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Predictive thermal comfort model:
Are current field studies measuring the most influential variables?
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Thermal comfort has widespread implications, including health and energy
consumption, yet little is known about the interrelation between thermal-discomfort
response and physical dependencies. Empirical research on occupants’ interaction
with their home environment calls for a holistic socio-technical approach. The aim of
this paper is to report on an evaluation of the sensitivity of the predictive thermal-
comfort model, as described in the BS EN ISO 7730 standard. In light of the results of
this analysis, this paper presents a methodological framework to measure the
occupants’ activity levels. One of the key aims is to gather accurate measurement
while using ‘discreet’ observatory systems to have minimum impact on the
occupants’ behaviour. With recent emergence of, and advancements in, more accurate
and affordable sensing technologies, this problem can potentially be overcome.
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I. Introduction

An accepted definition of thermal comfort, proposed by ASHRAE-55, is ‘that
condition of mind which expresses satisfaction with the thermal environment’. This
definition holds psychological and physiological significance where people’s opinions
validate their state of comfort or discomfort. There are three kinds of response to this
state: involuntary mechanisms of thermoregulation, voluntary action-response and
habituated behaviour. To record these responses, mixed-method approaches are
commonly used, including recording environmental parameters and carrying out
questionnaires and observations. The results of these studies are compared against
benchmarks contained within the heat-balance approach or the adaptive approach.
This paper is focusing on the first one, the heat-balance approach developed by
Fanger (1970).

Developed from laboratory experiments in climate chambers, the heat-balance
approach combines knowledge of the human body’s physiology and of the heat-
transfer theories (Darby & White, 2005). It forms part of the International Standard
Organisation in ISO 7730. This standard states that a ‘human being’s thermal
sensation is mainly related to the thermal balance of his or her body as a whole’. This
thermal balance is associated to:
* Four measured environmental factors, including: ambient air temperature (T,),
mean radiant temperature (T;), relative humidity (RH) and air velocity (V,).
* Two estimated personal factors, including: metabolic rate (M) and thermal
insulation of clothing (I).
By determining these six factors, the overall satisfaction of the occupants with the
environment can be predicted using the Predicted Mean Vote model. Predicted Mean
Vote (PMV) can be described as a measure of satisfaction, contained in a seven-point
index that indicates the average response of a group of people in given environmental
conditions. The PMV model comprises of one dependent variable, PMV, and six
independent variables, T,, T;, RH, V,, M and I, combined in the ISO 7730 Basic
algorithm (Annex D). It can be summarised under the following equation:
PMV =PMV (T,, T;, RH, V,, M, 1)

Methods for the measurement and the estimation of the six independent variables are
set in following standards:
e ISO 7726 addresses the minimum characteristics of instrumentation to be used
to measure the four environmental factors.
e ISO 8996 reviews four methods used to assess metabolic rate.
* IS0 9920 determines the assessment of thermo-physical properties of clothing
ensembles.

Yet, only a few sensitivity analyses on the PMV index have been completed and little
is known on levels of influence played by each of the six independent variables in the
calculation of PMV. In previous studies (Alfano, 2001; D’ Ambrosio Alfano, 2011)
differential sensitivity analyses have been employed to evaluate the accuracy of the
independent variables. However, this analysis technique has limitations, including:

* Establishing a base level where PMV = 0, and list of associated input-values
for each variable. The justification for these chosen inputs remains
questionable.

* Assuming that the model is linear or additive.

* Assuming that the input variables are independent from one another.
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To address some of these issues, the following sensitivity analysis of the PMV model
uses global-sensitivity techniques. It aims to evaluate which independent variable has
the most and the least influence on the model. This study will determine where the
model uncertainty is coming from. It will also expand current knowledge and
confidence in the PMV model and its output.

