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ABSTRACT

Background: There has been a substantial decline in malaria burden in the last decade owing to
an increase in funding for malaria control. At every stage of the malaria elimination and control
pathways, maps of malaria risk are required for planning and for resource allocation. These have
traditionally been modelled from parasite prevalence data. However, in low malaria
transmission, parasite prevalence surveys from household surveys are insufficient because they
are of low sample sizes. Undertaking parasite rate surveys of adequate sample sizes is expensive
and remains unaffordable by most national malaria control programmes. Moreover, these point
prevalence surveys are not suitable for tracking changes in burden because malaria becomes
highly seasonal driven by climatic conditions. In this thesis, alternative approaches of estimating
risk are explored. These approaches model malaria incidence using Health Management

Information System (HMIS) data.

Methods: Three low transmission countries were selected as case studies namely: Namibia,
Eritrea and Afghanistan. HMIS data was assembled from the respective national malaria control
programmes as well as nationally representative household surveys providing information on
febrile cases and treatment seeking behaviour. For each case study, analysis of healthcare
utilisation pattern for fever treatment from national representative household surveys was
undertaken to derive denominators (population in health facility catchments). Data on malaria
cases from health facility were combined with the catchment population and environmental
drivers of malaria transmission to model incidence using a hierarchical Bayesian spatio-temporal
conditional autoregressive model (CAR). Facility level data was adjusted based on reporting

rates, the rate of utilisation and a slide positivity rate applied to suspected cases.



Results: The proportion of febrile children seeking treatment decreased with increasing distance
to the nearest public health facility and this rate was different in the three case studies. In terms
of catchment population, the majority of population was within three hours of travel to nearest
health facility. This translated to coverage rates of 67% in Namibia, 79% in Eritrea and 85% in
Afghanistan. The mean Plasmodium falciparum malaria incidence in Namibia was 12.5 (95%
Crl 10.4-15.5) per 1000 population. P. vivax was the major malaria parasite in Afghanistan with
an incidence of 5.4 (95% Crl 3.2-9.2) per 1000 population compared to P. falciparum incidence
of 1.2 (95% Crl 0.4-2.9) per 1000 population. In Eritrea, the incidence of P. falciparum and P.
vivax was 3.4 (95% Crl 2.2-5.2) per 1000 population and 2.5 (95%Crl 1.5-3.9) per 1000
population, respectively. Malaria Incidence in the three countries tended to be higher in the
border areas. For Namibia, there was elevated incidence at the border with Angola. In Eritrea,
incidence was higher in regions that bordered Ethiopia while for Afghanistan these were in
districts bordering Pakistan. Relating the modelled incidence to current maps of parasite

prevalence showed areas with higher incidence also exhibited high prevalence.

Conclusion: This thesis provides a novel approach to using household and health facility case
data to model malaria incidence more precisely in countries with very low malaria transmission
intensity. The modelling approach is vital for disease mapping in countries aiming for
elimination in reduced malaria transmission, increasing level of parasitological diagnosis and
improved level of reporting through HMIS. By using incomplete HMIS, the thesis demonstrates
its usefulness in producing reliable estimates of malaria incidence as well as identifying high

burdened regions to direct malaria interventions.
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CHAPTER 1: Introduction and literature
review



1.1 Background

Malaria is a major contributor to mortality and morbidity across sub-Saharan Africa (SSA)
(Black et al., 2003, Hay et al., 2008, Snow and Marsh, 2010). While considerable progress has
been made globally on reducing malaria related deaths according to the 2013 Millennium
Development Goals (MDG) report, progress in SSA remains slow and disproportionate (Noor et
al., 2014). In SSA countries, the burden of malaria remains a significant public health problem
and a realistic assessment is that the 2015 MDG health targets are unlikely to be achievable due
to slow economic development and poverty (Snow et al., 2010b, Snow et al., 2012). The
sustainable development goals (SDGs) integrate the MDGs into a post-2015 agenda following
the Rio de Janeiro declaration (UN, 2012a). To sustain progress on the main health indicators, it
is important to define the population at risk and improve surveillance, planning and cost-
effective allocation of resources guided by country level maps of malaria transmission (Noor et

al., 2014).

Malaria endemic countries have had sustained investment in malaria control since early 2000s
(Snow et al., 2010b, World Health Organization, 2013b) and coverage of key interventions has
increased with reports showing a significant decline in malaria infections and disease burden
across several sites suggestive of an epidemiological transition (Ceesay et al., 2008, O'Meara et
al., 2010). Many countries have responded to the call by the Roll Back Malaria (RBM) initiative
for universal coverage of malaria prevention strategies and some now aim for malaria
elimination (Global Health Group, 2007, Malaria Elimination 8 Ministerial Meeting, 2009, The
Malaria Elimination Group, 2009). Each stage on the control-elimination continuum requires
accurate epidemiological assessment of infection risk to adapt operational strategies and revise

impact predictions (Hay et al., 2008, Smith et al., 2009). Maps of malaria risk are important tools
1



for countries to define the changing risks, but, there is little research evidence on the
development, integration and application of these maps in the context of sustained low risk or
malaria elimination. Community parasite prevalence of 1% is currently considered the
benchmark for countries to decide between sustaining conditions of low endemic control or
moving towards an agenda that includes elimination (World Health Organization, 2007a, Snow
and Marsh, 2010). Current mapping approaches to define these benchmarks in areas of low
transmission, however, are faced with both data and methodological challenges that require
research into developing more reliable, efficient and less costly mechanisms of assessing the

shrinking malaria map (The Malaria Elimination Group, 2009, Feachem et al., 2010).

In this thesis, determinants of health facility access, utilisation and disease modelling approaches
were reviewed. Household survey data for treatment of fever were assembled for three low
transmission countries (Namibia, Afghanistan and Eritrea) and used to model spatial catchments
to derive catchment populations. A model based on self-reported fever at household level was
linked to population and facility characteristics to derive, spatially, the treatment-seeking
patterns within the facility catchment zone. For Afghanistan, the second case study, this analysis
was stratified by health facility type. The purpose of stratification was to compare a mean
utilisation pattern based on all the health facilities (i.e. the distance decay model) to the patterns
derived based on facility type. The Afghanistan analysis suggested that a mean distance decay
pattern based on facility type stratification was similar to that derived from all health facilities

without stratification. Subsequently, the analysis in Eritrea was not stratified by health facility

type.



Population within the health facility catchments were calculated and adjusted using the
probability to seek treatment for fever before being used to derive malaria case incidence, via a
Bayesian spatio-temporal condition autoregressive (CAR) model, using cases observed at health
facilities. Data on population were obtained from Worldpop (Worldpop, 2010) while disease
cases were obtained from various national malaria control programmes (NMCPs). The Bayesian
spatio-temporal CAR model complexity increased from one case study to the next. Thus, there
was a variation in model set-up based on experiences of previous case study. For example, the
Namibia CAR model did not incorporate random effects at regional levels compared to the
Afghanistan and Eritrean model, while, nonlinear priors were used in Eritrea compared to a fixed
effect assumption in both Namibia and Afghanistan. These approaches used in this thesis

together with their limitations are subsequently described.

This chapter reviews health goals and the MDGs in SSA outlining the burden of malaria and
fever (section 1.2). Section 1.3 provides an overview of healthcare delivery in SSA with section
1.3.2 providing a description of Health Management Information Systems (HMIS) followed by
roles of national household and health facility surveys for measuring and monitoring population
health (section 1.3.4 and section 1.3.5). Methods for measuring access and utilisation of
healthcare services are reviewed in section 1.4. Geographic access (section 1.4.2), distance as a
metric of access (section 1.4.3) and catchments (section 1.4.5) form the body of this section.
Lastly, disease-modelling approaches are reviewed (section 1.5) starting with historical
developments in spatial and spatio-temporal disease mapping methods (sections 1.5.1 and 1.5.2)

then the spatial-only methods used for point data (section 1.5.4) and areal data (section 1.5.5).



The latter part focuses on spatio-temporal approaches and concludes by outlining the scope of

the thesis, providing a justification for selection of the study countries.

1.2 Health in developing countries

1.2.1 The Millennium Development Goals (MDGSs) and Sustainable Development Goals
(SDGs)

Over the past two decades, the human global development agenda has been shaped by two
components. The first is the Millennium Development Goals (MDGs), initially mooted in 1990
and adopted by the 189 UN member states in 2000 (UN General Assembly, 2000). The second,
the Sustainable Development Goals (SDGs) came to the fore at the Earth summit in Rio de
Janeiro in 1992 and recently took centre stage at Rio + 20 summit in 2012 to generate concepts
similar to the MDGs but looking beyond 2015. The current aim is to merge these two parallel but
very similar concepts when it comes to human sustainable development agenda post-2015 (UN,
2012Db). This section briefly outlines both the MDGs and SDGs particularly focusing on health

goals and the agenda beyond 2015.

In general, there are eight broad MDGs (poverty, food security, education, health and family
planning, infrastructure (energy, housing, water and sanitation), environment, security, and
governance). The MDGs were agreed upon by UN member states after it was realized that many
low-income countries could not achieve the necessary economic growth and eliminate
widespread poverty. Thus, the main strength of the MDGs is that they constitute direct and
measurable goals and this ignited interest from developed countries to put resources forward to

foster growth and development. Consequently, funding initiatives and interventions were set up
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with the aim of improving economic development, health, sanitation, access to education, better

housing and basic infrastructure in developing countries (UNDP, 2003).

The health goals focused on reducing the child mortality rate by two thirds (MDG 4), improving
maternal health (MDG 5) and combating HIV/AIDS, malaria and other diseases (MDG 6). MDG
4 aims at reducing, by two thirds, the rate of child and infant mortality. MDG 6 targets include
(a) halting and reversing the spread of HIVV/AIDS, (b) achieving universal access to antiretroviral
therapy for HIVV/AIDS patients, and (c) halting and reversing the incidence of malaria and other
major infectious diseases. Indicators for malaria include the prevalence and deaths associated
with malaria and the proportion of population at risk of malaria using appropriate preventive and
treatment methods. Some of the recommended strategies at achieving the malaria targets by
RBM partnership include the universal coverage and use of LLIN, indoor residual spraying, the
use of diagnostic testing under the T3 (Test-Treat-Track) initiative and preventive therapies

during pregnancy, in infants and young children (World Health Organization, 2014d).

According to the WHO malaria report 2014, there has been, globally, a reduction in malaria
death by 47% and by 54% in Africa between 2000 and 2013. This trend goes hand in hand with
an overall reduced parasite prevalence in Africa (Noor et al., 2014). However, national and sub-
national variation exists, especially in SSA (O'Meara et al., 2010, Snow et al., 2010b). The 2014
MDG report suggest that, in SSA, close to half of the population (48%) live on less than $1.25
per day, child mortality rate remains high at 98 deaths per 1000 live births with annual rates of
decline well below 8% (the required rate). Thus, poverty and economic development remain a

major challenge since most national governments in these low-income countries are unable to
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meet the financial requirements to attain the MDG targets (Fortney et al., 2001, Neuman et al.,
2011). Outside SSA, Bangladesh provides an example of a country on track to achieve MDG 4
(Chowdhury et al., 2012) (World Health Organization and UNICEF, 2012) and China, despite
significant strides in reducing poverty, is still ranked second behind India with 13% of the global

extreme poor population (UN, 2014).

The Lozano multi-country study (Lozano et al., 2011) pooled data from household surveys and
censuses including complete vital registration data, surveillance, Complete Birth Histories
(CBH), Summary of Birth Histories (SBH) and maternal mortality rates extrapolated beyond
2015 using rates of change between 1990 and 2011. Results from this study suggested few
countries were likely to achieve MDG 4 or MDG 5 in SSA by 2015 based on observed rates of
change. Eight countries were likely to meet these targets within 10 years after 2015 (Lozano et
al., 2011). The example of Bioko Island, Equatorial Guinea, showed remarkable gains on MDG
4 following scale up of interventions (Kleinschmidt et al., 2009). Similar observations have been
highlighted in other country-specific studies such as in Ghana (Nakamura et al., 2011, Zere et
al., 2012), Niger (Amouzou et al., 2012) and Papua New Guinea (PNG) where substantial
differences in child mortality rates were observed based on the 2000 national census and 2006

DHS (Bauze et al., 2012).

The main criticism of the MDG concept is that it is viewed as narrow in scope that culminates
with specific targets to be evaluated by 2015. Thus, many view the MDGs as short and medium
term goals with a focus on development and poverty at a micro-level and in some case with

metrics that are difficult to assess. For instance, MDGs fail to address in a comprehensive way
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issues of sustainability, youth unemployment, violence and conflict, good governance and human
rights. Many of these issues emerged later after the 2000 declaration. There are other issues
inherent in the MDGs related to metrics and how these are evaluated in terms of comparison with
baseline measures and to other developed countries. The United Nations General Assembly, in
2010, put in place a high level panel to coordinate activities and consultations beyond 2015. This
was followed by the launch of a task team by the UN Secretary-General in 2012 to coordinate
activities of a high-level panel on policy beyond 2015. The post-2015 agenda is shaped by the
political document (UN, 2012a) produced as one outcome of the Rio +20 conference on
sustainable development (UN, 2012a) and reaffirms political commitment to achieving various
MDG goals post-2015. The post-2015 agenda addresses some of the weaknesses in the MDGs

and integrates the strength into the SDGs (UN, 2012b).

The SDGs attempt to address these issues by incorporating the micro-level metrics (MDGs
essentially) at a global (macro) level and in a sustainable way (long-term). Some of the
challenges to be addressed in general stem from the changing population age-structure dynamics,
environmental sustainability, human resource and labour, global markets and governance. The
Rio +20 declaration raised more than 20 targets and in terms of health, the indicators on child
mortality, malaria, HIVV/AIDS, Tuberculosis remain unchanged post-2015 as specified in the
MDGs (UN, 20123, b). The SDGs however emphasise the need to strengthen health systems, and
promote preventive and effective treatment to non-communicable diseases (NCD) since NCDs

pose a major challenges to sustainable development in both developed and developing countries.



1.2.2 Review of progress in malaria control in SSA post Global Malaria Eradication Plan
(GMEP) era

The failure of the GMEP in the 1950s and 1960s, particularly in stable transmission areas in
Africa (Najera et al., 2011) coupled with resistance to both parasite and vector, led to resurgence
of the disease in the 1980s through to the 1990s (Né4jera et al., 2011, Snow et al., 2012). Malaria
control during and post the GMEP era involved largely the use of chloroquine for treatment and
spraying using insecticides such as dichloro-diphenyl-trichloroethane (DDT) (Snow et al., 2012).
By 1978, several countries, particularly in Europe and the Americas (27 in total), had been
declared malaria-free (Mendis et al., 2009). In Asia, in countries such as India and Sri Lanka, the
burden decreased significantly during the GMEP era. For example, Sri Lanka reduced the
number of reported cases within a 20 year period from several millions in the 1940s to just 18
cases by the late 1960s (Organizastion, 1969). In October 1992, a ministerial conference
constituted by the World Health Organisation (WHO) with participants from 102 malaria
endemic countries adopted a declaration on malaria control and expressed commitment to
implementing a global strategy aimed at reducing morbidity, mortality and addressing emerging
resistance. The Roll Back Malaria (RBM) programme was later launched in 1998 to mobilize
support (Roll Back Malaria partnership, 2011). Malaria was also included in the global MDGs in

the year 2000 (United Nations, 2000).

With the exception of 36 countries at the margins of stable transmission, the majority of the
malaria endemic countries (99) focus on control (Feachem et al., 2010, Tatem et al., 2010). 79
countries have eliminated malaria, most during the GMEP (1955 to 1969) (Global Health Group,

2011). The current gains are as a result of funding commitments of international, multilateral and
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bilateral organisations to support malaria control activities. This include funding from the
Department for Internal Development (DFID), the World Bank, the launch of the Global Fund in
2002 and the President’s Malaria initiative (PMI) in 2006 (Snow et al., 2010b). Although
funding in general has increased in the past decade (from < US$ 100 million in 2000 to the
projected US$ 1.9 billion in 2013 (World Health Organization, 2013b)), it is likely to fall short
of the US$ 5 billion required to achieve global targets (Snow et al., 2010b, World Health
Organization, 2011). In addition, it is unlikely that domestic financing will bridge the resource
needs gap in the near future. The Global Fund currently accounts for nearly half of funding
commitment to endemic countries. Other support is from the Presidential Malaria Initiative
(PMI) and the United Kingdom Department for International Development (DFID) and other
agencies. In addition to a call for universal coverage of ITNs in 2008 by the UN-Secretary
general, there is a renewed focus on elimination (defined as the state where endemic local
transmission has been interrupted to zero incidence with risk of re-establishment due to imported
cases minimized (The Malaria Elimination Group, 2009, Feachem et al., 2010) and eradication
(i.e. complete or permanent removal of incidence or malaria parasites) (Roberts and Enserink,
2007, The Malaria Elimination Group, 2009). In 2007, the Malaria Elimination Group (MEG)
was launched to support and provide to countries that intend to eliminate malaria (Global Health
Group, 2007) while the Malaria Eradication and Research Agenda (malERA) (The malERA and
Diagnostics, 2011) mandate is to lead a research agenda. Presently, 36 countries aim at
eliminating malaria (Global Health Group, 2011). Nine countries in Asia Pacific and in Europe-
Middle East-Central Asia; and 11 countries in Asia Pacific, are pursing elimination. In Africa,

seven countries are pursuing elimination: four in southern Africa (Namibia, Botswana, South



Africa and Swaziland (Southern African Development Community, 2012)); Algeria in North

Africa; Cape Verde; and Sdo Tomé and Principe (Figure 1.1)).

Controlling malaria

gk‘ Eliminating malaria
Malaria free/Unsuitable for transmission

Figure 1.1: Countries eliminating or controlling malaria
Countries that are free of malaria (grey colour), controlling malaria (red) and are eliminating malaria or have
declared elimination (light yellow). Data from the Global Health Group (Global Health Group, 2007).

Improved funding for malaria control has, for instance, increased the coverage of ITNs in Kenya
to 44% by the end of 2007 (Noor et al., 2009a) compared to only 3% in 2003, based on the
Multiple Indicator Cluster Survey (MICS). Another example in SSA is Bioko Island which
achieved MDG goal 4 in a single year due to a scale up of interventions (ITN and Indoor
Residual Spraying (IRS)) (Kleinschmidt et al., 2009) and in Rwanda which observed a decrease
in malaria incidence following scale-up of ITNs (Ministry of Health, 2010). Countries in the
WHO Eastern Mediterranean and European Regions stepped up efforts of elimination in the
1990s and by 2008 only Algeria of the Northern Africa countries reported an autochthonous case
(World Health Organizastion, 2009). Further, United Arab Emirates and Morocco were certified
by the WHO as malaria free in 2007 (World Health Organisation, 2007, Regional Office for

Eastern and Mediteranean Region, 2013) and Egypt, Armenia, Turkmenistan, Syria Arab
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republic all reported zero local acquired cases by the mid 2000s (Mendis et al., 2009). Indeed
within the WHO/EMRO region three countries (Saudi Arabia, Iraq and Islamic republic of Iran,
Afghanistan) have significantly reduced burden in the last 10 years. Djibouti has also reduced its
burden significantly in recent years (Noor et al., 2011). The remaining countries (Pakistan,
Somalia, Sudan, South Sudan and Yemen) still witness a varying burden of Malaria (World
Health Organisation, 2007). The burden has also reduced in Europe and recent evidence
indicates the region is on track of achieving elimination by 2015. Similarly there is reduced
burden in South-East Asia (10 countries with ongoing transmission) and the western Pacific
regions (Mendis et al., 2009). In SSA several countries such as Eritrea, Djibouti and Namibia
have reduced burden significantly (by >75%) since 2000. Ethiopia and Zambia are also projected

to reduce burden by at least 50% by 2015.

ACTs are now recognized and used as first line treatment of Plasmodium falciparum malaria in
every endemic country and the majority (for example in Ethiopia, Kenya and the Gambia) are in
the process of achieving high coverage (World Health Organization, 2010a). The WHO
recommends diagnosis of all febrile cases before treatment with ACTs to avoid treatment of non-
malaria cases. As a result, malaria endemic countries have or are in the process of scaling up the
use of rapid-diagnostic tests (RDTSs) in health facilities with some deployment through
community health workers (CHW) (DOMC, 2010, Ministry of Health, 2010, Ministry of Health

and Social Services, 2010c).

This increase in the coverage of interventions has led subsequently to a decrease in the burden of

malaria at national and sub-national levels, for example, in Kenya and the Gambia (Ceesay et al.,
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2008, Okiro et al., 2009) and in Disease Surveillance Sites (DSS) (O'Meara et al., 2008). Despite

the reported decline, variation in burden exists between and within countries.

A recent publication by Noor et al. (2014) highlighted reduction in falciparum malaria across
SSA. The study utilised parasite rate surveys across the 49 malaria endemic countries in Africa
and predicted age-standardised (2-10 years) parasite prevalence (PfPR;.1o) at fine spatial (1 x 1
km) and temporal resolution (2000 and 2010). One of the major findings of the study suggested a
reduction in population at risk in 2010 when compared to 2000, although, this varied within and
across the countries. In some areas, malaria transmission had reduced to a level requiring a re-
orientation of national malaria control programme focus from sustained control to elimination or
pre-elimination. These included regions where PfPR,.1o remained at <3% in 2010 when
compared to 2000 (Noor et al., 2014). Some of the countries where national mean PfPRy.1o IS <
3% included Namibia, Eritrea, Swaziland, Djibouti, Rwanda, Mayotte and Cape Verde with the

first two countries being case studies in this thesis.

In such low transmission areas, the distribution of risk is highly focal, or clustered in time and
space, and identifying foci requires considerably greater sampling effort and cost using the
method for mapping malaria risk used in Noor et al. (2014). The surveys are single time-point,
cross-sectional community-based parasite prevalence surveys. Other measures that can be used
to define risk include the use of health facility reported cases and become more valuable to
define risk in space and time when asymptomatic infection prevalence becomes rare. However,
there are few examples of using imperfect health facility reported data to map malaria risk in

space and time that is a subject of this thesis (Gething et al., 2008). Further, there are no
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examples of where these have been used in combination with other household surveys to adjust
for utilisation rate of febrile cases. This thesis applies a Bayesian hierarchical model-based to
HMIS data to estimate malaria incidence at national level combined with a novel approach of
estimation the denominator (catchment population) based on malaria treatment seeking
behaviour. This modelling strategy should support the ambitions of national malaria control

programmes in low malaria transmission and support elimination strategies.

1.2.3 Rationale for using fever for studying treatment seeking behaviour

Fever is one of the clinical symptoms associated with malaria and is a common presentation in
health facilities, and has been the basis of treatment of uncomplicated malaria in endemic regions
(Einterz and Bates, 1997, Snow et al., 2003). This makes fever an entry point in studying malaria
treatment practices. The identification of fever as a morbid event and its treatment varies within
and between communities (Einterz and Bates, 1997, Beiersmann et al., 2007, Chibwana et al.,
2009, Oyakhirome et al., 2010). For example, the word ‘homa’ is common to Kenya and
Tanzania (Winch et al., 1996), ‘asra’ to Ghana (Agyepong, 1992) and ‘oluludi’ to Namibia
(Davies, 1994). This variation of terminology also means that the symptoms associated with its
description may also vary between communities. For example ‘asra’ (mild fever) not only refers
to a rise in body temperature but may also be associated with bitterness in the mouth, yellow
eyes and deep coloured urine, all symptoms of severe malaria. In the same local context, in

Ghana, significantly high fever is identified as ‘asraku’ (Agyepong and Manderson, 1994).

The nature and occurrence of malaria and related fever varies according to the intensity of
transmission (Snow and Marsh, 2002, Guerra et al., 2008). Thus, the number of fever cases

attributed to malaria will vary depending on the transmission intensity. Figure 1.2 shows a fever
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treatment protocol common in most settings. Fever in most patients can be a mild event and
subsequently resolve itself without any treatment. In many other settings, fever is usually first
managed at home or informally by purchasing medicines from drug shops, vendors or
pharmaceuticals (McCombie, 1996, 2002, Amin et al., 2003, Goodman et al., 2007). Past studies
have shown that mothers or care givers’ education level, socio-economic status and availability
and quality of care determine the use of formal health facilities (Kazembe et al., 2007, Chuma et
al., 2009a, Rutebemberwa et al., 2009). A review by Goodman and others in countries across
SSA estimated that over 50% of fever cases are usually treated informally (Goodman et al.,
2007). Breman (2001) referred to this phenomenon as “ears of hippopotamus” and it is also
commonly known as ‘the iceberg effect” in some public health literature (Donaldson and Gabriel,
2009), where only a few cases are formally treated in the public sector and a significantly larger
burden is untreated or managed at community level (Breman, 2001). Many findings from studies
carried out in Kenya (Amin et al., 2003, Guyatt and Snow, 2004), Rwanda (Saksena et al., 2011)
and Malawi (Kazembe et al., 2007) support this observation. In the Sudan, a country with low
infection rates, a household survey showed that only about 40% of the surveyed population
sought treatment from the public sector where the self-reported two week fever prevalence rate
was approximately 20% (Elmardi et al., 2011). Currently, many national malaria control
programmes discourage presumptive treatment of fever following the WHO recommendation to
the use of parasitological diagnosis using either microscopy or RDTs (World Health

Organization, 2010b, Elmardi et al., 2011, Gitonga et al., 2012).

Severe or complicated malaria can be grouped largely into severe malaria anaemia and cerebral

malaria (Taylor and Molyneux, 2002). The former is characterized by presence of both P.
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falciparum as well as a haemoglobin level of less than or equal to 5 g 100mI™ or up to 7 g 100mlI"
Lin low transmission settings (Taylor and Molyneux, 2002, World Health Organization, 2010a).
For cerebral malaria P. falciparum is present in addition to clinical features of convulsions and
loss of consciousness, usually coma (Marsh and Snow, 1999, Taylor and Molyneux, 2002).
Marsh & Snow (1999) caution that these clinical descriptions although useful, are rather coarse
because in high endemicities, P. falciparum is usually present while at the same time there are
possible multiple causes of anaemia. Other forms of the disease have previously been shown to
overlap with severe respiratory infections such as pneumonia (Akpede et al., 1992, Rooth and
Bjorkman, 1992, Akpede et al., 1993, English et al., 1996, Crawley et al., 1998, Kallander et al.,

2004, Thurmond et al., 2005).
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Figure 1.2 Fever burden treatment protocol

Framework for studying fever treatment behaviour showing the different pathways to treatment and some of the
fever cases self-resolve with no action taken. Treatment may be sought based on several factors broadly classified as
predisposing (age, sex), enabling (socio-economic status (SES) and need (availability, cost) (Aday and Andersen,
1974a). The choice (formal sector or informal sector) vary between different settings. Those that seek treatment in
formal public sector are classified within the public health facility catchments.

1.2.4 Measuring malaria morbidity: Epidemiological models

Malaria risk refers to exposure to the malaria parasite (infection) through the bite of the female
Anopheles mosquitoes that have sporozoites in their salivary glands (Ross, 1910). The morbidity
of a disease is often measured using prevalence or incidence indices (Donaldson and Gabriel,
2009). The former is effectively defined as a ratio of cases observed in a population (point
prevalence), while the latter deals with new cases arising over a time frame (Donaldson and

Gabriel, 2009). Prevalence is usually stated as a rate (Gething et al., 2011b), while incidence
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indices, such as the Annual Parasite Index (API), is useful in identifying the determinants of the
disease in the general population and expressed as number of cases per 1000 population (Pull,
1972, Ray and Beljaev, 1984). This section reviews the common approaches of measuring
transmission.

1.2.6.1 Spleen rate (SR) and parasite rate (PR)

The oldest technique for measuring malaria prevalence in a population (endemicity) is the
occurrence of enlarged spleens, splenomegaly, introduced in 1847 by Demster in India (Gilles,
2002). One of the main functions of the spleen in the human body is to remove infected cells
(Abdalla and Pasvol, 2004). Thus, the prevalence of enlarged spleen or ‘spleen rate’, usually 2-3
times the normal size, is a useful indicator of intensity of malaria transmission (Walter Carr,
1892, Shukla et al., 2011). Historically, the highest incidence of hyper-reactive malaria
splenomegaly (HMS), was reported in West Africa (Adedoyin and Fagbule, 1992, Allam et al.,
2008), in Zambia (Lowenthal et al., 1980) and for Kassalla province in the Sudan (Allam et al.,
2008). Some previous studies have also shown that spleen enlargement can vary based on
genetic factors (Greenwood et al., 1987). Spleen rates have lost importance in modern practice
with advances in malaria parasitological molecular and serological measures that can isolate the

malaria parasites (Shukla et al., 2011).

A popular measure of population prevalence is the percentage of blood smears with malaria
parasites measured using microscopy or RDTs (Hay and Snow, 2006, Hay et al., 2008).
Microscopy is regarded as the gold standard in identifying, detecting and quantifying malaria
parasites (World Health Organizastion, 2011). The advantage of parasite prevalence surveys is

that they can potentially cover large geographical areas (Guerra et al., 2007) even though they
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may fail to provide precise estimates of infection rates as transmission declines. At a national
level, surveys such as the Malaria Indicator Survey (MIS) and the Demographic Health Survey
(DHS) incorporate parasitaemia testing, even though they are primarily powered to provide
information on the coverage of malaria interventions (Roll Back Malaria Monitoring and
Evaluation Reference Group et al., 2005, MEASURE DHS, 2011). Microscopy or RDTs are
used to measure parasitaemia in these surveys. One drawback of surveys in low transmission
settings is the need for larger sample sizes as well as a need for a greater temporal frequency to
adequately capture infection rates (Yekutiel, 1960, Beier et al., 1999).

1.2.6.2 The Force of infection (FOI)

The Force of Infection (FOI), defined as the rate of new infection in the population (Bekessy et
al., 1976, Charlwood et al., 1998), is used as an alternative measure of transmission intensity
although in practice it requires a follow up of a specific population group over a certain period of
time (Yukich et al., 2012). FOI can be measured using different approaches. One approach is the
infant conversion rate, the rate at which prevalence increases in young children. This has been
demonstrated in studies carried out since the 1970s (MacDonald, 1950) and in the example of the
Gambia (Snow et al., 1997). Alternatively, molecular measures have been used (Mueller et al.,
2012). This is usually by genotyping parasites of infected individuals such that an occurrence of
a super-infection, can uniquely be isolated and monitored (Falk et al., 2006, Yukich et al., 2012).
In some low transmission settings, serology has been used to derive FOI using prevalence of
antibodies, since infected individuals can remain sero-positive for a long time after infection
(Drakeley et al., 2005, Corran et al., 2007, Cook et al., 2011). Yukich et al. (2012) show that a
reversible catalytic model (Corran et al., 2007) can be used to transform the age profiles of

previously infected populations to history of infection, thus, deriving the FOI index.
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1.2.6.3 Entomological indices

The reproductive number (Ro) is defined as the number of new individuals infected as a result of
introducing a single case to a susceptible population covering a given period, usually annually
(Dietz, 1993, Smith et al., 2007). The index is therefore better at measuring spread of disease,
and has a historical basis in population and demography (Harrison, 1978) (Macdonald, 1956).
The Ry has important implications for malaria control, especially when it comes to estimating the
effort required to eliminate the disease. Several authors have shown that if Ry is kept low based
on control (Ry <1) then the disease can be eliminated (Smith et al., 2007, Gething et al., 2011b).
Smith et al. (2007) discuss the factors that affect the calculation of Ry such as population density,
population movement, larvae habitat and vector host seeking behaviour including factors that
drive individual biting rate and provide a mathematical model for estimating Ro based on

Entomological Inoculation Rate (EIR) and parasite prevalence.

The EIR is defined as the number of infective mosquito bites per individual for a defined period
of time, for example per annum or day (Macdonald, 1956, 1957). The EIR is therefore measured
as the product of the number of infectious mosquitoes (the sporozoite rate) and the biting rate
(Beier et al., 1999, Hay et al., 2000b) but in practice it is challenging to use this index because of
the challenges posed by non-standardised entomological techniques (Hay et al., 2000b). For
instance, the most direct method of measuring the biting rate is by using human bait and catching
the number of mosquitoes that attempt to feed on the person (Hay et al., 2000b). This, however,
raises ethical concerns around exposing individuals to infections while alternative technigues,
such as light traps, are less attractive because they do not involve direct contact between the
mosquito and humans (Le Goff et al., 1997, Hay et al., 2000b, Smith et al., 2005). In addition,

there are other uncertainties related to the sporozoite rate. For instance, not all sporozoite-
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infected mosquito bites lead to an infection because the amount of sporozoites injected may be
insufficient (Smith et al., 2005). Moreover, there are difficulties in ascertaining whether the
additional bites in an already parasitemic population (in high endemicity) (Snow and Marsh,
2002, Smith et al., 2005) result in super-infections (Charlwood et al., 1998). In low transmission
settings, the reduced number of mosquito catches reduces the effectiveness of using EIR

(Githeko et al., 1996, Hay et al., 2000b).

Of the two indices, EIR is more commonly used compared to Ry, despite it being labour intensive
to estimate and challenging to compare across different sites (Gething et al., 2011b). One study
in two communities in Senegal compared the infant mortality rate (IMR) and the EIR (estimated
through field entomological surveys) and showed that the two were directly proportional,

suggesting a reduction in EIR was related to reduction in IMR (Smith et al., 2004).

1.2.5 The role of surveillance as a method for assessing morbidity and control

The evolution of the word surveillance started in the 1950s as part of eradication programmes
and was used as a means of preventing re-emergence of malaria (World health Organizastion,
1957). According to the WHO, surveillance included the identification of infections,
investigation, elimination of transmission and prevention as well as cure (World Health
Organization, 2007a, 2012a). This could be done on a routine basis in high endemicity areas,
thus, constituting a tool for malaria control (Mueller et al., 2011). The WHO recommended
surveillance to focus interventions in order to eliminate foci transmission in very low
endemicities or where prevalence has been reduced to very low levels to the point that the

disease is not considered a major public health problem (WHO/Regional Office for Africa, 2001,
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WHO/Regional Office for South-East Asia, 2003). Examples include countries in the pre-
elimination or in early consolidation phase (Pull, 1972). There are two broad areas with regard to
surveillance. The first is concerned with determining the incidence of disease including the
identification of cases and foci infections while the second deals with elimination of the

identified cases (Pull, 1972, Ray and Beljaev, 1984).

Identification of incidence comprises both active and passive case detection as well as
parasitological screening of both the febrile and non-febrile cases in foci areas (Ray and Beljaev,
1984). Screening of all individuals ensures that even asymptomatic infections are identified
(Yekutiel, 1960). In high endemicity areas febrile cases are a common phenomenon and have for
a long time been treated as symptomatic infections (Owusu-Agyei et al., 2001). Currently, 41 out
of 44 countries in Africa have adopted the use of parasitological diagnosis of suspected fever
cases prior to treatment under the 2012 WHO T3 (Test, Treat, Track) initiative (World Health
Organization, 2013b, Bastiaens et al., 2014). Approximately 26 countries in SSA have deployed
the use of RDTs at community level. Active case detection involves screening febrile cases at
household or community level at regularized time intervals (weekly or monthly) during
transmission months. Passive case detection identifies cases through health facilities at tertiary
level (hospitals), secondary and at primary level facilities (dispensaries and clinics) (Jie et al.,
1998, Perry et al., 2007). In some health systems community health workers attached to primary
level facilities and private practitioners are additional sources of case identification (Jones et al.,
2008). The current WHO guideline recommends treatment of confirmed uncomplicated cases of
P. falciparum using ACTs. Different guideline exists for special groups such as pregnant women

in the first trimester while a combination of quinine plus tetracycline or doxycycline is
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recommended as the second line (World Health Organization, 2010a). For severe P. falciparum
malaria, intravenous artesunate or quinine is acceptable for both children and adults (World
Health Organization, 2010a). The recommended treatment for P. vivax is a combination of

chloroquine (CQ) and primaquine.

1.3 Review on delivery of healthcare in low income countries

1.3.1 Delivery of healthcare in Sub-Saharan African countries: Public or private
providers?

Healthcare in both high and low income countries is delivered mainly through a mixture of
public and private sectors. Both these sectors refer to organisations as well as institutions that are
responsible for both provision and financing of health services (Bennett, 1992). Thus, public-
sector institutions are usually fully within state control compared to the private sector, where the
state has no exclusive control. Debate has recently developed over the balance of public and
private sector provision with calls to recognize the role of the private sector in developing
countries (Basu et al., 2012). Basu and others report two major lines of arguments with those in
favour of strengthening the public sector pointing to inequalities resulting from private sector
provision since private provision is tailored on the ability to pay (Basu et al., 2012). In contrast,
those championing the private sector system suggest that government-based institutions are
unable to provide sufficient coverage of health services in addition to factors such as poor quality
of services within government facilities (Prata et al., 2005). In terms of utilisation for fever
treatment, approximately 40% of the population globally use the private sector based on
estimates from the household surveys, although the actual estimates vary by country (World

Health Organization, 2013b). Although reliable data on private sector is not usually available,
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estimates from malaria indicator surveys in some countries suggest that the uses of
parasitological diagnosis of suspected fever cases is lower compared to the public sector. Lack of
data on cases seen in the private sector affects the estimates of malaria burden which results in
uncertainty in estimating appropriate treatment needs and surveillance. This rest of this section
outlines the mechanisms and interaction of these two systems in countries in SSA, focusing

mainly on provision rather than financing.

Inefficiency, declining quality of services, long waiting times, lack of hospital beds and
irresponsiveness of providers are some of the challenges facing the public sector in SSA
countries (Bennett, 1992, Quaye, 2010, Flessa et al., 2011, Laudicella et al., 2012). The increase
in demand for services (e.g. from the middle-class population (Berman et al., 1995)) coupled
with reduced expenditure on health has undermined the ability of many public facilities to
provide efficient medical care (Barnighausen and Bloom, 2009, Zikusooka et al., 2009). Figure
1.3 (Page 24) shows general expenditure on health in Sub-Saharan African countries and
suggests public sector expenditure is the smallest component of the total health allocations in
SSA. Policies such as cost sharing and user fees have had a negative impact on utilisation of
publically funded facilities (Gilson, 1997, Nabyonga-Orem et al., 2008, Chuma et al., 2009b,
Hadley, 2011). For instance, public health facilities are limited in coverage in some countries and
operate at regional or district level (Noor et al., 2009b, Noor et al., 2009d). A survey of
providers in three districts in Uganda showed 4.3% constituted publically funded facilities
(Konde-Lule et al., 2010). Noor et al. (2009) showed, in Kenya, the distribution of providers
closely followed the population distribution, but the northern sparsely populated regions were

underserved (Noor et al., 2009b). Another study in three districts in Somalia showed that the

23



public sector comprised approximately 20% of facilities surveyed, but the majority were poorly
equipped, lacked essential medicine and the majority of staff lacked essential training (Noor et
al., 2009d). The latter highlighted some of the challenges faced by the public sector in many
other settings. In Kenya, for example, current policy allows practitioners to render specialist
consultative services to the public within public facilities, after attempts to remove an earlier
directive that allowed physicians to operate private clinics failed (Muthaka et al., 2004). Lessons
from Kenya and other African countries showed that outsourcing of services may often result in
competition in tendering and amongst providers for various services which also may lead to
unfair practices (Bennett, 1992).
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Figure 1.3: Percentage of public, private and out-of-pocket expenditure on health in SSA
Sub-Saharan African data showing the percentage of public, private and out-of-pocket expenditure on health as a
percentage of total GDP at all income levels. Data source: World Bank (World Bank, 2014).

There are two main categories of private providers namely: those for profit, and not-for-profit.
The private for profit sector comprises of independent providers that aim to provide services

based on the ability to pay (Prata et al., 2005). In SSA countries the sector accounts for 30% to
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40% of total health sector expenditure (Figure 1.3 above) and includes private clinics, privately
owned hospitals and nursing homes, pharmaceuticals, drug shop, vendors and informal
traditional practioners, healers or birth attendants (Stekelenburg et al., 2005, Konde-Lule et al.,
2010, Basu et al., 2012). These service providers tend to be located in urban centres with their
location determined by supply-and-demand factors. Carapinha et al. (2011) reviewed the private
healthcare sector in five different countries (Kenya, Uganda, Tanzania, Ghana and Nigeria)
along with financing. In Nigeria, for example, the majority of providers were located in urban
zones and operated independently from government in terms of provision as well as control
(such as staff employment) (Carapinha et al., 2011). Government involvement in private owned
facilities in countries such as Zimbabwe and Tanzania has been through social franchising (such
as training, accreditation, certification and voucher schemes), where clinics and other entities
operated within defined guidelines and subsidies (Kumaranayake et al., 2000, Fiedler and Wight,
2003, Prata et al., 2005). However, regulation by the state has in other settings impacted
negatively on the private sector. For instance, Kumaranayake et al. (2000) indicated that
hospitals reduces staff numbers or removed services in response to various government
regulations aimed at regulating costs. Examples outside Africa on successful application of
franchising were demonstrated in Vietnam (Ngo et al., 2010) and Myanmar (O'Connell et al.,
2011) on reproductive health. In the African context, therefore, the suggestion is to strengthen

regulations and legislation governing healthcare practices (Muthaka et al., 2004).

The private not-for-profit sector consists of charitable, religious and non-governmental
organisation-based healthcare facilities. The private not-for-profit sector may be privately

financed by a charitable or religious organisation but provide services to the general public in a

25



similar way to government hospitals (Bennett, 1992). Therefore, there may be some level of
collaboration with state-owned facilities, since the objectives of the charitable or religious
organisations tend to be similar to those within state control. The sector has largely grown in
many countries for various reasons. For instance, the majority are viewed to be more effective in
service delivery compared to government facilities and there is elevated confidence by external
donors, who provide financial support, due to increased accountability (Bennett, 1992, Berman et
al., 1995). In addition, these providers tend to be located in remote rural areas that tend to reach
out to the marginalized populations. Studies that have examined performance of the religious or
charitable facilities have identified duplication as a major concern due to poor coordination
within the sector (Brugha and Zwi, 1998, Kumaranayake et al., 2000, Muthaka et al., 2004,
Flessa et al., 2011). Another group of facilities that may be identified within this category
includes mobile units, special treatment facilities as well as health driven programmes (Muthaka
et al., 2004). These facilities are usually listed as part of health management information

systems.

1.3.2 The role of Health Management Information Systems (HMIS) in Africa

Typically, a Health Management Information System (HMIS) coordinates the routine acquisition
of data from health facilities (public and private) and compilation of these data through district,
regional and national levels (Abouzahr and Boerma, 2005, Gething et al., 2006, Boerma and
Stansfield, 2007) (Figure 1.4). An ideal HMIS, therefore, requires all health facilities to submit
reports in all months throughout the year. These include routine disease morbidity data through
facilities (passive case detection) and any cases detected at household level (active case
detection), mortality rates, determinants such as access, coverage, quality of care, costs and
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expenditure. Such data form an integral part of healthcare delivery and are useful for planning,
resource allocation as well as assessment of interventions and disease monitoring (WHO/AFRO,
2001, Abouzahr and Boerma, 2005). Within different healthcare systems, tools such as
registration forms, patient admission records and clinic data collection forms, district and
household surveys are used routinely to gather such data (Teich, 1998, Husk and Waxman,
2004). In reality, however, HMIS are often incomplete in many African countries and many
health facilities never report (Gething et al., 2006). In addition, only a proportion of cases
present in the formal sector a phenomenon known as the ‘iceberg effect’ (Donaldson and
Gabriel, 2009). Some of the factors contributing to low facility utilisation include availability of
health services, financial factors, geographic access and waiting times at facilities (Breman,
2001). Studies carried out in Kenya suggested cost, distance and opening times as some of the
main factors influencing choice and decision to seek treatment in either a public or private sector
(Noor et al., 2006, Chuma et al., 2010). Another study in four sites of varying endemicity in
Ethiopia by Mustafa et al. (2009) found that only about 27% of suspected febrile cases sought
treatment from the informal sector and a similar percentage chose self treatment while in a rural
district in Zambia, Kalabo district, Stekelenburg study suggested high preference to seek
treatment from a traditional healer (62% for women), although not as a result of fever
(Stekelenburg et al., 2005). Indeed, in many settings in SSA, multiple treatment from multiple
providers is a common occurrence (Kizito et al., 2012) and these in addition to under-reporting
make the use of HMIS data difficult for applications such as estimating the disease burden or

commaodity needs.
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Recently, efforts have been placed on identifying the type, extent and causes of failings of HMIS
in developing countries and on developing strategies for improvement. Examples of these
include the Health Metrics Network (HMN) (World Health Organization, 2008),
PARIS21(OECD, 2012), the INDEPTH network (INDEPTH, 2012) and the Integrated Disease
Surveillance and Response (IDSR) initiative (WHO/AFRO, 2001). These initiatives are aimed at
strengthening health systems in developing countries to be able to generate timely health
information useful for decision making at facility, district or national levels. An example of such
a collaboration that was launched in 2006 was between the Zambia Ministry of Health (MoH)
and the HMN. The HMN supported the Zambia and Eritrea in improving the status of its health
information system (HIS) and formulating plans to streamline the HIS to improve performance
(Ministry of Health and HMN, 2007). However, until the HMIS improves, various ministries of
health in sub-Saharan Africa have little choice but to make critical public health decisions based
on grossly inadequate data, often using crude estimates of national and regional burdens
(Cibulskis et al., 2011, Mueller et al., 2011). To overcome some of the failings of HMIS or vital
registration systems nationally representative demographic and health household surveys have

been conducted in almost all countries in SSA since the 1980s.
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1.3.3 The role of health facilities as a component of the health system and in disease burden
estimation

Health facilities form an important component of a health system as they serve as the main
centres for provision of services and also are used to depict system organization spatially (World
Health Organization, 2000a). They provide information on the supply side. Information on
healthcare need is predominantly provided through household surveys such as the DHS
(Lindelow and Wagstaff, 2003). Increased attention is now being targeted at health facilities, in a
bid to understand inefficiency, quality of service provision, inequalities of distribution and
financing (Lu et al., 2014). Policies such as direct financing are being piloted in an effort to

improve utilisation (Chuma and Okungu, 2011).

Although the use of facilities is influenced by different factors, the extent to which individuals
interact with formal healthcare facilities reflects their availability and accessibility. In most rural
settings in low income countries, family and friends provide first care before treatment is sought
either from the private sector or the public sector (Clausen et al., 2000, Dzator and Asafu-
Adjaye, 2004, Deressa, 2007, Abu-Mourad et al., 2008). Understanding of issues of planning and

inequality in service provision can be improved with knowledge on service providers.

Health facilities provide an alternative data source for measuring disease burden and complement
the existing community-based parasite prevalence. They also form the first line surveillance
mechanisms for detecting disease epidemics within the population. In low transmission malaria
settings, passive cases recorded at health facility can complement the deficiencies of the parasite

rate approach. One advantage in using health facility data for disease burden estimation relates to
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data being abundant in space since the spatial distribution of health facilities is likely to be
congruent with the population distribution, for example, in Kenya (Noor et al., 2009b). The other
advantage is data are often collected in an ongoing manner (Mueller et al., 2011). The
implication is that data are likely to cover a wider geographic area, relate to the population and

be useful in identifying seasonal dynamics of disease.

However, there are challenges in using health facility data. First, available health facility data
from most malaria-endemic countries are based on clinical diagnosis of malaria. Approximately
26 countries out of 44 malaria-endemic countries in SSA have only rolled out the use of RDTs.
Secondly, even where HMIS is better, only a sub-set of health facilities regularly report data and
of these even fewer report every month of year and mainly from the public health sector
(Gething et al., 2006, Boerma and Stansfield, 2007, Gething et al., 2007) resulting in incomplete
data both spatially and temporally. Additionally, only a subset of fever cases is seen in the formal
sector. The variation in utilisation (public and private) affects malaria burden estimation.
Utilisation is driven by both human and health system factors.

1.3.3.1 Organisation and spatial location of health facilities

There is a difference between the location of a health facility and location of health services.
Health facility location deals with the physical location while the latter requires an additional
input of services offered at the facility (Cromley and McLafferty, 2002). Services could,
therefore, operate within the confines of other services. The World Health Organisation 2006
report suggested that poor organisation contributes to poor delivery of healthcare (World Health
Organizastion, 2006). One of the reasons for poor service delivery is that facility location may be

based on pragmatic decisions that fail to consider user behaviour, distance and other
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determinants of utilisation (Kiwanuka et al., 2008). In Kenya, the northern region had the least
coverage of health facilities even after a considerable growth in the number of facilities over a
five year period (Noor et al., 2009b). In Bangladesh a survey in 1997 showed that only about
40% of the population were covered in 1997 through a special government survey (Government
of Bangladesh, 1998, Rahman and Smith, 1999) and the results were subsequently used to
improve primary healthcare (Omer et al., 2011). The study in Bangladesh demonstrated that
provider location information can be useful in understanding healthcare need and can be used in
the allocation of health workers to specific population groups. Location can be optimized based
on provider-to-population ratios or using algorithms that minimize the distance between

population and health facility (Cromley and McLafferty, 2002).

1.3.4 The role of national household surveys as a source of data for health in low income
countries

Household surveys are increasingly being used to provide information on demographics and
disease burden (Donaldson and Gabriel, 2009). These surveys, for example, the DHS and the
MICS, can be used to compare various demographic and health indicators between different
countries. Other household surveys are carried out by the national statistical bureaus such as the
integrated household budget surveys, welfare monitoring surveys and economic surveys that
provide specific information useful to national planning departments. This section will examine

the DHS in depth along with the MIS.

The DHS were initiated in mid-1984 by the United States Agency for International Development

(USAID) as an extension to the World Fertility Surveys (WFS) and the Contraceptive Prevalence
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Surveys (CPS) to monitor key population and health indicators in developing nations
(MEASURE DHS, 2011, Short Fabic et al., 2012). The WFS and CPS mainly provided
indicators on reproductive health in the 1970s and early 1980s (Short Fabic et al., 2012). The
DHS are nationally representative with large sample sizes, usually more than 30,000 individuals,
targeting both gender groups using standardised questionnaires. Currently, the DHS is conducted
in 90 countries worldwide, 44 in Sub-Saharan Africa (Figure 1.5 Page 35). Other regions include
central, south and south east Asia, Latin America and the Caribbean as well as some countries in
the Euro-Asia region such as Turkey (MEASURE DHS, 2011). To date, over 250 surveys have
been completed, providing information on reproductive health, fertility, population
demographics and general health status, nutrition, household characteristics, socio-economic
status and infant and child mortality rates (MEASURE DHS, 2011). The HIV module was
introduced in 2001 as an additional component while a malaria parasitaemia module was added
in 2006 (Short Fabic et al., 2012). The MEASURE DHS programme also supports other surveys
such as the AlIDs Indicator Survey (AlS), the MIS, Key Indicator Survey (KIS) and the Service

Provision Assessment survey (SPA) (MEASURE DHS, 2011).

The AIS provide data for monitoring HIVV/AIDS indicators and may include blood testing but
usually has a smaller sample size compared to DHS. Some AIS surveys also incorporate malaria
testing, for example, the Tanzania 2007-2008 AIS (Tanzania Commission for AIDS (TACAIDS)
et al., 2008). The tools used in the MIS module were developed by the Monitoring and
Evaluation Reference Group (MERG) or Roll Back Malaria (RBM) (Roll Back Malaria
Monitoring and Evaluation Reference Group et al., 2005). In most countries MIS are carried out

during malaria transmission months and they also provide key information on malaria
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interventions such as the use of mosquito nets amongst high risk groups (children under the age
of five years as well as pregnant women), access and use of effective anti-malarial drugs and
coverage of IRS (Roll Back Malaria Monitoring and Evaluation Reference Group et al., 2005).
Over 20 MIS surveys have to date been completed since 2006 and data are provided through the
malaria surveys data portal as well as through the Measure DHS. KIS is designed to provide
information about health programs at regional or district levels on planning, child and maternal
health and infectious diseases but not relevant for providing data on treatment seeking behaviour

for fever (MEASURE DHS, 2011).

Modern DHS survey design is based on two-stage cluster sampling in which clusters, usually
Enumeration Areas (EAS), are selected in a first stage and a sample of households selected at the
second stage from a household list within the selected cluster (Macro International Inc., 1996).
Sampling is usually based on proportion-to-population size in the cluster although in some
countries clusters are oversampled in sparsely populated regions to obtain sufficient estimates of
indicators, for example, in the Malawi 2010 DHS (National Statistical Office (NSO) and ICF
Macro, 2011). These may also apply to urban clusters for areas where urban centres are small
(Macro International Inc., 1996). A cluster usually consists of approximately 15 to 30 households
geo-referenced using a global positioning systems (GPS) receivers (Macro International Inc.,
1996) with an induced positional error of up to 5 km for rural clusters and 2 km in the urban
clusters (MEASURE DHS, 2011). It is worth noting that some MIS surveys provide geographic
coordinates at the household level. As data from these surveys become available in the public
domain, they have increasingly been used to study different research questions (Short Fabic et

al., 2012).
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National Household Surveys (since 2005)
No DHS/MIS
At least 1 DHS/AISIMIS

Figure 1.5: Global coverage of nationally representative household surveys
Map showing countries that have conducted a DHS, MIS or AIS survey since 2005 and those with no malaria risk
masked out in grey.

1.3.5 The role of Service Provider Assessment surveys (SPAS) in developing countries
Unlike the MIS, DHS or AIS that are carried out at the household level, the SPA surveys are
carried out in health facilities. SPAs are part of the MEASURE DHS and provide information on
health facility characteristics, child and maternal health, family planning, diseases such as
malaria, TB and HIV/AIDS and sexually transmitted infections (STls) (MEASURE DHS, 2011).
The aim of SPAs is to assess the ability of health facilities to provide various services to the

population.

Usually a sample of approximately 400-600 facilities is selected from a national census list of
health facilities for countries with a greater density of health facilities. In countries with a small
number of providers, such as Namibia, all health facilities are usually surveyed (Ministry of
Health and Social Services, 2010a) (MEASURE DHS, 2011). Survey tools include: (a) facility
audit questionnaires meant to provides information on drug availability, equipment, cost and

infrastructure; (b) an observational questionnaire that provides information on patient-physician
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interactions and family planning; (c) a health worker questionnaire aimed at providing
information on training, qualifications and supervision and (d) the patient exit interview
guestionnaire on client perception and satisfaction with health services (MEASURE DHS, 2011).
In some surveys, additional country-specific questions are included, for example, in Zambia
where HIVV/AIDs modules were incorporated and in Kenya on obstetrics services (MEASURE
DHS, 2011). SPA datasets are disseminated in a similar manner to the DHS and MIS surveys. In

this thesis, Namibia analysis utilise data from SPA survey.

1.4 Access and utilisation

1.4.1 Definitions and concepts of healthcare access

In many sub-Saharan countries, poor access to healthcare services contributes to poor health
outcomes (World Health Organization, 2000b, O'Meara et al., 2009, Moisi et al., 2011). An
important factor in measuring the performance of a healthcare system is the understanding of
provision, access and use of healthcare facilities. Aspects of informal healthcare delivery
(treatment at home) were discussed in section 1.3. This section outlines in general the concepts

of access to formal healthcare service through public or private sectors.

Access is a concept in geographic health that refers to the ability and willingness to use a
healthcare facility when there is a need, thus gaining entry into the healthcare system (Aday and
Andersen, 1974a, Cromley and McLafferty, 2002). This definition is adopted in this thesis and
encompasses the five concepts defined by Penchansky and Thomas (1981). This include:
availability, geographic (physical) accessibility, accommodation, affordability and acceptability

(Penchansky and Thomas, 1981). Availability relates to the ability of various health authorities
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or governments to supply health services to the population when in demand (Aday and
Andersen, 1974a, Joseph and Phillips, 1984, Cromley and McLafferty, 2002). It includes not
only the physical location of a health facility but also the services offered at that facility (Higgs,
2004). Accessibility refers to physical or geographic barriers such as distance or travel time as
well as direct costs such as those incurred from commuting (Gething et al., 2004, Noor et al.,
2006, Schuurman et al., 2006, Tanser et al., 2006, Moisi et al., 2011). Accommodation refers to
the organisation of these services in order to meet demand, often measured using waiting times
(Aday and Andersen, 1974a, Cromley and McLafferty, 2002). Waiting time not only refers to the
delay in seeking care but could also refer to the time taken at a health facility before seeing a
physician (Dzator and Asafu-Adjaye, 2004, Deressa, 2007). Affordability is the ability to meet
financial obligations related to medical services (Aday and Andersen, 1974a, Penchansky and
Thomas, 1981). Modes of financing healthcare vary based on national health policies and control
from the state (Joseph and Phillips, 1984, Bullen et al., 1996). Policies such as out-of-pocket
payment may impact negatively on healthcare provision (Dzator and Asafu-Adjaye, 2004,
Chuma and Okungu, 2011). Lastly, acceptability generally refers to choice based on gender,
culture, ethnicity and many other social factors (Haas et al., 2004). These factors influence the
behaviour and ability to access health services in different contexts. Of these five dimensions,
accessibility and availability are spatial measures. Availability relates to provider physical
location while accessibility can be derived spatially using metrics such as distance. The other
three dimensions of access are considered to be a-spatial because they are dependent on non-
spatial metrics such as cost, socio-demographics and health system organisation (Guagliardo,

2004).
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Utilisation is a far less well understood concept. There are several methods of analysing
utilisation, one of them being the calculation of potential use as an indicator of probable entry
into a healthcare system (Shannon et al., 1975, Khan, 1992, Khan and Bhardwaj, 1994,
Guagliardo, 2004, Apparicio et al., 2008). Previous research on utilization has been carried out
mainly at the village level or in specific lower level administrative boundaries such as districts or
counties (Leonard et al., 2002, Noor et al., 2006, Tanser et al., 2006). In addition, the focus is
usually on a single or combination of factors categorized as ‘enabling’, ‘predisposing’ or ‘need’
as proposed by Andersen (1983) (Andersen et al., 1983). Integrating these factors into a single
model is challenging. For example, it is difficult to quantify factors based on individual
perceived level of illness or disease severity, while quality of care, for instance, has been defined
based on patient satisfaction or health system infrastructure (Rosenberg and Hanlon, 1996, Kizito
et al., 2012). A study in Nigeria defined technical quality of care as effectiveness in achieving
desired health gains, showing that when quality of care is based on patient satisfaction, this does
not necessarily imply quality (Onwujekwe et al., 2011). Even though the actual utilisation is
defined by a complex interaction of several factors, most users seek treatment from multiple
sources. Secondly, treatment seeking often starts with the use of the informal sector such as drug

shops and home management (Littrell et al., 2011).

