m spatial resolution. 
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Figure 4.4: Digital elevation model (DEM) for Eritrea 

 

4.2.2 Developing surface of travel time and probability of attendance for fever treatment in 

Eritrea 

Ancillary data were combined to generate a cost surface of travel times between facilities and 

population locations in AccessMod (version 3.0) (Ray and Ebener, 2008). The cost surface was 

generated by assigning various travel speeds (Table 4.2) to land cover, slope (from elevation) 

and roads while rivers were used as barriers (Ray and Ebener, 2008). Travel speeds assigned to 

various land use or land cover types were similar to Namibia and Afghanistan analysis (Ray and 

Ebener, 2008, Alegana et al., 2012, Huerta Munoz and Kallestal, 2012) and were extracted at 

cluster locations from the MIS for the 8,533 individuals.  Overall, 1,247 individuals in all age 

cohorts reported at least a single fever episode two weeks prior to the survey while 60·8% 

reported to have sought treatment in public sector (Ministry of Health, 2012). Effects of 

residence (urban =1 or rural =0), gender (Male or female) and age were evaluated in a 
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generalized multiple regression model on the reported pattern of health facility attendance. Of 

which, only residence (regression coefficient -1·0, 95%CI: -1·4 – -0·8, p<0·001) was significant 

and was subsequently used in the fitted model. The effect of age (regression coefficient -0·1, 

95%CI: -0·2 – 0·1, p=0·5) and gender (regression coefficient 0.02, 95%CI: -0·2 – 0·3, p=0·8) 

were not significant and were, therefore, dropped from the analysis. The travel times were used 

in the logistic regression model of the form )1/( /)( BxAeCY   (Pinheiro and Bates, 2002) to estimate 

probability of health facility attendance.  

Table 4.2: Description data for modelling healthcare utilisation in Eritrea. 

Various data and their sources used as inputs in calculating travel time to the active public health facilities in Eritrea. 
Map 

Layer Description Classification 

Speed 

(km/h) Mode
1
 

Land 

use/ land 

cover 

Spatial representation of all different land use and 

land cover types. Two land cover grids were 

processed (1) a basic land cover grid (2) a 

combined grid that incorporates roads and rivers 

with the same resolution as the DEM 

Irrigated, rain fed, mosaic or 

vegetated croplands 4.0 Walking 

Open or closed broadleaved, needle 

leaved, deciduous or evergreen tree 

cover 4.0 Walking 

open or closed mixed broadleaved 

forest/tree cover 2.5 Walking 

Mosaic, closed to open 

grassland/shrubland 2.5 Walking 

Sparse Vegetation 2.5 Walking 

Open or closed broadleaved 

regularly flooded 1.0 Walking 

Artificial/urban areas 30.0 None 

Bare areas/desert 1.0 Walking 

Ice/ permanent snow 0 None 

Roads Classified into five categories; class A 

(highways), class B (secondary roads), tertiary 

Class C and Class D roads as well as street level 

urban roads. Each road class was assigned a 

different speed limit. 

Class A roads 60.0 Motorised 

Class B roads 40.0 Motorised 

Class C roads 20.0 Cycling 

Class D roads 5.0 Walking 

Street level roads in urban areas 30.0 None 

Rivers GIS layer representing barrier to movement. Only 

major rivers were used to reduce the complexity 

of running the algorithms 

NA3 0 NA2 

Digital 

elevation 

model 

Altitude values that are used in anisotropic 

calculation; Original DEM 30 m ASTER grid; 

resampled to 1 km pixel size 

Degree of Slope (< 0.5o)  4.88 Walking 

Degree of Slope (5.0o) 3.71 Walking 

Degree of Slope (10.0o) 2.71 Walking 

Degree of Slope (20.0o) 1.41 Walking 

Degree of Slope (30.0o) 0.66 Walking 

3. Assumed mode of travel to health facility, as either walking on foot, cycling, using motorise transport as on roads or a 

combination of the different modes. Anisotropic movement for walking based on Tobler’s equation, (V=6*exp(-

3.5abs[Tan(slope in degrees/57.296) + 0.05]) (Tobler, 1993) where V is the speed with slope derived from DEM or for 

cycling (Walter, 2008), was applied for traversing across a pixel. For example, on a flat terrain, the walking speed is 5.0 

km hr-1. 

4. NA is an abbreviation for ‘ Not Applicable’ 
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Figure 4.5 shows the universal (all facilities) distance-decay model of treatment seeking pattern 

based on the travel time and the reported fever treatment. Note that following the Afghanistan 

analysis, here, stratification by facility type was not used for public health sector coverage 

analysis. Treatment-seeking behaviour reduced rapidly after approximately 180 minutes. The 

residual standard error was 0.02 while the sum of squared residuals equal was 0.01 indicated a 

good model fit to the data. The coefficients of the distance-decay curve were all significant with 

p<0.001. The limiting coefficient was C (0.73) with the other two coefficients: the asymptote as 

A (3.83) and decay parameter B (-0.42). 
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Figure 4.5: Distance decay curve of probability of fever treatment in Eritrea 

Distance decay model based on the reported fever treatment in the 2012 MIS survey for Eritrea showing probability 

of treatment (y-axis) against travel times (x-axis). The model parameters were all significant at p<0.0001 with 

limiting factor C as 0·73 [95% CI 0·71 – 0·74], the asymptote 3·83[95% CI 3·80 – 3·86] and the decay parameter as 

-0·42 [95% CI -0·45 - -0·40]. The attendance pattern (1 = attendance and 0 = non-attendance) is also superimposed 

on the decay curve 
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4.2.3 Developing health facility catchments in GIS and assessing coverage of health 

facilities   

A gridded surface of probability of health facility attendance was derived at 1 x 1 km spatial 

resolution based on the distance-decay curve. The distance decay model based on the universal 

facility list was selected to zone catchment areas while limiting the maximum travel time to 180 

minutes. Population counts in various catchments were extracted using the catchment boundaries 

and multiplied by the probability of attendance for fever treatment to derive the population-

weighted surface of health facility utilisation. Similarly, the population outside the threshold 

catchment boundary was estimated. A fever burden map was derived by combining population 

map with estimates of fever prevalence from the MIS. The number of fever cases in all age 

cohorts within each catchment was extracted based on the fever burden map. The number of 

fever cases likely to attend a public health facility was calculated by multiplying the estimated 

burden by the probability of attendance. 

 

4.2.4 Results of analysis of coverage and utilisation of health facilities 

3.2.4.1 Fever prevalence in 2012 and treatment seeking behaviour 

From the MIS, approximately 8,533 individuals in 96 clusters were interviewed. Fever 

prevalence in all age-cohorts was 15.2% (95% CI 12.9 - 17.6). Of those with fever, the 

proportion that sought treatment in public sector was 56.2% (95% CI 53.5 – 59.0).  

3.2.4.2 Probability of attendance for fever treatment 

Figure 4.6(a) shows the gridded surface of attendance for fever treatment to all health facilities at 

1 x 1 km spatial resolution. The gridded surface was used to delineate catchments shown in 

Figure 4.7 (b). Out of the estimated total population in 2012 (5,541,112) 67·8% were estimated 
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to be within 180 minutes of a health facility and therefore within the catchment. The estimated 

number of fever cases in 2012 based on the MIS prevalence and population map was 688,700 of 

which 515,936 were within the derived health facility catchments (Table 4.3 and Figure 4.6 (b)). 

Of the four regions covered by the MIS, the burden was higher in Debub and less in Anseba. 

Approximately 25% of the estimated fevers were outside the catchments of the health facilities 

and 61% of those in catchments were likely to seek treatment for fever. This means that 

approximately 39% of the population in catchments was not likely to seek treatment in the public 

sector. The modelled mean probability of attendance by region was highest in Maekel and lowest 

in Southern Red Sea (Table 4.3).  

 
Table 4.3: Estimated population in Catchments by region 

Estimated population in 2012 and the estimated counts in catchments by region as well as those in the catchment 

likely to seek treatment for fever based on the probabilistic measure of attendance. Maekel and Southern Red Sea 

were not sampled during the MIS survey. 

Region Estimated 

Population 2012 

Estimated 

population 

2012 

(percentage) in 

health facility 

catchments 

Fever prevalence 

(95% CI) in all 

age cohorts from 

the 2012 MIS 

Estimated fever 

burden in health 

facility 

catchments 

based on the 

MIS prevalence 

Fever cases 

(Percentage) in 

catchment likely 

to seek treatment 

Anseba 734,948 525,349 (71.51) 12.4 (8.3 - 16.4) 60,343 35, 475 (58.8) 

Debub 1,341,639 1,332,810 (99.3) 20.7 (16.4 - 13.0) 237,107 157,128 (66.3) 

Gash Barka 1,297,092 1,177,388 (90.8) 12.7 (8.1 - 17.3) 133,913 78,132 (58.3) 

Maekel 498,550 498,550 (100.0) - -  

Northern Red Sea 1,449,685 771,772 (53.2) 10.7 (7.5 - 14.0) 84,572 43,228 (51.1) 

Southern Red Sea 219,198 99,379 (45.3) - -  

Total 5,541,112 4,405,325 (79.5) 15.2 (12.9 - 17.6) 515,936 313,964 (60.9) 
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Figure 4.6 Probability of health facility use for fever treatment and delieanated catchments 

Figure 4.7 (a) shows the modelled probability of attendance for fever at 1 km by 1 km resolution using logistic 

regression model based on the 2012 MIS. The lowest probability was 0.01 and the highest probability was 0.73 (b) 

the health facility catchments at a threshold travel time of 180 minutes 

 

 

Table 4.4 provides an overall assessment of coverage of health facilities in relation to population 

distribution. In general there was 1 health facility (of any type) for every 20, 000 people. This 

ratio is likely to be more for hospitals given there was on average more than 2 hospitals in each 

region except in Anseba and the Southern Red Sea regions (Table 4.1, Page 205). Approximately 

27% of the population was within 30 minutes of the nearest public health facility, while majority 

(73%) where within two hours of travel to the nearest health facility. There was poor geographic 

access in the Northern Red Sea and the Southern Red Sea regions where 59% and 66% of 

population, respectively, were at distance greater than two hours of the nearest health facility. In 

addition, approximately 9% of population in Northern Red Sea and 4% in Southern Red Sea 

were at distances within 30 minutes to the nearest health facility. In Maekel, 100% of the 

population was within two hours of the nearest health facility. 
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Table 4.4: An assessment of coverage of health facilities in relative to population and travel time in Eritrea in 

2012 

      Percentage of population to nearest health facility 

Region Population : 

Facility 

Ratio 

Estimated 

Population 

2012 

30 minutes 1 

hour 

2 hours > 2hours 3 hours > 3hours 

Anseba 19863:1 734,948 21.4 39.5 64.1 35.9 71.5 28.5 

Debub 20963:1 1,341,639 41.5 77.8 98.1 1.9 99.3 0.7 

Gash Barka 18530:1 1,297,092 19.0 42.7 82.4 17.6 90.8 9.2 

Maekel 12464:1 498,550 77.0 99.0 100.0 0.0 100.0 0.0 

Northern Red Sea 32215:1 1,449,685 8.8 17.7 41.2 58.8 53.2 46.8 

Southern Red Sea 15657:1 219,198 4.4 13.6 33.9 66.1 45.3 54.7 

Total 20523:1 5,541,112 26.7 48.2 72.7 27.3 79.5 20.5 

 

 

4.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment 

This section assessed coverage of healthcare facilities in Eritrea and their utilisation for fever 

treatment based on the MIS data. This study did not assess the overall expansion of healthcare 

system in terms of service provision over the years since there was no documented baseline 

survey to compare the results against.  However, for effective service planning it is essential to 

outline systematically the coverage and utilisation of health facilities. Overall, 72% of the 

population were within 2 hours of the nearest health facility. Thus, the results suggest that the 

construction of health facilities since the mid 1990s has had a positive impact on increasing 

coverage. To assess utilisation, travel times were calculated between the facility location and 

population centres (clusters) and based on a 3 hour cut off (180 minutes). 60% of the estimated 

fever cases where likely to be treated in the public sector. The probability of seeking treatment 

was highest in Debub and Garsh Barka where there was a higher concentration of health 

facilities and population. The estimated number of fevers within the health facility catchments 

was 688,700 of which 61% were likely to be treated in the public sector. Overall, 172764 (25%) 

febrile cases were unlikely to use at a public health facility. 
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Coverage of health facilities was congruent with population distribution. The facility to 

population ratio was 1:20,000 at the national level. The ratio was better in Maekel with one 

health facility for every 12,000 people and the worst in the North Red Sea region (one facility for 

approximately 32,000 people). There was, in general, a balance between population distribution 

and the location of health facilities. 48% of the population was within 1 hour of a public-based 

health facility while approximately 7% were located in areas more than three hours from the 

nearest health facility. Majority of the population in Maekel, Debub and Garsh barka where 

located within 2 hours of the health facility. 

 

Geographic access was poor in the Southern Red Sea and the Northern Red Sea regions where 

47% and 55% of the population, respectively, were at distance greater than three hours of the 

nearest facility. In these two regions combined, only 8.2% of population was within 30 minutes 

of the nearest health facility. These two regions are sparsely populated generally with population 

density of 0.02 and 0.11 per square kilometre respectively.  In Other regions in Maekel, Gash 

Barka, and Debub >80% of population were within two hours of the nearest health facility. 