The following analysis reveals that the most influential input variable is metabolic
rate. Consequently this paper goes on to review current methods used to estimate this
variable. These present some limitations in terms of accuracy and of usability in
fieldwork. To address those issues, this paper then explores alternative methods to
measure, to observe and to analyse the occupant’s activity. Finally, it presents the
preliminary results of a field study, carried out on a small sample of UK households
during the winter of 2012. This new set of data will enable the validation of the PMV
model to be extended.

I1. Global sensitivity analysis of the predictive model

This paper reports on an evaluation of the sensitivity of the predictive thermal comfort
model, as described in the ISO 7730 standard. First the study provides an insight of
how the model dependent variable, the PMV value, responds to changes in the six
independent variables. Further analysis assesses which inputs have the most and the
least influence on the output PMV.

This study uses a type of global sensitivity analysis, the Monte Carlo analysis (MC).
This statistical tool simulates the simultaneous movement of all inputs. It aims to
quantify the uncertainty of the dependent variable caused by the uncertainty of the
independent input variables (Lomas, et al. 1992; Saltelli, et al. 2004). This method
allows us to determine the interaction among variables, while not making any
assumption on the additive effects of the inputs. However, as the inputs are varied
simultaneously, the sensitivity of an individual input parameter cannot be revealed.
The following analysis uses a five-step process (Saltelli et al., 2000) as described
below:

» Selection of the ranges and the distributions of the model variables.

* Generation of a random sample of the model variables.

* Evaluation of the model for each variable input.

* Uncertainty analysis.

* Sensitivity analysis.
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2.1. Ranges and distributions of the six independent variables
2.1.1 Selection of the ranges

In this analysis, the ranges selected for each independent variable are derived from BS
ISO 7730 (chapter 4.1), and described in Table 1.

Table 1. Summary of the independent variables selected ranges.

Independent variables Selected ranges
Ambient air temperature (T,) 10 to 30 °C
Mean radiant temperature (Ty) 10 to 40 °C
Water vapour partial pressure” (Pa) 0to 2700 Pa
Air velocity Vo) 0to 1 m/s
Metabolic rate (M) 46 to 232 W/m® or 0.8 to 4 met
With 1 met = 58.15 W/m”
Thermal insulation of clothing (L) 0to 0.31 m*.K/W or 0 to 2 clo

With 1clo = 0.155 m*K/W

(1) With RH=Pa/[10 * exp (16.6536 - 4030.183 / T, + 235)]
The study will assumed a range of relative humidity (RH) of 0 to 100%

2.1.2 Selection of the input values

The input values to the environmental variables were determined by reviewing the
required accuracy in ISO 7726. These were then used to determine the increment
values, as described in Table 2.

Table 2. Summary of the independent environmental variables selected increments.

No. of possible

Independent environmental variables Increment values inputs values
Ambient air temperature (To) 0.5°C 41
Mean radiant temperature (T 2°C 16
Water vapour partial pressure” (Pa) 0.15 kPa 21
Air velocity (Vo) (0.05+0.05V,) m/s 15

(1) With 0.15 kPa, the study will assume an increment value of relative humidity (RH) of 5%

For the personal variables, the increment of each input value was determined by
reviewing ISO 7730 Annex B and Annex C; as described in Table 3.

Table 3. Summary of the independent personal variables selected increments.

No. of possible

Independent personal variables Increment values .

inputs values
Metabolic rate (M) 0.1 met 33
Thermal insulation of clothing (L) 0.1 clo 21
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2.1.3 Selection of the distributions

The analysis includes the sensitivity of the PMV model as taken from the standard
and does not assume any prior distribution of its variables. Therefore uniform
distributions were assumed for all independent variables. It is worth noting that
sensitivity analysis is more responsive to the selected ranges than the distribution of
the variables (Saltelli et al., 2000). By following the assumption taken for the ranges,
the increment values and the distributions, the total number of possible combinations
of the 6 independent variables amounts to 143,201,520. This defines the space where
the sample can be drawn from.

2.2 Sampling

The second step in the analysis involves the selection of a sample drawn from the
selected distributions. Assuming that the variables were independent of each other, the
same weighting was given for each input value. Then a random sample of 4,000
inputs for each variable was generated. The advantage of random sampling is to
estimate unbiased mean and variance of the dependant variable, PMV.

