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Summary

Within the context of railway ground-borne vibration, the dynamic pile-soil-pile interaction remains
an area that has not been sufficiently investigated. Whilst a number of researchers have scrutinised the
vibration response of piled-foundations, their approaches exhibit a compromise between computation
time and solution accuracy. In this paper, two models of piled-foundations in a multi-layered half-
space are presented; one is an efficient semi-analytical model and the other is a fully-coupled boundary
element model. The pile is simulated, in both models, by an elastic bar for axial loading and an Euler-
Bernoulli beam for transverse loading. A set of comparisons has been performed, including the driving
point response of a single pile, the interaction between two piles and the ‘far-field’ response due to
axial and transverse loading on the pile head. The comparisons reveal that at most frequencies the
semi-analytical model predicts the driving point response and the dynamic interaction with acceptable
accuracy and computational efficiency. It is highlighted, however, that the semi-analytical model with
its present assumptions does not accurately approximate the ‘far-field’ response.

PACS no. 43.10.-a, 43.10.Ce

1. Introduction

Ground-borne vibration generated by sources such
as earthquakes, railways, roads and construction ac-
tivities often causes disturbance to nearby buildings
that may lead to significant social and economic im-
pacts. Usually, structural foundations, such as piled-
foundations, act as a transmission path for ground-
borne vibration into buildings. In some cases, how-
ever, piled-foundations can serve as wave barriers to
isolate vibration when arranged in an appropriate
configuration. As such, over the past four decades dy-
namic pile-soil-pile interaction (PSPI) has received ex-
tensive research effort. Different techniques for mod-
elling the dynamic PSPI have been formulated; most
of them were recently reviewed by Kuo and Hunt [1].

The research interest in the dynamic PSPI was
sparked by the pioneering work of Poulos [2, 3] on the
static behaviour of pile groups. In his work, Poulos
introduced the concept of interaction factors, which
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express the displacement of a pile group as a function
of the motion of the loaded, adjacent pile. A number
of researchers have later applied this concept to study
the dynamic behaviour of pile groups, which was
observed to be strongly frequency-dependent [4, 5].
These findings, along with increasing interest in soil-
structure interaction, have led researchers to develop
analytical methods for modelling the dynamic be-
haviour of pile groups [6, 7]. However, despite offer-
ing considerable reduction in computation time, the
analytical models only provide approximate solutions
for PSPI due to ignoring the presence of neighbour-
ing piles when calculating the interaction between two
piles. The existence of neighbouring piles has two ef-
fects: the soil-stiffening effect, which dominates at low
frequencies (wavelengths greater than pile spacing),
and the wave scattering effect, which dominates at
high frequencies (wavelengths less than the diameter
of the piles) [8]. These shortcomings limit the applica-
tion of such models in studying ground-borne vibra-
tion, and hence an efficient, yet rigorous analytical
model is required.

The boundary element (BE) method, on the other
hand, is reputed to be a reliable approach for mod-
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elling the dynamic PSPI. This is because wave radi-
ations are inherently accounted for resulting in accu-
rate solutions within the interior of the domain. For
instance, Sen et al. [9] presented a BE model of a pile
group, in which the piles are modelled as an elastic
bar/beam and inserted into a homogeneous half-space
with multiple cavities. Talbot and Hunt [8] avoided
adding extra cavities in the soil by adopting instead
periodic structure theory to model an infinitely long
row of piles embedded in a homogeneous half-space.
Maeso et al. [10] developed a pile group model by
simulating the piles as continuum elastic solids and
the soil as an isotropic homogeneous fluid-filled poroe-
lastic material. More recently, Millain and Dominguez
[11] devised a simplified BE model for pile groups in
viscoelastic and poroelastic soils. All these previous
BE models are a good solution for PSPI and capable
of considering different types of motion of pile heads.
BE models of piles, in general, can serve as a bench-
mark to scrutinise the effects of simplifying assump-
tions inherited in the analytical models. However, BE
models are computationally inefficient and thus, from
a practising Engineer’s viewpoint, they may not be a
suitable tool for design. This in turn urges the need
for efficient models that account for essential aspects
of the dynamic PSPI.