As a result, measuring access and utilisation are usually dependent on the level at which data are
collected and they may not incorporate all behavioural aspects of use. Existing national survey
data usually lack information on the name of facility used by household members although this
may be modelled by triangulating data on use with information on location reported type of

health facility to derive catchments.
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1.4.2 Review of geographic access concept

People make the decision to seek medical care when there is a perceived need based on the
nature of an illness (Rosenberg and Hanlon, 1996). In most cases, it depends on the nature of the
illness and knowledge which may determine whether diagnosis and subsequent treatment will be
sought (Girt, 1973, Young, 2004). The choice of a particular provider depends on several factors
such as health provider characteristics, financing (user fees) or travel cost, availability of health
insurance, cultural and other socio-demographic factors (Nemet and Bailey, 2000, Cromley and
McLafferty, 2002). Patient flow from households to providers creates a spatial pattern in
geographic space. The pattern can be characterised based on different approaches such as
distance or travel times (Cromley and McLafferty, 2002). Proximity is one such measure of
spatial access (Stouffer, 1940) and the distance decay curve, a plot of distance (x-axis) against
probability of using a healthcare provider (y-axis) has previously been demonstrated in numerous
studies and reviews (Jehlik and McNamara, 1952, Shannon et al., 1969, Girt, 1973, Connor et
al., 1994, Apparicio et al., 2008). The hypothesis of using this curve is that utilisation declines
with increasing distance between provider and client (patient) (Cromley and McLafferty, 2002).
Thus, it is highly unlikely that patients will use a facility located farther from place of residence

due to the increasing cost of travel.

Several metrics that use distance have been devised to measure access. The first is distance to the
nearest provider using a straight line (Euclidean) measure between patient location (household)
and health provider. A review by Shannon et al. (1969) suggests that this is the oldest technique
in using distance that has remained popular since the 1950s (Wilson and Metzler, 1938, Jehlik

and McNamara, 1952, Ciocco et al., 1954). Wilson and Meltzer (1938) discuss utilization of
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healthcare facilities in the Arkansas area and demonstrate distance as the main limiting factor
using a decay function. Jehlik and McNamara (1952) describe the utilization of facilities amongst
rural and semi-rural populations, demonstrating the association of distance with incidence of
morbidity in Missouri. Similar studies were also carried out by Ciocco and Altman (1954) in
Pennsylvania albeit with use of a sophisticated technique of a hyperbolic function while
investigating distances travelled by patients in accessing medical services and physicians. The
notable contribution by Ciocco and Altman was that utilisation varied inversely with distance
(Shannon et al., 1969). Girt (1973) investigated the use of distance using a similar technique in
Newfoundland, Canada, employing three different distance decay curves while characterizing
patients’ consultation patterns (Girt, 1973). Ingram and colleagues (1978) investigated aspects of
time as well as distance decay while examining the relationship between access to emergency
services and distance. A distance decay curve was subsequently used in the study to derive a

catchment area as a concentric circle, around Humber memorial hospital (Ingram et al., 1978).

In Africa, Stock (1983) used distance models in Kano state, Nigeria, to characterise different
access patterns based on facility ownership, gender and seasonality. Stock’s study depicted
different effects of distance on use of health facilities (Stock, 1983). Okafor (1984) similarly
used straight line distances to measure accessibility to general hospitals and subsequently
delineated rural local government health regions in Bendel state, Nigeria. Muller et al. (1998)
also used the concept of distance decay in Papua New Guinea, observing that attendance dropped
by 50% after 3.5 km to the facility and subsequently introduced the use of non-linear curves in

measuring utilization (Muller et al., 1998).
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Studies carried out in the 1990s continued to demonstrate the importance of distance in access to
health service even after controlling for other socio-demographic factors. Haynes and others
(1999) controlled for age, nature of illness (acute, psychiatric, emergency), socio-economic
factors and showed that inpatient utilisation dropped with increasing distance (Haynes et al.,
1999). An investigation amongst the elderly population in Orleans County in Vermont State,
U.S, showed that the majority of the elderly population that sought care travelled shorter
distances (Nemet and Bailey, 2000). Buor (2003) also showed that distance is an important factor
explaining utilization after controlling for service and transport cost, education level of patient,
income and waiting time in Ghana (Buor, 2003). Studies in Kenya by Gething et al. (2004) used
straight line distance (Thiessen polygons) while delineating catchments for various facilities
based on fuzzy logic while Noor et al. (2006) compared straight line distances to those calculated
using a sophisticated transect algorithm. The latter study by Noor and colleagues highlighted
deficiencies in the use of Euclidean distances as they tended to overestimate coverage (Gething
et al., 2004, Noor et al., 2006). In recent times, the use of drive times, distance along roads, and
cost surface has been used in access based models (Schuurman et al., 2006, Tanser et al., 2006,
Apparicio et al., 2008) (Schuurman et al., 2006, Owen et al., 2011, Alegana et al., 2012). These
approaches highlight proximity as a factor in utilisation but the approach of using the Euclidean
model, as illustrated by Noor et al., (2006) amongst other studies, assumes the phenomenon of
interaction with other service providers and may overestimate coverage or remoteness within the

defined geographic space.

A different approach of using provider-to-population ratios does not measure distance directly

but requires description of the population served by a provider. The number of providers in a
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predefined geographic space is usually combined with population estimates to create a ratio of
number of people to one provider or physician. Such ratios were used by De Vise (1966) in a
study of the distribution of personnel and health facilities in Chicago, U.S., (DeVise and
Chicago, 1966) and by Schonfeld et al. (1972) in assessing the number of physicians required.
The latter study was used to propose measures such as decreasing physicians’ patient noncontact
time and increasing the number of medical students in an attempt to increase coverage
(Schonfeld et al., 1972). In America, provider-population ratios were prescribed as one of
several criteria for allocating human resources (stated as 3,500 people to 1 physician) by the
Health Education and Welfare (HEW) department in 1978 (Dutt et al., 1986). This approach was
also used in the NHS while identifying the local health authority areas as reviewed by Bullen et
al. (1996). The disadvantage of this method, however, relates to assigning precise population
estimates for a spatial region (Bullen et al., 1996). Census data are usually assigned to a polygon
while the actual population may vary spatially (Briggs et al., 2007), thus, a single ratio for each
polygon is a crude measure of actual case loads per physician or provider. In addition, the actual
flow of patient from place of residence to provider is not taken into account when using this
approach. The latter will also apply where a mean distance to n number of providers is used
(Apparicio and Seguin, 2006, Apparicio et al., 2008), and can also be used as a density measure
(Cromley and McLafferty, 2010). Density approaches also vary depending on the size and shape
of polygons (Parenteau and Sawada, 2011). Raster approaches using the kernel density method
(Guagliardo, 2004) are not appropriate for rural areas where providers are sparsely distributed

(Cromley and McLafferty, 2010).
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The flow of patients from place of residence to provider is spatially measured using spatial
interaction models (Shannon et al., 1969, Bailey and Gatrell, 1995, Apparicio et al., 2008).
Bailey and Gatrell (1995) compare such spatial models to Newton’s gravitational model of the
form:

Y; :Z(sj /dif)
Where, a household member could travel from the origin i to destination j; the attractiveness s
is analogous to the masses in a gravity model and the distance component d depends on a

coefficient 5 which also dictates the shape of the decay curve. Thus, the greater the distance or

travel time, the smaller the interaction term (v,). The summation in the equation is analogous to

area potential. An early attempt at such a model was by Ciocco and Altman (1954), in
Pittsburgh, while investigating flow between counties using hyperbolic functions of the form
Y =a/x* with Y in the equation representing the frequency of visits to general practioners, which

varied inversely to the distance (x) and some exponential parameter b (negative if the frequency

decreased with increasing distance) (Anderson, 1956). If no provider characteristic is used, the

numerator (a) reduces to unity. Girt (1973) discusses the exponential quadratic forms deriving

conditional probabilities based on consultation patterns in sample data from Newfoundland.
Linear forms were discussed by Anderson (1996) by introducing an exponential constant. Thill
and Kim (2005) illustrated the versatility of the gravity modelling approach using different forms
(exponential, log-exponential, power and Gaussian) in characterizing travel by individuals.
Statistical methods have in the past been used to depict the optimal spatial pattern (Thill and

Kim, 2005) some approaches favouring the log-logistic decay form (De Vries et al., 2009) while
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others like in Kwan (1998) proposing a Gaussian instead of power or exponential models (Kwan,

1998, Wang, 2007, Cromley and McLafferty, 2010).

1.4.3 The measurement of distance in GIS
The distance component is the most important in any selected geographic access model. It
represents the separation between the origin and destination. The simplest form reviewed in the

preceding section is the straight line distance, calculated using spatial locations (x,,x,) and (y,,y,)

as:

D=0 % F + (v~ v ]
The above equation applies for two points close enough in space such that the Earth’s curvature
can be ignored. Otherwise, spherical distances are usually calculated using polar coordinates
with an additional correction for the Earth’s curvature (Cromley and McLafferty, 2010). The
weakness in this form of distance calculation is that physical barriers (topographic effects) are
not taken into account. Network distances based on network grids are an alternative (Schuurman
et al., 2006, Apparicio et al., 2008) or Manhattan distances measured along a coordinate grid
(Cromley and McLafferty, 2010). The Manhattan distance is calculated as:

D= (%= %) [+](Ya=Yo) |
Internet based tools such as Google Maps ® and Bing Maps ® can estimate the network-based
distance readily in addition to mainstream software applications such as ArcGIS (ESRI,
Redlands, CA). The disadvantage of the internet tools is that the light-weight software only
handle single query calculations, for example, estimating journey distance from one origin to a
destination. The ArcGIS (ESRI, Redlands, CA) network analyst extension tool can calculate

service areas for facilities with a road network grid as input data, although it is difficult to
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calculate actual distance over complex networks with overpasses and intersections or when
information on terminal changes, bus stops or waiting times is unavailable (Martin et al., 1998,

Martin et al., 2008).

Other studies have preferred the use of measures such as drive times (Jordan et al., 2004). Clark
et al. (1969) used an economic index model, analogous to the gravity model (Clark et al., 1969),
while calculating the economic potential of regions in Western Europe. The study derived maps
showing line of equal economic potential (Clark et al., 1969). The study by Jordan and others
(2004) in south west England showed a high correlation between drive time to health services
and straight line distance. Modern use of trip data in developed countries aims at using modal
splits where trips made using a train, for example, are assigned to train routes, buses to bus
routes or walking to a limited road network (de Dios Ortzar and Willumsen, Black, 1981). The
method, thus relies heavily on the nature of the transport network within a country and
availability of information on different types of transport modes used by a patient. In other
approaches, friction surfaces have been preferred (Leonard et al., 2002, Martin et al., 2002,
Tanser et al., 2006, Ray and Ebener, 2008). Martin et al. (2002) derived a cost surface using
travel time to public and private health providers in Cornwall, in England. Friction surfaces have
also been shown to perform better where different modes of transport are used such as vehicular
as well as walking and travel speeds for these categorized modes can be varied (Tanser et al.,
2006, Rodrigue et al., 2009, Alegana et al., 2012).

1.4.4 Analysing utilisation of health facilities

A classical measure of utilization is by observing true rates of use at a health facility and

comparing the rate against expected population (Densen, 1972, Aday and Andersen, 1974a). This
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approach is referred to as realized or revealed access (Cromley and McLafferty, 2002). This
method relies on recording the number of visits on a monthly basis and comparing to the
expected utilisation based on the catchment population. Aday and Andersen (1974) observe that
such usage rates can be analysed based on facility type, site, purpose (preventive or curative) and
frequency of visits. Although this method is attractive to use since it is based on actual patient
data, generalization is not straight forward. For instance, in low income countries, the treatment
seeking pattern is not uniform, there are multiple sources of drugs and there is the problem of
defining expected population (Agyepong and Manderson, 1994, McCombie, 1996, Goodman et

al., 2007).

A different approach of measuring utilisation is by using potential access (Khan, 1992, Khan and
Bhardwaj, 1994, Ensor and Cooper, 2002, Guagliardo, 2004). The terms potential spatial access
and potential aspatial access have been used previously, with the first derived based on spatial
metrics such as distance while the second approach uses non-spatial metrics such as cost, socio-
economic status, gender, age and cultural factors (Khan, 1992, Khan and Bhardwaj, 1994).
Implementations of both approaches vary substantially from simple distance models (NoorAli et
al., 1999, Noor et al., 2003, Jordan et al., 2004), gravity models (Wang, 2007, De Vries et al.,
2009) to statistical and qualitative assessment (Rutebemberwa et al., 2009, Comber et al., 2011,
Hadley, 2011) or using small area estimation (Joseph and Phillips, 1984, Cromley and

McLafferty, 2002).

In summary, the classifications are based on the healthcare systems as well as a description of

the denominator population. Thiessen polygons and provider-to-population ratios assume
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uniform use and fail to account for interaction between different service providers. Statistical
and gravity models may be more accurate if population and provider characteristics are

accounted for. They may also be used subsequently to derive health facility service areas.

1.4.5 Various types of health facility catchments

A catchment represents a zone around an entity (such as a health facility) that draws the majority
of users (patients) (Cromley and McLafferty, 2002, Schuurman et al., 2006). The natural size of
the catchment area may vary depending on factors such as the underlying population distribution,
population utilisation pattern and facility attractiveness (Ensor and Cooper, 2002, Gething et al.,
2006, Noor et al., 2006). In some cases, the size of the catchment is fixed (a mandated
catchment) based on government regulation (Jenkins and Campbell, 1996). However,
catchments may overlap where facilities are close to each other in space, a phenomenon that
depicts competition between providers (Schuurman et al., 2006). In health related studies,
knowledge of catchment areas is useful in understanding access, utilisation and in estimating

disease burden.

1.4.5.1 Natural catchments

Natural catchments delineate regions from which patients are drawn given enabling factors such
as distance, travel time, cost, quality of service or cultural factors (Cromley and McLafferty,
2002). Natural catchments have been discussed in a school context (Parsons et al., 2000, Martin
and Atkinson, 2001) but far less in health research with complexities in representing spatial and
non-spatial dimensions. In sparsely populated regions where only one facility may exist, the

natural catchment may draw the whole population of the region. Natural catchments may also
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overlap especially where there is a dense distribution of facilities (Cromley and McLafferty,
2002). Tanser et al. (2001) represented natural catchments for facilities in various rural districts
in South Africa by plotting the households where patients originated. The natural catchments in
the study areas overlapped where two facilities were located in close proximity as well as at the
border of the study district (Tanser et al., 2001). At such boundaries, utilisation was effectively
evaluated using household surveys (Tanser et al., 2001). A similar approach was carried out in
Kenya but using a fuzzy classification based on reported use (Gething et al., 2004).

1.4.5.2 Mandated catchments

Mandated catchments are common in systems where patients are assigned to various healthcare
providers through a registration system. An example of the mandated catchment could be drawn
from the implementation of the National Health Service (NHS) in Great Britain where general
practitioners (GPs) were required to serve certain population groups (Bullen et al., 1996, Jenkins
and Campbell, 1996). The GPs were generally required to provide the geographic extent of areas
served although no regulation was provided to control size of the service areas (Jenkins and
Campbell, 1996). In modern practice, such service areas can easily be allocated using Thiessen
(Voronoi) polygons with the aim of having an equal area share (Burrough and McDonnell, 1998)
or using buffers based on distance. Mandated catchment populations are usually affected by
changes in residential addresses (e.g. postcode) or population movement (Cromley and
McLafferty, 2002). Moreover, methods such as VVoronoi polygons may also fail to account for
competition between different providers (Jenkins and Campbell, 1996, Cromley and McLafferty,

2002).
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1.4.5.3 Empirical catchments

Empirical catchments are based on observational relationships between a patient’s location and
use of health facilities (Cromley and McLafferty, 2002). Although the form of geographic
analysis deployed is usually based on constraining of a spatial interaction model (Bailey and
Gatrell, 1995) based on distance or travel time, they are generally not very different from natural
catchments especially in sparsely spatially distributed facility locations (Bullen et al., 1996).
Where information on patient flow is unavailable, theoretical analysis based on Thiessen
polygons may be adopted (Noor et al., 2006). In a developing country context, such as Kenya
and Namibia, empirical catchments were derived from household surveys that define patient
location, triangulated with facility location information (Noor et al., 2006, Tanser et al., 2006).
In developed countries, such as Canada and Great Britain, such catchment areas have in the past
been derived based on population movement between place of residence and facility location
(Roos, 1993, Bullen et al., 1996, Schuurman et al., 2006, Zinszer et al., 2010).

1.4.5.4 Two-Step floating catchment area (2SFCA)

The 2SFCA method was proposed by Luo and Wang (2003) to measure relative accessibility
between different service areas in Chicago. The method as summarized by Cromley and
Mclafferty (2010) requires input of service provider locations, population centres as well as some
measure of facility capacity. First, a threshold distance or travel time is determined and used to
calculate service areas around facilities. Provider-to-populations ratios are subsequently derived
for each provider. Secondly, the population centres are used to search for number of providers
within a pre-defined threshold distance. Provider-to-population ratios calculated in the first step
are then summed for the number of providers within the population centroid, thereby,

highlighting regions with greater access (Luo and Wang, 2003, Luo, 2004, Cromley and
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McLafferty, 2010). Luo (2004) used this method to measure relative physician need in north
Illinois by first drawing catchments (buffers) based on the maximum distance that an individual
is willing to travel and measuring relative accessibility based on census tract centroids. The
method as outlined by Luo and Qi (2009) has two main deficiencies related to the use of
Euclidean distance measures or the use of circular buffers while calculating the provider ratio
leaves out providers outside the catchment. An enhanced approach to this method involves
incorporating distance decay functions by introducing a weighted distance from provider to
population (Luo and Qi, 2009) while other methods have incorporated demand as well as

provider characteristics for optimization (Ngui and Apparicio, 2011).

1.4.6 Factors affecting the measurement of healthcare access and utilisation

Several factors affect utilization of healthcare services. These can be grouped largely into three
categories classed as need or individual (perception of illness, age, gender, cultural); enabling
(cost and socio-economic) and provider specific (Distance, quality of care, size, attitude of

physician, waiting time) (Aday and Andersen, 1974b, Joseph and Phillips, 1984).

Distance or travel time has already been studied at great length with most studies demonstrating
it as the most important factor before an individual decides to seek medical care (Airey, 1989,
1992, Buor, 2003, Moisi et al., 2011). Thus, patients are unlikely to travel a larger distance to a
provider due to increasing cost in addition to other factors such as cultural identification or lack
of familiarity with farther providers (Kloos, 1990). Studies by Airey (1989 and (1992) showed
that improving road condition may improve utilisation rates observed at health facilities. Another

example by Miosi et al. (2012) showed that increasing travel time to health facility was
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associated with greater disease severity. However, some studies have also identified the
phenomenon of by-passing of facilities (Akin and Hutchinson, 1999, Leonard et al., 2002). The
majority of such cases are usually either due to referral to a higher level facility with specialized
treatment or seeking better quality of care (Girt, 1973, Roghmann and Zastowny, 1979, NoorAli
et al., 1999). Kloos (1990) illustrated that women are unlikely to seek medical treatment when
certain services are administered by male practitioners. Other behavioural factors relate to staff
attitudes towards clients, opening hours and availability of medicine (Jayawardene, 1993,

Williams and Jones, 2004).

1.5 Disease Mapping

1.5.1 Review of disease mapping approaches in Africa

Disease maps are being used increasingly as tools for decision making in many malaria control
programmes. They are useful tools for assessing the impact of various interventions and
understanding populations at risk. Historical disease maps were based on expert opinion with
simple geographic representation and lacked modern spatiotemporal analysis (Lysenko and
Semashko, 1968). Recently, there has been a remarkable improvement in the assembly of
malaria data as well as in mapping risk (Snow et al., 2005, Hay and Snow, 2006, Guerra et al.,
2008, Gething et al., 2011b) at continental and global level (Guerra et al., 2007, Snow et al.,
2012). At county level, household surveys such as the MIS are useful (Roll Back Malaria
Monitoring and Evaluation Reference Group et al., 2005) in providing disease data and

complement the national level surveillance system data from health facilities.
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Remote sensing and GIS tools emerged in the late 1990s and early 2000s in the production of
disease maps (Omumbo et al., 1998, Craig et al., 1999, Kleinschmidt et al., 2000). Remote
sensing is a scientific tool that broadly involves the study of phenomena at a distance, but focus
on Earth observation based on reflected or emitted electromagnetic energy (Campbell and
Wynne, 2011). GIS on the other hand is an information system involving collection, assembly,
storage, analysis, interpretation, output and dissemination of spatially referenced data (Burrough
and McDonnell, 1998). Omumbo et al. (1998) used GIS to map malaria risk in Kenya while
Craig et al. (1999) produced a climate suitability map of malaria transmission at continental level
that involved remotely sensed data. The MARA/ARMA project was the first attempt at
modelling malaria seasonality at continental level (MARA/ARMA, 2004). Kleinschmidt et al.
(2000) used a combination of regression and spatial statistical approaches (kriging on residuals)
to predict malaria risk in Mali. The use of remote sensing techniques was further demonstrated in
several studies (Hay et al., 1998, Hay et al., 2000a, Omumbo et al., 2000, Omumbo et al., 2004,
Omumbo et al., 2005) in mapping vector distributions (Coetzee et al., 2000) and parasitic
disease (Brooker et al., 2001, Brooker et al., 2002, Rinaldi et al., 2004). What was common to
these studies was the integration of GIS and remote sensing techniques and in some cases
incorporating external statistical approaches, since the majority of standard GIS software
packages have limited statistical modelling capability and are not able to analyse statistically the

relationship between environmental covariates and disease.

Model-based geostatistical approaches are able to analyse geocoded data in space and time as
well as relate these data to environmental variables (Christakos, 2000, Barnerjee et al., 2004).

This approach goes beyond the normal assumption of independence between observations by
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quantifying spatial autocorrelation, usually modelled as a function of distance (Cressie, 1993).
Covariance between spatial points is quantified as a function of distance, for example, in the
analysis of malaria in Kenya and Somalia (Noor et al., 2008, Noor et al., 2009c) and childhood
malaria in the Gambia (Diggle et al., 2002). Data may also be referenced to areas or
administrative provinces or districts. Areal data models (lattice methods) are commonly used
with such data sets by relating two spatial regions using neighbourhood matrices (Barnerjee et
al., 2004). Common approaches include the simultaneous autoregressive (SAR) (Whittle, 1954)
and the conditional autoregressive (CAR) models (Clayton and Kaldor, 1987). Kleinschmidt et
al. (2002) used the CAR modelling approach while analysing the incidence of malaria in Kwa-
Zulu Natal in South Africa (Kleinschmidt et al., 2002). Point patterns may also be used to
evaluate disease clustering as well as determine risk factors associated with disease events

(Brooker et al., 2004, Mirghani et al., 2010) but are not discussed in this context.

Post-2005 has seen the development of Bayesian Hierarchical Models (BHM) where inference is
based on a posterior distribution [¢|z] which requires the likelihood and a prior [gj(with z as the
data and ¢ are parameters) (Gething et al., 2008, Vounatsou et al., 2009, Schrddle and Held,
2010, Duncan, 2011, Reid et al., 2012). The likelihood based approach relies on marginal
probabilities of the unknown quantities given the data (Barnerjee et al., 2004, Cressie and Wikle,
2011), for example, in Craig et al. (1999). BHM models partition the mapping process into data
models [zv,¢ (involving distribution of observations), an underlying biological process model

iv ¢ (for example, in the case of disease) that leads to the observed phenomenon, and the
unknown quantities [g] (parameters) associated with the process (Barnerjee et al., 2004, Banerjee

and Fuentes, 2011). In this way, the process is represented separately and the uncertainties are
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quantified systematically in terms of conditional distributions (Barnerjee et al., 2004). The
important differences here relate to uncertainties recognized in the BHM compared to the
frequentist approach where a model is simply fitted to data based on likelihood. Bayes theorem
(Bayes, 1763) is used to provide a posterior distribution (a conditional distribution of both the
process and unknown quantities given the data). Thus;

.,0|2) = L£1Y.0lY | 0][9]
[[1z 1v.e11v | 1[61dyd o

where [z |Y,4] is the data model and [Y | 4] is the underlying process model given the unknown

quantitiesg. The numerator is a direct product of these quantities but the normalizing quantity
requires numerical analysis usually via a simulation approach such as Markov chain Monte Carlo
(MCMC). Other approaches include the Laplace approximations, rejection sampling, slice
sampling and importance sampling (Rue and Martino, 2007, Cressie and Wikle, 2011). Examples
using MCMC at a national level are in analysing malaria transmission in Mali (Gemperli et al.,
2006) in mapping the risk of malaria infection in Somalia and Kenya (Noor et al., 2008, Noor et
al., 2009c). These methods have also been applied at continental and global scales (Hay et al.,
2009b, Gething et al., 2011b, Noor et al., 2014). Lattice methods using a Bayesian framework
were used in Malawi and South Africa in analysing fever treatment and malaria incidence
(Kazembe, 2007, Kazembe et al., 2007) and in South Africa (Kleinschmidt et al., 2002). The
development of numerical statistical analysis using Laplace approximations (Rue and Martino,
2007) may well increase the use of Bayesian approaches in disease mapping (Schrédle and Held,

2010, Ramiro Ruiz-Cardenas et al., 2012).
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1.5.2 Introduction to frequentist methods

Early geostatistical applications were applied in geology and mining, although there are other
applications in other disciplines (Zhou et al., 2007, Hengl et al., 2009). Zhou et al. (2007) and
Hengl et al. (2009) review various research studies involving geostatistical applications and
suggest that the majority of published articles are applied in the geosciences. These classical
methods have rapidly evolved since the 1960s in line with the emergence of statistical computer
packages that can easily implement models. They are also useful exploratory data analysis

techniques for formulating complex hierarchical modelling approaches (Barnerjee et al., 2004).

The concept underlying geostatistical application is that each observation S in a two dimensional
(2D) space, D < R?, is a drawn from a distribution (usually Gaussian). Thus, the Random
Variable (RV) z, ata point U can have a series of outcomes (realizations) in space and relate to
another point at a different location based on a function of distance (generally Euclidean
distance) (Cressie, 1985a, 1986). The collection of random variables and realizations has strict
stationarity if for any setn >1, the distribution of (z(u,)..........., Z(u,) Is equal to that of

(Z(u +h),cene, Z(u, +h)ywhere h is the lag vector in D < R* (Cressie, 1985a, Isaacks and
Srivastava, 1989, Cressie, 1990). Second order stationarity is implied if the process has a
constant mean, thus, E(Z(u) = x and Cov{Z(u), Z(u+h)}=C(h) whereseD, s+heD. Second
order stationarity is not strictly required since the desired property is that the mean and variance
are homogeneous within a distance h (intrinsic stationarity). Thus (Cressie, 1985a, Barnerjee et

al., 2004).

E[(Z(u+h)—Z ()] =Var((Z(u+h)—2Z(u)) = 2y(h)
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where 2y(h) defines a variogram (Figure 1.6 Page 59). The semivariogram y(h) is a graphical
representation of autocorrelation with the lag distance (Cressie and Zimmerman, 1992, Cressie,
1993, Hudson and Wackernagel, 1994) and given weak second-order stationarity relates to the
covariance as:
2y(h) =Var(Z(u +h) — Z(u))
=Var(Z(u+h)]+Var(Z(u))—2Cov(Z(u +h),Z(u))
2y(h) = C(0) +C(0)-2C(h)
thus,

y(h)=C(0)-C(h)
Cressie (1993) discusses methods of estimating valid variograms using the covariance. One way
of dealing with non-stationarity is assuming that at large values of h then covariance c(h) -0,
thus, treating the model as having second order stationarity or constant mean if the drift

d(t) = E(z,) (Cressie, 1985a, Barnerjee et al., 2004). Another approach of dealing with non-

stationarity includes the use of low order polynomials and stratification by dividing the area of

interest into sub-regions (Cressie, 1985a).

A plot of y against lag distance results in a variogram cloud which is usually diffuse and
difficult to interpret scientifically (Isaacks and Srivastava, 1989, Goovaerts, 1997). The
semivariogram is a preferred visual plot compared to the variogram cloud because it is averaged
at specific distances for N(h) data pairs (Cressie, 1985b, Cressie, 1993). It represents a summary
of autocorrelation with a specific distance (radius) (Cressie, 1990) and is valid as long as there is

no trend (isotropy), along a certain direction. Otherwise, the trend has to be removed before
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estimation of a semivariogram (Isaacks and Srivastava, 1989). In addition some discontinuities
(measurement errors) may be observed at the origin (where lag distance is zero), usually known
as a nugget effect (Isaacks and Srivastava, 1989). The term originates from differences observed
between two sample locations in gold mining now attributed to spatial, sampling or random
errors. Some models advocate for a full nugget effect, thus, a nugget incorporated at zero
distance, in some cases zero nugget effect is included at zero distance (Goovaerts, 1997, 2006,

2010).

Zonal anisotropy is usually rare in practice but it can be assessed by plotting variograms in
different directions and assessing their similarities (Goovaerts, 1997). Zimmerman (1993)
describes different forms of anisotropy related to the range, nugget and sill. For range anisotropy
a general suggestion is to increase the range along the axis of variation to reduce the effect of
covariance structure perpendicular to the minor axis while dealing with (Goovaerts, 1997) or
incorporating a nested model (combination of two different models) (Zimmerman, 1993). The

other empirical variogram is calculated by:

N(h)
y(h) :—( Z [Zu, + Z (u, + )]’ with covariance computed as :
o -2 32)z(u+h)-
=—— u)Zu+h)y—-m,m,
N(h) i3
" 1 N 1 N0 )
Weremz— Z(u) =——>»Z(u+h
-h N( Z ( +h N(h); ( |)
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The values of m and m,, correspond to lag means of the tail and head values, while ordered
values of C(h),........ ,C(h,) are referred to as an auto-covariance function or spatial covariance

(Goovaerts, 1997). The correlation between various data values can be summarized using a
correlogram (Isaacks and Srivastava, 1989, Goovaerts, 1998). Gooverts (1997) provides a
generalized function for the above equation representing the variogram, which is simply the first
moment of inertia according to Isaaks and Srivastava (1989), by changing the power from 2 (the
classical form of estimation) to a value »=1(madogram) or «=0.5(rodogram) (Goovaerts, 1997).

Thus,

N (h)

y(h) = M L [Zu; +Z(u; +h)]”

Permissible semivariogram models can be fitted such as the linear, spherical, exponential, power,
Gaussian, and dampened hole amongst other model forms. Mathematical formulations of these
models are illustrated in Isaaks and Srivastava (1989) and Banerjee et al. (2004). For example

the exponential model takes the form:

() = ? +o?(l-exp(—¢h) for t>0
7= 0 otherwise

Where 7 is the nugget, o is the sill while ¢ is the range, the distance above which there is no

spatial autocorrelation between pairs (Cressie, 1985a).
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Figure 1.6: Semi-variogram and Covariance

Figure (a) lllustrates the relationship between semi-variance and covariance (y-axis) with lag distance (x-axis) while
(b) shows the variogram parameters.

1.5.3 Geostatistical models

Geostatistical modelling has two broad objectives, the first relating to characterisation of spatial
structure in data relating to the mean and variability between observations. The second aim of
these models is to carry out predictions at unobserved locations (Cressie and Zimmerman, 1992).
Interpolation is assumed if prediction is carried out within the data range{ Y (s):s € D }) for sites
S, and Y(s) observables or extrapolation if predictions are carried out beyond the data range. The
latter is often discouraged due to uncertainties associated with prediction (Isaacks and

Srivastava, 1989). The spatial linear predictor is expressed as ZﬁiY (s.)+9, (Barnerjee et al.,
2004). In general, &, (.) corresponds to errors with E{5,(.)}=0 and E{5,(.)*} <~ forall se D

(Cressie and Zimmerman, 1992). Thus estimating 7(h) (the variogram) without any covariates,

is often termed as ordinary kriging.
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Universal kriging (Cressie, 1993) applies when covariates are incorporated into the model. Thus
the linear predictor, maintaining the same notation for ¥ (covariance) as above with nugget effect
can be expressed as:

Y = XB+¢& Where &£ ~ N(0,X) further discussions in (Barnerjee et al., 2004) (section

2.4)

Many sets of models can be used in practice for spatial prediction. These include the generalized
linear models (GLMs), general additive models (GAM), semi-parametric regression approaches
and geo-additive models (such as Bayesian Maximum Entropy) (Shepard, 1968, Christakos,
2000, Hengl et al., 2009). Model choice largely depends on the problem at hand, and validation
can often be assessed using an independent control dataset or by cross-validation with a subset of
the original data. For ordinary kriging, for example, the mean prediction error

E[(Y (So) — F(Y)? | y] is often assessed along with the root mean square error (RMSE)

(Isaacks and Srivastava, 1989, Barnerjee et al., 2004). Cross-validation can be carried out by (a)
dividing the data set into k parts (validation and prediction set), (b) leave-one-out approach
where each point is used iteratively and (c) jack-knife procedure that is similar to leave-one-out
approach but estimates biases in the statistical method rather than the data points (Cressie and

Zimmerman, 1992).

1.5.4 Areal-data models
Spatial data may often be referenced to irregular polygons such as districts, regions or census
units or regularized grid cells. Spatial patterns in such measurements are modelled via area

models, typically the conditional autoregressive (CAR) or the simultaneous autoregressive
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approach (SAR) (Brook, 1964, Besag, 1974). This section will briefly discuss the CAR models
which are more popular. Indeed literature considers SAR as a special case of CAR (see the
discussion by Cressie, (1993). The CAR analytical framework involves spatial smoothing where
observations in neighbouring spatial units are often pushed up (in small observation and large
neighbours) or pushed down (for large observations and small neighbours) (Cressie, 1993, Stern
and Cressie, 1999). The level of smoothing applied depends on the modelling framework as well
as the physical phenomenon under study. Benerjee et al. (2004) observes that maximal
smoothing yields common value estimates between the spatial units under study and a more
suitable smoothing approach should take into consideration the arrangement of spatial units to
yield optimal spatial variation. A general problem common to this approach, however, relates to
change of statistical outputs as a result of change in shape or size of the geographic unit, the
modifiable areal unit problem (MAUP) (Robinson, 1950) although hierarchical models have in
the past been proposed to mitigate outcomes related to MAUP (Barnerjee et al., 2004) (pg 182 to

pg 205).

The general formulation of areal data models is the introduction of a spatial structure via a
neighbourhood matrix W; assuming that v,,......., Y, corresponds to a set of observations for
spatial areal unitsl,.......... ,N (Barnerjee et al., 2004). The neighbourhood matrix w;; represents
weights that have been introduced based on different functions, such as, w, =1 for i and j with
a common boundary or w; =0 (otherwise). Examples of such formulations were illustrated in

mapping rates of cancer (Bernardinelli and Montomoli, 1992) and in incidence of malaria
(Kleinschmidt et al., 2002). Other forms of the weight matrix can be based on distance between

centroids of various geographic regions (Barnerjee et al., 2004).
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The basic idea of the CAR model lies in the joint dependencies provided by a neighbourhood

matrix as formulated by Besag (1974). The conditional dependencies among a set of RVs result

in a Markov Random Field (MRF) such that the probability P(X; | X;,...., X 4, Xisgseeees Xp)
depends on x for J # ] siteand j(=1i) is a neighbour ofi. An imposed condition is that of

positive definiteness where probability P(0) > 0 (Besag, 1974).

1.5.5 Review of Spatiotemporal methods
Spatiotemporal modelling involves measuring processes that occur both in spatial and temporal
domains (Christakos, 2000, Barnerjee et al., 2004). Earlier attempts at modelling spatiotemporal

fields resulted in static maps based on different time (t) instances. Tobias and Salas (1985), for

example, compared different mechanical and statistical interpolation techniques for precipitation
data spanning 30 years with the aim of comparing outcomes at different times (Tabios and Salas,
1985). Hudson and Wackernagel (1994) also modelled temperature for the month of January in
Scotland using kriging with external drift while Goovearts and Chiang (1993) investigated soil-
nitrogen mineralization over the winter period (Goovaerts and Chiang, 1993). Other earlier
studies used spatial time series (Cliff et al., 1975, Bennett, 1979) which could not be interpolated
at unobserved locations and required external computation. Furthermore, time-series approaches
could not sufficiently relate the spatial aspect of data (ordered or random) with time which is

usually ordered (past to present to future) (Cressie, 1993).

In the late 1980s, the spatiotemporal geostatistical models incorporated time as an additional

domain to existing spatial statistical numerical methods by assuming a separable correlation
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structure of residuals (Egbert and Lettenmaier, 1986, Rohuani and Hall, 1989). Rouhani and Hall
(1989), for example, used this approach in summing two variograms. A similar method was used
by Egbert and Lettenmaier (1986) when modelling atmospheric variables in the U.S., Rouhani
and Myers (1990) later identified caveats when multiplying to space and time variograms due to
dimensions (2D for space and 1D in time domain) as well as due to scale or units of
measurements. Secondly, earlier experiments indicated that geostatistical properties such as
isotropy were easier implemented when in the spatial domain compared to the temporal domain

(Rouhani and Myers, 1990).

A slight deviation from these models used a product of the correlation structure in space and
time. For example, in (Guttorp et al., 1994) on ozone-monitoring applications and on rainfall
acidity levels (Loader and Switzer, 1992). Dimitrakopoulos (1994) proposed a product-sum
covariance structure that was non-separable and where units of measurements were converted to
a common measure (Dimitrakopoulos and Lou, 1994). The conversion of units (space and time)
to a common measure, however, meant that interpretation of autocorrelation was lost. Several
permissible product-sum covariance functions were proposed subsequently in the 1990s (Cressie
and Huang, 1999, Kyriakidis and Journel, 1999) and later on with trend modelling using
polynomials, Fourier transformations and a mixture of the two approaches (Kyriakidis and
Journel, 1999). Cressie and Huang (1999) reviewed space-time covariance functions starting
with the limiting case of the product separable models, without space and time interaction, to full
product-sum models that support interaction. It was not until the early 2000s, given the
contributions by De laco et al. (2001), that these stationary non-separable models (generalized

product-sum covariance) became easily implementable (De Cesare et al., 2001, De laco et al.,
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2001, Kyriakidis and Journel, 2001, De Cesare et al., 2002). The main constraint imposed on
coefficients of the product-sum model involved the requirement for positive definiteness (global
sill > 0) (De laco et al., 2001). De Cesare (2002) published several FOTRAN related programs
for implementing product-sum covariance structures modified from earlier GSLIB application
(Deutsch and Journel, 1998). Examples of such model formulations were also provided in
Kyriakidis and Journel (2001). There has been a recent improvement to the original programs
published by De laco in 2001 by incorporation of multivariate variables or covariates (De laco et
al., 2005) and through subsequent published code (De laco et al., 2010, De laco et al., 2011, De
laco and Posa, 2011). The increasing availability of software in recent times (post 2000s) has
also seen more applications involving space-time interactions as well as hierarchical model based

approach.

1.5.6 Spatiotemporal geostatistical and areal models

The introduction of time into spatial process models introduces model complexity due to
specifications regarding spatial autocorrelation and temporal autocorrelation (Egbert and
Lettenmaier, 1986, Rouhani and Myers, 1990). In this context, as is similar to spatial methods,
distinctions are made based on the type of data where Gaussian process models are typically
used for point referenced data while CAR specifications apply to the areal data types. Another
complexity related to modelling spatiotemporal data is that of missing data (Christakos, 2000,
Barnerjee et al., 2004). Banerjee et al. (2004) discuss the problem of missing data as (a) that of
spatial positions where predictions are performed to points with no observations as in kriging, (b)
missing time points and (c) based on both space and time. The latter may be treated as cases of

both interpolation and extrapolation and a hierarchical modelling approach adopted.
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Joint space-time formulation requires simultaneous observations in space and time, based on

RF Z(s1),(s,t) e DxT, Separated by lag vector (h,z) where h=s-s"and r =t —t' refer to spatial
and temporal lags respectively. Kyriakidis et al. (1999) reviewed the single and multiple
separable spatiotemporal RF models along with limitations attached to these modelling
frameworks such as lack of interaction in separable structures (Kyriakidis and Journel, 1999). In
general, assuming stationarity, the Gaussian spatiotemporal process model is decomposed into a

global mean ,(s,t) and a residual component s(s, t) based on a linear combination of residuals

(Loader and Switzer, 1992, Kyriakidis and Journel, 1999, Gelfand et al., 2003). Thus:

Z(s,t) = u(s,t) + &(s,1) V(s,t)e DxT
The hierarchical models may include a vector of covariates X(S,t) such that
(s, t) = x(s,t)" pwith g coefficients. Further, £(s,t) may be decomposed into a Gaussian white

noise component €(S,t) and a mean-zero Gaussian parameter @(S,t) (Barnerjee et al., 2004,

Banerjee et al., 2008).

Often the assumption of stationarity is violated in many space-time models. Examples of these
include disease mapping applications where data may often exhibit non-stationarity due to
ecological or external factors such as the impact of interventions (Diggle et al., 1998, Diggle et
al., 2002, Gemperli, 2003, Gemperli et al., 2006). For non-stationary models, the mean part can

be decomposed such that E{z(s,t) = m(s,t) is a spatially and temporally varying function

(Kyriakidis and Journel, 1999, Barnerjee et al., 2004). Deterministic models may also be

included and written in regression form as (Goovaerts, 1997):
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wu(s,t) = ibij f, (s.1) v(s,t)e DxT

|
i=0 j=0

Where the bij are unknown coefficients and f; (s,t)are basis functions suitably selected to model

the mean for data spanning 1 =1,......., | in space and j=1........,J in the temporal domain.

Inference on non-stationary cases based on the above deterministic model is usually problematic
because the covariance structure of the residual component is usually not readily available.

Rouhani and Hall (1989) proposed the use of Intrinsic Random Functions (IRF) to determine the
generalized covariance by considering the linear combination of differences in space and time of
the data. Another possible remedy, although not simple, is to base inference based on data points

that do not exhibit drift (Kyriakidis and Journel, 1999).

A similar model is adopted for areal data, wherez, =, +e, for the i" polygon at time t(Barnerjee

et al., 2004). Using the same notation for covariates and decomposing the residual part:
Z, = Xlﬁ + &

With the o, representing the spatiotemporal random effects often modelled via CAR while the ¢,

represent the unstructured unobserved effects. Area unit data may be based on counts. Thus, the
Gaussian specifications are usually replaced with a Poisson model in such cases (Bernardinelli et

al., 2007).
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1.6 Purpose and scope of the study

1.6.1 Justification of the study

There has been an increase in funds targeted towards healthcare programmes in many sub-
Saharan African countries (Snow et al., 2010b, World Health Organization, 2014d). This has
been aimed at improving the delivery of interventions and extending primary care to the poor
population to achieve the MDGs on reducing under-five child mortality by two thirds (MDG 4)
and combating malaria and other infectious diseases by 2015 (MDG 6) (United Nations
Development Programme, 2003, United Nations, 2010). In areas of low malaria transmission,
such as the selected case studies (Namibia, Eritrea and Afghanistan), parasite prevalence
estimates may be inefficient due to: (a) a requirement for large sample sizes to detect the low
infection rates, and (b) the high seasonal variability of infections in low transmission settings
(Hay et al., 2008, Gething et al., 2011b). Passive and active case detection is recommended by

WHO in such settings (World Health Organizastion, 2007).

Most low transmission countries do not have functioning active case detection systems. These
countries rely on passive case detection. Ideally, the use of such data for accurate estimation of
disease incidence requires that all cases are parasitological diagnosed at health facility level and
are reported through the HMIS; the denominator catchment population of the health facilities is
known; and knowledge of the overall burden of fever within the community can be quantified
(Breman and Holloway, 2007, Mueller et al., 2011). However, as discussed in Section 1.3,
countries report a mixture of confirmed and suspected cases, data is usually reported through the
public health sector, the reporting rates are spatially and temporally incomplete and a

considerable proportion of fevers are treated outside of the public health sector at home or in
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private health facilities. In addition, few countries have mapped their health facilities making it

difficult to link cases to catchment population to quantify incidence.

Therefore the aim of this study was to tap into the vast array of available national household
survey data to model health facility catchment population and model disease incidence based on
HMIS data in selected low malaria transmission countries. Some of the challenges in using the
HMIS data are subsequently addressed in this thesis. For example, the adjustment for health
facility utilisation by the population, imputation of missing data and adjustment for reported
suspected malaria cases using slide positivity rates. The results were shared with country-specific
ministries of health and national malaria control programmes to support planning and malaria

elimination efforts.

1.6.2 Objectives

1.6.2.1 Main objective

The main objective of this thesis was to estimate the spatio-temporal distribution of malaria
incidence for Namibia, Afghanistan, and Eritrea based on the treatment of fever by developing
models of public health facility utilisation and deriving the catchment population.

1.6.2.2 Specific objectives

The specific objectives were:

1. To assemble geospatial health facility databases for Namibia, Eritrea and Afghanistan,
malaria case data within the health facilities, household survey data on their use and other

spatial ancillary data.
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2. To model health facility catchments and catchment populations using treatment-seeking
patterns from household surveys, travel times, facility characteristics, and population
distributions.

3. To evaluate the occurrence and distribution of malaria cases in public health facilities over
time and space.

4. To estimate malaria clinical burden at decision making units for the national malaria control

programmes in the study countries.

1.7 Thesis outline

This thesis focuses on three low malaria transmission case studies: Namibia (Southern Africa),
Afghanistan (South West Asia) and Eritrea (Horn of Africa). Table 1.1 provides summary
characteristics of the three study countries. These countries were selected because they are all at
a similar level in terms of malaria transmission. For example, P. falciparum prevalence in
Namibia was 1.3% in 2010, in Eritrea 1% and <1% in Afghanistan. Therefore, the study
countries provided relevant examples where research on mapping malaria in low transmission
settings at a national level, could be explored using data on the number of presumed and
confirmed malaria cases from HMIS. The national malaria control programmes were also keen in
facilitating assembly of the HMIS data. In addition, the household data useful in modelling the
utilization of health facilities were available in the public domain from the wealth of national
household surveys of MIS, DHS or MICS surveys. For each country, geographic access to health

services via probabilistic approaches was analysed followed by estimation of malaria burden.

Table 1.1: Summary of study sites characteristics
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Overall Estimated
percentage percentage
persons who public health
Mean parasite slept under sector use for
Malaria prevalence (percentage) ITN? last fever
Country parasites Main malaria vector(s) [2010] night [year] treatment
Pf Pv MIS
P. falciparum;
Eritrea P. vivax Anopheles arabiensis 1 No data 55.1[2012] 60.9
An. arabiensis; An.
Namibia P. falciparum gambiae; An. funestus 13 NA 22.9 [2009] 65.3
An. superpictus; An.
culicifacies; An.
hycranus; An.
pulcherimus; An.
P. falciparum; fluviatilis; An.
Afghanistan P. vivax stephensi. 0.1 0.6 15.0 [2011] 44.3

1. Insecticide Treated Net (ITN) is (a) a permanent net that does not require any treatment or (b) a pre-treated net obtained
within the last 6-12 months or (c) a net that has been soaked with insecticide within the past 6-12 months.
2. NA - Not applicable

Chapter 2 of this thesis is a case study of Namibia. Namibia declared an elimination ambition,

being part of the elimination-eight (E8) initiative (Southern Africa Roll Back Malaria Network

(SARN), 2010). The elimination-eight comprised four first-tier countries aiming for elimination

(Botswana, Namibia, South Africa and Swaziland) and four second-tier countries (Angola,

Mozambique, Zambia and Zimbabwe) in a control phase (Malaria Elimination 8 Ministerial

Meeting, 2009, Ministry of Health and Social Services, 2010c). In 2010, Namibia launched a

national malaria strategy for the period 2010 to 2016 with the goal of achieving pre-elimination

by 2016, thus reducing malaria case incidence to less than 1 per 1000 population (Ministry of

Health and Social Services, 2010c, d). The aim of the study in namibia was to assess the baseline

incidence in 2009 upon which future disease trends can be compared. The chapter focused

mainly on modelling of Plasmodium falciparum malaria incidence in northern Namibia using

Bayesian approaches to assess feasibility of pre-elimination by 2016. The pre-requisite of this

analysis was the analsis of public health facility utilisation described in Master’s thesis and



subsequently published in 2012*. Therefore, the section on modelling public healthcare
utilisation was only mentioned, briefly, to provide context and uniformity with other country
case studies. P. falciparum, the main malaria species in Namibia, incidence was modelled using
HMIS data for 2009 at the constiuency level and summaries provided at health district level
useful for NMCP planning and decision making. The findings? on incidence were discussed in
the broad context of feasilibility of achieving pre-elimination targets by 2016 highlighting

regions where concerted control is required in Namibia.

Chapter 3 is a case study of Afghanistan in Asia where, despite instability and poor
infrastructure, substantial resources have been invested in malaria control in Afghanistan since
2000 with financial support from external agencies, notably the Global Fund to fight AIDS,
Tuberculosis and Malaria and the United States Agency for International Development (USAID)
(Ministry of Public Health, 2008b). An immediate aim by the National Malaria and
Leishmaniasis Control Programme was to reduce case incidence by 60% by 2013 in addition to
improving case management and vector control. The focus here was to track progress towards
the national target between 2006 and 2009 and provide estimates of clinical burden of P.
falciparum and P. vivax. A Similar analytical framework to Namibia was adopted except that
there were two main malaria parasites in Afghanistan, the P. falciparum and the P. vivax. The

analysis of incidence aimed at identifying the co-distribution of the two parasites and

! Alegana VA, Wright JA, Uusiku P, Noor AM, Snow RW, Atkinson PM (2012). Spatial modeling of healthcare
utilization for treatment of fever in Namibia. International Journal of Health Geographics, 11: e6.

2 Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P,Katokel S, Snow RW, Noor AM (2013). Estimation of malaria incidence
in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spatial and Spatio-temporal
Epidemiology 7: 25-36.
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implications for malaria control and elimination. The findings in from of spatio-temporal

incidence maps were discussed at the end of the chapter.

Chapter 4 focuses on Eritrea in the horn of Africa. Eritrea is one of few countries in Africa that
have recently reduced malaria burden by >75%. Eritrea has been in a consolidation phase since
the mid 2000s and the NMCP is aiming for pre-elimination. The national malaria control
programme has been in consolidation phase, but has set ambitions for pre-elimination in current
malaria strategy (East Africa Roll Back Malaria Network (EARN), 2013). Eritrea was similar to
Afghanistan in terms of prevalence of both P. falciparum and P. vivax. However, majority of the
burden is from P. falciparum. This chapter, therefore, explored implications for moving to pre-

elimination given the trends incidence.

The discussion in chapter 5, summarises findings from the three case studies and assesses the
possibilities for sustained control on pre-elimination. The policy implications for each case study
based on household and HMIS data, modelling healthcare access as well as disease incidence are
also discussed. The future potential of the methods, particularly on the use of HMIS data to
describe malaria incidence in low endemic regions rather than prevalence from community
surveys is also discussed. The last section of the chapter points out some limitations of the

modelling approaches used in this thesis and outlines recommendations for future studies.
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1.8 Modelling approach used in the thesis

1.8.1 A mini review on methods of identifying high risk populations in low transmission
settings

A literature search was conducted from Pubmed and the Web of Science to identify research
related to low malaria transmission settings from 2005 to 2014. The search generated 2,335
articles including journal publications, book sections, and conference proceedings. These were
reduced to 88 after screening the titles and abstracts to include only research related to malaria
risk in low transmission settings. Commonly excluded themes were malaria interventions,
clinical trials, travel health, drug efficacy and resistance, biological and physiological studies as

well as diagnostics.

Of the 88 studies, 70 had been published during or after 2010. The majority involved parasite
prevalence either directly estimating prevalence or comparing the performances of different
approaches (RDTs, microscopy, PCR and serology). Three studies in Sri Lanka (Rajakaruna et
al., 2010), Zambia (Davis et al., 2011) and Swaziland (Sturrock et al., 2013a) demonstrated the
usefulness of combining passive case surveillance with reactive case detection to identify
asymptomatic infections. Except for the study in Swaziland, most studies were conducted over
small areas focusing on one district or province and in some cases involving only one health
facility. This illustrates the challenge of conducting (sero)-prevalence or molecular-based studies
at the national level. In summary, there was an improvement in techniques (such as using PCR
and advanced statistical methods) with time. The studies contributed by this thesis highlight
advances in modelling (including in modelling spatial decay in health facility utilisation to

estimate denominators) for estimating malaria incidence from routine data.
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1.8.2 Issues in statistical modelling disease data

There are several issues related to data and methods when modelling disease data. First, there has
been an increase in the availability of spatio-temporal datasets in last ten years from widely
available household surveys at a national level and independent studies that are becoming
increasingly available to the public domain. These data exist at varying spatial and temporal
scales which makes it challenging to compare directly between countries and sites as well as
imputing the missing data points. Secondly, the increasing availability of remotely sensed data
has given rise to large set of spatio-temporal climatic or ecological covariates. Modelling these
datasets using kriging, for example, requires assembly of large databases and requires inversion

of large variance-covariance matrices generally of order o2y (Barnerjee et al., 2004). Numerical

algorithms such as MCMC are slow computationally and may result in poor mixing of chains as

well as convergence issues.

Several approaches have been proposed in the literature to handle large datasets including
reducing the dimension of the covariance matrix to a sparse nature using methods such as
covariance tapering (Furrer et al., 2006, Kaufman et al., 2008). Vecchia (1988) proposed the
partitioning of the density matrix into sub-vectors and computing the likelihood as a joint
conditional product (Vecchia, 1988, Stein et al., 2004). Slightly different approaches involved
the use of reduced rank Kriging using basis functions (Cressie and Johannesson, 2008),
modelling in the spectral domain using the Whittle likelihood (Fuentes, 2002) and the use of
lattice methods (Whittle, 1963, Rue and Held, 2005). The sparseness property of the covariance

was an earlier popular approach (see methods such as rejection sampling under MCMC (Gelman
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and Rubin, 1992, Gelman and Rubin, 1996)). The lattice approaches used in this thesis involve
expressing a random field model as a solution to Stochastic Partial Differential Equations
(SPDEs). The use of Gaussian Markov Random Fields (GMRF) represented via linear basis
functions has been proposed as a replacement to the Gaussian Field (GF) (Lindgren et al., 2011).
The implication is that the GMRF enjoys Markovian properties, such as the sparseness of
variance-covariance matrixes that are computationally efficient compared to the dense

covariances associated with a GF.

The assumptions of stationarity can be violated for large geographic domains (Fuentes, 2002,

Stein, 2005, Gosoniu et al., 2006). Stationary refers to a constant parameter mean ( u(s)= ) for a
spatial processz(s) seDc R (i.e. the E(Z(s)) = u(s) ). Weak stationarity is implied if for a

Euclidean distanceh=|s, -s,, the covariance c() = c(n) . This implies that the covariance

between two locations depends only on the Euclidean distance. For disease mapping (such as
malaria), non-stationarity (by allowing spatial structure or spectral density to vary by location)
may be useful property of the model given that processes such as malaria interventions that
affect the disease vary spatially (Gemperli et al., 2006, Gosoniu et al., 2006). There are several
forms of investigating the requirements for stationarity, for example, using nonlinear approaches
(Fuentes, 2005). Gemperli (2003) divided the study area into tiles in an attempt to introduce
space-varying parameters. This, however, may result in boundary or edge effects when stitching
the tiles back together and the independence assumptions of tiles may not be appropriate
(Gosoniu et al., 2006). With advances in computer programming and software, it is easier to
introduce non-stationarity by supplying a vector of coordinates to the model of space varying

parameters. Such models have been proposed with separable or non-separable covariance
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structures (Gneiting, 2002, Stein, 2005, Cressie and Johannesson, 2008, Gething et al., 2011b)
with separable structure most favoured because it easily handles the two domains (space and
time) as Kronecker products. Kronecker products are easier to handle computationally due to
their good mathematical properties for computing quantities such as determinants or matrix

inversion.

Lastly, it is not always the case that the relationship between the covariates and disease data is
linear. This, however, could be investigated using nonlinear approaches that relax the linearity
assumptions and fitting using a modelling strategy without linear assumptions. Examples of such
algorithms include polynomial regressions (Cleveland, 1979, Cleveland, 1981), kernel
smoothing (Silverman, 1981, 1986) and splines (Eilers and Marx, 1996). High-order curves such
as B-splines are also proposed to represent the functional relationship between disease
prevalence and climatic covariates (Lindgren and Rue, 2008). Thus, the nonlinear approaches
provide an additional computational aid that is better than the usual reliance on categorizing
environmental covariates. These higher order curves can also be applied to modelling seasonality
that is driven largely by climatic conditions (such as low prevalence in extremely arid

environments).

