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An advanced digital filter method to generate synthetic turbulence is presented for
efficient two- and three-dimensional leading edge noise predictions. The technique, which
is based on the Random Particle-Mesh method, produces a turbulent inflow that matches
a target isotropic energy spectrum. The discretized equations for the synthetic eddies, and
the input parameters needed to recover the desired turbulence statistics, are presented.
Moreover, a simple and fast implementation strategy, which does not require an additional
boundary condition, is presented under the frozen turbulence assumption. The method
is used in a linearized Euler solver to predict turbulence-airfoil interaction noise from
a number of configurations, including variations in airfoil thickness, angle of attack and
Mach number. For the first time, noise predictions from a digital filter method are directly
compared to those provided by synthetic turbulence based on a summation of Fourier
modes. The comparison indicates that the advanced digital filter method gives enhanced
performance in terms of computational cost and simulation accuracy. In addition, initial
tests show that this method is capable of reproducing experimental noise measurements
within 3 dB accuracy.
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I. Introduction

Over the past few decades, commercial aviation has experienced a large increase in the number of pas-
sengers and goods transported. This expansion has been accompanied by a reduction in flight hours and

fuel costs, which has helped to develop the economic globalization and emerging economies. Furthermore,
air traffic is forecast to grow in the coming years.1 In order to ensure a sustainable development, this growth
must be associated with a reduction in the environmental impact of aviation.2

In the 60’s, jet noise produced by turbojet-powered aircraft was the dominant source of noise, particularly
due to the turbulent mixing between the jet and the external flow around the nacelle. Today, modern turbofan
engines have significantly reduced jet noise by shielding the hot stream with a cold by-pass exhaust stream
and by increasing the by-pass ratio. Thus, fan noise has become the biggest challenge when attempting
to reduce engine noise at take-off and approach, whilst the influence of the compressor and turbine stages
remains quieter than the fan.3
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Figure 1 shows a schematic representation of the main sources of engine fan broadband noise. Ganz
et al.4 ran a series of experiments to quantify the contribution of different noise sources to the engine fan
broadband noise. According to their experiment, the rotor-stator wake interaction noise was found to be
the greatest contributor. Leading edge noise, also known as turbulence-airfoil interaction noise, is important
because it is the underlying cause of both turbulence ingestion noise and rotor-stator wake interaction noise.
Furthermore, leading edge noise is not only relevant for turbofan engines but also for contra-rotating open-
rotors and wind turbines. Therefore, a good understanding of the main factors that influence leading edge
noise is required for effective noise prediction and reduction.

fan

OGV

Figure 1. Fan broadband noise sources. Turbulence ingestion noise (1), fan and Outlet Guide Vane (OGV) trailing edge
noise (2), boundary layer rotor tip interaction noise (3) and rotor-stator wake interaction noise (4). Both upstream
(forward-arc) and downstream (rear-arc) radiated noise are also shown.

II. Aims and Content of the Current Work

By using a Computational AeroAcoustics (CAA) solver, the current work addresses the following topics:

• An advanced digital filter method, which is based on the Random Particle-Mesh (RPM) technique,5,6

is introduced to realize two-dimensional and three-dimensional isotropic synthetic turbulence for CAA
applications.

• Low-cost three-dimensional leading edge noise predictions are made from two-dimensional CAA simu-
lations in order to reproduce experimental results.

• A direct comparison in terms of accuracy and computational cost is made between the advanced digital
filter method presented in this paper and synthetic turbulence based on Fourier modes. Among them,
a one-component Fourier mode method, which only models the transverse velocity disturbance, and
a two-component Fourier mode method, which includes both streamwise and transverse components,
are analyzed.

• Mach number, airfoil thickness and angle of attack effects on leading edge noise predictions from isolated
airfoils are investigated for different synthetic turbulence methods. The suitability of the non-uniform
mean flow assumption is also examined by means of turbulence spectra near the stagnation point.

The content is organized as follows. Section III presents a review on previous computational studies
based on the combined use of the Linearized Euler Equations (LEEs) and synthetic turbulence for leading
edge noise predictions. Then, the characteristics of the CAA solver used in this work are detailed in Section
IV. The two-dimensional advanced digital filter method is presented and validated for leading edge noise
predictions in Section V. This method is compared to those based on Fourier modes to perform turbulence-
airfoil interaction noise simulations on a number of isolated airfoil configurations in Section VI. Finally, an
extension of the advanced digital filter method to realize a fully three-dimensional turbulent field is presented
and validated in Section VII.

III. Previous Work

Current limitations of analytical models to predict leading edge noise from airfoils with real geometry,
and the difficulty of isolating the source of noise under study in experiments, make numerical simulations
an interesting alternative for broadband noise predictions. Although Direct Numerical Simulation (DNS)
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can be used for acoustic simulations, the associated cost is currently prohibitive in an industrial context,
where high Reynolds numbers are often required.7 In addition, other sources of noise, such as trailing edge
noise, would be present in the simulation. Alternative approaches, retaining at least the main features of the
physical problem, have already been considered. To this end, leading edge noise simulations from isolated
airfoils are performed by means of different CAA methods. Typically, these use either linearized or full Euler
equations to simulate the noise generation and propagation. Since the viscous terms are neglected, synthetic
turbulence with the desired statistical properties has to be prescribed for its interaction with the airfoil.

Early works in this field focused on gust-airfoil interaction noise simulations. In particular, transverse
and skewed harmonic gusts were used to show the effects on the noise directivity due to airfoil thickness and
angle of attack (for instance, see Atassi et al.,8 Lockard and Morris9). Gill et al.10 used a multi-frequency
gust approach in which several harmonic gusts were employed to study the effect of airfoil thickness.

Synthetic turbulence based on a summation of Fourier modes can be obtained by superimposing a number
of harmonic gusts, whose amplitude is proportional to the square root of an energy or velocity spectrum. The
use of Fourier modes to generate stochastic turbulent fields was first proposed by Kraichnan,11 when studying
the scalar diffusion of fluid particles. These methods have been extensively used for CAA applications, such as
subsonic jet noise,12,13 due to their simple implementation and their ability to reproduce a target turbulence
spectrum.

In the area of leading edge noise predictions, Clair et al.14 used a one-component Fourier mode approach
to calculate the noise radiated by a three-dimensional airfoil with reduced span in a LEE code. This type
of turbulent inflow is based on the analytical model by Amiet,15 who showed that the transverse unsteady
velocity is responsible for the broadband noise radiated by a flat plate at zero incidence.

Further investigation on the number of fluctuating velocity components that is required to address leading
edge noise predictions using Fourier modes was performed by Gill.16 The transverse fluctuating velocity plays
a non-negligible role on the noise generation, whereas the chordwise and spanwise velocity disturbances have
minor effects for symmetric airfoils at zero angle of attack. This finding may help to reduce the number of
components to be used in CAA simulations and, therefore, decrease the computational expense.

Apart from methods based on Fourier modes, digital filter techniques were also proposed for turbulence
synthesis in CAA applications. In this sense, the RPM method due to Ewert5 was used to study airframe
noise5 and trailing edge noise.17 In this family of methods, velocity fluctuations are defined by taking
the curl of the vector potential, which ensures the divergence-free condition. Although the RPM method
was originally developed to realize Gaussian energy spectra, Siefert and Ewert18 showed that non-Gaussian
energy spectra can also be obtained through a superposition of Gaussian spectra.