This paper presents two approaches to modelling
piled-foundations in a multi-layered half-space. The
first is an efficient semi-analytical model that simu-
lates the soil as a horizontally layered semi-infinite
system. The second is a fully-coupled model that
utilises the BE method to model the soil. The pile
is modelled, in both approaches, by an elastic bar for
axial loading and an Euler-Bernoulli beam for trans-
verse loading. In Section 2 the approaches adopted for
modelling the ground are briefly discussed. The pile
model and the coupling techniques are described in
Section 3. The simulation parameters and results are
presented in Section 4, and finally some findings and
conclusions are highlighted in Section 5.

2. Ground modelling

To model the dynamic soil-structure interaction ap-
propriately, it is essential to have acceptable represen-
tation of the soil. Given the low strain amplitudes of
ground-borne vibration, it is plausible to assume that
the soil behaves in a linear-elastic manner. In the fol-
lowing sections, the two techniques adopted to model
the ground, which both treat the soil as a linear-elastic
medium, are described.

2.1. Semi-analytical approach

Here, the soil is modelled as a horizontally layered
semi-infinite system, and the response field is calcu-
lated using a hybrid formulation of the thin-layer and
direct stiffness methods. For soil along the length of
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the pile, where there are multiple traction sources, the
thin-layer method is used since it offers high density of
discretization. The direct stiffness method is utilised
to model the soil layers and the half-space below the
tip of the pile, where there are no traction sources.

Applying this hybrid formulation, the soil response
us(r) due to an area load g at a distance r is given
by

u,(r) = Hu(r)g, (1)

where Hy,(r) is the frequency response function (FRF)
matrix relating displacements and tractions at the fre-
quency of interest due to an area load, which is applied
as a circular load. It should be noted that in this for-
mulation it is not possible to introduce a cavity in the
soil, which leads to neglecting the volume of the piles.

2.2. Boundary element approach

In the second approach, the soil is modelled using
the BE method, based on 3D Green’s functions for
a multi-layered half-space obtained with the aid of
the ElastoDynamics Toolbox (EDT) [12]. These fun-
damental solutions are calculated numerically based
on the direct stiffness and thin-layer methods of mod-
elling wave propagation in layered media.

A BE mesh is generated at the soil-structure inter-
face to simulate a vertical cylindrical cavity. The mesh
consists of a number of elements with nodal colloca-
tion, at which there are three values of displacements
and tractions. These variables are related at each of
the Ny collocation points by

Hu = Gp, (2)

where H and G are 3N, x 3N, matrices describing the
behaviour of the soil in terms of its density (p), shear
modulus (u), Poisson’s ratio (v), damping ratio (n),
shear wave speed (cy), compression wave speed (c,)
and frequency of interest (f). The 3Ng x 1 vectors u
and p are assembled from the complex displacement
and traction amplitudes of each node as

N

, (3)
p = {p} p, pl P2 P P2 P} eyt

Py p
where v’/ and p’ are the displacement and traction
vectors of node j.

Equation (2) is rearranged as,

u=H"'G
7 ()

u=H,p
in which H; is the FRF matrix relating displacements
and tractions at the frequency of interest. To couple
the soil cavity to the pile, this FRF matrix is modi-
fied to relate displacements to forces instead of trac-
tions by dividing it by the area of the elements in the
BE mesh. Throughout the BE analysis, it is ensured
that there are more than six elements for each wave-
length to satisfy Dominguez recommendations [13]
and achieve convergence.
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Figure 1. Pile centroid (drawn horizontally). The circles
represent the nodes at which the forces are applied and the
responses are calculated. Only the z — z plane is shown.

3. Pile modelling and coupling

The pile model is identical in both modelling ap-
proaches, and has been used before in [14]. The pile
is modelled as an elastic bar for axial loading and an
Euler-Bernoulli beam for transverse loading. It is rep-
resented by its centroid axis, which has N; equally
spaced nodes (Figure 1). At each node, there are six
degrees of freedom representing displacements and ro-
tations in the three directions. The pile is assumed to
be constraint-free at its ends and any local deforma-
tion of the cross-section is neglected. It must be noted
that only the responses due to unit harmonic axial and
transverse loads are given in this paper.

