

Abbas A. Al-Khalili	Alain R. Altman
Alain R. Altman	Alain R. Altman
Alain R. Altman	Alain R. Altman
Alain R. Altman	Alain R. Altman
Alain R. Altman	Alain R. Altman

Cell Cycle

Publication details, including instructions for authors and subscription information:
<http://www.tandfonline.com/loi/kccy20>

Estrogen and Breast Cancer: can less mean more?

Marc D Bullock^{abc}, Andreia M Silva^{cde} & George A Calin^{cf}

^a Cancer Sciences Unit; University of Southampton School of Medicine; Southampton, UK

^b Division of Surgery; University Hospital Southampton; Southampton, UK

^c Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA

^d Instituto de Investigação em Saúde; Universidade do Porto; Porto, Portugal

^e Institute of Biomedical Engineering; Universidade do Porto; Porto, Portugal

^f Center for RNA Interference and Non-Coding RNAs; The University of Texas MD Anderson Cancer Center; Houston, TX USA

Accepted author version posted online: 19 Jun 2015.

CrossMark

[Click for updates](#)

To cite this article: Marc D Bullock, Andreia M Silva & George A Calin (2015): Estrogen and Breast Cancer: can less mean more?, *Cell Cycle*, DOI: 10.1080/15384101.2015.1056617

To link to this article: <http://dx.doi.org/10.1080/15384101.2015.1056617>

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <http://www.tandfonline.com/page/terms-and-conditions>

Estrogen and Breast Cancer: can less mean more?

Marc D Bullock^{1,2,3}, Andreia M Silva^{3,4,5}, and George A Calin^{3,6,*}

¹Cancer Sciences Unit; University of Southampton School of Medicine; Southampton, UK

²Division of Surgery; University Hospital Southampton; Southampton, UK

³Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA

⁴Instituto de Investigação em Saúde; Universidade do Porto; Porto, Portugal

⁵Institute of Biomedical Engineering; Universidade do Porto; Porto, Portugal

⁶Center for RNA Interference and Non-Coding RNAs; The University of Texas MD Anderson Cancer Center; Houston, TX USA

*gcalin@mdanderson.org

Comment on: McVeigh TP, et al. Estrogen withdrawal in women with the KRAS-variant promotes multiple breast cancer risk. *Cell Cycle* 2015.

Reproductive risk factors such as nulliparity, early menarche and late menopause reflect a well-established association between estrogen exposure and breast cancer risk over time. However, not all epidemiological evidence supports this link: In the post-menopausal period for example, estrogen only hormone replacement therapy (HRT) actually appears to reduce breast cancer risk.¹ Is it therefore possible that in a proportion of women estrogen is protective, and a more nuanced understanding of breast cancer pathogenesis is now required?

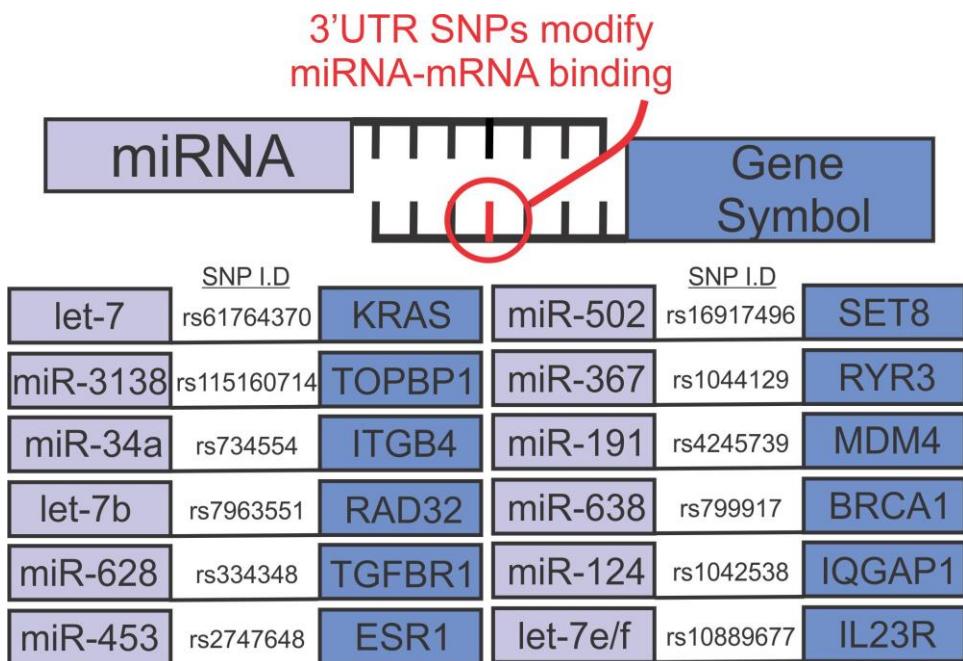
In this regard, examining the role of miRNAs during tumor initiation and progression has provided valuable insight.² Recently it has emerged that single nucleotide polymorphisms (SNPs) within miRNA binding sites of protein coding genes (miRSNPs) may be important predisposing factors to malignant transformation.³ In breast, a miRSNP which disrupts let-7 binding at the KRAS 3'UTR, is associated with increased overall cancer risk and in particular, Estrogen Receptor negative (ER-ve) disease.⁴ This KRAS-variant allele is also highly prevalent in women with ovarian cancer diagnosed in the post-menopausal period and appears to mediate alternative and seemingly paradoxical cellular responses to exogenous factors such as chemotherapy drugs.⁵