Following Ewert’s work,5 Dieste and Gabard6 derived the exact expressions for the filters that can realize
two-dimensional Liepmann and von Kármán isotropic energy spectra. These were tested on leading edge noise
simulations of a flat plate. The synthetic turbulence was calculated on the flat plate surface and imposed
through a wall boundary condition in a LEE solver for the noise propagation. Such an implementation
cannot account for the distortion of the turbulence structures around thick airfoils in non-uniform mean
flows.

To overcome this limitation, Wohlbrandt et al.19 tested a number of numerical implementations to
adapt the RPM method for leading edge noise predictions. Among them, a combined approach between the
Acoustic Perturbation Equations20 (APEs) and the LEEs, and a buffer zone coupled with the LEEs were
proposed.

In order to reduce the number of grid points where the velocity fluctuations have to be calculated when
using a buffer zone, Kim et al.21 proposed two types of inflow boundary condition for a RPM-based method
to be used in LEE solvers. One of them follows Tam et al.’s radiation boundary condition.22 The other one
is based on the characteristic waves of the Euler equations proposed by Giles.23 This technique was used in
a recent work to study noise reduction due to thick airfoil in inviscid mean flows.24

Synthetic eddy methods, which were initially developed for LES applications,25,26 have also been proposed
for leading edge noise predictions. In this sense, Kim and Haeri27 investigated the effect of wavy leading
edges on flat plates through a set of three-dimensional simulations using the full Euler equations. The
target energy spectrum is realized through a superposition of synthetic eddies under certain constraints.
The stochastic turbulence is introduced through a buffer zone at the edge of the computational domain and
convected by the mean flow as frozen turbulence.
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IV. CAA Method

The present work uses a high-order finite difference CAA solver, called SotonCAA, that has been devel-
oped within the University of Southampton and used in prior CAA studies.28,29,30

In this study, the LEEs are solved in the time-domain by using a 4th-order implicit spatial scheme.31 The
numerical solution is filtered after each time-step in order to assure the numerical stability of the simulation.
To this end, a compact filter with variable cut-off wavenumber32 is employed along with a 4-6 Low Dispersion
and Dissipation Runge-Kutta (LDDRK) scheme.33

A slip-wall boundary condition is used on the airfoil surface. Additionally, implicit buffer zones34 are
applied in order to prevent sound waves from being reflected at the edge of the CAA domain.

Numerical simulations presented in this work were run with mean flow density ρ0 = 1.2 Kg/m3 and speed
of sound c0 = 340 m/s, unless otherwise stated. The reference speed is Uref = 1 m/s. The reference values
for the Sound Pressure Level (SPL) and sound PoWer Level (PWL) calculations are 2 × 10−5 N/m2 and
1× 10−12 W, respectively.

All computations used the IRIDIS high performance computing facility at the University of Southampton.

V. Two-dimensional Advanced Digital Filter Method

An advanced digital filter method for efficient leading edge noise predictions is proposed in this section.
The technique developed herein relates the energy spectrum to a summation of Gaussian spatial filters in
order to match the desired isotropic energy spectrum.

The method is presented for a purely two-dimensional turbulent inflow in Section V.A. Although two-
dimensional turbulence was used in a number of works,6,24 it cannot be employed to reproduce experimental
results without applying some correction factors.17 This is due to the fact that the governing equations for
two-dimensional isotropic velocity spectra differ from those of three-dimensional turbulence. To overcome
this problem while keeping a reduced computational cost, the method is extended to realize a two-dimensional
slice of three-dimensional turbulence under the kz = 0 assumption in Section V.B. This assumption follows
Amiet’s work,15 in which the spanwise wavenumber (kz with the notation used in this work) does not
contribute to the far-field acoustic power for observers at the mid-span plane if the span is much larger than
the turbulent integral length scale.

Although Dieste and Gabard6 developed analytical expressions for the von Kármán and Liepmann filters
under the assumption of two-dimensional isotropic turbulence, a superposition of Gaussian spectra is used
herein. This option is preferred since the equations of the filters for the non-Gaussian spectra go beyond the
simplicity of the exponential function that defines a Gaussian filter. In addition, it requires the derivation
of a new set of governing equations for each type of energy spectrum to be matched, which is a less generic
option.

Taylor’s frozen35 turbulence was found to be suitable for broadband noise predictions when compared
to evolving turbulence, i.e., when the time decorrelation is included in the analysis.6 In this work, frozen
turbulence is considered for the turbulent inflow since the vortical disturbances are introduced into the CAA
domain upstream of the airfoil and are convected by the mean flow. This allows the vortical wavenumber to
be linked to the acoustic frequency by 2πf = k ·U, where f is the frequency, k is the wave vector and U is
the mean flow velocity.

V.A. Two-dimensional Turbulence

After discretization of the RPM governing equations, the resulting turbulent flow is obtained from a sum-
mation of fluctuating velocity fields due to small particles. Each particle acts as an eddy, which introduces
a divergence-free velocity field around its center and vanishes far from it. In the current digital filter formu-
lation, all eddies have the same amplitude and the only difference between them is the direction of rotation.
Thus, no white-noise signal has to be filtered, which speeds up the simulations and highlights similarities
between the current implementation and synthetic eddy methods. Since frozen turbulence is assumed, the
eddies can be introduced into the CAA domain through an inlet section without using an additional bound-
ary condition6,19,21 (see Figure 2). This synthetic turbulence method is presented in Section V.A.1 and
validated for leading edge noise predictions in Section V.A.2.
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Figure 2. Synthetic eddies and inlet section parameters (re and ∆). Light gray background represents the region where
the desired statistical properties are obtained.

V.A.1. Non-Gaussian Energy Spectra Through Gaussian Superposition

Following a Lagrangian formulation,6 the two-dimensional turbulent field can be written as the contribution
of p small particles that define the whole source region Vs =

∑p=P
p=1 Vs,p. It reads

ux(x, t) =

P∑
p=1

∂

∂y
G(x− xe)Up, (1)

uy(x, t) = −
P∑
p=1

∂

∂x
G(x− xe)Up, (2)

where G(x− xe) is the spatial filter, x is a point in the flow field, xe is the center of each small element and
Up represents the white-noise term averaged over each small element Vs,p,

Up =

∫
Vs,p

U(x′, t)dx′. (3)

Using the white-noise properties for frozen turbulence,5 it is possible to show that the mean value of the
white noise term is 〈Up〉 = 0, and its variance follows

〈
U2
p

〉
= ∆2, where 〈.〉 is the ensemble average operator

and ∆ is the distance between the eddy centers, as shown in Figure 2. Therefore, Up can be obtained from
a normal distribution N (0,∆). This allows the velocity field introduced by each eddy to be rewritten as,

ux(x) = +ε∆
∂

∂y
G(r), (4)

uy(x) = −ε∆ ∂

∂x
G(r), (5)

where r = x−xe, and ε randomly takes the values +1 or −1, which makes it satisfy 〈ε〉 = 0. In this derivation,
the white-noise term usually found in RPM methods is replaced by ε∆, which speeds up the simulations and
the convergence of the velocity spectra. This novel and efficient implementation also highlights similarities
between RPM and synthetic eddy methods. Thus, ε can be seen as a parameter that defines the direction
of rotation for each eddy and ∆ controls the amplitude of the eddies depending on the number of vortices
that are introduced through the inlet section.

