ON SUBGROUPS OF RIGHT ANGLED ARTIN GROUPS WITH FEW
GENERATORS
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ABSTRACT. For each d € N we construct a 3-generated group Hg, which is a subdirect product
of free groups, such that the cohomological dimension of Hg is d. Given a group F' and a
normal subgroup N < F' we prove that any right angled Artin group containing the special
HNN-extension of F' with respect to N must also contain F//N. We apply this to construct, for
every d € N, a 4-generated group G4, embeddable into a right angled Artin group, such that
the cohomological dimension of G4 is 2 but the cohomological dimension of any right angled
Artin group, containing G, is at least d. These examples are used to show the non-existence
of certain “universal” right angled Artin groups.

We also investigate finitely presented subgroups of direct products of limit groups. In
particular we show that for every n € N there exists §(n) € N such that any n-generated
finitely presented subgroup of a direct product of finitely many free groups embeds into the
d(n)-th direct power of the free group of rank 2. As another corollary we derive that any
n-generated finitely presented residually free group embeds into the direct product of at most
0(n) limit groups.

1. INTRODUCTION

A right angled Artin group, also called a graph group or a partially commutative group in
the literature, is a group which has a finite presentation, where the only permitted defining
relators are commutators of the generators. To get such a group, one normally starts with any
finite simplicial graph I', with vertex set VI' and edge set ET', and defines the associated right
angled Artin group A = A(T") by the presentation

A= (VT [u,v] = 1, V{u,v} € ET).

The structure of these groups and their subgroups has been a subject of intensive study in
the recent years. The results of Haglund, Wise and Agol [13, 26, 1] show that many previously
studied groups (e.g., one-relator groups with torsion, limit groups, fundamental groups of
closed hyperbolic 3-manifolds) virtually embed into right angled Artin groups. Thus the class
of subgroups of right angled Artin groups is rather rich. However, the first theorem about
right angled Artin groups, proved by Baudisch in [4], asserts that a 2-generated! subgroup of
a right angled Artin group is either free or free abelian. In particular, there exists a single
right angled Artin group (e.g., Z * Z?) which contains all two-generated subgroups of right
angled Artin groups. In [9] Casals-Ruiz and Kazachkov ask whether a similar fact is true for
n-generated subgroups of right angled Artin groups:
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Question 1 ([9, Question 1]). Given n € N, does there exist a “universal” right angled Artin
group which contains all n-generated subgroups of arbitrary right angled Artin groups?

Let A denote the class of all groups which are isomorphic to subgroups of (finitely generated)
right angled Artin groups. Motivated by Question 1, in this note we show that there are no
“universal” right angled Artin groups for various subclasses of the class A. We start with the
following statement, where [Fo denotes the free group of rank 2, ]Fg denotes its d-th direct power
and cd(H) denotes the cohomological dimension of a group H over the integers.

Proposition 1.1. For every d € N there exists a 3-generated subgroup Hy < Fg such that Hy
contains the free abelian group of rank d as a subgroup and cd(Hy) = d.

Since F g is a right angled Artin group, Proposition 1.1 shows that the answer to Question 1
is negative already for n = 3. Indeed any group containing all Hy, d € N, must have infinite
cohomological dimension, but it is well-known that the cohomological dimension of a right
angled Artin group A, associated to a finite graph I, is finite and equals to the clique number
of I'? (in particular, cd(A4) < |V|). In other words,

cd(A) = max{|U| | U C VT such that {u,v} € ET for all distinct u,v € U}.

It is now natural to wonder whether imposing a bound on the cohomological dimension, in
addition to the bound on the number of generators, would help. Namely, one can ask whether
for every n € N there is a single right angled Artin group which contains all n-generated groups
G € A with ¢d(G) < n. To show that this is not the case, we employ special HNN-extensions.

Let F' be a group and let N < F be any subgroup. The special HNN-extension of F with
respect to N is the group G defined by the (relative) presentation

(1) G = (F,t||tht ' = h, Vh € N).

If G and A are groups then we will write G — A to say that G can be isomorphically
embedded into A.

Theorem 1.2. Suppose that F € A and N < F' is a normal subgroup such that F/N € A. Let
G be the special HNN-extension of F with respect to N, defined by presentation (1). Then

(i) G e A;
(i) if A is any right angled Artin group such that G — A then F/N — A.