3.1. Pile response

The response of the pile to a unit harmonic force with
angular frequency (w) applied in the vertical direction
(z) at node j is calculated as

ul(z,w) = AT cosaz + Bl sinaz for 0 < z < 29 5)
ull(z,w) = AT cosaz + B sinaz for 29 < 2 < L, '

where o = w, /2=, the superscripts I and I7 indicate
p

the sections above and beneath the node j and coeffi-
cients AT, BT, AT B! are found from the boundary
conditions. L, is the length, p, is the density and FE,
is Young’s modulus.

The general response of the pile to a unit harmonic
force with angular frequency (w) applied in the trans-
verse directions (z,y) at node j reads

ui’y(z,w) = Al'exp(B2) + B! exp(ifiz) + CT exp(—f3z)

+D! exp(—ifz) for 0 < z < 27 (©)
6
ui.{y(z,w) = A exp(82) + B exp(iBz) + 1 exp(—Bz) ’

+D! T exp(—ifz) for 27 < 2 < L,

Eyl,
AM — DM are found from the boundary conditions. A,
is the cross-section area and I, is the second moment
of area.
The FRF matrix of the pile centroid (H;) is as-
sembled from the general responses in equations (5)
and (6). This FRF matrix is transformed, for the case

1
oo 1
where 8 = (Myl and the coefficients AT—DT,
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of the BE approach, to give the FRF matrix (H,,) of
the nodes around the pile circumference as,

H,=T,HT,, (7)

in which T, is the transformation matrix, and the size
of Hy is 3N, x 3N,.

3.2. Coupling technique

In the semi-analytical approach, two assumptions are
adopted to perform the coupling between the soil and
pile. First, compatibility of displacements, i.e. soil dis-
placement wu,(r) equals pile displacement (w;), and
equilibrium of forces are assumed at the soil-pile in-
terface. Second, the loads transmitted by the pile to
the ground are distributed over a circular area of a
radius equal to the pile radius.

Considering these assumptions, the coupling is
achieved by combining equation (1) with

u, =H; (fa - g) s (8)

where f, is the force applied to the pile centroid, and
g is given by

g = [H,(0) + H;] " Hf,. (9)

Knowing g, the response at any point in the soil
can be calculated using equation (1). For the case of
multiple piles, the soil response is given as a superpo-
sition of the displacement fields due to the tractions
g, of each individual pile ¢ as,

N
ug = ZHh(ri)gi(sija (10)

i=1

where r; is the distance between the receiver and 3"
pile, and 6;; is the Kronecker delta. For known applied
forces f,,, the soil forces g, are given by

H,(0)g, — Hig; + Zfil Hy, (ri5)g;0i; = Hif,,. (11)

In the BE approach, the coupling is performed by
applying at the interface compatibility of displace-
ments, i.e. soil displacement (Uj) equals pile displace-
ment (U,), and equilibrium of forces. This is obtained
by combining the systems in equations (4) and (7) as,

Us - Hst
U, =H, (F, - F,)
F,=(H,+H,) 'H,F,

; (12)

where F, is the force applied to the pile circumfer-
ence and F; is the resulting soil force, from which the
response at any point in the soil can be calculated.
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Figure 2. Pile in a multi-layered half-space: (a) single pile,

(b) two piles with s = 4a, and (c) two piles with s = 8a,
where s is the separation distance and a is the pile radius.

4. Simulation parameters and results

To compare both modelling approaches, three cases
are considered as shown in Figure 2. The pile has
radius @ = 0.5m, length L, = 10m and is made of
concrete with Young’s modulus E, = 50GPa, Pois-
son’s ratio v, = 0.3, damping loss factor n, = 0.01,
and density p, = 2500kg/m3. The soil consists of four
layers of increasing stiffness; the top three are 2m, 4m
and 6m in depth, while the fourth represents the half-
space. All layers have density p, = 2000kg/m?3 and
damping loss factor ns = 0.06 associated with both
Lamé constants. The layers have shear wave velocities
¢ = [185, 228, 260, 309]m/s and compression wave
velocities co = [277, 373, 485, 944]m /s respectively.