The isotropic energy spectrum is linked to the spatial filter in wavenumber space6 by

E2D(k) = 4π3k3Ĝ(k)2, (6)

where k is the overall wavenumber and the Fourier transforma of the spatial filter is defined as,

Ĝ(k) =
1

4π2

∫ +∞

−∞
G(r) exp [−ik · r] dr. (7)

aThe convention for the Fourier transform adopted in this work is the same as in Pope.36
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Since the desired energy spectrum can be obtained from a superposition of Gaussian spectra, the equations
of the fluctuating velocity are first derived according to Kraichnan’s11 Gaussian spectrum,

E2D(k) =
2

π2
u2
rmsΛ

4k3 exp

(
−Λ2k2

π

)
, (8)

where urms is the root-mean-square of the turbulent velocity and Λ is the integral length scale. Introducing
Eq. 8 into Eq. 6 and performing the inverse Fourier transform, the Gaussian filter in physical space takes
the form,

G(r) =

√
2u2

rms

π
exp

(
− πr

2

2Λ2

)
. (9)

Therefore, the two-dimensional fluctuating velocity field due to a single eddy can be expressed as

ux(x) = −ε∆
Λ2

√
2πu2

rms (y − ye) exp

(
− πr

2

2Λ2

)
, (10)

uy(x) = +
ε∆

Λ2

√
2πu2

rms (x− xe) exp

(
− πr

2

2Λ2

)
. (11)

Figure 3 shows velocity contours and normalized velocity magnitude (cross-section) of a two-dimensional
Gaussian eddy according to Eqs. 10 and 11.

-max{ux} max{ux}

x

y

(a) ux contours and streamlines.

-max{uy} max{uy}

x

y

(b) uy contours and streamlines.
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(c) Eddy cross-section.

Figure 3. Fluctuating velocity field due to a two-dimensional Gaussian eddy.

As shown in Figure 2, the ability of the synthetic turbulence to realize the desired statistical properties
relies on two parameters: the distance between the eddy centers, ∆, and the radius of the eddies, re.
Dieste37 suggested for Gaussian spectra re = 2.43Λ and ∆ = Λ/6. In the present work, it is shown that
these values can be reduced without affecting the quality of the synthetic turbulence. In particular, provided
that re ≥ 3Λ/2 and ∆ ≤ Λ/2, the target turbulence statistics are recovered. These new limiting values allow
to decrease the size and the number of eddies to be injected through the inlet section, which reduces the
amount of grid points where the synthetic turbulence has to be evaluated.

Validation cases were run in a computational domain with uniform grid spacing and mean flow speed
Ux = 60 m/s. The integral length scale and the turbulence intensity are Λ = 0.008 m and Tu = urms/Ux =
0.017, respectively. The quality of the synthetic turbulence was assessed by calculating one-dimensional
spectra defined as,36

E2D
11 (kx) = 2

∫ +∞

−∞
Φ2D

11 (kx, ky)dky, (12)

E2D
22 (kx) = 2

∫ +∞

−∞
Φ2D

22 (kx, ky)dky, (13)

where Φ2D
11 (kx, ky) and Φ2D

22 (kx, ky) are the velocity spectra of the streamwise and the transverse fluctuating
velocity, respectively. These are obtained from the Fourier transform of the two-point velocity correlation,
which can be calculated from independent velocity samples.
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Figure 4. One-dimensional Gaussian spectra (12,000 samples). Case 1 corresponds to ∆ = Λ/2 and re = 3Λ/2 and Case
2 corresponds to ∆ = Λ/6 and re = 5Λ/2.

Figure 4 shows analytical and numerical one-dimensional spectra for the two combinations of parameters
under study. In both cases, numerical results closely match the analytical expressions. Despite of a noticeable
difference in the re and ∆ values, the difference in computational time is less than 5% for the validation cases
presented in this section. This is due to the implementation strategy, which identifies the grid points in the
computational domain that are affected by the inlet section and pre-evaluates the amplitude of the eddies
acting on each grid point at the very beginning of the simulation. This means that a significant increase in
re or ∆ has little effect on the computational time, at least for two-dimensional CAA domains.

It should also be noted that although each eddy is divergence-free by definition, some spurious noise may
appear around the inlet section as the eddies are superimposed on the mean flow velocity. This spurious
noise depends on the grid quality, re and ∆. If the grid is not fine enough to smoothly reproduce the shape
of the eddies or the eddies are truncated at a value close to re = 3Λ/2, background noise is expected to be
relatively high around the inlet section. The first is related to the number of points per wavelength that
is required for the solver to convect the eddy by the mean flow. For instance, in validation Case 1, eleven
grid points were used along the radius of the eddy. The second is due to the fact that at re = 3Λ/2 the
normalized amplitude of the eddy is ‖u‖ /max {u} = 0.128, as shown in Figure 3(c). At that location the
derivatives ∂ux/∂x and ∂uy/∂y are not close to zero, which leads to a local break down of the divergence-free
condition. Nevertheless, the amplitude of these spurious pressure fluctuations is of the order of 103 times
smaller than those due to the turbulence-airfoil interaction in all simulations presented in Section VI. Thus,
its influence in the leading edge noise predictions can be neglected and the turbulence does not need to be
injected through a buffer zone.

An extension of the previous Gaussian digital filter method is developed in order to match a desired
energy spectrum within the wavenumber range under study. The main idea is to define a new eddy shape
as a superposition of several Gaussian eddies, each of them with a different integral length scale, Λi, and
turbulent kinetic energy, u2

rms,i.
It is possible to define a digital filter as a summation of Ne Gaussian filters in wavenumber space,

Ĝsum(k) =

Ne∑
i=1

Ĝi(Λi, u
2
rms,i, k), (14)

where, according to Eqs. 6 and 8, each filter reads

Ĝi(Λi, u
2
rms,i, k) =

Λ2
i

π2

√
u2
rms,i

2π
exp

(
−Λ2

i k
2

2π

)
. (15)
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Using Eq. 6, the target energy spectrum (e.g. von Kármán, Liepmann, etc.) can be approximated by

E2D
sum(k) = 4π3k3

[
Ne∑
i=1

Ĝi(Λi, u
2
rms,i, k)

]2

. (16)

Introducing Eq. 15 into Eq. 16, straightforward algebra shows that

E2D
sum(k) =

2k3

π2

Ne∑
i=1

Ne∑
j=1

√
u2
rms,iu

2
rms,j (ΛiΛj)

2
exp

[
− k

2

2π

(
Λ2
i + Λ2

j

)]
, (17)

or equivalently,

E2D
sum(k) =

2k3

π2


Ne∑
i=1

u2
rms,iΛ

4
i exp

(
−k

2Λ2
i

π

)
+

Ne∑
i=1,i6=j

Ne∑
j=1

√
u2
rms,iu

2
rms,j (ΛiΛj)

2
exp

[
− k

2

2π

(
Λ2
i + Λ2

j

)] .

(18)
From Eq. 17, it follows that the resulting energy spectrum from the superposition process only matches

the target energy spectrum within the wavenumber range of interest. Therefore, the total turbulent kinetic
energy of the target energy spectrum is not completely recovered. In addition, it is clear that the resulting
energy spectrum is not just a summation over the Gaussian energy spectra, which corresponds to the first
term on the right hand side in Eq. 18. The resulting velocity field introduced by each eddy from the Gaussian
superposition reads,

ux(x) = −ε∆
Ne∑
i=1

√
2πu2

rms,i

Λ2
i

(y − ye) exp

(
− πr

2

2Λ2
i

)
, (19)

uy(x) = +ε∆

Ne∑
i=1

√
2πu2

rms,i

Λ2
i

(x− xe) exp

(
− πr

2

2Λ2
i

)
. (20)

An appropriate set of parameters Ne , Λi and u2
rms,i is required to reproduce the shape of the desired

energy spectrum. Although there is not a unique combination of parameters for a given energy spectrum,
proposed values from an optimization subroutine are given for most simulations presented in this work when
using the advanced digital filter method.