Geographic access in these regions was higher compared to the regions bordering the Red sea. 

The subsequent analysis on modelling disease burden is dependent on a good distribution of 

health facilities in addition to availability of health reports.  

 

Utilisation of health facilities was accessed using the 2012 MIS conducted during the malaria 

season. The reported fever prevalence (15.2% (95% CI 12.9 - 17.6)) was higher compared to the 

other low transmission cases studies in Namibia or Afghanistan (Ministry of Health, 2012). The 

MIS report suggested a high recognition of fever as a symptom for malaria during the 
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transmission (amongst the sampled population). More than 80% of the interviewed population 

associating fever with malaria. It is likely that the majority of cases are treated within the public 

health sector that includes a network of community health agents linked to lower tier facilities. 

The report also showed that 61% of children under the age of five years sought treatment for 

fever at public health facilities (Ministry of Health, 2012) and estimated use in all age cohorts 

was 55%. The CHAs play an important role in treatment seeking behaviour in Eritrea at 

community level since they can treat uncomplicated febrile cases. Training and expanding the 

network of the CHAs is entrenched in the national health strategy (MoH, 2010). Secondly, the 

size of the private sector is relatively small with private-based health facilities constituting about 

3%. Majority of the public-based health facilities (76%) are managed and owned by the MoH 

(MOH, 2008).  

 

The distance decay model estimated 61% of the estimated fever cases in 2012 were likely to 

have been treated in the public sector. Thus, the estimated rate of utilisation in the public sector 

was similar to the observed utilisation rate of the public sector with only a five percent difference 

based on all age cohorts. Differences in estimates could be as a result of sampling in the MIS or 

through error propagation due to combination of different data sets. Moreover, there could be 

fine scale variation at regional or local level compared to the generalized model in this study.  

Distance remains one of the factors affecting utilisation in Eritrea even for other services such as 

ANC (Sharan et al., 2011). For example, findings from the study by Sharan and colleagues 

emphasised the disproportionate access to maternal services and highlighted distance as a major 

factor affecting utilisation. The relationship between distance and poor health outcomes has been 

demonstrated in many other studies (Al-Taiar et al., 2008, O'Meara et al., 2009, Moisi et al., 
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2011), In Ethiopia there was an increased risk of death associated with an increased distance 

from a health facility (Okwaraji et al., 2012). The recommended travel time from a health facility 

varies by location but longer distances may affect high risk groups, for example, the risk of 

miscarriage in pregnant women.   Thus, CHAs play an important role in providing primary care 

to the marginalised population. CHAs are linked to lower-tier facilities (clinics and health 

stations) and access to these providers may probably alter the utilisation at health facility level. 

 

In addition, the rate of distance-decay based on the derived travel time, was similar to the one 

modelled for Namibia (Alegana et al., 2012). This decay was less rapid after seven and half 

hours. It is likely that some population in the regions along Red Sea travel a longer distance to 

facility compared to other regions. The study did not investigate the pattern of utilisation 

between various facility types. Given there at least two to three major hospitals in each Zoba, it 

is likely that these are referral centres for severe or complicated malaria within the Zoba. 

Perception of quality of services offered at the referral hospitals could also be a factor affecting 

utilisation (Trani et al., 2010, Trani and Barbou-des-Courieres, 2012). Other limitations such as 

social-economic status, costs or cultural preferences were not evaluated. The advantage of this 

study was the use of all-age population cohorts increasing representation of general utilisation 

patterns in the population. Although, the private sector constitutes just a minority of providers in 

Eritrea, their inclusion in future studies may improve understanding of coverage and utilisation. 

Here, the quantification of catchment population at facility level served as pre-requisite in 

modelling malaria incidence. 
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4.4 Mapping malaria incidence and slide positivity rates in Eritrea 

4.4.1 Assembly of malaria data (2010-2012) 

Malaria data (Total Cases (TC)) for P. falciparum and P. vivax were obtained from the National 

Malaria Control programme (NMCP) for a three year period from 2010 to 2012. This data was 

extracted from the national HMIS database which reports on all illness and deaths recorded at a 

health facility. Facilities reported the number of malaria cases per month diagnosed clinically or 

confirmed through laboratory test (RDT or Microscopy). In total, 265 public based health 

facilities reported malaria data in all age groups from the 270 health facilities nationally 

excluding a few reproductive-based facilities (maternity and nursing homes) and special facilities 

(Psychiatric and Rehabilitation centres), stand alone voluntary counselling centres (VCT), dental 

clinics and educational or vocational centres. These facilities comprised of: two national referral 

centres; 21 hospitals (mini and regional hospitals); 53 health centres or community facilities; and 

194 health stations. The overall reporting rate, calculated as a proportion of received reports over 

the expected number, was high (85.4%) (8301 reports of the expected 9720).  

 

Although most cases in Eritrea were confirmed using a parasitology test prior to treatment, few 

were diagnosed clinically. Only 8.7% of possible monthly data points were missing and these 

were imputed as NAs. Adjustment of data at facility level was similar to Namibia and 

Afghanistan. This included the rate of utilisation, the rate of reporting at slide positivity rates. 

Table 4.5 shows a summary of the assembled case data for P. falciparum and P. vivax for the 

three-year period. The slide positivity rate (SPR) was used to adjust the suspected cases, where 

parasitology had been used and malaria species isolated. This was necessary to avoid 

underestimating incidence (if suspected unconfirmed cases are ignored) or overestimating 



   

221 

 

incidence (where true cases are treated as a summation of suspected and confirmed case while 

ignoring the SPR at the facility).  

edexanumberTotal

casesConfirmed
SPR

min
  

 SPRcasesSuspectedCaseConfirmedTC   

Overall, there were more cases in 2010 compared to 2011 to 2012. The highest number of cases 

was in Garsh Barka. Slide positivity rate was also highest in Gash Barka, for example: 64.4% in 

2010 and 47.0% in 2012 in this region. SPR was low Northern Red Sea and the Southern Red 

Sea. The proportion of suspected cases was also small compared to the overall number of malaria 

cases in Eritrea. 

Table 4.5: Summary of assemble HMIS data in Eritrea. 

Assembled P. falciparum (Pf) and P. vivax (Pv) cases in Eritrea by region and year. The slide positivity rate is 

shown in brackets. 

Malaria cases (Slide positivity (%)) 

  2010     2011     2012     

Region Pf Pv Suspected Pf Pv Suspecte

d 

Pf Pv Suspect

ed 

Anseba 1,415 

(23.2) 

578 (9.5) 159 1,094 

(10.1) 

837 (7.7) 472 1,903 

(13.0) 

827 (5.6) 28 

Debub 9,928 

(40.7) 

3,205 

(13.1) 

447 3,923 

(7.9) 

3,959 

(7.9) 

2,561 6,624 

(14) 

3,476 

(7.4) 

1,068 

Gash Barka 23,767 

(64.4) 

2,576 (7) 7,770 8,438 

(25.7) 

4,914 (15) 14,212 18,769 

(47.0) 

5,617 

(14.1) 

5,060 

Maekel 489 (9.2) 254 (4.8) 560 516 

(7.2) 

493 (6.9) 807 596 (5.8) 526 (5.1) 843 

Northern Red 

Sea 

304 (7.9) 128 (3.3) 6 295 

(11.8) 

149 (5.9) 1 241 (5.4) 227 (5.1) 271 

Southern Red 

Sea 

6 (5.2) 0(0) 24 15 

(23.4) 

0(0) 71 6 (7.3) 5 (6.1) 160 

Total 35,909 

(46.8) 

6,741 (8.8) 8,636 14,281 

(13.8) 

10,352 

(10) 

18,122 28,139 

(24.1) 

10,678 

(9.2) 

5,238 

 

4.4.2 Assembly of environmental and ecological covariates in Eritrea 

To model the risks of P. falciparum and P. vivax malaria transmission in time and space, a set of 

ecological and climatic covariates that affect the development and survival of the malaria 

parasite and malaria vector (Anopheles mosquito) therefore influencing transmission. The aim 
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was to select three to four covariates to avoid the problem of over-fitting where redundant 

covariates increase model complexity without changing model results significantly.  These 

included precipitation, minimum temperature, maximum temperature and mean temperature, the 

normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The 

objective was to assemble time-series variables rather than the long term means. The 

methodological innovation in Eritrea was to fit nonlinear functions to the covariates over time 

variables rather using a fixed linear prior effect. The combined effect of these covariates is likely 

to affect the spatio-temporal heterogeneity of malaria. Nonlinear functions such as the first-order 

random walks may improve estimating the seasonal trends (Blangiardo et al., 2013) and may 

also be useful in forecasting of cases (Sahu et al., 2013). 

 

The mean monthly temperature surfaces were downloaded from WorldClim at approximately 1 x 

1 km spatial resolution (Hijmans et al., 2005). The optimum temperature for the development of 

sporozoites, (the duration of sporogony) in mosquito, range between 25 
0
C to 30 

0
C. Higher 

temperatures above (>36 
0
C) result in mosquito mortality (Kirby and Lindsay, 2009) while 

colder temperatures (< 16 
0
C) impact on the parasite survival (Guerra et al., 2008).   Guerra et al. 

(2008) show P. falciparum can survive up to 16 
0
c and P. vivax ceases after 14 

0
C. Mean, 

maximum and minimum temperature grid surfaces were produced from long-term climate 

observations for the period 1950-2000, interpolated using smoothing spline algorithms (Hijmans 

et al., 2005). A Temperature Suitability Index (TSI) was derived from the gridded surfaces of 

temperature (Gething et al., 2011a). The development of TSI also included time series data on 

effect of temperature on vector survival and the duration of sporogony. A value of zero indicated 

inability of temperature within a localized area, pixel, to support vector survival. 
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Precipitation data were obtained from the Tropical Rainfall Measuring Mission sensor (TRMM 

3B43 product) that combines ground observations and satellite sensor data to generate a gridded 

rainfall surface at approximately 0.25
o
 x 0.25

o
 spatial resolution (Huffman and Bolvin, 2011, 

NASA, 2011). The TRMM satellite orbits at approximately 401.5 km altitude with an inclination 

of about 35
o
 to the equator (Huffman and Bolvin, 2011). The temporal resolution is 

approximately 90 minutes enabling a global coverage on 24 hour basis at varying spatial scale. 

TRMM 3B43 is a gridded mean monthly average product of precipitation rate in mmhr
-1

 

(Huffman, 1997). It is produced after multi-satellite precipitation analysis that combines both 

satellite and ground observations (from rain gauges). Rigorous data checks are applied to both 

satellite and ground level data. Majority of the global products are provided and archive at 3-

hourly interval with also monthly level products available after the application of TRMM multi-

satellite precipitation analysis (TMPA) (Huffman and Bolvin, 2011) 

 

Vegetation indices, namely the Normalised Difference Vegetation Index (NDVI) and the 

Enhanced Vegetation Index (EVI) were obtained from the MODerate-resolution Imaging 

Spectroradiometer (MODIS) sensor (Scharlemann et al., 2008) at 1 x 1 km spatial resolution. 

These indices are commonly used in mapping land cover changes (Martinez and Gilabert, 2009) 

and can quantifying changes in phenology.  In disease mapping, the association between the 

change in environmental factors, disease vector and humans is important in measuring risk (Hay 

et al., 1997). NDVI metric is affected by sensor calibration drift (Miura et al. 2006), atmospheric 

effects (Song et al. 2001), solar and satellite viewing angle, topography (Cuo et al. 2010) and 

shadow (Huemmrich 1996). EVI metric is usually preferred because of the reduced atmospheric 
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scatter since visible range spectrum is included in its construction (Wardlow and Egbert, 2010). 

NDVI is most sensitive to chlorophyll change before peak biomass cover in contrast to EVI 

which is more sensitive at seasonal peak (Huete et al., 2002). The two indices are highly 

correlated (Wardlow et al., 2007), complement each other and were both incorporated.  

 

4.4.3 Preliminary analysis of covariates and matching to malaria cases at health facility 

The covariates were matched to facility data in space and time. All the grid surfaces were 

resampled to a common resolution (cell size 0.008333
o
 x 0.008333

o
). A standardization 

procedure was applied prior to the analysis by cantering on the mean and dividing by the 

standard deviation. A selection procedure was implemented to achieve a minimum set of 

covariates that have a plausible relationship with malaria transmission. In addition, the selection 

was used to remove highly co-correlated covariates.  Pearson’s linear correlation coefficient was 

estimated for the pair of covariates. A minimum set was selected using the bestglm package in R 

based on the smallest value of the Bayesian information criterion (BICq) with a Bernoulli prior 

and smallest cross-validation error (McLeod and Xu, 2008, Hastie et al., 2009, Xu, 2010).  

Similar analysis and specifications are in chapter 2 and chapter 3.  

 

Preliminary analysis suggested a strong correlation amongst the temperature covariates (Pearson 

correlation > 0.75) and between NDVI and EVI (Pearson correlation = 0.97), which was 

expected. From regression analysis (Table 4.6 and Figure 4.7), precipitation, minimum 

temperature and maximum temperature were selected as best combination set of covariates for 

smoothing incidence of P. falciparum and P. vivax. EVI was included when modelling the slide 
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positivity rates. The parameter for the Bernoulli prior for P. falciparum was q (0, 7.31 and q (0, 

3.71) for P. vivax.  
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Figure 4.7 Covariate selection model based on cross validation error in Eritrea 

Generalised linear model fit showing the prediction curve (red) and the cross validation error (bars).  The estimate of 

standard error and prediction error was based on fivefold cross-validation (see chapter 2 section 2.3.4). Only one 

figure was displayed since the results were similar for P. falciparum and P. vivax. 