4.1. Free-surface displacement field

The first set of results shows the predictions of the
BE model for the displacement field at the free sur-
face for the cases in Figure 2 when one pile head is
subject to a unit harmonic axial or transverse load at
a frequency of 50Hz. In Figure 3(a), the vertical dis-
placement field depicts concentric circular wavefronts,
which is expected when a single pile is subject to axial
load on its head. However, these circular wavefronts
diffract when a second pile is inserted at 2m in Fig-
ure 3(c) and at 4m in Figure 3(e). This diffraction
is more apparent in Figure 3(e) as the wavelength
(~ 3.7m) is of the order of the separation distance.

When the pile is subject to transverse load as in
Figure 3(b), the horizontal displacement field does not
show cylindrical wavefronts due to the nature of the
source and the dynamic interaction between the soil
and the pile. These wavefronts are not much influ-
enced by the insertion of the pile at a distance 2m as
in Figure 3(d) where they slightly diffract. Yet, when
a second pile is added at a distance 4m the diffraction
is more pronounced as shown in Figure 3(f).

4.2. Comparisons between the models

To compare the models the driving point response of
a single pile, the interaction between two piles and
the free-surface response at a distance from the pile
are considered. The first is used to ensure that the
semi-analytical model is able to simulate the dynamic
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Figure 3. Free-surface real part displacement field pre-
dicted by the BE model due to a unit harmonic load on
the pile head at a frequency 50Hz. (a), (c), (e) vertical re-
sponse due to axial load and (b, d, f) horizontal response
due transverse load for (a)-(b) single pile, (¢c)-(d) two piles
with s = 2m, and (e)-(f) two piles with s = 4m.

pile-soil interaction, whereas the other measures are
utilised to scrutinise the dynamic PSPI and whether
the semi-analytical model can predict the ‘far-field’
response. Since the BE model has been validated in
[14] for a single pile, it is used to benchmark the semi-
analytical model.

Figure 4 presents the driving point response of a
single pile predicted by both models for axial and
transverse loading. In general, the agreement between
the semi-analytical model and the BE model is seen
to be very good. The FRF due to axial loading (Fig-
ure 4(a)) of both models compares well up to 40Hz,
above which almost a constant difference of less than
1dB remains. In the FRF due to transverse load (Fig-
ure 4(b)), however, this difference begins at very low
frequencies and continues to increase until it reaches
about 2dB at frequencies higher than 70Hz. In both
loading cases, it is seen that the FRF of the semi-
analytical model is higher than that of the BE model,
indicating that the semi-analytical model is softer al-
though it does not have a cavity as the BE model
does. This is believed to be due to the way of calcu-
lating the soil response in the semi-analytical model
by applying a circular load instead of a rigid disk load.
The absence of the cavity in the semi-analytical model
is believed to be another reason for these differences,
which may lead to inertia effects. This is apparent in
the phase plots, where the differences reach about 5°
at high frequencies particularly for axial loading.
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Figure 4. Driving point response of a single pile in a multi-
layered half-space due to (a)-(c) axial load and (b)-(d)
transverse load predicted by BE model (solid) and semi-
analytical model (dashed).

The interaction between two piles, which is calcu-
lated at the pile head, is presented by means of the
dynamic interaction factor as

Wiy, fig
Qu; f; ui,, fi. ) (13)
where u;,, f;, is the displacement i of pile b due to
load i applied on pile a, and u,,, f;, is the static dis-
placement ¢ of pile a due to load ¢ applied on its head.

Figure 5 shows the dynamic interaction factors be-
tween two piles at 2m and 4m separation distances.
Both real (top) and imaginary (bottom) parts of
the dynamic interaction factors are given for axial
and transverse loading. The predictions of the semi-
analytical model are generally in good agreement with
those of the BE model, in particular when the sepa-
ration distance is 4m. For axial loading, discrepancies
appear at frequencies higher than 50Hz, while discrep-
ancies appear at very low frequencies for transverse
loading, especially for the real part (Figure 5(b)).
The reason for these discrepancies is believed to be
twofold: one is due to the absence of the cavity and
the other is because of the procedure followed in cal-
culating the soil response.