In order to validate this Gaussian superposition technique, the method is applied to reproduce the two-
dimensional von Kármán energy spectrum, which is defined as

E2D (k) =
110u2

rmsΛ

27π

(
k
ke

)4

[
1 +

(
k
ke

)2
]17/6

, (21)

where ke = [
√
πΓ(5/6)] / [ΛΓ(1/3)] with Γ() as the Gamma function.

Λi [m] u2
rms,i [m2/s2]

2.524× 10−2 1.805× 10−2

1.401× 10−2 7.478× 10−2

7.285× 10−3 1.046× 10−1

3.023× 10−3 1.622× 10−1

2.238× 10−3 3.098× 10−3

Table 1. Parameters for valida-
tion of Gaussian superposition tech-
nique.

In this case, an accurate representation of the energy spectrum is ob-
tained by using Ne = 5 different Gaussian eddiesb, whose integral length
scale and the amplitude of the eddies are given in Table 1. These val-
ues are optimized to realize the two-dimensional von Kármán spectrum
with Λ = 0.008 m and Tu = 0.017. The mean flow speed was set to
Ux = 60 m/s. Since the new eddies are obtained from a combination
of several Gaussian eddies, limiting values to realize non-Gaussian en-
ergy spectra are based on the largest and smallest Gaussian eddies in-
volved. Thus, ∆ ≤ min {Λi} /2 and re ≥ 3 max {Λi} /2. These limiting
values are validated through a comparison of numerical and analytical
one-dimensional spectra, as shown in Figure 5.

bIn practical cases such as those presented in Section VI, Ne ranges between 4 and 6.
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Figure 5. One-dimensional von Kármán spectra through Gaussian superposition (12,000 samples). Case 1 corresponds
to ∆ = min {Λi} /2 and re = 3 max {Λi} /2 and Case 2 corresponds to ∆ = min {Λi} /6 and re = 5 max {Λi} /2.

V.A.2. Validation Case: Two-dimensional NACA 0001 Airfoil

The advanced digital filter method is now validated for leading edge noise predictions from isolated airfoils.
A NACA 0001 airfoil with chord c = 0.15 m at Mx = 0.6 is chosen. Results are compared with the flat
plate analytical model developed by Amiet,15 and adapted by Blandeau et al.38 for two-dimensional noise
radiation. As in the analytical model, the background mean flow is assumed to be uniform in the CAA
domain.

Figure 6 shows the reference frame that is considered in this work for two-dimensional configurations.
The size of the CAA domain extends to four times the chord in all directions around the airfoil mid-chord.

Mx r0

x
c/2

y

Figure 6. Two-dimensional flat plate configuration, where
Mx is the mean flow Mach number, c is the airfoil chord,
and the far-field observer position is defined by r0 and θ.

In this validation case, Ne = 5 is set in order
to match the von Kármán energy spectrum with
Λ = 0.008 m and Tu = 0.017. The values of their
amplitude and integral length scale are shown in Ta-
ble 2. These are employed to calculate the distance
between eddies and the eddy radius, which are set
to ∆ = min {Λi} /6 and re = 5 max {Λi} /2, respec-
tively. Since the mean flow is uniform, the inlet
section can be placed at re upstream of the airfoil
leading edge.

Λi [m] u2
rms,i [m2/s2]

2.524× 10−2 2.077× 10−1

1.401× 10−2 8.608× 10−1

7.285× 10−3 1.205

3.023× 10−3 1.867

2.238× 10−3 3.566× 10−2

Table 2. Parameters for Gaussian
superposition in validation case of a
NACA 0001 airfoil interacting with
purely two-dimensional turbulence.

The time step is set to 1.18 × 10−8 s and the simulation is run for
8.625× 106 time steps. The transitory state of the simulation lasts until
the first set of eddies introduced within the CAA domain is convected
past the airfoil. This represents about 1.5% of the simulation time.

In order to assess the quality of the turbulent inflow, a monitor point is
placed upstream of the airfoil leading edge, where samples of velocity dis-
turbances are collected every 283 time steps. These are used to calculate
one-dimensional spectrac, as illustrated in Figure 7. The advanced digital
filter method shows an agreement within 1.5 dB for the majority of the
frequency range in comparison with the analytical expressions. Although
the agreement is satisfactory, a better match is possible if the simulation
is run for longer.

A second-order accurate Ffowcs-Williams and Hawkings (FW-H)
solver, which is based on Farassat and Succi formulation 1A,39 is used to predict the far-field noise. This
solver assumes a uniform mean flow outside the collection surface, which is placed on the airfoil surface. This
is consistent with the assumption of uniform mean flow in the CAA simulation of the NACA 0001 airfoil.

cWhen frozen turbulence is assumed, E11(f) = 2πE11(kx)/Ux and E22(f) = 2πE22(kx)/Ux.
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Figure 7. E2D
11 and E2D

22 spectra for two-dimensional NACA 0001 airfoil in a uniform mean flow with Mx = 0.6 at
approximately 0.02c upstream of the airfoil leading edge.

All observers are placed at r0 = 100c from the airfoil mid-chord, ranging from θ = 0o to θ = 360o every
∆θ = 1o.

Figure 8(a) shows spectra of PWL per unit span and SPL. The advanced digital filter method provides
noise predictions within 1.5 dB accuracy for the majority of the frequency range under study, which is clearly
related to the convergence of the velocity spectra. For instance, Figure 7(b) shows an under-prediction of
about 1.5 dB at 2000 Hz in the transverse one-dimensional spectrum, which is directly reflected on the PWL
spectrum.

Directivity plots are also affected by the convergence of the velocity spectra. This is shown in Figure 8(b),
where the advanced digital filter method under-predicts the SPL by about 1.5 dB at all observer positions.
Nevertheless, the method is able to reproduce the right position of the lobes due to the loss of compactness
at high-frequencies.
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(a) PWL and SPL spectra.
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(b) Directivity pattern at f = 2000 Hz.

Figure 8. Far-field noise predictions from a two-dimensional NACA 0001 airfoil at r0 = 100c.

V.B. Pseudo Three-dimensional Turbulence

Noise predictions from numerical simulations using purely two-dimensional turbulence cannot be directly
compared with experimental results. A turbulence spectrum correction needs to be applied to account for
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the shape of the three-dimensional velocity spectra. Additionally, the acoustic power decays as 1/r2
0 in a

three-dimensional free field, whereas it decays as 1/r0 in case of a two-dimensional free field.
In this section, a technique to realize a divergence-free two-dimensional turbulent field that follows the

governing equations of three-dimensional turbulence under the hypothesis of kz = 0 is presented. This
avoids the need of correction factors used in other works.17 This type of turbulence is referred to as ‘pseudo
three-dimensional turbulence’ in this work.

