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SUMMARY 
 
This research introduces a mixed-method framework to estimate metabolic rate and clothing 
insulation as objective and quantitative variables. Methods included automated visual diaries 
and both environmental and wearable sensors. Applying this framework in an exploratory 
study, during the winters of 2012 and 2013, allowed empirical probabilities of metabolic rate 
and clothing insulation values to be generated. The results indicate that current standards 
overestimate winter clothing insulation by 22% but underestimate residential metabolic 
activity by 9%. Beyond reviewing the standards thresholds, these probability distributions 
may be used as input to building energy simulation (BES) programs.  
 
INTRODUCTION 
 
The need to identify occupants’ behaviour-responses to thermal discomfort during the heating 
season has become one of the priorities in the quest to reduce energy demand. Drawn from 
physical and physiological principles, the current predictive models are based on 
environmental and personal variables; the latter of which, metabolic rate (M) and thermal 
insulation of clothing (Icl), have been identified as being the most influential ones (Gauthier 
and Shipworth, 2012). In field studies, these personal variables are often estimated with a 
great degree of error, and in building simulation studies these variables are given constant 
values as a function of the season, building and room types (Schiavon and Lee, 2013). 
Considering that these personal variables are the most influential variables, this high level of 
error will undoubtedly reduce both accuracy and precision of the results of the predictive 
models. 
 
METHODS 
 
To address these two issues, this paper introduces a mixed-method framework drawn from 
psychological and physiological studies. Automated visual diaries with wearable sensors 
(including: tri-axis accelerometers, heart-rate monitors, light intensity sensor, and temperature 
sensors) provided measured input from which (M) and (Icl) were ascertained over a 
continuous period of time. The wearable sensors included: 

• A SenseCam manufactured by Vicon Motion Systems (Microsoft, UK). It comprises 
of a tri-axial piezoresistive accelerometer (Kionix KXP84), a light intensity sensor, 
and a temperature sensors. 



• Heart-rate (HR) monitors manufactured by Kalenji - Sensors and transmitter (Kalenji 
CW 300 coded), and Receiver and datalogger (Kalenji Cardio Connect). 

 
This mixed-method was applied to 20-participants living in 19-different dwellings over a 
minimum period of 10-consecutive days, in the South-East of England during the winters of 
2012 and 2013. Concurrently, environmental variables were recorded, and interviews 
conducted at the end of each monitoring period to gain an understanding to occupants 
responses to thermal discomfort, which included ‘putting on/off an item of clothing’ or 
‘changing body position or location’. The sampling frame was defined by the 3-physiological 
attributes prescribed by ISO 8996:2004, Annex C, as gender, age and weight. The sample 
frame was populated across combinations of categories using a mixture of convenience and 
snowball sampling. 
 
The aim for this research was to develop methods to estimate metabolic rate and clothing 
insulation values as objective, quantitative and continuous data. Following on, the results 
from mixed-method framework allowed empirical probability distributions to be generated. 
These may be used as input in building simulation. 
 
RESULTS AND DISCUSSION 
 
Estimation of the thermal insulation of clothing 
To estimate the thermal insulation of the clothing (Icl), the ASHRAE 55:2013 - Appendix B 
can be applied as a preliminary estimate of the surface temperature of clothing (Equation 1 
and 2). For this to apply two conditions should be met: (1) va should be equal to, or lower 
than, 0.1m/s, and (2) participants should be sedentary.  
 

   (1) 
 

  (2) 
 
where Ta

clo is the surface temperature of clothing in Kelvin, Ta
a is ambient air temperature in 

Kelvin, Ta is ambient air temperature in Celsius, Icl is thermal insulation of clothing in m2K/W. 
(note 0.155 m2K/W = 1clo, ISO 7730:2005). 
 
Having determined the method of estimation, each term of the equation was estimated as 
follows. First, ambient air temperature (Ta) was measured using HOBO U12-012 dataloggers. 
Three set of 4-dataloggers were placed in living-rooms and in bedrooms, fastened to wooden-
poles, and positioned at 0.1m, 0.6m, 1.1m and 1.7m from the ground, to comply with the 
requirements set by ISO 7726:2001. For the purpose of the analysis, Ta represents the 
temperature monitored in living room while standing calculated as the mean temperature over 
three heights: 0.1m; 0.6m; and 1.7m. As the monitoring frequency was set at 5-minutes, the 
data was re-sampled to a 1-minute sampling rate, with each 1-minute data-point taking on the 
value of the nearest 5-minute data-point. 
 