 

Table 4.6: Regression coefficients for the best combination variables selected in a generalized linear model for 

P. falciparum and P. vivax 

  P. falciparum   P. vivax 

Covariate Coefficient Std Error p-value   Coefficient Std Error p-value 

Precipitation -0.09 0.01 < 0.001   -0.07 0.01 < 0.001 

Maximum temperature 0.25 0.01 < 0.001 

 

0.32 0.01 < 0.001 

Minimum temperature 0.65 0.01 < 0.001   0.59 0.01 < 0.001 

 

4.4.4 Bayesian model specification for incidence and slide positivity rate 

4.4.4.1 Bayesian model specification for incidence 

Two hierarchical Bayesian spatio-temporal Poisson conditional autoregressive (CAR) models for 

P. falciparum and P. vivax were fitted separately to smooth monthly malaria incidence at the 

district level. The number of cases at time j , (
ijy ) was assumed to follow a Poisson distribution 

with expectation
ij . 
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The parameter was transformed such that:  

 1,loglog~log  abaN  

for large a  Gaussiangamma log . The projected denominator population varied by year based on 

the population growth rate, but not by month. The linear predictor was modelled additively as  

  )()()(loglog
1

)( i

n

ijkkijijijij fzfgeoftfE  







   

with  as the intercept and 
iE is the expected number of cases adjusted for utilisation and rate of 

reporting. The likelihood given n dii .. samples can be written as 
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The posterior distribution was based on approximating loggamma distribution is evaluated as 
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The additional )(f terms in the linear predictor were used to relax the linear assumptions. For 

instance, a seasonal (time) term was included with length 36 months 

( )0005.0,1(~)( LogGammatf ). Nonlinear smoothing functions of first order random walk 

priors were used for the covariate effects with successive increments )/1,0(~ Nx  with 

 being the precision parameter (Fahrmeir and Kneib, 2009). The unstructured random effects at 

facility, district and province level were assumed to be independently distributed )..( dii  with zero 

mean and large variance (10,000). To capture the spatial effect  geof ij , a conditional 

autoregressive prior was used (Besag et al., 1991) with spatial dependence specified using an 
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adjacency matrix W. The weights were assigned as W = 1 for two neighbouring regions or W = 0 

otherwise. Residuals were examined to assess for autocorrelation. 

 

The model was assessed using a predictive posterior distribution of the missing data points i.e. 

imputed as NA. For estimation of an unknown data point py  given other data, the predictive 

posterior density )|( pp yyP 
 is given by: 

ppppp dyyyyyP  )|(),|()|(    

This method was proposed by (Gneiting and Raftery, 2007) and can be used to obtain model 

scoring rules that can be used to assess model calibration (i.e. consistency between estimates and 

observations). The implemented scoring rules were the standard error score (SES), the ranked 

probabilities score (RPS) and the Dawid-Sebastiani score (DSS) computed as:  

2
)(),( PyyPSES   

 

     22 /log
2

1
),( ppyyPDSS    

 

  observedyYPyPLogS  log),(  

 

    
2

0

1),( 





k

kykYPyPRPS  

where P  is the predictive posterior distribution with mean p  and standard deviation p  and y  is 

the observed count (Gneiting and Raftery, 2007). Note that the SES is analogous to mean square 

error 
2

)( y  with main difference being reference to the predictive posterior distribution. Thus, 

SES varies depending on the local mean while the other scores (e.g the RPS) are dependent on 

the whole predictive posterior distribution. The DSS is an alternative measure of predictive 

model choice criterion (Gelfand and Ghosh, 1998).  
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Pearson correlation was used to compare the predicted values to the observed and scatter plots 

produced for visual display. The correlation was based on 26 facilities selected randomly in 

Eritrea and residuals based on this hold-out set were checked for spatial and temporal 

autocorrelation. The leave-one-out cross validation score using the conditional predictive 

ordinate (CPO) was also evaluated.  

4.4.4.2 Bayesian model specification for slide positivity rate 

The model specification of slide positivity rate was similar to the one in chapter 3 section 3.5.4.A 

binomial outcome was fitted for P. falciparum and P. vivax with  ),(~| iiii pnBinomialpy  with 

shape dependent on   yny 
 1  for 

    yny

y

n
yf











  1|  

 with a logit link function )}exp(1/){exp()(  p .  The hierarchical model was 

decomposed into the observations with measurement error term,  

TtnitststsZ iii ,....1,,...1),(),(),(                            

where ),( tsi represented the underlying spatio-temporal biological process with an error term 

),0(~),( 2
..

n

dii

i INts   with prior )0005.0,1(~2 IG . A seasonal term was included in the model 

through the first order auto-regressive process ),( 1ii tsY  for 1||   (Sahu and Bakar, 2012). 

The linear predictor was modelled as:  

),(),(),( 1 tswtsxYts iiti     

where T

ipii tsxtsxtsx )},()........,({),( 1 are covariates with   coefficients. The first term of ),( 1ii tsY  

is derived from stationary distribution   22 1/,0  wN . The term  tsw i ,  was modelled as a 
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separable covariance function using Kronecker product )( ts QQQ  . Prior range for matérn 

function was set to 1/5 of the spatial domain. Nonlinear smoothing functions of first order 

random walk priors were used for the covariate effects similar to incidence analysis. The 

posterior can be written as: 

),(~,,,|),(  GMRFts tsi  

The Gaussian Markov Random Field (GMRF) defined using Stochastic Partial Differential 

Equations (SPDE) evaluated using finite element methods (Lindgren et al., 2011). The region of 

study was expanded by 100 km at the border to reduce edge effects associated with Neumann 

boundaries in SPDE (Cameletti et al., 2012, Lindgren, 2013).   

 

For the geostatistical model, sensitivity analyses were performed using the root mean square 

error (RMSE), the mean error and the absolute mean error (MAE) that summarised the closeness 

of validation set data to observed values. The nominal model coverage of 95% credible intervals 

and spatial structure of residuals was also assessed based on the validation set. MAE and the 

R.M.S.E are given by: 




 
n

i

xZxZ
n

MAE
1

)()(
1

 









 




n

i

xZxZ
n

RMSE
1

2))()((
1

 

4.4.5 Results  

4.4.5.1 Bayesian CAR model for incidence results and validation 

The mean error based on a validation set (n=120) in 10 districts selected randomly was 2.1 cases 

per 1000 population for the P. falciparum compared to 1.8 cases per 1000 population for P. vivax 
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which suggests a tendency to over-estimate by 1.9 case per 1000 population. Figure 4.8 shows 

scatter plots of crude and the estimated incidence per 1000 population. The Pearson correlation 

between the crude and the predicted incidence was 0.77 for P. falciparum and 0.68 for P. vivax. 

Residual analysis indicated that incorporation of environmental and spatial effects was useful in 

explaining most of spatial variation in the model with no amount of spatial or temporal 

autocorrelation evident in the residuals (Figure 4.9). The variance of the spatial random effect 

was reduced to 27.0% for P. falciparum and 23.3% for P. vivax.  
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Figure 4.8: Comparison of observed and estimated incidence 

Scatter plot of the observed crude incidence compared to the estimated incidence from the spatio-temporal Bayesian 

Poisson model for (a) P. falciparum and (b) P. vivax. 

 

Table 4.7 shows internal model validation statics. Cross-validation was conducted based on CPO 

and none of the data points reported a CPO value of 1 (fail). No data values for the fitted model 

failed the CPO test which is likely to happen if the approximation of the latent Gaussian Field 

(GF) is less accurate (Czado et al., 2009). The standard error score for the mean component for 

P. vivax model was smaller than that for P. falciparum. There were minimal difference in the 

DSS used to assess model calibration, perhaps since same model was applied to the two parasites 

with similar distribution in space and time. The same applied to the log-score and the ranked 
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probability score (RPS) which can be used for model comparison. A smaller log-score indicate a 

better model fit or calibration.  
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Figure 4.9: Semi-variogram plots of residuals for incidence analysis in Eritrea 

Semi-variogram showing residual autocorrelation in (a) the spatial and (b) the temporal domain for P. falciparum. 

The plots for P. vivax were very similar to the P. falciparum plots and not diplayed. The plots suggest insignificant 

autocorrelation was left after running the model. The y-axis is the semi variance while the x-axis is distance in 

degree between pairs. The residuals were extracted for validation set data. 

 

Table 4.7: Model validation results for incidence analysis. 

The implemented scoring rules squared error score (SES), mean logarithmic sore (logS), the ranked probability 

score (RPS) and the Dawid-Sebastiani score (DSS) for P. falciparum and P. vivax malaria incidence. The scores are 

obtained by averaging (
ij ) the scores of one-step-ahead predictions in six regions (n=60) as well as calculated 

based on the seasonal component 
Model Component SES DSS Log score RPS 

P. falciparum ij  
1.36 0.66 1.16 0.00 

 

  1.22 0.60 1.12 0.01 

P. vivax ij  
1.18 0.56 1.07 0.52 

    1.99 0.58 1.10 0.56 

 

The DIC for the P. falciparum model was 13372.54 and for the P. vivax model was 11945.12, 

and both had a similar number of effective parameters (249.46 and 244.27, respectively) (Table 
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4.8). The posterior summaries of the parameters representing the fixed effects and random 

effects for P. falciparum and P. vivax are listed in Table 4.8.  

Table 4.8: Posterior estimates of the parameters of Bayesian spatio-temporal Poisson model with 95% 

credible interval 

Variable 

Plasmodium falciparum Mean (95% 

Crl) Plasmodium vivax Mean 95% Crl 

District random effect 7.12 (5.53 - 8.58) 7.17 (5.38 - 8.62) 

Province random effect 2.35 (1.15 - 4.16) 2.37 (1.36 - 3.85) 

Facility random effect 1.05 (0.82 - 1.29) 0.90 (0.66 - 1.12) 

Spatial CAR effect 0.96 (0.04 - 1.79) 1.02 (0.24 - 1.84) 

Seasonal component 0.12 (0.02 - 0.36) 0.07 (0.01 - 0.20) 

Maximum temperature 9.36 (7.80 - 10.83) 9.42 (7.69 - 10.89) 

Minimum temperature 9.46 (7.81 - 10.89) 9.40 (7.78 - 10.86) 

Precipitation 9.42 (7.83 - 10.87) 9.50 (7.82 - 10.92) 

Variance of CAR effect 0.27 0.23 

DIC 13372.54 11945.12 

PD 249.26 244.27 

SES 0.53 0.65 

Crl: Bayesian credible interval, CAR: Conditional autoregressive, DIC: Deviance Information Criterion, PD: Effective parameters 

4.4.5.1 The seasonal trends in covariates based on the fitted nonlinear functions 

Covariates were associated positively with estimated incidence. The coefficients of temperature 

and precipitation were very similar compared to the coefficients between the random effects at 

province, district and facility level. P. falciparum constituted approximately 56.6% of the 

estimated malaria burden for the three years while 43.4% were P. vivax. Figure 4.10 and Figure 

4.11 shows the non-linear effects on temperature, seasonality and rainfall when used in 

modelling incidence of P. falciparum and P. vivax respectively. Similar trends were observed in 

the slide positivity analysis using the same specification. There was a strong seasonal effect 

which peaked in October for P. falciparum and P. vivax. High temperature (> 40
0
C) and rainfall 

(>300mm) had a negative effect on incidence which was more evident from the P. vivax model 

compared to P. falciparum. For P. falciparum the effect of rainfall seemed to plateau at levels 

exceeding 200mm. The non linear pattern is not surprising given that high temperature is 

associated with mosquito mortality and a high amount of rainfall may lead to larvae wash out 

(Paaijmans et al., 2007, Guerra et al., 2008, Guerra et al., 2010).  
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A B C

 

Figure 4.10: Non-linear effect of covariates on P. falciparum 

The effect of temperature, seasonality and rainfall on P. falciparum incidence (solid center line) with 95% credible 

interval (shaded area and bars on the seasonal plot). 

 

A B C

 
Figure 4.11: Non-linear effect of covariates on P. vivax 

The effect of temperature, seasonality and rainfall on P. vivax (solid center line) with 95% credible interval (shaded 

area and bars on the seasonal plot). 

 

4.4.5.2 The incidence of P. falciparum and P. vivax in Eritrea  

Figure 4.12 (page 234) and Figure 4.13 (Page 235) shows the monthly maps of mean incidence 

of P. falciparum and P. vivax for the study period. P. falciparum constituted approximately 

56.6% of the estimated malaria burden for the three years while 43.4% were P. vivax. There was 

a strong seasonal effect in the modelled incidence of P. falciparum and P. vivax. For both 

parasites, incidence peaked in September and October. Gash Barka region showed the most risk 

on average followed by Debub, while the Southern Red Sea region had the lowest estimated risk. 

The largest number of cases of P. falciparum was 6.1 cases per 1000 population in October 2012 
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compared to 5.6 cases per 1000 population for P. vivax in 2010. The correlation between the 

mean monthly incidence of P. falciparum and P. vivax was 0.69 (Pearson correlation).  