The main technical result, used in the proof of Theorem 1.2, is Proposition 5.2 below, which
implies that any right angled Artin group containing the special HNN-extension (1), with
N < F, must also contain the quotient F//N.

Given any d € N, let us apply Theorem 1.2 to the case when F' is the free group of rank 3 and
N <QF is the normal subgroup such that F//N = Hy, where Hy is the group from Proposition 1.1.
Then the special HNN-extension G4, of F' with respect to N, will be generated by 4 elements
and will belong to the class A by Theorem 1.2. And for any right angled Artin group A with
Gq — A, we will have H; — A. In particular, cd(A) > cd(Hg) = d. On the other hand, we
see that cd(Gy4) = 2 because G is not free and acts on a tree with free vertex stabilizers (cf.
[8, Ex. 4 in Ch. VIIIL.2]). Thus we obtain the following corollary:

2This can be derived from the fact that A is isomorphic to the fundamental group of a non-positively curved
Salvetti cube complex whose dimension is precisely the clique number of I — see [10, Sec. 3.6].
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Corollary 1.3. For every d € N there exists a 4-generated group Gq € A such that cd(Gy) = 2
but for any right angled Artin group A, containing a copy of Gq, one has cd(A) > d.

The above corollary shows that there exists no “universal” right angled Artin group con-
taining all 4-generated groups from A of cohomological dimension 2.

The next naturally arising question could ask whether for a given n € N there are right
angled Artin groups containing copies of all finitely presented n-generated groups G € A.
This question seems to be more subtle. The groups Hy from Proposition 1.1 are not finitely
presented (see Remark 3.2 below), and a result of Bridson and Miller [7] implies that finitely
presented subdirect products of free groups, intersecting each of the factors non-trivially, are
virtually surjective on pairs, which shows that they are quite scarce. In [6] Bridson, Howie,
Miller and Short extended this result to finitely presented subgroups in direct products of
finitely generated fully residually free groups (a.k.a. limit groups). We use this generalization
to prove the following theorem.

Theorem 1.4. There exists a computable function § : N — N such that the following holds.
Suppose that Fy, ..., Fy are limit groups and H < Fy X -+ X Fy is a finitely presented subgroup
such that H N F; # {1} for each i =1,...,d. If H is n-generated then d < 6(n).

In Remark 3.6 we give an estimate §(n) < 287" for all n € N. This estimate is not sharp,
and it would be interesting to see whether there exists a polynomial (or even a linear) upper
bound for §(n) in terms of n.

Theorem 1.4 implies that no finitely presented analogues of the groups H,; from Proposi-
tion 1.1 can be found among subgroups of direct product of free groups:

Corollary 1.5. Given any n € N, every n-generated finitely presented subgroup H of a direct
product of finitely many free groups can be embedded into Fg(n). In particular, cd(H) < §(n).

We would also like to mention another corollary of Theorem 1.4 concerning residually free
groups, which may be of independent interest. It is known that every finitely generated resid-
ually free group G can be embedded in the direct product of finitely many limit groups (see
Baumslag, Myasnikov and Remeslennikov [5], Kharlampovich and Myasnikov [16], or Sela
[23]). In the case when G is finitely presented Theorem 1.4 can be used to give a bound on
the number of factors:

Corollary 1.6. Let G be an n-generated finitely presented residually free group, for some
n € N. Then G can be embedded into the direct product of at most §(n) limit groups.

Using the commutative transitivity of limit groups it is easy to show that for any d € N the
residually free group Hy from Proposition 1.1 cannot be embedded into the direct product of
less than d limit groups. Thus it is not possible to remove the assumption that G is finitely
presented in Corollary 1.6.

Unfortunately the characterization of finitely presented subdirect product of free groups
given by Bridson and Miller in [7] does not extend to finitely presented subgroups of more
general right angled Artin groups. And while Theorem 1.2 can be used to construct some
finitely presented examples (see Corollary 5.4 in Section 5), the following question remains
open.

Question 2. Do there exist finitely presented analogues of groups Hy from Proposition 1.17
More precisely, does there exist n € N such that for any d € N there is an n-generated finitely
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presented group Q4 € A which contains the free abelian subgroup of rank d (and/or which has
cd(Qq) = d)?