1.8.3 Integrated Nested Laplace Approximation (INLA) and Gaussian Markov Random
Fields (GMRFs)

The goal of Bayesian inference is to learn about the posterior mean and perhaps variance of some
unknown parameters given some observed data. A distributional model is, thus, based on

likelihood f(y|6)where Yy is the observed data with ¢ as unknown parameters and prior
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distribution z(6] ) with additional hyperparameters 4. Thus, from Bayes theorem the posterior

distribution is product of prior and the likelihood given the observed data as:

p(0]y,2) =P O1A) __ p(.O1A) _  ply|6)x(0]4)
eI [p.012de [ plyl6)z(o] 2)do
p(y,0)  p(y|@)x(@]A)h(4)d1

P(9]y)= =
M) [ p(yl0)z(01 Hh(2)daia

where h and z can be conjugate prior information (see the appendix section for examples of
conjugate priors). The attractive properties of the posterior are the mean, mode and median of the

posterior p(g|y) . The mode

6:P(6]y)=Sup,p(@|y)
does not require an integration algorithm and is central in Bayesian analysis using INLA where
the marginal is Gaussian. A popular approach to computing the above integrants is to use
MCMC (Kloek and Dijk, 1978) which is non-deterministic by drawing samples (often
correlated) from the posterior to arrive at closed values. A histogram distribution of the posterior
is usually sufficient for inference. Common recursive algorithms are the Gibbs sampler and
Metropolis-Hastings (Barnerjee et al., 2004). The INLA method, used in this thesis, arrives at a
closed solution using curvature of the mode evaluated at suitable sampling points (Rue et al.,
2009). The difference between these two approaches lies in computational efficiency and only
applies for a class of Latent Gaussian Models (LGM) such as spatial and spatio-temporal models

using GMRFs (Martins et al., 2013).
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GMRFs are widely used in Bayesian hierarchical models for lattice data due to their relative ease
of implementation and they also possesses desirable Markov properties (Rue and Held, 2005).

For example, they are useful at representing dependence of an unobserved process (the latent

effect) at the second stage of a hierarchical Bayesian model. A random vector X=(X,,......X,)" can

be defined as a GMRF with mean ¢ and positive definite precision matrixQ with density:

79 =277 QI &0[- (x— ) Q- ]
where @ is the precision matrix with covariance matrix £ =qQ*. The computational advantage of
Markov properties arise from the sparcity ofq. If two random variables (RV) x, and x; (i= j)are
conditionally independent with conditional density z(.|.) for z(x,x, |x;)=x(x |x;)- z(x;|x;) then,
it also follows that, for the two RVSs, , =0 if je(i,N,)for a neighbourhood N, and matrix

operations reduced to order of o(n?)for spatio-temporal applications (Rue and Held, 2005). For

geostatistical applications a Gaussian Field (GF) with a Matérn covariance is represented as a
GMREF through a Stochastic Partial Differential Equation (SPDE) approach based on a basis
function representation (Lindgren et al., 2011). Thus, the dense structure of the covariance
matrix in a GF is reduced when using a GMRF with a neighbourhood structure. The
representation using a neighbourhood structure makes it possible and efficient to use INLA

(Lindgren et al., 2011, Cameletti et al., 2012, Lindgren, 2013).

In INLA, the linear predictor », can generally be modelled with covariate effects in an additive

manner (Rue and Martino, 2007, Rue et al., 2009, Schridle and Held, 2010) with the response
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coming from a selected family linking to the predictor through some link function g(x, &), thus,

9(s4) =, with
nf . ng
7; :a+2f“)(uji)+2ﬂkzki + &
j=1 k=1

where ! is a some function (could be linear or non-linear such as penalized splines or random
walks (Fahrmeir and Kneib, 2009)) on a variable U, f, are the coefficients for the
covariates Z ,and & represents the residual error effects. The variables (77, a, f, ,8) together

define the latent field associated with some hyperparametersg. The joint posterior

density z(y| X,8) given a set of parameters is given as,

2(xy10) a z(@)z(x|O)]x(y;1x.6)

o 7(60) |QF exp[—%xT QO) x+Y loga(y, | x.0)

where Y are the observations, X latent Gaussian variables with ¢ hyperparameters. Bayesian

implementation, in INLA for small 6 (< 12) typically computes the conditional distribution of a
latent field given the hyperparameters (Fahrmeir and Lang, 2001, Rue and Martino, 2007, Rue et

al., 2009). The desired posterior marginal distribution given observations is then calculated as:
Z01y) = [7(x10.y)7(0]y)do
7O;1y) = [7@ly) do,

with the integral evaluated via a finite sum in INLA as (Rue et al., 2009)

(X 1y) = ZE(XiWk’y) 7@ 1Y) A
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with a as weights calculated at appropriate values of 6, computed iteratively. The first procedure
computes 7(g|y) as an approximation to ~(g|y) followed by 7(x, |6, y) as an approximation to
the conditional marginal distribution toz(x, |9,y) . Lastly, given full conditional distributions, ¢ is

integrated out. The first approximation is obtained as;

(X6, Yy)

z(01y) )

x= x"(6)
where zG(x| @, y) is the Gaussian approximation to the conditional of x evaluated at the
mode x ™~ (¢) obtained by an optimization algorithm using a quasi-Newton approach (Fahrmeir and

Lang, 2001, Rue et al., 2009). This is the Laplace approximation of the marginal posterior
distribution (Martins et al., 2013) and is usually accurate as long as the expected posterior is
dominated by one mode. Thus, locating the mode (using an optimization algorithm) is key in the

successful application of the INLA method. The error, proposed to be of order O(n;*?) (Rue et

al., 2009), is minimal especially where the full Laplace option is selected when using the INLA

algorithm (Tierney and Kadane, 1986, Martins et al., 2013). The quantity z(x; |0, y) is then

evaluated using a Laplace approximation (Rue et al., 2009). Further details of the INLA

numerical algorithms can be found in Martins et al. (2013).

7(X,0, Y) |
7GG(x; | %;,6,Y)

z(%10,y) =

x_i= x5 (%,0)

1.8.4 Analytical protocol and the Bayesian modelling approach adopted in the thesis
The overall analysis flow is presented schematically in Figure 1.7 which shows the data input

and processing leading to a Bayesian framework. This includes adjusting for rates of attendance
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or health facility utilisation, rate of reporting within the HMIS based on number of returned
reports at each health facility and an adjustment of the suspected cases using a slide positivity

rate. The focus of the rest of this section is to outline the Bayesian modelling framework.

CAR and geostatistical models were used to assess the burden of Malaria in the selected case
studies. The INLA methodology was adopted for each study with actual models slightly
modified to better fit the data and underlying disease dynamics to answer specific research
questions, and also increase understanding of different modelling frameworks. The model
specification for each study is included in the relevant chapters of the thesis and includes
information on type and magnitude of priors used as well as assumptions attached to the
parameters (for example, linear assumptions for Namibia and Afghanistan compared to non-
linear assumptions for Eritrea). To understand the effect of including extra random effects, one
level was specified in the Namibia CAR model compared to three different levels in Afghanistan
and Eritrea (where facility, district and province independent effects were used). In Eritrea, non-
linear effects included a seasonal model with spatio-temporal covariates (rainfall, and

temperature). For Namibia, random effects were modelled at constituency and facility level only.

For modelling slide positivity rate, the model parameters such as range were estimated using the
size of the geographic domain (country boundary). Covariates in each case study were selected
based on previous knowledge from other studies and statistically via a best fitting generalized
linear mixed model with lowest Bayesian Information Criterion (BIC). This resulted in different
covariates in each model setup. Intervention effects such as ITN distribution were not included

as part of the covariate set to reduce circularity and avoid over-fitting (lllian et al., 2012). Edge
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effects were minimized by expanding the study domain by at least 100 km. The Kronecker
product feature (Q =Q, ®Q,) Wwas used to construct a separable covariance structure
Cov{Z (h,u)}=C, (h)C; (u)
and the non-separable covariance function (De laco et al., 2001, Gneiting, 2002):
C(h,u) = ,Cs (h)C; (u) + ,Cs (h) + ,C; (U) (h,u) e R xT
where «,,,and a,are non-negative coefficients while C, and c, are spatial and temporal

covariance functions respectively. Thus, non-separable covariance functions were constructed to
improve the mixing of two domains (Knorr-Held, 2000). However, the results for the separable
covariance function are given in all the three case studies. The mean component in the modelling

specification follows an independent autoregressive component x ~ N (o, (z(1— p2))~*) With two

hyperparameters on ¢ (gamma prior) and p <1with normal prior.

Where several models were fitted, model selection was based on the significance of the
parameters and Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). The effective

number of parameters for a model is defined by Spiegelhalter et al. (2002) as p, =b)-D(@)
where D is the posterior mean model deviance, E(|y) =4 is the posterior mean of parameters,
D(9) is the Bayesian deviance at the posterior estimate of parameters¢g. Other quantities such as

the Root Mean Square Error (RMSE), the mean error and the cross validation statistics were used

to assess the selected model.
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Figure 1.7 Schematic analysis flow
The overall methodology used in the thesis where main data inputs are at the top and the major sections are those in

brown in terms of modelling probability of attendance for fever treatment, the Bayesian modelling framework as
well as validation Bayesian model outputs.
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CHAPTER 2: Case Study 1

Estimation of malaria incidence in northern Namibia in 2009 using
Bayesian Conditional-Autoregressive (CAR) spatio-temporal models
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2.1 Background

Namibia declared ambition to eliminate malaria by 2020 after reducing the burden significantly
with sustained control (Southern African Development Community, 2012, Noor et al., 2013a,
Noor et al., 2013b). In 2009, the Elimination Eight (E8) initiative was launched, under which
eight southern African countries decided to collaborate to eliminate malaria in Namibia,
Botswana, South Africa, and Swaziland. These ambitions were not only motivated both by
reported substantial declines in malaria burden in the four countries but also by the renewed
interest in malaria elimination following the global call in 2008 (World health Organizastion,
2008). In 2010, Namibia launched a national malaria strategy for the period 2010 to 2016 with
the goal of reducing malaria case incidence to 10 persons per 1000 population by 2013 and to
move the country to pre-elimination status by 2016 with a case incidence of no more than 1
person per 1000 population (Ministry of Health and Social Services, 2010c, d). Evidence from
the malaria indicator survey (MIS) conducted in 2009 showed a mean community Plasmodium
falciparum prevalence of less than 3% nationally (Ministry of Health and Social Services,
2010b) which is also a threshold at which countries are advised to consider pre-elimination as
well strengthen surveillance. At this threshold, one of the proposed appropriate approaches is the
use of case incidence data for measuring malaria risk since parasite prevalence surveys maybe

inadequate (Yekutiel, 1960, Hay et al., 2008).

Namibia, like other malaria eliminating countries in SSA, is yet to adopt active case-detection
(ACD) systems (World Health Organization, 2012b) and the main surveillance data are from
passive case detection (PCD), assembled through the public health sector. HMIS data, as

outlined previously in the introduction chapter, have deficiencies that limit their use for
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estimating malaria incidence. For example, a proportion of malaria cases in Namibia may be
treated outside of the public health sector (Cibulskis et al., 2007, Cibulskis et al., 2011) while a
proportion of health facilities in the public sector may fail to report. Those health facilities that
report to HMIS may not do this consistently, thus, making data spatially and temporally
incomplete (Murray et al., 2004, Stansfield, 2005, Gething et al., 2006, Gething et al., 2008).
The use of HMIS data requires approaches that adjust for non-utilisation of the public health
sector; incomplete data reporting which underestimate burden and the presumptive diagnosis of
malaria which inflate incidence (Cibulskis et al., 2011, Alegana et al., 2012). In addition, these
approaches must harness the spatial and temporal autocorrelation of the available data to areas
and periods where data are missing and estimate robustly the uncertainties of these estimates

(Loha and Lindtjorn, 2010, Reid et al., 2012).

Bayesian hierarchical conditional auto-regressive (CAR) models were used to smooth incidence
using HMIS data while incorporating a set of environmental or ecological variables (Gelfand and
Vounatsou, 2003, Barnerjee et al., 2004, Gething et al., 2006). This approach has been used
previously in modelling spatial-temporal variation of disease risk in Yunnan province in China
(Clements et al., 2009) and in identifying social and ecological factors driving malaria risk in
Vietnam (Manh et al., 2011). The main advantage of this approach is that it can handle
uncertainty in a coherent manner, is able to smooth risk in areas where data are not recorded and
smooth variability where the denominator (population catchment) is small (Gelfand and
Vounatsou, 2003, Reid et al., 2012). These approaches are used in this study with the primary
aim of smoothing the incidence of P. falciparum at second administrative unit level

(constituencies) in northern Namibia where malaria is considered endemic.
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The chapter provides an overview of Namibia in terms of geography and health goals and the
healthcare system. A review of healthcare utilisation in section 2.5.5 provides a platform for
analysis of P. falciparum incidence in Northern Namibia based on cases reported in 2009. The
smoothing of incidence is based on a Bayesian conditional-autoregressive (CAR) zero-inflated
Poisson model. The rationale for using zero-inflated model is provided prior to model
specification. The last section discusses findings in context of malaria pre-elimination in

Namibia and highlights regions where malaria control should be focused.

2.2 The Namibia context

2.2.1 Geography

Namibia is located in southern Africa at approximately latitudes 17° S and 29° S and longitudes
11°E and 26°E. It is bordered by Angola and Zambia to the north, Botswana and Zimbabwe to
the east and Atlantic Ocean to the west (Figure 2.1). The country’s total surface area is
approximately 824,116 km? (ranked as 34" in the world in terms of size) and is divided into 13
regions (administrative level 1 boundaries), 34 health districts and 108 constituencies (Zere et
al., 2006, Ministry of Health and Social Services, 2010c). Namibia is one of least densely
populated country in the world after Mongolia, with approximate density of 2.5 inhabitants per
square km. Population is estimated at just over 2.2 million. Majority live in the northern regions
of the country (National Planning Commission, 2012). The common geographic features are the
Namib Desert in the west and the Kalahari Desert in the East (with Botswana and South Africa)
extending to Orange River in the south. Aridity constrains malaria risk to the northern regions

(Ministry of Health and Social Services, 2010c, Snow et al., 2010a). The central plateau extends
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from north to south in the western part of the country. The West and coastal parts receive
approximately 5 mm and 20 mm of rain respectively. The average daily temperatures range from
20 °C to 34 °C in the summer and 18 °C to 22 °C in the in winter. Temperatures at the coast are

driven largely by the cold Benguela currents from the Atlantic Ocean.
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Figure 2.1: Map of Namibia showing administrative boundaries and limits of P. falciparum risk

Map of Namibia showing administrative 1 boundary (regions) and constituencies and the locations of the major
urban areas. The zoned area in the north (bold line) show regions where IRS was conducted (1965 to 1980s) while
the grey regions have no malaria risk mainly due to extreme aridity (Alegana et al., 2013, Noor et al., 2013b).

2.2.2 Namibia progress on MDGs and health targets
Namibia has made steady economic progress since independence in 1990 with GDP per capital

estimated at 4.9 in 2012 (National Planning Commission Secretariat, 2013, The World Bank,
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2013). It is ranked 128 out of 187 countries on the Human Development Index (HDI) (UNDP,
2013b). Despite recent economic progress, there still exist large inequalities in income (estimated
Gini coefficient of 0.6 in 2010 (CIA, 2013)) and the majority of rural population remain poor.
The overall life expectancy has declined to 48 years. Namibia is unlikely to achieve MDG 4
targets on child mortality and maternal mortality (MDG 5) (National Planning Commission and
UNDP, 2010, Mbeeli et al., 2011). For example, according to the 2006-07 DHS, the maternal
mortality ratio (MMR) was 449 per 100,000 live births compared to 271 per 100,000 live births
estimated in the 2000 DHS. The high MMR has been attributed to various factors including lack
of skilled birth attendance and HIVV/AIDS (Ministry of Health and Social Services, 2008b,
National Planning Commission and UNDP, 2010, Mbeeli et al., 2011). In 2008, the infant
mortality rate was 46 deaths per 1000 live births while the under-five mortality rate was 69
deaths per 1000 live births (Ministry of Health and Social Services, 2008b, National Planning
Commission, 2008). The reported rate of child mortality for SSA in 2010 (121 per 1000 live
births) (United Nations, 2012) and a target of 28 deaths per 1000 live births for Namibia is less

likely to be achieved by 2015.

However, progress has been made on reducing extreme poverty (estimated at 28%) and on
malaria where the burden has been reduced significantly (National Planning Commission and
UNDP, 2010). The reported incidence of malaria fell from 207 cases per 1000 population in
1996 compared to 63 cases per 1000 population in 2008 (National Planning Commission and
UNDP, 2010). The rate of stunting (height-for-age) in the 2006-07 DHS was 29% and wasting
(weight-for-height) was 7.5%. The level of malnutrition decreased with increasing wealth index

(Ministry of Health and Social Services, 2008b). An improvement in the agricultural sector has
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contributed to reduced poverty rates (Ministry of Health and Social Services, 2008b, National
Planning Commission and UNDP, 2010) while aggressive malaria control strategies has reduced
the malaria burden (Ministry of Health and Social Services, 2010b). Universal coverage of LLIN
is yet to be achieved. The ownership of ITNs in the 2009 MIS was 54.8% with utilisation rates

low at 34.2% amongst children under the age of five years.

The Namibia health goals are outlined in vision 2030 document targeting equity of access to
quality healthcare services. The National health policy framework outlines the key health targets
for Namibia for period 2010 to 2020 (Ministry of Health and Social Services, 2010d). It also
outlines the management and strategic plans for malaria and other diseases under vision 2030
(National planning Commission, 2004). Examples of the targets in vision 2030 policy include:
reducing the prevalence of HIV/AIDS and infectious diseases (malaria, TB and STIs); reducing
vaccine preventable diseases; increasing family planning uptake and contraceptive use; and
improving the provision of clean water and sanitation (National Planning Commission

Secretariat, 2013).

With a substantial decline in malaria cases in recent years, the ministry of health and social
services targets a pre-elimination status by 2015 and elimination by 2020 (Southern African
Development Community, 2012, Noor et al., 2013a, Noor et al., 2013b). Current malaria
strategies include the strengthening of the diagnosis of malaria, effective case management,
increasing the coverage of insecticide treated bed nets (ITNs) in malaria endemic border areas,
strengthening of community level surveillance and maintaining a malaria-free buffer extending

across the border with neighbour countries (Ministry of Health and Social Services, 2010c, d,
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Trans-Zambezi Malaria Initiative (TZMI), 2012, Noor et al., 2013b). The 2008 DHS, for
example, estimated 25% ownership of mosquito nets in a national representative sample of about
9,200 households. These are distributed mainly through mass campaigns, in hospitals and during

immunizations.

2.2.3 History of malaria control in Namibia

Namibia introduced indoor spraying using DDT in 1965 with chloroquine used for treatment
upon infection (Hansford, 1972). DDT was used in Ovambo land (present regions: Ohangwena,
Oshana, Oshikoko and Omusati), Kavango and Caprivi. By 1979, IRS had contributed to a
substantial decrease of malaria vectors namely the An. Gambiae complex and the An. Funestus.
The period between 1975 and 1990 was marked by instability during the war of independence
and malaria control activities reduced significantly. Chloroquine resistance was also reported
during this period and a combination of these factors (instability and reduced malaria control) led

to an increase in malaria cases in the late 1980s (Noor et al., 2013b, Noor et al., 2013c).

After the 1990 independence, the National VVector-borne and Disease Prevention (NVDCP)
increased malaria control activities. An increase in funding particularly after the launch of the
Global fund to Fight AIDS, Tuberculosis and Malaria (GFATM), increased the coverage of
interventions. To date, MoHSS has received over USD 26 million in funding since January,
2005 (The Global Fund, 2013c). ITN ownership, for example, has increased and was estimated
as 54.8% in the 2009 MIS. The first line treatment for malaria using ACTs was adopted in 2006
and AL is now used as treatment for confirmed P. falciparum cases with SP or Fansidar used

during pregnancy (Ministry of Health and Social Services, 2010c).
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2.2.4 Organisation of Namibia’s healthcare system and delivery

The Ministry of health and social services is responsible for provision of all forms of healthcare
in Namibia including rehabilitative, preventive and curative services. The main target is to
provide primary care to the population via clinics, health centres, district and regional (referral)
hospitals (Ministry of Health and Social Services, 1998, 2008a). Financing of healthcare is
mainly by government (approximately 12%) and donors although the general public pay for

some services (out of pocket payments) (Ministry of Health and Social Services, 2010c).

The regional and district administration manage referral facilities at the regional level as well as
support management at the district level (34 health districts) (Ministry of Health and Social
Services, 1995). The role of the national-level administration include planning, formulating
healthcare policies including legislation and regulation (Ministry of Health and Social Services,
1995). There are 13 regional administrative areas headed by a deputy permanent secretary and
responsible for policy implementation in the 34 health districts (Ministry of Health and Social
Services, 1995, El Obeid et al., 2001). Majority of in-patient services are provided by the tertiary
higher-level facilities with outpatient care is mostly provided at the first-tier facilities such as

clinics, VCTs and sick-bays.

Clinics and health centres constitute the first-tier facilities providing basic services to the
population. There is also an involvement of community health workers in some regions. These
basic facilities, however, lack skilled labour and provide limited services on neonatal care,
emergency obstetrics, infant and maternal nutrition, Integrated Management of Neonatal and

Childhood IlInesses (IMNCI) and breastfeeding programmes. Few outreach centres are linked to
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clinics in rural areas (Ministry of Health and Social Services, 1995, 2007). Private facilities and
private for non-profit (mission facilities) are run predominantly by private individuals. There
exists church or faith based health facilities that provide healthcare services to general public (El
Obeid et al., 2001, Ministry of Health and Social Services, 2007).

2.2.4.1 Description of health facilities census in Namibia in 2009

Namibia conducted a national health facility census in 2009 in an effort to understand service
provision and improve resource allocation (Ministry of Health and Social Services, 2010a). In
total, there were 46 hospitals (10.3%), 49 (11%) health centres, 327 (73.3%) clinics, 15 (3.3%)
stand-alone voluntary counselling centres (VCTs) and 9 (2.1%) sick-bays that provide various
child and HIV/AIDS related services. Majority were managed by the MoHSS (70.4%), 48 (10.8)
by missions and NGOs, 14 (3.1%) belonged to the ministry of defence (MoD) and 70 (15.7%)
were private. Only two health facilities in Kavango region out of the 446 facilities listed were not
visited. The geographic location of each facility was recorded using a global positioning system
(GPS). For health facilities, where the GPS coordinates were not taken, the longitude and latitude
was established through a geographic place name or village name from a geo-database of place

names in Namibia (Geonames, 2010).

Majority of tertiary facilities were located in urban centres and on main access roads (Figure 2.2
below). The spatial distribution of health facilities is similar to population distribution with
majority of facilities located in the north. The analysis of utilisation and malaria incidence did
not include the specialised facilities managed by the MOD/police, the private facilities and VCT
since the focus was on public healthcare utilisation and disease burden estimation within these

health facilities.
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2.2.5 A review of public health facility coverage and utilisation in Namibia in 2009

The analysis of coverage and utilisation in 2009 was based on public health facility data
described in the section 2.2.4 and the rate of fever treatment for children under the age of five
years based on the 2008-09 Namibia MIS. Relevant analytical procedures and discussion on
public healthcare utilisation are outlined in Alegana et al. (2012). In brief, travel times were
derived between population centres (households) and health facilities. Utilisation pattern was
then modelled based on reported patterns of attendance (assumed at the nearest facility) for fever
treatment and the theoretical derived patterns. The analysis focused on universe of all facilities

and there was no stratification by facility type.
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Figure 2.2: Distribution of Health facilities in Namibia in 2009

Public health facilities in Namibia in 2009 showing the majority of major hospitals are located in main urban centres
and on the main roads. The grey areas are non-malaria due to extreme aridity (Alegana et al., 2013, Noor et al.,
2013b)

The analysis of public health facility coverage showed that a greater number of facilities were
located in northern Namibia (Alegana et al., 2012). Assessment of health facility coverage using
a 3-hour travel time cut off suggested high coverage rates of greater than 80% for most regions.
However, public healthcare utilisation varied for each region (Table 2.1 below). Of the estimated
162,286 children under the age of five years in the northern Namibia, 160,294 (98.8%) were
estimated to be within a public health facility catchment (Figure 2.3 Page97) and the burden of

fever was approximately 24,830 cases in 2009. The proportion of fevers within the catchments
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was 90.8% (22,553) and 16,195 (65.3%) were likely to seek treatment in the public health sector.
This suggested that approximately 8,616 (34.7%) febrile children were unlikely to use at a public
health facility in northern Namibia including the 4,030 (47%) fever cases that lived outside of a
health facility catchment (Table 2.1). The lowest utilisation rates were in Kunene (41.3%) while

the highest were in Oshana (75.4%).

Table 2.1: Estimated coverage and utilisation of public health facilities in northern Namibia
The table is for children under the age of five years based on derived catchment population and fever treatment
pattern

Estimated Estimated Estimated number of Number(Percentage) of
number of number of fever cases among children under five years of age
children children under children under five with fever likely to attend a
under five five years of years of age based on PHF!
years of age age within a MIS prevalence
in 2009 PHF
catchment
Region
Caprivi 8,881 8,741 2,433 1,637(67.3)
Kavango 20,244 20,374 4,825 3,264(67.6)
Kunene 8,192 7,363 1,425 588(41.3)
Ohangwena 32,167 30,863 3,793 2,695(71)
Omaheke 11,550 11,051 1,974 1,060(53.7)
Omusati 27,386 26,993 3,478 2,522(72.5)
Oshana 14,973 13,088 2,186 1,648(75.4)
Oshikoto 19,918 236,617 1,395 932(66.8)
Otjozondjupa 18,977 18,160 3,321 1,868(56.3)
Travel time
< 30 minutes 51,791 51,791 8,021 6,056(75.5)
> 30 minutes -< 1 hour 98,620 98,620 14,902 11,218(75.3)
>1-<2 hours 138,219 138,219 19,035 14,136(74.3)
>2 -< 3 hours 160,294 160,294 20,799 15,279(73.5)
>3 hours 1,992 - 4,031 934(23.2)
Probability of attendance
<0.50 13,698 11,808 2,277 19(0.8)
>0.50 - < 0.60 7,820 7,908 1,356 717(52.9)
>0.60- < 0.70 18,944 18,963 2,928 1,925(65.7)
>0.70- < 0.75 120,862 121,615 18,269 13,553(74.2)
Total 162,286 1,602,943 24,830 16,214 (65.3)
1. PHF is an abbreviation for ‘Public Health Facility’, which in this case does not include private facilities or privates for
profit.

2. For Oshikoto region, the estimated number of children (0-4 years) slightly exceeds the overall population estimate for
the region. This is because the catchment boundaries in some cases overlap the regional boundaries.

3. The total number of children 0-4 years old in catchment boundaries was lower than the total estimated under fives
population because of (a) not all children within the catchment were assumed to use the public health facility (b) the
catchment boundaries did not covering 100% of the entire population by limiting maximum travel time to 3 hours from
the decay model.

Figure 2.3 shows the modelled facility catchments nationally, although, for incidence analysis

only northern based facilities were used.
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Figure 2.3: Probability of fever treatment and health facility catchments in Namibia
The probability of using public health facility for fever treatment at 1 x 1 km based on the MIS data superimposed
with the delieanated facility catchments.

2.3 Analysis of malaria in 2009 in northern Namibia

2.3.1 Description of HMIS data

HMIS data for 2009 was obtained from MoHSS for 273 public health facilities in the northern
Namibia after the national Service Provision Assessment (SPA) survey (Ministry of Health and
Social Services (MoHSS) and ICF Macro, 2010). Of the 273 facilities in the north, 13 were
private health facilities located in the urban centres and these were not included in the
subsequent analysis of incidence. Three constituencies had no data (public health facilities) and

were used as missing data after linking each facility to administrative areas. Missing data were
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imputed as NAs. Data represented all age population of suspected and blood-slide confirmed

malaria cases for 2009.

A monthly aggregate of all cases had been recorded for each health facility resulting in 3,120
facility-month records excluding the 13 private facilities. For majority of primary facilities,
RDTs were used routinely to examine blood samples from most patients although a few, mostly
at tertiary facilities, were examined using microscopy (Ministry of Health and Social Services,
2010a). Thus, since it was not possible to distinguish cases that had been confirmed using an
RDT or via microscopy, there was no stratification based on diagnosis. A reporting rate,
calculated as a proportion of received reports over the expected number was applied to facility
catchments while the slide positivity rate at each health facility was used to adjust the suspected
cases. The latter was necessary to avoid overestimating incidence (where true cases are treated as
a summation of clinical and confirmed case while ignoring the SPR at the facility). The opposite

is also true, thus:

_ Confirmed cases
Total number examined

Where, cases = Confirmed Case + (Suspected cases x SPR)

In total, malaria reports were available for most but the 17 facilities in 2009 (missing data). Thus,
the data was considerably complete (over 90%), in terms of reporting rates, for the majority of
facilities with a zero recorded where there was no confirmed or a suspected case. Figure 2.4

(below) shows a temporal plot of the malaria cases in 2009 by month.
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Figure 2.4: Box plot of malaria cases in 2009 in Namibia

Figure 2.4 (a) shows the suspected cases of malaria by months in Namibia in 2009 with a Gaussian fit (line) through
the median cases. A peak occurred in March and was lowest towards the end of the year while (b) is based on
confirmed malaria cases.

ol

2.3.2 Development of population denominator for analysis of incidence

The Namibia population surface from Worldpop (Worldpop, 2010) (Figure 2.5) was derived
from a combination of census, population settlements and land cover data using dasymetric
approaches (Briggs et al., 2007). Dasymetric techniques involve the disaggregation of census
data to improve their spatial resolution (Bhaduri et al., 2007). A Land cover surface for Namibia
was obtained from the MEdium Resolution Imaging Spectrometer (MERIS) GlobCover product
and combined with fine spatial resolution data on settlements to produce an improved surface
that represented where people lived (Linard et al., 2010). GlobCover was originally provided at a
spatial resolution of 300 m and its land cover classification is compatible with the UN land cover
classification system (LCCS) (FAO, 2000). Settlements data for northern regions of Caprivi and
Kavango were obtained from the environmental atlas project (Mendelsohn and Roberts, 1997,
Mendelsohn et al., 2000, Mendelsohn and EI Obeid, 2001) while an estimation of urban

population in Windhoek was based on the census of 1991 and water demand report from water
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resources management review (Water Resource Programme, 2007). A finer land cover or land
use layer was created to include detailed information on roads, rivers and settlements extents.
The land cover classes were then assigned a population weight based on density which was used
to re-distribute population polygon data in 1 x 1 km spatial pixels (Linard et al., 2010). The
resulting national population map was then projected forward to 2009 using the United Nations’

(UN) urban and rural inter-censual growth rates (http://esa.un.org/unup/).
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Figure 2.5 Map of population density in Namibia
Map of Namibia showing areas where population is greater than 0.001 per 1 km? The grey mask of aridity
corresponds to regions where MODIS EVI>0.1.
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2.3.3 Assembly of environmental or ecological covariates for malaria risk in Namibia
Malaria is driven by environmental and ecological factors such as rainfall, vegetation, altitude,
humidity, temperature and human habitation that affect the development and survival of the
malaria parasite and vector (Molineaux, 1988). Thus inclusion of these covariates is an important

step in modelling malaria incidence.

The mean enhanced vegetation index (EVI) in Namibia for 2009 was derived from the
MODerate-resolution Imaging Spectroradiometer (MODIS) sensor imagery as a measure of
vegetation (Hay et al., 2006, Scharlemann et al., 2008) while monthly 2009 precipitation data
were obtained from the Tropical Rainfall Measuring Mission (TRMM 3B43) (Huffman and
Bolvin, 2011, NASA, 2011) (Figure 2.6). TRMM 3B43, a gridded mean monthly average
precipitation product in mmhr™ at 0.25° x 0.25° spatial resolution (Huffman, 1997), was used. It
is produced from multi-satellite precipitation analysis (TMPA) approach (Huffman and Bolvin,
2011) that combines satellite-sensor data and rain gauge (ground measurements) observations. A
temperature suitability index (TSI) was obtained from the Malaria Atlas Project

(http://www.map.ox.ac.uk) was used as temperature covariate. The TSI ranged from 0 (not

suitable) to 1 (most suitable) and showed areas where temperature support parasite sporogony in
Namibia (Gething et al., 2011a). The average values of EVI, precipitation and TSI were then
computed for each constituency. Finally, urban areas were based on the Global Rural Urban
Mapping Project (GRUMP) (Balk et al., 2004, Center for International Earth Science
Information Network (CIESIN), 2004). Proportion of urban population was calculated by

intersecting the urban grid with the population grid. Processing of this environmental grids
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involve resampling to 1 x 1 km spatial resolution and extracting a value at each facility location

in ArcGIS 10 (ESRI, Redlands, CA, USA).
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Figure 2.6: Plot of environmental covariates with malaria cases for Namibia
Plot showing the assembled total malaria cases in 2009 (— ) and the extracted mean monthly
environmental covariates: EVI ( ) and precipitation (---—-—.—.___- ).

2.3.4 Preliminary analysis of environmental covariates and crude incidence

Preliminary model selection of covariates that best describes the response (incidence) is a widely
accepted exercise in statistical modelling (Murtaugh, 2009). The choice of covariates should be
guided by the principle of parsimony (identifying few and easily interpretable covariates)
(Murtaugh, 2009). Secondly, covariates improve statistical model fit and increase the precision
of predicted estimates. Their inclusion increases the model parameter space (complexity) and, if
not carefully selected, risk over-fitting (Babyak, 2004). For example, too many covariates may
introduce artificial relations (due to interactions) with the outcome variable that are not easy to
tease out. In addition, covariates often increase the R? value of regression models, especially if
the number of observations compared to predictors is small, without significantly increasing

prediction accuracy. This problem can be pronounced when data assembled are from
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observational studies based on different study designs, sampling considerations and sample sizes

which are then combined to describe a random process (Babyak, 2004).

There are several approaches in ecology reviewed by Murtaugh (2009) including widely
criticised stepwise procedures see (Whittingham et al., 2006, Mundry and Nunn, 2009,
Murtaugh, 2009) and references therein. Subset selection based on a statistical criterion, such as
the Akaike information criterion (AIC), is the most commonly used in statistical modelling.

These criterion methods aim to penalize model complexity (McLeod and Xu, 2008).

In this study, preliminary non-spatial generalised linear regression analysis with response
variable (crude incidence) was conducted. Figure 2.7 show the association of assembled

environmental covariates with crude incidence using a scatter plot analysis in R version 14

[http://www.r-project.org/]. The extracted values, for each covariate at each health facility, were
used in continuous form in a generalized (multivariate) linear regression model with the response

variable being the observed crude incidence rates.
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Figure 2.7: Scatterplot matrix showing association between covariates and crude incidence

Association between crude incidence per 1000 population (log-transformed) with the standardised environmental
covariates. The first row shows the crude incidence (response) against each explanatory variable. None of the
predictor variable is categorical.

A set of covariates were selected using the bestglm package in R (McLeod and Xu, 2008, Xu,
2010) using the Bayesian information criterion (BIC). The final model was based on prediction
error of the response and from candidate models based on covariates. For a response variable

Y=Y y,with X =X,......x, matrix of covariates and letting S,, k=L1...d be subset of

models of size k:
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BIC=-2-loglik +k-logN
For a given set of candidate models, m_, with parameters &, , the posterior probability can be
given by:

Pr(M,,1Z) @ Pr(M,)- [Pr(Z | 6,,M,,) Pr(@, |M,,)dd),
where pr(g, | M, ) is the prior distribution. Xu (2010) use the BICq model with an imposed

Bernoulli prior and compared with normal BIC model with flat normal prior. The BICq is written
as:
BIC, = —2log L[0(S,)]+ k log n— 2k log[q /(1 - q)]

where L[4(s,)] is the likelihood, q is the prior with probability lying between 0 and 1 p=q(1-q).

The best parsimonious model was selected based on K-fold cross validation approach where the
data were split into k-fold partitions and performance evaluated using one fold validation set

(Hastie et al., 2009). The lowest validation sum of squares s _, were obtained after minimizing
the prediction error with E{k(S,)}=gK . The cross-validation was evaluated as:
1 &

S Zl“ S,
Univariate non-spatial regression analysis showed that the EVI (coefficient of regression, 95%
Cl: 0.37, 0.31 — 0.44, p<0.001), TSI (0.77, 0.59 — 0.96, p<0.001) and precipitation (0.15, 0.08 —
0.21, p=0.002) were important explanatory variables of crude incidence. The percentage of urban
resident population produced a negative association with incidence (—0.02, -0.10 — 0.50,

p<0.001). From multivariate models, only EVI (coefficient of regression: 0.0867; p<0.001) and

TSI (coefficient of regression: 0.0959; p<0.001) was selected as best combination set of
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covariates. However, EVI (coefficient of regression: 0.0969; p<0.001) was selected in the final
parsimonious model after cross-validation and minimizing the cross-validation error (Figure 2.8).

Thus, only this covariate was used in subsequent modelling work.
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0.23
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Figure 2.8: Covariate selection based on cross-validation error
Estimated prediction error curve (red) and cross validation error (bars). The model complexity increased on the x-
axis while the estimate of standard error and prediction error was based on fivefold cross-validation. The best fit
model within one standard error (standard deviation rule (cv +s./Kk)) Was indicated by broken line.
2.3.5 Bayesian model specification for malaria incidence
Preliminary exploratory analysis revealed that zero cases were reported in 65.3% of the facility
level monthly returns (Figure 2.4 Page 99). Overall, 43% of facilities reported no cases in March
and over 60% from May to December. Following other studies in low transmission settings
(Lambert, 1992, Manh et al., 2011), a Zero-inflated Poisson (ZIP) model was used to handle the
excess zero counts. The ZIP models have also been applied previously in mapping the malaria
vector sporozoite rate (Nobre et al., 2005, Amek et al., 2011) and in schistosomiasis (\VVounatsou

et al., 2009). They are formulated as two component mixture model given as (Lambert, 1992,

Angers and Biswas, 2003, Ghosh et al., 2006);
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o, +1-9) e’ y; =0
(L-¢) Po(y, ) ¥i>0

f(y.0.0) ~{
for observation i and (1-¢")" <¢ <1. The probability parameter ¢, is modelled with a ‘structural’
zero or defaulting to a general Poisson model (Pr(X =k) =4 /kt) whilelogit(p,) =log[ p; /(1- p;)]-

In general ¢, and y; can depend on a set of covariates such that:

f(y, p, 1) =(@—p;)Po(y, 0)+ p;Po(y, expla+ 4 XiD)

with o forming an intercept modified by a q x 1 vector of chovariates with unknown

coefficients g and |og( ) =Zk:Xij B, For y,>0, the second part of the equation can be generalized

j=1
as:

)(1—-ak)k4'(ﬂe‘“ﬂ)k

o ; k=12..,n
I e

1-¢

where («, @, A) are the parameters of interest requiring prior distributions to estimate the

posterior.

A conditional auto-regressive (CAR) spatio-temporal model was implemented using EVI as
covariate at constituency level. Bayesian hierarchical conditional auto-regressive (CAR) models
was used to smooth incidence by constituency in northern Namibia where routine surveillance is
inefficient and incorporating a set of environmental or ecological factors and random effects
(Gelfand and Vounatsou, 2003, Barnerjee et al., 2004, Gething et al., 2006). Random effects
were included at facility and constituency level to improve spatial variability in smoothing such
that the linear predictor was written as:

log 1; =log(E;) + a + Xi}ﬂij +fi(s,)+ f,(5,) +vw + £ (1)
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Where E, is the expected number of cases adjusted for utilisation at facilityi, « is the intercept
and the unstructured components at facility f,(s,)and f,(s,)and facility and constituency level
respectively. The f(t) represents the temporal mean component modelled as an auto-regressive
process with first term x,=p x,,+& & ~N(0,r°) obtained from a stationary

distribution N (0,52 ¥) . The fixed effects were assigned flat (non-informative) priors P1. The

random effects were assigned zero-mean Gaussian priors 6, ~ N(0,7%) with the
hyperparameters assigned Inverse Gamma 1G(a,b) priorsa=0,b=0.00005 in line with other standard

studies (Kazembe, 2007). The conditional spatial prior was used to model contiguous areas

where the risk will be similar. Thus:

1 r?
S |S_;t>~N| —>'s., =
I (ot

where s and s  are adjacent constituencies with k. number of neighbours and ;? is the variance.
Conditional adjacency matrix of weights was modelled as W;;= 1 for two neighbouring regions

or Wij; = 0 otherwise following Bernardinelli et al. (1997) (Bernardinelli et al., 1997). The

likelihood with inclusion of the terms and covariates is:

Li(Bi.7.0.0. 2] yla)zlj[pij Pr(Yij :O|Zij :1"9)]Zu

x [QA=py)Pr(Yy=y; 1Z;=0, «, o) "

2.3.6 Bayesian model specification for slide positivity rates at health facilities
2.3.6.1 Overview of slide positivity analysis
A slide positivity rate based on the cases diagnosed parasitologically at each health facility was

analysed using a Bayesian hierarchical geostatistical model. The modelling challenge involved
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interpolating point referenced spatio-temporal data to 1 x 1 km fine spatial resolution estimates
of P. falciparum positivity rates in 2009. The data on slide positivity rates comprised 260 public
health facilities of which 26 (10%) were selected as a validation set. This resulted in
approximately 2,808 spatio-temporal unique points. EVI was used a covariate. Modelling
involved the use of Gaussian Markov Random Fields (GMRF) via Stochastic Partial Differential

Equation (SPDE) approach outlined in section 1.8, chapter 1.

2.3.6.1 Model specification using the SPDE approach
Let Y(s;,t) denote the response (slide positivity) at facilitys , i=12,....,N inmonth t, t=1.....T.
The Y(s;,t) arise from a binomial likelihood such that the probability that a case is positive for a

single blood test for P. falciparum was; vy, | p, ~ Binomial (n,, p;) with a logit link function

p(7) ={exp(n) /1+exp(n)}-

Model specification followed the approach proposed by Lindgren et al. (2011) where an SPDE is
an approximation to a continuous domain Gaussian field using a GMRF with a matérn
covariance function (section 1.8), to produce a continuous map of slide positivity rate at 1 x 1 km
spatial resolution. GMRFs result in sparse covariance matrices that are computationally faster.
The model is a realisation of a spatio-temporal process of the outcome variable (incidence) at
each facility location defined by longitude and latitude, month, covariates and a measurement
error defined by Gaussian white noise. The resulting space-time covariance matrix from the
spatial and temporal domains informs the spatial range and temporal lag of the prediction model.

The SPDE/GMREF for spatial-temporal field is given as (Lindgren, 2013):
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;(k(s)2 —A)“?(z(s) - x(s,1)) =W (s, 1), (s,t) eV

where k is spatial scale adjustment parameter of the field, @ =v+d/2 controls the amount of
smoothing and r the variance. Non-stationarity was introduced by allowing for spatial varying

parameter on z(s) (i.e. using the coordinates of health facilities). To obtain the desired Markov

structure representation the SPDE is projected to the domain using the spatial and temporal basis

function x(s,t),

X(S’t) = Zl//k (Slt)xk

where the distribution of x(s,t) approximates the distribution of solution to SPDE in the spatio-
temporal domain with y(s,t) =y’ (s)-y/} (t). 2-D piece-wise linear basis functions were used in the

spatial domain and one degree B-splines for temporal domain.

The general Bayesian model has the linear mixed model form;
Y(si,t) =n(s;.t)+e(s;,t)
Where 7(s,,t) denotes the overall mean structure (or linear predictor) and e(s,,t) the residual

error term. This model constituted a general form of regression models of the exponential family.

The mean component 7(s,,t) was set to 7(s;,t) = x(s,t)" g to allow for spatial-temporal varying
covariate (EVI). The additional component e(s,,t) were further decomposed into

e(s,,t) =, (t) + w(s, ,t) + (s, , t) Tollowing Barnerjee et al. (2004), where w(s,,t) is a mean-zero
spatio-temporal process modelled from matérn covariance function and &(s,,t) is Gaussian white

noise process. This specification separates the spatial-temporal effects from pure error effects.
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The space-time covariance was modelled as a Kronecker productQ=Q, ®Q,. The projection of
the space-time SPDE to the basis representation approach ensures that the GMRF maintains
markovian properties with its evaluation resulting in a sparse precision matrix (qQ). The
realizations of above domain have spatial Matérn covariance function which is flexible within
the many families of covariance functions (Barnerjee et al., 2004). For example, the marginal
variance parameter o = (I'(v)/T'(a)(47)"'*k*7? is related to the smoothing parameter via
v=a—d/2. Furthermore, the popular exponential function can be identified by setting v=0.5and

« =15 (Lindgren, 2013). The following covariance specification was used:

. if t=t

COV{W(Si ;t):W(Sj 1)} = {o'vzvc(h) if t=t

where h =|ls, —s;|is the Euclidean spatial distance and Var(w) = o, (the marginal variance).

The matérn covariance function for h >0 :

2

w

CcO =2H—r(v)(kh)v K, (kh)

where K, is Bessel function of second kind and of orderV (the smoothing parameter), k as a

scaling parameter and ¢ is the marginal variance. Values of v=1/2 corresponds to exponential

covariance function C(u) = o” exp(—¢u) (Barnerjee et al., 2004, Zhang, 2004, Sahu et al.,

2013). INLA implementation takes values of 0 <« < 2for v=a-d/2 with marginal variance
parameter aso? = T'(v) /(I'(a)(47)"' *k®z%) and spatial range defined as ¢~ /8y /k (Lindgren et

al., 2011).
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The o? prior specification was 2 ~ 1G(1,0.0005) - The «(t) termin e(s,,t)= e, (t) + W(s;,t) + (s, ,t)
was modelled as first order auto-regressive terms (p<1; o ~N(0,07 A(p))) With a time interval of
12 months (Lindgren and Rue, 2008). Thus, indexed time points t=1.....,T were associated with a

dummy time variable such that a(t +1) = pa(t) +7(s;,t).

Priors for w ~ N(0, &2 Q(k, 7)) With Q =Q, ®Q, was a sparse precision matrix (Lindgren,
2013) with two parameters log(z) =6, and log(k) =6, with (6,,6,) having joint independent normal

default priors. Value for o was set to one (o =1, i.e.10g o =0) and an approximate range as 1/5

of the domain used as initial parameters. Thus from (Lindgren and Rue, 2013), parameterisation

was based on approximate prior information for field standard deviation (s)and the range (r) .

log o (s) =b3 (5) + 3 b7 (5)6,
k=1
log r(s) = b5 (s) + > b ()6,

The above specification the joint distribution can be written as:

Y |,B,0§,O‘V2V,U§,p~ N (, O-OZtA(p)® Inxllrllxl +UvzvlTxllTxl ®2+6.92|TnxTn

where | _is an identity matrix of order n and ®is the Kronecker product.

2.3.7 Model validation and scoring rules
Model comparison was done using deviance information criterion (DIC) (Spiegelhalter et al.,
2002). A linear Pearson correlation coefficient was calculated for selected model to compare the

estimates to the observed values. This was based on 26 health facilities selected randomly as
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validation set. Model calibration (statistical consistency) and sharpness (concentration) was
conducted using the probability integral transform (PIT) and the conditional predictive ordinate
(CPO), a leave-one-out cross-validation approach in which a estimate is validated based on the
fitted model and the remaining data only (Spiegelhalter et al., 2002, Czado et al., 2009). The
CPO, the probability of observing a value given all other data, was examined for all observations
in a full Laplace model (Martins et al., 2013). Model scoring rules such as the square error score
(SES) and the ranked probability score (Gneiting and Raftery, 2007) were also computed.

Gneiting and Raftery (2007) discuss model scoring procedures such as the standard error score

(SES) and the ranked probability score (RPS). To predict a value Y, given other values, the

predictive posterior density P(y,|y_,) is given by:

P(Y, 1Y,)=[ 2(y10.y,) 2(6] )06,

and obtained via a finite sum with weights A

i
P(yp I y—p)zzﬂ-(yp |611y7p)ﬂ'(91 |y—p)AJ
1

A score is then said to be proper if there is consistency between the news estimates and the

observations (model is correctly calibrated). The SES and RPS are computed as:

SES(P,y)= (Y — #p)°

2

RPS (P, y)= S [P(Y <k)-1(y <K)]

k=0

where P is the predictive posterior distribution with mean u,and standard deviationg, and y is

the observed count (Gneiting and Raftery, 2007).

113



The SES is comparable to square mean error (y — x)> except that it applies to a predictive

distribution. Lastly, sensitivity analyses for the slide positivity rate were conducted using the root
mean square error (RMSE), the absolute mean error (MAE) that summarised the closeness of
validation set data to observed values. These two quantities also estimate model bias and
accuracy. Additionally, nominal model coverage of 95% credible intervals was assessed based

on the validation set. The MAE and the RMSE is given by:

MAE = %Zn]z*(x) — Z(x)|

RMSE = \/Gi(z*(x)—Z(x))zj

2.4 Results

2.4.1 Summary of assembled data

Table 2.2 provides a summary of assembled health facility data and mean slide positivity rates by
region in northern Namibia. 17 health facilities had no malaria reports in 2009, but, the
remaining health outlets returned complete reports every month with no cases reported as a zero.
In total, 134,851 cases were diagnosed clinically while 90,835 individuals were examined for
malaria parasites of which, 9,893 were positive. Higher case loads were reported in regions
bordering Angola compared to the southern regions. The unadjusted mean slide positivity rate
was 11.2 [95% CI 6.7 - 15.7] (Table 2.2) and crude annual incidence was 16 cases per 1000

population.
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Table 2.2 Summary of number of suspected and confirmed malaria cases in northern Namibia by region.
The last column show the percentage of population likely to use a health facility for fever treatment based on the
reported pattern form household survey (MIS)

Number Percent
of health of
facilities Confi populati
(number rmed  Suspecte on
with malar d Mean slide attendin
Health missing Number of ia malaria positivity rate Populati g aPHF?
Region district data) constituencies  cases cases (95% CI) on 2009  modelled
Caprivi Katima 27(2) 6 954 10,605 21.1(17.9-24.3) 87,088 68.0
Kavango Andara 10(0) 1 309 4,293 9.2 (7.0-11.3) 26,677 711
Nankudu 11(2) 2 244 7,662 8.4 (6.0-10.8) 48,715 64.2
Nyangana 8(0) 1 665 3,063 25 (20.1-29.9) 19,815 71.9
Rundu 23(1) 5 1,176 34,608 16.4 (13.4-19.4) 119,855 711
Kunene Khorixas 8(0) 1 1 89 2.7 (-0.5-6.1) 12,469 61.4
Opuwo 14(0) 3 539 856 47.3 (40.7-53.8) 52,485 52.5
Outjo 4(0) 2 1 53 1.1 (-0.2-2.5) 20,395 53.4
Ohangwena  Eenhana 10(1) 4 379 3,956 7.1(4.8-9.4) 80,419 68.2
Engela 16(0) 6 916 13,774 9.8 (7.8-11.9) 131,744 74.2
Kongo 4(1) 1 529 1,788 24.3 (15.8-32.8) 24,744 61.5
Omaheke Gobabis 14(2) 7 11 96 13.8 (9.5-18.1) 68,433 62.1
Omusati Okahao 9(1) 2 384 9,066 4.1(2.1-6.1) 29,964 73.6
Oshikuku 19(0) 5 436 10,315 3.6 (2.6-4.7) 101,587 75.2
Outapi 10(0) 2 1,970 9,846 8.4 (6.6-10.2) 48,812 70.8
Tsandi 10(1) 3 617 5,339 8.4 (6.2-10.6) 54,418 70.1
Oshana® Oshakati? 19(4) 10 353 9,133 3.1(1.9-4.3) 169,053 75.4
Oshikoto Onandjokw
e 16(0) 8 266 8,516 2.3(1.6-3.1) 146,436 69.8
Tsumeb 5(1) 2 28 628 5.1(1.8-8.4) 29,094 67.4
Otjozondjup  Grootfontei
a n 6(0) 2 59 547 13.7 (7.1-20.3) 33,347 61.3
Okahandja 2(1) 2 3 110 5.2 (0.2-10.1) 40,209 64.2
Okakarara 5(0) 1 17 189 11.6 (5.0-18.2) 21,748 56.6
Otjiwarongo 10(1) 2 36 319 5.4 (2.6-8.1) 42,336 67.3
1,409,84
Total 260(17) 78 9,803 134,851 11.2 (6.7-15.7) 1 65.3°
1. PHEF is an abbreviation for ‘Public Health Facility’, which in this case does not include private facilities or privates for

profit

2. Two constituencies in Oshana region (Okatyali and Ompundja) did not have any health facilities, thus, the polygons
where treated as missing data.

3. Public health facility attendance for treatment of fever based on probability of attendance and the distance decay effect.
Description outlined in Alegana et al., 2012.

2.4.2 The malaria incidence model results and validation

Table 2.3 shows comparison of two models Model 1(without covariates) and Model 2 (with
covariates) based on the DIC, SES and RPS. Model 2 was marginally better compared to Model
1. The standard deviation of predictive distribution for Model 2 was also lower compared to
Model 1. The lower the predictive score the better the model. The conditional predictive ordinate

(CPO) for both models was 0.22 (Table 2.3) and since a smaller CPO value usually indicates
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greater predictive accuracy (Schrodle and Held, 2010), the result suggested a small difference
between the two fitted models. Model 2 (with EVI) was, however, used as the basis for
presenting subsequent model outputs since covariate could be included when smoothing for

unknown areas.

Table 2.3: Comparison of the implemented Bayesian models
Comparison is based on the deviance information criterion (DIC), the rank probability score (RPS) and the squared
error score (SES). M2 had lower score of the DIC, RPS and SES

Model DiIC Mean Number of CPO RPS SES Standard Mean of
deviance effective deviation of predictive
parameters predictive distribution
distribution
Model 1 (without covariate) 3123.90  3113.22 9.79 0.23 0.6922 1.7039 1.3053 1.1526
Model 2 (with covariate) 3123.80 3112.08 10.68 0.23 0.6662 1.6093 1.2686 1.1343

Figure 2.9 shows a scatter plot of the estimates compared to the observed cases based on Model
2. This Pearson correlation coefficient for the model was 0.56. The correlation was based on the
26 health facilities selected randomly in northern Namibia. Table 2.4 lists parameters for the two
CAR models. The seasonal effect parameter (2.02 with Crl 0.16 — 5.79), health facility random
effect (6.95, Crl 2.65 — 13.22) and the constituency effect (0.20, Crl 0.02 — 0.57) were all
significant at 95% Crl (Bayesian credible interval). There was marginal difference in the mean
intercept: -1.80 Crl (-1.98 - -1.64) and -1.76 Crl (-1.93 - -1.58) for model with and without

covariate information, respectively. The spatial effect parameter () was significant in both

models.
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Figure 2.9: Comparison of observed and the estimated incidence in Namibia
Scatter plot of the observed cases on a log scale compared to the estimated case for the Bayesian model with
environmental covariate (EV1).The Pearson correlation was 0.56.

Table 2.4: Posterior distribution of parameters for incidence model.
Posterior means and the 95% Bayesian credible intervals (Crl) of the parameters for the two zero-inflated CAR
models of malaria incidence in northern Namibia on a log scale

Parameter Model 1 Model 2
Without covariates: Posterior With environmental covariate:
mean, median, (95% Crl) Posterior mean, median, (95%
Crl)
1 (Intercept) -1.763, -1.760 (-1.932 - -1.581) -1.803,-1.800 (-1.980 - -1.639)
Enhanced Vegetation Index (EVI) - 0.093, 0.093 (-0.028 - 0.211)
9 (parameter for Zero-inflation) 0.843, 0.843 (0.833 - 0.856) 0.843, 0.843 (0.833 - 0.854)
Tm (seasonal random effect) 1.546, 1.023 (0.137 - 4.692) 2.015, 1.427 (0.161 - 5.789)
¢ (facility random effect) 6.912, 5.836 (2.605 - 14.830) 6.952, 6.388 (2.641 - 13.220)
Y (unstructural random effect) 0.190, 0.136 (0.020 - 0.542) 0.200, 0.144 (0.019 - 0.568)
¢ (structural random effect) 0.081, 0.045 (0.003 - 0.278) 0.080, 0.004 (0.030 - 0.276)

2.4.3 Plasmodium falciparum incidence in northern Namibia in 2009

Figure 2.10 (below) compares the estimated monthly incidence per 1000 population of P.
falciparum with the calculated crude incidence based on the reported cases by month in 2009.
Table 2.5 shows a comparison between the crude incidence and estimates based on the Bayesian

approach. Incidence peaked in March and April period compared to later months of the year. The
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Bayesian estimates for September to December period was higher, possibly due to the inclusion
of spatial interaction effects and the environmental covariate. Figure 2.9 showed that the highest
incidence was in Kunene, Kavango, Caprivi and in a few constituencies in Ohangwena region
that borders Angola.

6000 - r 35

I Cases

—&— Crude incidence 30

5000

—=@- - Predicted incidence

Predicted 95%CI

4000

3000

2000

Total confirmed and suspected cases
Cases per 1000 population

1000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 2.10: Temporal plot of estimated incidence

Plot showing the observed cases by month (dark grey vertical bars), the calculated crude incidence (green line)
based on the reported cases and estimated population and the predicted incidence per 1000 population of P.
falciparum malaria in northern Namibia in 2009 (dashed red line with upper and lower limits at 95% Crl).

Crude incidence estimates varied widely across the regions compared to a smoothed incidence
from the Bayesian model that incorporated environment covariate. Crude estimates can over-
estimate incidence where the denominator population is small, and do not account for spatial and
temporal dependencies in the data. For example, crude annual incidence in Katima district in
Caprivi region was 133 cases per 1000 population compared to a smoothed estimate of 12 cases

per 1000 population when using a Bayesian model. The predicted annual mean incidence from
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the Bayesian CAR model was 13 cases per 1000 population in the 78 constituencies in northern

Namibia.