Relative air velocity (va) was measured during the first visit. For all participants, the results 
were equal to or below 0.1m/s. Therefore a relative air velocity of 0.1m/s was assumed for all 
cases on a basis that in winter, openings, such as windows, tend to remain closed (Hong et al., 
2009). 



 
Finally, the surface temperature of clothing (Tclo) was estimated using the wearable 
temperature sensor recordings. First, readings were averaged over the chosen temporal unit of 
analysis of 1-minute. Then a normalising process was carried out, including: 

• Identifying and discounting the time taken for the SenseCam to reach thermal 
equilibrium with its environment. This is a function of the observed thermal resistance 
and initial temperature of the SenseCam when switched-on and worn. To estimate this 
temperature rise-time, a calibration study was undertaken, and concluded that it takes, 
on average, 22-minutes when first worn. 

• To fulfil the second condition of the equation, it was necessary to identify when 
participants were sedentary and to discount Tclo values when participants were in 
motion. To do this, the mean linear acceleration (LA) over the 1-minute epoch was 
estimated using the tri-axis accelerometer recordings, and compared to the images of 
the visual diary. Results show that participants were sedentary when the measured 
mean linear acceleration over 1-minute was within the range: -0.075 g to +0.075 g or  
-0.735 m/s2 to +-0.735 m/s2. Based on this observation, a data filter was written that 
identified Tclo when sedentary. 

• Identifying and discounting other artefacts including the SenseCam been taken-off but 
left switched on, and SenseCam been worn under an item of clothing. The first of 
these was identified by using the accelerometer recordings, i.e. if  -0.01 g < LA < 
+0.01 g then Tclo was discounted. The second was identified by using the light sensor 
data (CLR). The efficacy of both filters were established by comparing the respective 
sensor data to the visual diary output. 

 
As the monitoring was carried-out on the chest, only the upper-body thermal insulation level 
was measured. Lower body thermal insulation was taken as a constant value of 0.3 clo based 
on the aggregation of lower body garments including underwear, trousers or skirt, and socks. 
This was added to the final Icl value (ISO 9920:2007). The resultant Icl is summarised in 
Figure 1 and Table 1, with an indicative gamma-distribution inferred from the histogram. 
 

 
 
Figure 1. Density distribution of estimated thermal insulation of clothing for all participants 
and minimum clothing level for winter of 1 clo prescribed by EN 15251:2007 (Table A.2). 
 



Table 1. Summary of the statistical characteristics of estimated thermal insulation of clothing 
for all participants. 
 
Sample Sample size (no. of observations) 18,559 
Central Tendency Mean 0.82 
 Median 0.77 
 Mode 0.77 
Spread Variance 0.04 
 Standard deviation 0.20 
 Maximum 1.99 
 Minimum 0.43 
 Range 1.56 
 Quintile (.75) 0.86 
 Quintile (.25) 0.69 
Gamma distribution Shape 19.92 
 Rate 24.42 
 
The estimated range of 0.43 to 1.99 clo is within the expected standard values as described in 
ISO 7730:2005 (4.1) as 0 to 2 clo. However the mean value of 0.82 clo is lower than the 
assumed winter value of 1 clo given as constant in building energy simulation (Schiavon, 
2013) and the minimum clothing level for winter of 1 clo prescribed by EN 15251:2007 
(Table A.2). 
 
Estimation of the metabolic rate 
Participants’ activity level was estimated from the output of the SenseCam tri-axis 
piezoresistive accelerometer. Participants’ total acceleration (TA) was calculated as the 
normalized magnitude of the acceleration vector including the earth’s gravity; see equation 3 
(Shala and Rodriguez, 2011). Then the linear acceleration (LA) was estimated as the 
difference between TA and the acceleration due to Earth’s gravity; see equation 4. 
 

    (3) 
 

    (4) 
 
where TA is the total acceleration in m/s2, LA is the linear acceleration in m/s2, x is 
acceleration in the x-axis in m/s2, y is acceleration in the y-axis in m/s2, z is acceleration in the 
z-axis in m/s2, and g is the acceleration due to Earth’s gravity of 9.81 m/s2. 
 
The linear acceleration (LA) was then integrated over a 1-second interval to estimate 
participants' speed. The results were then averaged over the each 1-minute epoch. Assuming 
that participants walked between locations in their home Ralston’s equation (1958) may be 
applied; see equation 5. 
 