According to Amiet’s theory,15 the spanwise wavenumber does not contribute to the far-field acoustic
power for observers at the mid-span plane if the span is much larger than the turbulent integral length scale.
This assumption was employed by authors such as Clair et al.14 and Gill16 when using synthetic turbulence
based on Fourier modes. In these methods the amplitude of each mode is proportional to the square root of
the velocity or energy spectrum, which makes it straightforward to set kz = 0. The same assumption can
also be made when using digital filter methods.

For two-dimensional isotropic turbulence, Eq. 13 can be written as,

E2D
22 (kx) = 2

∫ ∞
−∞

E2D

πk

(
1− k2

y

k2

)
dky. (22)

For three-dimensional isotropic turbulence, assuming kz = 0, E3D
22 takes the form,

E3D
22 (kx, kz = 0) = 2

∫ ∞
−∞

E3D

4πk2

(
1− k2

y

k2

)
dky. (23)

Mx y

xz

r0
0

d

Figure 9. FW-H surface and far-field observer position at
the mid-span, d.

From Eqs. 22 and 23, it can be inferred that
if E2D follows the shape of E3D/(4k), the resulting
two-dimensional velocity spectra, Φ2D

22 (kx, ky), will
follow the shape of Φ3D

22 (kx, ky, kz = 0). This can be
done by means of the Gaussian superposition tech-
nique described in Section V.A.1. The same reason-
ing applies to the streamwise fluctuating velocity.

Unsteady data collected on the airfoil surface of a
two-dimensional CAA simulation are copied repeat-
edly in the spanwise direction over the full span, 2d,
to generate a three-dimensional airfoil with straight
leading edge. The method implies that all panels in
the spanwise direction are radiating in phase. By
using a three-dimensional FW-H solver the solution
is radiated to the far-field under the assumption of
uniform mean flow. The configuration is shown in
Figure 9.

The method is validated against Amiet’s theory for flat plates in Section V.B.1. Then, the technique is
used to reproduce experimental results due to Paterson and Amiet40 from a NACA 0012 airfoil in Section
V.B.2.

V.B.1. Validation Case: Three-dimensional NACA 0001 Airfoil

Amiet’s theory15 is employed to validate the numerical methodology on a 0.15 m chord NACA 0001 airfoil
with 0.45 m span, using the advanced digital filter method with pseudo three-dimensional turbulence. The
CAA mesh is the same as in Section V.A.2.

For this validation case, E3D corresponds to the von Kármán energy spectrum, which is defined as,

E3D (k) =
55u2

rmsΛ

9π

(
k
ke

)4

[
1 +

(
k
ke

)2
]17/6

, (24)

where Λ = 0.008 m, Tu = 0.017 and kz = 0 is assumed.
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Λi [m] u2
rms,i [m2/s2]

3.618× 10−2 4.204× 10−4

2.029× 10−2 2.149× 10−3

1.091× 10−2 1.963× 10−3

5.524× 10−3 1.079× 10−3

2.199× 10−3 6.760× 10−4

Table 3. Parameters for Gaussian
superposition in validation case of
a NACA 0001 airfoil interacting
with pseudo three-dimensional tur-
bulence.

Ne = 5 eddies with the parameters given in Table 3 are required to
obtain a good agreement between analytical and numerical results. This
is illustrated in Figure 10, where one-dimensional spectra are calculated
from fluctuating velocity samples near the airfoil leading edge. The largest
disagreement is about 1.5 dB for frequencies above 250 Hz.

It should be noted that when assuming kz = 0 for the turbulence
spectra, a π/d scaling factor needs to be applied to all frequencies of the
acoustic power spectrum in order to obtain the correct amplitude for the
noise predictions.14 Taking this into account, Figure 11(a) shows PWL
and SPL spectra at different observer angles. Since the accuracy of the
noise prediction is related to the convergence of the noise spectra, the
agreement between analytical and numerical noise levels is also within
1.5 dB.
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Figure 10. E11 and E22 spectra for three-dimensional NACA0001 airfoil in a uniform mean flow with Mx = 0.6 at
approximately 0.02c upstream of the airfoil leading edge.

Figure 11(b) shows the directivity pattern at a high frequency, 8000 Hz, in which the shape, position of
the lobes and noise levels closely follow those predicted by Amiet’s theory15 at all observer positions in the
mid-span plane.
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Figure 11. Far-field noise predictions from a three-dimensional NACA 0001 airfoil at r0 = 100c.
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This validation case shows the effectiveness of the methodology proposed herein to realize broadband
noise predictions from three-dimensional airfoils with a straight leading edge, by using a coupled approach
between two-dimensional CAA simulations and a three-dimensional FW-H solver.

V.B.2. Comparison with Experimental Results from a NACA 0012 Airfoil

Paterson and Amiet40 performed a series of experiments in an open-jet wind tunnel over a 0.23 m chord
NACA 0012 airfoil. In this section, experimental data are compared with numerical results at the speed of
60 m/s, 90 m/s and 120 m/s. For these cases, the turbulence intensities of the transverse component were
3.9%, 4.8% and 4.1%, respectively. The integral length scale was set to approximately 0.03 m for all the
cases. The span of the airfoil was 2d = 0.53 m and the angle of attack was zero. The microphone array was
placed outside of the jet shear layer at a distance of r0 = 2.25 m in the mid-span vertical plane.

Experimental measurements were compared with analytical results from a flat plate. The latter were
corrected to account for the sound refraction through the shear layer.15,41 In a similar manner, the same
correction is applied to numerical results presented in this section, since the shear layer is not included
in the numerical simulation. These are shown in Figure 12, where SPL spectra at θ = 90o for the three
tunnel speeds are given. Experimental and numerical results are within 2 dB at Ux = 60 m/s. However,
as the tunnel speed increases, numerical simulations over-predict the experiment. For instance, the largest
disagreement is about 4.5 dB at frequencies around 2500 Hz for the 90 m/s case.
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Figure 12. SPL spectra from a NACA 0012 airfoil at AoA =
0o and observer location r0 = 2.25 m, θ = 90o.

It should be noted that for frequencies above
2000 Hz, Paterson and Amiet40 applied amplitude
corrections of up to 4 dB to the experimental data.
This was due to the wind tunnel background noise,
which caused some uncertainty in the experimental
data. Additionally, some necessary inputs for the
numerical simulations had to be assumed since these
were not specified by Paterson and Amiet.40 In this
sense, the mean flow density was set to 1.2 kg/m3

for the numerical simulations. A new set of exper-
iments might be required for a better comparison
between numerical and experimental results.

An important assumption of the present method-
ology is that the FW-H solver considers noise propa-
gation in a uniform mean flow before the shear layer
correction is applied to the numerical predictions.
This implies that potential distortions in the noise
radiation around the airfoil are not included. Al-
though SPL spectra at more observers are required
to make further conclusions, the shape of the nu-
merical curves follow the trends predicted experimentally.

VI. Comparison with Fourier Mode Methods

The advantages and limitations of the advanced digital filter method to perform leading edge noise
predictions are examined herein using purely two-dimensional turbulence. This method is directly compared
with the one-component Fourier mode (1cFm) and the two-component Fourier mode (2cFm) approaches
presented in Appendix A. A number of isolated airfoil configurations are tested in this section, including
variations in mean flow Mach number, airfoil thickness and angle of attack (AoA). A discussion on the
computational cost between the different techniques is also included.

All the simulations are performed using the two-dimensional isotropic von Kármán spectrum, where the
integral length scale and the turbulence intensity are Λ = 0.008 m and Tu = 0.017, respectively. The chord
of the airfoils is set to c = 0.15 m.