2.3 Evaluation of the predictive model

Then the selected sample inputs were supplied to the PMV model, generating a
sequence of outcome PMYV values. These are summarised in Figure 1 and Table 4.
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Figure 1. Density distribution of Predictive Mean Vote (PMV).
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Table 4. Summary of the statistical characteristics of the distribution of Predictive
Mean Vote (PMV).

Sample No. of possible outcome 143,201,520
Sample Size (n) 4,000
Central Tendency Mean 0.06
Median 0.71
Spread Variance 7.06
Standard deviation 2.66
Maximum 4.55
Minimum -24.49
Range 29.04
Quintile (.75) 1.68
Quintile (.25) -0.79
Shape Skewness 24
Kurtosis 9.51

Figure 1 shows the results of the predictive model, with indicative distribution
inferred from the density trends. The resultant density distribution of PMV, given the
input values described in section 2.1, can be compared with the PMV values
prescribed in ISO 7730. First, the resultant range of [-24.49 to +4.55] is greater than
the standard range of [-3 to +3]. This might be due to the fact that all six input
variables in the analysis are assumed to be independent of each other; also extreme
values can be randomly selected in the same combination. However, in 86.4% of
cases the resultant PMV values are within the standard range of [-3 to +3]. Also, the
resultant mean value [+0.06] is very close to the standard mean value [0].

2.4 Uncertainty analysis

The PMV uncertainty refers to the error expressed by its variance and its nominal
value. For a large number of iterations, the predicted output is likely to be normally
distributed. Thus the total uncertainty of the predictive model is expressed by
estimation of:

* The mean: 0.06

* The variance: 7.06

» The standard deviation (sigma, ¢): 2.66
Under the rules set through this analysis, PMV-limit variations can be expressed as:
PMV = 0.06 £2.66. It is important to note that this value is contained within the
seven-point index set by ISO 7730.

2.5 Sensitivity analysis
The PMYV sensitivity to the six independent variables is shown in Figure 2. These
scatterplots provide an insight of how the model dependent variable, the PMV value,

responds to changes in the six independent variables. It also reveals characteristics of
the PMV model inputs, such as their ranges and thresholds.
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Figure 2. Scatterplot of the relationship between Predictive Mean Vote (PMV) and
the six independent variables (T,, Ty, RH, V,, M, 1)).

To follow this analysis, Pearson product moment correlation coefficients are
quantified, see Table 5.

Table 5. Summary of correlation coefficients (R) between Predictive Mean Vote
(PMV) and the six independent variables (T,, Tr, RH, V,, M, 1).

T, T, RH V. M I
PMV 0.36 0.28 0.05 -0.11 0.55 0.46

These correlation coefficients (R) assess which independent variables have the most
and the least influence on PMV (Cohen, 1988). The obtained results are summarised
as follows:

* Ambient air temperature (T,): with a correlation coefficient of 0.36, influence
of T, on PMV is considered moderate.

*  Mean radiant temperature (T;): with a correlation coefficient below 0.3, the
influence of T, on PMV is present but limited.

» Relative humidity (RH): with a correlation coefficient of 0.05, effect of RH on
PMV is negligible. It is assumed that RH has a reduced effect on thermal
sensation in an indoor environment.

* Air velocity (V,): with a correlation coefficient of -0.11, influence of V, on
PMV is negligible. Although of less significance, V, shows a negative
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correlation with PMV; hence the higher the air velocity, the lower level of
comfort experienced.

* Metabolic rate (M): with a correlation coefficient of 0.55, PMV appeared very
sensitive to M.

* Thermal insulation of clothing (I.;): with a correlation coefficient of 0.46, the
influence of I;on PMYV is considered high.

In conclusion the human body is more sensitive to ambient air temperature variation
than any of the other environmental variables. Also, based on the results of the
sensitivity analysis, both personal variables, as metabolic rate (M) and thermal
insulation of clothing (1), are the most influential variables.