 
Figure 4.12: Spatio-temporal maps of incidence of P. falciparum per 1000 population in Eritrea 

Mean monthly maps of monthly incidence of P. falciparum per 1000 population in Eritrea using a Bayesian spatio-

temporal Poisson model. Districts with low risk are classified as < 5 cases per 1000 population) and moderate risk 

with > 5 cases per 1000 population.  
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Figure 4.13: Spatio-temporal maps of incidence of P. vivax per 1000 population in Eritrea 

Mean monthly maps of incidence of P. vivax per 1000 population in Eritrea using a Bayesian spatio-temporal 

Poisson model. P. vivax risk was lower compared to P. falciparum although peaked at a similar time to P. 

falciparum. Districts with low risk are classified as < 5 cases per 1000 population) and moderate risk with > 5 cases 

per 1000 population 

 

Figure 4.14 shows the annualized maps of P. falciparum incidence per 1000 population while 

Figure 4.13 (b) represents the incidence of P. vivax over the three years (2010-2012). The mean 

annual estimates for P. falciparum were 3.60 (95% Crl 2.27 - 5.44) cases per 1000 population in 

2010, 2.99 (1.90 - 4.49) cases per 1000 population in 2011 and 3.43 (2.17 - 5.16) cases per 1000 

population in 2012. For P. vivax the annual mean incidence was 2.39 (1.44 - 3.72) cases per 

1000 population in 2010, 2.77 (1.67 - 4.32) cases per 1000 population in 2011 and 2.53 (1.53 - 

3.93) cases per 1000 population in 2012.  
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Figure 4.14: Annualised incidence of P. falciparum and P. vivax per 1000 population 

Maps of incidence of by year (2012 – 2013) for (a) for P. falciparum and (b) for P. vivax. Overall, most risk was in 

Garsh Barka and Debub. The annual mean incidence of P. vivax did not exceed 5 cases per 1000 population in any 

Sub-Zoba. 

 

Figure 4.15 (below, Page 236) show a comparison between the modelled incidence per 1000 

population with the mean parasite prevalence modelled at community level (Noor et al., 2014).  

There was a positive correlation between incidence and parasite rate (Pearson correlation, 0.7). 

 
Figure 4.15: Comparison of incidence with community parasite prevalence 
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Scatter plot of P. falciparum parasite prevalence (rate) at community level with the modelled incidence per 1000 

population (Pearson correlation =0.7)  

4.4.5.3 The modelled slide positivity rates results 

Table 4.9 lists the Mean Absolute Error (MAE) and the RMSE. The MAE for P. falciparum and 

for P. vivax was 0.59 and 0.50, respectively. Pearson correlation coefficient was greater than 0.6 

in both modelling framework. The 95% nominal coverage for P. falciparum was 96.3% and 

98.7% for P. vivax showing a tendency to slightly over predict at 95%. The spatial dependence 

as define by the variogram range parameter was also different for both parasites, approximately 

10 km for P. falciparum. Only minimum spatial structure was left in the residuals after model fit 

(Figure 4.16).  

Table 4.9: Model of slide positivity rate in Eritrea. 

Bayesian model comparison based on separable covariance function (Product) (M1) and no-separable form 

(Product-sum) (M2) for P. falciparum (Pf) and P. vivax (Pv). 

Model DIC PD
1
 MAE R.M.S.E 

Probability of 

prediction interval 

(%)
2
 

Model Range in 

km [95% Crl] Correlation 

Pf 6892.50 122.56 0.59 0.95 96.33 9.95 [4.27 - 18.23] 0.62 

Pv 6564.02 92.47 0.50 0.79 98.68 8.42 [3.58 - 13.95] 0.64 

1. PD  represent the effective number of parameters that represent model complexity 

2. The nominal probability of prediction is 95%  
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Figure 4.16: Semi-variogram of residuals of slide positivity rate 
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Semivariogram plots of the residuals in spatial domain for P. falciparum (a) and P. vivax (b) based on the 

predictions on the hold out set. The x-axis shows distance in degrees latitude and longitude (decimal degrees) whiles 

the y-axis shows semi-variance.  

 

Table 4.10 shows the posterior distributions of the fixed effects along with Bayesian credible 

intervals and nominal range. None of the fixed effects covariates was a significant predictor of P. 

falciparum at 95%. For P. vivax, only EVI was significant marginally at 95% credible interval. 

All other random effects and the intercept were significant. 

Table 4.10: Posterior distribution of parameters of slide positivity rate. 

Distribution of posterior estimates (mean, standard deviation and quantiles) of the fixed components and random 

effects 
Model Parameter Mean SD

1
 5% 50% 95% 

P. falciparum Intercept -1.13 0.3 -1.62 -1.12 -0.67 

Minimum temperature -0.1 0.11 -0.28 -0.1 0.08 

Maximum temperature -0.07 0.14 -0.31 -0.07 0.16 

Precipitation 0.03 0.03 -0.03 0.03 0.08 

Enhanced vegetation Index 0.02 0.04 -0.05 0.02 0.09 

Marginal variance (σw
2) 5.25 4.41 1.18 3.94 13.7 

Model Range (ф) 9.95 4.38 4.27 9.18 18.23 

P. vivax Intercept -1.29 0.20 -1.60 -1.29 -0.99 

Minimum temperature -0.18 0.14 -0.42 -0.18 0.05 

Maximum temperature 0.03 0.11 -0.15 0.03 0.22 

Precipitation 0.01 0.03 -0.04 0.01 0.07 

Enhanced vegetation Index -0.06 0.04 -0.13 -0.06 -0.00 

Marginal variance (σw
2) 4.23 2.65 1.52 3.49 9.39 

Model Range (ф) 8.42 3.19 3.58 8.21 13.95 

1. SD: Standard deviation 

 

Figure 4.17 shows predicted map of slide positivity rate for 2012 at 1 x 1 km weighted by the 

predicted probability of health facility use for fever treatment. Panel A represents: the 

continuous; binned (six classes <1.0; 1 -< 5.0; 5.0 -< 10.0; 10.0 -< 15.0; 15 -< 20.0; and >20.0); 

and the standard deviation maps of P. falciparum while paned B is for P. vivax. The mean slide 

positivity by region is shown in Table 4.11. For P. falciparum mean slide positivity was 3.8% 

(range 12.8%) while for P. vivax the mean was 3.3% (range 25.5 %). Highest positivity rates 

were predicted in Maekel, Garsh Barka and Debub. Overall slide positivity rate were less than 

5% in most parts of the country and less than 1% in some areas of Anseba, Northern Red Sea and 
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the Southern Red Sea. The highest uncertainties were in regions with no facilities and with low 

reporting rates.  

 

Table 4.11: Slide positivity rate by region in Eritrea. 

Summary (in percentage) of the mean predicted slide positivity rate (SPR) for P. falciparum and P. vivax by region 

  P. falciparum   P. vivax 

Region Mean SD Minimum Maximum Range   Mean SD Minimum Maximum Range 

Anseba 2.2 2.0 0.1 10.4 10.3  1.6 1.7 0.0 10.8 10.7 

Debub 4.9 2.3 0.5 16.1 15.6  5.0 3.2 0.7 29.8 29.1 

Gash Barka 5.0 2.6 0.6 23.2 22.7  3.1 3.4 0.4 81.1 80.7 

Maekel 6.0 3.1 2.8 14.0 11.3  6.8 1.9 2.0 14.4 12.4 

Northern Red Sea 2.1 1.4 0.1 11.0 10.9  1.7 1.2 0.1 14.8 14.7 

Southern Red Sea 2.5 1.4 0.3 6.3 6.0   1.7 1.0 0.2 5.6 5.4 

Average 3.8 2.1 0.7 13.5 12.8  3.3 2.1 0.6 26.1 25.5 

 

The comparison between the modelled slide positivity rates and community-level parasite 

prevalence is shown in Figure 4.18.  In general there was a positive correlation similar to 

incidence comparison with community parasite prevalence (Pearson correlation =0.6). 

 

 
Figure 4.17: Posterior mean predictions of slide positivity rate in Eritrea 
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Bayesian Posterior mean predictions at 1km by 1 km of slide positivity rate (SPR) map of (a) P. falciparum and (b) 

P. vivax. The first map is continuous and second binned in five classes. The last map is the standard deviation 

showing some artefacts especially for areas with no or sparse data points.  
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Figure 4.18: Comparison of predicted slide positivity rate and community-level parasite prevalence 

Scatter plot of P. falciparum parasite prevalence (rate) at community level with the mean slide positivity rate at 

district level (Pearson correlation = 0.6).  

4.4.6 Assessing the population at risk in Eritrea using incidence 

The burden of both parasites in general population was assessed by comparing calculation 

number of cases in a Zoba based on estimated incidence.  
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Table 4.12 and Table 4.13 shows the estimated clinical burden for P. falciparum and P. vivax. The 

most burdened region was Gash Barka where just over 10,000 cases in the overall population 

were estimated in 2010 and 2012 for P. falciparum compared to 6,866 and 7,764 estimated for P. 

vivax, respectively. The region with the second highest burden was Debub. The Southern Red 

Sea had the smallest number of estimated malaria cases (less than 100 throughout the three 

years). 
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Table 4.12: Estimated clinical burden of P. falciparum based on incidence. 

Summary of clinical burden of P. falciparum in Eritrea by year based on the mean incidence per 1000 population.  

Region 

Estimated 

Population 

2010 

Crude Pf 

incidence 

2010 

Pf incidence 

2010 Mean 

(95% Crl) 

Estimated 

2010 Pf 

clinical 

burden 

Estimated 

Population 

2011 

Crud

e Pf 

incide

nce 

2011 

Pf incidence 

2011 Mean 

(95% Crl) 

Estimate

d 2011 Pf 

clinical 

burden 

Estimated 

Populatio

n 2012 

Crude 

Pf 

incidenc

e 2012 

Pf incidence 

2012 Mean 

(95% Crl) 

Estimate

d 2012 Pf 

clinical 

burden 

Anseba 689,385 9.1 

3.7 (2.29 - 

5.63) 2,551 711,802 6.9 3.11 (1.93 - 4.7) 2,214 734,948 11.5 

3.54 (2.19 - 

5.36) 2,602 

Debub 1,258,464 20.1 

5.19 (3.44 - 

7.52) 6,531 1,299,386 7.7 

4.32 (2.88 - 

6.22) 5,613 1,341,639 12.6 

4.94 (3.29 - 

7.14) 6,628 

Gash Barka 1,216,679 79.9 

8.46 (5.63 - 

12.39) 10,293 1,256,242 27.5 

6.93 (4.66 - 

10.04) 8,706 1,297,092 59.2 

8.02 (5.36 - 

11.7) 10,403 

Maekel 467,642 2.0 

2.45 (1.4 - 

3.95) 1,146 482,849 2.0 

2.08 (1.18 - 

3.32) 1,004 498,550 2.2 

2.35 (1.34 - 

3.76) 1,172 

Northern Red 

Sea 1,359,812 1.8 

1.33 (0.7 - 

2.23) 1,809 1,404,030 1.7 1.14 (0.6 - 1.9) 1,601 1,449,685 1.3 

1.28 (0.67 - 

2.14) 1,856 

Southern Red 

Sea 205,609 0.3 

0.45 (0.16 - 

0.93) 93 212,295 0.8 

0.38 (0.14 - 

0.79) 81 219,198 0.3 

0.43 (0.15 - 

0.89) 94 

Total 5,197,591 18.9 

3.60 (2.27 - 

5.44) 18,711 5,366,603 7.8 

2.99 (1.90 - 

4.49) 16,046 5,541,112 14.5 

3.43 (2.17 - 

5.16) 19,006 

Crl: Bayesian credible interval, Pf: Plasmodium falciparum 

 

Table 4.13: Estimated clinical burden of P. vivax based on incidence. 

Summary of clinical burden of P. vivax in Eritrea by year based on the mean incidence per 1000 population. 

Region 

Estimated 

Populatio

n 2010 

Crude 

Pv 

incidenc

e 2010 

Pv incidence 

2010 Mean 

(95% Crl) 

Estimate

d 2010 Pv 

burden 

Estimated 

Populatio

n 2011 

Crude 

Pv 

incidenc

e 2011 

Pv incidence 

2011 Mean 

(95% Crl) 

Estimate

d 2011 Pv 

burden 

Estimated 

Populatio

n 2012 

Crude 

Pv 

incidenc

e 2012 

Pv incidence 

2012 Mean 

(95% Crl) 

Estimate

d 2012 Pv 

burden 

Anseba 689,385 3.7 

2.26 (1.32 - 

3.59) 1,558 711,802 5.2 2.6 (1.51 - 4.13) 1,851 734,948 5.0 

2.39 (1.39 - 

3.78) 1,757 

Debub 1,258,464 6.5 

3.39 (2.17 - 

5.01) 4,266 1,299,386 7.8 

3.92 (2.51 - 

5.81) 5,094 1,341,639 6.6 3.58 (2.3 - 5.29) 4,803 

Gash Barka 1,216,679 8.7 5.64 (3.66 - 8.4) 6,862 1,256,242 16.0 6.6 (4.27 - 9.88) 8,291 1,297,092 17.7 5.99 (3.89 - 8.9) 7,770 

Maekel 467,642 1.0 

1.85 (0.98 - 

3.11) 865 482,849 1.9 

2.12 (1.13 - 

3.58) 1,024 498,550 2.0 

1.95 (1.04 - 

3.27) 972 

Northern Red 

Sea 1,359,812 0.8 

0.89 (0.43 - 

1.57) 1,210 1,404,030 0.9 

1.01 (0.49 - 

1.79) 1,418 1,449,685 1.3 

0.93 (0.45 - 

1.65) 1,348 

Southern Red 

Sea 205,609 0.0 

0.31 (0.11 - 

0.66) 64 212,295 0.0 

0.36 (0.12 - 

0.75) 76 219,198 0.3 0.33 (0.11 - 0.7) 72 

Total 5,197,591 3.4 

2.39 (1.44 - 

3.72) 12,422 5,366,603 5.3 

2.77 (1.67 - 

4.32) 14,865 5,541,112 5.5 

2.53 (1.53 - 

3.93) 14,019 

Crl: Bayesian credible interval; Pv: Plasmodium vivax 
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4.5 Discussion on incidence and slide positivity rate in Eritrea 

The objective of this study was to estimate the burden of P. falciparum and P. vivax in Eritrea 

based on the HMIS data reported between 2010 and 2012. The results from this study support 

current efforts to move the control programme to pre-elimination given the overall low incidence 

for P. falciparum (3.0 cases per 1000 population) and 2.3 cases per 1000 population for P. vivax. 