Figure 2.11 shows the predicted mean spatio-temporal maps of malaria incidence in northern
Namibia in 2009. The annualised incidence for 2009 is shown in Figure 2.12 with corresponding
standard deviations in Figure 2.13. The highest estimated incidence was between 15 and 20 cases
per 1000 population during January to April period and in constituencies bordering Angola. A
similar pattern of incidence was depicted in the annual mean maps. The lowest risk was in

southern most constituencies of Omaheke. The estimates in the southern constituencies also had

higher standard deviations compared to northern constituencies.
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Figure 2.11: Monthly maps of P. falciparum incidence in 2009 in northern Namibia
estimated incidence of P. falciparum malaria at constituency level using Bayesian spatio-temporal CAR zero-
inflated models with environmental covariates (Model 2)
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Figure 2.12: Mean incidence of P. falciparum in northern Namibia in 2009
The mean annual incidence of P. falciparum malaria based on Bayesian CAR with environmental covariates (Model
2).
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Figure 2.13: Standard deviation map of annualised incidence for 2009
Figure 2.11: The standard deviation map based on Bayesian model. The largest values were in regions where no or
less data was reported.

120



Table 2.5: Comparison of crude malaria incidence and estimated incidence from a Bayesian approach
Crude incidence was derived based on total malaria cases and the population likely to attend treatment while the
Bayesian spatio-temporal approach was used to smooth this incidence across regions in northern Namibia.

Number of
health
facilities
(number Crude incidence Mean estimated malaria
with missing Number of per 1000 incidence per 1000 population
Region Health district data) constituencies population via Bayesian approach
Caprivi Katima 29(2) 6 132.7 11.5(9.8-13.9)
Kavango Andara 10(0) 1 24.5 9.3 (7.5-11.9)
Nankudu 13(1) 2 15.5 12.5 (10.5-15.4)
Nyangana 8(0) 1 78.7 15.1 (13.2-17.7)
Rundu 23(1) 5 51.1 12.7 (10.8-15.2)
Kunene Khorixas 8(0) 1 0.2 14.6 (12.5-17.6)
Opuwo 16(0) 3 20.6 11.8 (9.7-15)
Outjo 4(0) 2 0.1 14.5 (12.6-17.3)
Ohangwena Eenhana 10(1) 4 9.7 14.8 (12.9-17.4)
Engela 17(0) 6 16.8 14.3 (12.5-16.9)
Kongo 4(1) 1 48.5 15.6 (13.5-18.8)
Omaheke Gobabis 16(2) 7 0.3 11.5(9.6-14.4)
Omusati Okahao 9(1) 2 31.9 12.3 (10.4-14.9)
Oshikuku 19(0) 5 10.8 14.5 (12.8-16.9)
Outapi 10(0) 2 65.6 14.8 (12.9-17.5)
Tsandi 10(1) 3 21.7 10.3 (8.5-12.7)
Oshana® Oshakati’ 20(4) 10 42 8.8 (7.6-10.6)
Oshikoto Onandjokwe 16(0) 8 44 12.8 (11.1-15.5)
Tsumeb 6(1) 2 1.9 6.7 (5.0-9.3)
Otjozondjupa G tfontein 7(0) 2 36 13.4 (11.6-16.3)
Okahandja 3(1) 2 0.1 9.2 (7.5-12.1)
Okakarara 5(0) 1 1.6 13.6 (11.7-16.5)
Otjiwarongo 10(1) 2 1.3 9.7 (7.9-12.6)
Total 273(17) 78 17.4 12.5 (10.3-14.6)

2.4.4 Assessing the population at risk of malaria in 2009 in northern Namibia

Table 2.6 (below) shows the estimated population at risk of P. falciparum malaria by region in

2009. Based on the Bayesian model, 383,632 people (27.2%) lived in areas where case incidence
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was greater than 15 cases per 1000 population; slightly more than half 745,903 (52.9%) lived in
areas where case incidence was between 10 to 15 cases per 1000 population; approximately
216,512 (15.4%) resided in regions with an average of 5 to 10 cases per 1000 population; 49,005
(3.5%) in areas with greater than 1 case, but less than 5 cases per 1000 population and 1% of

population lived in regions with less than 1 case per 1000 population.

Table 2.6: Population at risk in Namibia based on estimated incidence.
Estimated population in northern Namibia at risk of P. falciparum in 2009 by region. Each classification class
represent estimated incidence per 1000 population

Region <1.0 >1.0-<5.0 >5.0-<10.0 >10.0-<15.0 >15.0 Total
Caprivi 0 0 25,614 61,474 0 87,088
Kavango 0 0 75,393 26,097 113,572 215,062
Kunene 0 0 0 85,348 0 85,348
Ohangwena 0 0 0 91,438 145,469 236,907
Omaheke 7,249 9,376 0 7,153 44,656 68,433
Omusati 0 0 27,741 127,104 79,935 234,780
Oshana 7,539 3,866 32,573 125,074 0 169,053
Oshikoto 0 19,041 24,938 131,550 0 175,529
Otjozondjupa 0 16,722 30,254 90,664 0 137,640
Total 14,789 49,005 216,512 745,903 383,632 1,409,841

2.4.5 The predicted slide positivity rate in 2009

2.4.5.1 Model validation results for slide positivity rate

Table 2.7 shows parameters of the slide positivity rates model. The model had an absolute mean
error of 1.1 which measured the overall magnitude of predictions and a RMSE of 2.1. The
Pearson correlation coefficient which measured the linear association between the predicted and
the observed values was 0.7 as shown by the scatter plot (Figure 2.14 (A)). The absolute error of
1.1 indicates a small variation (in terms of magnitude) between observed and predictions. The
analysis of standardized residuals using a semi-variogram showed minimum spatial structure
(Figure 2.14 (B)) i.e. the residual spatial autocorrelation unexplained by the model after

accounting for spatial effects.
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Table 2.7: Bayesian geostatistical model parameters of Slide positivity rates for Namibia in 2009

Probability of Pearson
DIC Pl MAE R.M.S.E prediction correlation
interval (%) (%)
SPR Model 372.98 115.03 1.06 2.10 93.82 0.6985

1. Pp represent the effective number of parameters

2. The nominal probability of prediction is 95%

The actual coverage probability of a prediction interval was used on a validation set to test how
well the posterior distributions captured uncertainty at nominal 95% credible interval. Thus for a
perfect model, 95% of value should fall within 95% of credible interval predicted at each
location. The actual coverage probability was 93.8% indicating a slight underestimation of
uncertainty. The RMSE was 2.1 % and corresponding AR(1) coefficient for structure time
component was 0.8430. The model spatial range was 54.8 Km. Further parameters from the

model such as the marginal variances ¢ are tabulated (Table 2.8).
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Figure 2.14: Scatter plot of predicted and observed slide positivity rate and semi-variogram of residuals
(A) Scatter plot of the predictions and the actual values (B) standardized residual semi-variogram
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Table 2.8: Posterior distribution of parameters for slide positivity rate
Posterior estimates (mean, standard deviation and quantiles) of the fixed components (intercept and EV1), the matérn
marginal variance component), the AR(1) coefficient and the model range

Parameter Mean Std. dev 5% 50% 95%

Bo 0.2648 0.0612 0.0164 0.2647 0.3660
By 0.0404 0.0090 0.0255 0.0404 0.0551
ow’ 0.1576 0.0476 0.0945 0.1496 0.2475
p 0.843 0.0981 0.6555 0.8626 0.9627
¢ 0.3093 0.0750 0.2095 0.2965 0.4510

2.4.5.2 Predicted slide positivity rate

Figure 2.15 shows the predicted continuous and binned maps of slide positivity rate weighted by
the probability of seeking treatment at the nearest public health facility when sick with fever.
Slide positivity was higher in regions bordering Angola, consistent with predicted incidence
prediction. The positivity rates in Omaheke regions were low. Table 2.9 shows the average
positivity by region. The mean slide positivity rate for northern Namibia was 4.5% (minimum
0.2%, maximum 19.2%). The constituency with highest slide positivity rate was Eenhana in
Ohangwena region. Figure 2.16 show the associated standard deviations of the predictions which
were higher in areas with no data. Overall, majority of regions had slide positivity of less than
5%, which is a threshold for pre-elimination. Three regions, Capirivi, Ohangwena and Kavango

had more than 5% positivity threshold.
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Figure 2.15: Posterior mean predictions of slide positivity rate at 1 km x 1 km
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Figure 2.16: Standard deviation map of slide positivity rate

Table 2.9 Slide Positivity Rate by region in Namibia.
Comparison of predicted slide positivity rates (%) by region in northern Namibia in 2009

Region Mean SPR Minimum (SPR) Maximum (SPR) Range (SPR)
Omusati 4.4 0.0 9.1 9.1
Oshikoto 4.0 0.1 15.4 15.3
Oshana 4.3 0.4 7.9 7.4
Ohangwena 8.2 0.0 22.8 22.8
Otjozondjupa 3.0 0.0 7.7 7.7
Kunene 2.3 0.0 36.1 36.1
Kavango 6.1 1.2 51.8 50.6
Caprivi 6.0 0.0 14.6 14.6
Omaheke 2.4 0.0 7.4 7.4
Average 4.5 0.2 19.2 19.0
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2.5 Discussion

2.5.1 Introduction

The evaluation of malaria pre-elimination or elimination programme requires a detailed
description of local epidemiology. These descriptions are required as baseline upon which
evaluation and transition of risk is estimated. This study investigated two important aspects on
baseline malaria incidence in 2009 and comparison of this incidence with the slide positivity
rates. The smoothing of incidence and prediction of slide positivity rates was carried out using
Bayesian model based approaches with the former including a CAR prior to smooth risk at
constituency level. A higher incidence of malaria was observed between January and April in the
constituencies bordering Angola and Zambia while lower values were estimated between the
months of July and December. The mean malaria incidence estimated for northern Namibia was
13 cases per 1000 population for 2009. For the same northern regions a 4.5% mean slide
positivity rate was predicted using a model based geostatistical approach. Both modelling
approaches included environmental covariates. According to the WHO, the target threshold for
pre-elimination based on incidence is less than 1 case per 1000 population or in areas where slide
positivity rates are less that 5% (World Health Organization, 2007a). Incidence was estimated
based on reported clinical and confirmed cases in 2009 in northern Namibia while slide positivity
rate only looked at cases examined at the facility. The two indices are different but can be useful

indicators to establish baseline makers of malaria elimination in Namibia.
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2.5.2 Implications for malaria control and elimination in Namibia based on estimated
incidence

From the monthly maps of Namibia (Figure 2.9), a higher incidence of malaria was observed
between January and April, while, lower values were observed for the July and December
period. Thus, malaria control efforts should be lagged with the peak observed in early months of
the year. These include the distribution of ITNs, parasitological diagnosis and treatment (World
Health Organization, 2014d). Universal ITN coverage should target areas with high malaria

incidence such as Caprivi, Omusati and Kavango.

Malaria transmission in Namibia is likely to be highly seasonal with precipitation months
between November and March. The findings also suggest that malaria cases peak early in the
year in March and April. However, precipitation patterns could vary from year to year and this
may lead to low number of malaria cases in drought years or epidemics in a rain year in the
northern Namibia (De Meillon, 1951, Ministry of Health and Social Services and World Health
Organization, 1996). Aridity limits transmission on the western coast with the Atlantic ocean and
in the southern desert fringe regions. These have been masked in the maps presented (Figure 2.9
and Figure 2.10). The southern regions of Hardap, Karas, Erongo and Khomas are masked
because they are defined as malaria free, although, Khomas and Erongo may support unstable

transmission (Snow et al., 2010a).

The mean incidence observed for 2009 was highest in regions bordering Angola, Zambia and

Botswana. Historical Plasmodium falciparum data for Namibia between 1969 and 1992 (Noor et
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al., 2013a, Noor et al., 2013b) suggest a parasite prevalence of greater than 5% in Kavango and
other northern regions along the border with Angola. In addition, Craig and others showed that in
Botswana, the area along the north-western border areas with Namibia had relatively high
prevalence (Craig et al., 2007). For these border constituencies concerted efforts with
neighbouring countries have to be put in place to realize the pre-elimination targets (Noor et al.,
2013b, Noor et al., 2013c). It is important to note that the malaria parasite can be imported as a
result of residence returning after travelling to other endemic regions (Angola, for example), by
visitors from across the border, permanent migration or by infected mosquitoes moving to the
area (Cohen et al., 2012). A higher Incidence in the border regions could well be driven by cross
border population movement (Cosner et al., 2009, Noor et al., 2013b). Similar suggestions were
made for two districts in South Africa close to the Mozambique border (Kleinschmidt et al.,
2002) and in Yunnan province in China that borders Myanmar, Laos and Vietnam (Clements et

al., 2009).

2.5.3 Comparison of estimated incidence, parasite prevalence and slide positivity rates
Figure 2.17 (below) shows comparisons between the estimates (incidence and slide positivity
rate) with parasite prevalence at community level. Parasite prevalence maps were produced by
interpolating community prevalence data (Noor et al., 2014). There few points to consider. First,
the parasite prevalence is representative of specific age group for children (2-10 years) but
modelled using Bayesian approaches. Secondly, data for the parasite prevalence was assembled
from independent surveys randomly within the population, the denominator being number of
people examined within the community. There was a positive correlation (Pearson correlation

coefficient 0.5) between the estimated incidence per 1000 population and the age specific (2-10
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years) parasite prevalence. This suggested that areas with higher incidence of P. falciparum in
Namibia were associated positively with parasite prevalence. Similar results were observed for

the slide positivity rate (Pearson correlation coefficient 0.5).

Namibia NMCP has already deployed the use of RDTS and microscopy at health facilities for
diagnosis of suspected cases prior to treatment (Ministry of Health and Social Services, 2010c).
In low transmission settings, where malaria is highly seasonal and unstable, fevers due to malaria
are less common and low parasite density is not detectable easily by routine diagnostic tools such
as RDTs. The mean slide positivity rate for Namibia in 2009 was 4.5%. In northern Namibia,
only Kavango, Caprivi and Ohangwena had slide positivity exceeding the 5% threshold for pre-
elimination after adjusting for utilisation of facilities for fever treatment. The rest of regions in
the north appear to be within pre-elimination targets based on baseline rate of slide positivity. At
low parasite densities, the slide positivity rate may well be an indicator of endemicity in
population using the health facility and has been illustrated in Sdo Tomé and Principe (Lee et al.,
2010) and in Yuunan province in China (Bi et al., 2012). Namibia was also one of the countries
in SSA where only small proportion of cases is treated in the private sector (Cohen et al., 2012).
Another characteristic of low transmission settings is that malaria may be in marginalised
population e.g. at the borders (World health Organisation, 2012a). For Namibia, this was also
evident from the posterior mean of the slide positivity for 2009 (Figure 2.13) where
constituencies in Kunene, Ohangwena and Kabe constituency in Caprivi region had the highest

slide positivity rates.
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Figure 2.17: Comparison of incidence, slide positivity and parasite prevalence
Scatter plot of community measured parasite rate with the modelled slide positivity rate at health facility level.

2.5.4 The model based approach for P. falciparum incidence compared to crude incidence
The spatio-temporal model included the random effects at facility and constituency level as well
as introduced dependencies spatially and temporally using the CAR prior affect and auto-
regressive component respectively. Thus the modelled risk was not only as a function of
smoothing but also taking into account of spatial autocorrelation via the GMRF (Banerjee and
Carlin, 2003, Rue and Held, 2005). In general there was smoothing of incidence towards the
overall mean. This contributed to wider differences between crude incidence and the smooth
estimates in some regions. This is likely to be a factor of using 0-1 weights as neighbour matrix
during the model set up (Section 2.3.5). This means that neighbour areas are correlated and
treated as independent if not a neighbour of the region of interest. Other studies have found
differences in level of smoothing based on specification of the neighbourhood matrix (Earnest et
al., 2007). It is possible to mitigate this effect by introducing higher level random effects while

maintaining a local CAR prior effect to control local-mean smoothing (Lee, 2011), in addition to
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the facility level effects. This alternative methodology is explored in next chapter on

Afghanistan.

Crude incidence estimates are overestimated where the denominator population is small and
malaria cases are few. The hierarchical Bayesian zero-inflated CAR model addressed several
sources of uncertainty in comparison to the crude incidence estimates. First, the model was
applied at facility level and, therefore, the method not only takes into account the nature of the
facility, but also season and environmental factors (at facility level) in adjusting for under-
reporting. Secondly, incidence was smoothed across the facility reports, thereby addressing the
potential impact of model instability resulting from small numbers of reported cases, apparent in
the facility data. Smoothing incidence also reduces the potential impacts of under-reporting of
cases by facilities. Third, incorporating the environmental covariate (EVI) explained spatial
variation where data were absent in addition to providing information on the climatic suitability
of malaria transmission, for example, in Omaheke region (Craig et al., 1999, Guerra et al.,
2008). This suggested that the inclusion of environmental covariates improved the model
estimates for a few constituencies (in Kunene and Omaheke), but only marginally as suggested

by the DIC between the two models implemented.

The cross-validation approach used in this case study draws from predictive distribution of the
model. This deviates from large literatures that mainly use statistics such as the mean error
(Clements et al., 2009, Raso et al., 2012, Noor et al., 2013c, Sahu et al., 2013). The mean error,
for instance, summarise the overall model performance which could deviate from individual

estimates. The analysis in this thesis largely employs the use of model scoring rules to validate
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the predictive performance (Gelfand and Ghosh, 1998, Gneiting and Raftery, 2007, Czado et al.,
2009). Since the goal is estimation and at unknown locations, the validation procedures used here
are likely to assess the predictive performance in a better way. Moreover, the R-square value is
likely to improve with increasing number of covariates without improving model performance
(Gething et al., 2011b). The Namibia approach used a single covariate and with relatively 90%

complete reporting.

2.5.5 Limitations

The approach presented here drew upon a comparatively data rich setting based mainly of RDT
and microscopy diagnosis. First these diagnostic tools are documented to have different
sensitivities (WHO-FIND, 2009). RDT, for example, may record false positives resulting in
overestimation of cases (Bell et al., 2005). Improvement in diagnosis in low transmission areas
may involve the use of polymerase chain reaction (PCR) (Zakeri et al., 2010, Noor et al., 2011,
Gething et al., 2012). The recent improvements in case management in Namibia in which all
suspected malaria fevers are diagnosed parasitologically before treatment will reduce the need
for adjustment for test positivity rate. In addition, planned improvements in HMIS reporting and
quality and transition to active case detection mean smaller adjustments for treatment seeking
and reporting will be required in future. This is may also be useful for external validation of the
zero-inflated Bayesian models. Precise incidence estimates should provide a basis for targeting
active case detection efforts at specific locations and in specific months, potentially making such
resource-intensive efforts more cost-effective. A comparison of resulting estimates with the
standard non-spatial WHO approach (Cibulskis et al., 2011) shows that the latter estimates a

higher annual malaria incidence of 23 per 1000 population and is likely to be less imprecise. The
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main difference between the WHO approach and the one used in this thesis is inclusion of extra
parametrisation in Bayesian modelling in addition to dealing with spatial (and temporal) auto-

correlation.

One drawback of many studies analysing areal data, and one common to the Bayesian approach
used in this study, is the modified areal unit problem (MAUP), a well-known analytical problem
in geography that could affect the observed statistical results with a change in shape or size of
spatial polygons used in the analysis (Robinson, 1950, Wakefield, 2003, Barnerjee et al., 2004).
In this study constituencies were selected as the basis for presenting estimates, with the aim of
providing information at this level to health authorities, though the model was fitted at facility
level. There is therefore a potential impact of MAUP both in terms of the shape of constituencies
and in smoothing at constituency level from facility level data. Secondly, the data used for this
study were obtained from the Namibia HMIS which covers the majority of public health
facilities in the north. This means that the findings are relevant only for the 12-month time-series
in 2009. The results could be improved by inclusion of more data and at different time points to
draw more stable long-term spatio-temporal patterns (Zhou et al., 2005). In addition, the
modelling approach excluded the effects of population movements between regions, especially
across borders, while the relations between the environmental variables could change across
space and at(WHO-FIND, 2009) shorter time periods than those considered (Hay et al., 2008).
Finally, some sources of uncertainty remain. In particular, the underlying the care-seeking
behaviour data used to adjust denominator populations relate to children under 5 years, not the
whole population. Utilisation rates were estimated from cross-sectional surveys and therefore
may not capture temporal changes in care-seeking behaviour. The underlying utilisation data also

relate to fever rather than malaria per se.
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2.6 Conclusion

The current efforts of the NVDCP to focus aggressive malaria control activities around the
border regions with Angola, Zambia and Botswana are likely to play an important role in
achieving malaria elimination by 2020 in Namibia (Ministry of Health and Social Services,
2010c, Trans-Zambezi Malaria Initiative (TZMI), 2012, Noor et al., 2013b). Current results
suggest that the country may be within the pre-elimination targets in most parts of the northern
region. This study provides additional information to identify the highest malaria risk areas in
Namibia and when used together with evidence from modelled community parasite prevalence
surveys on receptive and contemporary malaria risk, should support malaria control and
elimination initiatives in the country. However, long term spatio-temporal trends in incidence

will be useful to assess progress over time.
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CHAPTER 3: Case Study 2

Examining coverage and utilisation of healthcare in Afghanistan to
estimate the incidence of Plasmodium vivax and Plasmodium

falciparum malaria
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3.1 The Afghanistan context

3.1.1 Background

In this chapter, passive case data from HMIS was used to estimate the burden of Plasmodium
vivax and Plasmodium falciparum in Afghanistan. Of the 10 countries in World Health
Organisation Eastern Mediterranean Region (WHO/EMRO) with ongoing malaria transmission,
Afghanistan has the second highest malaria burden after South Sudan, predominantly due to P.
vivax species with only a small proportion of cases due to P. falciparum (Safi et al., 2009a, Safi
et al., 2009b). Being a mountainous country, previous studies suggested that malaria risk is
higher in regions of altitude < 2000m and in river valleys where irrigation and rice cultivation is
practiced (Kolaczinski et al., 2005, Safi et al., 2009b). P. vivax is predominant in Asia and only
patchy in Sub-Saharan Africa due to absence of Duffy antigen that is usually required for red
blood cell invasion stage (Gething et al., 2012). P. vivax is also known as relapsing malaria
because it can stay dormant for long periods (months or years) in the liver (hypnozoite stage)

(Douglas et al., 2011, White, 2011).

Southeast Asia has the most malaria vectors compared to SSA. The main malaria vectors in
Afghanistan are about six, namely: Anopheles superpictus, An. culicifacies, An. stephensi, An.
hycranus, An. pulcherimus and An. Fluviatilis; although An. stephensi and An. culicifacies are
predominantly found in the east of the country (Rowland et al., 2002, Safi et al., 2009b). In
Afghanistan, earlier vector control using dichlorodiphenyltrichloroethane (DDT) during the
eradication programme (1957-1969) had reduced vector abundance (Ramachandra, 1951, Dy,
1954, Kolaczinski et al., 2005). However, malaria vectors re-emerged as a result of resistance to

insecticides (Eshghy and Nushin, 1978, Delfini, 1989) and a decline in malaria control due to
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instability after the Soviet invasion in 1979. The alternative use of malathion and larvivorous
fish (Gambusia affinis) had limited success (Eshghy and Nushin, 1978, WHO/EMRO, 2003). In
addition to re-emergence of malaria vectors, chloroquine resistance and population movement
mainly from returning refugees contributed to an increase in malaria burden in Afghanistan

(Delfini, 1989, Rowland et al., 1997, Shah et al., 1997).

The national malaria and Leishmaniasis control programme (NMLCP) was re-constituted in
2002 and formulated a national malaria strategic plan (2006 to 2010). Artemisinin-based
combination therapies (ACTs), mainly using AS+SP for P. falciparum, were adopted in 2004 to
replace the SP monotherapy. Chloroquine remains effective for treatment of diagnosed cases of
P. vivax. Funding from the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)
(The Global Fund, 2013a) (round 8) has increased procurement and social marketing of ITNs. By
2012, the malaria programme had benefited from approximately US $ 50.2 million in

dishursements from the GFATM since 2004.

To track progress towards national targets, the National Malaria and Leishmaniasis Control
Programme (NMLCP) and partners established a routine information system to report monthly
malaria cases by health facility (Ministry of Public Health, 2006). The health information
system, however, captured passively detected case data from only public-based health facilities
which contained both suspected and parasitologically confirmed cases. Although healthcare
delivery has improved recently in Afghanistan after introduction of the Basic Package for Health
Services (BPHS) (Edward et al., 2011), a significant challenge facing Afghanistan is effective

delivery of interventions to population at risk. Access and utilisation of public health facilities
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are not well understood at a national level especially for remote and conflict-affected provinces.
Past and recent service provision assessments were constrained to only a few provinces and
cannot be generalized for entire country (Reilley et al., 2004, Edward et al., 2011). Lastly, HMIS
is hindered by challenges of low parasite confirmation rates which inflate malaria cases. In
addition, low reporting rates tend to underestimate disease burdens because of the spatially and

temporally incomplete data (Gething et al., 2006).

The aim of this study is to provide reliable estimates of P. vivax and P. falciparum at a sub-
national level in Afghanistan to enhance decision making. The first section of the chapter
provides an overview of healthcare in Afghanistan, including geography, the health system and a
review of healthcare access in Afghanistan (section 3.1). Geographic access is subject of section
3.2 that looks into aspects of utilisation and coverage of health services. In terms of modelling
utilisation of public health facilities, there is a slight difference from Namibia analysis. Here,
analysis was stratified by facility type. The purpose of stratification was to investigate whether
non-stratification resulted in a mean distance-decay model compared to health facility specific
patterns. Section 3.4 outlines incidence and slide positivity analysis based on Bayesian model
based approaches. The slide positivity analysis here was similar to Namibia analysis. A different
model parametrisation, for malaria incidence, was used compared to Namibia. The Bayesian
hierarchical model here included random effects at facility, district and province levels. In
Namibia, random effects were specified only at facility and constituency levels. The aim of extra
parametrisation was to improve spatial smoothing of incidence. The results of both healthcare

access and incidence modelling are subsequently discussed in section 3.5.
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3.1.2 Geography

Afghanistan is a landlocked country located in south central Asia with an estimated land surface
area of 640,000 km?. Its estimated population is 30 million with majority living in the northern
and south eastern regions of the country (World Health Organization, 2013a). It is boarded by
the commonwealth states of Tajikistan, Turkmenistan and Uzbekistan in the north, Iran to the
west, Pakistan to the south east and China in the north east (Figure 3.1). Afghanistan is divided
into 34 administrative provinces and 398 districts. It is a highly mountainous country dominated
by Hindu Kush range from the central to the north eastern regions. The major rivers are the
Helmand in the south, the Kabul river system that passes through the capital to the east, the Hari
Rud to the west and the Amu river to the north. The south west regions of Afghanistan bordering
Pakistan and Iran are predominantly desert compared to the south east regions that experience
some low rainfall. Population is highly dependent on irrigation for Agricultural productivity with
the main cultivated crop as rice, in the valley regions. Irrigation in the valleys is aided by melting
snow at high mountain ranges from the central regions which in turn provide breeding areas for
Anopheles. Temperature in the summer can reach as high as 45 °C and fall below 0°C in the

winter months.
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Figure 3.1: Google map of Afghanistan
Source: Google Maps (Google, 2013)

3.1.3 Organisation of Afghanistan’s Healthcare system and financing

Healthcare system in Afghanistan exhibits a hierarchical structure categorised as primary level,
the secondary level and the tertiary level. The primary level forms the Basic Package for Health
Services (BPHS) constituting clinics, health posts and Maternal Child Health (MCH) centres,
basic and Comprehensive Health Centres (CHC). District hospitals form the secondary level,
while, provincial and regional facilities form the tertiary level. Secondary and tertiary level
facilities constitute the Essential Package for Hospital Services (EPHS) and serves as referrals
for the BPHS-level facilities (Ministry of Public Health, 2008b). The BPHS and the EPHS were
constituted in 2002 by the Ministry of Public Health (MoPH) (Ministry of Public Health, 2003,

Waldman et al., 2006, Ministry of Public Health, 2010a). Prior to the formation of the BPHS and
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the EPHS, community outreach programmes served at the village level and were supported by
sub-health centres and MCHs. District hospitals were previous known as rural-level facilities and

were intermediary to the lower-tier health centres.

The BPHS provides primary care to the rural population and was expanded by contracting
services to NGOs and MoPH partners (Waldman et al., 2006, Steinhardt et al., 2011). Priority
areas included maternal and new born health (e.g family planning, ANC, PNC); child health
(expanded program for immunization (EPI) and integrated management of childhood illness
(IMCI)), general nutrition (malnutrition); communicable diseases (malaria, TB and HIVV/AIDS);
mental health; disability and supply of essential medicine (Ministry of Public Health, 2010a).
Health service delivery in Afghanistan is hampered by poor infrastructure following years of
conflict, unequal distribution of health facilities, costs of providing medical care and lack of
personnel (Acerra et al., 2009, Ministry of Public Health, 2010a). At village level community
health workers manage the health posts which provide basic preventive and curative services. In
remote areas Mobile Health Teams (MHTS) are used, especially for immunization programmes
such as EPI (Belay, 2010, Ministry of Public Health, 2010a). The basic health centres link basic
service providers at the community level with the next service tier (the CHC) that are in turn
linked to higher level hospitals providing both inpatient and outpatient services. Thus, where no
regional or tertiary facility exists, district hospitals are the main referral centres. Inpatient
facilities are provided mainly at the tertiary level (Ministry of Public Health, 2010a). At health
posts, only clinical diagnosis of malaria is provided along with other basic services. Severe and
complicated illness is referred to higher-level district hospitals (Ministry of Public Health,

2010a).
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Financing of healthcare is shared partly by government, private and external sources (Palmer et
al., 2006, Ministry of Public Health, 2009b, Belay, 2010). The public financing schemes include
social insurance offered mainly to government employees or through public based organisations.
Other forms of insurance is also provided by private companies or organisations (Ministry of
Public Health, 2011). Private financing is through direct out of pocket payments at the peripheral
health facilities or through charity or private insurance. Government funds in Afghanistan are
channelled through the provincial and regional directorates that manage and coordinate activities
at the district level. The general per capita expenditure on healthcare in 2008 was estimated to be
US $ 42 (Ministry of Public Health, 2011) which was lower than the proposed minimum amount
of US $ 44 per annum on an individual for basic and life saving health services (World Health
Organisation, 2012b). Majority (75%) of direct healthcare costs is provided by household

through OOP payments (Ministry of Public Health, 2011).

3.1.4 Population health and the MDGs in Afghanistan

Afghanistan has been plagued by conflict since the soviet invasion in (1979 -1996) and during
the Taliban reign (1996-2001). This has led to destruction of basic infrastructure, rise in poverty
and contributed to low economic development (The PLoS Medicine Editors, 2011, Jacobs et al.,
2012, The World Bank, 2012, Singh et al., 2013). Afghanistan endorsed the Millennium
declaration in 2004 which extended the country deadline to 2020 rather than the 2015. It also
included an extra ninth goal ‘to enhance security’ which remains a major problem (Ministry of

Finance, 2010).
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Afghanistan was ranked as one of the bottom countries (175 out of 186 countries) according to
human development index (0.374) in 2012 (UNDP, 2013a) and has only made little progress in
addressing the problems of poverty, illiteracy, infrastructure and healthcare provision. Conflict
and poor health has contributed to low life expectancy at birth which is estimated currently at 47
years for males and 50 years for the female population; the infant mortality rate is estimated at
129 per 1000 live births; while the under-five mortality rate stands at 191 per 1000 children not
surviving age 1 (Afghan Public Health Institute et al., 2011). A mortality survey conducted in
2010 showed higher all-cause mortality in adult population aged over 50 years. Pregnancy-
related mortality was estimated to be 327 (95% confidence interval: 260-394) and was four times
higher in rural areas compared to urban areas (Afghan Public Health Institute et al., 2011). It is
less likely that progress will be made to reduce the current MMR which is compounded by
factors such as illiteracy and lack of autonomy in the households amongst the female population
as well as poor access to quality healthcare (Acerra et al., 2009, Ministry of Finance, 2010, Trani

et al., 2010).

The burden and deaths due to malaria have declined as a result of recent intervention strategies
as a result of increased funding from the Global Fund (The Global Fund, 2013a). This includes
increasing use of ITNs as protection against malaria. The burden of Tuberculosis however
remains one the highest in the Eastern Mediterranean Region (Mauch et al., 2010, Delawer et al.,
2013). These challenges may be improved by better targeting of external aid, reducing poverty,

improving primary care and quality of healthcare.
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3.1.5 Review of healthcare access in Afghanistan

Access and utilisation of health services continues to be a subject of debate in high (Department
of Health, 2009, Laudicella et al., 2012) and low income countries (Jacobs et al., 2012, Singh et
al., 2013). The situation is even more severe in Afghanistan following decades of conflict that
has led to destruction of basic infrastructure (Ameli and Newbrander, 2008, The PLoS Medicine
Editors, 2011, The World Bank, 2012). The Basic Package for Health Services (BPHS) was
introduced in 2004 to expand coverage (Edward et al., 2011) using contracting mechanisms
through NGOs. Many NGO based health facilities in Afghanistan are supported by the World
Bank, the USAID and the European Union (Sabri et al., 2007, Ameli and Newbrander, 2008).
Contracting has been used previously to improve healthcare delivery in other settings such as:
Asia (Pakistan, India, Cambodia and Bangladesh); Africa (Senegal and Madagascar) and Central
and South America (Bolivia, Haiti and Guatemala) (Loevinsohn and Harding, 2005, Liu et al.,

2008).

Previous studies on healthcare access in Afghanistan were based on demand factors such as the
perceived need, cost and quality of care (Edward et al., 2011). Examples of demand-based
studies in Afghanistan include an investigation on the use of preventive and curative services
(Newbrander et al., 2007, Ameli and Newbrander, 2008, Steinhardt et al., 2011), which
suggested presence of female health worker as an attractive factor influencing use. A survey
conducted in 2004 after the introduction of BPHS in 2004 found low utilisation of health
services (25%) amongst vulnerable population (the disabled) (Trani et al., 2010, Trani and
Barbou-des-Courieres, 2012) and identified cultural perception , availability and cost as

important factors. A different study examining affordability showed an increase use of health
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facilities where user fee had been abolished in 2008 (Steinhardt et al., 2011). These studies
although were important in identifying other forms of access did not measure spatial access at a
national level. A general health survey conducted in few regions in 2006 estimated that 60% of
the population were within 2-hour walking time to the nearest facility (Ministry of Public Health,

20084).

3.2 Estimating the spatial coverage and utilisation of public healthcare facilities for
treatment of fever in Afghanistan

3.2.1 Data

3.2.1.1 Assembly of spatial health facility database in Afghanistan

A health facility database was obtained from the national health management information system
(HMIS) through the Afghanistan National Malaria and Leishmaniasis Control Programme
(NMLCP). Routine health facility assessments are carried out by the Ministry of Public Health
(MoPH) through the subsequent National Health Service Performance Assessment (NHSPA)
surveys (Waldman et al., 2006, Peters et al., 2007). The surveys aim to assess performance of the
BPHS. Health facilities were classified into three broad categories that combined the BPHS and
EPHS as: basic facilities made up of HPs, clinics and MCHs; health centres (the comprehensive
health centres) and a third category representing tertiary facilities, the hospitals (Figure 3.2
below). The spatial coordinates were established using a non-differential handheld global
positioning systems (GPS) receiver during the assessment surveys or in some cases using a

database of placenames.
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Figure 3.2: Distribution of public-based health facilities in Afghanistan
Distribution of active health facilities in Afghanistan by comprising of: basic health centres (n=773), comprehensive
health centres (n=354), sub-health centres (n=344), district hospitals (n=95), special emergency hospitals (n=30),
provincial hospitals (n=29) and regional or national referral hospitals (n=5).

3.2.1.2 Population

An Afghan gridded population surface was obtained from Asiapop at 0.000833° x 0.000833°
spatial resolution (Gaughan et al., 2013) (Figure 3.3). In brief, a fine spatial resolution
population map was produced from a combination of settlement, land use or land cover and basic
infrastructure data (Gaughan et al., 2013). The method of mapping population distribution
involved disaggregating census counts in areal units via weights derived from land cover and
land use data (Bhaduri et al., 2007, Tatem et al., 2007, Linard et al., 2012). For each region,

population density was calculated based on land cover class, rurality, census counts and an
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adjustment factor that ensures the total population sums to a known value. Urban extents were
derived from the Global Rural and Urban Mapping (GRUMP) project (Center for International
Earth Science Information Network (CIESIN), 2004, Tatem et al., 2007), but adjusted for urban
extent based on the MDA Geocover (MDA, 2013), and reclassified to conform to the UN Land
Cover Classification system (UNLCC) (FAO, 2000, Tatem et al., 2012). An updated finer spatial
resolution land cover map was created to include detailed information on roads, settlements and
inhabitable areas. The resulting classes were then used to disaggregate count data based on a
weight value assigned to each land cover pixel. Population densities were derived as a ratio of
the known population count and the total habitable land area normalized by an adjustment factor
(Linard et al., 2012, Gaughan et al., 2013). The resulting 2010 national population map was
projected using the United Nations’ (UN) Population Division national inter-censual growth
rates (UN Population Division, 2013). For measuring utilisation rates, 2011 population estimates
were used and these were back projected to 2009 when estimating population at risk of P.

falciparum and P. vivax.
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Figure 3.3: Population density map of Afghanistan for 2010
Population distribution in Afghanistan from Asia pop at approximately 100 m x 100 m spatial resolution.

3.2.1.3 National household survey data for analysing malaria treatment seeking behaviour
Data for modelling healthcare utilisation for treatment of fever was obtained from the MIS
carried out between September and October 2011 (n = 15,442 individuals) (Ministry of Public
Health, 2012). The MIS was conducted in 21 provinces, across different malaria strata in
Afghanistan, but excluded the southern regions for security reasons. A multi-stage probability
sampling design was adopted in line with other MIS surveys conducted in other low income
countries (RBM-MERG, 2008) where clusters or villages were first selected randomly in a
district via probability sampling and then households within the selected clusters were sampled
randomly (Ministry of Public Health, 2012). Through self-reporting (except for children below

15 years), two-week fever prevalence and treatment seeking behaviour were recorded for all the
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respondents that had been invited to participate. The Geographic location of all clusters was
recorded using a hand-held GPS receiver (Garmin International Inc., Olathe, KS, USA).
3.2.1.4 National level GIS data

Ancillary GIS data used for healthcare access and utilisation analysis included roads and rivers
obtained from an online resource (MapCruzin, 2013) distributed through the GNU General
Public License (GPL) (Free Software Foundation, 2007) and constituted initially by AIMS

(http://www.aims.org.af/). Elevation data were obtained from the Advanced Spaceborne Thermal

Emission and Reflection Radiometer-Global Digital Elevation Model (ASTER-GDEM) (Huggel
et al., 2008) while the land use-land cover layer was downloaded from the MEdium Resolution

Imaging Spectrometer (MERIS) GlobCover product (ESA, 2010).

3.2.2 Developing surface of travel time and probability of attendance

A combination of land cover, elevation, road and river data layers was used to generate a cost
surface of travel times between public health facilities and population locations in AccessMod
(version 3.0) (Ray and Ebener, 2008). A gridded (raster) surface was generated based on
cumulative travel speed between patient origins (households) and destinations (public health
facilities) at 1 km by 1 km spatial resolution. Travel speeds (Table 3.1) were assigned to each
land cover pixel based on recommendations from previous studies, for example, by using
motorized transport on tarmac roads and walking on bare land (Ray and Ebener, 2008, Alegana
et al., 2012, Huerta Munoz and Kallestal, 2012). The derived friction raster was used to extract
travel times between cluster locations and health facilities using ArcGIS (ESRI, Redlands, CA).
Thus, all the individuals in a cluster were assigned an average community travel time to the

nearest public health facility. Since all age-cohort data was available, a preliminary analysis that
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included age (regression coefficient -0.448, 95%CI: -0.904 — 0.003, p=0.07), gender (regression
coefficient -0.003, 95%Cl: -0.015 — 0.007, p=0.5) and derived travel time (regression coefficient
-0.170, 95%CI: -0.3000 — -0.043, p<0.001) suggested that the latter had a larger effect on the use
of public health facilities. Thus, age and sex were not considered subsequently when modelling
the distance decay curve. A three parameter logistic regression models of the form vy = x/1+el=®'#
(Pinheiro and Bates, 2002) were then fitted to estimate health facility attendance based on the
extracted theoretical travel times, assuming utilisation was for the nearest health facility. Four
models representing the universe of all public health facilities, hospitals (District, regional and
national referral), health centres (sub-health centres and CHC) and basic facilities (MCHs, clinics
and HPs) were fitted separately to the survey data in the R statistical software (R Development

Core Team, 2010). The model coefficients: » an asymptote factor at an inflection point g, a

distance decay parameter and«, a limiting function on the y-axis that measured the probability of
attendance when distance was zero, were recorded along with the goodness-of-fit statistic, t, and
the p-values. A gridded surface of probability of attendance was derived by applying the logistic

model to the gridded cost surface in ArcGIS (ESRI, Redlands, CA, version 10).

Table 3.1: Input data for analysis of utilisation of public health facilities in Afghanistan
Description of various data and their sources used as inputs in calculating travel time to the active public health
facilities in Afghanistan. The assumed travel speeds for each input feature are also shown

Map Speed
Layer Description Classification (km/h) Mode®
Land Spatial representation of all different land use and  Irrigated, rain fed, mosaic or
use/ land  land cover types. Two land cover grids were vegetated croplands 3.0 Walking
cover processed (1) a basic land cover grid (2) a Open or closed broadleaved, needle
combined grid that incorporates roads and rivers leaved, deciduous or evergreen tree
with the same resolution as the DEM cover 3.0 Walking
open or closed mixed broadleaved
forest/tree cover 15 Walking
Mosaic, closed to open
grassland/shrubland 15 Walking
Sparse Vegetation 15 Walking
Open or closed broadleaved
regularly flooded 0.5 Walking
Artificial/urban areas 30.0 None
Bare areas/desert 1.0 Walking
Ice/ permanent snow 0 None
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Roads Classified into five categories; class A Class A roads 60.0 Motorised

(highways), class B (secondary roads), tertiary Class B roads 30.0 Motorised
Class C and Class D roads as well as street level Class C roads 10.0 Cycling
urban roads. Each road class was assigned a Class D roads 4.0 Walking
different speed limit. Street level roads in urban areas 20.0 None
Rivers GIS layer representing barrier to movement. Only
major rivers were used to reduce the complexity NA3 0 NA2
of running the algorithms
Digital Altitude values that are used in anisotropic Degree of Slope (< 0.5°) 4.88 Walking
elevation calculation; Original DEM 30 m ASTER grid, Degree of Slope (5.0°) 3.71 Walking
model resampled to 1 km pixel size Degree of Slope (10.0°) 271 Walking
Degree of Slope (20.0°) 1.41 Walking
Degree of Slope (30.0°) 0.66 Walking

1. Assumed mode of travel to health facility, as either walking on foot, cycling, using motorise transport as on roads or a
combination of the different modes. Anisotropic movement for walking based on Tobler’s equation, (V=6*exp(-
3.5abs[Tan(slope in degrees/57.296) + 0.05]) (Tobler, 1993) where V is the speed with slope derived from DEM or for
cycling (Walter, 2008), was applied for traversing across a pixel. For example, on a flat terrain, the walking speed is 5.0
km hr,

2. NA is an abbreviation for ¢ Not Applicable’

3.2.3 Developing health facility catchments used in the analysis of malaria incidence and
assessing spatial coverage

Catchment areas were derived for various public health facilities using the ‘cost allocation’
Spatial Analysis tool in ArcGIS (ESRI, Redlands, CA). The distance decay model based on the
universal facility list was selected to zone catchment areas while limiting the maximum travel
time to 2 hours. This time limit has been used to measure physical accessibility in Afghan BPHS
reports and in related research (Loevinsohn B, 2008, Acerra et al., 2009, Ministry of Public
Health, 2010a). Population counts in various catchments were extracted using the hard catchment
boundaries and multiplied by the probability of attendance for fever treatment to derive the
proportion of population likely to attend a public health facility. These counts were subsequently
used in the analysis of incidence. Similarly, the population outside the two hour threshold was
estimated. The rate of fever reported from the MIS at province level was multiplied by the
population to generate a fever burden map. The number of fever cases within each catchment

was estimated based on the fever burden. Lastly, the number of fever cases likely to attend a
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public health facility was calculated by multiplying the estimated number of cases by the

probability of attendance.

3.2.4 Results of analysis of spatial coverage and utilisation of public health facilities in
Afghanistan

3.2.4.1 Fever prevalence in 2011 and treatment seeking behaviour

In total 1,629 public health facilities were assembled (Figure 3.2 Page 147) and these were
distributed across the 34 provinces in Afghanistan. Only Kabul and Nangahar provinces had
more than 100 public health facilities while no facilities were recorded for Day Kundi province
in the central highlands. The number of basic health facilities (n=754) was similar to the number
of health centres (n=698). 11,307 people in 185 clusters were interviewed in the 2008 MIS.
Overall, fever prevalence was estimated as 3.4% (95%CI: 3.1 — 3.7) in all age populations in
2008, of which 59.8% (95%CI: 54.9 — 64.7) sought treatment. Of those who sought treatment,
29.0% (95%Cl: 24.4 — 33.6) used the public sector compared to the 30.8% (95%CI: 26.2 — 35.5)
who used other sectors including the private health facilities. Thus, fever treatment in the public
and other sectors in 2008 was low generally. From the estimated fever cases, Hirat and Nangahar
provinces had a burden greater than 30.0%.

3.2.4.2 Distance decay model fitting results

Figure 3.4 (below) shows the distance decay curves by facility type for utilization of public
health facilities with increasing travel time on the x-axis for Afghanistan. Table 3.2 lists the
various parameters of the fitted distance-decay models along with their respective p-values. In all
the four models, treatment-seeking behaviour decayed rapidly after 90 minutes. The coefficients

of the various decay curves were all significant with p<0.001 and the sum of squared residuals
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indicating a good model fit with the observed fever treatment patterns. Treatment seeking
patterns for the basic facilities tended to be similar to hospital utilisation patterns. Health centres
pattern was close to the universal “all” model (Figure 3.4). In addition, the maximum probability
of use was higher for HCs (0.789) compared to the other facility types. The universal model was
used subsequently to delineate catchment areas to estimate coverage. Secondly, this model had

lower values of sum of squared residuals and standard error as shown in Table 3.2.

Table 3.2: Logistic Model parameters by hospital type and for the universe of all facilities in Afghanistan

Model Parameter

sum of
a B K p-value (all Residual standard squared
Number of facilities parameters) error residuals
All 1,581 3.1906 -0.2908 0.8681 <0.000 0.0021 0.0015
Hospitals 129 3.8439 -0.3139 0.8702 <0.000 0.0218 0.0176
Health Centres 698 2.8896 -0.2863 0.8768 <0.000 0.0182 0.0121
Basic 754 2.8066 -0.2843 0.8805 <0.000 0.0175 0.0113
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Figure 3.4: Distance decay curves for public health facility use in Afghanistan

154



Distance decay curves for the MIS survey (2011) showing probability of public health facility use for fever
treatment in Afghanistan (y-axis) against increasing travel times (x-axis). The model was run using log-transformed
travel time (x-axis) then back-transformed for presentation purposes. The attendance pattern (1 = attendance and 0 =
non-attendance) is also superimposed on the decay curve.

3.2.4.3 Probability of attendance for fever treatment

Figure 3.5 shows the gridded probabilistic surface of attendance for fever treatment to all health
facilities at 1 x 1 km spatial resolution. This gridded surface had been used to delineate the health
facility catchments as shown in Figure 3.6. Of the estimated population (29.8 million) in 2008,
25,574,396 (85.8%) were estimated to be within a public health facility catchment (Table 3.3 on
Page 161 and Figure 3.6). Further, 15,987,842 (62.5%) of those within a public health facility
catchment were within 30 minutes and 8,772,663 (34.3%) were within distances where the
probability of attendance was >60%. 11,119,031 (43.5%) had much lower probabilities of
attendance (<0.20). From the modelled fever burden based on the distance decay curves, the
estimated national fever burden was 3,440 cases assuming a single episode of fever in October
2008 of which 3,146 (91.5%) were within 2 hours’ travel time to the nearest public health facility
(Table 3.3). Finally, 832 (24.1%) of these fever cases were likely to have been treated in the

public sector based on the distance decay model.
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Figure 3.5 Probability of health facility use for fever treatment in Afghanistan

Map of probability of attendance for treatment of fever for all age population in Afghanistan at the nearest public
health facility based on the 2008 MIS survey. The lowest probability was 0.001 and the highest probability was
0.768.

3.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment

This section assessed the coverage and utilisation of the existing active public health facility in
Afghanistan. First, health facility catchments based on a 2-hour cut-off to nearest health facility
were derived and used to assess coverage in Afghanistan (Table 3.3). Secondly, a travel time
metric was derived and used to derive a surface of probability of attendance for fever treatment
(Figure 3.5). The main findings suggest that majority of existing active health facilities were
located close to the population. 1,538 (94.4%) of health facilities were within 30 minutes of

travel and 1,292 (79.3%) located in distances where probability of utilisation was >0.60.
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Findings from the Afghanistan National Health Resource Assessment (NHRA) survey carried
out in 2002 showed that most health facilities were located close to roads suggesting a shorter
travel time if motorised transport is used (Ministry of public Health, 2002). A large proportion of
population (85.8%) was also estimated to live within the derived health facility catchment
boundaries, thus, suggesting that a substantial majority of population experience good coverage.
The results were also similar to those reported by the national Afghanistan Health Survey (AHS)
of 2006 which indicated that over 60% of the rural population was within 2 hours of a health
facility (Ministry of Public Health, 2008a). This study included urban areas and modelled travel

by including motorized and non-motorized modes.

From the MIS survey, the reported two-week-period fever prevalence was low at 6.4% (95%CI:
6.0 — 6.8) and reported rates of treatment in the public sector were 44.7% (95%CI: 38.8 — 50.6),
but not different from overall use of the private sector which was 42.2% (95%CI: 36.3 — 48.1).
In this study, the distance decay model predicted 44.3% of the estimated fever cases in 2011
were likely to have been treated in the public sector. Thus, the predicted rate of utilisation in the
public sector was similar to the observed utilisation rates. The small differences could be
attributed to factors such as socio-economic status, gender, over-reporting and sampling in the
MIS or the propagation of error from different data sources. Moreover, the severity of fever
condition is likely to influence the decision to seek medical treatment in addition to above
factors. For example, in the BPHS community health workers at community level treat mild
conditions including fever (Acerra et al., 2009, Ministry of Public Health, 2010a). In the 2006
AHS survey, illness severity and distance were reported as the top two factors explaining failure

to seek medical treatment. A study among the nomadic Fulani population in Nigeria reported
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similar findings where treatment was either delayed or sought based on severity (Akogun et al.,

2012).

From the universal distance decay model, utilisation of public health facilities declined rapidly
after about 120 minutes regardless of the facility type (Figure 3.4). The 2-hour cut-off (taken
from policy documents (Ministry of public Health, 2002, 2008a)) used previously in assessing
coverage appears to correspond roughly to a mean rate of distance decay observed in Figure 3.4
and may, therefore, be a reasonable choice. In addition, the rate of decay based on the derived
travel time, was rapid for basic health facilities compared to that from previous studies (Noor et
al., 2006, Alegana et al., 2012) which could reflect a reluctance to travel longer distances for
security reasons (Acerra et al., 2009), cost as highlighted by Ameli and Newbrander (2008) or
due to gender and cultural norms. A study conducted in Kabul by Mashal et al., (2008) identify
factors such as mothers’ lack of autonomy in the household and level of education contributed to

a poor health seeking behaviour resulting in poor health outcomes (Mashal et al., 2008).

From the fitted logistic models, the use of basic facilities was very similar to the health centres
but different for the hospitals. The modelled pattern suggested that population is likely to travel
greater distances for hospital based services and shorter distances (travel times) for basic
services. In addition, slightly higher probabilities of use at zero distance were observed for basic
health facilities «(0.881, p<0.001) and for the health centres «(0.877, p<0.001) (Figure 3.4 and
Table 3.2). This phenomenon could be attributed to proximity of the basic health facilities to
population and tendency to use basic facilities for uncomplicated illness (Belay, 2010). Variation

in travel modes could also affect pattern of use as well as the unobserved effects such as
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perception of quality of services (Trani et al., 2010, Trani and Barbou-des-Courieres, 2012).
Empirical data to test these assumptions are not available readily at the national level and

analysis was restricted to interaction with the closest public health facility.

Other sources of errors remain. These include the exclusion of factors explaining health facility
utilisation such as household income, healthcare costs, wealth and cultural preferences (Joseph
and Phillips, 1984, Akin and Hutchinson, 1999, Tanser et al., 2001, Leonard et al., 2002, Noor et
al., 2006, Gething et al., 2007, Das et al., 2013). Access, as a multidimensional concept, is
affected by these factors. Although the household data on reported rates of fever and treatment
seeking behaviour were representative for all ages, the inclusion of the above factors could alter
the probability of using the nearest health facility. Since this study has focused on patients’
interactions with the public health sector, the inclusion of private sector facilities may well alter
the patterns of use observed here. Additionally, the different modes of transport such as walking
or use of motorized transport could differ from those assumed in the model. Data on actual mode
of transport used while travelling to a health facility are rarely available. Further, the calculated
fever burden was based on a survey-derived regional period prevalence rate, when point
prevalence may vary at community or facility catchment level (Youssef et al., 2010, Elmardi et
al., 2011). This fine resolution point prevalence may be different significantly from the regional
mean. The study did not account for the effects of conflict while modelling utilisation. It was
assumed that conflict effects were inherent in respondent answers at the survey stage. Such
effects required a time series of data on incidences of conflict to identify stable hotspot areas that
was beyond the scope of this study. Future studies could investigate the probability of conflict as

an adjustment variable in determining probability of health facility use in fragile provinces. A by
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product of this study was an estimation of population in health facility catchment areas to enable

estimation of incidence outlined in the next section.
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Table 3.3: Population within health facility catchments in Afghanistan.
Estimated population data for 2011 by province and modelled treatment seeking for fever at the nearest public health facility

Estimate
d fever
Health burden
Centers for 2011 Number of
(Comprehensi  Basic Health Estimated  Population from fever cases
Hospitals ve and sub facility Total Population  (percentag MIS likely to
(Provincial/Regional/Distri health (HPs/Clinics/ Other health in 2008 e)in PHF!  prevalenc attend a
ct) Centers) MCH) Facilities  facilities  (All ages) catchments e PHF! (%)
Probability of
attendance
<0.20 15 93 117 2 227 13,649,346 9,071,360 124,967 5,931 (4.7)
>0.20 -< 0.50 5 26 45 4 80 3,267,810 3,267,810 39,725 13,124 (33)
>0.50 -< 0.60 5 9 15 1 30 2,287,390 2,287,390 28,231 16,628 (58.9)
109,402
>0.60 104 570 577 41 1292 13,166,100 13,158,313 134,595 (81.3)
Travel time
136,890
<30.00 minutes 121 661 708 48 1538 17,890,000 17,890,000 192,425 (71.1)
>30.00 min - <1.00
hours 7 27 28 0 62 23,306,950 23,306,950 66,141 7,495 (11.3)
>1.00 hours -< 2.00
hours 1 9 16 0 26 27,792,610 27,792,610 41,906 672 (1.6)
>2.00 hours 0 1 2 0 3 4,578,036 - 27,045 28 (0.1)
Province
Badakhshan 3 35 34 1 73 1,351,920 974,008 11,324 1,749 (15.4)
Badghis 2 10 23 0 35 584,251 488,069 10,897 2,222 (20.3)
Baghlan 3 30 21 0 54 1,101,920 925,927 5,399 1,754 (32.4)
Balkh 7 41 46 3 97 1,493,720 1,456,970 20,686 12,427 (60.0)
Bamyan 4 27 18 1 50 534,916 288,573 34 3(9.8)
Day Kundi - - - - - 578,854 88,678 20,689 595 (2.8)
Farah 2 21 6 1 30 615,616 402,153 0 0
Faryab 3 26 22 0 51 1,153,790 1,048,770 25 4 (17.4)
Ghazni 4 31 35 1 71 1,527,840 1,244,250 19 1(6.2)
Ghor 3 25 21 0 49 814,963 375,385 27 0
Hilmand 4 25 27 1 57 1,100,790 805,764 6 0
Hirat 5 42 40 1 88 2,221,470 1,973,640 12 1(4.2)
Jawzjan 4 13 16 0 33 665,411 644,905 8,974 4,036 (44.9)
Kabul 41 39 61 25 166 4,872,250 4,840,000 20,601 16,365 (79.4)
Kandahar 2 18 18 2 40 1,460,940 1,168,280 0 0
Kapisa 2 17 16 2 37 488,739 466,414 33 8 (24.6)
Khost 1 19 9 1 30 697,456 696,841 3,535 1,750 (49.4)
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Kunar 1 18 13 0 32 547,826 532,095 42,121 14,645 (34.7)
Kunduz 2 17 32 2 53 1,203,720 1,177,470 13,974 7,306 (52.2)
Laghman 1 21 16 0 38 535,115 504,745 9,610 3,776 (39.2)
Logar 3 11 20 0 34 479,402 432,285 21 2(8.8)
Nangarhar 6 33 63 1 103 1,828,820 1,751,860 119,758 63,249 (52.8)
Nimroz 1 9 5 1 16 198,911 139,575 0 0
Nuristan 0 12 12 0 24 187,256 136,591 77 8 (10.0)
Paktika 3 10 18 0 31 538,622 475,151 6 1(15.2)
Paktya 3 17 17 0 37 683,023 675,139 4,851 2,116 (43.6)
Panjshir 1 6 4 0 11 150,659 88,775 4 0
Parwan 2 31 32 5 70 884,168 774,160 6,792 3,545 (52.1)
Samangan 2 15 13 0 30 467,796 391,992 16 2(15.3)
Sari Pul 3 14 16 0 33 723,273 632,692 8,584 2,288 (26.6)
Takhar 4 21 38 0 63 1,194,430 1,149,240 7,276 4,031 (55.4)
Uruzgan 1 7 6 0 14 428,158 296,071 11 1(6.0)
Wardak 4 28 27 0 59 683,159 518,201 12,157 3,200 (26.3)
Zabul 2 9 9 0 20 371,462 220,204 0 0
Total 129 698 754 48 1629 32,370,646  27,784,873% 327,517  145085(44.3)

1. PHF is abbreviation for Public Health Facility

2. The total number of people in the catchment was lower than the overall estimated population because some population were outside the catchment boundary, thus not
covering 100% population and not entire population is likely to use a PHF.
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Figure 3.6: Delineated public-based health facility catchments

Map of public health facility catchment areas for Afghanistan derived from modelled travel time superimposed on the probability of attendance of nearest public
health facility when sick with fever
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3.4 Analysis of incidence of P. vivax and P. falciparum in Afghanistan

3.4.1 Assembly of HMIS data

The Afghanistan Health Management Information Systems (HMIS) records the number and
types of illness including malaria. All health facilities are required to report the number of
malaria cases on a monthly basis including the suspected or cases confirmed through a laboratory
test (RDT or Microscopy). In general, the use of parasitological diagnosis at basic facilities was
low during the study period (2006-2009) (Ministry of Public Health, 2010a). Complicated or
severe malaria cases are referred to higher-level facilities (comprehensive health centres, district,

provincial and regional hospitals) where parasitological diagnosis is available.