A celebrated theorem of Higman, Neumann and Neumann [15] states that any countable
group H can be embedded into a 2-generated group G; moreover, one can take G to have the
same number of defining relations as H. It is natural to ask if there is an analogue of this
statement within the class A:

Question 3. Does there exist n € N such that every group H € A can be embedded into
some n-generated group G € A? Can one choose such G to be finitely presented, in addition
to being generated by n elements?

Note that by the theorem of Baudisch [4], mentioned above, the number n in Question 3
must be at least 3.

2. PROOF OF PROPOSITION 1.1

Proof of Proposition 1.1. Let F' = F(x,y, z) be the free group of rank 3 with the free generating
set {z,y,2z}. Given any d € N, choose any elements wi,...,wg € (x,y) < F which freely

generate a free subgroup of rank d in (z,y) = Fy. For each ¢ = 1,...,d, define the normal
subgroup L; <t F' as the normal closure of the element 2z~ 'w;, and let
d
Ki= (] Lj<F
=L

By construction, for every i the quotient F'/L; is canonically isomorphic to the rank 2 free
subgroup (z,y) < F. Observe that Ky \ Lq # 0. Indeed, clearly the long commutator

[z_lwla SERE) Z_lwd—l] = H[Z_lwla Z_IQUQ], Z_1w3]7 s 7Z_1wd—1]
belongs to K4, and its image in F//Lgy = (z,y) < F is equal to the long commutator
[w;lwl,...,wglwd_l]. The latter is non-trivial in (x,y) < F by the choice of wy,...,wy
(because the elements w;lwl, e ,w;lwd,l freely generate a free subgroup of rank d — 1),
hence [z7 1wy, ..., 27 twy_1] € K4\ Lg in F. In view of the symmetry, we can deduce that
(2) K;\L; #0in F, for each i € {1,...,d}.

Let ¢; : F — F/L; denote the canonical epimorphism, and let ¢ : F' — F/Ly x -+ x F//Lg4
denote the product homomorphism, defined by the formula ¢(f) = (cpl( f)yeoypal f)) for all
f € F. Finally, we define H; := o(F) as the image of F in F/L; x --- x F/Lq = Fg.

Notice that ¢;(K;) = {1} if j # i by the definition of K;, and ¢;(K;) # {1} by (2) for any
i€{l,...,d}. It follows that the subgroup ¢(K;---K;) < Hy is naturally isomorphic to the
direct product ¢1(K7) X -+ X @4(Ky) of non-trivial free groups. Consequently, H; contains a
copy of Z¢ as a subgroup, and so cd(Hy) > d. On the other hand, cd(H) < cd(F4) = d, hence
cd(Hy) = d, as claimed. O

3. FINITELY PRESENTED SUBDIRECT PRODUCTS OF LIMIT GROUPS

The goal of this section is to prove Theorem 1.4 and Corollaries 1.5,1.6 formulated in the
Introduction.
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Let H be a subgroup of the direct product P := F} X --- X Fy, of some groups Fi,..., Fp,.
Recall that H is called a subdirect product if it projects surjectively onto each of the direct
factors. Following [6] we will say that H is virtually surjective on pairs (VSP) if for any pair of
distinct indices i, j € {1,...,m} the image of H under the canonical projection p;; : P — F;x F}
has finite index in F; x Fj. Let N; .= HNkerp; <H, 1 =1,...,m, where p; : P — F; denotes
the canonical projection to the ¢-th coordinate.

Lemma 3.1. Let H < Fy X --- X Fy, be a subdirect product. Then H is VSP if and only if
|H : N;Nj| < oo foralll <i<j<m.

Proof. If H is VSP then |F; x F}j : p;;(H)| < co whenever ¢ < j, hence F; N p;;(H) = p;j(N;) =
pi(N;) has finite index in F;. Therefore p; ' (p;(N;)) N H = N;Nj; has finite index in H.

On the other hand, if |[H : N;N;| < oo for some 0 < i < j < m, then p;(N;N;) = p;(N;) has
finite index in p;(H) = F;. But p;(N;) = pi;(N;) C pij(H) because p;;(N;) is contained in Fj
as N; C ker pj. Thus p;;(H) contains a finite index subgroup of F;. Similarly, it also contains
pj(N;), which has finite index in F;. Hence |F; x F} : p;;(H)| < oo. O

Remark 3.2. In [7] Bridson and Miller proved that if a finitely presented subdirect product of
free groups intersects each of the direct factors non-trivially then it is VSP?. It follows that for
any d € N, the group Hy, constructed in the proof of Proposition 1.1, is not finitely presented.
Indeed, if Hy was VSP then |Hy/(N;N;)| < oo forany 1 < i < j < d by Lemma 3.1. But clearly
H/(N;N;) = F/(L;L;) is an infinite group because it has a presentation with 3 generators and
two relators (in particular, it surjects onto Z).