P. falciparum constituted approximately 56.6% of the total estimated case burden on average for 

the three year period. Several other findings emerge from this study. First, there was a clear 

seasonal pattern of transmission with a peak in incidence in September and October. There was 

little evidence in support of a second malaria peak in January or for the eastern districts in Debub 

and Northern Red Sea as suggested by Ceccato et al. (2007). Although incidence was highest in 

Gash Barka and in Debub, the slide positivity rates were just higher in Maekel. Low incidence, 

similar to the slide positivity rate, was in the coastal regions bordering the Red Sea in western 

parts of the country.  

4.5.1 Implication for malaria control and elimination in Eritrea 

The spatial distribution of incidence and the slide positivity rate of P. falciparum reflects broadly 

the recent maps of prevalence from community datasets with higher rates in the Gash Barka and 

Debub regions while the North Red Sea and Southern Red Sea exhibited low prevalence (Noor et 

al., 2014). P. falciparum remains the main parasite and constitutes approximately 56% of the 

malaria burden in Eritrea.   In other low transmission countries outside Sub-Saharan Africa 

where the two parasites are endemic, such as Latin America and south and south east Asia, P. 

vivax dominates (Gething et al., 2012) due to its biological characteristics that include a dormant 

liver stage (hypnozoite) that usually causes clinical relapses (Mueller et al., 2009, White, 2011). 

The challenge for NMCP in Eritrea as the burden of malaria reduces towards the <1 case per 
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1000 population threshold is likely to be the management of P. vivax infections. It remains a 

challenge to detect vivax malaria at the liver stage which may form a reservoir of infections and 

there is a likelihood of missing some infections when routine diagnostics such as microscopy and 

RDTs are used (Mueller et al., 2009).  It is also not straightforward to prescribe primaquine, the 

recommended drug for clearing liver-stage infections, at higher doses due to a 4% glucose-6-

phosphate dehydrogenase deficiency (G6PDd) prevalence in Eritrea (Howes et al., 2012, 

Domingo et al., 2013) with lack of routine individual testing for this blood disorder at health 

facility level. Additional challenges exist for vulnerable groups such as pregnant women. 

Appropriate control of P. vivax is likely to be prevention of mosquito inoculations in addition to 

resolving the relapsing infections. Low doses of primaquine have been recommended for P. 

falciparum in low transmission areas (White et al., 2012) with trials starting to emerge on the 

performance of this drug (Steketee and ter Kuile, 2014). 

 

Although there is a suggested lower impact of ITNs on P. vivax when compared to P. falciparum 

(Bockarie and Dagoro, 2006), ITNs in general had the greatest impact on reducing clinical 

malaria episodes in Eritrea for both parasites by reducing human – mosquito contact, in addition 

to other control measures such as larvae source management, change in antimalarial drug policy, 

and increasing awareness on malaria through public campaigns advocacy (East Africa Roll Back 

Malaria Network (EARN), 2013). ITNs are delivered generally through health facilities in 

Eritrea in addition to other mass campaigns. Previous findings suggest access to health facilities 

plays a role in ownership of ITNs (Macintyre et al., 2006). There was one Long-Lasting 

Insecticidal Net (LLIN) for every 0.5 individuals in a household from the 2012 MIS (n=1 818) 

which is lower that the WHO recommendation of one LLIN per 1.8 people (World Health 
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Organization, 2012b). ITN use in children under the age of five years was high (60%), but use in 

all age-cohorts was somewhat lower at 55%. From the analysis of fever treatment patterns based 

on the MIS, utilisation declined significantly after 180 minutes, and at an increasing travel times 

from the health facility. The estimated case loads for the three years suggest a need to 

consolidate gains in the last 10 years and identify endemic districts to guide interventions to 

achieve pre-elimination. Interventions may include, but not limited to: raising awareness on the 

use of ITNs at appropriate time of the year lagged with seasonal trends observed here, 

conducting bed-net re-treatment, and selective targeting of IRS lagged with malaria seasonality. 

The GFTAM remains the main source of funding for malaria control and supports the universal 

coverage efforts. Increasing coverage in key sub-zobas and improving net use during the 

transmission season may be combined with mosquito net retreatment (for ITNs and LLINs older 

than 3 years). Figure 2(a) and Figure 2(b) suggest where and when this could be most 

appropriate.  

 

Previous studies also suggest that the seasonal peaks identified in Eritrea resemble those 

observed in the neighbouring countries (Paulander et al., 2009, van den Bogaart et al., 2013). In 

addition, the recent malaria programme performance review suggested the need for Eritrea to 

implement cross-border collaboration with neighbouring countries (East Africa Roll Back 

Malaria Network (EARN), 2013). The clear identification of high malaria incidence in Debub 

and Garsh Barka supports these initiatives with Djibouti, Ethiopia and Sudan since imported 

infection may pose a threat to the long-term goal of elimination (Le Menach et al., 2011). The 

low malaria incidence overall supports current strategies for pre-elimination starting potentially 

with the Southern Red Sea bordering Djibouti.  
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4.5.2 Slide positivity rates for 2012 and health facility utilisation 

The mean slide positivity rate in 2012 was less than 5% for both P. falciparum and P. vivax. A 

comparison of the SPR at district level with parasite prevalence modelled from community level 

data showed a positive correlation. Less than 5% is a threshold for pre-elimination (World 

Health Organization, 2007a). Slide positivity reflects rates amongst population using health 

facilities and the correlation will be higher in areas where access and utilisation (of the public 

sector) is high. In Eritrea, approximately 80% of the population was estimated to be within a 

public health facility catchment and 61% of estimated febrile cases were likely to present at these 

facilities for treatment. Elsewhere, in China and Uganda, slide positivity rate was shown to be a 

strong covariate in estimation of incidence (Jensen et al., 2009, Bi et al., 2012) although the 

results do not distinguish between the indigenous infection within the district and the imported 

cases.  

 

The relationship between slide positivity rate and incidence may not be linear as suggested by 

Jensen et al. (2009). This because the denominator, number examined, for slide positivity is 

more sensitive compared to incidence measured in the overall population. Changes in incidence 

may be more informative compared to relative changes in slide positivity rates. Nonetheless, the 

threshold levels estimated in this study provide thresholds for pre-elimination in Eritrea. 

 

4.5.3 Modelling gains for malaria incidence and slide positivity analysis in Eritrea 

The analysis here introduced nonlinear effects in specifying priors for the covariates rather than 

an assumption of fixed linear priors. Such a specification may have benefitted the extraction of 
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seasonal trends. In terms of crude incidence comparison, there was a wider difference between 

the crude estimates compared to smooth estimates by year for P. falciparum (Table 4.12). For P. 

vivax the difference were less (Table 4.13). First, the covariates were important in modelling 

incidence in data points with missing data (Table 4.8 which also provides the 95% confidence 

intervals). Thus, the spatial and temporal smoothing as discussed in Namibia and Afghanistan 

produce more reliable estimates compared to crude estimates.  

 

There was a strong nonlinear effect in precipitation and temperature trends (Figure 4.10 and 

Figure 4.11) which suggest that the assumptions of linearity in Namibia or Afghanistan case 

studies may not be true. Previous research has already illustrated the important of these 

covariates in driving transmission (Noor et al., 2014, Weiss et al., 2015). However, the ‘delayed 

or lagged effect’ of these covariates on transmission is not well established and may not apply to 

all the settings. Some studies have shown a time-series decomposition of these climatic variables 

may provide useful insights into disease anomalies (Wardrop et al., 2013) and the result here 

suggest more research is required to further understand the role of covariates as drivers of 

malaria transmission.  Since the effective threshold for temperature and rainfall on malaria 

transmission is well established, (Paaijmans et al., 2007, Guerra et al., 2008, Guerra et al., 2010) 

the non-linear trends maybe useful in prospective modelling of epidemics in low malaria 

transmission.  

 

4.5.4 Limitations 

The analysis presented here was limited to the three years of available time-series data and can 

potentially be extended by inclusion of longer space-time data sets. However, the data used here 
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were abundant spatially and within the temporal extent studied and allowed us to reveal a clear 

seasonal pattern that is likely to be useful in directing interventions. Secondly, there could be 

biases introduced due to the type of diagnosis at the facility level by using RDT or microscopy 

with varying sensitivities (WHO-FIND, 2009). This relates to a suggested higher slide positivity 

rate when using RDTs in low transmission settings, but also to concern surrounding the quality 

of microscopy in routine data (Hopkins et al., 2013). However, health facility data used in this 

analysis represent parasite examination from febrile cases and, therefore, the likelihood of 

detecting infection is higher significantly. In addition, cases presenting at the health facility are 

drawn from multiple villages within the health facility catchment area. This increases geographic 

representativeness of estimated malaria burden compared to community-based cluster surveys 

where estimates are usually based on a single cluster sample. The MIS was used to adjust for 

fever burden seen in the public sector. In general, we assumed a single fever episode, and 

treatment-seeking at other times of year followed the pattern in the MIS implementation months 

of September to October.  

 

4.6 Conclusion 

In conclusion, we demonstrated the utility of routine HMIS data for malaria burden estimation in 

a low transmission setting and provide seasonal profile for P. falciparum and P. vivax in Eritrea. 

These maps are important as the NMCP aims for pre-elimination. HMIS has advantages of data 

being collected in an ongoing manner and can provide reliable assessment of monthly variability 

of symptomatic cases presenting at health facilities. The method used here demonstrates how this 

data can be used for estimation; quantify uncertainty around estimations while at same time 

adjusting for facility utilisation. The results from this analysis contribute to the characterization 
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and understanding of the epidemiology of P. falciparum and P. vivax malaria in Eritrea. The 

modelled distribution of incidence presented here suggests that a concerted effort is required in 

Debub and Garsh Barka in addition to implementing cross-border collaboration with Ethiopia 

and Sudan. The spatial distributions of P. vivax revealed here through Bayesian statistical 

modelling will present a challenge for pre-elimination and elimination especially when it comes 

to clearing the reservoir infections at the liver stage. Lastly, routine HMIS can be used to identify 

areas where active case detection can be targeted. However, the interaction of both species in co-

distributed sub-zobas remains unexplored and future research should focus on this in addition to 

screening asymptomatic infections at community level. 
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CHAPTER 5: Discussion and Conclusion 
Discussion on advances in mapping malaria in low transmission 

using HMIS 
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5.1 Summary 

In the last decade, there has been a substantial decline in malaria burden due to increased 

coverage of interventions. However, variation in the burden of disease exists nationally and at a 

sub-national level. A recent publication showed that 57% of the population in Africa live in areas 

with stable transmission (Noor et al., 2014). In some countries, transmission has declined to a 

level requiring a re-orientation of the malaria programme from that focusing on universal 

insecticide-treated bednet coverage and control to geographic targeting of interventions. There is 

also renewed optimism for malaria elimination following the 2008 global call supported by the 

World Health Organization (World health Organizastion, 2008, Mendis et al., 2009) and 36 

countries are now aiming for elimination (Global Health Group, 2011). These include: Nine 

countries in Latin America and the Caribbean (Argentina, Belize, Costa Rica, Dominican 

Republic, El Salvador, Mexico, Nicaragua, Panama, Paraguay); 11 countries in the Asia-Pacific 

region (Bhutan, China, Democratic People’s Republic of Korea, Malaysia, Philippines, Republic 

of Korea, Solomon Islands, Sri Lanka, Thailand, Vanuatu, Vietnam); northern Africa (Algeria), 

Europe (Azerbaijan, Georgia, Turkey), the Middle East (Iran, Iraq, Saudi Arabia), central Asia 

(Kyrgyzstan, Tajikistan, Uzbekistan); and six countries in SSA (Namibia, Botswana, South 

Africa and Swaziland, Cape Verde; and São Tomé and Príncipe). 

 

This thesis has focused on modelling malaria incidence in low malaria transmission countries in 

Namibia, Afghanistan and Eritrea. These very low and seasonal transmission settings in general 

pose several challenges to malaria control and elimination. These include: the detection and 

treatment of symptomatic and asymptomatic infections using suitable tools; developing fine 

spatial resolution malaria distribution maps to guide malaria control; measuring transmission 
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patterns at very low parasite density; and dealing with the challenge posed by population 

movement. In addition, malaria tends to cluster in hotspots and it is harder to detect the low 

parasite density for both symptomatic and asymptomatic infections (Sturrock et al., 2013b). 