2.6 Conclusion of the sensitivity analysis

To combine the results of the sensitivity analysis the most influential variables are the
two personal variables, metabolic rate (M) and thermal insulation of clothing (I). In
current field studies, the values given to these variables are usually estimated from
observation (DeDear, et al., 1998). This estimation holds great uncertainty, which
undermines the PMV model’s results. Consequently, it is critical to be able to
determine those factors with greater precision and accuracy. In the following chapter,
this paper presents a comprehensive exploration of methods used to determine
metabolic rate (M). This may contribute to the research design of future empirical
studies in the choice of measuring methods and instruments.

II1. Method to determine metabolic rate

In light of the sensitivity analysis presented above, this paper will now review the
current methods used to estimate the most influential variable, metabolic rate (M).
Conclusions will inform the methods and the measuring instruments chosen for future
field studies.

3.1 Current methods

In previous studies (DeDear, et al., 1998; Parsons, 2001; Humphreys, and Nichol,
2002; Hong, et al., 2009), metabolic rate (M) has been estimated by using screening
or structured observation methods. ISO 8996 provides the methodological framework
to estimate this variable. It includes four levels, screening (1), observation (2),
analysis (3) and expertise (4), summarised below:

[Level 1] Screening. Metabolic rate is estimated by considering the subject mean
workload for a given occupation (level 1A) or for a given activity (level 1B). For
example, the following lists of activities are included within the range specified in the
sensitivity analysis (0.8 to 4 met):

«  Resting (55-70 W/m? or 0.95-1.2 met): resting, sitting.

«  Low MR (70-130 W/m? or 1.2-2.2 met): light manual work.

«  Moderate MR (130-200 W/m? or 2.2-3.4 met): sustained hand, arm and leg

work.

«  High MR (200-260 W/m® or 3.4-4.5 met): intense arm and trunk work.

This estimation method only provides rough information and is associated with a high
risk of error.
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[Level 2] Observation. Metabolic rate is estimated by observing the subject’s
work at a specific time. Information such as time and motion are required for this type
of study, including body posture, type of work, body motion related to work speed. It
holds a high risk of error and the accuracy of the results is estimated to be within
+ 20% (ISO 8996).

[Level 3] Analysis. Metabolic rate is determined from recordings of the subject
heart-rate over a representative period. This method uses an indirect determination of
M, based on the relationship between oxygen uptake and heart-rate under defined
conditions. This method shows an accuracy of + 10% (ISO 8996).

[Level 4] Expertise. Metabolic rate is determined by experts using three different
types of methods and requiring specific measurements. It includes:

*  Oxygen consumption measured over short periods (10 to 20 minutes).

*  ‘Doubly labelled water’ method or isotopic method characterising the average

metabolic rate over longer periods (1 to 2 weeks).

* Direct calorimetry method.
These methods are used to calculate metabolic rate with an accuracy of + 5%.
Unfortunately their application in field studies is limited, as they employ protocols
and equipment, which are not yet suitable for monitoring ‘day-to-day’ life in
dwellings over longer periods.

In summary most studies estimate metabolic rate by employing method Level 1 and
Level 2. These methods are associated with a great risk of error, which is an issue
when incorporating their estimated results within the PMV model. Considering that
metabolic rate is the most influential variable within the PMV model, this high
inaccuracy will undoubtedly undermine its results.

Moreover in field studies, interaction between the researcher and the participants must
be kept to a minimum, so as not to influence the subjects’ responses to the thermal
environment. Level 1 may be able to do so, whereas Level 2 implies the use of a
diary. Activity levels will often be recorded using ‘pen-and-paper’ where the
participant fills a preset schedule. Alternatively, an observer is present in the home
and takes notes when required. Both methods are intrusive and may have an impact on
the participant’s activity. Monitoring systems should be designed to have minimum
influence while measuring each factor accurately. With the recent advancements in
more accurate and affordable sensing technologies, this problem might be overcome.