Fourier mode methods presented in Appendix A produce a turbulent inflow that is repeated in space
every λx,max. The simulations are run for a transitory state that corresponds to the frozen propagation of
the synthetic turbulence over a distance of λx,max. Then, each simulation is run for another whole period
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of the largest wavenumber involved, while the required unsteady data for the velocity and noise spectra
calculation are collected. For the two-component Fourier mode approach, averaging over several realizations
is required to obtain converged velocity and noise spectra results. Throughout this work, a total number of
10 independent simulations are used.

Gill et al.10 showed that as the airfoil thickness increases, the noise becomes over-predicted at high
frequencies if uniform mean flow is assumed. This is because the turbulent structures are distorted by the
non-uniform mean flow, identified as the main source of thick airfoil noise reduction. In addition, viscous
mean flows were shown to have little effect on the leading edge noise predictions when compared with
inviscid solutions. Consequently, an inviscid non-uniform mean flow is used for the CAA simulations over
thick airfoils in this work.

VI.A. Airfoil Thickness and Mach Number Effect on the Noise

NACA 4-series airfoils with 6% and 12% maximum thickness-to-chord ratios are tested at zero angle of attack
with free stream Mach numbers Mx = 0.3 and Mx = 0.6. The values for the Gaussian superposition using
the advanced digital filter method and the parameters required for the wavenumber discretization using
Fourier mode approaches are given in Appendix B.

For the advanced digital filter method, the inlet section has to be placed upstream enough of the airfoil
leading edge to allow for the distortion of the turbulent structures due to the non-uniform mean flow.
To investigate this, two different locations are considered for the inlet section in the NACA 0012 airfoil
simulations at Mx = 0.3 and Mx = 0.6. These are re,1 + c and re,2 upstream of the airfoil leading edge,
where re,1 = 5 max {Λi} /2 and re,2 = 3 max {Λi} /2, according to the values given in Tables 7 and 8.

A monitor point is placed close to the airfoil leading edge, where one-dimensional spectra are computed.
These are presented in Figure 13 for the NACA 0012 airfoil simulations. Results show that both positions
of the inlet section lead to similar distortions of the turbulent structures and, consequently, similar noise
predictions. E11 drops about 3 dB at all frequencies, and the amplitude of E22 increases at low frequencies
and decreases at high frequencies. A similar behavior was reported by Hunt42 when analyzing the shape of
the velocity spectra around a cylinder by means of the rapid distortion theory developed by Batchelor and
Proudman.43 This implies that, the inlet section can be placed at re ≥ 3 max {Λi} /2 upstream of the airfoil
leading edge in practical cases, even if the mean flow is not completely uniform at this location.
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Figure 13. One-dimensional spectra at 0.02c upstream of the NACA 0012 airfoil leading edge using the advanced digital
filter method. The inlet section is placed at two different locations upstream of the airfoil leading edge.

Both E11 and E22 present a reduction of the amplitude at high frequencies with respect to the prescribed
turbulence at the inlet section. Since the distortion of the fluctuating velocity does not happen in the
presence of a uniform mean flow, this confirms the over-prediction reported by Gill et al.10 and Clair et al.14

It is well known that the noise reduction at a fixed acoustic frequency becomes less pronounced at high
Mach numbers or small airfoil thickness, as shown by Paterson and Amiet40 and Gill et al.,10 among others.
A similar behavior can also be observed in Figure 14, which plots spectra of PWL. For each of the cases
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investigated, all three synthetic turbulence methods predict similar noise levels. Only for the NACA 0012
airfoil simulations, an under-prediction of up to 3 dB is identified at frequencies above 6000 Hz for the one-
component Fourier mode approach in comparison with the methods that include two components. This
finding, which is not present on the NACA 0006 airfoil simulations, suggests that the fluctuating streamwise
component could be necessary for simulations of thick airfoils at high frequencies.16 Nevertheless, this small
disagreement is close to the level of accuracy of the current method (∼ 1.5 dB), which makes it difficult to
draw further conclusions.
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Figure 14. PWL spectra at different Mach numbers.

Figure 15 shows fluctuating velocity and pressure contours from all three methods considered in this
section. A feature of the advanced digital filter method is that the turbulence can be introduced locally near
the airfoil leading edge since each eddy is divergence-free itself. This is not the case for methods based on
Fourier modes, in which the turbulence has to be prescribed throughout the CAA domain.

VI.B. Airfoil Angle of Attack Effect on the Noise
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Figure 16. PWL spectra from a NACA 0012 airfoil at AoA =
6o in a mean flow with Mx = 0.3.

In this section, the suitability of the synthetic tur-
bulence methods to study angle of attack is assessed
on a NACA 0012 airfoil at AoA = 6o and Mx = 0.3.
This configuration was chosen so that a moderate
angle of attack can be tested, while the mean flow
remains subsonic.

Figure 16 shows PWL predictions from the dif-
ferent techniques. Both the advanced digital filter
method and the two-component Fourier mode ap-
proach produce noise levels within 2 dB for most
frequencies. This is not the case for the one-
component Fourier mode approach, which under-
predicts the PWL by more than 5 dB for frequencies
above 4000 Hz in comparison with synthetic turbu-
lence methods that include two components. Rea-
sons for this under-prediction are discussed in Ref.16

The prediction at zero incidence, given by the
advanced digital filter method, is included in Figure
16 to highlight the small effect of the angle of attack,
as found in previous experimental studies by Moreau
et al.44 and Devenport et al.,45 among others.
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(a) One-component Fourier mode method. Contours of
fluctuating velocity, uy/c0.

(b) One-component Fourier mode method. Contours of
fluctuating pressure, p/(ρ0c20).

(c) Two-component Fourier mode method. Contours of
fluctuating velocity, uy/c0.

(d) Two-component Fourier mode method. Contours of
fluctuating pressure, p/(ρ0c20).

(e) Advanced digital filter method. Contours of fluctuating
velocity, uy/c0. Inlet section at re,1 + c upstream of the
airfoil leading edge.

(f) Advanced digital filter method. Contours of fluctuating
pressure, p/(ρ0c20).

Figure 15. Instantaneous plots of a NACA 0012 airfoil in an inviscid mean flow at Mx = 0.3.
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VI.C. Computational Cost

A comparison in terms of computational time from the different methods to synthesize turbulence is presented
in this section. Since the conclusions of this comparison are similar for all the simulations performed in this
paper, only data for the NACA 0012 airfoil at Mx = 0.3 and AoA = 0o are presented. Table 4 shows the
computational expense of the different methods. It should be noted that the same CAA mesh and number
of processors were used for the simulations of the different synthetic turbulence methods.

The relative comparison shows that the one-component Fourier mode approach is the fastest approach,
followed by the advanced digital filter method, which is 4.6 times slower in total. However, a single time step
can be run faster with the advanced digital filter method. The difference in the total computational time
arises from the total number of time steps that are required to obtain accurate noise predictions. This is
due to the fact that only one period of the largest wavelength is necessary to be run for the one-component
Fourier mode approach, after the transitory state. The digital filter method, which produces a non-periodic
turbulent inflow, has to be run for longer in order for the turbulence and noise spectra to converge.

Time per time step [s] No. time steps Total expense [s] Expense relative to 1cFm

1cFm 4.541× 10−2 84998 3860 1.0

2cFm 8.556× 10−2 849980 72721 18.8

Digital filter 4.1765× 10−2 424990 17749 4.6

Table 4. Comparison of computational time for a NACA 0012 airfoil at AoA = 0o and Mx = 0.3. The CAA mesh has
821, 010 grid points and 96 cores were used for all the simulations.