Here, the focus was on symptomatic infections seen in the public sector. The ability to identify 

residual infections (asymptomatic) and quantify the population at risk is also critical for pre-

elimination or elimination. Malaria elimination also requires tackling poverty, improving 

infrastructure and strengthening health systems (Smith et al., 2013, World Health Organization, 

2014a).   

 

Until recently, HMIS are perceived as less reliable than household surveys (Gething et al., 2006, 

RBM-MERG, 2008). Whilst symptomatic infections are captured in routine HMIS, in many 

countries, data are spatially and temporally incomplete due to sporadic reporting. Furthermore, 

only a proportion of febrile cases are usually seen in the formal health sector (i.e. the ‘iceberg 

effect’) (Agyepong and Kangeya-Kayonda, 2004, Goodman et al., 2007) raising questions about 

the burden not treated or using the informal sector. This thesis has demonstrated how incomplete 

HMIS can be used to estimate malaria burden in low transmission settings when coupled with 

accurate population denominators estimated by adjusting for geographical access and utilisation 

of healthcare facilities. Moreover, the thesis has contributed to development of novel Bayesian 

techniques that can be used to harness HMIS data efficiently (Alegana et al., 2013, Alegana et 

al., 2014). The Bayesian approach provides opportunities for dealing with the deficiencies in 

HMIS data by smoothing incidence rates in space and time; filling in gaps where no health 

reports have been assembled; and adjusting for the rate of facility utilisation since only a 

proportion of actual cases present in the public health sector (Cibulskis et al., 2011). The method 



   

254 

 

also incorporates ecological or environmental drivers to estimate risk while at same time 

quantifying  uncertainty associated with disease estimates (Banerjee and Fuentes, 2011). 

 

Asymptomatic infections remain a challenge and many countries are yet to adopt active case 

detection (ACD).  These reservoirs of infection can be responsible for sustaining transmission 

between seasons and cause resurgence if malaria control is withdrawn (Diallo et al., 2012, 

Sturrock et al., 2013b). Currently, population sample surveys such as the MIS incorporate 

parasitaemia modules. However, these surveys cannot reliably capture all the asymptomatic 

infections in their current form.  Other drawback of these surveys is the relatively small sample 

sizes that do not meet the very large sample size requirement at very low transmission 

historically regarded as areas of <3% parasite prevalence (Yekutiel, 1960). In addition, under 

low transmission there is a need for a greater temporal frequency to adequately capture the 

variability of infection rates through time (either monthly or on an annual basis) (Yekutiel, 1960, 

Beier et al., 1999). This is because malaria is highly seasonal in low transmission settings and 

driven by the changes in climate at geographically large and small scales. There is also an 

immediate challenge of current diagnostic tools. Microscopy and RDT remain the recommended 

tools for detecting infections in routine settings due to their availability and low cost (World 

Health Organization, 2014c). Although PCR is more sensitive compared to RDT or microscopy, 

its use in routine settings remains a challenge (Satoguina et al., 2009). The alternative option of 

measuring EIR is not suitable due to difficulties in capturing sufficient number of infected 

mosquitoes (Stuckey et al., 2013).  
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Estimating and relating the number of malaria cases to the population given time period 

(incidence) to estimate the clinical burden of disease is important to the national malaria control 

programmes. This is important for resource allocation and provides useful knowledge in carrying 

out targeted case detection. Targeted case detection has been demonstrated in Swaziland 

(Sturrock et al., 2013a), Zambia (Davis et al., 2011), Sri-Lanka (Rajakaruna et al., 2010) and 

Peru (Branch et al., 2005) where reactive case detection identified additional cases in the 

population where passive cases had been observed. It is, therefore, essential to outline 

methodological advances in mapping HMIS in low malaria transmission settings since HMIS 

remains the foundation for gathering evidence, tracking progress on malaria control and 

identifying areas for rapid response. The recent publication of malaria endemicity maps for 

Africa (Noor et al., 2014) provides an additional opportunity to compare findings from mapping 

incidence using HMIS data to parasite prevalence. This discussion is generalized on the use of 

HMIS in low transmission settings in the three case studies. 

 

5.2 Thesis contribution to malaria strategies in low malaria transmission  

The thesis focussed on estimating incidence as an alternative measure to the widely used parasite 

prevalence. This is because parasite prevalence is less efficient when it comes to low 

transmission settings. There is a requirement for large sample sizes to detect the low parasite 

densities in low transmission settings and this are logistically challenging and costly to 

implement. There is also a need for a greater temporal frequency of parasite prevalence surveys 

to adequately capture the variability in infection rates due to seasonal variation (Yekutiel, 1960, 

Beier et al., 1999). This is difficult to achieve with point prevalence surveys. The Force of 

Infection (FOI) defined as the rate of new infections in the population, such as the sero-
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conversion rate (Bekessy et al., 1976, Charlwood et al., 1998), is an alternative measure in low 

malaria transmission settings. FOI, however, requires a follow up with a specific population 

group over a certain period of time (Yukich et al., 2012). Further, the Entomological Inoculation 

Rate (EIR) is hampered by low numbers of positive-sporozoite mosquitoes in low transmission 

settings (Stuckey et al., 2013). Estimating incidence from HMIS using hierarchical Bayesian 

spatio-temporal models is therefore an alternative to these approaches. 

 

HMIS data has several advantages, for example, the disease burden (Figure 5.1 below) 

estimation at the population level using symptomatic cases (at a health facility) increases the 

likelihood of detecting infections. The temporal spread of data collected in an ongoing manner in 

HMIS makes it useful in identifying the seasonal patterns. In addition, the spatial 

representativeness of symptomatic cases seen in health facility data is improved by modelling the 

catchment populations which come from several clusters around the health facility compared to 

single cluster prevalence survey. HMIS is also increasingly being used in very low transmission 

settings to identify areas to target case detection and interventions (Rajakaruna et al., 2010, 

Davis et al., 2011, Sturrock et al., 2013a). This suggests that HMIS may be instrumental in 

rolling out ACD and mapping symptomatic infections seen in the public sector is an important 

contribution. 

 

The overall objective was to assess expectation (mean) incidence and translate this into cases at 

the population level. Looking at expectations made it possible to use Latent Gaussian Models in 

R-INLA. Given the nature and completeness of data in Namibia, model set up involved 

innovations only at the facility level with a single covariate (EVI) to minimise the statistical 
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problem of over-fitting. In a simplified form ),(),(),(1 tsetstsy    where 
j

T

j tsX  ),(1  

and ),0(~),( 2Ntse  as independent distributed parameter with a zero mean and precision 

parameter. The latter were assumed to be independently distributed. The ),( tse  parameter was 

further specified in a hierarchical sense to include the spatial and temporal terms at constituency 

level via the Besag, York and Mollie model (Besag et al., 1991). This modelling approach 

addressed several sources of uncertainty in comparison to the crude incidence estimates. First, 

the model was applied at facility level and, therefore, the method not only takes into account the 

nature of the facility, but also season and environmental factors (at facility level) in adjusting for 

under-reporting. Secondly, incidence was smoothed across the facility reports, thereby 

addressing the potential impact of model instability resulting from small numbers of reported 

cases, apparent in the facility data. Smoothing incidence also reduces the potential impacts of 

under-reporting of cases by facilities. Third, incorporating the environmental covariates 

explained spatial variation where data were absent in addition to providing information on the 

climatic suitability of malaria transmission in highly receptive districts. The approach ‘elevated’ 

incidence in areas where incidence would be below average and ‘reduced’ incidence in areas 

where there would be an overestimation. The innovation of the CAR model improved 

smoothing. For example, In Namibia the CAR estimates were closer to overall mean incidence 

(smoothing toward the global mean) compared to Afghanistan or Eritrea. This is likely to be a 

factor of using 0-1 weights as neighbour matrix during the model set up (Section 2.3.5). This 

means that neighbour areas are correlated and treated as independent if not a neighbour of the 

region of interest. Other studies have found differences in level of smoothing based on 

specification of the neighbourhood matrix (Earnest et al., 2007). In the thesis, the problem was 
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mitigated by introducing higher level random effects at regional level in addition to the facility 

level effects. 

 

The modelling framework in Afghanistan introduced additional random effects at the province 

level by modelling ),(),(),(),( 3322112 tsutsutsutse    where ),(11 tsu  and ),(22 tsu  

represented random effects at the district and province levels in addition to the facility random 

effect ),(33 tsu . Model complexity increased given the extra randomisation but improved the 

smoothing at the district level. In other words, smoothing was closer to the province mean rather 

than the global mean as seen in the Namibia study. In terms of covariates, both the Namibia and 

the Afghanistan model specifications treated this as fixed linear effects. The difference between 

the two model specifications to that for Eritrea was the use of nonlinear effect for covariates. 

Nonlinear smoothing functions (first order random walk priors) were used to smooth the 

seasonal effects and improve temporal estimates of incidence. Therefore, the final hierarchical 

model included complexities in terms of random effects (facility, district and province level) as 

well as the seasonal component introduced via the covariates. The thesis however, did not 

validate how well the optimal model could forecast future incidence estimates due to lack of 

data. 

 

Lastly, the thesis quantifying the proportion of population attending the public sector for malaria 

treatment based on fever. Novel approaches were used in deriving spatially the public health 

facility attendance and subsequently deriving catchment population based on the observed 

patterns. It is important to understand extend of public sector use and infrastructure (in terms of 

availability, access, quality of services) in countries aiming for elimination.    
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Figure 5.1: Burden estimation model.  

While using HMIS data to estimate disease burden, it is vital to first define population catchments since only a 

proportion of case are observed in formal sector in a well-functioning HMIS. Some of the febrile events may not be 

due to malaria, after suspected or parasitological examination. Incidence estimated using the catchment population is 

translated to burden estimate at population level. 

 

5.3 Common emerging themes across the three case study countries 

5.3.1 Denominator estimation for modelling incidence by country  

To measure incidence at a health facility, a reliable denominator of the catchment population 

from whom the cases are drawn was required. Secondly, it was also important to recognize that 

not all the febrile cases within the catchment area would seek treatment or use the public health 

sector. In practice, multiple sectors (formal or informal) are often used and most fevers are likely 

to be transient and resolve without treatment (Agyepong and Kangeya-Kayonda, 2004, Goodman 

et al., 2007). An analysis of public health sector utilisation was used to derive catchments in the 

three case-study countries. 

 

 In the three case studies, there were similarities in healthcare attendance for fever treatment with 

declining utilisation as travel time increased. The probability of using the closest facility was low 
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for the population at a greater distance from a public health facility even when stratified by 

facility type (e.g in Afghanistan). Secondly, over 65% of the population was within three hours’ 

travel time to the nearest health facility in the three settings. When three hours’ travel time was 

used to assess population coverage by public healthcare facilities, these translated to coverage 

rates of 67% in Namibia, 79% in Eritrea and 85% in Afghanistan. These three hour threshold 

was used to delineate the boundaries of the catchment areas. In addition, the probability of fever 

treatment within the catchment areas was used to define the number of people by travel to the 

health facility and number of fever cases likely to be seen at the facility. Elsewhere in other 

health facility utilisation studies, the phenomenon of by-passing the nearest health facility has 

been observed (Akin and Hutchinson, 1999), but, this generally was attributed to seeking better 

quality of services or more specialised treatment. Some hospital-based studies have shown that 

longer travel times have also been associated with shorter time to death (Manongi et al., 2014) or 

disease severity (Moisi et al., 2011). Although the available data do not allow for investigation of 

the phenomenon of by-passing, the results from the three case studies in Namibia, Afghanistan 

and Eritrea generally suggested that the majority of cases travelled shorter distances to the 

nearest health facility based on the distance-decay pattern. It is also possible that long travel 

times in the three case studies could be associated with the phenomenon of by-passing for better 

quality healthcare or for cultural reasons. 

 

5.3.2 Implications for malaria control and elimination based on estimated incidence in the 

three case study countries 

In terms of modelling incidence, the thesis started with an analysis of the 2009 malaria case data 

from public health facilities in Namibia. In Eritrea data were available from the year 2010 to 



   

261 

 

2012.  The focus in Afghanistan was to track progress towards the national target between 2006 

and 2009 and provide estimates of clinical burden of P. falciparum and P. vivax. In Eritrea, a 

similar analysis to Afghanistan in terms of prevalence of both P. falciparum and P. vivax was 

conducted but also focused on seasonality. The spatio-temporal maps of malaria incidence for P. 

falciparum and P. vivax are important in quantifying populations at risk to target interventions.  

 

Although Namibia is currently in pre-elimination, the mean P. falciparum incidence in 2009 was 

12.5 (95% Crl 10.4-15.5) per 1000 population which was higher compared to the estimated mean 

incidence in Afghanistan (1.2, 95% Crl 0.4-2.9 per 1000 population) or in Eritrea (3.4, 95% Crl 

2.2-5.2 per 1000 population). Only Afghanistan had P. vivax as the dominant malaria parasite 

with estimated incidence of 5.4 (95% Crl 3.2-9.2) per 1000 population.  In Eritrea the incidence 

of P. vivax was 2.5 (95%Crl 1.5-3.9) per 1000 population and constituted approximately 43% of 

the estimated burden. Recent reports suggest that the three case studies countries are on path in 

reducing malaria cases by >75% (Smith Gueye et al., 2014, World Health Organization, 2014d) 

and results here support orientation of national programmes to pre-elimination. Estimated 

malaria incidence, however, varied at a sub-national level. Elimination programmes should 

probably commence with low incidence districts, for example, the southern health districts in 

Namibia, the two red sea regions in Eritrea and the provinces bordering Tajikistan for the 

elimination of P. falciparum in Afghanistan. Tajikistan is already in elimination with only seven 

malaria cases reported in 2013 (World Health Organization, 2014d). 