Table 3.4 shows a summary of the assembled malaria case data for P. falciparum and P. vivax
for the 48 months from January 2006 to December 2009. Data were based on outpatient cases
observed at each facility. The slide positivity rate was used to adjust the suspected cases similar
to Namibia analysis (Section 2.3.1). Health facility utilisation rates and the rate of reporting (i.e.
the number of received reports divided by the total expected) was used to adjust the catchment
population (section 3.2.3). This was important since not all individuals use the public sector and
there was sporadic reporting by health facility to the HMIS. Adjustment for slide positivity was
necessary to avoid underestimating incidence (if suspected cases are ignored) or overestimating
incidence (where true cases are treated as a summation of clinical and confirmed case while
ignoring the SPR at the facility). Parasitological diagnosis (microscopy or RDTs) was conducted
at higher-tier facilities (hospitals and health centres) where laboratory facilities exist while
clinical diagnosis was predominantly used at lower-level facilities such as health posts
(Supplementary Information (S1)). No cases were examined or reported for 228 facilities which

were treated as missing data while data for mobile units (n=93) were omitted from the final
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analysis since they serve as outreach centres from major facilities. The missing spatial and

temporal structures of data were imputed as ‘NAS’ and predictions made at missing locations

_ Confirmed cases
Total number examined

TMC = Confirmed Case + (Suspected cases x SPR)

Overall, Table 3.4 suggests a decline in slide positivity rates from 2006 to 2009. For example
slide positivity for hospitals for Pf was 1.7% in 2006 compared to 0.9% in 2009 and similarly for
Pv (10.1% and 5.0% respectively). A large proportion of reported cases are based on clinical
diagnosis.

Table 3.4: Summary of assembled malaria case data
Number of malaria cases (Plasmodium falciparum (Pf), Plasmodium vivax (Pv) and clinical) assembled by year and
average positivity rates

Malaria cases (Slide positivity Rate %)

2006 2007 2008 2009
Type of Facility Pf Pv Clinical Pf Pv Clinical Pf Pv Clinical Pf Pv Clinical
Provincial/Regional 1,122 6,800 10,866 1,318 8,679 13,636 177 3,658 5,964 950 5,437 8,597
Hospitals 17y (10.) (1.5) (10.0) (0.4) (8.0) 0.9) (5.0)
District Hospital 562 10,270 19,471 590 10,258 23,038 112 2,273 15,504 508 8,727 18,783
0.7y (134 0.7) (13.0) (0.3) (6.6) 0.6) (10.8)
Comprehensive 2,481 38,040 129,101 2,474 37,134 141,066 571 17,820 107,277 1,527 26,295 108,238
Health Center (CHC)  (1.3)  (19.6) (1.1)  (16.8) (0.4)  (135) (0.8) (13.8)
Sub Health Center 3 46 407 1 65 1,432 627 9,541 46,675 17 76 22,292
(SC) (12)  (19.01) (01 (87 (L0)  (16.7) (1.8) (8.0
Basic Health Center 1216 17,744 169,272 978 22,823 200,197 2,391 36,451 208,949 683 18,898 165,858
(BHC) (13) (18.3) (0.8)  (19.8) (1.0) (14.4) (05)  (14.5)
(clinics/HPs/MCH)
Total 5384 72,900 329,117 5361 78,959 379,369 3,878 69,743 384,369 3,685 59,433 323,768
(12) (16.7) (11)  (15.7) (0.7) (13.4) (07) (11.7)

3.4.2 Assembly of environmental or ecological covariates for malaria risk

Malaria transmission in Afghanistan is constrained by altitude, temperature (Gething et al.,
2011a) and aridity (Guerra et al., 2008, Guerra et al., 2010) which affect parasite sporogony and
vector development (Safi et al., 2009b). Environmental covariates were assembled from
remotely sensed data and extracted for each health facility. For the districts where no health

facilities existed, a mean value of the covariate was used. This district-level average was also
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used for health facilities where no geographic coordinates had been established (n=108). All the

grid surfaces were resampled to a common spatial resolution (cell size 0.008333° x 0.008333°).

A temperature suitability index (TSI) (Gething et al., 2011a) rather than the actual temperature
values were used since TSI was modelled from long-term mean monthly temperature data from

global climate data (WoldClim, http://www.worldclim.org/) (Hijmans et al., 2005). TSI

represented the optimum temperature suitability (from O (unsuitable) to 1 (most suitable)) for P.
falciparum and P. vivax transmission based on the survival of malaria vectors and on the
duration of sporogony (effect on the malaria parasite). An average monthly enhanced vegetation
index (EV1) for the four year period was downloaded from the MODerate-resolution Imaging

Spectroradiometer (MODIS) sensor imagery (available at http://modis.gsfc.nasa.gov/data/) as

measure of vegetation cover (Hay et al., 2006, Scharlemann et al., 2008). The rate of
precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM 3B43)
(Huffman and Bolvin, 2011, NASA, 2011). TRMM 3B43 is archived at 0.25° x 0.25° spatial
resolution and represent average rate of precipitation in mmhr™ produced after combining
satellite data and information from ground stations (rain gauges) (Huffman, 1997, Huffman and
Bolvin, 2011). The hourly rate was converted to a monthly average based on number of days per

calendar month (i.e. by multiplying the gridded rate by 24 hours and by 30 days in a month).

3.4.3 Bayesian model specification for analysis of malaria incidence in Afghanistan

A zero-inflated Poisson model, similar to Namibia analysis, was implemented in Afghanistan

based on observed cases for P. falciparum and P. vivax.Thus,

0 with probability P,
i |Poisson(;)  with probability (1 P,)
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where Poisson(u,)=exp(—4;) " 1y, With the logit(p; ) = logl p; /(L p; )]
The general log linear mixture model was:
logu = log(E) + a + XiB + f(s,) + o + f(t)

where E; was the expected number of cases adjusted for utilisation at each facility i, « as the

intercept, with the f,__ () terms representing the unstructured spatial effects at facility, district and

unstr

province levels different to Namibia where random effects were only at district and facility level.

The extra randomisation aimed to improve the spatial smoothing of incidence. The f,(.)

represented the seasonal or temporal effects. Thus, the likelihood of the data assuming similar

covariates for the zero-state and the Poisson state as:

L(0.21y.2)=T I, PreY, =012, ~LO)"

x [A=py)PrYy =y 1Z;=0, «, 49)]172“'

Inverse Gamma priors 1G(a,b)a=1.0,b=0.005 were assigned to precision hyperparameters 2 for

the unstructured effects components g

unstr

~N(0,72) at facility and district and province level. For
the temporal trend, a first-order auto-regressive process, py (s,.t,,) With the first term coming from
a stationary distribution N(0,c2 ¥)that depends on past values x =p x._,+& & ~N(0,z2)for

0> p<1 was assigned (Sahu and Bakar, 2012). The conditional-autoregressive prior was used as
a spatial effect at the district level. The conditional prior for neighbouring districts (,,, j=i) was

specified in a similar way to Namibia study as (p, ~ N(u,,0%) Where ,, =s W, /W) ;

IEC R ]

0% =11y,%,,w,) (Bernardinelli et al., 1997). The Wj; represented an adjacency matrix of weights

assigned as Wj; = 1 for two neighbouring regions or Wj; = 0 otherwise. Flat priors () « 1 were
assigned on the fixed covariate effects. The posterior taking into account of the

priors 7Z{9(ﬂi 1Tir @ ,0)}’
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(0azin-T] {H[P (= Py)Pr(Y;=y;12Z; =0,0] "

i=1

x|, 2 exp((—;(ﬂ—ﬂo)w(ﬂ—ﬂo)j

xo *® exp(( —b j
20°

xT1(0)

3.4.4 Bayesian model specification of slide positivity rates at health facilities in Afghanistan
Here, the interest was to investigate the distribution of malaria species based on the slide
positivity rates. A hierarchical Bayesian geostatistical model was subsequently used to predict

SPR at fine spatial resolution (1 x 1 km). Thus, let z(s, tydenote the response (the SPR) for
particular malaria species at facility s, in a particular month, i=1,..,n;t=1....T. z(s,,t) iSa
realisation from a binomial process i.e. the probability that a case is positive for a single blood

test for either P. vivax or P. falciparum modelled separately, y; | p; ~ Binomial (n, , p;,) with a
logit link function p(77) ={exp(77) /1+exp(77)}. The probability of z(s.,t) was taken to be

independently distributed samples, z=(z, ,.....,z,) aS;
PZIp)=]]R" N, =D 6(x =k)
and a likelihood function as

n-x

f(xIp)

B X(n-x)! Pa-p)

The hierarchical model was decomposed into the observations with measurement error term,
Z(s;,t) =n(s;,t)+&(s; 1) i=1L.n t=1.T

where (s, t)represented the underlying spatio-temporal biological process with an error term
(s, ,t)i'i~'d N(0,c2 1,) With prior 52 - 16(1,0.0005 . The mean component was modelled as a
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combination of the first order auto-regressive process pY (s;,t._,) and the covariates
X(s;,t) ={%,(5;,1).......x, (5, 1)} with the first term coming from a stationary distribution
N (0, o2 ) that depends on past values for 0> p <1with a non stationary matérn covariance
function (Sahu and Bakar, 2012). Thus,

n(s,,t) = pY,, +X(s;,t) S+w(s;,t)
An approximate range of 1/5 of the spatial domain was used while the initial values for the
marginal variance parameter and the scaling parameter in the matérn model were set to 1 and 0.1
respectively. Flat priors were used for fixed parameters (2)c1 . The posterior is evaluated as
the product of likelihood given all the model parameters.

n(si. )| B.7.é.. p. ~ GMRF (1, %)
With Gaussian Markov Random Field (GMRF) used as a representation of the Gaussian Field
evaluated using finite element methods (Lindgren et al., 2011). The region of study was

expanded by 100km at the border to reduce edge effects associated with Neumann boundaries in

SPDE (Cameletti et al., 2012, Lindgren, 2013).

3.4.5 Model choice and validation for incidence and SPR analysis

Four spatio-temporal models were compared to assess effect of the introduced random effects at
province, district and facility level as well as the inclusion of the covariates. Model choice was
based on the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) and marginal
likelihood. Both modelling approaches included EVI, temperature suitability index and
precipitation as covariates. Posterior mean predictions were carried out at 1 x 1 km spatial

resolution with associated standard error maps.
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Sensitivity analyses were conducted using the root mean square error (RMSE), the mean and the
absolute mean error (MAE) that summarised the closeness of validation set data to observed

values as well model scoring rules based on the probabilistic values from predictive distribution
of the model compared to actual observations (Gneiting and Raftery, 2007). Model measures of
uncertainty included the standard error score (SES), the Dawid-Sebastiani score (DSS) reviewed

by Gneiting and Raftery (2007). These two parameters are calculated as:

SES(P, y)=(y — tP)*
D85(P, )= 5-foulo + (y- )1, )

where P is the predictive posterior distribution with a mean 4 and standard deviationo,

(Gneiting and Raftery, 2007). SES is similar to the mean square error (MSE) but applies to the

predictive posterior distribution.

For geostatistical model, the nominal model coverage of 95% credible intervals was assessed
based on the validation set (see section 2.3.6). The MAE and the R.M.S.E were also calculated as

to estimate bias and accuracy of the model. Thus,

MAE =%i‘z*(x)—2(x)‘

RMSE = \/GZ(Z (X) —Z(x))zj

Lastly, the spatial structure in the residuals was assessed using semivariogram plots of in the

spatial and temporal domain.
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3.4.6 Results of estimating the incidence of P. falciparum and P. vivax in Afghanistan

Table 3.5 compares the four spatio-temporal models implemented along with associated model
parameters for both P. vivax and P. falciparum. Comparison using the DIC showed that the
fourth model (M4) provided the best trade-off between model fit and parsimony compared to the

other three models. This model, however, had more number of effective parameters (P,). For both

P. vivax and P. falciparum, the standard error in M4 of the predictive distribution was also lower

and was used for further analysis both for P. vivax and P. falciparum.

The mean error based on a 10% validation set was -0.30 and -0.44 for P. vivax and P.
falciparum, respectively showing an overall tendency to under-estimate by less than 0.5
incidence cases per 1000 population. The Pearson correlation was 0.63 for P. vivax and 0.62 for

P. falciparum.

Table 3.5: Bayesian model comparison for incidence

Models with and without random effects and covariates (M1 with no random effects or environmental covariates;
M2: with random effects but no environmental covariates; M3: with environmental covariates but no random
effects; M4 with random effects and environmental covariates)

Model DIC Po Mlik Variance of  Std error of Mean R?
(Integration) predictive predictive Error
distribution  distribution

P. falciparum M1 3670.00 86.80 -1824.57 0.002 1.026 - -
M2 3596.90 95.60 -1824.94 0.005 1.042 - -
M3 3599.48 90.64 -1821.78 0.002 1.026 - -
M4 3570.76 96.85 -1804.94 0.002 1.022 -0.442 0.619

P. vivax M1 20933.49 203.48 -10571.74 0.001 1.054 - -
M2 20781.31 301.97 -10538.10 0.001 1.049 - -
M3 20935.46 206.49 -10593.93 0.001 1.052 - -
M4 20780.64 301.46 -10554.87 0.001 1.047 -0.308 0.629

DIC: Deviance Information Criteria, Pp: effective number of parameters, mlik: maximum likelihood estimate

Table 3.6 lists the posterior distributions of the fixed effects, the unstructured components, and

the temporal and spatial parameters for both the P. vivax and P. falciparum (for model M4).
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None of the environmental covariate were significant at 95% Crl based on the P. falciparum
model but temperature suitability (0.123, 95% Crl 0.046 — 0.202) was significant based on the P.

vivax model. All other model parameters were significant at 95% Crl.

Table 3.6: Bayesian estimates of model parameters.
Parameters of the selected Bayesian models (M4) for both P. falciparum and P. vivax (sequentially as intercept Bo,
EVI, TSI, Precipitation, random effects at (facility, district and province), temporal parameter and spatial effect ¢)

Parameter Mean Sd 5% 50% 95%
P. falciparum Bo -3.630 0.387 -4.244 -3.633 -3.008
By -0.031 0.079 -0.162 -0.031 0.099
B 0.164 0.127 -0.042 0.163 0.334
B3 0.008 0.051 -0.077 0.008 0.091
T 1.940 1.903 0.192 1.380 5.534
T, 2.484 0.829 1.355 2.369 4.010
T3 3.668 1.164 2.040 3.521 5.838
p 0.849 0.117 0.617 0.881 0.969
¢ 5.492 4535 0.698 2.376 20.970
P. vivax Bo -2.065 0.240 -2.451 -2.069 -1.662
B1 -0.026 0.019 -0.058 -0.026 0.005
B 0.124 0.048 0.046 0.124 0.202
B3 0.013 0.011 -0.005 0.013 0.031
T 8.383 1.778 6.095 8.057 11.750
T 2.081 1.976 0.181 1.500 5.888
T3 7.972 3.953 3.897 6.922 15.530
p 0.728 0.098 0.551 0.737 0.872
¢ 3.141 0.983 1.759 3.024 4.933

Figure 3.7 shows monthly (n = 48) variation of incidence for P. vivax and P. falciparum. The
incidence of P. vivax was highest in August (7.611 95% Crl 4.849 — 11.721) compared to P.
falciparum which was highest in November (mean incidence per 1,000 population 2.403 95%

Crl 0.929 — 5.276) and lowest in May (0.830 95% Crl 0.303 —1.783).
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Figure 3.7: Time series plot of estimated incidence for 48 months in Afghanistan
Monthly predicted cases per 1000 population for P. falciparum and P. vivax with error bars showing 95% Bayesian
credible interval. P. vivax cases have a peak in July and August compared to P. falciparum that peaks in November.

Figure 3.8 (below) and Figure 3.9 (Page 175) shows maps of monthly mean incidence of P. vivax
and P. falciparum, respectively, at district level. The incidence of P. falciparum was very low
generally compared to P. vivax. The results also showed that districts in south-east and eastern
provinces with a high incidence of P. vivax also tended to have higher incidence of P. falciparum

or vice versa.
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Figure 3.8: Posterior mean monthly incidence of P. vivax per 1000 population

Mean monthly maps of P. vivax incidence per 1000 population for Afghanistan using a Bayesian CAR model
formulated at the facility level and included environmental covariates (Rainfall, TSI and EVI) and spatial random
effects to account for regional heterogeneity. P. vivax constitutes a major burden in Afghanistan and experiences a
peak in the July-August period

The estimated mean annual incidence for P. vivax was 5.1 cases per 1,000 population and 1.2
cases per 1,000 population for P. falciparum. Figure 3.10 (Page 176) shows the mean annual
maps at the district level for P. vivax and for P. falciparum, respectively. Less than 1 case per
1000 population of P. falciparum was estimated for most districts on annual basis compared to
P. vivax. Similarly, annual estimates showed that incidence was highest in the southern, south-
eastern and the eastern regions for both parasites. The estimated mean incidence in the most
recent data year (2009) for P. vivax was 5.4 (95% Crl 3.2 — 9.2) cases per 1,000 population and
1.2 (95% Crl 0.4 — 2.9) cases per 1,000 population for P. falciparum. Comparison between the
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baseline in 2006 and in 2009 showed small change in incidence (4.9, 95% Crl 3.0 - 7.8 and 5.1,
95% Crl 3.2 — 8.1 respectively for P. vivax; 1.1, 95% Crl 0.3 - 2.4 and 1.1, 95% Crl 0.3 - 2.5
respectively for P. falciparum). However, there was a slight increase in malaria incidence in
2008 for both P. vivax and P. falciparum as estimated by the model, but, dropped subsequently
to the 2006 level in 2009. The mean percentage change in incidence in the 34 provinces between
the baseline year and 2009 for P. vivax was 3.0 and 5.9 for P. falciparum (Table 3). P. vivax

reduced in 17 of the 34 provinces in Afghanistan while P. falciparum reduced in 13 provinces
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Figure 3.9 Posterior mean monthly incidence of P. falciparum per 1000 population

Mean monthly maps of P. falciparum incidence per 1000 population for Afghanistan using a Bayesian CAR model
formulated at the facility level and included environmental covariates (Rainfall, TSI and EVI) and spatial random
effects to account for regional heterogeneity.
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Figure 3.10: Posterior mean annual incidence maps
The mean annual incidence of (a) P. vivax and (b) P. falciparum by district in Afghanistan

3.4.7 Results of slide positivity prediction for P. falciparum and P. vivax in Afghanistan
Table 3.7 lists model parameters of the slide positivity rate. The MAE and the RMSE for the P.
vivax was 0.42 and 0.81 and for P. falciparum 0.83 and 1.05. The 95% nominal coverage for P.
vivax was 96.75% showing tendency to over predict at 95% nominal. The model range for P.
vivax and P. falciparum was different (Table 3.7). Semivariogram plots of the small scale
variation (residuals) in the spatial and temporal domain based on the validation set indicated
minimum spatial and temporal autocorrelation (Figure 3.11). The semivariogram for residuals in
the spatial domain for P. falciparum (Figure 3.11(a) (i)) data had shorter range but larger sill
compared to P. vivax (Figure 3.11(b) (i)). The structures were also different marginally in the

temporal domain Figure 3.11(a) (ii) and Figure 3.11(b) (ii) respectively.

Table 3.7: Models for slide positivity rate in Afghanistan.
Bayesian model comparison based on separable covariance function (Product) (M1) and no-separable form
(Product-sum) (M2) for P. falciparum (Pf) and P. vivax (Pv).

Probability of
prediction Model Range

Species DIC Pt MAE R.M.S.E interval (%)°  (m)
Pf 27393.81 200.03 0.4218 0.8063 95.37 3,395.73
Pv 34996.00 269.08 0.8368 1.0489 96.75 45,198.81

1. Pp represent the effective number of parameters that represent model complexity
2. The nominal probability of prediction is 95%
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Table 3.8 shows the posterior summaries of the fixed effects along and the random effects. Of

the three selected environmental covariates, only TSI (g,) was an important predictor of P.
falciparum (0.05 95% Crl 0.02 — 0.08) while for P. vivax EVI () (-0.04 95% Crl -0.07 - -0.02)
and precipitation (s,) (0.02 95% Crl 0.00 — 0.11) were significant for P. vivax. The nominal

range for P. falciparum was also shorter (3,395.7 m 95% Crl 1,521.78 — 6,196.59) compared to

the model range for P. vivax (45,198.8 m 95% Crl 37,591.30 — 52,711.04).

Table 3.8: Posterior estimates of parameter for slide positivity rate.
Distribution of posterior estimates (mean, standard deviation and quantiles) of the fixed components (intercept (Bo),
EVI (By), precipitation (B,) and TSI (B5), the matérn variance component (,,%)) and the model range (¢)

Parameter Mean Std. dev 5% 50% 95%
Pv Bo 1.3466 0.3299 0.7979 1.3663 1.8223
By -0.0448 0.016 -0.0711 -0.0448 -0.0185
B2 0.0213 0.0127 0.0004 0.0275 0.1059
B3 0.0274 0.0477 -0.0511 0.0275 0.1059
Ou? 1.4204 0.0584 1.3319 1.4156 1.523
i) 45,198.81 4,605.16 37,591.30 45,235.97 52,711.04
Pf Bo 0.323 0.0326 0.2696 0.3229 0.3768
By -0.004 0.0109 -0.0219 -0.004 0.014
B2 0.0076 0.009 -0.0072 0.0076 0.0224
B3 0.051 0.0202 0.0179 0.0509 0.0843
Ou? 18.8035 18.6075 3.271 12.954 53.6073
(i) 3,395.73 1,471.85 1,521.78 3,120.85 6,196.59
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Figure 3.11: Semi-variograms of residuals in spatial and temporal domain

Semivariogram plots of the residuals in spatial (i) and temporal (ii) domain for P. falciparum (a) and P. vivax (b)
based on the predictions on the hold out set. The x-axis shows distance in degrees latitude and longitude (decimal
degrees) whiles the y-axis shows semi-variance. There was only minimal spatial structure shown in both temporal
domains compared to the spatial domain in both malaria species.

Figure 3.12 shows the continuous and binned predictions at 1 x 1 km of Slide positivity rate for

2009 along with standard errors for P. falciparum and P. vivax respectively.

Table 3.9 provides summaries of slide positivity rate by province weighted by probability of
health facility utilisation. For P. vivax, the mean slide positivity was >1% (mean 1.3%; minimum

0.0%; maximum 14.3%) while for P. vivax, slide positivity was <1% (mean 0.01%; minimum
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0.0%; maximum 0.3%). The slide positivity rate was highest in southern and south-east
provinces. The highest uncertainties were in districts with no facilities and where the rate of
reporting was poor. For P. falciparum majority of provinces had a positivity rate of 0% -< 0.1%
compared to P. vivax where most provinces (28 out of 36) had mean estimate between 0.5% -<

5.0% (Table 3.9).
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Figure 3.12: Posterior mean predictions of slide positivity rate

Posterior mean predictions and standard error maps. Panel A the posterior mean for P. falciparum with first map on
continuous scale, the second map classified in 5 endemicity classes of <0.1%; 0.1 -<0.5; 0.5 -< 1.0; 1.0 -<2.0 and
>2.0 and the third map being the standard error map. Panel B the posterior mean for P. vivax on continuous scale, in
5 classes of <5.0; 5.0 -< 10.0; 10.0 -< 20.0; 20.0 -< 40.0 and >40.0 and a standard error map. Higher standard error
was in regions with sparse or no data points.

Figure 3.13 shows a comparison between incidence, community prevalence and slide positivity
rate. Parasite prevalence estimates for Afghanistan were obtained from the global endemicity
maps (Gething et al., 2011b, Gething et al., 2012). There was positive association of incidence
and slide positivity comparison with parasite prevalence (Pearson correlation coefficient 0.6 and

0.4 for P. vivax and 0.3 for P. falciparum, for incidence).

Table 3.9: Mean slide positivity rate by region in Afghanistan
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Summary (in percentage) of the mean predicted slide positivity rate (SPR) at health facilities weighted by
probability of use for P. falciparum and P. vivax by Province in Afghanistan in 2009

P. vivax P. falciparum

Name Mean Minimum Maximum Range Mean Minimum Maximum Range
Badakhshan ~ 0.65 0.00 22.71 22.71 0.01 0.00 0.21 0.21
Badghis 0.64 0.00 7.03 7.03 0.01 0.00 0.15 0.15
Baghlan 0.50 0.00 14.85 14.85 0.00 0.00 0.05 0.05
Balkh 1.49 0.00 15.27 15.27 0.02 0.00 0.21 0.21
Bamyan 0.48 0.00 11.60 11.60 0.01 0.00 0.14 0.14
Day Kundi 0.13 0.00 5.00 5.00 0.00 0.00 0.07 0.07
Farah 0.35 0.00 7.83 7.83 0.01 0.00 0.77 0.77
Faryab 0.77 0.00 531 531 0.01 0.00 0.06 0.06
Ghazni 1.49 0.00 22.42 22.42 0.02 0.00 0.77 0.77
Ghor 0.42 0.00 19.86 19.86 0.01 0.00 0.41 0.41
Hilmand 0.39 0.00 4.18 4.18 0.00 0.00 0.19 0.19
Hirat 0.57 0.00 5.81 5.81 0.01 0.00 0.08 0.08
Jawzjan 1.42 0.00 22.93 22.93 0.01 0.00 0.18 0.18
Kabul 3.27 0.00 21.48 21.48 0.01 0.00 0.05 0.05
Kandahar 0.30 0.00 8.43 8.43 0.00 0.00 0.18 0.18
Kapisa 1.30 0.00 9.83 9.83 0.00 0.00 0.07 0.07
Khost 3.46 0.01 21.79 2177 0.05 0.00 0.28 0.28
Kunar 3.42 0.00 17.66 17.66 0.03 0.00 0.39 0.39
Kunduz 1.08 0.00 4.88 4.88 0.01 0.00 0.05 0.05
Laghman 3.12 0.00 30.31 30.31 0.00 0.00 0.05 0.05
Logar 1.15 0.00 12.38 12.38 0.02 0.00 0.68 0.68
Nangarhar 4.10 0.00 27.26 27.26 0.02 0.00 0.96 0.96
Nimroz 0.38 0.00 4.20 4.20 0.01 0.00 0.25 0.25
Nuristan 0.35 0.00 9.47 9.47 0.00 0.00 0.09 0.09
Paktika 1.60 0.00 25.56 25.56 0.02 0.00 0.37 0.37
Paktya 2.29 0.01 11.55 11.54 0.02 0.00 0.36 0.36
Panjshir 0.93 0.00 16.27 16.27 0.00 0.00 0.05 0.05
Parwan 1.75 0.00 22.17 22.17 0.01 0.00 0.09 0.09
Samangan 0.67 0.00 13.44 13.44 0.01 0.00 0.10 0.10
Sari Pul 0.94 0.00 22.30 22.30 0.00 0.00 0.12 0.12
Takhar 1.46 0.00 8.04 8.04 0.01 0.00 0.21 0.21
Uruzgan 0.66 0.00 6.61 6.61 0.01 0.00 0.45 0.45
Wardak 0.84 0.00 10.68 10.68 0.01 0.00 0.44 0.44
Zabul 0.76 0.00 15.69 15.69 0.01 0.00 0.41 0.41

Mean 1.27 0.00 14.26 14.26 0.01 0.00 0.26 0.26

3.4.8 Assessing the population at risk of malaria based on estimated incidence

Of the 30.6 million people in 2009, approximately 32.0% of the population lived in regions
where P. vivax was greater than 1 case per 1000 population compared to 23.7% for P.
falciparum. Table 3.10 provides summaries of population at risk by region. Overall, 1.3% of the
population in Balkh province, were estimated to live in districts with <1 case per 1,000
population, the majority (66.7%) in districts of 1 to < 5 vivax cases per 1,000 population, 23.3%

in 5 to < 10 cases per 1,000 population, 8.4% in 10 to < 20 cases per 1,000 population and 0.3%
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of the population, in eastern Afghanistan in Kunar and Nangarhar provinces, were classified as

residing in districts with annual P. vivax case incidence of >20 cases per 1,000 population. For P.

falciparum, 76.3% lived in districts where P. falciparum case incidence was <1 per 1,000

population, while 20.9% lived in areas were incidence of P. falciparum was 1 to < 5 cases per

1,000 population. A minority (2.8%) were classified to live in districts with an estimated annual

incidence of 5 to < 10 P. falciparum cases per 1,000 population.
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Figure 3.13 Comparison of incidence and slide positivity rate with parasite prevalence
Scatter plots comparing the incidence per 1000 population for P. vivax (top left) and slide positivity (top right) with
community parasite prevalence for 2010; P. falciparum is shown at the bottom. There was positive correlation with
incidence P. vivax and P. falciparum.
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Table 3.10: Estimated population at risk in 2009 by Province for Plasmodium falciparum and Plasmodium vivax

Plasmodium vivax incidence per 1,000 population

Plasmodium falciparum incidence per 1,000 population

Estimat

%

Estimat

%

. crud change Estima change
Province Ef,tlcr::,t:; mee:n 51D Baseline <1 1<5 5-<10 120 ted Pf ::r:::: m‘::n 51D Baseline <1(%) 1<5 5-<10 Total
incid . . (2006 (%) (%) (%) Clinical o (2006 (%) (%) Population
burden inciden (%) nce inciden
ence ce 2009 and burden ce 2009 and
2009 2009
4,513 162
,039 22
(98.1 72,584 (0. 4,132,17 425,758 43,917
Kabul 19,788 4.7 43 1.1 0.59 0 ) (1.6) 4) 5,016 2.7 1.1 0.7 -0.52 0(89.8) (9.3) (1) 4,601,845
215,8
25
(46.8 245,789 461,613
Kapisa 2,497 5.3 5.4 0.8 0.59 0 ) (53.2) 0 268 1.7 0.6 0.5 -0.21 (100) 0 0 461,613
308,8
82
(68.2 143,913 425,918 26,877
Logar 1,988 5.1 4.4 1.1 -2.01 0 ) (31.8) 0 317 2.2 0.7 0.6  -5.99 (94.1) (5.9) 0 452,795
188
79
123,418 (13 99,628 23,790 18,879
Panjshir 777 6.3 5.5 1.5 1.24 0 0 (86.7) .3) 203 5.1 1.4 0.8 1.74 (70.0) (16.7) (13.3) 142,298
778,0
82
(93.2 57,015 778,082 57,015
Parwan 2,806 3.4 3.4 0.9 -4.04 0 ) (6.8) 0 576 2.2 0.7 0.6 -3.74 (93.2) (6.8) 0 835,096
515,6
33
(79.9 129,611 573,533 71,711
Wardak 2,439 4.9 3.8 1.1 -1.13 0 ) (20.1) 0 400 2.8 0.6 0.5 -3.68 (88.9) (11.1) 0 645,244
465,5 396
96 33
(92.2 (7. 505,228
Bamyan 2,172 4.4 43 1.3 -4.79 0 ) 0 8) 273 1.3 0.5 0.5 -8.76 (100) 0 0 505,228
143,3
33 403,394 546,727
Day Kundi 2,280 6.1 4.2 1.5 0.19 0 (26.2 (73.8) 0 306 3.3 0.6 0.6 -0.02 (100) 0 0 546,727
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42
1 159,76
(10 175,647 182,013 2
Kunar 6,897 7.5 133 20 261 0 0 0 0) 2,013 4.9 3.9 1.3 -0.03 (33.9) (35.2)  (30.9) 517,421
48,93
5 456,482 386,431 118,986
Laghman 4,114 6.8 81 06 291 0 (97) (903) 0 510 3.1 1.0 0.5 1.68 (76.5) (23.5) 0 505,417
993
46
0 273,42
733,865 (57 1,453,89 8
Nangarhar 23,043 7.5 133 09 5.48 0 0 (42.5)  .5) 6,391 45 3.7 1.2 394 0 7(84.2) (15.8) 1,727,324
35,83 285
0 11
(203 112,523 (16 176,863
Nuristan 1,043 5.8 5.9 1.1 3.20 0 ) (63.6) .1) 108 2.1 0.6 05 267 (100) 0 0 176,863
243
247,9 ,00
84 5
Badakhsha (19.4 785904 (19 618,838 658,054
n 6,895 4.7 5.4 14 059 0 ) (61.5) ) 1,302 2.4 1.0 08 093 (48.5) (51.5) 0 1,276,892
1,040
,766 1,040,76
Baghlan 3,039 45 2.9 1.0  2.05 0  (100) 0 0 385 0.9 0.4 04 579 6 (100) 0 0 1,040,766
755,1
18
(66.4 381,799 1,136,91
Kunduz 4,639 5.4 41 07  -0.82 0 ) (336) O 432 1.6 0.4 04 259 7 (100) 0 0 1,136,917
1,128
,142 1,128,14
Takhar 3,452 4.6 31 07 1.73 0  (100) 0 0 463 2.0 0.4 03 365 2 (100) 0 0 1,128,142
408, 1,002
202 618
(28. (711 1,410,82
Balkh 4,091 2.9 2.9 1.1 10.56 9) ) 0 0 818 1.5 0.6 05  15.39 0 (100) 0 0 1,410,820
498,5
75
(45.8 591,181 971,677 118,079
Faryab 5,209 5.4 438 1.3 -0.05 0 ) (542) 0 708 2.2 0.7 05 025 (89.2) (10.8) 0 1,089,756
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521,9

18 106,563 255,757 372,724
Jawzjan 2,583 3.8 4.1 13 -2.39 (83) (17) 0 760 2.3 1.2 09 869 (40.7) (59.3) 0 628,480
441,8
33 441,833
Samangan 1,219 2.6 2.8 1.0  -1.86 (100) 0 0 239 1.2 0.5 05  -4.16 (100) 0 0 441,833
604,4
85
(88.5 78,646 683,132
Sari Pul 2,548 4.2 3.7 1.0  3.69 ) (11.5) 0 266 0.5 0.4 0.4  20.25 (100) 0 0 683,132
257
36
57,43 6 218,36
9 343,942 (39 13,623 426,758 6
Khost 5,613 6.0 8.5 13 1031 (87) (522) .1) 1,719 3.3 2.6 1.1 17.70 (2.1) (64.8)  (33.1) 658,747
29,
25,62 674 120,13
4 453431 (5. 171,714 216,884 1
Paktika 3,037 5.3 6.0 1.9  -4.60 (5.0) (89.1) 8 829 3.6 1.6 1.0  -13.29 (33.8) (42.6)  (23.6) 508,729
115,0 97,
91 766
(17.8 432,258 (15 645,114
Paktya 4,458 5.8 6.9 1.1 -0.44 ) (67) 2) 387 2.5 0.6 0.5 1.12 (100) 0 0 645,114
173
530,2 ,66
63 4
(36.7 739,121 (12 321,390  1,084,94 36,711
Ghazni 9,033 5.1 6.3 1.2 2.46 ) (51.2) ) 2,165 2.7 1.5 1.0  16.31 (22.3) 7(75.2)  (2.5) 1,443,048
1,039
,697 930,158 109,539
Hilmand 2,859 3.4 2.8 1.1 -0.26 (100) 0 0 1,071 2.0 1.0 08  1.90 (89.5) (10.5) 0 1,039,697
1,161 40,
,551 003
(84.2 178,308 (2. 1,130,77 249,088
Kandahar 5,644 4.9 4.1 1.2 -0.08 ) (12.9)  9) 1,421 2.7 1.0 08  -4.06 4(81.9) (18.1) 0 1,379,862
187,8
72 86,898 100,974
Nimroz 577 4.6 3.1 1.2 -2.38 (100) 0 0 178 1.9 1.0 08  -7.58 (46.3) (53.7) 0 187,872
306,7
99 97,595 332,451 71,944
Uruzgan 1,601 42 4.0 1.1 -0.88 (759 (241) © 311 1.9 0.8 07 087 (82.2) (17.8) 0 404,395

184



185

41
20,58 5
6 144,845 (52 149,910 200,936
Zabul 2,621 6.3 7.5 16  -6.88 0 (59) (41.3) .8) 379 2.7 1.1 08  -9.01 (42.7) (57.3) 0 350,846
534,1
83
(96.8 17,642 551,825
Badghis 2,257 4.7 41 09 1.92 0 ) (3.2) 0 353 2.0 0.6 05  7.60 (100) 0 0 551,825
581,4
49 484,949 96,500
Farah 1,459 2.8 2.5 1.0  -3.19 0  (100) 0 0 494 1.7 0.9 08 059 (83.4) (16.6) 0 581,449
468,8
09
(60.9 300,924 459,819 309,915
Ghor 3,141 45 4.1 14  -1.07 0 ) (39.1) 0 708 2.5 0.9 09 208 (59.7) (40.3) 0 769,733
2,098
,175 209,817
Hirat 7,532 3.3 3.6 12 16.37 0  (100) 0 0 1,133 1.2 0.5 05  23.14 5 (100) 0 0 2,098,175
165,712 5.0 54 12 162 408, 20,39 7,130,7 2,6 36,077 2.7 1.2 07 226 23,326,5 6,376,38 871,19 30,574,102
202 4,129 53 a1, 22(76.3) 6(20.9) 4(2.8)
(1.3 (66.7 (23.3) 017
) ) (8.
6)

1. SD: Starndard Deviation
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3.5 Discussion on the incidence and slide positivity rates of P. vivax and P. falciparum in
Afghanistan

In this chapter, the distribution of P. vivax and P. falciparum malaria species in Afghanistan was
modelled using HMIS data to estimate disease burden. The findings confirm P. vivax malaria
morbidity in Afghanistan exceeds that for P. falciparum. The incidence of P. vivax and P.
falciparum was estimated to be higher in the southern, south-eastern and eastern parts of
Afghanistan. On average, the incidence of P. falciparum was low with majority of districts
classified as <1 case per 1000 population. The crude estimate was 2.7 cases per 1000 population.
For P. vivax, the estimated incidence was 5.4 cases per 1000 population compared to a crude
estimate of 5.0 per 1000 population. The spatial distribution of both species was similar. Thus,
the results suggested that the incidence of P. vivax was highest in the population highly endemic
with P. falciparum. What was striking was the distribution of both malaria species in southern
and south-eastern provinces based on both incidence and slide positivity rates. The mean slide
positivity rate predicted was 1.27 % (minimum 0%; maximum 14.26%) and 0.01% (minimum
0%; maximum 0.26%) for P. vivax and P. falciparum, respectively. Given the additional spatial
precision resulting from the facility, district and regional adjustments of incidence compared to a
crude estimate, maps of both malaria species are useful for concerted planning. The smoothed
incidence also incorporated environmental covariate to estimate incidence in districts where with

no data.

3.5.1 Implications for malaria control and elimination in Afghanistan
Using the 2006 estimates as baseline, 17 and 13 provinces had already reduced P. vivax and P.
falciparum incidence respectively by 2009. No reduction in incidence was estimated for
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Nangahar, Balkh, Sari Pul, Khost and Hirat. Nangahar and Khost provinces in south-eastern
regions of Afghanistan were amongst those with highest incidence for both parasites. From the
MIS undertaken in 2008, Nangahar had an estimated long lasting insecticidal nets (LLINS)
coverage of 19% while no LLINs use was observed in Hirat (Ministry of Public Health, 2009a).
Sari Pul district, for example, had some of lowest rates of long lasting insecticidal nets (LLINS)
coverage and access to treatment of care. In districts where indoor residual spraying (IRS) is
used as the main vector control approach or to complement LLINS, the targeting of this
intervention should be informed by the lag in the peak season of the two main malaria parasites.
P. vivax peaks in August while P. falciparum peaks in November. IRS campaigns should

therefore be planned in such away the insecticide are efficacious through the two peak seasons.

Of the 34 provinces of Afghanistan, five were considered to be malaria free based on altitude
thresholds (Ministry of Public Health, 2010b). These provinces, however, accounted for 9.7% of
all estimated cases in 2009 indicating a potential problem of importation of suspected cases due
to human population movement in Afghanistan or foci transmission in valleys where climatic
conditions are favourable. The available data, however, do not provide malaria case definitions
and it is impossible to distinguish between imported and local cases. In the malaria free
provinces, suspected imported infections should be documented and algorithms, based on travel
history, could be used as the basis for case definitions. In addition, health advice and
chemoprophylaxis for travellers from the malaria free to endemic provinces should be initiated
as an additional package for malaria prevention. An incidence of less than 1 P. falciparum case
per 1000 individuals is considered to be the threshold for pre-elimination by the WHO (World

Health Organization, 2007a). By 2009, 21 provinces in Afghanistan had already achieved such a
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threshold. However, the biggest challenge is likely to be operational and a comprehensive

analysis of overall feasibility of P. falciparum elimination (Feachem et al., 2010)

The analysis also showed that malaria in Afghanistan exhibits a seasonal peak between July and
November. P. vivax tended to peak in August (mean incidence of 7.611 95% Crl 4.849 — 11.721)
compared to P. falciparum which peaked in November (mean incidence 2.403 95% Crl 0.929 —
5.276). Incidence was lowest between January and May with variation resulting largely from
climatic conditions in winter and spring. P. vivax hypnozoites are likely to survive the long
winter season in Afghanistan, due to long latent periods, relapsing after the spring period in May.
The result is a possible explanation of the early peak of vivax malaria for the July-August period.
These maps may, therefore, provide a baseline for identifying areas where mixed infections are

likely to occur.

The slide positivity varied between the two malaria species in the endemic provinces. For P.
falciparum, SPR was less than 3% while for P. vivax, the mean SPR was 6.2%. Pre-elimination
of malaria can be achieved at less than 5% positivity rate (World Health Organizastion, 2007).
The spatial distribution observed in Figure 3.12 is driven partly by climatic conditions (e.g.
temperature, rainfall, humidity) which affect parasite survival. The SPR is independent of
population size and is a useful index in unstable areas where asymptomatic infections are not
common. The Afghanistan analysis indicated that only TSI was an important covariate for
estimating P. falciparum perhaps due for focal pattern observed compared to P. vivax where EVI

and precipitation were more useful.
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In terms of case management, the quantification of the co-distribution of P. vivax and P.
falciparum in Figure 3.8 and Figure 3.9 may have useful implications for dual control approach
for both species in endemic districts. Other studies elsewhere have shown an infection of P.
vivax malaria subsequent to P. falciparum infection and cases of mixed infections may present a
challenge for treatment (Looareesuwan et al., 1987, Mehlotra et al., 2000, Mayxay et al., 2004,
Douglas et al., 2011). P. vivax infections tend to relapse more often because the hypnozoites can
lie dormant in an infected liver for months (White, 2011), a factor that has important
implications for its control. An additional characteristic of P. vivax is that it can induce fever at
relatively low parasite densities (Price et al., 2007, White, 2011), thus suspected cases require a
parasitological diagnosis before treatment. The prevalence of glucose-6-phosphate
dehydrogenase deficiency (G6PDd) is estimated to be 8% in Afghanistan (Howes et al., 2012)
which complicates the use of the reccomended 14 day regiment of primaquine (PQ) (World
Health Organization, 2010a). The use of PQ in patients with G6PDd can cause severe haemolysis
(Cappellini and Fiorelli, 2008, Leslie et al., 2008). We suggest that improved maps of prevalence
of G6PDd may be helpful in reducing disease burden. Chloroquine is used as first line treatment
of P. vivax in Afghanistan as recommended for countries where it remains efficacious and where
parasites can be isolated (World Health Organization, 2012b), while Artesunate with
Sulfadoxine-Pyrimethamine (AS+SP) is used for P. falciparum (Ministry of Public Health,
2008b). However, where both species are endemic, the use of artemisinin-based combination
therapies (ACTSs) has been proposed (Douglas et al., 2010, Sinclair et al., 2011) and other
clinical studies have shown a faster parasite clearance rate when ACTs were used (Nguyen et al.,
1993, Hamedi et al., 2004, Dao et al., 2007). Figure 3.10 indicates where such a case

management approach could be beneficial.
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3.5.2 Modelling gains for incidence analysis in Afghanistan

An independent linear approach was used when modelling both incidence and slide positivity
rates for both parasites. While modelling large space-time data with gaps is a challenging task,
the advantages of hierarchical model-based approaches lies in quantifying the mean process

independently 5(s,,t) while at same time including random effects (see also section 2.5.3). An

autoregressive time varying factor was used in the model with an assumption that estimates
evolves from previous values but modified by spatial and spatio-temporal set of covariates
X'(s,,t)4 (Sahu and Bakar, 2012). Crude estimates of incidence was much close to the smooth
values in Afghanistan compared to Namibia. The advantages of smoothed incidence over crude
estimates are discussed in section 2.5.4. However, the analytical gain in the Afghanistan study
was the extra random effects included at province level while maintaining the CAR prior at the

district level. Thus;
fo =6 +(p +&)+v;
Where ¢; are the facility level effects, ¢, is the CAR prior at district level with random effects

£ (with @, | o> ~ N(0,06%) (Barnerjee et al., 2004, Lee, 2011)) and W ; represent higher

level effects at the province level. This specification improved the spatial smoothing toward a
regional (province) mean. This evident in closeness of crude estimates at regional level

compared to smooth estimates.

The analysis in this section however did not explore the alternative approach of multivariate

space-time random effects where the joint covariance for P. vivax and P. falciparum maybe be
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based on linear transformation of the independent processes (Wagner and Tchler, 2010, De laco

et al., 2011). Such modelling approach is however not straight forward and as observed here. For

example in the geostatistical approach, the spatial range ¢ for both species was different which

may complicate a joint modelling framework of both species.

3.5.3 Limitations in Afghanistan context

An important factor to consider while interpreting the results is that the data were based on either
microscopy or RDTs, both of which have varying sensitivities (WHO-FIND, 2009). With such
low infection rates and an increased likelihood of mixed infection in districts showing patterns of
co-infection (Imwong et al., 2012). It was not possible to distinguish the proportion of observed
cases at health facilities over the four year period that were a result of new infections or
relapsing. Such analysis may require additional models of transmission, for example,
incoporating the force of infection (Gemperli et al., 2006, Yukich et al., 2012). Another
limitation of the maps presented here is that the effects of migration or travel between various
regions were not incorporated into the modelling framework. A study in south-eastern
Afghanistan showed higher asymptomatic infections in the migrant population (Nateghpour et
al., 2011). Modelling migration patterns at national level was beyond the scope of this study. It
was assumed that individuals would seek treatment at the nearest facility or at least within a

district or one of its neighbours.

3.6 Conclusion
This study demonstrates how HMIS data can be assembled, integrated and interpolated to

identify district with high malaria burden spatially and temporally. Maps were produced at the
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level of decision-making units, which are useful to the malaria control programme in assessing
the changing burden of disease in Afghanistan, targeting malaria interventions at the population
most at risk, and planning health resources. It is likely that Afghanistan’s NMLCP faces a
challenge in reducing the burden and management of P. vivax infections compared to P.
falciparum. The districts identified with high burden can form the basis of targeting mass ITN
distribution. For areas showing co-distribution of both species, mixed infections should be
investigated and careful case management strategies adopted. Donor commitment to financing of
the BPHS in Afghanistan since 2004 has had a positive effect on improving coverage of
healthcare. The analysis of public health sector utilisation undertaken here suggests that the
majority of the population is within two hours of a health facility, indicating an improvement in

healthcare delivery and availability of services.
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CHAPTER 4: Case study 3

Mapping the seasonal transmission of P. falciparum and P. vivax in
Eritrea using HMIS

194



4.1 Eritrea context

4.1.1 Background

The burden of malaria in Eritrea has reduced significantly in the recent past. Both Plasmodium
falciparum and Plasmodium vivax are found in Eritrea, although, falciparum is the major
contributor for most malaria related deaths. Plasmodium vivax is estimated to constitute
approximately 46% of the total burden in Eritrea (World Health Organization, 2013b). The 2012
health report indicates that malaria accounts for approximately 1.5% of inpatient morbidity (IPD)
and 0.5% out-patient morbidity (OPD) in children under the age of five years (MoH, 2013). This
is a ranking of about 10™ and 11™ respectively for all IPD and OPD cases, respectively. The
estimates in ages above five years are slightly higher for OPD cases at 1.3% and 4.9% for IPD

cases.

The 2014 WHO malaria report highlighted Eritrea as one of the countries in SSA that reduced
malaria cases by over 75% between 2000 and 2013 (World Health Organization, 2014d). The
2012 MIS estimated a mean parasite prevalence of 2% nationally (Ministry of Health, 2012).
Several factors have contributed to a decline in malaria burden in Eritrea. The RBM
implemented aggressive malaria control between 1999 and 2004. During this period, there was
an increase in coverage and use of ITNs and LLINSs; larvae source reduction and the use of
selective indoor residual spraying (IRS) of insecticides using dichloro-diphenyl-trichloroethane
(DDT) and organophosphates (Malathion). By 2005, Eritrea had superseded the Abuja target of
ITN coverage of >60%. There was a change in the antimalarial drug policy in 2007 from mono-

therapies to use of ACTs and these are now available freely in the public sector. Compulsory use
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of diagnostics at health facilities was also introduced to improve case management (Nyarango et

al., 2006, Mufunda et al., 2007).

The national malaria control programme is targeting pre-elimination (MoH and RBM, 2005,
Mufunda et al., 2007) which requires case incidence to be less than 1 case per 1000 per year
(World Health Organizastion, 2007). Routine HMIS could be used to target reactive Active Case
Detection (ACD) usually deployed only during epidemics. Mass screening of population or ACD
IS yet to be adopted as a routine surveillance strategy (East Africa Roll Back Malaria Network
(EARN), 2013). Therefore, there is a need to identify foci districts with high transmission to
guide intervention and active case surveillance in order to achieve <1 case per 1000 population

threshold.

This chapter assesses the spatial and temporal distribution of malaria transmission in Eritrea
from 2010 to 2012 using routine data. It qualifies as a low malaria transmission country targeting
pre-elimination. The analysis is aimed at identifying low and moderate risk areas in Eritrea to
support the changing malaria strategies of pre-elimination in addition to identifying seasonal
trends in transmission of both P. falciparum and P. vivax. In terms of methodology, analysis of
healthcare utilisation is a prerequisite for incidence analysis. There is also an adjustment of
denominator population using health seeking behaviour pattern (section 4.2) and adjustment at
facility level for slide positivity as well as the rate of health facility reporting (section 4.4). The
analysis of incidence incorporates the use of nonlinear functions for covariates to improve the
smoothing in temporal domain as well as the prediction of slide positivity rates. This approach is

aimed at improving estimates in the temporal domain while maintaining gains in spatial domain.

196



4.1.2 Geography

Eritrea lies in the horn of Africa with an estimated land surface area of approximately 123,200
km?. It is divided into six administrative 1 units (Zobas) and 58 districts (Sub-Zobas). Eritrea is
bordered to the East by Djibouti which is also in pre-elimination of malaria with low and
unstable transmission (Noor et al., 2011, Ollivier et al., 2011). There is documented evidence of
declining burden in Ethiopia in the south of Eritrea (Otten et al., 2009, Jima et al., 2012) while in
Sudan, to the west, the regions of Kassala and Gedaref experience moderate transmission (Hay et

al., 2009a, Gething et al., 2011b) (Figure 4.1).

Malaria transmission in Eritrea is highly seasonal and unstable, driven by the climatic conditions
that vary from the hot and dry desert strip coastline of approximately 2,234 km along the red sea
to the cooler and wetter highland areas (inland) with an average 60mm of rainfall annually. The
main rainy season is between June and September. The extended Ethiopian highlands dominate
the central regions descending to the east to coastal plain, hilly to the north reaching 3000m
above sea level and rolling plains to the west (towards Sudan). Temperatures in the summer
months vary between 40 °C to 50 °C at the coastal strip and 16 °C to 30 °C inland throughout the
year. These climatic conditions are favourable for malaria transmission in the highland regions.
The extreme low rainfall in the lowlands causes aridity which is unfavourable for both malaria

transmission and for agricultural needs of the population.
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Figure 4.1: Map of Eritrea

4.1.3 Healthcare system in Eritrea: Organisation and delivery

The ministry of health is responsible for provision of preventive, curative and promotive
healthcare services to the population. Like many other developing countries, the focus is on
primary care to the rural populations in form of a Basic Healthcare Package (BHCP). This is
outlined in the health policy which also aims at reducing disease burden, control communicable
diseases, improve healthcare practices and implement a functional efficient healthcare system
(MoH, 2010). In general, the healthcare system in Eritrea is hierarchical with management units

set up at the national, regional and sub-regional level. The national level ensures the proposed
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policies are implemented including: equitable distribution of health and social services;
introducing national health insurance schemes; promoting healthcare services and good
practices; and encourage participation of the private sector. Regional directories roles include the
preparation of regulations, ensuring compliance with the national policy and encouraging
regional level development. The coordination of development activities is carried out at district

level including planning and implementation of policies.

Development and expansion of healthcare providers (hospitals, health centres and the health
stations) was a priority of the ministry of health from 1995. Expanding the health system
improved access and utilisation of healthcare facilities. For instance in 1996, 6% of population
was estimated to be within 10km of a health facility which had increased to 70% by 2006 (MOH,
2008). By 2005 the number of health facilities was over 300 including both the public and
private based facilities. There were approximately 21 major hospitals, four mini hospitals, 49
health centres and 178 health stations. The health stations and clinics form the primary-level
facilities, while district (sub-zoba) level facilities and the major regional level facilities form the
secondary and tertiary facilities respectively. The tertiary-level facilities are managed mainly by
a zoba (regional) medical office and serve as referral centre for secondary and primary care
facilities. They also form as focal point for the zoba conducting teaching and training, supporting
operational research and zoba level as well as providing specialised services. National referral
hospitals offer all services in a similar way to the zoba referral hospitals but with additional
specialised services. In 2010, at least 340 facilities reported to the national HMIS. The MoH

owns approximately 75.9% of the facilities, faith-based organisations (Eritrea Catholic
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Secretariat (8.9%), Evangelical church (0.3%)), Private (2.4%), Industry facilities (9.2%) and

other Non-governmental organisation constitute about 3.3%.

Primary care is provided through community-based health facilities with a catchment the size of
a village (kebabi) (estimated population of 500 to 2000 people). Most of primary curative and
preventive services are provided by CHA and skilled community health workers (CHW). Health
station and clinics provide basic services for estimated 5000 to 10000 people. The health stations
support the CHAs and CHWs and conduct regular training in addition to providing outreach
services. Health centres and community based hospitals provide supervision to the health stations
and clinics and are designed to serve a catchment population of approximately 30,000 to 50,000.
They also form direct referrals to the clinics and health stations. The number of community
health agents (CHA) has increased over the last few years. The CHAs provide basic curative and
preventive services, for example, treatment of mild fever. Therefore a substantial number of
people are treated at community level by the CHAs. It is estimated that between 2000 and 2004
CHA treated on average 50% of febrile events. There is improved training by year in practice as

well as with change of health policy.

4.1.4 Health goals and progress on MDGS

Eritrea is a low income country with a Gross National Income (GNI) of 550 and low human
development index (HDI) of 0.35 (World Bank, 2014). It was ranked 182 out of the 187
countries based on the HDI index. Current population is just under 7 million with a growth rate
of approximately 2%. Health expenditure in 2011 formed approximately 2.6% of the total GDP
(World Bank, 2014). Overall, life expectancy has increased to over 60 years which is higher than
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the SSA average of 51 (MoH, 2010). The larges burden of disease comes from preventable and
communicable diseases such as Acute Respiratory Infections (ARI) and maternal health-related
problems. There is therefore an emphasis on health programs focusing on preventive activities in
Eritrea. According to health assessment review in 2012, the top five cause of in-patient morbidity
include Diarrhoea, HIV/AIDS, ARI, anaemia and heart diseases (MoH, 2013). Pneumonia, skin
infections and ARIs are common in children under the age of five years. The under-five
mortality rate was estimated to be 98 deaths per 1000 live births while infant mortality rate is 48
deaths per 1000 live births. This has declined significantly compared to 1992-1996 estimates of
121 deaths per 1000 live births and 67 deaths per 1000 live births respectively (National

Statistics and Evaluation Office (NSEO) [Eritrea] and Macro, 2003).

Despite tremendous achievement in reducing malaria burden, the threat of resurgence remains
due to combination of environmental or climatic factors and cross-border movement. While
MDG targets remain on track in regard to infant and child mortality especially with declining
burden of malaria, the maternal mortality ratio (MMR) remain a problem with estimate of 240
per 100,000 live births in 2011. Some of cultural factors and lack of skilled personnel contribute
to maternal deaths (Sharan et al., 2011). There are current attempts to train more skilled
community health workers and to increase ANC coverage. Health worker population ratios
indicate the ratio of number of doctors to population is approximately 0.48/10,000 which is close
to the WHO limit of 1/10,000. The nurses ratio of 3.2/10000 and 6.5/10000 for associate nurses
is within the advisory limits (East Africa Roll Back Malaria Network (EARN), 2013). This

staffing challenges affect quality and competency of healthcare professionals.
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In summary, Eritrea has made strides on some MDGs such as reducing the malaria burden, but
remains behind on other MDGs such as poverty. Most population remains poor with heavy
reliance on agriculture which is undermined by drought. The next section reviews history of

malaria control.