The following elementary observation will be useful.

Lemma 3.3. Suppose that H and F are groups and ¢; : H — F, i = 1,2, are two epimor-
phisms. Assume that H is generated by some subset X C H, and let M < F' denote the normal
closure of the subset {17 (x)ia(z) | 2 € X}. Then ¢y (kerahy) € M; in particular, if one sets
L := ker g ker 1o < H, then H/L maps onto F/M.

Proof. If h € kerg, then h = x1 ...z, for some z1,...,7; € X1, and ¢o(x1) ... Yo(x) = 1
in F. Since v2(x;) = ¥1(x;) (mod M), we see that ¢(h) = ¥1(x1)...¢1(xx) € M. Thus
1 (kero) C M, as claimed. O

Proposition 3.4. There is a computable function v : N = N such that the following holds.
Let H be a group with a collection of normal subgroups Nu, ..., Ny < H, such that H/N; maps
onto the free group of rank 2 for eachi=1,...,m, and |H : N;N;| < oo for all1 <i < j < m.
If H is n-generated, for some n € N, then m < y(n).

Proof. Let F denote the free group of rank 2. By the assumptions, for every i = 1,...,m,
there exists an epimorphism 1; : H — F whose kernel contains V;.

Suppose that some elements x1,...,z, € H generate H, and let w;, = ¢;(xy) € F, k =
1,...,n,i=1,...,m. For any two distinct indices 4, j € {1,...,m} let L;; := ker ¢, ker¢; <H
and let M;; be the normal closure of the subset {u;llujl, e ,u;}um} in F'. By construction,

the group H/(N;N;) maps onto the group H/L;j, and the latter group maps onto the group

3This is implicit in the proof of [7, Thm. 4.7] and is explicitly stated in the Introduction of [6], where it
is proved that being VSP is also sufficient for finite presentability of subdirect products of finitely presented
groups.
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F/M;; by Lemma 3.3. Since |H/(N;N;)| < oo by the assumptions, the group F'/M;; must also
be finite whenever 1 < i < j < m.

Let {D;F}{°, denote the Jennings-Zassenhaus filtration of the free group F' for the prime
p =2. Namely, D;F :={f € F | f —1 € I"}, where I is the augmentation ideal of the group

ring K[F] and K is the field of two elements. Then D;F is a normal subgroup of finite index
in Fforeachl €N, and F = D1F > DyF > ....

Now, for the given n € N choose 7 := 2/3 and r := [2logy(3n)| € N (so that nt" < 27 — 1),
and set y(n) = |F/D,F|" € N. Let us show that m < 7(n). Arguing by contradiction,
suppose that m > «(n). Then, by the pigeon hole principle, there must exist a pair of indices
i,j € {1,...,m}, i < j, such that u;; = uj, (mod D, F) for all k =1,...,n. It follows that
the elements u;llujl, . ,u;nlujn, normally generating M;;, are all contained in D, F. Since F’
is the free group of rank 2 and

n
1—27’+ZTT<O,

i=1
the Golod-Shafarevich theorem (see [11]) implies that the group F/M;; must be infinite. This
contradiction shows that m < «(n), finishing the proof of the proposition. O

Remark 3.5. We can estimate the value of y(n), for the choice of 7 = 2/3, r = [2logy(3n)]
and the field of two elements K, as follows. Let Y be a generating set for the free group F' with
|Y| = 2. Then, for any [ € N, the vector space Il/IH'l7 over K, is spanned by the elements
(y1 =) (y2—1)---(yy— 1)+ I for all y1,...,y € Y (see the proof of [12, Lemma 8]). Hence
dimg (I' /1Y) < 2!, and so |[I'/I| < 22, Since |D;F/Dy1 F| < |I'/I"| and F = D1 F, we
obtain

\F/D,F| = |D\F/DyF| - |D,_1F/D,F| < 22" ~1 < g18n*~1,

Thus y(n) < 2187°=" for all n € N.