 

Malaria incidence in the three countries tended to cluster in marginalised populations, for 

example, in the border areas. This also suggested that malaria in these regions may be attributed 
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to cross border population movement. For Namibia, there was elevated incidence at the border 

with Angola and Zambia. In Eritrea incidence was higher in regions that bordered Ethiopia while 

for Afghanistan these were in districts close to Pakistan. In these countries, cross-border malaria 

may pose a threat to the elimination efforts. Namibia has subsequently started cross border 

initiatives with Angola and Zambia. These include the Trans-Kunene Malaria Initiative (TKMI) 

with Angola (Smith Gueye et al., 2014) and the Trans-Zambezi Malaria Initiative (TZMI) 

(Ministry of Health and Social Services, 2010c, Trans-Zambezi Malaria Initiative (TZMI), 2012, 

Noor et al., 2013b). For Afghanistan there is a cross border initiative with Tajikistan to support 

elimination of falciparum malaria (World Health Organization, 2007b). Eritrea is yet to start 

such coordination with neighbouring countries. The cross-border activities include screening at 

health facilities, treatment and distribution of LLINs to meet universal coverage targets. 

 

The monthly trend in incidence was different across the sites. For Namibia, the temporal trend of 

P. falciparum was only for 2009 but showed that there was a peak in cases early in the year. In 

Afghanistan, the seasonal peak in incidence was different for the two malaria parasites. P. vivax 

incidence peaked in August while P. falciparum peaked later in the year, in November. In 

Eritrea, the incidence of P. falciparum and P. vivax peaked between September and October. The 

difference in the patterns observed between P. falciparum and P. vivax parasites and countries 

may be attributed to the transmission dynamics in different settings in addition to other factors 

such as infrastructure, poverty and health systems. A factor to consider is receptivity i.e. 

favourable conditions for transmission which may change the results from the case studies. For 

example in Namibia, epidemics have been observed in years when above average precipitation 

has been experienced (Noor et al., 2013c). The temporal profile is useful in planning the timing 
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of interventions. Thus the difference in peak seasons should inform control strategies, for 

example, lagging the use of IRS with peak case incidence. Across the three case studies, IRS 

varies. In 2008 IRS use in Namibia was only 16% rising to approximately 41% by 2012 (Smith 

Gueye et al., 2014), approximately 30% in Eritrea and was only launched in 2012 in Afghanistan 

(Ministry of Public Health, 2008b). Along with IRS, universal coverage should be targeted in 

areas with higher incidence and in line with recent WHO recommendation on managing 

insecticide resistance (World Health Organization, 2014b). 

 

Relating the modelled incidence to current maps of parasite prevalence showed areas with higher 

incidence also exhibited high prevalence. For Eritrea and Afghanistan where both P. falciparum 

and P. vivax exist, there was a spatial co-distribution of the two parasites in malaria risk areas. 

Where there was elevated incidence, this was associated with high prevalence from the parasite 

prevalence surveys. The latter was modelled from community prevalence surveys age-

standardised (2-10 years) (Noor et al., 2014). The positive correlation between incidence and 

prevalence is expected and higher incidence is associated with higher parasite prevalence (Figure 

5.2). In Eritrea and Afghanistan there was a spatial co-distribution of P. vivax and P. falciparum. 

This co-distribution poses a challenge in managing mixed infections, requiring careful case 

management strategies. 
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Figure 5.2: Comparisons of incidence and with community parasite prevalence 

Box plots showing comparisons between modelled incidence per 1000 population and the mean parasite prevalence 

for P. falciparum and P. vivax. The mean incidence is higher in parasite prevalence greater than 5%. Parasite 

prevalence was based on community surveys for 2010. Incidence was estimated from health facility data (total cases 

as numerator) and catchment population as the denominator.  

 

5.3.3 Reaction of the case study countries to findings 

Overall, the methods used in this thesis aimed at producing maps at the district level relevant for 

decision making to various malaria control programmes. The national programmes were 

interested in the overall case burden for prospective planning of malaria interventions. The 

NMCPs were involved in each of the three case studies by providing data and reports used in this 

thesis. Both Namibia and Afghanistan studies have been jointly published with the NMCPs 

(journal articles in the appendices). For Namibia, some of study findings have been incorporated 

in nation policy documents (MoHSS, 2011) and cited in other studies (Lourenco et al., 2013, 

Smith Gueye et al., 2014). The Eritrea NMCP has used findings from this study (district level 

incidence) in prospective planning of malaria control activities. The Eritrea study, however, is 

yet to be published in a peer review journal. 
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5.4 Transferability,  scalability and challenges for malaria elimination  

5.4.1 Data availability 

In terms of surveillance, health facilities remain the foundation for identifying and tracing the 

changing burden of disease. School sentinels remain an option to routine household surveys. 

Their utility has already been demonstrated in several studies (Ashton et al., 2011, Gitonga et al., 

2012). However, there is still a gap in studies that have delineated and combined school 

catchments with disease incidence. This is in contrast to health facility-based data which are 

collected on a continuous basis, and provide information from symptomatic (febrile) infections. 

There is also an increasing availability of e-health frameworks in at least 46 countries globally 

(DHIS2, 2014) with improved systems of monitoring by district level health management 

information systems including the use of mobile phones. This system is complete in eight 

countries in Africa (Kenya, Rwanda, Uganda, Tanzania, Zanzibar, Zambia, Ghana, Gambia and 

Liberia) and in two countries in Asia (Bangladesh and India). Of these Rwanda and Zanzibar are 

amongst low malaria transmission countries in Africa (World Health Organization, 2014d). The 

rest are either at a pilot stage or have partially rolled out such a system nationally (Figure 5.3). 

Such open data initiatives will favour scaling up of methodologies developed in this thesis in 

updating and developing high space-time resolution disease maps in reduced transmission or 

support malaria elimination.  
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Figure 5.3: Global roll out of DHIS initiative 

Countries where the e-health initiatives has been rolled out integrating national health facility data reporting systems 

with surveillance at a national level with (DHIS2, 2014). It is also important to note the availability of nationally 

representative household surveys in these countries in this report (Carolina et al., 2013). 

 

5.4.2 Development of Reactive Case Detection approaches in low transmission settings for 

elimination 

Asymptomatic infections tend to cluster in hotspots in low transmission settings (Bousema et al., 

2012, Sturrock et al., 2013b). These residuals infections in the population can be harmful to 

elimination programmes and may be responsible for maintaining transmission between seasons 

or cause resurgence of disease when control is withdrawn. The challenge in low transmission 

settings is that of identifying the asymptomatic cases usually via Active Case Detection (ACD). 

There two broad approaches: reactive case detection (RACD) and proactive case detection 

(PACD) (Sturrock et al., 2013b). The reactive approach involves using the passive system 

(HMIS) to identify the origin of cases. It is most widely used in countries with better HMIS and 

where burden is reduced to just a few residual cases experiencing short epidemics. It is also 

suitable for low transmission where receptivity is high. The PACD does not involve the passive 
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system. The entire population is screened to identify residual infections, which can often be 

laborious and logistically challenging.  The passive system should complement the PACD since 

incidence estimated at health facility catchment-level is translated to the wider population. 

 

As demonstrated using HMIS in the three case studies, population catchments can be used to 

model incidence. The advantage of using health facilities is that symptomatic infections data are 

collected on a continuous basis. There is also an added advantage of reducing the cost of tracing 

cases within the wider population with limited resources. Studies in Zambia (Davis et al., 2011) 

and Swaziland (Sturrock et al., 2013a) provide examples of where passive and active case 

detection have been combined to identify asymptomatic infections. In Swaziland, 79 additional 

cases to those presenting in the formal health sector were identified among the wider population. 

In Zambia, a case-control study by Stressman et al. (2010) showed that there were more RDT-

positive cases in the group targeted via RACD than in a selected random control group. These 

two studies illustrated the usefulness of targeted screening when identifying reservoirs of 

asymptomatic cases.  

 

5.4.3 Implications for mapping P. falciparum and P. vivax in low transmission settings 

Progress in identifying symptomatic cases within the population has important application for 

asymptomatic case detection. Both PACD and RACD will benefit from improved mapping of 

passive detected cases. The PACD usually targets peak transmission seasons in known 

geographic areas while RACD is triggered by cases seen in the formal health sector. However, 

the questions related to optimizing diagnostic tools and techniques remain. Current WHO 

recommendation is the use of RDT and microscopy for diagnosis even in low transmission 



   

268 

 

setting because of relative low cost and they are widely available (World Health Organization, 

2014c). The use of more sensitive nucleic acid amplification (NAA) such as PCR should be 

applied in areas where the RDT and microscopy are already in use to support elimination.  

 

There is however another challenge in areas where multiple parasites exist (Cotter et al., 2013). 

Although most successful interventions have focused on P. falciparum more effective 

approaches need to be developed in detecting P. vivax infections since it is less responsive to 

current interventions. There has been some progress in mapping this parasite at the global level 

(Gething et al., 2012). However, there is still a need to improve these maps at country level, 

especially outside sub-Saharan Africa. In countries where P. vivax exists, the challenges of 

elimination are considerably higher due to the biological characteristics of this parasite (Mueller 

et al., 2009, Cotter et al., 2013). For instance, P. vivax can exist at very low parasite densities 

that are difficult to detect using the recommended tools. It also exhibits a dormant liver stage 

responsible for most relapses weeks or months after an initial attack (White, 2011). This 

complicates the ability to detect asymptomatic vivax infections within the population, while 

treatment is compounded by possible adverse reactions to drugs in populations with Glucose-6-

Phosphate Dehydrogenase (G6PD) deficiency (Howes et al., 2012). Although there has been 

attempts to develop G6PD maps at a global level (Howes et al., 2012), there is still a gap in fine 

resolution mapping at coutry level which may inform case magement of P. vivax.  
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5.5 Limitations 

5.5.1 Thesis limitations and recommendations 

The majority of the limitations in this thesis have been addressed in each case study fully. Here a 

summary of the limitations and recommendations in a general sense is provided. 

 

The methodology and presentation of the thesis focused on three case studies (countries) with 

low malaria transmission. First, these three countries were selected because they met the 

experimental requirements (low transmission) and due to data availability. They were, thus, not 

selected randomly. However, the strength of the methodology presented and discussed in this 

thesis applies to similar transmission settings as discussed in the introduction section and in the 

respective case studies. Thus, the approaches are relevant mostly to countries pursuing pre-

elimination or in the elimination stages at the margins of transmission (Feachem et al., 2010). 

 

Secondly, there was variation between the temporal spread in the data between countries. For 

example, in Namibia only one-year data was available compared to three years in Eritrea and 

four years for Afghanistan. This short temporal spread in each context was sufficient for 

developing the methods and studying disease incidence, but, was not sufficient in providing 

long-term assessment of change in incidence over time or evaluating the impact of interventions. 

This was also evident on the less significant effects of environmental covariates on disease 

modelling, for example, in Afghanistan. Although there an attempt was made to quantify change 

of incidence in Afghanistan, the short four year period was not enough to reveal significant 

impact of interventions on disease. Future studies should revisit this aspect of establishing 

changes in disease incidence over long periods of time (for example, 10 years) and quantify the 
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impact of interventions to benefit the goal of elimination.  In addition, such long-term trends may 

also improve findings on the impact of covariates for disease modelling. 

 

The thesis did not explore the potential uncertainty that may result from misclassification of 

cases especially those related to parasite classification. These were beyond the scope of the study 

given that such errors and other may occur at data entry stage at health facility level. While the 

model performance was satisfactory, these errors may contribute to uncertainty and unexplained 

variance. 

 

Throughout the three case studies, the question of the limitations of current diagnostics 

approaches (RDTs and microscopy) remains and has also been outlined in this final chapter. It is 

not only the quality of routine microscopy or RDTs that remains a limitation but also their 

respective sensitivities when it comes to low parasite density (Satoguina et al., 2009). A review 

of the literature showed that PCR and serology are preferred in most observational studies and in 

some longitudinal studies, but, over small areas. Routine use of these approaches at a national 

level remains a challenge.  Nonetheless, microscopy and RDT provide some indication of 

reservoirs of infection in symptomatic cases seen at a health facility and are currently 

recommended by the WHO for low transmission. Thus, they provide a framework where a 

sophisticated diagnosis can be targeted (World Health Organization, 2014c).  

 

Another limitation relates to the reliance on self-reported data from national household surveys 

on fever. There is the possibility of variation in perception and interpretation of fever episodes 

between individuals. In addition, the fever variable reported in these surveys is usually based on 
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the two-week recall period which could introduce a bias. Furthermore, the treatment seeking 

behaviour of self-reported two-week period fever may differ from that of suspected cases seen at 

the health facility (Cibulskis et al., 2011). These limitations remain in the three case studies and 

could have an impact on ‘true’ fever burden. Modelling the fever burden was not a specific 

objective of this thesis. The interpretation of fever burden estimated in the thesis in each case 

study should therefore be undertaken with this in mind. In addition, fever episode could be 

multiple over the two week period resulting in a different cause of action depending on perceived 

need by the individual. The multiple fever episodes may also not necessarily be malaria-specific, 

since malarial fever declines in proportion to transmission intensity (Trape et al., 2014). The 

multiple fever episodes often result in multiple treatments in different sectors (either formal or 

informal healthcare). Here, only public healthcare utilisation was of interest and future studies 

should endeavour to define healthcare use in other sectors. 