     (5) 
 
where Ew is the energy expenditure in cal/min/kg, and v is velocity in m/min. 
After converting the variables in the Ralston’s equation to SI units, power was calculated and 
divided by the participants’ body surface area using Du Bois formula (ISO 8996:2004, 7.1.2) 



to estimate metabolic rate (M) in W/m2 and then in met; where 1 met = 58.2 W/m2 (ISO 
7730:2005). This estimation does not take into account the energy required to sit, or to 
climb/descend stairs; such activities may be incorporated in further analysis (Rassia et al., 
2009). The resultant M is summarised in Figure 2 and Table 2, with indicative gamma-
distribution inferred from the histogram. 
 

 
 
Figure 2. Density distribution of estimated metabolic rate for all participants, and activity 
level value of 1.2 met prescribed by EN 15251:2007 (Table A.2) for residential building in 
living spaces. 
 
Table 2. Summary of the statistical characteristics of estimated metabolic rate for all 
participants 
 
Sample Sample size (no. of observations) 31,444 
Central Tendency Mean 1.32 
 Median 1.28 
 Mode 1.13 
Spread Variance 0.02 
 Standard deviation 0.13 
 Maximum 2.12 
 Minimum 1.11 
 Range 1.01 
 Quintile (.75) 1.37 
 Quintile (.25) 1.24 
Gamma distribution Shape 116.79 
 Rate 88.49 
 
The estimated range of 1.11 to 2.12 met is within the expected standard values as described in 
ISO 7730:2005 (4.1) as 0.8 to 4 met. However the mean value of 1.32 met is higher than the 
activity level value of 1.2 met prescribed by EN 15251:2007 (Table A.2) for residential 
building in living spaces. 
 



CONCLUSIONS 
 
This mixed-methods approach allows for (M) and (Icl) to be determined as objective, 
quantitative, and continuous data. In addition, results from this experimental investigation 
generated probability distributions for the levels of (M) and (Icl) in residential settings during 
the winter season. Surprisingly, the mean (Icl) level was 0.82 clo, which is lower than the 1 clo 
prescribed by EN 15251:2007. On the other hand measured mean (M) was 1.32 met, which is 
higher than the 1.2 met also prescribed by EN 15251:2007. In summary the standard (M) and 
(Icl) values differ from the measured values, although both are within the standard deviation of 
the mean as 1 clo is within 0.82±0.2 clo and 1.2met is within 1.32±0.13 met. However as (M) 
and (Icl) are the most influential variables in the PMV model (Gauthier and Shipworth, 2012), 
these observed differences from the standard values may have great effect on output PMV as 
shown in Figure 3. 
 

 
 

Figure 3. Distributions of PMV output for 5-senarios: (1) Base Case: input from the study for 
(M) and (Icl) (Sample size – number of observations: 17,892), (2) Input from the study for (Icl) 
and M=1.32met, (3) Input from the study for (Icl) and M=1.2met, (4) Input from the study for 
(M) and Icl =0.82clo, and (5) Input from the study for (M) and Icl =1clo. (Note: thresholds 
PMV for categories A, B and C shown in dotted lines, ISO 7730:2005 –Table A.1). 
 
The results illustrated in Figure 3 show that a reduction in (Icl) from 1 to 0.82 clo reduces the 
mean PMV from -0.23 to -0.51; which is then outside the bound of category B acceptability. 
In parallel, an increase in (M) from 1.2 to 1.32 met increases the mean PMV from -0.87 to  
-0.57; which is still outside the bound of category B but inside the bound of category C. In 
conclusion using empirical and more informed input in the PMV model and building energy 
simulation may have great effect on the assessment of buildings. 
 
Despite the important number of observations (31,444 for (M) and 18,559 for (Icl)), the 
number of participants in this research was relatively small; therefore the results may be 
strengthened by further studies adopting the same method in different seasons and regions.  



 
In summary the (Icl) value in winter was 0.18 clo lower than the assumed typical value. This 
low clothing level may partially be compensated by higher observed metabolic rate. When 
combining these results with the environmental monitoring, the predicted mean votes are 
substantially below those expected in the standard model, with observed values of -0.54± 0.65 
PMV score. This suggests that occupants maybe engaging in other adaptive behaviours, not 
currently accounted for within the standard model. 
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