4.1.5 History of malaria control in Eritrea

Malaria control in Eritrea is coordinated by the National malaria control programme which was
established in 1999 following epidemics between 1997 and 1998. IRS started in 1965 during the
GMEP to the late 1960s when it was discontinued due to instability during the occupancy of
Ethiopia from 1952-1991. During the period of instability, much of country’s infrastructure was
destroyed and malaria control activities nearly stopped. A major re-building programme was
initiated after independence declaration in 1993, which involve the re-construction of healthcare
services and improving provision. Between 1997 and 1998 a severe epidemic was reported that
resulted in over 200,000 cases. Previous reports indicate malaria cases in 1995 were less than
90,000. The number of impatient deaths reported during this epidemic surged to over 500.
Subsequently, the National malaria control program (NMCP) was constituted with support from
the World Health Organisation, The U.S. Agency for International development (USAID) and

the World Bank.

A five year malaria attack phase was launched which commenced with DDT spraying in three
Zobas worst hit during the epidemic (Debub, Garsh Barka and the Northern Red Sea). The RBM
also supported the distribution of bed-nets through clinics to high risk groups (such as pregnant

women) and through social marketing (Eisele et al., 2006). Integrated vector management (VM)
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was rolled out to other regions (Anseba, Maekel and Southern Red Sea). As a strategy of
managing resistance, DDT spraying in Debub was replaced partly by malathion towards the end
of transmission season due to its short half-life (WHO/AFRO, 2007). As a result of these efforts,
between 1999 and 2003, the malaria burden was halved. Funding from the GFTAM commenced
in 2003. The first GFTAM disbursement period was from November 2003 to March 2004 and
was instrumental in scaling up the coverage of ITNs such that by 2005, Eritrea had exceeded the
Abuja targets of greater than 60% ITN coverage nationally (Eisele et al., 2006). In 2004 RBM
conducted an assessment survey to identify key priority areas and ways of consolidating malaria
control gains. Some of the weaknesses identified were in case management, late presentation of
cases at periphery health facilities for treatment, a need to increase the number of CHAs,
sustaining ITN distribution and environmental management of IRS, improvement on awareness

and integration of IMCI amongst other logistical issues.

The 2005 to 2009 malaria policy focused on consolidation and strengthening the health system
on issues around the use of RDTs, training of CHAs and improving logistic supply system to
guard against stock outs at health facilities. About USD 13 million was budgeted for case
management, prevention, epidemic detection and prevention, operational research, program
management and monitoring. Most of these funds were proposed during the sixth round of the
GFTAM (The Global Fund, 2013b). About USD 11.05 million (94%) of proposed amount was
disbursed commencing in November 2007 and that ended in 2012. This was deemed adequate
for the malaria activities proposed during the consolidation phase. For instance, only 75 deaths
were attributed to malaria in 2009 and over three million ITNs had been distributed by 2012. In

2007 there was a change in the antimalarial drug policy from the monotherapies. Chloroquine +
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Sulfadoxine pyrimethamine (CQ+SP) was introduced as first line drug for uncomplicated
malaria while Artesunate + Amodiaquine (AS + AQ) was introduced for first line treatment of
confirmed falciparum malaria with quinine (QN) used if there was treatment failure. Chloroquine
and Primaquine remained as first line treatment for confirmed vivax malaria. Progress has also
been made in regard to the scale-up of LLINS. The 2012 MIS suggested availability of 1 LLIN
for every 0.5 people. This, however, still falls short of the WHO recommendation of 1 LLIN for
every 1.8 people (World Health Organization, 2012b). There was an 86% estimated ownership of
LLINs and use at 67.4% for children under the age of five years in the same survey. The use of
LLIN in all age population was 55% from the MIS (Ministry of Health, 2012). The use of
diagnostics has also increase at health facilities nationally which has had an impact on case
management by identifying and treating febrile cases (Nyarango et al., 2006, Mufunda et al.,
2007). As a result of these activities malaria in Eritrea is ranked 10" and 11" in the IPD and
OPD for the under-fives. Thus, the NMCP is re-orienting the programme to pre-elimination. The
reduced burden has positive implications to indicators such as child mortality in Eritrea. The next
section investigates access and utilisation of the public health sector in order to derive

denominators of quantifying malaria incidence at facility level.

4.2 Analysis of coverage and utilisation of health services for treatment of fever

A national HMIS was first created in 1997 in Eritrea and this has strengthened over the years in
terms of data collection and standardization. By 1998 a computerized information system had
been set up for data storage and analysis. The health metric Network (HMN) continues to
provide technical support to the MOH and in 2007 an assessment of data quality showed high

accuracy (80.6%), timeliness (88.1%) and completeness (>90%) (MOH, 2008). There has been
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no formal assessment of Eritrea healthcare service access and utilisation at a national level
except for the designed population provider ratios. This section quantifies geographic access to
health facilities in Eritrea in relation to physical distance and topography. The main objective is
to assess health facility coverage and quantify utilisation. A second object is to delieanated

catchments and estimate population within catchments for incidence analysis.

4.2.1 Data

4.2.1.1 Health facility database for Eritrea

A health facility database was obtained from the national malaria control programme. Health
facilities in Eritrea were mapped using non-differential handheld GPS receivers as the same time
with the computerized system. The process was supported by the health Metrics Network (MOH,
2008). There were approximately 287 public-based health facilities assembled majority owned
by the MoH (85.7%). 2.4% were owned by the faith-based organisations (mainly the catholic and
evangelical church) and a further 1.7% owned by the NGOs. The rest were industrial based

facilities (Table 4.1).

Hospitals were ranked the highest with one as a referral facility, 19 regional based hospitals and
five mini hospitals. Other levels included the health centres, health stations, clinics and
specialised hospital. Providers included the government (majority), charity organizations, private
individuals and other government agencies such as the police and ministry of defence (MOD).
Each facility was linked to an administrative area (Administrative 1 boundary and district)

(Figure 4.2).

Table 4.1: Public-based health facilities in each Zoba in Eritrea by type
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Zoba National Referral Hospital Mini Health Health Clinic Special Total
Hospital Hospital Centre Station Hospital

Anseba 0 1 0 9 26 3 0 39
Debub 0 3 2 11 47 2 0 65
Gash Barka 0 3 0 13 51 5 0 72
Maekel 1 7 1 10 24 2 4 49
Northern Red 0 4 0 11 29 4 0 48
Sea

Southern Red 0 1 2 0 11 0 0 14
Sea

Total 1 19 5 54 188 16 4 287

Health facility
¢ Health Station
+ Health Centre
B Hospital

Figure 4.2: Distribution of health facilities in Eritrea
Map of health facilities in Eritrea by type. Hospitals (n=25), Health centres (n=54 and Health stations or clinics

(n=204)

4.2.1.2 Eritrea Population map

90

120

An population surface (Figure 4.3) was obtained from Worldpop at 100 x 100 m spatial

resolution (Worldpop, 2010). The methodology in modelling population distribution follows a
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similar approach to the Namibia population surface and other countries in SSA (Linard et al.,
2012). In brief, a Dasymetric approach was used (Monmonier and Schnell, 1984, Briggs et al.,
2007), that involve the redistribution of census data (Tatem et al., 2007). No population census
that has ever been conducted in Eritrea; therefore, most population estimates were based on
government estimates and publication from the United Nations population division (UN
Population Division, 2013). The inclusion of land use and land cover data from GlobCover
(Arino et al., 2007) improves the representation of habitable land. The weights, calculated based
on the density of habitable areas, were used to distribute census estimates at regional block level.
The method assumes a direct relationship between the population density and land cover classes.
Recent improvement of this technique using the random forest modelling approach suggest a
linear relationship between the selected land cover covariates and population (Worldpop, 2010).
The resulting national population map was then projected using the United Nations’ (UN) inter-

censual growth rates (UN Population Division, 2013).
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Figure 4.3: Population density map of Eritrea for 2010
Population density map superimposed to elevation map of Eritrea showing majority of population reside in central
highland regions.

4.2.1.3 National representative surveys in Eritrea

Eritrea has to date conducted at least four nation representative household based surveys. Two
DHS were conducted in 1995 and in 2002. The first MIS was conducted in 2008. The 2012 MIS
was used in this study for analysis of fever treatment in the public sector. The MIS focused on
malaria, and was powered primarily to measure the impact of interventions such as insecticides
treated nets (ITNs) (Roll Back Malaria Monitoring and Evaluation Reference Group et al.,

2005).

3,845 households (8,533 individuals) in all age cohorts were sampled in the MIS carried out
between September and October 2012 in four zobas namely: Anseba, North Red Sea, Debub and
Garsh Barka. A two-stage sampling design was adopted (RBM-MERG, 2008) where villages (or

clusters) were first selected based on the number of households in a probability-to-proportional-
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size approach (PPS) and households were selected randomly at the second stage within the
selected clusters (Ministry of Health, 2012). The geographic locations of the clusters were
established using a handheld GPS receiver. A cluster comprised of approximately 19 households
(variation of minimum 6 to a maximum of 21 households). The surveys provide information on
fever prevalence amongst all-age cohorts and treatment seeking patterns in different sectors. The
management of fever 2-weeks prior to the MIS was recorded for household members that
reported a fever episode. The individual-level data were linked to administrative regions
including information on type of residence (urban or rural status) and fever.

4.2.1.4 Ancillary national-level GIS data

Data on Land use and Land cover, elevation, road and rivers for Eritrea was downloaded from an
online repository (DIVA-GIS, 2011) and from the data exchange platform for the Horn of Africa
created by the UN (UNEP, 2002). Elevation (Figure 4.4) was obtained from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model
(ASTER-GDEM) (NASA, 2012). ASTER-GDEM. The elevation data had a 30 m spatial
archived using 1° by 1° tiles in GeoTIFF format. A land cover surface for 2009 was obtained
from the Medium Resolution Imaging Spectrometer (MERIS) GlobCover product (ESA, 2010)

at 300 m spatial resolution.
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Figure 4.4: Digital elevation model (DEM) for Eritrea

).

4.2.2 Developing surface of travel time and probability of attendance for fever treatment in
Eritrea

Ancillary data were combined to generate a cost surface of travel times between facilities and
population locations in AccessMod (version 3.0) (Ray and Ebener, 2008). The cost surface was
generated by assigning various travel speeds (Table 4.2) to land cover, slope (from elevation)
and roads while rivers were used as barriers (Ray and Ebener, 2008). Travel speeds assigned to
various land use or land cover types were similar to Namibia and Afghanistan analysis (Ray and
Ebener, 2008, Alegana et al., 2012, Huerta Munoz and Kallestal, 2012) and were extracted at
cluster locations from the MIS for the 8,533 individuals. Overall, 1,247 individuals in all age
cohorts reported at least a single fever episode two weeks prior to the survey while 60-8%
reported to have sought treatment in public sector (Ministry of Health, 2012). Effects of

residence (urban =1 or rural =0), gender (Male or female) and age were evaluated in a
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generalized multiple regression model on the reported pattern of health facility attendance. Of

which, only residence (regression coefficient -1-0, 95%CI: -1-4 — -0-8, p<0-001) was significant

and was subsequently used in the fitted model. The effect of age (regression coefficient -0-1,

95%Cl: -0-2 — 0-1, p=0-5) and gender (regression coefficient 0.02, 95%ClI: -0-2 — 0-3, p=0-8)

were not significant and were, therefore, dropped from the analysis. The travel times were used

in the logistic regression model of the form v =c j1+e*’®) (Pinheiro and Bates, 2002) to estimate

probability of health facility attendance.

Table 4.2: Description data for modelling healthcare utilisation in Eritrea.
Various data and their sources used as inputs in calculating travel time to the active public health facilities in Eritrea.

Map Speed
Layer Description Classification (km/h) Mode®
Land Spatial representation of all different land use and Irrigated, rain fed, mosaic or
use/ land land cover types. Two land cover grids were vegetated croplands 4.0 Walking
cover processed (1) a basic land cover grid (2) a Open or closed broadleaved, needle
combined grid that incorporates roads and rivers leaved, deciduous or evergreen tree
with the same resolution as the DEM cover 4.0 Walking
open or closed mixed broadleaved
forest/tree cover 25 Walking
Mosaic, closed to open
grassland/shrubland 25 Walking
Sparse Vegetation 25 Walking
Open or closed broadleaved
regularly flooded 1.0 Walking
Artificial/urban areas 30.0 None
Bare areas/desert 1.0 Walking
Ice/ permanent snow 0 None
Roads Classified into five categories; class A  Class A roads 60.0 Motorised
(highways), class B (secondary roads), tertiary Class B roads 40.0 Motorised
Class C and Class D roads as well as street level Class C roads 20.0 Cycling
urban roads. Each road class was assigned a Class D roads 5.0 Walking
different speed limit. Street level roads in urban areas 30.0 None
Rivers GIS layer representing barrier to movement. Only
major rivers were used to reduce the complexity NA? 0 NA?
of running the algorithms
Digital Altitude values that are used in anisotropic Degree of Slope (< 0.5° 4.88 Walking
elevation calculation; Original DEM 30 m ASTER grid; Degree of Slope (5.0°) 371 Walking
model resampled to 1 km pixel size Degree of Slope (10.0°) 271 Walking
Degree of Slope (20.0°) 141 Walking
Degree of Slope (30.0°) 0.66 Walking

3. Assumed mode of travel to health facility, as either walking on foot, cycling, using motorise transport as on roads or a
combination of the different modes. Anisotropic movement for walking based on Tobler’s equation, (V=6*exp(-
3.5abs[Tan(slope in degrees/57.296) + 0.05]) (Tobler, 1993) where V is the speed with slope derived from DEM or for
cycling1 (Walter, 2008), was applied for traversing across a pixel. For example, on a flat terrain, the walking speed is 5.0
km hr.

4. NA is an abbreviation for ¢ Not Applicable’
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Figure 4.5 shows the universal (all facilities) distance-decay model of treatment seeking pattern
based on the travel time and the reported fever treatment. Note that following the Afghanistan
analysis, here, stratification by facility type was not used for public health sector coverage
analysis. Treatment-seeking behaviour reduced rapidly after approximately 180 minutes. The
residual standard error was 0.02 while the sum of squared residuals equal was 0.01 indicated a
good model fit to the data. The coefficients of the distance-decay curve were all significant with
p<0.001. The limiting coefficient was C (0.73) with the other two coefficients: the asymptote as

A (3.83) and decay parameter B (-0.42).

Si — aamoo @ oad 00 @ @000 O [o] (o]0 ] o]

«Q _|

o

O de-,
%ﬁ
0] @\D\
o
G
k] © ] AN
5 © <
g %
5 AN
2 ®
S 3- |
a © G\D\\
[<]
a “\Q\s
\&G\s
N ey
o ‘Sn%
‘Sn%
-
&9_&0
g— ano O @ 00O o 000 O @@ o0 O om oo

0 75 150 250 350 450 550 650 750 850 950

Time (minutes)
Figure 4.5: Distance decay curve of probability of fever treatment in Eritrea
Distance decay model based on the reported fever treatment in the 2012 MIS survey for Eritrea showing probability
of treatment (y-axis) against travel times (x-axis). The model parameters were all significant at p<0.0001 with
limiting factor C as 0-73 [95% CI 0-71 — 0-74], the asymptote 3-83[95% CI 3-80 — 3-86] and the decay parameter as
-0-42 [95% CI -0-45 - -0-40]. The attendance pattern (1 = attendance and 0 = non-attendance) is also superimposed
on the decay curve
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4.2.3 Developing health facility catchments in GIS and assessing coverage of health
facilities

A gridded surface of probability of health facility attendance was derived at 1 x 1 km spatial
resolution based on the distance-decay curve. The distance decay model based on the universal
facility list was selected to zone catchment areas while limiting the maximum travel time to 180
minutes. Population counts in various catchments were extracted using the catchment boundaries
and multiplied by the probability of attendance for fever treatment to derive the population-
weighted surface of health facility utilisation. Similarly, the population outside the threshold
catchment boundary was estimated. A fever burden map was derived by combining population
map with estimates of fever prevalence from the MIS. The number of fever cases in all age
cohorts within each catchment was extracted based on the fever burden map. The number of
fever cases likely to attend a public health facility was calculated by multiplying the estimated

burden by the probability of attendance.

4.2.4 Results of analysis of coverage and utilisation of health facilities

3.2.4.1 Fever prevalence in 2012 and treatment seeking behaviour

From the MIS, approximately 8,533 individuals in 96 clusters were interviewed. Fever
prevalence in all age-cohorts was 15.2% (95% CI 12.9 - 17.6). Of those with fever, the
proportion that sought treatment in public sector was 56.2% (95% CI 53.5 — 59.0).

3.2.4.2 Probability of attendance for fever treatment

Figure 4.6(a) shows the gridded surface of attendance for fever treatment to all health facilities at
1 x 1 km spatial resolution. The gridded surface was used to delineate catchments shown in

Figure 4.7 (b). Out of the estimated total population in 2012 (5,541,112) 67-8% were estimated
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to be within 180 minutes of a health facility and therefore within the catchment. The estimated
number of fever cases in 2012 based on the MIS prevalence and population map was 688,700 of
which 515,936 were within the derived health facility catchments (Table 4.3 and Figure 4.6 (b)).
Of the four regions covered by the MIS, the burden was higher in Debub and less in Anseba.
Approximately 25% of the estimated fevers were outside the catchments of the health facilities
and 61% of those in catchments were likely to seek treatment for fever. This means that
approximately 39% of the population in catchments was not likely to seek treatment in the public
sector. The modelled mean probability of attendance by region was highest in Maekel and lowest

in Southern Red Sea (Table 4.3).

Table 4.3: Estimated population in Catchments by region

Estimated population in 2012 and the estimated counts in catchments by region as well as those in the catchment
likely to seek treatment for fever based on the probabilistic measure of attendance. Maekel and Southern Red Sea
were not sampled during the MIS survey.

Region Estimated Estimated Fever prevalence  Estimated fever Fever cases
Population 2012 population (95% Cl) in all burden in health (Percentage) in
2012 age cohorts from facility catchment likely
(percentage) in the 2012 MIS catchments to seek treatment
health facility based on the
catchments MIS prevalence
Anseba 734,948 525,349 (71.51) 12.4 (8.3 - 16.4) 60,343 35, 475 (58.8)
Debub 1,341,639 1,332,810 (99.3)  20.7 (16.4 - 13.0) 237,107 157,128 (66.3)
Gash Barka 1,297,092 1,177,388 (90.8)  12.7 (8.1-17.3) 133,913 78,132 (58.3)
Maekel 498,550 498,550 (100.0) - -
Northern Red Sea 1,449,685 771,772 (53.2) 10.7 (7.5 - 14.0) 84,572 43,228 (51.1)
Southern Red Sea 219,198 99,379 (45.3) - -
Total 5,541,112 4,405,325 (79.5)  15.2 (12.9 - 17.6) 515,936 313,964 (60.9)
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Figure 4.6 Probability of health facility use for fever treatment and delieanated catchments

Figure 4.7 (a) shows the modelled probability of attendance for fever at 1 km by 1 km resolution using logistic
regression model based on the 2012 MIS. The lowest probability was 0.01 and the highest probability was 0.73 (b)
the health facility catchments at a threshold travel time of 180 minutes

Table 4.4 provides an overall assessment of coverage of health facilities in relation to population
distribution. In general there was 1 health facility (of any type) for every 20, 000 people. This
ratio is likely to be more for hospitals given there was on average more than 2 hospitals in each
region except in Anseba and the Southern Red Sea regions (Table 4.1, Page 205). Approximately
27% of the population was within 30 minutes of the nearest public health facility, while majority
(73%) where within two hours of travel to the nearest health facility. There was poor geographic
access in the Northern Red Sea and the Southern Red Sea regions where 59% and 66% of
population, respectively, were at distance greater than two hours of the nearest health facility. In
addition, approximately 9% of population in Northern Red Sea and 4% in Southern Red Sea
were at distances within 30 minutes to the nearest health facility. In Maekel, 100% of the

population was within two hours of the nearest health facility.
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Table 4.4: An assessment of coverage of health facilities in relative to population and travel time in Eritrea in
2012

Percentage of population to nearest health facility

Region Population : Estimated 30 minutes 1 2hours >2hours 3hours > 3hours
Facility Population hour
Ratio 2012
Anseba 19863:1 734,948 21.4 39.5 64.1 35.9 715 28.5
Debub 20963:1 1,341,639 415 77.8 98.1 1.9 99.3 0.7
Gash Barka 18530:1 1,297,092 19.0 42.7 82.4 17.6 90.8 9.2
Maekel 12464:1 498,550 77.0 99.0 100.0 0.0 100.0 0.0
Northern Red Sea 32215:1 1,449,685 8.8 17.7 41.2 58.8 53.2 46.8
Southern Red Sea 15657:1 219,198 4.4 13.6 33.9 66.1 45.3 54.7
Total 20523:1 5,541,112 26.7 48.2 72.7 27.3 79.5 20.5

4.3 Discussion on coverage and utilisation of healthcare facilities for fever treatment

This section assessed coverage of healthcare facilities in Eritrea and their utilisation for fever
treatment based on the MIS data. This study did not assess the overall expansion of healthcare
system in terms of service provision over the years since there was no documented baseline
survey to compare the results against. However, for effective service planning it is essential to
outline systematically the coverage and utilisation of health facilities. Overall, 72% of the
population were within 2 hours of the nearest health facility. Thus, the results suggest that the
construction of health facilities since the mid 1990s has had a positive impact on increasing
coverage. To assess utilisation, travel times were calculated between the facility location and
population centres (clusters) and based on a 3 hour cut off (180 minutes). 60% of the estimated
fever cases where likely to be treated in the public sector. The probability of seeking treatment
was highest in Debub and Garsh Barka where there was a higher concentration of health
facilities and population. The estimated number of fevers within the health facility catchments
was 688,700 of which 61% were likely to be treated in the public sector. Overall, 172764 (25%)

febrile cases were unlikely to use at a public health facility.
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Coverage of health facilities was congruent with population distribution. The facility to
population ratio was 1:20,000 at the national level. The ratio was better in Maekel with one
health facility for every 12,000 people and the worst in the North Red Sea region (one facility for
approximately 32,000 people). There was, in general, a balance between population distribution
and the location of health facilities. 48% of the population was within 1 hour of a public-based
health facility while approximately 7% were located in areas more than three hours from the
nearest health facility. Majority of the population in Maekel, Debub and Garsh barka where

located within 2 hours of the health facility.

Geographic access was poor in the Southern Red Sea and the Northern Red Sea regions where
47% and 55% of the population, respectively, were at distance greater than three hours of the
nearest facility. In these two regions combined, only 8.2% of population was within 30 minutes
of the nearest health facility. These two regions are sparsely populated generally with population
density of 0.02 and 0.11 per square kilometre respectively. In Other regions in Maekel, Gash
Barka, and Debub >80% of population were within two hours of the nearest health facility.
Geographic access in these regions was higher compared to the regions bordering the Red sea.
The subsequent analysis on modelling disease burden is dependent on a good distribution of

health facilities in addition to availability of health reports.

Utilisation of health facilities was accessed using the 2012 MIS conducted during the malaria
season. The reported fever prevalence (15.2% (95% CI 12.9 - 17.6)) was higher compared to the
other low transmission cases studies in Namibia or Afghanistan (Ministry of Health, 2012). The

MIS report suggested a high recognition of fever as a symptom for malaria during the
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transmission (amongst the sampled population). More than 80% of the interviewed population
associating fever with malaria. It is likely that the majority of cases are treated within the public
health sector that includes a network of community health agents linked to lower tier facilities.
The report also showed that 61% of children under the age of five years sought treatment for
fever at public health facilities (Ministry of Health, 2012) and estimated use in all age cohorts
was 55%. The CHAs play an important role in treatment seeking behaviour in Eritrea at
community level since they can treat uncomplicated febrile cases. Training and expanding the
network of the CHAs is entrenched in the national health strategy (MoH, 2010). Secondly, the
size of the private sector is relatively small with private-based health facilities constituting about
3%. Majority of the public-based health facilities (76%) are managed and owned by the MoH

(MOH, 2008).

The distance decay model estimated 61% of the estimated fever cases in 2012 were likely to
have been treated in the public sector. Thus, the estimated rate of utilisation in the public sector
was similar to the observed utilisation rate of the public sector with only a five percent difference
based on all age cohorts. Differences in estimates could be as a result of sampling in the MIS or
through error propagation due to combination of different data sets. Moreover, there could be
fine scale variation at regional or local level compared to the generalized model in this study.
Distance remains one of the factors affecting utilisation in Eritrea even for other services such as
ANC (Sharan et al., 2011). For example, findings from the study by Sharan and colleagues
emphasised the disproportionate access to maternal services and highlighted distance as a major
factor affecting utilisation. The relationship between distance and poor health outcomes has been

demonstrated in many other studies (Al-Taiar et al., 2008, O'Meara et al., 2009, Moisi et al.,
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2011), In Ethiopia there was an increased risk of death associated with an increased distance
from a health facility (Okwaraji et al., 2012). The recommended travel time from a health facility
varies by location but longer distances may affect high risk groups, for example, the risk of
miscarriage in pregnant women. Thus, CHASs play an important role in providing primary care
to the marginalised population. CHAs are linked to lower-tier facilities (clinics and health

stations) and access to these providers may probably alter the utilisation at health facility level.

In addition, the rate of distance-decay based on the derived travel time, was similar to the one
modelled for Namibia (Alegana et al., 2012). This decay was less rapid after seven and half
hours. It is likely that some population in the regions along Red Sea travel a longer distance to
facility compared to other regions. The study did not investigate the pattern of utilisation
between various facility types. Given there at least two to three major hospitals in each Zoba, it
is likely that these are referral centres for severe or complicated malaria within the Zoba.
Perception of quality of services offered at the referral hospitals could also be a factor affecting
utilisation (Trani et al., 2010, Trani and Barbou-des-Courieres, 2012). Other limitations such as
social-economic status, costs or cultural preferences were not evaluated. The advantage of this
study was the use of all-age population cohorts increasing representation of general utilisation
patterns in the population. Although, the private sector constitutes just a minority of providers in
Eritrea, their inclusion in future studies may improve understanding of coverage and utilisation.
Here, the quantification of catchment population at facility level served as pre-requisite in

modelling malaria incidence.
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4.4 Mapping malaria incidence and slide positivity rates in Eritrea

4.4.1 Assembly of malaria data (2010-2012)

Malaria data (Total Cases (TC)) for P. falciparum and P. vivax were obtained from the National
Malaria Control programme (NMCP) for a three year period from 2010 to 2012. This data was
extracted from the national HMIS database which reports on all illness and deaths recorded at a
health facility. Facilities reported the number of malaria cases per month diagnosed clinically or
confirmed through laboratory test (RDT or Microscopy). In total, 265 public based health
facilities reported malaria data in all age groups from the 270 health facilities nationally
excluding a few reproductive-based facilities (maternity and nursing homes) and special facilities
(Psychiatric and Rehabilitation centres), stand alone voluntary counselling centres (VCT), dental
clinics and educational or vocational centres. These facilities comprised of: two national referral
centres; 21 hospitals (mini and regional hospitals); 53 health centres or community facilities; and
194 health stations. The overall reporting rate, calculated as a proportion of received reports over

the expected number, was high (85.4%) (8301 reports of the expected 9720).

Although most cases in Eritrea were confirmed using a parasitology test prior to treatment, few
were diagnosed clinically. Only 8.7% of possible monthly data points were missing and these
were imputed as NAs. Adjustment of data at facility level was similar to Namibia and
Afghanistan. This included the rate of utilisation, the rate of reporting at slide positivity rates.
Table 4.5 shows a summary of the assembled case data for P. falciparum and P. vivax for the
three-year period. The slide positivity rate (SPR) was used to adjust the suspected cases, where
parasitology had been used and malaria species isolated. This was necessary to avoid

underestimating incidence (if suspected unconfirmed cases are ignored) or overestimating
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incidence (where true cases are treated as a summation of suspected and confirmed case while

ignoring the SPR at the facility).

~ Confirmed cases
Total number examined

TC =Confirmed Case + (Suspected cases x SPR)

Overall, there were more cases in 2010 compared to 2011 to 2012. The highest number of cases
was in Garsh Barka. Slide positivity rate was also highest in Gash Barka, for example: 64.4% in
2010 and 47.0% in 2012 in this region. SPR was low Northern Red Sea and the Southern Red
Sea. The proportion of suspected cases was also small compared to the overall number of malaria

cases in Eritrea.

Table 4.5: Summary of assemble HMIS data in Eritrea.
Assembled P. falciparum (Pf) and P. vivax (Pv) cases in Eritrea by region and year. The slide positivity rate is
shown in brackets.

Malaria cases (Slide positivity (%))

2010 2011 2012
Region Pf Pv Suspected Pf Pv Suspecte Pf Pv Suspect
d ed
Anseba 1,415 578 (9.5) 159 1,094 837 (7.7) 472 1,903 827 (5.6) 28
(23.2) (10.1) (13.0)
Debub 9,928 3,205 447 3,923 3,959 2,561 6,624 3,476 1,068
(40.7) (13.1) (7.9) (7.9) (14) (7.4)
Gash Barka 23,767 2,576 (7) 7,770 8,438 4,914 (15) 14,212 18,769 5,617 5,060
(64.4) (25.7) (47.0) (14.1)
Maekel 489 (9.2) 254 (4.8) 560 516 493 (6.9) 807 596 (5.8) 526 (5.1) 843
(7.2)
Northern Red 304 (7.9) 128 (3.3) 6 295 149 (5.9) 1 241 (5.4) 227 (5.1) 271
Sea (11.8)
Southern Red 6(5.2) 0(0) 24 15 0(0) 71 6(7.3) 5(6.1) 160
Sea (23.4)
Total 35,909 6,741 (8.8) 8,636 14,281 10,352 18,122 28,139 10,678 5,238
(46.8) (13.8) (10) (24.1) (9.2

4.4.2 Assembly of environmental and ecological covariates in Eritrea
To model the risks of P. falciparum and P. vivax malaria transmission in time and space, a set of
ecological and climatic covariates that affect the development and survival of the malaria

parasite and malaria vector (Anopheles mosquito) therefore influencing transmission. The aim
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was to select three to four covariates to avoid the problem of over-fitting where redundant
covariates increase model complexity without changing model results significantly. These
included precipitation, minimum temperature, maximum temperature and mean temperature, the
normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The
objective was to assemble time-series variables rather than the long term means. The
methodological innovation in Eritrea was to fit nonlinear functions to the covariates over time
variables rather using a fixed linear prior effect. The combined effect of these covariates is likely
to affect the spatio-temporal heterogeneity of malaria. Nonlinear functions such as the first-order
random walks may improve estimating the seasonal trends (Blangiardo et al., 2013) and may

also be useful in forecasting of cases (Sahu et al., 2013).

The mean monthly temperature surfaces were downloaded from WorldClim at approximately 1 x
1 km spatial resolution (Hijmans et al., 2005). The optimum temperature for the development of
sporozoites, (the duration of sporogony) in mosquito, range between 25 °C to 30 °C. Higher
temperatures above (>36 °C) result in mosquito mortality (Kirby and Lindsay, 2009) while
colder temperatures (< 16 °C) impact on the parasite survival (Guerra et al., 2008). Guerra et al.
(2008) show P. falciparum can survive up to 16 °c and P. vivax ceases after 14 °C. Mean,
maximum and minimum temperature grid surfaces were produced from long-term climate
observations for the period 1950-2000, interpolated using smoothing spline algorithms (Hijmans
et al., 2005). A Temperature Suitability Index (TSI) was derived from the gridded surfaces of
temperature (Gething et al., 2011a). The development of TSI also included time series data on
effect of temperature on vector survival and the duration of sporogony. A value of zero indicated

inability of temperature within a localized area, pixel, to support vector survival.
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Precipitation data were obtained from the Tropical Rainfall Measuring Mission sensor (TRMM
3B43 product) that combines ground observations and satellite sensor data to generate a gridded
rainfall surface at approximately 0.25° x 0.25° spatial resolution (Huffman and Bolvin, 2011,
NASA, 2011). The TRMM satellite orbits at approximately 401.5 km altitude with an inclination
of about 35° to the equator (Huffman and Bolvin, 2011). The temporal resolution is
approximately 90 minutes enabling a global coverage on 24 hour basis at varying spatial scale.
TRMM 3B43 is a gridded mean monthly average product of precipitation rate in mmhr™
(Huffman, 1997). It is produced after multi-satellite precipitation analysis that combines both
satellite and ground observations (from rain gauges). Rigorous data checks are applied to both
satellite and ground level data. Majority of the global products are provided and archive at 3-
hourly interval with also monthly level products available after the application of TRMM multi-

satellite precipitation analysis (TMPA) (Huffman and Bolvin, 2011)

Vegetation indices, namely the Normalised Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI) were obtained from the MODerate-resolution Imaging
Spectroradiometer (MODIS) sensor (Scharlemann et al., 2008) at 1 x 1 km spatial resolution.
These indices are commonly used in mapping land cover changes (Martinez and Gilabert, 2009)
and can quantifying changes in phenology. In disease mapping, the association between the
change in environmental factors, disease vector and humans is important in measuring risk (Hay
et al., 1997). NDVI metric is affected by sensor calibration drift (Miura et al. 2006), atmospheric
effects (Song et al. 2001), solar and satellite viewing angle, topography (Cuo et al. 2010) and

shadow (Huemmrich 1996). EVI metric is usually preferred because of the reduced atmospheric
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scatter since visible range spectrum is included in its construction (Wardlow and Egbert, 2010).
NDVI is most sensitive to chlorophyll change before peak biomass cover in contrast to EVI
which is more sensitive at seasonal peak (Huete et al., 2002). The two indices are highly

correlated (Wardlow et al., 2007), complement each other and were both incorporated.

4.4.3 Preliminary analysis of covariates and matching to malaria cases at health facility
The covariates were matched to facility data in space and time. All the grid surfaces were
resampled to a common resolution (cell size 0.008333° x 0.008333°). A standardization
procedure was applied prior to the analysis by cantering on the mean and dividing by the
standard deviation. A selection procedure was implemented to achieve a minimum set of
covariates that have a plausible relationship with malaria transmission. In addition, the selection
was used to remove highly co-correlated covariates. Pearson’s linear correlation coefficient was
estimated for the pair of covariates. A minimum set was selected using the bestglm package in R
based on the smallest value of the Bayesian information criterion (BICq) with a Bernoulli prior
and smallest cross-validation error (McLeod and Xu, 2008, Hastie et al., 2009, Xu, 2010).

Similar analysis and specifications are in chapter 2 and chapter 3.

Preliminary analysis suggested a strong correlation amongst the temperature covariates (Pearson
correlation > 0.75) and between NDV1 and EVI (Pearson correlation = 0.97), which was
expected. From regression analysis (Table 4.6 and Figure 4.7), precipitation, minimum
temperature and maximum temperature were selected as best combination set of covariates for

smoothing incidence of P. falciparum and P. vivax. EVI was included when modelling the slide
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positivity rates. The parameter for the Bernoulli prior for P. falciparum was q (0, 7.31 and q (0,

3.71) for P. vivax.

<
—

0.8

CV Error
0.6
1

04

0.2
|

@ AR

Subset Size

Figure 4.7 Covariate selection model based on cross validation error in Eritrea

Generalised linear model fit showing the prediction curve (red) and the cross validation error (bars). The estimate of
standard error and prediction error was based on fivefold cross-validation (see chapter 2 section 2.3.4). Only one
figure was displayed since the results were similar for P. falciparum and P. vivax.

Table 4.6: Regression coefficients for the best combination variables selected in a generalized linear model for

P. falciparum and P. vivax

P. falciparum P. vivax
Covariate Coefficient Std Error p-value Coefficient Std Error  p-value
Precipitation -0.09 0.01 <0.001 -0.07 0.01 <0.001
Maximum temperature 0.25 0.01 <0.001 0.32 0.01 <0.001
Minimum temperature 0.65 0.01 <0.001 0.59 0.01 <0.001

4.4.4 Bayesian model specification for incidence and slide positivity rate

4.4.4.1 Bayesian model specification for incidence

Two hierarchical Bayesian spatio-temporal Poisson conditional autoregressive (CAR) models for

P. falciparum and P. vivax were fitted separately to smooth monthly malaria incidence at the

district level. The number of cases at time j, (y; ) was assumed to follow a Poisson distribution

with expectation 4; .

225



yy ~ Poisson(ey;);  uy = E(4)

Yip—A
Pr(Y =yi)=/qb e' ; A>0, y,=012.....
Yi

The parameter was transformed such that:
A=logu ~ N(Iog a+logb, a‘l)
for largea log gamma ~ Gaussian. The projected denominator population varied by year based on

the population growth rate, but not by month. The linear predictor was modelled additively as
log 14, =10g(E; )+ & + (1) + f, (geo) + f[zﬁkzk(mj + (&)
1

with « as the intercept and E; is the expected number of cases adjusted for utilisation and rate of

reporting. The likelihood given n i.i.d samples can be written as

a u™expl-nul

o f[em{—%yi(logﬂi ~log yi)z}

The posterior distribution was based on approximating loggamma distribution is evaluated as
1
Pla,.flY,) a exp{—E (e + px —log yi)z}

The additional f (-) terms in the linear predictor were used to relax the linear assumptions. For

instance, a seasonal (time) term was included with length 36 months

( f (t) ~ LogGamma(1,0.0005) ). Nonlinear smoothing functions of first order random walk
priors were used for the covariate effects with successive increments AX ~ N(0,1/ 7) with

7 being the precision parameter (Fahrmeir and Kneib, 2009). The unstructured random effects at
facility, district and province level were assumed to be independently distributed (ii.d) with zero
mean and large variance (10,000). To capture the spatial effect f; (geo), a conditional

autoregressive prior was used (Besag et al., 1991) with spatial dependence specified using an
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adjacency matrix W. The weights were assigned as W = 1 for two neighbouring regions or W=0
otherwise. Residuals were examined to assess for autocorrelation.
The model was assessed using a predictive posterior distribution of the missing data points i.e.

imputed as NA. For estimation of an unknown data point Y, given other data, the predictive

posterior density P(y,|y_,) is given by:
Py, 1Y,)=[7(y16,y ) 701y ,)d6,

This method was proposed by (Gneiting and Raftery, 2007) and can be used to obtain model
scoring rules that can be used to assess model calibration (i.e. consistency between estimates and
observations). The implemented scoring rules were the standard error score (SES), the ranked

probabilities score (RPS) and the Dawid-Sebastiani score (DSS) computed as:

SES(P.y)=(y — #p)°
o5 (P, )= foofo )1 (y- 1, )1, )
LOgS(P, y): - |Og[P(Y - yobserved)]

RPS (P, y)= :ZO[P(Y <k)-1y=< k)]z

where P is the predictive posterior distribution with mean [, and standard deviationd, and Y is
the observed count (Gneiting and Raftery, 2007). Note that the SES is analogous to mean square

error (y—u)2 with main difference being reference to the predictive posterior distribution. Thus,

SES varies depending on the local mean while the other scores (e.g the RPS) are dependent on
the whole predictive posterior distribution. The DSS is an alternative measure of predictive
model choice criterion (Gelfand and Ghosh, 1998).
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Pearson correlation was used to compare the predicted values to the observed and scatter plots
produced for visual display. The correlation was based on 26 facilities selected randomly in
Eritrea and residuals based on this hold-out set were checked for spatial and temporal
autocorrelation. The leave-one-out cross validation score using the conditional predictive
ordinate (CPO) was also evaluated.

4.4.4.2 Bayesian model specification for slide positivity rate

The model specification of slide positivity rate was similar to the one in chapter 3 section 3.5.4.A

binomial outcome was fitted for P. falciparum and P. vivax with 'y, | p, ~ Binomial (n, , p,) With
shape dependent on 7’ (1—z)"” for
(y10)=( ] Jra-or

with a logit link function p(z;) ={exp(z7) /1+exp(77)}. The hierarchical model was
decomposed into the observations with measurement error term,
Z(s;,t) =n(s,,t)+e&(s;,t) i=1.n t=1..T

where (s, t)represented the underlying spatio-temporal biological process with an error term

(s, ,t)i'i~'d N(0,52 1,) with prior o ~ 1G(1,0.0005) . A seasonal term was included in the model
through the first order auto-regressive process pY (s,,t,,) for | p|<1 (Sahu and Bakar, 2012).
The linear predictor was modelled as:

n(s;,t) = pY,, + X(s;,t) f+W(s;,t)
where x(s;,t) ={x(s;,t)......x, (s;,t)}" are covariates with g coefficients. The first term of pY(s;.t,,)

is derived from stationary distribution N(0, 2 /(1— 2 )). The term w(s, ,t) was modelled as a
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separable covariance function using Kronecker product (Q =Q, ®Q,) . Prior range for matérn

function was set to 1/5 of the spatial domain. Nonlinear smoothing functions of first order
random walk priors were used for the covariate effects similar to incidence analysis. The

posterior can be written as:

n(si. )| B.7. ¢, o, ~ GMRF (11,%)
The Gaussian Markov Random Field (GMRF) defined using Stochastic Partial Differential
Equations (SPDE) evaluated using finite element methods (Lindgren et al., 2011). The region of
study was expanded by 100 km at the border to reduce edge effects associated with Neumann

boundaries in SPDE (Cameletti et al., 2012, Lindgren, 2013).

For the geostatistical model, sensitivity analyses were performed using the root mean square
error (RMSE), the mean error and the absolute mean error (MAE) that summarised the closeness
of validation set data to observed values. The nominal model coverage of 95% credible intervals
and spatial structure of residuals was also assessed based on the validation set. MAE and the

R.M.S.E are given by:

MAE :%Zn:‘z*(x)—Z(x)‘

RMSE = \/[%Zn:(z*(x)—Z(x))zj

4.4.5 Results
4.4.5.1 Bayesian CAR model for incidence results and validation
The mean error based on a validation set (n=120) in 10 districts selected randomly was 2.1 cases

per 1000 population for the P. falciparum compared to 1.8 cases per 1000 population for P. vivax
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which suggests a tendency to over-estimate by 1.9 case per 1000 population. Figure 4.8 shows
scatter plots of crude and the estimated incidence per 1000 population. The Pearson correlation
between the crude and the predicted incidence was 0.77 for P. falciparum and 0.68 for P. vivax.
Residual analysis indicated that incorporation of environmental and spatial effects was useful in
explaining most of spatial variation in the model with no amount of spatial or temporal
autocorrelation evident in the residuals (Figure 4.9). The variance of the spatial random effect

was reduced to 27.0% for P. falciparum and 23.3% for P. vivax.

(a) (b)

Predicted Pfincidence per 1,000 population
15
o
Predicted Pv incidence per 1,000 population

o O

T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 0
Crude Pfincidence per 1,000 population

0 1 2 3 4 5

Crude Pvincidence per 1,000 population

Figure 4.8: Comparison of observed and estimated incidence
Scatter plot of the observed crude incidence compared to the estimated incidence from the spatio-temporal Bayesian
Poisson model for (a) P. falciparum and (b) P. vivax.

Table 4.7 shows internal model validation statics. Cross-validation was conducted based on CPO
and none of the data points reported a CPO value of 1 (fail). No data values for the fitted model
failed the CPO test which is likely to happen if the approximation of the latent Gaussian Field
(GF) is less accurate (Czado et al., 2009). The standard error score for the mean component for
P. vivax model was smaller than that for P. falciparum. There were minimal difference in the
DSS used to assess model calibration, perhaps since same model was applied to the two parasites

with similar distribution in space and time. The same applied to the log-score and the ranked
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probability score (RPS) which can be used for model comparison. A smaller log-score indicate a

better model fit or calibration.
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Figure 4.9: Semi-variogram plots of residuals for incidence analysis in Eritrea

Semi-variogram showing residual autocorrelation in (a) the spatial and (b) the temporal domain for P. falciparum.
The plots for P. vivax were very similar to the P. falciparum plots and not diplayed. The plots suggest insignificant
autocorrelation was left after running the model. The y-axis is the semi variance while the x-axis is distance in
degree between pairs. The residuals were extracted for validation set data.

Table 4.7: Model validation results for incidence analysis.

The implemented scoring rules squared error score (SES), mean logarithmic sore (logS), the ranked probability
score (RPS) and the Dawid-Sebastiani score (DSS) for P. falciparum and P. vivax malaria incidence. The scores are
obtained by averaging ( #i,-) the scores of one-step-ahead predictions in six regions (n=60) as well as calculated

based on the seasonal component

Model Component SES DSS Log score RPS
P. falciparum A 1.36 0.66 1.16 0.00
T 1.22 0.60 1.12 0.01
P. vivax Hij 1.18 0.56 1.07 0.52
T 1.99 0.58 1.10 0.56

The DIC for the P. falciparum model was 13372.54 and for the P. vivax model was 11945.12,

and both had a similar number of effective parameters (249.46 and 244.27, respectively) (Table
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4.8). The posterior summaries of the parameters representing the fixed effects and random

effects for P. falciparum and P. vivax are listed in Table 4.8.

Table 4.8: Posterior estimates of the parameters of Bayesian spatio-temporal Poisson model with 95%
credible interval

Plasmodium falciparum Mean (95%

Variable Crl) Plasmodium vivax Mean 95% Crl
District random effect 7.12 (5.53 - 8.58) 7.17 (5.38 - 8.62)
Province random effect 2.35(1.15-4.16) 2.37 (1.36 - 3.85)
Facility random effect 1.05 (0.82 - 1.29) 0.90 (0.66 - 1.12)
Spatial CAR effect 0.96 (0.04 - 1.79) 1.02 (0.24 - 1.84)
Seasonal component 0.12 (0.02 - 0.36) 0.07 (0.01 - 0.20)
Maximum temperature 9.36 (7.80 - 10.83) 9.42 (7.69 - 10.89)
Minimum temperature 9.46 (7.81 - 10.89) 9.40 (7.78 - 10.86)
Precipitation 9.42 (7.83 - 10.87) 9.50 (7.82 - 10.92)
Variance of CAR effect 0.27 0.23

DIC 13372.54 11945.12

Pp 249.26 244.27

SES 0.53 0.65

Crl: Bayesian credible interval, CAR: Conditional autoregressive, DIC: Deviance Information Criterion, Pp: Effective parameters

4.4.5.1 The seasonal trends in covariates based on the fitted nonlinear functions

Covariates were associated positively with estimated incidence. The coefficients of temperature
and precipitation were very similar compared to the coefficients between the random effects at
province, district and facility level. P. falciparum constituted approximately 56.6% of the
estimated malaria burden for the three years while 43.4% were P. vivax. Figure 4.10 and Figure
4.11 shows the non-linear effects on temperature, seasonality and rainfall when used in
modelling incidence of P. falciparum and P. vivax respectively. Similar trends were observed in
the slide positivity analysis using the same specification. There was a strong seasonal effect
which peaked in October for P. falciparum and P. vivax. High temperature (> 40°C) and rainfall
(>300mm) had a negative effect on incidence which was more evident from the P. vivax model
compared to P. falciparum. For P. falciparum the effect of rainfall seemed to plateau at levels
exceeding 200mm. The non linear pattern is not surprising given that high temperature is
associated with mosquito mortality and a high amount of rainfall may lead to larvae wash out
(Paaijmans et al., 2007, Guerra et al., 2008, Guerra et al., 2010).
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Figure 4.10: Non-linear effect of covariates on P. falciparum
The effect of temperature, seasonality and rainfall on P. falciparum incidence (solid center line) with 95% credible
interval (shaded area and bars on the seasonal plot).
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Figure 4.11: Non-linear effect of covariates on P. vivax
The effect of temperature, seasonality and rainfall on P. vivax (solid center line) with 95% credible interval (shaded
area and bars on the seasonal plot).

4.4.5.2 The incidence of P. falciparum and P. vivax in Eritrea

Figure 4.12 (page 234) and Figure 4.13 (Page 235) shows the monthly maps of mean incidence
of P. falciparum and P. vivax for the study period. P. falciparum constituted approximately
56.6% of the estimated malaria burden for the three years while 43.4% were P. vivax. There was
a strong seasonal effect in the modelled incidence of P. falciparum and P. vivax. For both
parasites, incidence peaked in September and October. Gash Barka region showed the most risk
on average followed by Debub, while the Southern Red Sea region had the lowest estimated risk.

The largest number of cases of P. falciparum was 6.1 cases per 1000 population in October 2012
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compared to 5.6 cases per 1000 population for P. vivax in 2010. The correlation between the

mean monthly incidence of P. falciparum and P. vivax was 0.69 (Pearson correlation).
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Figure 4.12: Spatio-temporal maps of incidence of P. falciparum per 1000 population in Eritrea

Mean monthly maps of monthly incidence of P. falciparum per 1000 population in Eritrea using a Bayesian spatio-
temporal Poisson model. Districts with low risk are classified as < 5 cases per 1000 population) and moderate risk
with > 5 cases per 1000 population.

234



January . February .

e
ey
a\ 1w

L
e,
N
N

Predicted incidence per
1000 population

September | October

e
1

003515

Figure 4.13: Spatio-temporal maps of incidence of P. vivax per 1000 population in Eritrea

Mean monthly maps of incidence of P. vivax per 1000 population in Eritrea using a Bayesian spatio-temporal
Poisson model. P. vivax risk was lower compared to P. falciparum although peaked at a similar time to P.
falciparum. Districts with low risk are classified as < 5 cases per 1000 population) and moderate risk with > 5 cases
per 1000 population

Figure 4.14 shows the annualized maps of P. falciparum incidence per 1000 population while
Figure 4.13 (b) represents the incidence of P. vivax over the three years (2010-2012). The mean
annual estimates for P. falciparum were 3.60 (95% Crl 2.27 - 5.44) cases per 1000 population in
2010, 2.99 (1.90 - 4.49) cases per 1000 population in 2011 and 3.43 (2.17 - 5.16) cases per 1000
population in 2012. For P. vivax the annual mean incidence was 2.39 (1.44 - 3.72) cases per
1000 population in 2010, 2.77 (1.67 - 4.32) cases per 1000 population in 2011 and 2.53 (1.53 -

3.93) cases per 1000 population in 2012.
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Figure 4.14: Annualised incidence of P. falciparum and P. vivax per 1000 population

Maps of incidence of by year (2012 — 2013) for (a) for P. falciparum and (b) for P. vivax. Overall, most risk was in
Garsh Barka and Debub. The annual mean incidence of P. vivax did not exceed 5 cases per 1000 population in any
Sub-Zoba.

Figure 4.15 (below, Page 236) show a comparison between the modelled incidence per 1000
population with the mean parasite prevalence modelled at community level (Noor et al., 2014).

There was a positive correlation between incidence and parasite rate (Pearson correlation, 0.7).
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Figure 4.15: Comparison of incidence with community parasite prevalence
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Scatter plot of P. falciparum parasite prevalence (rate) at community level with the modelled incidence per 1000
population (Pearson correlation =0.7)

4.4.5.3 The modelled slide positivity rates results

Table 4.9 lists the Mean Absolute Error (MAE) and the RMSE. The MAE for P. falciparum and
for P. vivax was 0.59 and 0.50, respectively. Pearson correlation coefficient was greater than 0.6
in both modelling framework. The 95% nominal coverage for P. falciparum was 96.3% and
98.7% for P. vivax showing a tendency to slightly over predict at 95%. The spatial dependence
as define by the variogram range parameter was also different for both parasites, approximately
10 km for P. falciparum. Only minimum spatial structure was left in the residuals after model fit

(Figure 4.16).

Table 4.9: Model of slide positivity rate in Eritrea.
Bayesian model comparison based on separable covariance function (Product) (M1) and no-separable form
(Product-sum) (M2) for P. falciparum (Pf) and P. vivax (Pv).

Probability of
prediction interval  Model Range in

Model DIC Pp! MAE R.MSE (9%)? km [95% Crl] Correlation
Pf 6892.50 122.56 0.59 0.95 96.33 9.95[4.27 - 18.23] 0.62
Pv 6564.02 92.47 0.50 0.79 98.68 8.42 [3.58 - 13.95] 0.64

1. Pp represent the effective number of parameters that represent model complexity
2. The nominal probability of prediction is 95%
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Figure 4.16: Semi-variogram of residuals of slide positivity rate

237



Semivariogram plots of the residuals in spatial domain for P. falciparum (a) and P. vivax (b) based on the
predictions on the hold out set. The x-axis shows distance in degrees latitude and longitude (decimal degrees) whiles
the y-axis shows semi-variance.

Table 4.10 shows the posterior distributions of the fixed effects along with Bayesian credible
intervals and nominal range. None of the fixed effects covariates was a significant predictor of P.
falciparum at 95%. For P. vivax, only EVI was significant marginally at 95% credible interval.

All other random effects and the intercept were significant.

Table 4.10: Posterior distribution of parameters of slide positivity rate.
Distribution of posterior estimates (mean, standard deviation and quantiles) of the fixed components and random
effects

Model Parameter Mean sp! 5% 50% 95%
P. falciparum Intercept -1.13 0.3 -1.62 -1.12 -0.67
Minimum temperature -0.1 0.11 -0.28 -0.1 0.08
Maximum temperature -0.07 0.14 -0.31 -0.07 0.16
Precipitation 0.03 0.03 -0.03 0.03 0.08
Enhanced vegetation Index 0.02 0.04 -0.05 0.02 0.09
Marginal variance (6,2 5.25 441 1.18 3.94 13.7
Model Range (¢) 9.95 4.38 4.27 9.18 18.23
P. vivax Intercept -1.29 0.20 -1.60 -1.29 -0.99
Minimum temperature -0.18 0.14 -0.42 -0.18 0.05
Maximum temperature 0.03 0.11 -0.15 0.03 0.22
Precipitation 0.01 0.03 -0.04 0.01 0.07
Enhanced vegetation Index -0.06 0.04 -0.13 -0.06 -0.00
Marginal variance (o,,2) 4.23 2.65 1.52 3.49 9.39
Model Range (¢) 8.42 3.19 3.58 8.21 13.95

1. SD: Standard deviation

Figure 4.17 shows predicted map of slide positivity rate for 2012 at 1 x 1 km weighted by the
predicted probability of health facility use for fever treatment. Panel A represents: the
continuous; binned (six classes <1.0; 1 -< 5.0; 5.0 -< 10.0; 10.0 -< 15.0; 15 -< 20.0; and >20.0);
and the standard deviation maps of P. falciparum while paned B is for P. vivax. The mean slide
positivity by region is shown in Table 4.11. For P. falciparum mean slide positivity was 3.8%
(range 12.8%) while for P. vivax the mean was 3.3% (range 25.5 %). Highest positivity rates
were predicted in Maekel, Garsh Barka and Debub. Overall slide positivity rate were less than

5% in most parts of the country and less than 1% in some areas of Anseba, Northern Red Sea and
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the Southern Red Sea. The highest uncertainties were in regions with no facilities and with low

reporting rates.

Table 4.11: Slide positivity rate by region in Eritrea.

Summary (in percentage) of the mean predicted slide positivity rate (SPR) for P. falciparum and P. vivax by region

P. falciparum P. vivax
Region Mean SD Minimum Maximum Range Mean SD Minimum Maximum Range
Anseba 22 20 0.1 10.4 10.3 16 17 0.0 10.8 10.7
Debub 49 23 0.5 16.1 15.6 50 32 0.7 29.8 29.1
Gash Barka 50 26 0.6 23.2 22.7 31 34 0.4 81.1 80.7
Maekel 6.0 31 2.8 14.0 11.3 68 1.9 2.0 14.4 12.4
Northern Red Sea 2.1 1.4 0.1 11.0 10.9 17 12 0.1 14.8 14.7
SouthernRed Sea 25 14 0.3 6.3 6.0 1.7 10 0.2 5.6 5.4
Average 38 21 0.7 135 12.8 33 21 0.6 26.1 25.5

The comparison between the modelled slide positivity rates and community-level parasite

prevalence is shown in Figure 4.18. In general there was a positive correlation similar to

incidence comparison with community parasite prevalence (Pearson correlation =0.6).
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Figure 4.17: Posterior mean predictions of slide positivity rate in Eritrea
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Bayesian Posterior mean predictions at 1km by 1 km of slide positivity rate (SPR) map of (a) P. falciparum and (b)
P. vivax. The first map is continuous and second binned in five classes. The last map is the standard deviation
showing some artefacts especially for areas with no or sparse data points.
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Figure 4.18: Comparison of predicted slide positivity rate and community-level parasite prevalence
Scatter plot of P. falciparum parasite prevalence (rate) at community level with the mean slide positivity rate at
district level (Pearson correlation = 0.6).

4.4.6 Assessing the population at risk in Eritrea using incidence
The burden of both parasites in general population was assessed by comparing calculation

number of cases in a Zoba based on estimated incidence.
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Table 4.12 and Table 4.13 shows the estimated clinical burden for P. falciparum and P. vivax. The
most burdened region was Gash Barka where just over 10,000 cases in the overall population
were estimated in 2010 and 2012 for P. falciparum compared to 6,866 and 7,764 estimated for P.
vivax, respectively. The region with the second highest burden was Debub. The Southern Red
Sea had the smallest number of estimated malaria cases (less than 100 throughout the three

years).
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Table 4.12: Estimated clinical burden of P. falciparum based on incidence.

Summary of clinical burden of P. falciparum in Eritrea by year based on the mean incidence per 1000 population.