For any ¢ > 0 by taking the parameter 7 to be very close to 1/2 (but still larger than 1/2)

and choosing an appropriate r we can get a better estimate y(n) < 20”2+E_”, where C will be
some large constant depending on 7.

Recall that a group G is said to be residually free if for every g € G \ {1} there exists a
free group F' and a homomorphism ¢ : G — F such that ¢(g) # {1} in F. The group G is
fully residually free if for every finite subset S C G there is a homomorphism from G to a free
group whose restriction to S is injective. Finitely generated fully residually free groups are
commonly called limit groups. These groups play an important role in the study of the first
order theory of free groups (see [16, 23]).

In [6] Bridson, Howie, Miller and Short proved that a finitely presented subgroup of a direct
product of finitely many non-abelian limit groups, which is subdirect and intersects each of the
direct factors non-trivially, must be VSP. We will now use this result to prove Theorem 1.4.

Proof of Theorem 1.4. Let p; : Fy X --- x Fy — F; denote the canonical projection onto Fj.
Since finitely generated subgroups of limit groups are also limit groups, we can replace each
F; by p;(H) to further assume that H is subdirect.

After renumbering, if necessary, we can suppose that Fi, ..., Fy are abelian and Fsy1, ..., Fy
are non-abelian limit groups, for some s € {0,...,d}. Let H; and Hs denote the images of
H under the canonical projections to F} X --- x Fg and Fsyq X --- X Fy respectively. Since
{1} # F;NH C F;NH, for all i = 1,...,s, the rank r, of the free abelian group H;, must be
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at least s. On the other hand, » < n because H; is n-generated, as a quotient of H, and the
free abelian group of rank r cannot be generated by fewer than r elements. Hence s < n.

Note that Hs is finitely presented as a quotient of the finitely presented group H by a finitely
generated central subgroup Z == H N (Fy X --- x F5) (F1 x --- x Fy is a free abelian group
of rank at most ns, so Z can be generated by no more than ns elements). By construction,
Hy < Fgyq X -+ - X Fy is a subdirect product of non-abelian limit groups intersecting each factor
non-trivially. Therefore, by [6, Thm. D(5)], H2 must be VSP in Fs11 X --- x Fy.

From Lemma 3.1 it follows that |Hy : N;N;| < oo for all s+ 1 <i < j < d, where N; < Hy
denotes the kernel of the projection onto F;, i = s + 1,...,d. Since Hy/N; = F; is a non-
abelian limit group for ¢ = s+1,...,d, it has an epimorphism onto Fs, so all the assumptions
of Proposition 3.4 are satisfied, and we can use it to conclude that d—s < y(n). Thus, d < §(n),
where 6(n) :=n + ~y(n) for all n € N, and the theorem is proved. O

Remark 3.6. In view of Remark 3.5 we can estimate that d(n) < n + 2187°~n < 2187% for g]]
n € N.

If a subgroup H, of a direct product F} X --- X Fj,, has trivial intersection with one of the
factors, then H is isomorphic to its image under the projection away from this factor. So we
can always find an embedding of H into Fj, x---x F;,, for some {iy, ... i} C {1,...,m}, such
that H NI, # {1} for every j = 1,...,k. In view of Theorem 1.4, this observation together
with the fact that every finitely generated free group embeds into Fo yields Corollary 1.5.
Corollary 1.6 is obtained similarly, by first embedding the finitely generated residually free
group G into the direct product of finitely many limit groups (which can be done by [5, Cor.
19]; see also [16, Cor. 2] or [23, Claim 7.5]), and then removing the redundant direct factors
that intersect the image of G trivially.

4. BACKGROUND ON RIGHT ANGLED ARTIN GROUPS

Let I be a finite simplicial graph with vertex set VI' = V and the edge set EI' = E. For any
vertex v € V, the link linkp(v) C V is defined as the set of all vertices of I" adjacent to v (not
including v itself). If U C V then linkp(U) = [,y linkp(u). A subset U C V' is reducible if it
can be decomposed in a disjoint union U = X UY of non-empty subsets X, Y C V such that
Y Clinkp(X). If there is no such decomposition, then U is said to be irreducible.