 

Lastly, the aspect of population movement and impact on defining cases seen at the health 

facility has not been addressed by this study. Population movement plays an important role in 

transmission and is potentially responsible for most of the cases seen in the border areas in 

Namibia, Afghanistan and Eritrea. Several aspects warrant further investigation. For example, 

what proportion of cases in Kabul in Afghanistan is acquired locally or imported from 

neighbouring regions that have higher endemicity? This relationship between incidence in HMIS 

(passive surveillance) and internal (between regions) or external population movement was not 

addressed by this thesis due to lack of data. It, therefore, remains a gap to be filled by future 

studies. 
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5.6 Future research 

The thesis focused mainly on developing Bayesian approaches that can use HMIS data to 

estimate incidence. A frequentist approach had been tried earlier using the Kenya HMIS data 

(Gething et al., 2006). In the Kenya application, however, the denominator was a sum of total 

case burden seen at a health facility as a proxy to catchment population. Moreover, the setting 

was in a high endemic country. The Bayesian approach used in this thesis lays the foundation for 

modelling uncertainty in HMIS data using Gaussian latent models. The framework started by 

modelling the denominator (the catchment population) at the health facility regulated by the 

probability of seeking treatment when sick with fever followed by a Bayesian analysis of 

incidence. Although there was attempt to relate the estimated incidence to parasite prevalence in 

a frequentist approach, future studies could focus on modelling this using a model-based 

approach to incorporate uncertainty. There has already been attempt on quantifying such a 

relationship (Patil et al., 2009) but not using estimates from the modelling framework used here. 

 

Future research can also make improvement in relation to the assumptions laid out in the model 

set up and additional operational and research challenges on burden estimation in low 

transmission settings. The first relate to modelling the malaria fever burden at a fine resolution. 

Effectively, geostatistical approaches could be used in fever burden estimation at a fine 

resolution. A major challenge is the specificity of malaria-fever cases in relation to other co-

morbidities. Thus, the resulting fever burden map will depend on the definition of fever cases 

attributed to malaria. A recent study conducted in Senegal suggested malaria-specific fever 

reduced with declining endemicity (Trape et al., 2014). The improved fever burden maps could 
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potentially be useful in assessing population that is likely to seek treatment for malaria and 

eventual case loads seen at the peripheral health facility. 

 

In addition, the fever-treatment seeking patterns defined in this study can be modelled differently 

given different data inputs. Firstly, a major recommendation is to explore models based on 

spatial interaction rather than the assumption based on distance. An easy option is to include a 

question of where treatment for malarial-fever was sought in the national representative surveys 

such as DHS or MIS. However, given the frequency of national surveys in areas with low 

malaria transmission, it is difficult to assess whether this would be representative for different 

time periods and with varying climatic and disease endemicities. A second alternative approach 

would be to explore the utility of mobile phones in defining the treatment seeking behaviour in 

febrile populations. The latter, however, requires a validation of the mobile phone data to test the 

observed patterns as actual febrile-case movements. The third alternative involves the use 

spatially varying parameters fitted to the treatment seeking pattern. This approach is different 

from using national estimated mean parameters applied to travel times or distance metrics. 

Treatment seeking behaviour is likely to vary by region, based on availability of health facilities 

and accessibility. Thus, the parameters driving the three parameter regression used in this study 

could vary substantially by region altering the treatment seeking patterns observed here. 

 

There is, however, a larger policy relevant question on the effect of human mobility in low 

transmission settings. This is, however, dependent on the availability of long-term morbidity data 

as well as population movement information. Under morbidity, the main challenge would be to 

evaluate the impact of various interventions on incidence while at the same time accounting for 
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population movement.  Regarding mobility, the challenge would involve combining both 

incidence and morbidity data to define risk within the population. The difficulty is in obtaining 

mobility data as these are not always available to the public domain regardless of whether they 

are census, national infrastructure surveys or from mobile phone records. Although some 

research has been undertaken using mobile phones (James and Versteeg, 2007, Le Menach et al., 

2011, Zurovac et al., 2012, Tatem et al., 2014), it would be interesting to assess how these 

mobile populations alter disease dynamics in different regions within and between the countries.   

 

5.6.1 Improved Bayesian approach to downscaling incidence in low transmission settings 

Bayesian approaches have attractive properties when it comes to modelling which has already 

been mentioned in the preceding chapters. This includes the ability to use hierarchical models 

with uncertainty handled at different levels, particularly the latent Gaussian models. This class of 

models is within the range of application of this thesis although different models can be used in 

practice. Overall, the methods used in this thesis aimed at producing maps at the district level 

relevant for decision making to various malaria control programmes. Moreover, these national 

programmes demanded figures translated into number of cases for planning malaria 

interventions. Thus, the advantages were two-fold in improving the methods in a Bayesian 

statistical sense as well as providing policy relevant tools for various national malaria control 

programmes. 

 

The modelling approach can be improved in two different ways. Firstly, the modelling can aim at 

analysing the co-variation of the two parasites spatially and temporally in countries with two or 

more parasites, such as Eritrea and Afghanistan. In other words, this involves setting up a joint 
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modelling framework such that 211 zz  and 212 zz   where 
1 and 2  assess the co-relation 

between vivax and falciparum in a hierarchical sense while 1z  , 2z  define the two expectations 

common for the former and difference for the latter. Thus, we have perfect correlation when 2z  is 

zero. Secondly, the incidence maps can be improved by downscaling incidence from polygon 

representation to pixel level. This modelling framework is different from that specified in this 

thesis where facility-catchment level incidence was aggregated to the district level. The latter 

proposal will involve disaggregating incidence observed at facility level to pixel level such that 

risk is defined at fine resolution in a linear model of co-regionalisation (LMC) approach 

(Barnerjee et al., 2004). Examples of this model specification exist in the literature (Gelfand et 

al., 2004). It is then worth looking at the distribution of risk within the catchment and population 

most at risk to improve burden estimation. Future modelling work will involve this risk 

disaggregation to further improve burden estimates. 
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5.7 Conclusion 

The main aim of thesis was to model healthcare utilisation and estimate malaria incidence in 

three low transmission countries from incomplete HMIS data. This was achieved using case 

studies in Namibia, Eritrea and Afghanistan. A denominator, the heath facility catchment 

population, was estimated and a Bayesian approach used to model incidence with uncertainty. 

There was a need to adjust for health facility utilisation, incomplete reporting and the use of 

clinical diagnosis using a slide positivity rate where cases are not confirmed. The modelled 

malaria incidence was translated into overall clinical burden to identify areas where malaria 

control can be improved for each case study. The results have been made available to various 

national malaria control programmes to aid in resource allocation, planning and policy.  

 

The methodology illustrated here is highly relevant to countries in similar settings (i.e. aiming 

for pre-elimination and elimination) and where changes in incidence are more relevant as 

opposed to point prevalence surveys. The approach demonstrated the usefulness of incomplete 

HMIS data for malaria burden estimation in low transmission settings. HMIS data are readily 

available via national reporting systems compared to community prevalence surveys which 

would require intensive sampling in low malaria transmission settings. The HMIS data are also 

relevant for tracking change in incidence over time - given a longer time-series of data. Tracking 

the change in incidence over time and seasonality is not only useful in identifying high risk 

regions in space and time, but could also be useful in evaluating programme performance and the 

impact of interventions.  
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An improvement in the quality of HMIS data and its availability through DHIS 2 initiatives may 

undoubtedly increase the use and modelling of HMIS for malaria burden estimation with 

approach demonstrated here. As malaria becomes highly marginalised in a few hotspots in low 

transmission settings, future research should consider combining approaches in this thesis 

combined with active case surveillance at community level for targeted control. 
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APPENDIX 2: Useful mathematical relations 

 

A2.1: Conjugate prior for Poisson distribution 

The Poisson distribution has a conjugate gamma prior. Remember for Bayesian inference, the 

posterior distribution is given as a product of the likelihood and the prior distribution. In practice 

there will be more than one prior for the posterior. The likelihood of dii .. samples has a Poisson 

distribution. Therefore starting with the Poisson likelihood, we have
iy , Ni ,.....1 as 

observations, 
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With log likelihood given as; 
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A2.2: Jeffrey prior for Poisson 

The Jeffrey prior which does not change and is non-informative with respect to parametrisation, 

    
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 ||log
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Writing inform of the posterior  |yf  and linearising by taking the logarithm we have 
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With expectations for the log of the likelihood as: 
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Where nyi   a constant 

A2.3: The inverse Gamma Prior on Poisson 

Drawing from the gamma distribution,  
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The inverse gamma prior can be written in terms of  as  
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A2.4: Conjugate prior for Binomial distribution 

The binomial distribution has the form, with y as observations,  
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With the quantity on right hand side,  
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yny  )1(  dictating the shape of the distribution. 

 The conjugate prior for binomial is the beta distribution valid in same interval, thus, 
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With posterior evaluated as product of prior and likelihood 
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APPENDIX 3: Data tabulation: sources, spatial and temporal resolutions and application 

 

 Source (URL) 

Type or 

resolution 

(Degree) Description 

Year 

downloaded 

or 

Assembled 

Population 

"WorldPop Project" 

(http://www.worldpop.org.uk/data/data_sources/) 0.000833 Population counts per 100m pixel 2010 

Elevation 

Advanced Spaceborne Thermal Emission and Reflection 

Radiometer-Global Digital Elevation Model (ASTER-

GDEM) (http://asterweb.jpl.nasa.gov/data.asp) 0.008332 

GTOPO30 Digital Elevation Model 

[meter] 2010 

Vegetation Enhanced Vegetaion Index (EVI) (monthly product) 0.008333 

MODIS Mean Enhanced Vegetation 

Index Monthly 

Vegetation Long term average (WoldClim, http://www.worldclim.org/)  

30 

seconds Vegetation index 1950-2000 

Vegetation 

Normalised Difference vegetation Index (NDVI) (Long term 

mean) 0.008333 Vegetation index Monthly 

Precipitation 

Tropical Rainfall Measuring Mission (TRMM 3B43)( 

http://mirador.gsfc.nasa.gov/collections/TRMM_3B43__006.

shtml) 0.25x0.25 The rate of precipitation Monthly 

Precipitation Long term average (WoldClim, http://www.worldclim.org/)  

30 

seconds Precipitation 1950-2000 

Temperature 

suitability index 

(TSI)  

Malaria Atlas Project (http://www.map.ox.ac.uk/browse-

resources/) 0.008333 

Index (0 not suitable for malaria 

transmission, 1 suitable) 2011 

Temperature Long term average (WoldClim, http://www.worldclim.org/)  

30 

seconds Tempearture in degrees celsius 1950-2000 

Urban/Rural WorldPop Project (http://www.worldpop.org.uk) Vector urban and rural areas - Africa extent 2010 

Urban/Rural 

CIESIN Global Rural Urban Mapping Project (GRUMP) 

(http://sedac.ciesin.columbia.edu/data/sets/browse) 0.008333 Urban areas [N/A] 2000 

Ancilliary GIS 

Data DIVA-GIS (http://www.diva-gis.org/) Vector 

Country boundaries, roads, rives, 

Gazetters 2011 

Ancilliary GIS 

Data Mapcruzin (http://www.mapcruzin.com/) Vector 

Country boundaries, roads, rives, 

Gazetters 2011 

Gazetters 
Alexandria (http://www.alexandria.ucsb.edu/)  Database Alexandria Gazetteer Server Client 2011 

Falling Rain Genomics: (http://www.fallingrain.com/world/)  Database 

Falling Rain Genomics: World 

Gazetter  2011 

GeoNames (http://www.geonames.org/)  Database GeoNames Gazetter  2011 

Getty Thesaurus of Geographic Names (TGN) 

(http://www.getty.edu/research/tools/vocabularies/index.html

) Database 

A structured vocabulary of 

geographic names for indexing art 

and architecture. 2011 

Google maps or earth search engine  

(http://www.google.co.uk/intl/en_uk/earth/) Database Google 2011 

NIMA GNS Public Page (http://earth-info.nga.mil/gns/html/)  Database NGA GEOnet Names 2011 

Statistics R (http://cran.r-project.org/) Software Statistical software 2009 

Land cover 

ESA – "GlobCover Project" 

(http://due.esrin.esa.int/globcover/) 0.002778 

MERIS global land cover 

classification [N/A] 2009 

 

http://www.worldclim.org/
http://www.worldclim.org/
http://www.worldclim.org/
http://www.alexandria.ucsb.edu/welcome/about
http://www.alexandria.ucsb.edu/welcome/about
http://www.fallingrain.com/world/
http://www.fallingrain.com/world/
http://www.fallingrain.com/world/
http://www.geonames.org/
http://www.geonames.org/
http://www.getty.edu/research/conducting_research/vocabularies/tgn/index.html
http://www.getty.edu/research/conducting_research/vocabularies/tgn/index.html
http://www.getty.edu/research/conducting_research/vocabularies/tgn/index.html
http://earth-info.nga.mil/gns/html/