The two-component Fourier mode approach is the slowest method among those presented in this work.
This is caused by two aspects. Firstly, the total number of Fourier modes in these simulations is N × 2M =
2000, whereas only N = 100 modes are required for the one-component Fourier mode method. Secondly, 10
independent realizations are necessary to obtain converged noise results that are within 3 dB accuracy and
a transitory state has to be considered for each of them.

From the results presented in Sections VI.A and VI.B, the digital filter method is the best approach
among those presented in order to obtain accurate leading edge noise predictions independently of the airfoil
thickness, angle of attack and mean flow Mach number at a reasonable computational time. In addition,
similar noise predictions can be obtained from both digital filter and Fourier mode methods, provided that
both the streamwise and the transverse fluctuating velocity components are included in the simulation.

VII. Three-dimensional Advanced Digital Filter Method

The method presented in Section V.B can only be used in the case of airfoils with straight leading edge.
A fully three-dimensional turbulent representation is required when studying more generic cases, such as
wavy leading edge airfoils and airfoils with taper or sweep. Among the different approaches presented in
Section VI, the advanced digital filter method was found to produce low-cost and accurate noise predictions
in all the airfoil configurations that were tested. Therefore, an extension of that method is presented and
validated herein to produce three-dimensional isotropic turbulence.

VII.A. Gaussian Energy Spectrum

Following a similar development as described in Section V.A, the three-dimensional energy spectrum function
is linked to the spatial filter in wavenumber space through,

E3D(k) = 32π4k4Ĝ(k)2, (25)

where, according to Kraichnan,11

E3D(k) =
4

π3
u2
rmsΛ

5k4 exp

(
−Λ2k2

π

)
. (26)

Thus, the spatial filter in wavenumber space to realize a Gaussian energy spectrum takes the form

Ĝ(k) =

√
u2
rmsΛ

5

8π7
exp

(
−Λ2k2

2π

)
. (27)
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Taking the inverse Fourier transform of Eq. 27, the spatial filter in physical space reads,

G(r) =

√
u2
rms

πΛ
exp

(
− πr

2

2Λ2

)
. (28)

When dealing with three velocity components, the RPM method5 requires the filtering of three statisti-
cally independent white-noise signals, Ui for i = 1, 2, 3 , whose variances follow,〈

U2
p,i

〉
=

∫
Vs,p

〈Ui(x′, t)Ui(x′, t)〉dx′ = ∆3. (29)

Therefore, each Up,i follows a normal distribution N (0,∆3/2). The rotational direction of each eddy is now
defined by three random numbers εx, εy and εz, which can independently be +1 or −1.

The three-dimensional velocity field introduced by each Gaussian eddy takes the form,

ux(x) =
∆3/2urms

Λ2

√
π

Λ
[εy (z − ze)− εz (y − ye)] exp

(
− πr

2

2Λ2

)
, (30)

uy(x) =
∆3/2urms

Λ2

√
π

Λ
[εz (x− xe)− εx (z − ze)] exp

(
− πr

2

2Λ2

)
, (31)

uz(x) =
∆3/2urms

Λ2

√
π

Λ
[εx (y − ye)− εy (x− xe)] exp

(
− πr

2

2Λ2

)
. (32)

Figure 17(a) shows contours of fluctuating velocity magnitude from isolated eddies using Eqs. 30, 31 and
32. A number of these eddies can be combined to realize three-dimensional isotropic turbulence following
a similar inlet section approach as for two-dimensional cases (see Section V.A). An instantaneous plot of
synthetic turbulence is depicted in Figure 17(b).

(a) Three-dimensional eddies. Contours of fluctuat-
ing velocity magnitude.

(b) Three-dimensional turbulence. Iso-contours of velocity fluctuations,
ux/c0 = 0.01, uy/c0 = −0.005 and uz/c0 = −0.01. The mean flow
velocity is set to Ux = 60 m/s and the turbulence intensity and integral
length scale are, Tu = 0.017 and Λ = 0.008 m, respectively.

Figure 17. Instantaneous plots of three-dimensional eddies and synthetic turbulence.

It can be shown that the normalized diameter of each three-dimensional eddy, 2re,max/Λ, is approximately
the same as a two-dimensional eddy defined by Eqs. 10 and 11. Therefore, the limiting values discussed in
Section V.A remain valid, and one-dimensional spectra are realized providing that re ≥ 3Λ/2 and ∆ ≤ Λ/2.
This is shown in Figure 18, where numerical results are in good agreement with the analytical expressions.
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Figure 18. One-dimensional Gaussian spectra. Case 1 corresponds to ∆ = Λ/2 and re = 3Λ/2 and Case 2 corresponds
to ∆ = Λ/6 and re = 5Λ/2.

VII.B. Non-Gaussian Energy Spectra Through Gaussian Superposition

As proposed in Section V.A.1, a desired three-dimensional energy spectrum can be achieved by defining a
new eddy shape from the superposition of several Gaussian eddies. Using Eq. 25, the target energy spectrum
takes the form,

E3D
sum(k) = 32π4k4

[
Ne∑
i=1

Ĝi(Λi, u
2
rms,i, k)

]2

. (33)

Introducing Eq. 27 into Eq. 33, the resulting energy spectrum from the Gaussian superposition reads

E3D
sum(k) =

4k4

π3

Ne∑
i=1

Ne∑
j=1

√
u2
rms,iu

2
rms,jΛ

5
iΛ

5
j exp

[
− k

2

2π

(
Λ2
i + Λ2

j

)]
. (34)

VIII. Conclusions

An advanced digital filter method to generate synthetic turbulence is presented in this work. The tech-
nique consists of a simple and fast implementation of the RPM5,6 method that adopts some ideas from
synthetic eddy methods.25,26,27 Discretized equations for the velocity field defined by each eddy are given to
realize a desired isotropic energy spectrum through a superposition of Gaussian spectra. These are directly
introduced into the CAA domain through an inlet section without requiring any special boundary conditions.

The governing equations are derived and validated to realize purely two-dimensional turbulence. A low-
cost methodology is also presented to realize a two-dimensional turbulent flow that follows the governing
equations of three-dimensional turbulence. To this end, the spanwise wavenumber component is set to zero,
kz = 0, according to Amiet’s theory.15 The technique combines two-dimensional CAA simulations using the
advanced digital filter with a three-dimensional FW-H solver for the far-field propagation. This approach is
successfully used to reproduce experimental measurements from a NACA 0012 airfoil with straight leading
edge.40 In particular, numerical noise predictions follow the same behavior as found experimentally and the
agreement is within 3 dB for the majority of the tested tunnel speeds and frequencies. This shows that three-
dimensional CAA simulations are not necessary to obtain accurate noise predictions that can be compared
with experimental results.

Leading edge noise predictions from the advanced digital filter method are also compared to those provided
by one- and two-component Fourier mode approaches. Numerical results show that the one-component
Fourier mode approach, which is the simplest and fastest synthetic turbulence method of those tested,
produces satisfactory noise predictions for symmetric airfoils with moderate thickness at zero angle of attack.
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However, either the advanced digital filter method or the two-component Fourier mode approach is required
when considering thick airfoils and non-zero angle of attack. Additionally, it is shown that turbulence-airfoil
interaction noise using the LEEs is independent of the synthetic turbulence method, provided that both the
transverse and the streamwise components are included. Two-dimensional simulations using the advanced
digital filter method are about four times faster and present a better convergence in terms of turbulence
and noise spectra. One can conclude that the advanced digital filter method is the most versatile approach
among those analyzed for leading edge noise predictions.