Let A = A(T") be the right angled Artin group, associated to I'. Then the elements of V'
can be thought of as generators of A, and every element g € A can be represented by a word
w over the alphabet V*!. The support of w is the set of all vertices v € V such that either v
or v~! appears in w. The length |g|r and the support suppr(g), of g € A, are defined as the
length and the support of a shortest word over V*! representing ¢ in A, respectively. It is a
standard fact that |g|r and suppp(g) only depend on g and are independent of the choice of a
shortest word representing it.

Right angled Artin groups are special cases of graph products of groups, when all the vertex
groups are infinite cyclic (see [2, Subsec. 2.2] for some background on graph products).

Given any subset U C VT, the subgroup Ay < A, generated by U, is called a full subgroup
(or a special subgroup) of A. It is not difficult to see that Ay is naturally isomorphic to the
right angled Artin group corresponding to the full subgraph I'yy of I', spanned by the vertices
from U. Moreover, Ay is a retract of A, where the canonical retraction py : A — Ay is defined
on the generating set V' of A by the formula py(u) =u if u € U and py(v) =1if v € V\ U.
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Any conjugate of a full subgroup in A is said to be parabolic. Every subset M C A is
contained in a unique minimal (with respect to inclusion) parabolic subgroup Pcr (M), which
is called the parabolic closure of M in A (see [2, Prop. 3.10]).

An element t € A is cyclically reduced if it has minimal length in its conjugacy class in A.
Servatius [24, Prop. on p. 38] proved that for every element g € A there exist u,t € A such
that g = utu~!, t is cyclically reduced and |g|r = |t|r + 2|u|r.

If t ¢ Aand H < A then we will write Cy(¢) and N4(H) to denote the centralizer of ¢ in
H and the normalizer of H in A respectively.

Lemma 4.1. If A is a right angled Artin group then for anyt € A and m € Z\{0}, C4(t™) =
Cal(t).

Proof. Suppose that st™s™! = t™ for some s € A. Then (sts~!)™ = t™, and since right
angled Artin groups have the Unique Root property (see, for example, [21, Lemma 6.3]), we
can deduce that sts~t =t. Thus C(t"™) C Ca(t). The reverse inclusion is obvious, hence the
lemma is proved. O

5. SPECIAL HNN-EXTENSIONS IN RIGHT ANGLED ARTIN GROUPS

In this section we give a criterion for embedding the special HNN-extension of a group with
respect to a normal subgroup into a right angled Artin group. The next lemma uses the obvious
fact that the class of right angled Artin groups contains the infinite cyclic group and is closed
under forming free and direct products.

Lemma 5.1. Suppose that F' is a subgroup of some right angled Artin group A, N < F and
F/N is embeddable into some right angled Artin group B. Then the special HNN-extension
(1) can be embedded into the right angled Artin group C == A x (B x(t)), where (t) denotes the
infinite cyclic group generated by t.

Proof. Abusing the notation, let us assume that ' < A and F/N < B. Let ¢ : FF — B
denote the natural homomorphism with ker(¢) = N and im(¢) = F//N. Clearly the subgroup
F = {(f,¢(f) | f € F} < Ax B is isomorphic to F and F N A = N. Now, let G be the
subgroup of C' = A x (B x (t)) generated by F and t.

Evidently, ¢ commutes with (a,b) € Ax B in C'if and only if b = 1, thus Cx(t) = FNA = N.
This naturally gives rise to a homomorphism v : G — G, defined according to the formula
Y(f) = (f,¢(f)) € F and 9(t) = t, where G is the special HNN-extension (1), of F' with
respect to V. Obviously ) is surjective, so it remains to show that it is injective. This can
be easily done by using normal forms: suppose that g € G\ {1}. Then g = fotF1 f1 ---tF» f,,
where n > 0, fo,...,fn € F, ki,...,kn, € Z\ {0}, fi ¢ Nfor1 <i<n-—1,and fy # 1 if
n = 0.

If n =0 then g = fo # 1 in F, hence ¥(g9) = (fo,6(fo)) # 1 in A x B < C. So,
suppose that n > 1 and let p : C — B x (t) denote the canonical retraction. Then p(1(g)) =
d(fo)t* 1 o(f1) - -t*¢(f,) is a non-empty reduced word in the free product B # (t), hence
p(1(g)) # 1. Therefore 1(g) # 1 in C, and 1 is injective.

Thus G = G < C, and the lemma is proved. O
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Let A be a right angled Artin group associated to a finite graph I with vertex set V = VT
Recall that for any subset M C A, Pcp(M) denotes the parabolic closure of X in A (see
Section 4).