Crud
Estimated e Pf Estimate Crude Estimate
Estimated Crude Pf  Pfincidence 2010 Pf Estimated incide Pf incidence d 2011 Pf  Estimated Pf Pf incidence d 2012 Pf
Population incidence 2010 Mean clinical Population nce 2011 Mean clinical Populatio  incidenc 2012 Mean clinical
Region 2010 2010 (95% Crl) burden 2011 2011 (95% Crl) burden n 2012 e 2012 (95% Crl) burden
3.7 (2.29 - 354 (2.19 -
Anseba 689,385 9.1 5.63) 2,551 711,802 6.9 3.11(1.93-4.7) 2,214 734,948 115 5.36) 2,602
5.19 (3.44 - 4.32(2.88 - 4.94 (3.29 -
Debub 1,258,464 20.1 7.52) 6,531 1,299,386 7.7 6.22) 5,613 1,341,639 12.6 7.14) 6,628
8.46 (5.63 - 6.93 (4.66 - 8.02 (5.36 -
Gash Barka 1,216,679 79.9 12.39) 10,293 1,256,242 275 10.04) 8,706 1,297,092 59.2 11.7) 10,403
2.45 (1.4 - 2.08 (1.18 - 2.35(1.34 -
Maekel 467,642 2.0 3.95) 1,146 482,849 2.0 3.32) 1,004 498,550 2.2 3.76) 1,172
Northern Red 1.33 (0.7 - 1.28 (0.67 -
Sea 1,359,812 1.8 2.23) 1,809 1,404,030 1.7 1.14(0.6 - 1.9) 1,601 1,449,685 1.3 2.14) 1,856
Southern Red 0.45 (0.16 - 0.38 (0.14 - 0.43 (0.15 -
Sea 205,609 0.3 0.93) 93 212,295 0.8 0.79) 81 219,198 0.3 0.89) 94
3.60 (2.27 - 2.99 (1.90 - 3.43(2.17 -
Total 5,197,591 18.9 5.44) 18,711 5,366,603 7.8 4.49) 16,046 5,541,112 14.5 5.16) 19,006
Crl: Bayesian credible interval, Pf: Plasmodium falciparum
Table 4.13: Estimated clinical burden of P. vivax based on incidence.
Summary of clinical burden of P. vivax in Eritrea by year based on the mean incidence per 1000 population.
Crude Crude Crude
Estimated Pv Pv incidence Estimate  Estimated Pv Pv incidence Estimate  Estimated Pv Pv incidence Estimate
Populatio  incidenc 2010 Mean d 2010 Pv  Populatio incidenc 2011 Mean d2011Pv  Populatio incidenc 2012 Mean d 2012 Pv
Region n 2010 e 2010 (95% Crl) burden n 2011 e 2011 (95% Crl) burden n 2012 e 2012 (95% Crl) burden
2.26 (1.32 - 2.39(1.39 -
Anseba 689,385 3.7 3.59) 1,558 711,802 5.2 2.6(1.51-4.13) 1,851 734,948 5.0 3.78) 1,757
3.39(2.17 - 3.92 (2.51 -
Debub 1,258,464 6.5 5.01) 4,266 1,299,386 7.8 5.81) 5,094 1,341,639 6.6 3.58 (2.3-5.29) 4,803
Gash Barka 1,216,679 8.7 5.64 (3.66 - 8.4) 6,862 1,256,242 16.0 6.6 (4.27 - 9.88) 8,291 1,297,092 17.7 5.99 (3.89-8.9) 7,770
1.85(0.98 - 212 (1.13- 1.95(1.04 -
Maekel 467,642 1.0 3.11) 865 482,849 1.9 3.58) 1,024 498,550 2.0 3.27) 972
Northern Red 0.89 (0.43 - 1.01 (0.49 - 0.93 (0.45 -
Sea 1,359,812 0.8 1.57) 1,210 1,404,030 0.9 1.79) 1,418 1,449,685 1.3 1.65) 1,348
Southern Red 0.31(0.11 - 0.36 (0.12 -
Sea 205,609 0.0 0.66) 64 212,295 0.0 0.75) 76 219,198 0.3 0.33(0.11-0.7) 72
2.39 (1.44 - 2.77 (1.67 - 2.53 (153 -
Total 5,197,591 34 3.72) 12,422 5,366,603 5.3 4.32) 14,865 5,541,112 55 3.93) 14,019

Crl: Bayesian credible interval; Pv: Plasmodium vivax
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4.5 Discussion on incidence and slide positivity rate in Eritrea

The objective of this study was to estimate the burden of P. falciparum and P. vivax in Eritrea
based on the HMIS data reported between 2010 and 2012. The results from this study support
current efforts to move the control programme to pre-elimination given the overall low incidence
for P. falciparum (3.0 cases per 1000 population) and 2.3 cases per 1000 population for P. vivax.
P. falciparum constituted approximately 56.6% of the total estimated case burden on average for
the three year period. Several other findings emerge from this study. First, there was a clear
seasonal pattern of transmission with a peak in incidence in September and October. There was
little evidence in support of a second malaria peak in January or for the eastern districts in Debub
and Northern Red Sea as suggested by Ceccato et al. (2007). Although incidence was highest in
Gash Barka and in Debub, the slide positivity rates were just higher in Maekel. Low incidence,
similar to the slide positivity rate, was in the coastal regions bordering the Red Sea in western
parts of the country.

4.5.1 Implication for malaria control and elimination in Eritrea

The spatial distribution of incidence and the slide positivity rate of P. falciparum reflects broadly
the recent maps of prevalence from community datasets with higher rates in the Gash Barka and
Debub regions while the North Red Sea and Southern Red Sea exhibited low prevalence (Noor et
al., 2014). P. falciparum remains the main parasite and constitutes approximately 56% of the
malaria burden in Eritrea. In other low transmission countries outside Sub-Saharan Africa
where the two parasites are endemic, such as Latin America and south and south east Asia, P.
vivax dominates (Gething et al., 2012) due to its biological characteristics that include a dormant
liver stage (hypnozoite) that usually causes clinical relapses (Mueller et al., 2009, White, 2011).

The challenge for NMCP in Eritrea as the burden of malaria reduces towards the <1 case per
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1000 population threshold is likely to be the management of P. vivax infections. It remains a
challenge to detect vivax malaria at the liver stage which may form a reservoir of infections and
there is a likelihood of missing some infections when routine diagnostics such as microscopy and
RDTs are used (Mueller et al., 2009). It is also not straightforward to prescribe primaquine, the
recommended drug for clearing liver-stage infections, at higher doses due to a 4% glucose-6-
phosphate dehydrogenase deficiency (G6PDd) prevalence in Eritrea (Howes et al., 2012,
Domingo et al., 2013) with lack of routine individual testing for this blood disorder at health
facility level. Additional challenges exist for vulnerable groups such as pregnant women.
Appropriate control of P. vivax is likely to be prevention of mosquito inoculations in addition to
resolving the relapsing infections. Low doses of primaquine have been recommended for P.
falciparum in low transmission areas (White et al., 2012) with trials starting to emerge on the

performance of this drug (Steketee and ter Kuile, 2014).

Although there is a suggested lower impact of ITNs on P. vivax when compared to P. falciparum
(Bockarie and Dagoro, 2006), ITNs in general had the greatest impact on reducing clinical
malaria episodes in Eritrea for both parasites by reducing human — mosquito contact, in addition
to other control measures such as larvae source management, change in antimalarial drug policy,
and increasing awareness on malaria through public campaigns advocacy (East Africa Roll Back
Malaria Network (EARN), 2013). ITNs are delivered generally through health facilities in
Eritrea in addition to other mass campaigns. Previous findings suggest access to health facilities
plays a role in ownership of ITNs (Macintyre et al., 2006). There was one Long-Lasting
Insecticidal Net (LLIN) for every 0.5 individuals in a household from the 2012 MIS (n=1 818)

which is lower that the WHO recommendation of one LLIN per 1.8 people (World Health
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Organization, 2012b). ITN use in children under the age of five years was high (60%), but use in
all age-cohorts was somewhat lower at 55%. From the analysis of fever treatment patterns based
on the MIS, utilisation declined significantly after 180 minutes, and at an increasing travel times
from the health facility. The estimated case loads for the three years suggest a need to
consolidate gains in the last 10 years and identify endemic districts to guide interventions to
achieve pre-elimination. Interventions may include, but not limited to: raising awareness on the
use of ITNs at appropriate time of the year lagged with seasonal trends observed here,
conducting bed-net re-treatment, and selective targeting of IRS lagged with malaria seasonality.
The GFTAM remains the main source of funding for malaria control and supports the universal
coverage efforts. Increasing coverage in key sub-zobas and improving net use during the
transmission season may be combined with mosquito net retreatment (for ITNs and LLINs older
than 3 years). Figure 2(a) and Figure 2(b) suggest where and when this could be most

appropriate.

Previous studies also suggest that the seasonal peaks identified in Eritrea resemble those
observed in the neighbouring countries (Paulander et al., 2009, van den Bogaart et al., 2013). In
addition, the recent malaria programme performance review suggested the need for Eritrea to
implement cross-border collaboration with neighbouring countries (East Africa Roll Back
Malaria Network (EARN), 2013). The clear identification of high malaria incidence in Debub
and Garsh Barka supports these initiatives with Djibouti, Ethiopia and Sudan since imported
infection may pose a threat to the long-term goal of elimination (Le Menach et al., 2011). The
low malaria incidence overall supports current strategies for pre-elimination starting potentially

with the Southern Red Sea bordering Djibouti.

245



4.5.2 Slide positivity rates for 2012 and health facility utilisation

The mean slide positivity rate in 2012 was less than 5% for both P. falciparum and P. vivax. A
comparison of the SPR at district level with parasite prevalence modelled from community level
data showed a positive correlation. Less than 5% is a threshold for pre-elimination (World
Health Organization, 2007a). Slide positivity reflects rates amongst population using health
facilities and the correlation will be higher in areas where access and utilisation (of the public
sector) is high. In Eritrea, approximately 80% of the population was estimated to be within a
public health facility catchment and 61% of estimated febrile cases were likely to present at these
facilities for treatment. Elsewhere, in China and Uganda, slide positivity rate was shown to be a
strong covariate in estimation of incidence (Jensen et al., 2009, Bi et al., 2012) although the
results do not distinguish between the indigenous infection within the district and the imported

cases.

The relationship between slide positivity rate and incidence may not be linear as suggested by
Jensen et al. (2009). This because the denominator, number examined, for slide positivity is
more sensitive compared to incidence measured in the overall population. Changes in incidence
may be more informative compared to relative changes in slide positivity rates. Nonetheless, the

threshold levels estimated in this study provide thresholds for pre-elimination in Eritrea.

4.5.3 Modelling gains for malaria incidence and slide positivity analysis in Eritrea
The analysis here introduced nonlinear effects in specifying priors for the covariates rather than

an assumption of fixed linear priors. Such a specification may have benefitted the extraction of
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seasonal trends. In terms of crude incidence comparison, there was a wider difference between
the crude estimates compared to smooth estimates by year for P. falciparum (Table 4.12). For P.
vivax the difference were less (Table 4.13). First, the covariates were important in modelling
incidence in data points with missing data (Table 4.8 which also provides the 95% confidence
intervals). Thus, the spatial and temporal smoothing as discussed in Namibia and Afghanistan

produce more reliable estimates compared to crude estimates.

There was a strong nonlinear effect in precipitation and temperature trends (Figure 4.10 and
Figure 4.11) which suggest that the assumptions of linearity in Namibia or Afghanistan case
studies may not be true. Previous research has already illustrated the important of these
covariates in driving transmission (Noor et al., 2014, Weiss et al., 2015). However, the ‘delayed
or lagged effect’ of these covariates on transmission is not well established and may not apply to
all the settings. Some studies have shown a time-series decomposition of these climatic variables
may provide useful insights into disease anomalies (Wardrop et al., 2013) and the result here
suggest more research is required to further understand the role of covariates as drivers of
malaria transmission. Since the effective threshold for temperature and rainfall on malaria
transmission is well established, (Paaijmans et al., 2007, Guerra et al., 2008, Guerra et al., 2010)
the non-linear trends maybe useful in prospective modelling of epidemics in low malaria

transmission.

4.5.4 Limitations
The analysis presented here was limited to the three years of available time-series data and can

potentially be extended by inclusion of longer space-time data sets. However, the data used here
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were abundant spatially and within the temporal extent studied and allowed us to reveal a clear
seasonal pattern that is likely to be useful in directing interventions. Secondly, there could be
biases introduced due to the type of diagnosis at the facility level by using RDT or microscopy
with varying sensitivities (WHO-FIND, 2009). This relates to a suggested higher slide positivity
rate when using RDTs in low transmission settings, but also to concern surrounding the quality
of microscopy in routine data (Hopkins et al., 2013). However, health facility data used in this
analysis represent parasite examination from febrile cases and, therefore, the likelihood of
detecting infection is higher significantly. In addition, cases presenting at the health facility are
drawn from multiple villages within the health facility catchment area. This increases geographic
representativeness of estimated malaria burden compared to community-based cluster surveys
where estimates are usually based on a single cluster sample. The MIS was used to adjust for
fever burden seen in the public sector. In general, we assumed a single fever episode, and
treatment-seeking at other times of year followed the pattern in the MIS implementation months

of September to October.

4.6 Conclusion

In conclusion, we demonstrated the utility of routine HMIS data for malaria burden estimation in
a low transmission setting and provide seasonal profile for P. falciparum and P. vivax in Eritrea.
These maps are important as the NMCP aims for pre-elimination. HMIS has advantages of data
being collected in an ongoing manner and can provide reliable assessment of monthly variability
of symptomatic cases presenting at health facilities. The method used here demonstrates how this
data can be used for estimation; quantify uncertainty around estimations while at same time

adjusting for facility utilisation. The results from this analysis contribute to the characterization
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and understanding of the epidemiology of P. falciparum and P. vivax malaria in Eritrea. The
modelled distribution of incidence presented here suggests that a concerted effort is required in
Debub and Garsh Barka in addition to implementing cross-border collaboration with Ethiopia
and Sudan. The spatial distributions of P. vivax revealed here through Bayesian statistical
modelling will present a challenge for pre-elimination and elimination especially when it comes
to clearing the reservoir infections at the liver stage. Lastly, routine HMIS can be used to identify
areas where active case detection can be targeted. However, the interaction of both species in co-
distributed sub-zobas remains unexplored and future research should focus on this in addition to

screening asymptomatic infections at community level.
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CHAPTER 5: Discussion and Conclusion

Discussion on advances in mapping malaria in low transmission
using HMIS
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5.1 Summary

In the last decade, there has been a substantial decline in malaria burden due to increased
coverage of interventions. However, variation in the burden of disease exists nationally and at a
sub-national level. A recent publication showed that 57% of the population in Africa live in areas
with stable transmission (Noor et al., 2014). In some countries, transmission has declined to a
level requiring a re-orientation of the malaria programme from that focusing on universal
insecticide-treated bednet coverage and control to geographic targeting of interventions. There is
also renewed optimism for malaria elimination following the 2008 global call supported by the
World Health Organization (World health Organizastion, 2008, Mendis et al., 2009) and 36
countries are now aiming for elimination (Global Health Group, 2011). These include: Nine
countries in Latin America and the Caribbean (Argentina, Belize, Costa Rica, Dominican
Republic, El Salvador, Mexico, Nicaragua, Panama, Paraguay); 11 countries in the Asia-Pacific
region (Bhutan, China, Democratic People’s Republic of Korea, Malaysia, Philippines, Republic
of Korea, Solomon Islands, Sri Lanka, Thailand, Vanuatu, Vietnam); northern Africa (Algeria),
Europe (Azerbaijan, Georgia, Turkey), the Middle East (Iran, Iraq, Saudi Arabia), central Asia
(Kyrgyzstan, Tajikistan, Uzbekistan); and six countries in SSA (Namibia, Botswana, South

Africa and Swaziland, Cape Verde; and Sdo Tomé and Principe).

This thesis has focused on modelling malaria incidence in low malaria transmission countries in
Namibia, Afghanistan and Eritrea. These very low and seasonal transmission settings in general
pose several challenges to malaria control and elimination. These include: the detection and
treatment of symptomatic and asymptomatic infections using suitable tools; developing fine

spatial resolution malaria distribution maps to guide malaria control; measuring transmission
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patterns at very low parasite density; and dealing with the challenge posed by population
movement. In addition, malaria tends to cluster in hotspots and it is harder to detect the low
parasite density for both symptomatic and asymptomatic infections (Sturrock et al., 2013b).
Here, the focus was on symptomatic infections seen in the public sector. The ability to identify
residual infections (asymptomatic) and quantify the population at risk is also critical for pre-
elimination or elimination. Malaria elimination also requires tackling poverty, improving
infrastructure and strengthening health systems (Smith et al., 2013, World Health Organization,

2014a).

Until recently, HMIS are perceived as less reliable than household surveys (Gething et al., 2006,
RBM-MERG, 2008). Whilst symptomatic infections are captured in routine HMIS, in many
countries, data are spatially and temporally incomplete due to sporadic reporting. Furthermore,
only a proportion of febrile cases are usually seen in the formal health sector (i.e. the ‘iceberg
effect’) (Agyepong and Kangeya-Kayonda, 2004, Goodman et al., 2007) raising questions about
the burden not treated or using the informal sector. This thesis has demonstrated how incomplete
HMIS can be used to estimate malaria burden in low transmission settings when coupled with
accurate population denominators estimated by adjusting for geographical access and utilisation
of healthcare facilities. Moreover, the thesis has contributed to development of novel Bayesian
techniques that can be used to harness HMIS data efficiently (Alegana et al., 2013, Alegana et
al., 2014). The Bayesian approach provides opportunities for dealing with the deficiencies in
HMIS data by smoothing incidence rates in space and time; filling in gaps where no health
reports have been assembled; and adjusting for the rate of facility utilisation since only a

proportion of actual cases present in the public health sector (Cibulskis et al., 2011). The method
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also incorporates ecological or environmental drivers to estimate risk while at same time

quantifying uncertainty associated with disease estimates (Banerjee and Fuentes, 2011).

Asymptomatic infections remain a challenge and many countries are yet to adopt active case
detection (ACD). These reservoirs of infection can be responsible for sustaining transmission
between seasons and cause resurgence if malaria control is withdrawn (Diallo et al., 2012,
Sturrock et al., 2013b). Currently, population sample surveys such as the MIS incorporate
parasitaemia modules. However, these surveys cannot reliably capture all the asymptomatic
infections in their current form. Other drawback of these surveys is the relatively small sample
sizes that do not meet the very large sample size requirement at very low transmission
historically regarded as areas of <3% parasite prevalence (Yekutiel, 1960). In addition, under
low transmission there is a need for a greater temporal frequency to adequately capture the
variability of infection rates through time (either monthly or on an annual basis) (Yekutiel, 1960,
Beier et al., 1999). This is because malaria is highly seasonal in low transmission settings and
driven by the changes in climate at geographically large and small scales. There is also an
immediate challenge of current diagnostic tools. Microscopy and RDT remain the recommended
tools for detecting infections in routine settings due to their availability and low cost (World
Health Organization, 2014c). Although PCR is more sensitive compared to RDT or microscopy,
its use in routine settings remains a challenge (Satoguina et al., 2009). The alternative option of
measuring EIR is not suitable due to difficulties in capturing sufficient number of infected

mosquitoes (Stuckey et al., 2013).
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Estimating and relating the number of malaria cases to the population given time period
(incidence) to estimate the clinical burden of disease is important to the national malaria control
programmes. This is important for resource allocation and provides useful knowledge in carrying
out targeted case detection. Targeted case detection has been demonstrated in Swaziland
(Sturrock et al., 2013a), Zambia (Davis et al., 2011), Sri-Lanka (Rajakaruna et al., 2010) and
Peru (Branch et al., 2005) where reactive case detection identified additional cases in the
population where passive cases had been observed. It is, therefore, essential to outline
methodological advances in mapping HMIS in low malaria transmission settings since HMIS
remains the foundation for gathering evidence, tracking progress on malaria control and
identifying areas for rapid response. The recent publication of malaria endemicity maps for
Africa (Noor et al., 2014) provides an additional opportunity to compare findings from mapping
incidence using HMIS data to parasite prevalence. This discussion is generalized on the use of

HMIS in low transmission settings in the three case studies.

5.2 Thesis contribution to malaria strategies in low malaria transmission

The thesis focussed on estimating incidence as an alternative measure to the widely used parasite
prevalence. This is because parasite prevalence is less efficient when it comes to low
transmission settings. There is a requirement for large sample sizes to detect the low parasite
densities in low transmission settings and this are logistically challenging and costly to
implement. There is also a need for a greater temporal frequency of parasite prevalence surveys
to adequately capture the variability in infection rates due to seasonal variation (Yekutiel, 1960,
Beier et al., 1999). This is difficult to achieve with point prevalence surveys. The Force of

Infection (FOI) defined as the rate of new infections in the population, such as the sero-
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conversion rate (Bekessy et al., 1976, Charlwood et al., 1998), is an alternative measure in low
malaria transmission settings. FOI, however, requires a follow up with a specific population
group over a certain period of time (Yukich et al., 2012). Further, the Entomological Inoculation
Rate (EIR) is hampered by low numbers of positive-sporozoite mosquitoes in low transmission
settings (Stuckey et al., 2013). Estimating incidence from HMIS using hierarchical Bayesian

spatio-temporal models is therefore an alternative to these approaches.

HMIS data has several advantages, for example, the disease burden (Figure 5.1 below)
estimation at the population level using symptomatic cases (at a health facility) increases the
likelihood of detecting infections. The temporal spread of data collected in an ongoing manner in
HMIS makes it useful in identifying the seasonal patterns. In addition, the spatial
representativeness of symptomatic cases seen in health facility data is improved by modelling the
catchment populations which come from several clusters around the health facility compared to
single cluster prevalence survey. HMIS is also increasingly being used in very low transmission
settings to identify areas to target case detection and interventions (Rajakaruna et al., 2010,
Davis et al., 2011, Sturrock et al., 2013a). This suggests that HMIS may be instrumental in
rolling out ACD and mapping symptomatic infections seen in the public sector is an important

contribution.

The overall objective was to assess expectation (mean) incidence and translate this into cases at
the population level. Looking at expectations made it possible to use Latent Gaussian Models in
R-INLA. Given the nature and completeness of data in Namibia, model set up involved

innovations only at the facility level with a single covariate (EVI) to minimise the statistical

256



problem of over-fitting. In a simplified form vy, (s,t) = + u(s,t) 8 +e(s,t) where p= XJTzl(s,t),Bj

and e(s,t) ~ N(0,7°) as independent distributed parameter with a zero mean and precision
parameter. The latter were assumed to be independently distributed. The e(s,t) parameter was

further specified in a hierarchical sense to include the spatial and temporal terms at constituency
level via the Besag, York and Mollie model (Besag et al., 1991). This modelling approach
addressed several sources of uncertainty in comparison to the crude incidence estimates. First,
the model was applied at facility level and, therefore, the method not only takes into account the
nature of the facility, but also season and environmental factors (at facility level) in adjusting for
under-reporting. Secondly, incidence was smoothed across the facility reports, thereby
addressing the potential impact of model instability resulting from small numbers of reported
cases, apparent in the facility data. Smoothing incidence also reduces the potential impacts of
under-reporting of cases by facilities. Third, incorporating the environmental covariates
explained spatial variation where data were absent in addition to providing information on the
climatic suitability of malaria transmission in highly receptive districts. The approach ‘clevated’
incidence in areas where incidence would be below average and ‘reduced’ incidence in areas
where there would be an overestimation. The innovation of the CAR model improved
smoothing. For example, In Namibia the CAR estimates were closer to overall mean incidence
(smoothing toward the global mean) compared to Afghanistan or Eritrea. This is likely to be a
factor of using 0-1 weights as neighbour matrix during the model set up (Section 2.3.5). This
means that neighbour areas are correlated and treated as independent if not a neighbour of the
region of interest. Other studies have found differences in level of smoothing based on

specification of the neighbourhood matrix (Earnest et al., 2007). In the thesis, the problem was
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mitigated by introducing higher level random effects at regional level in addition to the facility

level effects.

The modelling framework in Afghanistan introduced additional random effects at the province
level by modelling e, (s,t) =7,U,(S,t) + 7,U, (S, t) + 75U, (S,t) where 7,u,(s,t) and 7,u,(s,t)
represented random effects at the district and province levels in addition to the facility random
effect 7,u;(S,t) . Model complexity increased given the extra randomisation but improved the

smoothing at the district level. In other words, smoothing was closer to the province mean rather
than the global mean as seen in the Namibia study. In terms of covariates, both the Namibia and
the Afghanistan model specifications treated this as fixed linear effects. The difference between
the two model specifications to that for Eritrea was the use of nonlinear effect for covariates.
Nonlinear smoothing functions (first order random walk priors) were used to smooth the
seasonal effects and improve temporal estimates of incidence. Therefore, the final hierarchical
model included complexities in terms of random effects (facility, district and province level) as
well as the seasonal component introduced via the covariates. The thesis however, did not
validate how well the optimal model could forecast future incidence estimates due to lack of

data.

Lastly, the thesis quantifying the proportion of population attending the public sector for malaria
treatment based on fever. Novel approaches were used in deriving spatially the public health
facility attendance and subsequently deriving catchment population based on the observed
patterns. It is important to understand extend of public sector use and infrastructure (in terms of

availability, access, quality of services) in countries aiming for elimination.
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Figure 5.1: Burden estimation model.

While using HMIS data to estimate disease burden, it is vital to first define population catchments since only a
proportion of case are observed in formal sector in a well-functioning HMIS. Some of the febrile events may not be
due to malaria, after suspected or parasitological examination. Incidence estimated using the catchment population is
translated to burden estimate at population level.

5.3 Common emerging themes across the three case study countries

5.3.1 Denominator estimation for modelling incidence by country

To measure incidence at a health facility, a reliable denominator of the catchment population
from whom the cases are drawn was required. Secondly, it was also important to recognize that
not all the febrile cases within the catchment area would seek treatment or use the public health
sector. In practice, multiple sectors (formal or informal) are often used and most fevers are likely
to be transient and resolve without treatment (Agyepong and Kangeya-Kayonda, 2004, Goodman
et al., 2007). An analysis of public health sector utilisation was used to derive catchments in the

three case-study countries.

In the three case studies, there were similarities in healthcare attendance for fever treatment with

declining utilisation as travel time increased. The probability of using the closest facility was low
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for the population at a greater distance from a public health facility even when stratified by
facility type (e.g in Afghanistan). Secondly, over 65% of the population was within three hours’
travel time to the nearest health facility in the three settings. When three hours’ travel time was
used to assess population coverage by public healthcare facilities, these translated to coverage
rates of 67% in Namibia, 79% in Eritrea and 85% in Afghanistan. These three hour threshold
was used to delineate the boundaries of the catchment areas. In addition, the probability of fever
treatment within the catchment areas was used to define the number of people by travel to the
health facility and number of fever cases likely to be seen at the facility. Elsewhere in other
health facility utilisation studies, the phenomenon of by-passing the nearest health facility has
been observed (Akin and Hutchinson, 1999), but, this generally was attributed to seeking better
quality of services or more specialised treatment. Some hospital-based studies have shown that
longer travel times have also been associated with shorter time to death (Manongi et al., 2014) or
disease severity (Moisi et al., 2011). Although the available data do not allow for investigation of
the phenomenon of by-passing, the results from the three case studies in Namibia, Afghanistan
and Eritrea generally suggested that the majority of cases travelled shorter distances to the
nearest health facility based on the distance-decay pattern. It is also possible that long travel
times in the three case studies could be associated with the phenomenon of by-passing for better

quality healthcare or for cultural reasons.

5.3.2 Implications for malaria control and elimination based on estimated incidence in the
three case study countries
In terms of modelling incidence, the thesis started with an analysis of the 2009 malaria case data

from public health facilities in Namibia. In Eritrea data were available from the year 2010 to
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2012. The focus in Afghanistan was to track progress towards the national target between 2006
and 2009 and provide estimates of clinical burden of P. falciparum and P. vivax. In Eritrea, a
similar analysis to Afghanistan in terms of prevalence of both P. falciparum and P. vivax was
conducted but also focused on seasonality. The spatio-temporal maps of malaria incidence for P.

falciparum and P. vivax are important in quantifying populations at risk to target interventions.

Although Namibia is currently in pre-elimination, the mean P. falciparum incidence in 2009 was
12.5 (95% Crl 10.4-15.5) per 1000 population which was higher compared to the estimated mean
incidence in Afghanistan (1.2, 95% Crl 0.4-2.9 per 1000 population) or in Eritrea (3.4, 95% Crl
2.2-5.2 per 1000 population). Only Afghanistan had P. vivax as the dominant malaria parasite
with estimated incidence of 5.4 (95% Crl 3.2-9.2) per 1000 population. In Eritrea the incidence
of P. vivax was 2.5 (95%Crl 1.5-3.9) per 1000 population and constituted approximately 43% of
the estimated burden. Recent reports suggest that the three case studies countries are on path in
reducing malaria cases by >75% (Smith Gueye et al., 2014, World Health Organization, 2014d)
and results here support orientation of national programmes to pre-elimination. Estimated
malaria incidence, however, varied at a sub-national level. Elimination programmes should
probably commence with low incidence districts, for example, the southern health districts in
Namibia, the two red sea regions in Eritrea and the provinces bordering Tajikistan for the
elimination of P. falciparum in Afghanistan. Tajikistan is already in elimination with only seven

malaria cases reported in 2013 (World Health Organization, 2014d).

Malaria incidence in the three countries tended to cluster in marginalised populations, for

example, in the border areas. This also suggested that malaria in these regions may be attributed
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to cross border population movement. For Namibia, there was elevated incidence at the border
with Angola and Zambia. In Eritrea incidence was higher in regions that bordered Ethiopia while
for Afghanistan these were in districts close to Pakistan. In these countries, cross-border malaria
may pose a threat to the elimination efforts. Namibia has subsequently started cross border
initiatives with Angola and Zambia. These include the Trans-Kunene Malaria Initiative (TKMI)
with Angola (Smith Gueye et al., 2014) and the Trans-Zambezi Malaria Initiative (TZMI)
(Ministry of Health and Social Services, 2010c, Trans-Zambezi Malaria Initiative (TZMI), 2012,
Noor et al., 2013b). For Afghanistan there is a cross border initiative with Tajikistan to support
elimination of falciparum malaria (World Health Organization, 2007b). Eritrea is yet to start
such coordination with neighbouring countries. The cross-border activities include screening at

health facilities, treatment and distribution of LLINS to meet universal coverage targets.

The monthly trend in incidence was different across the sites. For Namibia, the temporal trend of
P. falciparum was only for 2009 but showed that there was a peak in cases early in the year. In
Afghanistan, the seasonal peak in incidence was different for the two malaria parasites. P. vivax
incidence peaked in August while P. falciparum peaked later in the year, in November. In
Eritrea, the incidence of P. falciparum and P. vivax peaked between September and October. The
difference in the patterns observed between P. falciparum and P. vivax parasites and countries
may be attributed to the transmission dynamics in different settings in addition to other factors
such as infrastructure, poverty and health systems. A factor to consider is receptivity i.e.
favourable conditions for transmission which may change the results from the case studies. For
example in Namibia, epidemics have been observed in years when above average precipitation

has been experienced (Noor et al., 2013c). The temporal profile is useful in planning the timing
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of interventions. Thus the difference in peak seasons should inform control strategies, for
example, lagging the use of IRS with peak case incidence. Across the three case studies, IRS
varies. In 2008 IRS use in Namibia was only 16% rising to approximately 41% by 2012 (Smith
Gueye et al., 2014), approximately 30% in Eritrea and was only launched in 2012 in Afghanistan
(Ministry of Public Health, 2008b). Along with IRS, universal coverage should be targeted in
areas with higher incidence and in line with recent WHO recommendation on managing

insecticide resistance (World Health Organization, 2014b).

Relating the modelled incidence to current maps of parasite prevalence showed areas with higher
incidence also exhibited high prevalence. For Eritrea and Afghanistan where both P. falciparum
and P. vivax exist, there was a spatial co-distribution of the two parasites in malaria risk areas.
Where there was elevated incidence, this was associated with high prevalence from the parasite
prevalence surveys. The latter was modelled from community prevalence surveys age-
standardised (2-10 years) (Noor et al., 2014). The positive correlation between incidence and
prevalence is expected and higher incidence is associated with higher parasite prevalence (Figure
5.2). In Eritrea and Afghanistan there was a spatial co-distribution of P. vivax and P. falciparum.
This co-distribution poses a challenge in managing mixed infections, requiring careful case

management strategies.
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Figure 5.2: Comparisons of incidence and with community parasite prevalence

Box plots showing comparisons between modelled incidence per 1000 population and the mean parasite prevalence
for P. falciparum and P. vivax. The mean incidence is higher in parasite prevalence greater than 5%. Parasite
prevalence was based on community surveys for 2010. Incidence was estimated from health facility data (total cases
as numerator) and catchment population as the denominator.

5.3.3 Reaction of the case study countries to findings

Overall, the methods used in this thesis aimed at producing maps at the district level relevant for
decision making to various malaria control programmes. The national programmes were
interested in the overall case burden for prospective planning of malaria interventions. The
NMCPs were involved in each of the three case studies by providing data and reports used in this
thesis. Both Namibia and Afghanistan studies have been jointly published with the NMCPs
(journal articles in the appendices). For Namibia, some of study findings have been incorporated
in nation policy documents (MoHSS, 2011) and cited in other studies (Lourenco et al., 2013,
Smith Gueye et al., 2014). The Eritrea NMCP has used findings from this study (district level
incidence) in prospective planning of malaria control activities. The Eritrea study, however, is

yet to be published in a peer review journal.
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5.4 Transferability, scalability and challenges for malaria elimination

5.4.1 Data availability

In terms of surveillance, health facilities remain the foundation for identifying and tracing the
changing burden of disease. School sentinels remain an option to routine household surveys.
Their utility has already been demonstrated in several studies (Ashton et al., 2011, Gitonga et al.,
2012). However, there is still a gap in studies that have delineated and combined school
catchments with disease incidence. This is in contrast to health facility-based data which are
collected on a continuous basis, and provide information from symptomatic (febrile) infections.
There is also an increasing availability of e-health frameworks in at least 46 countries globally
(DHIS2, 2014) with improved systems of monitoring by district level health management
information systems including the use of mobile phones. This system is complete in eight
countries in Africa (Kenya, Rwanda, Uganda, Tanzania, Zanzibar, Zambia, Ghana, Gambia and
Liberia) and in two countries in Asia (Bangladesh and India). Of these Rwanda and Zanzibar are
amongst low malaria transmission countries in Africa (World Health Organization, 2014d). The
rest are either at a pilot stage or have partially rolled out such a system nationally (Figure 5.3).
Such open data initiatives will favour scaling up of methodologies developed in this thesis in
updating and developing high space-time resolution disease maps in reduced transmission or

support malaria elimination.
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Figure 5.3: Global roll out of DHIS initiative

Countries where the e-health initiatives has been rolled out integrating national health facility data reporting systems
with surveillance at a national level with (DHIS2, 2014). It is also important to note the availability of nationally
representative household surveys in these countries in this report (Carolina et al., 2013).

5.4.2 Development of Reactive Case Detection approaches in low transmission settings for
elimination

Asymptomatic infections tend to cluster in hotspots in low transmission settings (Bousema et al.,
2012, Sturrock et al., 2013b). These residuals infections in the population can be harmful to
elimination programmes and may be responsible for maintaining transmission between seasons
or cause resurgence of disease when control is withdrawn. The challenge in low transmission
settings is that of identifying the asymptomatic cases usually via Active Case Detection (ACD).
There two broad approaches: reactive case detection (RACD) and proactive case detection
(PACD) (Sturrock et al., 2013b). The reactive approach involves using the passive system
(HMIS) to identify the origin of cases. It is most widely used in countries with better HMIS and
where burden is reduced to just a few residual cases experiencing short epidemics. It is also

suitable for low transmission where receptivity is high. The PACD does not involve the passive
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system. The entire population is screened to identify residual infections, which can often be
laborious and logistically challenging. The passive system should complement the PACD since

incidence estimated at health facility catchment-level is translated to the wider population.

As demonstrated using HMIS in the three case studies, population catchments can be used to
model incidence. The advantage of using health facilities is that symptomatic infections data are
collected on a continuous basis. There is also an added advantage of reducing the cost of tracing
cases within the wider population with limited resources. Studies in Zambia (Davis et al., 2011)
and Swaziland (Sturrock et al., 2013a) provide examples of where passive and active case
detection have been combined to identify asymptomatic infections. In Swaziland, 79 additional
cases to those presenting in the formal health sector were identified among the wider population.
In Zambia, a case-control study by Stressman et al. (2010) showed that there were more RDT-
positive cases in the group targeted via RACD than in a selected random control group. These
two studies illustrated the usefulness of targeted screening when identifying reservoirs of

asymptomatic cases.

5.4.3 Implications for mapping P. falciparum and P. vivax in low transmission settings
Progress in identifying symptomatic cases within the population has important application for
asymptomatic case detection. Both PACD and RACD will benefit from improved mapping of
passive detected cases. The PACD usually targets peak transmission seasons in known
geographic areas while RACD is triggered by cases seen in the formal health sector. However,
the questions related to optimizing diagnostic tools and techniques remain. Current WHO

recommendation is the use of RDT and microscopy for diagnosis even in low transmission
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setting because of relative low cost and they are widely available (World Health Organization,
2014c). The use of more sensitive nucleic acid amplification (NAA) such as PCR should be

applied in areas where the RDT and microscopy are already in use to support elimination.

There is however another challenge in areas where multiple parasites exist (Cotter et al., 2013).
Although most successful interventions have focused on P. falciparum more effective
approaches need to be developed in detecting P. vivax infections since it is less responsive to
current interventions. There has been some progress in mapping this parasite at the global level
(Gething et al., 2012). However, there is still a need to improve these maps at country level,
especially outside sub-Saharan Africa. In countries where P. vivax exists, the challenges of
elimination are considerably higher due to the biological characteristics of this parasite (Mueller
et al., 2009, Cotter et al., 2013). For instance, P. vivax can exist at very low parasite densities
that are difficult to detect using the recommended tools. It also exhibits a dormant liver stage
responsible for most relapses weeks or months after an initial attack (White, 2011). This
complicates the ability to detect asymptomatic vivax infections within the population, while
treatment is compounded by possible adverse reactions to drugs in populations with Glucose-6-
Phosphate Dehydrogenase (G6PD) deficiency (Howes et al., 2012). Although there has been
attempts to develop G6PD maps at a global level (Howes et al., 2012), there is still a gap in fine

resolution mapping at coutry level which may inform case magement of P. vivax.
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5.5 Limitations
5.5.1 Thesis limitations and recommendations
The majority of the limitations in this thesis have been addressed in each case study fully. Here a

summary of the limitations and recommendations in a general sense is provided.

The methodology and presentation of the thesis focused on three case studies (countries) with
low malaria transmission. First, these three countries were selected because they met the
experimental requirements (low transmission) and due to data availability. They were, thus, not
selected randomly. However, the strength of the methodology presented and discussed in this
thesis applies to similar transmission settings as discussed in the introduction section and in the
respective case studies. Thus, the approaches are relevant mostly to countries pursuing pre-

elimination or in the elimination stages at the margins of transmission (Feachem et al., 2010).

Secondly, there was variation between the temporal spread in the data between countries. For
example, in Namibia only one-year data was available compared to three years in Eritrea and
four years for Afghanistan. This short temporal spread in each context was sufficient for
developing the methods and studying disease incidence, but, was not sufficient in providing
long-term assessment of change in incidence over time or evaluating the impact of interventions.
This was also evident on the less significant effects of environmental covariates on disease
modelling, for example, in Afghanistan. Although there an attempt was made to quantify change
of incidence in Afghanistan, the short four year period was not enough to reveal significant
impact of interventions on disease. Future studies should revisit this aspect of establishing

changes in disease incidence over long periods of time (for example, 10 years) and quantify the
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impact of interventions to benefit the goal of elimination. In addition, such long-term trends may

also improve findings on the impact of covariates for disease modelling.

The thesis did not explore the potential uncertainty that may result from misclassification of
cases especially those related to parasite classification. These were beyond the scope of the study
given that such errors and other may occur at data entry stage at health facility level. While the
model performance was satisfactory, these errors may contribute to uncertainty and unexplained

variance.

Throughout the three case studies, the question of the limitations of current diagnostics
approaches (RDTs and microscopy) remains and has also been outlined in this final chapter. It is
not only the quality of routine microscopy or RDTSs that remains a limitation but also their
respective sensitivities when it comes to low parasite density (Satoguina et al., 2009). A review
of the literature showed that PCR and serology are preferred in most observational studies and in
some longitudinal studies, but, over small areas. Routine use of these approaches at a national
level remains a challenge. Nonetheless, microscopy and RDT provide some indication of
reservoirs of infection in symptomatic cases seen at a health facility and are currently
recommended by the WHO for low transmission. Thus, they provide a framework where a

sophisticated diagnosis can be targeted (World Health Organization, 2014c).

Another limitation relates to the reliance on self-reported data from national household surveys
on fever. There is the possibility of variation in perception and interpretation of fever episodes

between individuals. In addition, the fever variable reported in these surveys is usually based on
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the two-week recall period which could introduce a bias. Furthermore, the treatment seeking
behaviour of self-reported two-week period fever may differ from that of suspected cases seen at
the health facility (Cibulskis et al., 2011). These limitations remain in the three case studies and
could have an impact on ‘true’ fever burden. Modelling the fever burden was not a specific
objective of this thesis. The interpretation of fever burden estimated in the thesis in each case
study should therefore be undertaken with this in mind. In addition, fever episode could be
multiple over the two week period resulting in a different cause of action depending on perceived
need by the individual. The multiple fever episodes may also not necessarily be malaria-specific,
since malarial fever declines in proportion to transmission intensity (Trape et al., 2014). The
multiple fever episodes often result in multiple treatments in different sectors (either formal or
informal healthcare). Here, only public healthcare utilisation was of interest and future studies

should endeavour to define healthcare use in other sectors.

Lastly, the aspect of population movement and impact on defining cases seen at the health
facility has not been addressed by this study. Population movement plays an important role in
transmission and is potentially responsible for most of the cases seen in the border areas in
Namibia, Afghanistan and Eritrea. Several aspects warrant further investigation. For example,
what proportion of cases in Kabul in Afghanistan is acquired locally or imported from
neighbouring regions that have higher endemicity? This relationship between incidence in HMIS
(passive surveillance) and internal (between regions) or external population movement was not
addressed by this thesis due to lack of data. It, therefore, remains a gap to be filled by future

studies.
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5.6 Future research

The thesis focused mainly on developing Bayesian approaches that can use HMIS data to
estimate incidence. A frequentist approach had been tried earlier using the Kenya HMIS data
(Gething et al., 2006). In the Kenya application, however, the denominator was a sum of total
case burden seen at a health facility as a proxy to catchment population. Moreover, the setting
was in a high endemic country. The Bayesian approach used in this thesis lays the foundation for
modelling uncertainty in HMIS data using Gaussian latent models. The framework started by
modelling the denominator (the catchment population) at the health facility regulated by the
probability of seeking treatment when sick with fever followed by a Bayesian analysis of
incidence. Although there was attempt to relate the estimated incidence to parasite prevalence in
a frequentist approach, future studies could focus on modelling this using a model-based
approach to incorporate uncertainty. There has already been attempt on quantifying such a

relationship (Patil et al., 2009) but not using estimates from the modelling framework used here.

Future research can also make improvement in relation to the assumptions laid out in the model
set up and additional operational and research challenges on burden estimation in low
transmission settings. The first relate to modelling the malaria fever burden at a fine resolution.
Effectively, geostatistical approaches could be used in fever burden estimation at a fine
resolution. A major challenge is the specificity of malaria-fever cases in relation to other co-
morbidities. Thus, the resulting fever burden map will depend on the definition of fever cases
attributed to malaria. A recent study conducted in Senegal suggested malaria-specific fever

reduced with declining endemicity (Trape et al., 2014). The improved fever burden maps could
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potentially be useful in assessing population that is likely to seek treatment for malaria and

eventual case loads seen at the peripheral health facility.

In addition, the fever-treatment seeking patterns defined in this study can be modelled differently
given different data inputs. Firstly, a major recommendation is to explore models based on
spatial interaction rather than the assumption based on distance. An easy option is to include a
question of where treatment for malarial-fever was sought in the national representative surveys
such as DHS or MIS. However, given the frequency of national surveys in areas with low
malaria transmission, it is difficult to assess whether this would be representative for different
time periods and with varying climatic and disease endemicities. A second alternative approach
would be to explore the utility of mobile phones in defining the treatment seeking behaviour in
febrile populations. The latter, however, requires a validation of the mobile phone data to test the
observed patterns as actual febrile-case movements. The third alternative involves the use
spatially varying parameters fitted to the treatment seeking pattern. This approach is different
from using national estimated mean parameters applied to travel times or distance metrics.
Treatment seeking behaviour is likely to vary by region, based on availability of health facilities
and accessibility. Thus, the parameters driving the three parameter regression used in this study

could vary substantially by region altering the treatment seeking patterns observed here.

There is, however, a larger policy relevant question on the effect of human mobility in low
transmission settings. This is, however, dependent on the availability of long-term morbidity data
as well as population movement information. Under morbidity, the main challenge would be to

evaluate the impact of various interventions on incidence while at the same time accounting for
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population movement. Regarding mobility, the challenge would involve combining both
incidence and morbidity data to define risk within the population. The difficulty is in obtaining
mobility data as these are not always available to the public domain regardless of whether they
are census, national infrastructure surveys or from mobile phone records. Although some
research has been undertaken using mobile phones (James and Versteeg, 2007, Le Menach et al.,
2011, Zurovac et al., 2012, Tatem et al., 2014), it would be interesting to assess how these

mobile populations alter disease dynamics in different regions within and between the countries.

5.6.1 Improved Bayesian approach to downscaling incidence in low transmission settings
Bayesian approaches have attractive properties when it comes to modelling which has already
been mentioned in the preceding chapters. This includes the ability to use hierarchical models
with uncertainty handled at different levels, particularly the latent Gaussian models. This class of
models is within the range of application of this thesis although different models can be used in
practice. Overall, the methods used in this thesis aimed at producing maps at the district level
relevant for decision making to various malaria control programmes. Moreover, these national
programmes demanded figures translated into number of cases for planning malaria
interventions. Thus, the advantages were two-fold in improving the methods in a Bayesian
statistical sense as well as providing policy relevant tools for various national malaria control

programmes.

The modelling approach can be improved in two different ways. Firstly, the modelling can aim at
analysing the co-variation of the two parasites spatially and temporally in countries with two or

more parasites, such as Eritrea and Afghanistan. In other words, this involves setting up a joint
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modelling framework such that v, =z, + z,and v, =z, -z, where v, and v, assess the co-relation
between vivax and falciparum in a hierarchical sense while z, ,z, define the two expectations

common for the former and difference for the latter. Thus, we have perfect correlation when z, is

zero. Secondly, the incidence maps can be improved by downscaling incidence from polygon
representation to pixel level. This modelling framework is different from that specified in this
thesis where facility-catchment level incidence was aggregated to the district level. The latter
proposal will involve disaggregating incidence observed at facility level to pixel level such that
risk is defined at fine resolution in a linear model of co-regionalisation (LMC) approach
(Barnerjee et al., 2004). Examples of this model specification exist in the literature (Gelfand et
al., 2004). It is then worth looking at the distribution of risk within the catchment and population
most at risk to improve burden estimation. Future modelling work will involve this risk

disaggregation to further improve burden estimates.
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5.7 Conclusion

The main aim of thesis was to model healthcare utilisation and estimate malaria incidence in
three low transmission countries from incomplete HMIS data. This was achieved using case
studies in Namibia, Eritrea and Afghanistan. A denominator, the heath facility catchment
population, was estimated and a Bayesian approach used to model incidence with uncertainty.
There was a need to adjust for health facility utilisation, incomplete reporting and the use of
clinical diagnosis using a slide positivity rate where cases are not confirmed. The modelled
malaria incidence was translated into overall clinical burden to identify areas where malaria
control can be improved for each case study. The results have been made available to various

national malaria control programmes to aid in resource allocation, planning and policy.

The methodology illustrated here is highly relevant to countries in similar settings (i.e. aiming
for pre-elimination and elimination) and where changes in incidence are more relevant as
opposed to point prevalence surveys. The approach demonstrated the usefulness of incomplete
HMIS data for malaria burden estimation in low transmission settings. HMIS data are readily
available via national reporting systems compared to community prevalence surveys which
would require intensive sampling in low malaria transmission settings. The HMIS data are also
relevant for tracking change in incidence over time - given a longer time-series of data. Tracking
the change in incidence over time and seasonality is not only useful in identifying high risk
regions in space and time, but could also be useful in evaluating programme performance and the

impact of interventions.
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An improvement in the quality of HMIS data and its availability through DHIS 2 initiatives may
undoubtedly increase the use and modelling of HMIS for malaria burden estimation with
approach demonstrated here. As malaria becomes highly marginalised in a few hotspots in low
transmission settings, future research should consider combining approaches in this thesis

combined with active case surveillance at community level for targeted control.
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prevalence surveys to surveillance through a combination
of routine health management information systems
(HMIS) and active case detection (World Health Organizas-
tion, 2007). The year 2009 has a special significance for the
fight against malaria in Namibia. This is when the Elimina-
tion Eight (E8) initiative was launched, under which eight
southern African countries decided to collaborate to elim-
inate malaria in Namibia, Botswana, South Africa and Swa-
ziland. Under this initiative, Namibia formally declared the
ambition to eliminate malaria by 2020 (Noor et al,
2013a,b; Southern Africa Roll Back Malaria Network (Sarn),
2010). These ambitions were motivated by reported sub-
stantial declines in malaria burden in the four eliminating
countries and by the 2008 global call for malaria elimina-
tion (World health Organizastion, 2008). A Namibian ma-
laria indicator survey (MIS) conducted in 2009 showed a
mean community Plasmodium faiciparum prevalence of
approximately 3% nationally (Ministry of Health and Social
Services, 2010b). This is a threshold at which countries are
advised to use case incidence data for measuring malaria
risk (Hay et al., 2008; Yekutiel, 1960). In 2010, Namibia
launched a national malaria strategy for the period 2010-
2016 (Ministry of Health and Social Services, 2010c). The
aim was to reduce malaria case incidence to 10 persons
per 1000 population by 2013 and to move the country to
pre-elimination status by 2016 where case incidence will
be less than 1 person per 1000 population (Ministry of
Health and Social Services, 2010c, d).

Most malaria eliminating countries in Africa, including
Namibia, are yet to adopt active case-detection (ACD) sys-
tems (World Health Organization, 2012) and the main
source of data for measuring disease incidence is from pas-
sive case detection (PCD), assembled through the public
health sector (PHS). Such data, however, have deficiencies
that limit their use for estimating overall case incidence
accurately. A substantial proportion of malaria cases are
treated outside of the PHS (Cibulskis et al., 2011; Cibulskis
et al,, 2007), while only a proportion of health facilities in
the PHS submit returns and even fewer report every month
of the year, making the data incomplete spatially and tem-
porally (Gething et al., 2008; Gething et al., 2006; Murray
et al., 2004; Stansfield, 2005). Third, only a subset of re-
ported cases is diagnosed parasitologically and most of
these cases are fevers that have been diagnosed presump-
tively as malaria (Cibulskis et al., 2011; Cibulskis et al.,
2007). The use of such data therefore requires approaches
that adjust for the non-utilisation of the PHS, incomplete
data reporting which underestimate burden and the pre-
sumptive diagnosis which inflate incidence (Alegana
et al., 2012; Cibulskis et al., 2011). In addition, these ap-
proaches must harness the spatial and temporal autocorre-
lation of the available data to predict at locations and
periods where data are missing as well as estimate ro-
bustly the uncertainties of these predictions (Loha and
Lindtjorn, 2010; Reid et al., 2012).

Bayesian hierarchical conditional auto-regressive (CAR)
models can improve the quality of HMIS data at a national
level, where routine surveillance is inefficient, by repre-
senting risk via a set of environmental or ecological factors
and random effects using CAR priors (Barnerjee et al,
2004; Gelfand and Vounatsou, 2003; Gething et al,

2006). Examples of such approaches have been used previ-
ously in modelling spatial-temporal variation of disease
risk in Yunnan province in China (Clements et al., 2009)
and in identifying social and ecological factors driving ma-
laria risk in Vietnam (Manh et al., 2011). These methods
handle uncertainty in a coherent manner, are able to pre-
dict risk in areas where data are not recorded while at
the same time smoothing variability where the denomina-
tor (population) is small (Gelfand and Vounatsou, 2003;
Reid et al., 2012). These approaches are used in this study
with the primary aim of predicting malaria incidence at
second administrative unit level (constituencies) in north-
ern Namibia where malaria is considered endemic (Minis-
try of Health and Social Services, 2010c). In addition, a
novel approach is used to adjust PHS utilisation rates to
estimate catchment population. Secondary aims of this
study were to calculate populations at risk to determine
areas where interventions can be targeted to provide uni-
versal coverage and to evaluate the use of environmental
factors such as rainfall and vegetation indices in predicting
incidence.

2. Methods
2.1. Study area

Namibia is divided into 13 regions {(administrative level
1) and 108 constituencies (Ministry of Health and Social
Services, 2010c; Zere et al.,, 2006) (Fig. 1). The country is
largely dry and sparsely populated with an estimated
2.1 million people in 2009 living in an area of approxi-
mately 0.83 million km? (National Planning Commission,
2012). The risk of malaria is constrained by aridity (Minis-
try of Health and Social Services, 2010c; Snow et al., 2010)
with the larger and sparsely populated south made up of
four regions, Karas, Hardap, Khomas and Erongo, consid-
ered either malaria-free or supporting high focal very low
transmission intensity (Ministry of Health and Social Ser-
vices, 1995, 2010c). The majority of the population resides
in the other nine northern regions of the country that are
also considered to contribute almost the entire malaria
burden in Namibia (Ministry of Health and Social Services,
2010b, ¢, e). In this study, analysis of malaria incidence was
restricted to the 78 constituencies in the nine northern re-
gions (Fig. 1).

2.2. Assembly of malaria case data

Monthly data (January to December) for 2009 on con-
firmed and suspected (clinically diagnosed) cases of malar-
ia among patients of all ages were obtained from the
Ministry of Health and Social Services (MoHSS) after a na-
tional Service Provision Assessment (SPA) survey was con-
ducted (Ministry of Health and Social Services (MoHSS)
and Icf Macro, 2010). The health facility survey covered
273 facilities in the north comprising of hospitals, health
centres, clinics and sick bays that are managed by the Min-
istry of Health and Social Services (MoHSS), missions, Non-
Governmental Organisations (NGOs), the private sector
and Ministry of Defence (MoD) and police. Of these, only
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Fig. 1. Map showing the number of cases observed at a public health facility superimposed on the 78 constituency boundaries (Administrative level 2) in
the northern regions (Administrative level 1) of Namibia in 2009. The four southern regions namely Erongo, Khomas, Hadarp and Karas are considered as
‘malaria free’ while the grey areas in the north correspond to desert arid areas where the MODIS-derived enhanced vegetation index (EVI) was <0.1 and
were, thus, considered unsuitable for transmission and masked out (Scharlemann et al., 2008). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

13 were private health facilities, all located in urban cen-
ters. Three constituencies had no facility data and were
treated as missing data. During the survey, a health system
questionnaire was used to collect data on suspected and
confirmed malaria cases for a 12-month period from pa-
tient registers. Each facility was also geo-located using a
handheld global positioning system (GPS) device. Rapid
Diagnostic Tests (RDTs) were used to examine blood sam-
ples from most patients at primary health facilities
although a few, mostly at tertiary facilities, were examined
using microscopy (Ministry of Health and Social Services,
2010a).

2.3. Assembling data on environmental predictors of incidence

The incidence of malaria is usually a function of its
underlying transmission intensity (Patil et al., 2009) which

in turn is driven by factors such as rainfall, temperature
and human habitation that influence the development
and survival of the malaria parasite and vector (Molineaux,
1988). The annual mean enhanced vegetation index (EVI)
for 2009 derived from MODerate-resolution Imaging
Spectroradiometer (MODIS) sensor imagery was used as a
measure of vegetation cover (Scharlemann et al., 2008).
Monthly 2009 precipitation data were obtained from the
Tropical Rainfall Measuring Mission (TRMM 3B43)
[http://trmm.gsfc.nasa.gov/], a joint collaboration between
NASA and the Japan Aerospace Exploration Agency (JAXA)
(Huffman and Bolvin, 2011; NASA, 2011). TRMM 3B43
[http://trmm.gsfc.nasa.gov/] is a gridded mean monthly
precipitation product in mmh! at 0.25° x 0.25° spatial
resolution (Huffman, 1997). It is produced after TRMM
multi-satellite precipitation analysis (TMPA) (Huffman
and Bolvin, 2011) that combines both satellite sensor data
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and observations from at least 6700 rain gauges from glo-
bal reports and country-specific reports. A 1km x 1 km
surface depicting a temperature suitability index (TS1) for
malaria transmission (Gething et al, 2011) ranging from
0 (not suitable) to 1 (most suitable) was also obtained from
the Malaria Atlas Project [http://www.map.ox.ac.uk]. The
annual mean values of EVI, precipitation and TSI were
computed for each constituency. Finally, the proportion
of urban population within each constituency was ex-
tracted based on urban extent from the Global Rural Urban
Mapping Project (GRUMP) (Balk et al., 2004, Center for
International Earth Science Information Network (CIESIN),
2004) overlaid on a 100 m »x 100 m resolution population
surface developed by Afripop (Balk et al., 2004, Center for
International Earth Science Information Network ( CIESIN),
2004) and available at [http://www.afripop.org/]. The
assembled covariates were re-sampled to 1 x 1 km spatial
resolution and a value extracted for each facility in ArcGIS
10 (ESRI, Redlands, CA, USA).