In addition, simulations using the advanced digital filter method show the same behavior that was
reported in experiments to measure turbulence-airfoil interaction noise.40,44,45 It is assessed that the airfoil
thickness decreases the noise radiated at high frequencies, especially at low Mach numbers, and the angle of
attack has little effect on the noise levels. Furthermore, the over-prediction at high frequencies from CAA
simulations assuming uniform mean flow10,14 is associated to the fact that the incoming turbulence is not
distorted in the vicinity of the stagnation region.

Two-dimensional CAA simulations cannot be used when studying more generic cases, such as wavy
leading edge airfoils. In this case, the spanwise wavenumber and fluctuating velocity might not be negligible
for accurate turbulence-airfoil interaction noise predictions. Thus, the governing equations to realize fully
three-dimensional synthetic turbulence are derived.
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Appendices

A. Methods based on a Summation of Fourier Modes

Two different approaches to generate two-dimensional synthetic turbulence based on Fourier modes are
considered in this appendix. A one-component Fourier mode approach is first presented in Section A.A.
In this case, only the transverse fluctuating velocity is modeled. In Section A.B, both the transverse and
the streamwise velocity disturbances are used to describe the incoming turbulence, which provides a more
realistic definition of the turbulent flow. The governing equations of these methods are based on previous
works by Béchara et al.12 and Bailly and Juvé,13 among others.

A.A. One-component Fourier Mode (1cFm) Summation

In this case, the fluctuating velocity field can be seen as a superposition of plane waves, whose amplitude
is modulated by the velocity spectrum of the transverse disturbances. The fluctuating velocity field can be
written as,

uy(x, t) =

N∑
n=1

√
Φ2D

22 (kx,n) ∆kx,n cos [kx,n (x− Uxt) + φn] , (35)

where N is the total number of modes, Ux is the mean flow velocity, φn is the random phase term, kx,n is
the streamwise wavenumber component and ∆kx,n is related to the wavenumber discretization. The velocity
spectrum to be used in Eq. 35 is obtained after integration over the transverse wavenumber component,

Φ2D
22 (kx) =

+∞∫
−∞

Φ2D
22 (kx, ky) dky, (36)

where the velocity spectrum of the ith turbulent velocity component is linked to the energy spectrum by

Φ2D
ii (kx, ky) =

E2D(k)

πk

(
1− k2

i

k2

)
. (37)
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The streamwise wavenumber discretization follows a uniform distribution with a constant ∆kx. Since
kx = 2π/λx, Fourier modes are selected so that their wavelengths are: λx,max, λx,max/2, λx,max/3, ...,
λx,max/N . Thus, the incoming turbulence has a finite number of discrete frequencies, N , and is periodic
with a period related to the largest wavelength λx,max.

Although different approaches exist to implement a turbulent inflow using Fourier modes, all of them focus
on introducing the fluctuating velocity without producing spurious noise. For instance, Clair et al.14 used
a turbulent inflow based on Tam’s boundary conditions.46 In this work, the synthetic turbulence is defined
within the buffer zones, where the mean flow is required to be uniform, as stated by Eq. 35. Otherwise,
spurious sources of noise may appear at the buffer zone exit. In order to reduce the computational time,
the fluctuating velocity field is initialized throughout the CAA domain at the beginning of the simulation,
which helps to reduce the expense of the transitory state.

A.B. Two-component Fourier Mode (2cFm) Summation

The two-component turbulent inflow provides a more realistic definition of the vortical perturbations. It is
defined as follows,

u(x, t) =

N∑
n=1

2M∑
m=1

√
E2D (k)

∆kx,n∆ky,m
πk

cos [kx,n (x− Uxt) + ky,my + φnm]σnm , (38)

where φnm is the random phase term, k =
√
k2
x,n + k2

y,m is the overall wavenumber, ∆kx,n and ∆ky,m

are related to the wavenumber discretization and σnm is a unit vector (‖σnm‖ = 1) that guarantees the
divergence-free condition (σnm · k = 0). Thus, for a purely two-dimensional flow field realization σx,nm =
±ky,m/k and σy,nm = ∓kx,n/k.

The kx,m discretization follows the uniform distribution proposed in Section A.A. The ky,m discretization
is performed so that there is the same number of positive and negative ky,m. In order to obtain a good
representation of the spectral content while minimizing the number of modes in the transverse direction, a
logarithmic distribution is adopted in this case. Following Béchara et al.’s12 work, the M positive ky,m are
defined as

ky,m = exp
[
loge(ky,min) + (m−M − 1)∆k′y

]
, (39)

where m = M + 1, ..., 2M and the auxiliary term ∆k′y is defined as

∆k′y =
loge(ky,max)− loge(ky,min)

M − 1
. (40)

In practice, ky,min = kx,min > 0 and ky,max = Ckx,max > 0, where C usually takes a value between 2 and
3, depending on the energy spectrum to be matched. Unlike the ∆kx,n term, the ∆ky,m distribution is not
constant. In the present work, it is approximated as ∆ky,m = (ky,m−1 − ky,m+1)/2 if m = 2, ..., 2M − 1,
∆ky,m=1 = ∆ky,m=2 and ∆ky,m=2M = ∆ky,m=2M−1. The M negative ky,m modes are repeated symmetri-
cally so that ky,m=1 = −ky,m=2M , ..., ky,m=M = −ky,m=M+1.

B. Input Parameters for Two-dimensional Leading Edge Noise Predictions

In this appendix, the input values for the synthetic turbulence methods used in Section VI are detailed.
Note that these values are used to realize a two-dimensional von Kármán spectrum with Λ = 0.008 m and
Tu = 0.017.

λx,max [m] N M C

1cFm 1.275 100 − −
2cFm 1.275 100 10 2

Table 5. Parameters for one- and two-component Fourier
mode methods. The mean flow Mach number is Mx = 0.3.

λx,max [m] N M C

1cFm 2.55 100 − −
2cFm 2.55 100 10 3

Table 6. Parameters for one- and two-component Fourier
mode methods. The mean flow Mach number is Mx = 0.6.

The input parameters for the one- and two-component Fourier mode approaches at Mx = 0.3 and
Mx = 0.6 are given in Tables 5 and 6, respectively. The integral length scale and the root-mean-square of
the velocity fluctuations for Gaussian superposition in the advanced digital filter method are given in Tables
7 and 8.
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Λi [m] u2
rms,i [m2/s2]

2.524× 10−2 5.194× 10−2

1.401× 10−2 2.152× 10−1

7.285× 10−3 3.012× 10−1

3.023× 10−3 4.667× 10−1

2.238× 10−3 8.929× 10−3

Table 7. Parameters for Gaussian superposition using the
advanced digital filter method. The mean flow Mach num-
ber is Mx = 0.3.

Λi [m] u2
rms,i [m2/s2]

2.524× 10−2 2.077× 10−1

1.401× 10−2 8.608× 10−1

7.285× 10−3 1.205

3.023× 10−3 1.867

2.238× 10−3 3.566× 10−2

Table 8. Parameters for Gaussian superposition using the
advanced digital filter method. The mean flow Mach num-
ber is Mx = 0.6.
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