To this end, the semi-analytical model has shown
its capability of predicting the driving point response
of a single pile and the dynamic PSPI with accept-
able accuracy. Previous models of piled-foundations,
which mainly were concerned with seismic loading,
scrutinised only the driving point responses as in Fig-
ures 4 and 5, but did not investigate the ‘far-field’
response — a measure that is of particular interest to
ground-borne vibration. In this paper, the response at
a distance from the pile is presented in terms of the
insertion gain (IG) between the displacements for two
piles and a single pile as

IG = 20log,, (““V) , (14)

Ui, single

Figure 5. Dynamic interaction between two piles in a
multi-layered half-space due to (a)-(c) axial load and (b)-
(d) transverse load predicted by BE model (solid) and
semi-analytical model (dashed). The piles separation dis-
tances are 4a and 8a, where a is the pile radius.

where u;, two is the displacement of the two piles and
U, single 15 the displacement of the single pile at a dis-
tance 1.

Figure 6 illustrates the vertical and horizontal dis-
placement IG due to the insertion of a second pile at
distances 2m and 4m. When the piles are separated
by 2m, the displacement is calculated at a distance of
4m (top plots), i.e. beyond the second pile. It can be
seen in Figure 6(a) that the insertion of a second pile
reduces the vertical displacement due to an axial load
on one pile head, and this reduction increases with fre-
quency. The semi-analytical model qualitatively cap-
tures this behaviour, and it compares reasonably well
with the BE model up to a frequency of 35Hz. Yet,
above this frequency the difference between the mod-
els reaches about 10dB at some frequencies. For the
case of transverse load (Figure 6(b)) a different be-
haviour is observed, where the insertion of a second
pile slightly increases the horizontal displacement at
low frequencies. The displacement then reduces at
mid-frequencies, where the wavelength is of the or-
der of the spacing between the piles (4m), and starts
to increase again at frequencies higher than 70Hz. In
general, the semi-analytical model captures this be-
haviour at frequencies below 70Hz, above which the
difference reaches about 3dB.

When the piles are separated by 4m in Figure 6, the
displacement is calculated at a distance of 2m (bottom
plots), i.e. in between the piles. The semi-analytical
model for both axial and transverse loading compares
well with the BE model up to a frequency of about
40Hz. Differences of more than 4dB are observed be-
tween the models at some frequencies, particularly for
axial loading. It is worth noting that in Figure 6(c)
the influence of the second pile is not consistent, where
the IG notably fluctuates.
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Figure 6. IG for ‘far-field” displacement due to (a)-(c) axial
load and (b)-(d) transverse load predicted by BE model
(solid) and semi-analytical model (dashed). The IG is cal-
culated at (a)-(b) 8a for separation of 4a and (c)-(d) 4a
for separation of 8a, where a is the pile radius.

It can be said from the comparisons shown in Fig-
ure 6 that the semi-analytical model with its present
assumptions does not predict the ‘far-field” response
particularly well especially at high frequencies. How-
ever, the model has a potential to give better pre-
dictions once the problems outlined earlier, namely
the absence of the cavity and calculation of the soil
response, are alleviated. Given its computational ef-
ficiency, the semi-analytical model can be a reliable
tool for design and prediction of the dynamic PSPI.

5. Conclusions

Investigating the dynamic interaction between piled-
foundations and soil is of great importance to pre-
dictions of ground-borne vibration. Such investiga-
tion requires comprehensive yet efficient models that
consider essential aspects of the problem. This paper
has presented an efficient semi-analytical model and a
BE model to simulate the dynamic pile-soil-pile inter-
action in a multi-layered half-space. The models are
compared together for predictions of the driving point
response of a single pile subject to axial and transverse
loading, the dynamic interaction between two piles
and the ‘far-field’ response. It has been demonstrated
that the semi-analytical model captures the driving
point response and the dynamic interaction between
piles reasonably well, with some differences at high
frequencies. However, its predictions for the ‘far-field’
response show some differences compared with those
of the BE model, mainly at high frequencies. It is be-
lieved that the differences are due to the absence of
cavities in the semi-analytical model, which may pro-
voke more inertia effects and to the procedure followed
in obtaining the soil response, which may result in a
softer system. This is the subject of ongoing work.
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