Proposition 5.2. Let F' be a subgroup of A, and lett € A be an element such that Pcp(G) = A,
where G == (F,t) < A. Suppose that N := Cp(t) is a normal subgroup of F. Then

(i) Per(N) is a direct factor of A. More precisely, Pcr(N) = Ax for some X CV, and
V = X Ulinkp(X).
(i) FNAx = N, hence F/N embeds into Ay < A, where Y =V \ X = linkp(X).

Proof. Clearly N is normal in G, hence G < N4(N) < N4 (Pcr(N)), where the second inclusion
was proved in [2, Lemma 3.12]. Suppose that Pcr(N) = hAxh~! for some X C V and some
h € A. By [2, Prop. 3.13], Na(hAxh™!) = hAXUlinkp(X)h_l is a parabolic subgroup of
A containing G. Since Per(G) = A, it follows that A = hAx k()P ™! = AxUlinkp(x)-
Therefore A = Ax X Ajipi(x), Per(N) = Ax and V = X 1Y, where Y = linkp(X). Thus (i)
is proved.

Let us prove (ii) now. Clearly, after replacing ¢, F' and N with their conjugates by the same
element, we can assume that ¢ is cyclically reduced in A (note that this does not affect the
equality Pep(N) = Ay, as Ax < A). Let suppp(t) = T3 U - - - U Tk be a decomposition into the
disjoint union of non-empty irreducible subsets T; of V', such that T; C linkp(7}) in I' whenever
i # j. Then one can write t = t7'¢5?---t;*, where t; € Ar, \ {1} are not proper powers and
n; € Nfori=1,... k.

In [24] Servatius showed that the centralizer, C4(t), is generated by ti,...,t; and S =
linkr (suppr(t)) € V. In other words,

(3) Ca(t) = (tr)(t2) - (tr) Ag = (t1) x (b2) x -+ X (tg) x Ag.

For every i € {1,...,k}, let p; : A — Ar denote the canonical retraction. Sup-
pose that p;j(N) # {1} for some j € {1,...,k}. Evidently, since N < Cyx(t), we have
pi(N) < p;j(Ca(t)) = (tj) by (3). Consequently, p;j(N) = <t;nj> for some m; € Z\ {0}.
Recalling that N < F, we see that p;j(IN) < p;(F). Since pj(N) = Z, as right angled Artin
groups are torsion-free, we can use Lemma 4.1 to conclude that p;(N) is actually central in
p;j(F) (see [3, Lemma 9.1] for an alternative proof), thus p;(F) < CAT]. (t;nj) Therefore,
applying Lemma 4.1 one more time, we see that p;(F) < CATj (t;) = (tj) in Ag,.

After renumbering, if necessary, we can assume that there exists [ € {0,1,...,k} such that
pi(N) # {1} if 1 <i <[, and p;(N) ={1}if [+ 1 <i < k. The inclusion N < C4(t), together
with (3), implies that Pcp(N) < Az, where Z = U§:1 T;US C V. In the previous paragraph
we have shown that p;(F) < (t;) whenever 1 < j <[. Let pg : A — Ag denote the canonical

retraction. Since Az is canonically isomorphic to the direct product Ap, x --- x Ap, x Ag, for
any g € F'N Az we have

9=p1(9)---p(g)ps(g) € (t1) -~ (t) As € Ca(t).
Therefore, F N Az C FNCy(t) = N by the assumption, yielding that FF N Ax = N, as
Ax = Pep(N) < Az. Thus the proof of claim (ii) is complete. O

Special HNN-extensions play an important role in group theory. For example, Higman used
them in the proof of his famous embedding theorem — see [14] and [20, Ch. IV.7]. In particular



10 ASHOT MINASYAN

he showed that if F' is a finitely generated group and N < F' is such that the special HNN-
extension (1) can be embedded into a finitely presented group then the quotient F'/N can also
be embedded into a finitely presented group. Proposition 5.2 allows us to obtain the following
analogue of the latter statement, where the class of finitely presented groups is replaced by the
class of right angled Artin groups.

Corollary 5.3. Suppose that F' is a group, N < F' and G s the special HNN-extension (1),
of F' with respect to N. Then the following are equivalent:

(a) F e Aand F/N € A;
(b) G € A.