3.2 Proposed methods

Drawn from literature on wearable ubiquitous sensor technologies, two instruments
used to determine metabolic rate are reviewed in detail in the following chapter.

3.2.1 The SenseCam

In this study SenseCam is used as an automatic diary method. Its aim is to support the
evaluation of metabolic rate in field experiments over longer and continuous periods
of time (3 to 10 days). Primarily used in the field of cognitive psychology, this tool
has been used as an external memory aid for patients with neurodegenerative disease
and brain injury (Hodges, et al., 2006). Of similar size to a badge, the SenseCam takes
photographs when triggered manually and automatically by timer or by changes in the
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sensors’ readings. The camera trigger-options and associated sensors are summarised
in Figure 3.

* Manually
« Automatically: » Timer (1min)
+ Sensors: * Temperature sensor;
« Light level sensor;
* Passive infrared detector;
* Multiple-axis accelerometer;
* Magnetometer.

Figure 3. SenseCam image recording triggers.

The SenseCam provides two types of outputs: (1) a record of measurements taken by
each sensor and (2) a visual diary of the participants’ activity in their home. To
process this information, two approaches can be used; automatic and manual
segmentation (Lee, 2008). The automatic segmentation process reviews the readings
from the accelerometer and the magnetometer to detect speed and distance. These
readings were then analysed to determine the ‘cut-in’ and ‘cut-off” time when
participants were:

* Seated or standing (vertical axis).

* Static or moving (horizontal axis).
Next the picture series associated with these time-frames were drawn out to be
reviewed through a manual segmentation approach. Each image was visually
inspected and labelled using six criteria; which included: (1) image number, (2) when
and (3) where the image was taken, (4) how many persons were in the room, (5)
clothing and (6) activity levels. The participants’ metabolic rate was estimated as a
function of their activity level, using the Level 2 approach. The SenseCam facilitates
an automatic’ electronic-diary collection by logging occupants’ activities in a
systematic approach. Its results enabled the estimation of participants’ metabolic rate
in their home throughout a record period of three to ten days.

3.2.2 Heart-rate Monitor (HRM)

To evaluate metabolic rate with more accuracy, the Level 3 approach may be used to
provide continuous recording of heart-rate. Heart-rate monitors have become more
accessible and reliable in recent years as the demand for training tools in endurance
sports increased (Achten, Jeukendrup, 2003). The instruments involved are in two
parts:
* Sensors and a transmitter are fitted in a chest strap belt recording the electric
activity present in the heart, electrocardiography.
* Receiver and datalogger are fitted in an independent device which can be
fitted to the belt or kept in the participant’s pocket.
With memory capacity, the datalogger records heart-rate (HR) every 2 seconds over
35 hours and is able to store information from multiple sessions. Once the information
is gathered, it is analysed using a Level 3 approach. Metabolic rate is ascertained by
proxy, based on the relationship between oxygen uptake and heart-rate under defined
conditions. These vary with participants’ personal attributes, gender, age and weight
(ISO 8996, table C.1).
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3.3 Preliminary results from field studies

Using the two empirical methods described above, metabolic rate was monitored on a
small sample of UK households during the winter of 2012. Using a case-study
approach, a purposive sample of nine residents from nine different dwellings was
monitored over a period of ten consecutive days. The sample of interest was defined
by the three personal attributes prescribed in ISO 8996, as gender, age and weight.
Located in London, the dwellings were built during different periods, dating from
1850 to 2008. Some incorporated features such as retrofitted central or communal
heating systems.

Initial results from monitoring heart-rate were used to estimate metabolic rate, by
following the method set out in ISO 8996, Table C.1. Figures 4 and 5 illustrate an
example of a 2-hour sequence over lunchtime for one of the participants. The average
metabolic rate over this period is 80 W.m™, or resting state. Following ISO 8996,
Table A.2, classification of activity, the participant was in resting position 87% of the
time, carrying out light manual work 25% of the time and sustaining moderate work
2% of the time.