This combination of clinical observations led McVeigh and colleagues to investigate how estrogen might impact breast cancer risk and tumor biology for individuals with the KRAS-variant allele.⁶ In their study, 1712 women with histologically confirmed breast cancer provided saliva samples for KRAS-genotyping and completed questionnaires regarding their reproductive history, use of HRT and personal and family history of cancer. Control samples were provided by women who carried the KRAS-variant allele but were unaffected by cancer.

KRAS-variant patients were no more likely than others to have a family history of breast or ovarian cancer however, they were more likely to have previously undergone oophorectomy or to have relatives diagnosed with multiple primary cancers. Furthermore, it emerged that triple-negative breast cancer (TNBC) was significantly more common in post-menopausal women with KRAS-variant. Notably, the risk of TNBC was particularly elevated in patients who had previously but were no longer using HRT, compared with current users and never users. Past-HRT users with the KRAS-variant were almost 5 times more likely to be diagnosed with TNBC than past-HRT users with non-variant KRAS status; and the tumors were generally of a higher grade. Amongst past-HRT users, patients with non-variant KRAS were more likely to have ER+ve disease than KRAS-variant patients, and in current and never-user HRT groups, KRAS genotype was not significantly associated with tumor receptor status.

The authors therefore speculated that HRT withdrawal may differentially impact on the subtype and grade of breast cancer depending on KRAS genotype and interrogated their hypothesis by subjecting non-malignant mammary cells to estrogen depletion. Importantly, KRAS-variant isogenic cells underwent transformation on estrogen withdrawal, an effect which was reversed by reintroduction of estrogen to culture media.

When considered together, this evidence raises the possibility that stopping HRT in the post-menopausal period may put women at increased risk of developing breast cancer, particularly if they


have KRAS-variant status and/or a previous breast cancer diagnosis. Although this theme was not fully explored, McVeigh and colleagues did establish that KRAS-variant patients exhibit an increased risk of developing multiple primary breast cancers (MPBC) in tandem (synchronous tumors) and over time (metachronous tumors).

The clinical implications of these findings are as follows: Firstly, knowledge of KRAS-variant status may help identify a subset of breast cancer patients at high risk of MPBC who might benefit from more intensive investigation and follow-up. Secondly, as estrogen receptor antagonism is a common component of adjuvant therapy regimes for breast cancer, it is essential to better define the risks associated with KRAS-variant status to ensure the seeds of future malignancies are not sown during treatment for the index cancer.

On a broader point, more detailed understanding of the molecular underpinnings of cancer may enhance drug development programs and further encourage a shift towards personalized treatment choices. In this respect the current study resonates with previous research which established the link between cetuximab resistance and KRAS mutation status, and changed clinical practice in colorectal cancer.⁷ With this precedent in mind and with further research, miRNA binding site polymorphisms, which appear to be promising markers of cancer risk and treatment efficacy, may prove to have considerable utility in the clinical setting.⁵

References

1. Anderson GL, et al. *Jama* 2004; 291:1701-12.
2. Eastlack SC, et al. *Non-Coding RNA* 2015; 1:17-43.
3. Nicoloso MS, et al. *Cancer research* 2010; 70:2789-98.
4. Paranjape T, et al. *The Lancet Oncology* 2011; 12:377-86.
5. Cipollini M, et al. *Pharmacogenomics and personalized medicine* 2014; 7:173-91.
6. McVeigh T, et al. *Cell Cycle*. 2015.
7. Lievre A, et al. *Cancer research* 2006; 66:3992-5.

Figure 1: Summary of breast cancer associated SNPs at putative miRNA binding sites; adapted from Cipollini et al.⁵