Proof. The implication (a)=(b) is given by Lemma 5.1. To prove the reverse implication,
assume that G < B for some right angled Artin group B, corresponding to a finite simplicial
graph I". Evidently, since F < G, we have F € A.

Note that A := Pcp/(G) is a right angled Artin group, corresponding to some full subgraph
[ of TV. Moreover, the parabolic closure Pcep(G), of G in A, is A itself. This is because every
parabolic subgroup of A is a parabolic subgroup of B and A is the minimal parabolic subgroup
of B containing G, by definition. Britton’s lemma for HNN-extensions (see [20, Sec. IV.2])
easily yields that Cp(t) = N. Therefore all the assumptions of Proposition 5.2 are satisfied
and we can deduce that F/N < A. Thus (b) implies (a). O

We are now ready to prove Theorem 1.2 from the Introduction.

Proof of Theorem 1.2. Claim (i) is an immediate consequence of Lemma 5.1. Suppose that
G — A for some right angled Artin group A. Abusing the notation, let us identify G with
its isomorphic image in A. Arguing as in the proof of Corollary 5.3, we can replace A with a
parabolic subgroup to ensure that A is the parabolic closure of G. As before, we know that
Cr(t) = N by Britton’s lemma, hence F//N embeds in A by Proposition 5.2, and claim (ii)
holds. O

It is not difficult to see that the group G4 from Corollary 1.3, formulated in the Introduction,
is not finitely presented for any d € N. This is because the normal subgroup N < F, with
F/N = Hg, cannot be finitely generated (as it is both infinite and has infinite index in the free
group F' — see [20, Prop. 1.3.12]), and the special HNN-extension (1) is finitely presented if
and only if F' is finitely presented and N is finitely generated. One can overcome this obstacle
by using the famous construction of Rips [22], where the free group is replaced by a hyperbolic

group.

Corollary 5.4. For every d € N there is a finitely presented group Py € A such that cd(P;) < 3
but any right angled Artin group A, with Py — A, satisfies cd(A) > d.

Proof. Take any d € N. Let us use the modification of Rips’s construction suggested by
Haglund and Wise in [13] (in view of the results of Wise [25, Thm. 1.2] and Agol [1, Thm. 1.1] we
can also use the original construction of Rips from [22]). Namely, according to [13, Thm. 10.1],
there is a group S with a normal subgroup K <1.5 such that S is the fundamental group of
some compact non-positively curved square complex, K is finitely generated and S/K = Z9.
Moreover, Theorems 5.5, 5.7 and 4.2 from [13] imply that S contains a finite index subgroup
F such that F € A.
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Let N < F be the intersection of F' and K. Note that N is finitely generated as |K : N| <
|S : F| < oo, and F/N is still isomorphic to the free abelian group of rank d (because it has
finite index in S/K). Now, let P; be the special HNN-extension of F' with respect to N. By
Theorem 1.2, P; < A and for any right angled Artin group A, containing P, one has Z¢ < A,
hence cd(A) > d.

Let X C N be some finite generating set of N. Then P, can be defined by the (relative)
presentation

(4) Py=(Ft|tet ™ =2, Vo € X).

Observe that S is finitely presented, as the fundamental group of a finite square complex, hence
F is finitely presented as well. Equation (4) shows that a presentation for P, can be obtained
from a finite presentation of F' by adding one generator and finitely many defining relations,
thus P is also finitely presented.

Finally, cd(S) < 2 as S is the fundamental group of a 2-complex with contractible universal
cover, therefore cd(F) < 2. And since P; is an HNN-extension of F', we can conclude that
cd(Py) < cd(F)+1=3-see [8, Ex. 4 in Ch. VIIL.2]. O

Corollary 5.4 demonstrates that there is no “universal” right angled Artin group for the
class of all finitely presented groups P € A with c¢d(P) < 3. However, the main result of
Kim and Koberda from [17] implies that an even stronger fact is true: there does not exist a
right angled Artin group which contains copies of all 2-dimensional right angled Artin groups
(see also [18, Thm. 1.16] for a weaker statement). Indeed, one just needs to recall that every
right angled Artin group embeds into the mapping class group Mod(X), of some orientable
compact surface ¥ (cf. [19, Prop. 1.3]), and combine this with [17, Thm. 1.2], asserting that
for every such surface 3 there exists a right angled Artin group A, with cd(A4) = 2, such that
A 4 Mod(X).
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