80 100 120
] l L

Heart Rate [bpm]

60
i

Time [every 2s]

Figure 4. Heart-rate recordings in beats per minute every 2 seconds over a 2-hour
monitoring period.

100 150 200

Metabolic Rate [W/m2]
50

0
|

0 1000 2000 3000

Time [every 2s]

Figure 5. Metabolic rate in W.m™ every 2 seconds over a 2-hour monitoring period.

When reviewing the metabolic rate profile together with the SenseCam visual diary
the participant’s activity level can then be validated. For example, the four peaks
highlighted in Figure 5 correspond to the highest levels of activity in this sequence.
These are above 165 W.m™ and correspond to sustained moderate work (ISO 8996,
Table A.2). The review of the SenseCam visual diary did confirm these levels of
activity. The first peak corresponds to the participant setting up lunch, the second
peak was to start clearing the dining table, and finally the third and the fourth peaks
were attributed to climbing up the stairs to the first floor.
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In conclusion this proposed method allows the evaluation of activity levels throughout
the monitoring period, with great granularity and precision. Having readings of
metabolic rate every 2 seconds allows future studies to use this high-frequency
information in the calculation of PMV. Then the resultant PMV values could be
plotted throughout the monitoring period. When PMV values are outside the comfort
ranges prescribed by ISO 7730, Table A.1, then we may anticipate that the participant
might act upon his/her state of discomfort and formulate a response. In this instance
the SenseCam visual diary will be reviewed to validate the predictive model results.

3.4 Conclusion of the review of methods to determine metabolic rate

The methodological framework developed in this paper includes variants of existing
methods and evaluation techniques for measuring metabolic rate. The two proposed
methods linked together to form an alternative tool, offering a number of advantages,
including:
* A rich picture of the participants’ activity pattern, through the visual diary.
* A measured value for metabolic rate, with an accuracy of = 10%.
* Longer and continuous periods of monitoring, which allow us to monitor the
variability of a person’s thermal sensation in time.
* A collection method, which has minimum impact on the participants’ activity,
through the use of automated tools.
Despite all these benefits, some sources of uncertainty remain, namely the accuracy of
the equipment and only a partial understanding of the subject. This method should be
supported by a questionnaire or an interview with the subject to review unaccounted
variables, such as previous experiences. For the purposes of this research, this method
was used essentially in dwellings over the winter period, however it may be applied to
different settings and seasons.

IV. Summary

The sensitivity analysis reported in this paper established which independent variable
has the most and the least influence in the calculation of PMV. This has a critical
impact on the way future studies may choose to assess those factors. In particular, this
analysis found that metabolic rate (M) was the most influential input variable. Most
thermal comfort field-studies only estimate this factor, using method Level 1 or
method Level 2 prescribed by ISO 8996. Using this evaluation process, PMV may
vary enough to make its results open to questioning. Therefore tools that will enable
detailed measurement of metabolic rate will undoubtedly increase the understanding
of thermal comfort and the relationship between participants and their environment. In
response to this query, the paper suggested a method drawn from literature on
wearable-ubiquitous sensor technologies. The use of heart-rate monitor and automatic
visual diary allowed the gathering of precise and accurate measurements of activity
level. This mixed-method was employed in a series of case studies in dwelling, during
the winter of 2012. The preliminary results show that activity level can be validated
over a 35 hours wearable period. Future studies may look at the potential application
and practicality of this method.

Through this paper, multiple evaluations of the PMV model were carried out by
randomly selecting the model inputs. It was assumed that factors were independent
from one another; hence the interaction among factors cannot be determined at this
stage. The results of future field studies may be able to answer this question by
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assigning prior distributions to each variable. Then Markov Chain Monte Carlo
analysis will be able to suggest a close representation of the systems by conveying a
distribution for PMV and the associated inter relationship between factors. This
research into fundamental knowledge may suggest a need for a review of the
measurements’ protocols and the instruments used to assess PMV using new sensing
technologies.
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