24. Analysis

2.4.1. Adjusting observed malaria cases based on test
positivity rates and PHS utilisation

The calculation of malaria incidence requires accurate
estimates of both the number of parasitologically con-
firmed positive cases and the size of the population from
which the cases originate. The malaria cases were com-
puted as the sum of the parasitologically diagnosed cases
presented at public sector health facilities and the sus-
pected (clinical) cases adjusted using the P. falciparum pos-
itivity (microscopy or RDT) rate per facility. The focus was
on the public sector, which constituted majority of sur-
veyed health facilities (96%) and is mainly sponsored by
the government and public resources. To define the catch-
ment population two factors were considered: (a) only a
subset of the population was likely to use the public health
sector and; (b) these would vary geographically within a
catchment area and by constituency. In Namibia, the MIS
of 2009 recorded treatment seeking behaviour for fevers
and showed that only 52% of all individuals who had a fe-
ver in the last 2 weeks sought treatment in the public
health sector and the utilisation rate varied by region
(Ministry of Health and Social Services, 2010b). To define
public health facility catchment populations empirically,
the treatment seeking data from the MIS were used subse-
quently to develop a utilisation model that defined, at
every 1 km x 1km grid cell, the probability that a febrile
individual will use a public health facility using a three-
parameter logistic regression model (Alegana et al,
2012). These probabilities were applied to a population
surface of similar resolution (Afripop, 2010) to estimate
the 2009 population seeking treatment for fever at public
health sector facilities. The adjusted population counts
were then used in modelling incidence.

2.4.2. Preliminary analysis of environmental covariates

A non-spatial Poisson regression model was used to test
the univariate and multivariate associations of assembled
environmental covariates and crude incidence in R version
2152 [hitp://www.r-project.org/]. The environmental

covariates were used in the continuous form in a general-
ized linear regression model with the response variable
being the observed crude incidence rates assuming that
the expected cases have a Poisson distribution; Yy ~ Pois-
son g for the ith observation in facility j. Wald's P-values
and goodness-of-fit statistics with associated confidence
intervals were assessed. Variables significant at a P-value
of <0.05 were selected for inclusion into the predictive
model.

2.4.3. Bayesian space—time zero-inflated CAR model for
malaria incidence

Environmental covariates selected via the preliminary
analysis, the reported cases and catchment population
per public sector health facility were used in a Bayesian
spatio-temporal zero-inflated conditional autoregressive
(CAR) model using Integrated Nested Laplace Approxima-
tion (INLA) (Martins et al., 2013; Rue et al., 2009) to predict
incidence at the constituency level. A Zero-Inflated Poisson
(ZIP) model was used following the example of studies in
low transmission settings, to handle count data with a lot
of structural or excess zeros (Lambert, 1952; Manh et al.,
2011). In Namibia, no malaria cases were reported in
65.3% of the facility level monthly returns, with 43% of
facilities reporting no cases in March and over 60% from
May to December. The ZIP models have also been applied
previously in mapping the malaria vector sporozoite rate
(Ameket al, 2011; Nobre et al., 2005) as well as in schisto-
somiasis (Vounatsou et al,, 2009), but with inference made
using the Markov Chain Monte Carlo {MCMC) approach. In
this study, however, inference was made using INLA via the
Gaussian Markov Random Field (GMRF) (Rue and Martino,
2007) that reduces computation time significantly (Kneib
et al., 2010; Rue et al.,, 2009; Rue and Martino, 2007). In
addition, a facility random effect model was fitted to allow
for variation between two or more facilities in the same
constituency. For the ZIP model, the probability of observ-
ing zero (Bohning, 1998; Ghosh et al., 2004; Neelon et al.,
2010) is;

Pyly,=0)=(1-P)+Pyer 0<p<1

#ke’#‘u
Pyly, = k) = Py

The term (1—Py) in the first part represents the proba-
bility of observing a true zero and, therefore, when P=1
the equation reduces to a general Poisson model and zero
is inflated when P< 1. Covariates were introduced via a
log linear model for u; while maps of predicted monthly
and annual incidence were produced at constituency level.
In the model, the observed variables y;, i=1,...,n and the
linear predictor 7; were modelled with additive effects as
(Rue et al., 2009; Rue and Martino, 2007; Schrodle and
Held, 2010):

k=1,...,00

af ng
M=o+ > O+ Bzt e
j=1 k=1

where, £ is a linear function on some variables u, g, are
the coefficients for the covariates 7 and & represents the
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unstructured effects. Rue and Martino (2007) show that
the posterior marginal can be estimated as:

T]Y) =D TXi[Be, Y)T(6]Y) A
k

with the sum evaluated using appropriate weights A,
solved at suitable reference points ¢, (Rue and Martino,
2007; Schrodle and Held, 2010). The posterior marginal
7{8]y) of the hyper-parameters are evaluated as:

a(x,6,y)

) D, y)

% =x'(6)

with the denominator as a Gaussian approximation of
7(x|8,y) and x*(0) being the mode of the full conditional
7(x|8,y) (Schriodle and Held, 2010). The final log-relative
risk model was represented as:

1, = 102(E) + f+ ZBy +(80) + v + f(0)

with the E; being the expected number of confirmed and
suspected cases adjusted for slide positivity at each facility
i, the term JL represents the intercept, with the f{s,) and f{t)
terms representing the spatially unstructured effects and
seasonal effects, respectively. The conditional autoregres-
sive prior /; was included to account for the assumption
that neighboring polygons have similar incidence (Barner-
jee et al., 2004). This specification ensures a smoothed map
of risk with geographically reliable estimates (Bernardinel-
i et al., 1997; Kleinschmidt et al, 2002). Full Bayesian
specifications were completed by specifying priors for the
fixed effects and random components. The conditional
prior for neighbouring regions (¢;,j=1) was specified fol-
lowing Bernardinelli et al. (1997) as (¢; ~ N{gi, 0%} where
My = T Wy /T W) 0l = 1/7,%Wy). The Wy is the
adjacency matrix of weights assigned as W;=1 for two
neighbouring regions or W;; = 0 otherwise. A full treatment
on CAR modelling theory can be found elsewhere (Barner-
jee et al., 2004; Gelfand and Vounatsou, 2003). The random
effects component was specified as a set of vague normal
priors.

Two CAR models were fitted: Model 1 included a spatio-
temporal component but excluded environmental covari-
ates such as vegetation indices, whilst Model 2 included
these environmental covariates in addition to spatio-tem-
poral structure.

2.4.4. Computing the cross-validation statistics and proper
scoring rules

The performance of both CAR models was compared
using the deviance information criterion (DIC) ( Spiegelhal-
ter et al., 2002). Predictive model assessment was con-
ducted using the probability integral transform (PIT) and
the conditional predictive ordinate (CPQ), a leave-one-out
cross-validation approach in which a prediction is vali-
dated based on the fitted model and the remaining data
only (Czado et al., 2009; Spiegelhalter et al., 2002). The
CPO, defined as the probability of observing a value given
all other data, was examined for all observations in a full
Laplace model (Martins et al., 2013). Both these measures
assess the calibration (statistical consistency) and sharp-
ness (concentration) of the predictive model. The predic-

tive measures of fit have been shown to fail if the
approximation of the latent Gaussian Field (GF) is not
accurate (Czado et al., 2009). Model scoring rules such as
the square error score (SES) and the ranked probability
score (Gneiting and Raftery, 2007) as well as Pearson cor-
relation of observed and predicted incidence were com-
puted. The latter was based on 26 health facilities
selected randomly as validation set. Proper Bayesian scor-
ing rules are discussed by Gneiting and Raftery (2007) and
implemented using a predictive distribution (Supplemen-
tary information). For example, the RPS generalizes the
absolute error and is minimum for true predictions (Czado
et al.,, 2009).

2.5. Population at risk

To estimate the population at risk at varying levels of
malaria incidence, the total population resident in constit-
uencies living in the six predicted endemicity classes of:
less than 1; 1-5; 5-10; 10-15; 15-20 and greater than
20 cases per 1000 population was calculated. The popula-
tion surface was obtained from Afripop (Afripop, 2010)
which had been developed from a combination of census,
population settlements and land cover by disaggregation
of census data to improve their spatial resolution (Linard
et al, 2010; Linard et al., 2012). The population surface
had also been used in mapping health facility catchment
population in Namibia (Alegana et al., 2012). The original
population surface, produced for 2010 from Afripop, was
back-projected to 2009 using the United Nations” inter-
censual growth rates (http://esa.un.orgfunup/) and catego-
rized according to estimated risk in northern Namibia.

3. Results
3.1. Malaria incidence and facility attendance characteristics

A summary of the assembled malaria incidence data
and modeled estimates of public health sector utilization
are shown by health district in Table 1. Overall, only 17
PHS facilities had no malaria reports in 2009 and the
remaining health outlets returned complete reports every
month. Most health facilities were located in Caprivi, Kav-
ango, Ohangwena, Oshana and Omusati regions where
population density is greatest (Table 1 and Fig. 1). The spa-
tial distribution of reported cases, including suspected
cases adjusted for test positivity rates, is shown in Fig. 1
and indicates higher caseloads in the northern regions. In
total, 134,851 cases were Cclinically diagnosed while
90,835 individuals were examined for malaria parasites
of which, 9893 were positive. The mean test positivity rate
was 11.2 [95% Cl 6.7-15.7] (Table 1). Crude annual inci-
dence based on the parasitological and clinically diagnosed
cases, the latter corrected for slide positivity rate, was 16
cases per 1000 population. This was highest in the first
4 months of the year and peaked in March (Fig. 4). The
highest crude incidence was in constituencies in Caprivi,
Ohangwena and Kunene that border Angola where test
positivity rates were also highest (Table 1).



Table 1

Summary of malaria incidence and modeled facility artendance by administrative region and health district in northern Namibia.

Region Health Number of health facilities (number ~ Number of Confirmed Suspected Mean slide positivity ~ Population  Percent of population attending a
district with missing data) constituencies  malaria cases  malaria cases  rate (95% €D 2009 PHF modelled
Caprivi Katima 27(2) 6 954 10605 211 (17.9-243) 87088 68
Kavango Andara 10(0) 1 309 4293 9.2 (7.0-113) 26,677 711
Nankada 11(1) 2 244 7662 84 (6.0-10.8) 48,715 642
Nyangana  8(0) 1 665 3063 25 (20.1-29.9) 19,815 719
Rundu 23(1) 5 1176 34608 16.4 (13.4-194) 119,855 714
Kunene Khorixas 8(0) 1 1 89 2.7 (-05-6.1) 12,469 614
opuwo 14(0) 3 539 856 473 (40.7-52.8) 52,485 525
outjo 1(0) 2 1 53 1(-02-2.5) 20,395 534
Ohangwena  Benhana 10(1) 4 379 3956 7.1 (48-0.4) 80419 682
Engela 16(0) 6 916 13774 9.8 (7.8-119) 131,744 742
Kongo a1 1 529 1788 243 (15.8-32.8) 24,744 615
Omahele Gobabis 14(2) 7 11 9% 12.8 (95-18.1) 68,433 621
Omusati Okahao 9(1) 2 384 9066 1(21-6.1) 29,964 736
Oshikaku 19(0) 5 436 10315 36(26-4.7) 101,587 75.2
Outapi 10(0) 2 1970 9846 84 (66-10.2) 48,812 708
Tsandi 10(1) 3 617 5339 84 (62-106) 54418 70.1
Oshana® Oshakati® 19(4) 10 353 9133 3.1 (1.9-43) 169,053 754
Oshikoto Onandjolowe  16(0) 3 266 8516 23 (16-3.1) 146436 698
Tsumeb s(1) 2 28 628 5.1 (1.8-8.4) 29,094 674
Otjozondjupa  Grootfontein  6(0) 2 59 547 13.7 (7.1-203) 33,247 613
Okahandja (1) 2 3 110 5.2 (02-10.1) 40,209 642
Okakarara  5(0) 1 17 189 11.6 (5.0-182) 21,748 56.6
Otjiwarongo  10(1) 2 36 319 54 (26-8.1) 42,336 673
Total 260(17) 7% 9,893 134851 11.2 (67-157) 1409841 6537

* PHF is an abbreviation for ‘Public Health Facility’, which in this case does not include private facilities or privates for profit.

® Two constituencies in Oshana region (Olatyali and Ompundja) did not have any health fadilities, thus, the polygons where treated as missing data.

© Public health facility attendance for treatment of fever based on probability of atendance and the distance decay effect. Description outlined in Alegana et al. (2012).
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3.2. Preliminary model involving environmental covariates

Of the selected environmental variables, univariate
non-spatial regression analysis showed that the EVI (coef-
ficient of regression, 95% CI: 6.55, 4.25-8.87, p < 0.001), TSI
(7.57, 5.34-996, p<0.001) and precipitation (0.02,
0.01-0.03, p =0.002) were significant predictors of crude
incidence. In addition, the percentage of urban resident
population produced a negative and significant association
with incidence (—0.01, —0.01 to —0.00, p <0.001). In the
multivariate model, that included all four covariates, only
EVI(14.29,9.24-19.42, p < 0.001) was positively associated
with crude incidence and was included in the final model.
The number of environmental covariates was minimized in
the final model to achieve a parsimonious space-time
model and due to the observed large correlation between
some covariates, for example altitude and temperature or
vegetation indices and rainfall (Craig et al., 2007; Pascutto
et al., 2000).

3.3. CAR model predictions of monthly and annual incidence
for 2009

Two spatio-temporal models of incidence were imple-
mented. Model 2 included EVI while Model 1 excluded
the covariate information. Table 2 lists Bayesian model
parameters for the two CAR models with and without envi-
ronmental covariate. Qverall, Bayesian model parameters
for seasonal random effects (2.02 with Crl 0.16-5.79), facil-
ity random effects (6.95, Crl 2.65-13.22) and unstructured
random effects (0.20, CrI 0.02-0.57) were all significant at
95% Crl (Bayesian credible interval). There were also mar-
ginal differences in the overall mean: —1.80 C1l (—1.98 to
—1.64) and —1.76 Crl (—1.93 to —1.58) for model with
and without covariate information respectively.

Table 3 compares these two models based on the DIC,
which represents a trade-off between model complexity
and goodness-of-fit, and SES. The EVI improved the model

Table 2

fit marginally, as indicated by the lower DIC for Model 2 in
Table 3. The SES for M2 (1.61) was lower than that for M1
(1.70) suggesting a better predictive performance for M2
although only marginally. The conditional predictive ordi-
nate (CPQ), a cross-validation logarithmic score, was also
calculated for each prediction. For both models the CPO
score was 0.22 (Table 3) and since a smaller CPO value usu-
ally indicates greater predictive accuracy (Schridle and
Held, 2010), this also suggests a small difference between
the two fitted models. However, in view of its lower DIC,
Model 2 (with EVI) is used as the basis for presenting sub-
sequent model outputs. The Pearson correlation coefficient
for this model based on a hold out set was 0.56.

Overall malaria incidence peaked in the months of
March and April and was highest in Kunene, Kavango,
Caprivi and in a few constituencies in Changwena region
as shown in Fig. 2, based on Model 2. Fig. 3 shows a map
of mean annual incidence based on this model choice.
The predicted mean annual incidence of the Bayesian
CAR model was 13 cases per 1000 population in the 78
constituencies in northern Namibia. The highest predic-
tions were hetween 15 and 20 cases per 1000 population
(Fig. 4).

3.4. Population at risk

Based on Model 2, 383,632 people (27.2% of the popula-
tion) lived in areas where case incidence was greater than
15 cases per 1000 population; slightly more than half
745,903 (52.9%) lived in areas where case incidence was
between 10 and 15 cases per 1000 population; approxi-
mately 216,512 (15.4%) resided in regions with an average
of 5-10 cases per 1000 population; 49,005 (3.5%) in areas
with greater than 1 case, but less than 5 cases per 1000
population and 1% of population lived in regions with less
than 1 case per 1000 population. Population density was
highest in the northern border constituencies.

Parameters for two Bayesian zero-inflated CAR models of malaria incidence in northern Namibia on a log scale.

Parameter Model 1

Without covariates: posterior mean, median,

(95% Crl')

Model 2
With environmental covariate: posterior
mean, median, (95% Crl')

4 (Intercept)

Enhanced vegetation index (EVI}
2 (parameter for Zero-inflation}
T (seasonal random effect}

¢ (facility random effect)

Y (unstructural random effect}
@ (structural random effect}

-1.763, —-1.760 (-1.932 to —1.581}

0.843, 0.843 (0.833-0.856}
1.546, 1.023 (0.137-4.692)
6.912, 5.836 (2.605-14.830}
0.190, 0.136 (0.020-0.542)
0.081, 0.045 (0.003-0.278)

—1.803,-1.800 (—1.980 to —1.639)
0.093, 0.093 (-0.028-0.211)
0.843, 0.843 (0.833-0.854}

2.015, 1.427 (0.161-5.789}

6.952, 6.388 (2.641-13.220}
0.200, 0.144 (0.019-0.568})

0.080, 0.004 (0.030-0.276})

1 Crl is abbreviation for Bayesian credible interval.

Table 3

Posterior mean deviance, the number of effective parameters, the DIC and CPO score for each implemented model.
Model Mean deviance Number of effective parameters DIC CPO SES
Model 1 (without covariate) 3113.22 9.79 3123389 0.229 1.764
Model 2 (with covariate) 3112.08 10.68 312375 0.229 1.609
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Fig. 2. Map showing the predicted monthly malaria incidence per 1000 population at constituency level for regions in the north of Namibia in 2009 using

Bayesian CAR with environmental covariates (Model 2).
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Fig. 3. Map showing the mean annual incidence prediction based on Bayesian CAR with environmental covariates (Model 2).

4. Discussion

The evaluation of pre-elimination status requires a de-
tailed description of local epidemiology of malaria trans-
mission patterns. From the predicted monthly maps of
Namibia (Fig. 2 and Fig. 4), a higher incidence of malaria
was observed between January and April in the constituen-
cies bordering Angola and Zambia, while, lower values
were observed for the July and December period. The over-

all mean incidence was 13 cases per 1000 population for
2009 (Fig. 3). The model included the unstructured random
component to explain unobserved effects and the inclusion
of the structural effects via the GMRF introduced depen-
dence resulting in spatial and temporal smoothing of sea-
sonal variation (Banerjee and Carlin, 2003; Rue and Held,
2005). The Bayesian CAR approach has the advantage of
addressing several sources of uncertainty. The model was
applied at facility level and, therefore, the method not only
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Fig. 4. Plot of the reported cases by month in northern Namibia in 2009 (vertical dark grey bar), the calculated crude incidence (green line) derived from
combined confirmed and suspected cases and the predicted incidence per 1000 population (dashed-dotted red line) with 95% Crl upper and lower limits.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

takes into account the nature of the facility, but also season
and environmental factors in adjusting for under-report-
ing. In addition, the CAR model smoothed incidence, there-
by addressing the potential impact of model instability
resulting from small numbers of reported cases, apparent
in the facility data presented in Fig. 1. Smoothing incidence
also reduces the potential impacts of under-reporting of
cases by facilities. Secondly, incorporating the environ-
mental covariate explained spatial variation where data
were absent in addition to providing information on the
climatic suitability of malaria transmission, for example,
in Omaheke region (Craig et al, 1999; Guerra et al.,
2008). This suggested that the inclusion of environmental
covariates improved the model estimates for a few constit-
uencies (in Kunene and Omaheke), but only marginally.

The mean incidence observed for 2009 was highest in
constituencies in Omusati, Kavango and Omaheke region
bordering Angola and Botswana. Historical P. falciparum
data for Namibia between 1969 and 1992 (Noor et al.,
2013a,b) suggest a parasite prevalence of greater than
5% in Kavango and other northern regions along the bor-
der with Angola. In addition, Craig and others showed
that in Botswana, the area along the north-western bor-
der areas with Namibia had relatively high prevalence
(Craig et al., 2007). For these border constituencies con-
certed efforts with neighbouring countries have to be
put in place to realize the pre-elimination targets (Noor
et al., 2013b,c). Incidence in these regions could well be
driven by cross border population movement (Cosner
et al., 2009). Similar suggestions were made for two dis-
tricts in South Africa close to the Mozambique border
(Kleinschmidt et al., 2002) and in Yunnan province in Chi-
na that borders Myanmar, Laos and Vietnam (Clements
et al., 2009).

The approach presented here drew upon a compara-
tively data rich setting and the facility census used may
not be available in many countries. The recent improve-
ments in case management in Namibia in which all sus-
pected malaria fevers are diagnosed parasitologically
before treatment will reduce the need for adjustment for
test positivity rate. In addition, planned improvements in
HMIS reporting and quality and transition to active case
detection mean smaller adjustments for treatment seeking
and reporting will be required in future. This is may also be
useful for external validation, with additional resources, of
approaches used in this study. These factors will, therefore,
contribute to the precision of routine malaria case data in
estimating disease burden in the future. More precise inci-
dence estimates should provide a basis for targeting active
case detection efforts at specific locations and in specific
months, potentially making such resource-intensive efforts
more cost-effective. A comparison of our predictions with
the standard WHO approach shows that the latter esti-
mates a higher annual malaria incidence of 23 per 1000
population in 2009 in Namibia and generally followed a
pattern close to that of the crude incidence (Supplemen-
tary information). The WHO approach is described in detail
elsewhere (Cibulskis et al., 2011). The main difference in
our approach is the use of health facility as a random effect
in the model and the utilization of the spatial and temporal
autocorrelation in the data resulting in smoothing of the
predictions.

Bayesian hierarchical models are often implemented
using numerical statistical methods such as Markov Chain
Monte Carlo (MCMC) and Laplace transformation amongst
others (Cressie and Wikle, 2011) (p. 238). When large data
set are involved, MCMC computation can be demanding
and the Gaussian Markov Random Field (GMRF) (Rue and
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Martino, 2007) offer an alternative approach due to the
sparseness of resulting covariance matrixes. Thus, they
are computationally faster and with desirable Markov
properties (Kneib et al, 2010; Rue et al., 2009; Rue and
Martino, 2007). GMRF are implementable in INLA (Martins
et al., 2013), although, the result are more accurate if the
number of hyperparameters in model implemented is
small typically less than 12 (Kneib et al., 2010; Rue et al.,
2009; Rue and Martino, 2007).

One drawback of many studies analyzing areal data,
and one common to the Bayesian approach used in this
study, is the modified areal unit problem (MAUP), a
well-known analytical problem in geography that could
affect the observed statistical results with a change in
shape or size of spatial polygons used in the analysis
(Barnerjee et al, 2004; Robinson, 1950; Wakefield,
2003). In this study constituencies were selected as the
basis for presenting predictions, with the aim of provid-
ing information at this level to health authorities, though
the model was fitted at facility level. There is therefore a
potential impact of MAUP both in terms of the shape of
constituencies and in predicting at constituency level
from facility level data. Secondly, the data used for this
study were obtained from the Namibia HMIS which cov-
ers the majority of public health facilities in the north.
This means that the findings are relevant only for the
12-month time-series in 2009. The results could be im-
proved by inclusion of more data and at different time
points to draw more stable long-term spatio-temporal
patterns (Zhou et al., 2005). In addition, the modelling
approach excluded the effects of population movements
between regions, especially across borders, while the
relations between the environmental variables could
change across space and at shorter time periods than
those considered (Hay et al.,, 2008). Finally, some sources
of uncertainty remain. In particular, the underlying the
care-seeking behaviour data used to adjust denominator
populations relate to children under 5years, not the
whole population. Utilisation rates were estimated from
cross-sectional surveys and therefore may not capture
temporal changes in care-seeking behaviour. The under-
lying utilisation data also relate to fever rather than ma-
laria per se.

5. Conclusion

Although Namibia faces a significant malaria case inci-
dence in the border regions, the results of this analysis sug-
gest that the country may be within the pre-elimination
targets in most parts of the northern region. The NVDCP
has initiated a process of creating a malaria-free buffer
extending approximately 25 km across the border with An-
gola as well as with Zambia and Botswana (Ministry of
Health and Social Services, 2010c; Noor et al, 2013b,
Trans-Zambezi Malaria Initiative (Tzmi), 2012). This study
provides additional information to identify the highest ma-
laria risk areas in Namibia and when used together with
evidence from modelled community parasite prevalence
surveys on receptive and contemporary malaria risk,
should support malaria control and elimination initiatives
in the country.
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Abstract

Background: Identifying areas that support high malaria risks and where populations lack access to health care is central to
reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum
using routine data to help focus malaria interventions.

Methods: To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from
the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics
to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian
spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and
temporal variation of incidence.

Findings: From the analysis of healthcare utilisation, over 80% of the population was within 2 hours” travel of the nearest
public health facility, while 64.4% were within 30 minutes” travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl
3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax
peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where
annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P.
falciparum case incidence was at least 1 per 1000.

Conclusion:This study showed how routine data can be combined with household survey data to model malaria incidence.
The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the
lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine
levels of imported risks may be useful for the elimination ambitions in Afghanistan.
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Background rate of 97 deaths hefore the age of five years for every 1000

. Lo L. X . children born [2,3]. In Afghanistan, malaria is an important
Since the Soviet invasion in 1979, Afghanistan has experienced disease with approximately half the population at risk [4,5,6].

prolonged periods of insecurity and political instability. Conse-

¢ 5 " Malaria transmission in the country is constrained by altitude,
quently it has some of the poorest socio-economic and health

L * . the rugged topography, patchy rainfall and extreme aridity [7].
status indicators globally. The country is ranked the thirteen lowest  There is no active malaria transmission in areas greater than 2000

on the human development index [1] and has a child mortality metres abeve mean sea level [8], while transmission is unstable in
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areas with limited annual rainfall. There are at least six malaria
vectors in Afghanistan namely: the Anopheles superpictus, An.
culicifacies, An. hycranus, An. Pulcherimus, An. fluviatilis, and
An. stephensi. The latter two are mainly found in the eastern
provinces [4,9]. Malaria infections are predominantly due to the
Plasmodium wvivax parasite although Plasmodium falciparum
infections exist [8].

Afghanistan has a long history of malaria control dating back to
the formation of the Directorate General of Preventive Medicine
and Primary Health Care in 1948 [7]. Earlier vector control efforts
focused on spraying using dichlorodiphenyltrichloroethane (DDT)
and by 1970 the An. superpictus was almost eradicated [7,10,11].
After the Scviet invasion, the national program gradually
weakened and had almost ceased to function [7,12]. Chloroquine
resistance and population movement, mainly from returning
refugees, contributed to an increase in malaria burden in
Afghanistan [12,13,14]. Since 2000, however, substantial resourc-
es have been invested in malaria control in Afghanistan with
support from the Global Fund to fight AIDS, Tuberculosis and
Malaria, the United States Agency for International Development
(USAID) as well as other agencies [15]. Despite the insecurity and
infrastructure challenges, progress has been made in reducing the
burden [5]. A recent malaria indicator survey (MIS) conducted in
2011 showed an average prevalence of less than 1% for both P.
vivax and P. felciparum nationally while 76% of household
clusters had no residents infected.

In the national malaria strategy of 2008 2013, Afghanistan
aimed to reduce, by 60%, the malaria morbidity by 2013 and
reduce P. falciparum cases to near zero with the aim of eventually
interrupting its transmission [15]. The main interventions were
coverage with vector control, parasitological diagnosis and
treatment with effective antimalarials. In addition, a cross-border
initiative was launched with Tajikistan to reduce the risk of
imperted infections to Tajikistan and to eliminate P. falciparum
malaria in three horder districts.

To track progress towards the national targets, the National
Malaria and Leishmaniasis Control Programme (NMLCP) and
partners established a routine information system to report
monthly malaria cases by health facility [16]. The system,
however, captured passively detected case data from only the
public health system and centained both clinically diagnosed and
parasitologically confirmed P. wivax and P. falciparum cases.
Passive case detection, usually from HMIS, is hindered by the
challenges of the low parasite confirmation rates which inflate
reported malaria caseloads. In addition, low reporting rates tend to
underestimate disease burdens because of the spatially and
temporally incomplete data [17]. To provide more reliable
estimates of disease burden, techniques are required that can
adjust for these deficiencies by smoothing crude incidence rates;
filling in gaps where no health reports have been assembled; and
adjusting for the rate of facility utilisation since only a proportion
of actual cases present at a facility [18].

In this study, a formal spatial and temporal approach, that
incorporates a variety of data sources to estimate malaria
incidence by district from 2006 2009 in Afghanistan, was
developed. First, nationally representative household survey data
from the 2011 MIS were used to characterize the utilisation of
public health facilities and subsequently develop the denominator
(catchment population) weighted by probability of health facility
use for fever treatment. Secondly, malaria cases reported at the
health facilities were used to model incidence of P. vivax and P.
falciparum spatially and temporally using a Bayesian approach
[19]. The clinically reported cases were adjusted using species-
specific slide positivity rates observed at the facility and combined
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with parasite species confirmed cases to calculate the numerator.
Slide positivity is the ratic of the number of positive malaria cases
to the total number of people examined usually expressed as a
percentage (rate). The combination of the adjusted cases and
catchment populations were then used to compute the incidence of

both P. vivax and P. falciparum.

Methods

Health management information structure in
Afghanistan

Afghanistan is divided into 84 administrative provinces.
Healthcare is delivered mainly through the Basic Package for
Health Services (BPHS) and the Essential Package for Hospital
Services (EPHS) constituted in 2002 by the Ministry of Public
Health (MoPH) [20,21,22]. In a bid to increase coverage, the
BFHS was expanded through the contracting out of services to
NGOs and MoPH partners [21,23]. The BHC constitutes clinics,
health posts and Maternal Child Health (MCH) centres and
Comprehensive Health Centres (CHC). This is linked te EPHS
made up of the District Hospitals (DH) (first referral level) and
regional or provincial (tertiary) hospitals. At village level commu-
nity health workers manage the health posts and treat mild
conditions and, in some cases, Mobile Health Teams (MHTSs) are
used [20,24]. In terms of data reports, tally sheets are filled at these
lower-tier facilities and aggregated at the next tier facilities (CHC)
which are then forwarded to regional directorates [16]. Thus, the
health posts serve as a support network for the health centres and
sometimes malaria cases are reported at the health centre rather
than the individual health unit. The basic health centres link the
basic service providers at the community level with the next service
tier {the CHC) that are, in turn, linked to district hospitals and
regional referral hospitals. Thus, where no regional or tertiary
facility exists, district hospitals are the main referral centres. HMIS
reports are also compiled the regional level and distributed to the
national management level. Inpatient facilities are provided
mainly at the tertiary level [20]. Parasitological diagnosis is
conducted at higher tier facilities (Hospitals) where laboratory
facilities exist while clinical diagnosis is predominantly used at
health posts. The 2010 national malaria treatment guidelines
outline the scale up of diagnostics at all health facilities to ensure
diagnosis prior to treatment.

Data

The malaria case data were obtained from HMIS through the
Afghanistan National Malaria and Leishmaniasis Control Pro-
gramme (NMLCP). This consisted of records from 1,629 public
health facilities for a 48-month period from 2006 to 2009. Data
represented aggregate monthly cases of P. faleiparum and P.
vivax. Of the 1,629 health facilities, 1,587 had reported malaria
cases based on both clinical and parasitclogy examination.
Parasitological diagnosis (microscopy or RDTs) was conducted
at higher-tier facilities (hospitals and health centres) where
laboratory facilities exist while clinical diagnosis was predomi-
nantly used at lower-level facilities such as health posts (File S1).
No cases were examined or reported for 228 facilities which were
treated as missing data while data for mobile units (n = 93) were
omitted from the final analysis since they serve as outreach centres
from major facilities. The missing spatial and temporal structures
of data were imputed as ‘NAs’ and predictions made at missing
locations. The spatial coerdinates of health facilities were obtained
from the Afghan Management Information Systems (AMIS)
(http://www.aims.org.af/), which was formerly managed by the
United Nations Office for the Coordination of Humanitarian

July 2014 | Volume ¢ | Issue 7 | ¢102304

327



Affairs (UNOCHA) and the United Nations Development
Programme (UNDP) in the early 2000s, but became a national
independent Non-Governmental Organisation (NGO) in 2008,
These facilities were either mapped using non-differential hand-
held global pesitioning systems (GPS) receivers during the
assessment surveys or in some cases the longitude and latitude
were established using a village or settlement database. For
analysis, the facilities were classified into three broad categories
that combined: basic facilities made up of health posts (HPs),
clinics and maternal health centres (MCH); health centres; and
hospitals.

Data for modelling health care utilisation for treatment of fever
was obtained from the national MIS carried out between
September and October 2011 (n= 15,442 individuals)[25]. The
MIS was conducted in 21 provinces, across the diverse malaria
strata (medium to high risks; low risk; and very low or potentially
malaria free areas) in Afghanistan, but excluded the southern
regions for security reasons. A multi-stage probability sampling
design was adopted in line with other MIS surveys conducted in
sub-Saharan countries [26]. At the first stage clusters or villages
were selected randomly in a district via probability sampling while
at the second stage, households within the selected clusters were
sampled randomly [25]. Self-reported treatment seeking hehav-
iour, disaggregated by healthcare sector, was recorded for all
household members that reported an episede of fever two weeks
prior to the survey. A gridded pepulation surface for Afghanistan
was obtained from Asiapop at 100 m x 100 m spatial resolution
(http://www . worldpop.org.uk/)[27].

Analysis

Analysis of public sector utilisation and defining the
denominator for modelling incidence

A combination of land cover, elevation, road and river data
layers was used to generate a gridded cost surface of travel time
between patient origins (households) and destinations (public
health facilities) as described elsewhere [28] and in File S1. Travel
times were extracted for each MIS cluster and used to predict the
probability of health facility attendance based en reperted fever
treatment. A probability of attendance was modelled spatially at
1 km by 1 km resclution and combined with population density to
generate a population-weighted surface for fever treatment. The
population-weighted counts, used in modelling incidence, were
extracted based on a 2-hour cut off based on the modelled distance
decay curves (SI). The catchment population was adjusted for
reporting rates at the facilities calculated as a ratio of received
reports to the expected number over the f()ur—yea.r period.

Modelling incidence of P. falciparum and P. vivax in
Afghanistan

To model the incidence of malaria, HMIS data were compiled
from cases aggregated at each facility for each month. A number
of environmental covariates such temperature suitability index
(TSI, precipitation and enhanced vegetation index (EVI) that are
known to affect malaria transmission were assembled (31). The
selection of covariates was based on previous studies [19] as well as
aiming for a minimum set to achieve parsimeny based on bestgim
package in R [29]. These covariates were extracted and matched
to each data point in space and time. Environmental covariates
were used in a Bayesian zero-inflated conditional autoregressive
(CAR) model to predict incidence at the district level. Since 60%
of data were zeres, a zero  inflated Poisson distribution was used,
generalized as [30,31];
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for the i™ space-time observation and 0 < g; < 1. The probability is
defined via a two-component mixed model such that the
probability is @; with ‘structural’ zero or defaulting to a general
Poisson model (Pr(X:k):ike’A/k[). In general y; can depend
on a set of covariates such that:

Flpmy=(1—py)Po(y,0)+pyPo(y, expla+bT Xy]) (2)

with o (equation 2) forming the intercept modified by a g x 1
vector of Xycovariates with unknown coefficients f. Further,

k
log{u)= Exfjﬁ] while logit(p;)= log[p; /(1 —py)]- Thus, the
i1

zerc-inflated  probability increases the chance of predicting
‘structural’ zero [32,33]. Random effects were introduced at three
levels of the health facility, district and province in the Bayesian

2
sty

framework. A spatial effect prior gy, ~N(0,t 0~1) was intro-
duced at the district level to account for spatial heterogeneity.
Model specification was completed by assigning priors to the
remaining hyper-parameters (the unstructured random effects).
Inverse Gamma priors JG{a,b) were assigned to predsion
hyperparameters for these unstructured effects components
B ynsr ~ N(0,73). The time interaction was medelled as a first-
order auto-regressive process, pY(s;t;—1) with the first term
coming from a stationary distribution N{(0,62, 3" ) that depends on
past values for 0> p <1 [34]. Full details of implementation can be
found in File S1.

Posterior predictions were made at the district level along with
associated standard errors. Four spatio-temporal models were
compared to assess the effect of the introduced random effects at
province and facility level as well as the inclusion of the covariates.
The first two models (referred to as M1 and M2} did not include
any covariates with random effects excluded for the first model
(M1}. The other two models (M3 and M4) included environmental
covariates, with M3 excluding random effects at facility and
province level. Comparisons were made using the deviance
information criterion (DIC) [35]. This approach simplifies model
selection to a single value, which can be easily tabulated for
comparison with proper Bayesian interpretation. A subset
comprising 10% of the data selected randomly was used
independently to compare posterior prediction against the crude
incidence. Additionally, model checking was implemented by
assessing the variance and the standard error of the predictive
distribution [36].

Results

Data characteristics and public sector utilisation in
Afghanistan

In modelling healthcare utilisation, a list of the universe of
public health facilities was used (n = 1,581) from the 34 provinces.
There were more health posts (n=754) compared to health
centres (n =698} and hospital (n = 129). The majority were run by
NGOs that work in partnership with the Ministry of Public Health
(MOPH). The malaria case reporting rate was low for basic health
facilities (an average of 33% for the four years) compared to
hospitals and health centres where the reporting rate was =>70%.
Of the estimated population (32.3 million) in 2011, 27.8 million
(85.8%) were estimated to be within 2 hours’ of travel of a public
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health facility; 17.9 million (64.4%) were within 30 minutes.
Approximately 13.1 million (47.4%) were within distances where
the probability of attendance was =60% (SI).

Posterior predictions of incidence of P. falciparum and P.
vivax

Table 1 lists the four Bayesian spatio-temporal medels
implemented aleng with associated model parameters for both
P. vivax and P. falciparum. According to the DIC, the fourth
model (M4) provided the best trade-off between model fit and
parsimony compared te the other three models, although with
more effective parameters Pp. For both P. wvivax and P.
falciparum, the standard error in M4 of the predictive distribution
was also lower. This model was subsequently selected for analysis
of incidence of P. vivax and P. falciparum. Overall mean error of
the crude incidence and the predicted incidence per 1000
population per year, based on a 10% validation set was —0.30
and —0.44 for P. vivax and P. falciparum respectively showing an
overall tendency to under-predict by less than 0.5 incident cases
per 1000 population. The Pearsen correlation based on the
validation set was 0.63 for P. vivax and 0.62 for P. falciparum.
Table 2 lists the posterior summaries of the parameters
representing the fixed effects, the unstructured components, and
the temporal and spatial parameters for both the P. vivax and P.
falciparuwm models. None of the covariate parameters were
significant at 95% Bayesian credible interval (Crl) based on the
P falciparum model but temperature suitability (0.123, 95% Crl
0.046 0.202) was significant based on the P. vivax model. All
other model parameters were significant at 95% Cil.

Figure 1 shows the monthly variation of incidence for P. vivax
and P. falciparum for the four-year period. The incidence of P.
vivax peaked in August (7.611 95% Crl 4.849 11.721) compared
to P. falciparum which peaked in November (mean incidence per
1,000 population was 2.403 95% Crl 0.929 5.276). P. falciparum
was lowest in May (0.830 95% Crl 0.303 1.783). Figure 2 and
Figure 3 shows maps of monthly incidence of P. vivax and P.
falciparum, respectively, at district level. The incidence of P.
falciparum  was generally very low compared to P. wivax.
Nangahar, Kabul and Kunar had highest estimated clinical
burden of P. vivax and P. falciparum while lowest estimated
burden was in districts bordering Iran in Nimroz and Farah and in
northern Afghanistan. The predicted mean incidence in the most
recent data year (2009) for P. vivax was 5.4 (95% Cil 3.2 9.2)
cases per 1,000 populatien and 1.2 (95% Crl 0.4 2.9) cases per
1,000 population for P. falciparwm. Comparison between the
baseline in 2006 and in 2009 showed small change in incidence
(4.9,95% Crl 3.0 7.8and 5.1,95% Crl 3.2 8.1 respectively for P.
vivax; 1.1,95% Crl 0.3 2.4 and 1.1,95% Crl 0.3 2.5 respectively
for P. falciparum) (Figure 4). However, there was a slight increase
in malaria incidence in 2008 for both P. vivax and P. falciparum
as predicted by the model, but, subsequently dropped to the 2006
level in 2009. The mean percentage change in incidence in the 34
provinces between the baseline year and 2009 for P. vivax was 3.0
and 5.9 for P. falciparum (Table 3). P. vivax reduced in 17 of the
34 provinces in Afghanistan while P. falciparum reduced in 13
provinces.

Table 3 provides summaries of population at risk by region. Of
the 30.6 millien people in 2009, the estimated burden of P. vivax
in 2009 was 165,712 compared to 36,077 for P. falciparum.
Approximately 32% of the population lived in regions where P.
wvivax was greater than | case per 1000 population compared to
23.7% for P. fulciparum. About 1.3% of the population were
estimated to live in districts with <1 case per 1,000 population and
the majority (66.7%) in districts of 1 to<<5.P. vivax cases per 1,000
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Table 2. Parameters of the selected Bayesian models (M4) for both P. falciparum and P. vivax (sequentially as intercept Bq, EVI, TSI,
Precipitation, random effects at (facility, district and province), temporal parameter and spatial CAR prior effect ¢, SD is the
Standard Deviation).
Parameter Mean sSD 5% 50% 95%
P. falciparum Intercept ([q) 3.630 0.387 4.244 3.633 3.008
EVI (By) —0.031 0.079 —0.162 —0.031 0.099
TSI (B2) 0.164 0.127 —0.042 0.163 0.334
Precipitation (Bs) 0.008 0.051 0.077 0.008 0.091
Facility random effect (z,) 1.940 1.903 0.192 1.380 5.534
District random effect (t3) 2484 0.829 1.355 2.369 4010
Province random effect (t3) 3668 1.164 2040 3,527 5.838
Rho for the month (p) 0.849 onz 0617 0.881 0.969
Spatial effect (p) 5492 4.535 0.698 2376 20.870
P. vivax Intercept () 2.065 0.240 2451 2.069 1.662
EVI (B} —0.026 0.019 —0.058 —0.026 0.005
TSI () 0.124 0.048 0.046 0.124 0.202
Precipitation (s} 0013 0011 0.005 0.013 0.031
Facility random effect (z,) 8383 1.778 6.095 8.057 11.750
District random effect (t,) 2.081 1.976 0.181 1.500 5.888
Province random effect (z;) 7972 3.953 3.897 6.922 15530
Rho for the month (p) 0728 0.098 0.551 0.737 0.872
Spatial effect (p) 3141 0.983 1.759 3.024 4933
The betas represent the fixed effects of the covariates.
doi:10.1371/journal pone.0102304.t002
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Figure 1. Time series of two malaria parasites. Plots showing the predicted monthly (n =48 months) incidence for (2006-2009) for P. vivax
(mean as top dash-dot line) and for P. falciparum (mean as green dash line) with error bars for each moth showing 95% Bayesian credible interval
(Crl). P. vivax formed the most burden in Afghanistan and its incidence peaked in July and August compared to P. faiciparum that peaked later in the
year in November.

doi:10.1371/journal.pone.0102304.g001
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Figure 2. Monthly maps of P. vivax. Maps showing the predicted posterior mean monthly incidence of P. vivax per 1000 population for
Afghanistan in 2009 using a Bayesian CAR model with environmental covariates (rainfall, TSI and EVI). Cases comprised of parasitologically confirmed
and dinical cases corrected for slide positivity rates at the facility for a four-year period (2006-2009). Random unstructured effects were included at
the fadility level to account for regional heterogeneity. The highest burden of P. vivax (exceeding 15 cases per 1000 population) was in southeastern

and the eastern regions bordering Pakistan.
doi:10.1371/journal.pone.0102304.g002

population. Of the remaining population, only 23.3% were in
districts with 5 to<<10 cases per 1,000 population, 8.4% in 10 to<
20 cases per 1,000 population and 0.3% of the population. The
latter comprised of populations in eastern Afghanistan in Kunar
and Nangarhar provinces. For P. falciparum case incidence,
76.3% of the population lived in districts where annual incidence
was <1 per 1,000 population, while 20.9% lived in areas were
incidence of P. falciparum was 1 to<<5 cases per 1,000 population.
A minority (2.8%) of the population lived in districts with an
estimated annual incidence of 5 to<<10 P. falciparum cases per
1,000 population.

Discussion

In this study we have developed a modelling approach that
combines household and routine HMIS data within a Bayesian
hierarchical spatial-temporal model, to compute the annual
incidence of P. wivax and P. falciparum malaria across 398
districts in Afghanistan. The findings demonstrate a strong
geographic co-distribution of P. vivax and P. falciparum malaria
morbidity in Afghanistan (Figure 2 and Figure 3). There was no
significant change in the mean annual incidence between 2006
and 2009. The incidence of P. vivax and P. falciparum in 2009
were estimated to be 5.4 and 1.2 per 1000 population respectively.
The incidence (for both parasites) was higher in the south-eastern
and eastern parts of Afghanistan bordering Pakistan and lowest in
northern districts. In addition, the analysis showed that malaria in

PLOS ONE | www.plosone.org

Afghanistan exhibits a strong seasonal peak between July and
November. P. vivax tended to peak in August (mean incidence of
7.611 95% Crl 4.849-11.721) compared to P. falciparum which
peaked in November (mean incidence 2.403 95% Crl 0.929-
5.276). However, incidence was low in the winter months between
January and May for both parasites. Slightly more than 76% of
districts in Afghanistan had predicted incidence of<<1 per 1000
population for P. falciparum which is a threshold for pre-
elimination.

Using the 2006 data as baseline estimates, 17 and 13 provinces
had already reduced P. wvivax and P. falciparum incidence
respectively by 2009. No reduction in incidence was predicted for
Nangahar, Balkh, Sari Pul, Khost and Hirat Nangahar and Khost
provinces in south-eastern regions of Afghanistan were amongst
those with highest predicted incidence for both parasites. A range
of malaria control strategies are implemented at a national level in
Afghanistan. LLIN, for example, is targeted in the high to medium
risk districts in Badakhshan, Badghes, Baghlan, Balkh, Faryab,
Herat, Helmand, Kandahar, Khost, Kunar, Kunduz, Laghman,
Nangarhar and Takhar. From the MIS undertaken in 2008,
Nangahar had an estimated long lasting insecticidal nets (LLINs)
coverage of 19% while no LLINs use was observed in Hirat [37].
Sari Pul region, for example, had some of lowest rates of long
lasting insecticidal nets (LLINs) coverage and access to treatment
of care. In the districts where indoor residual spraying (IRS) is used
as the main vector control approach or to complement LLINs, the
targeting of this intervention should be informed by the lag in the

6 July 2014 | Volume 9 | Issue 7 | 102304
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Figure 3. Monthly maps of P. falciparum. Maps showing the predicted monthly incidence of P. falciparum per 1000 population for Afghanistan in
2009 using a Bayesian CAR model with environmental covariates (rainfall, TSI and EVI). Malaria cases comprised of parasitologically confirmed and
clinical cases corrected for slide positivity rates at the facility. Random unstructured effects were included at the facility level to account for regional
heterogeneity. P. falciparum constitutes less than 10% of the malaria burden in Afghanistan and experienced a late peak in the year (November).
doi:10.1371/journal.pone.0102304.g003

peak season of the two main malaria parasites. P. vivax peaks in Of the 34 provinces of Afghanistan, five (Bamyan, Ghazni,

August while P. falciparum peaks in November. IRS campaigns Ghor, Panjsheer and Nuristan) were considered to be malaria free

should therefore be planned in such away the insecticide are based on altitude thresholds [38]. These provinces, however,

efficacious through the two peak seasons. accounted for 9.7% of all estimated cases in 2009 indicating a
e 2|
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Figure 4. Incidence change plot at district level. Plot showing the differences in malaria incidence per 1000 population (y-axis) between the
baseline year (2006) plotted as blue triangles and incidence for 2009 (hollow red circles). The x-axis represents districts (n=398). The positive change
denoting increase in plotted vertically upwards from the baseline year while negative denoting a reduction in incidence is vertically downwards from
the baseline with the length indicating magnitude of change. Overall percentage change for P. vivax was 3.0 and 5.9 for P. falciparum.
doi:10.1371/journal.pone.0102304.g004
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potential problem of importation of malaria cases due to human
population movement in Afghanistan or foci transmission in
valleys where climatic conditions are favourable. The available
data, however, do not provide malaria case definitions and it is
impossible to distinguish between imported and local cases. In the
malaria free provinces, suspected imported infections should be
documented and algorithms, based mainly on travel history, could
be used as the basis for case definitions [39]. In addition, health
advice and chemoprophylaxis for travellers from the malaria free
to endemic provinces should be initiated as an additional package
for malaria prevention. An incidence of less than 1 P. falciparum
case per 1000 individuals is censidered to be the threshold for pre-
elimination by the WHO [40]. By 2009, 21 provinces in
Afghanistan had already achieved such a threshold. However,
the biggest challenge is likely to be operational and a compre-
hensive analysis of overall feasibility of P. falciparum elimination
[41].

The results of our analysis also have important applications to
the design and allocation of resources for malaria case manage-
ment. Mixed infections especially with P. vivax and P. falciparum
present a challenge for treatment [42]. P. vivax infections relapse
from dormant liver-stage hypnozoites months after primary
infections and are often difficult to diagnose and treat and define
as true incident infections [43]. Chloroquine is used as first line
treatment of P. vivex in Afghanistan as recommended for
countries where it remains efficacious and where parasites can
be isolated [44], while Artesunate + Sulfadoxine-Pyrimethamine
(AS+SP) is used for P. faleiparwm [15]. The incidence maps
developed in our study can be used to quantify the need for the
number of treatment dosages required for both parasites in
Afghanistan. The prevalence of Glucose-6-Phosphate Dehydroge-
nase (G6PD) deficiency is estimated to be 8% in Afghanistan [45]
which complicates the use of the reccomended 14 day regiment of
primaquine (PQ)) for P.wivax [46]. The use of PQ) in patients with
GEPD deficiency can cause severe haemolysis [47]. To improve
the existing information on the prevalence of GEPD deficiency
these maps can be used to provide P. vivax incidence information
that would be useful for the design of G6PD surveys. Where both
species are endemic, the use of ACTs has been proposed [48,49]
and other clinical studies have shown a faster parasite clearance
rate when AGTs were used [50]. Figure 2 and Figure 3 indicates
Kunar, Khost, Laghman, Nangarhar, Takhar and some districts
in Kandahar could benefit from such a case management
approach.

Although HMIS data used in this analysis represent individuals
presenting with fever (symptomatic cases) and with a greater
chance of detecting an infection, diagnosis was mainly based on
either microscopy or Rapid Diagnostic Test (RDT), both of which
have varying sensitivities [51]. In low transmission setting, the rate
of false positivity rates, when using RDTs, may be higher and the
quality of microscopy in routine HMIS data with varying
laboratory conditions may also vary [52]. In addition, it was not
possible to identify which diagnoesis was used at each facility to
adjust the sensitivities. A combination of facters might have limited
the effect of environmental covariates especially for P. falciparum.
This relates to assumptions of linearity during modelling even
though rainfall was lagged by four months (SI) and given the short
time-series of the data (four years). We used an autoregressive
time-varying factor in the model assuming that present state
evolves from previous values, but modified by the set of spatial and
spatio-temporal covariates[34]. Future studies should relax the
linearity assumptions of the fixed effects. Another limitation of the
data presented here is that the effects of migration or travel
between various regions were not incorporated into the modelling
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framework. A study in south-eastern Afghanistan showed higher
asymptomatic infections in the migrant populatien [53]. Model-
ling migration patterns at national level was beyond the scope of
this study. It was assumed that individuals would seek treatment at
the nearest facility or at least within a district or cne of its
neighbours. In this study we have modelled malaria morbidity at
the facility level and explicitly modelled healthcare attendance at
individual facilities as part of cur methodology. Security or conflict
remains an important factor affecting utilisation of healthcare
facilities. This was not modelled in the study due to lack of data,
but future studies should consider accounting for this effect on
reported health events. Given the additional spatial precision
resulting from the facility-level analysis representing febrile
individuals within facility catchments, maps of beth malaria
species are useful for concerted planning.

Conclusion

This study demonstrates how HMIS and household survey data.
can be assembled, integrated and interpolated te identify districts
with high malaria burden spatially and temporally. Maps were
produced at the level of decision-making units, which are
potentially useful to the malaria control programme in assessing
the changing burden of disease in Afghanistan, targeting malaria
interventions at the population most at risk, and planning health
resources. The districts identified with high burden should be the
focus for targeting vector control. Districts with both P. wiwax and
P. falciparum and high rates of mixed infections should be
investigated and careful case management strategies adopted.
Improved case definition to determine levels of imported risks in
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APPENDIX 2: Useful mathematical relations

A2.1: Conjugate prior for Poisson distribution

The Poisson distribution has a conjugate gamma prior. Remember for Bayesian inference, the
posterior distribution is given as a product of the likelihood and the prior distribution. In practice
there will be more than one prior for the posterior. The likelihood of i.i.d samples has a Poisson

distribution. Therefore starting with the Poisson likelihood, we havey,, i=1,....Nas

observations,

Ly =T1

/»Lyi e—l
Y;!

With log likelihood given as;

For the Gamma prior ;
ba a-1 —ba
Gamma(a,b) =— A" -e
I'a
posterior = p(A| y)aP(y| 1) p(4)
— {/rtZyi efni}{efbﬁ./lafl}

_ iZyi +a—le—i(n+b)

posterior = Ga(Xy, +a,n+b)
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A2.2: Jeffrey prior for Poisson

The Jeffrey prior which does not change and is non-informative with respect to parametrisation,

82
\/@=\/—E802Iog f(ylo)eo
Writing inform of the posterior f(y| ) and linearising by taking the logarithm we have
log f(y, | #)=3y, |Og,u—n,u—logZyi!
0 1
109 f(y, | #)=Zy,—~—n
H yz

o -2y,
o log f(y, | 1)= 7

With expectations for the log of the likelihood as:

\/E(aaﬂ2 log f(y, |u)j =_;

Where zy, =n a constant
A2.3: The inverse Gamma Prior on Poisson

Drawing from the gamma distribution,

P(0)= —ﬂ;g)_ e

The inverse gamma prior can be written in terms of g as

The density as,
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1\ 2
()
P(p)= Lo

ﬂa¢*(a+1)e7
- T(a)

¢ ~ inverse—Gammal(«, 3)
A2.4: Conjugate prior for Binomial distribution

The binomial distribution has the form, with y as observations,

f(yl n’ﬂ-):y!(+iy)!ﬂy(l_”)n_y;

T e [0,1]
With the quantity on right hand side, % sometimes simply written as (HJ and
yrn—y): y

¥ (L— )" dictating the shape of the distribution.

The conjugate prior for binomial is the beta distribution valid in same interval, thus,

r'(a+b)
r(2)r(b)

Beta(a,b)= a*tl-a)t

The prior for 7 < [0,1] via substitution

a+b) .4 b-1
f(z)= l"r((a)l"(b)) 71— )

With posterior evaluated as product of prior and likelihood
a 70—z <2 Q-x)"
a AIAL— g

This evaluates to

Beta(a+y,b+n—y)
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F(a+ b+ n) aa+y_1(1_a)b+n_y_1

Fa+y)r(b+n-y)
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APPENDIX 3: Data tabulation: sources, spatial and temporal resolutions and application

Year
Type or downloaded
resolution or
Source (URL) (Degree) Description Assembled
"WorldPop Project"
Population (http://www.worldpop.org.uk/data/data_sources/) 0.000833  Population counts per 100m pixel 2010
Advanced Spaceborne Thermal Emission and Reflection
Radiometer-Global Digital Elevation Model (ASTER- GTOPO30 Digital Elevation Model
Elevation GDEM) (http://asterweb.jpl.nasa.gov/data.asp) 0.008332  [meter] 2010
MODIS Mean Enhanced Vegetation
Vegetation Enhanced Vegetaion Index (EVI) (monthly product) 0.008333 Index Monthly
30
Vegetation Long term average (WoldClim, http://www.worldclim.org/) seconds Vegetation index 1950-2000
Normalised Difference vegetation Index (NDVI) (Long term
Vegetation mean) 0.008333  Vegetation index Monthly
Tropical Rainfall Measuring Mission (TRMM 3B43)(
http://mirador.gsfc.nasa.gov/collections/ TRMM_3B43__006.
Precipitation shtml) 0.25x0.25  The rate of precipitation Monthly
30
Precipitation Long term average (WoldClim, http://www.worldclim.org/) seconds Precipitation 1950-2000
Temperature
suitability index Malaria Atlas Project (http://www.map.ox.ac.uk/browse- Index (0 not suitable for malaria
(TSI) resources/) 0.008333 transmission, 1 suitable) 2011
30
Temperature Long term average (WoldClim, http://www.worldclim.org/) seconds Tempearture in degrees celsius 1950-2000
Urban/Rural WorldPop Project (http://www.worldpop.org.uk) Vector urban and rural areas - Africa extent 2010
CIESIN Global Rural Urban Mapping Project (GRUMP)
Urban/Rural (http://sedac.ciesin.columbia.edu/data/sets/browse) 0.008333 Urban areas [N/A] 2000
Ancilliary GIS Country boundaries, roads, rives,
Data DIVA-GIS (http://www.diva-gis.org/) Vector Gazetters 2011
Ancilliary GIS Country boundaries, roads, rives,
Data Mapcruzin (http://www.mapcruzin.com/) Vector Gazetters 2011
zetter
Gazetters Alexandria (http://www.alexandria.ucsb.edu/) Database ~ Alexandria Gazetteer Server Client 2011
Falling Rain Genomics: World
Falling Rain Genomics: (http://www:.fallingrain.com/world/) Database Gazetter 2011
GeoNames (http://www.geonames.org/) Database =~ GeoNames Gazetter 2011
Getty Thesaurus of Geographic Names (TGN) A structured vocabulary of
(http://www.getty.edu/research/tools/vocabularies/index.html geographic names for indexing art
) Database and architecture. 2011
Google maps or earth search engine
(http://www.google.co.uk/intl/en_uk/earth/) Database Google 2011
NIMA GNS Public Page (http://earth-info.nga.mil/gns/html/) Database NGA GEOnet Names 2011
Statistics R (http://cran.r-project.org/) Software Statistical software 2009
ESA - "GlobCover Project" MERIS global land cover
Land cover (http://due.esrin.esa.int/globcover/) 0.002778  classification [N/A] 2009
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