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ABSTRACT

A weakly damped mode of variability, corresponding to the oceanic signature of the Atlantic multidecadal

oscillation (AMO)was found through the linear stability analysis of a realistic ocean general circulation model.

A simple two-level model was proposed to rationalize both its period and damping rate. This model is extended

here to three levels to investigate how themode can draw energy from the mean flow, as found in various ocean

and coupled models. A linear stability analysis in this three-level model shows that the positive growth rate of

the oscillatory mode depends on the zonally averaged isopycnal slope. This mode corresponds to a westward

propagation of density anomalies in the pycnocline, typical of large-scale baroclinic Rossby waves. The most

unstablemode corresponds to the largest scale one (at least for low isopycnal slope). Themode can be described

in four phases composing a full oscillation cycle: 1) basin-scale warming of the North Atlantic (AMO positive

phase), 2) decrease in upper-ocean poleward transport [hence a reduction of the Atlantic meridional over-

turning circulation (AMOC)], 3) basin-scale cooling (negative AMO), and 4) AMOC intensification. A crite-

rion is developed to test, in oceanic datasets or numerical models, whether this multidecadal oscillation is an

unstable oceanic internal mode of variability or if it is stable and externally forced. Consistent with the classical

theory of baroclinic instability, this criterion depends on the vertical structure of the mode. If the upper pyc-

nocline signature is in advance of the deeper pycnocline signature with respect to the westward propagation, the

mode is unstable and could be described as an oceanic internal mode of variability.

1. Introduction

Through its poleward heat transport, the Atlantic

meridional overturning circulation (AMOC) is a major

actor in setting the climate in the Atlantic (Srokosz et al.

2012). In particular, the AMOC variations are a poten-

tial explanation for climate variability in the Atlantic on

time scales from decadal to centennial and longer.

However, studies from observation, modeling, and

theory suggest numerous and potentially inconsistent

mechanisms that can lead to temporal variations of the

AMOC [as reviewed byYoshimori et al. (2010)]. Even if

only focusing on comprehensive climate models, studies

show that the AMOC can vary on a broad range of time

scales with proposed mechanisms greatly varying from

one model to the other [e.g., IPCC’s Fifth Assessment

Report (AR5); Stocker et al. 2014]. Thus, the mecha-

nisms of AMOC variability remain a subject of con-

tinuing debates.

Onmultidecadal time scales, the Atlantic multidecadal

oscillation/variability (AMO/AMV), with typical periods

between 50 to 70yr (Kushnir 1994; Delworth and Mann

2000), is characterized by large-scale warming and cool-

ing at the surface of the Atlantic (leading to spatial av-

erage changes of the order of 0.1K at the surface). This

variability is associated with variations in the AMOC
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intensity of several Sverdrups (Sv; 1 Sv [ 106m3 s21)

(Knight et al. 2005). It is suggested that the AMO exerts

significant impacts on climate (Sutton and Hodson

2003), affecting precipitation over Europe and North

America (Sutton and Hodson 2005) and hurricane ac-

tivity over the North Atlantic (Goldenberg et al. 2001),

for instance. Given the length of the historical record

compared to the relatively long period of the AMO,

observational studies are strongly limited. Thus, AMO-

like multidecadal variability has been studied in climate

models of different complexity (Yoshimori et al. 2010;

Latif 1998). Apart from the already mentioned AMOC

variations, several other physical mechanisms have been

proposed, including changes in the subtropical gyre

(Dong and Sutton 2005; D’Orgeville and Peltier 2009;

Cheng et al. 2004) or changes in the subpolar gyre that

alter the heat budget of the Labrador Sea (Danabasoglu

2008), just to give a few examples.

Together with the 50–70-yr variability, Frankcombe

et al. (2008) and Chylek et al. (2011) have suggested that

the North Atlantic also varies with a 20–30-yr time scale

by studying observations of temperature and sea level.

Frankcombe and Dijkstra (2009) confirmed the exis-

tence of such sea level variation in both observations

and climate models. This variability is characterized

by a westward propagation of subsurface temperature

anomalies (Frankcombe et al. 2008), making large-scale

baroclinic Rossby waves the ideal explanation. Our

study will focus on this particular 20–30-yr time scale.

Studies with idealized ocean models under prescribed

surface buoyancy fluxes (as opposed to restoring surface

boundary conditions) also show spontaneous modes of

multidecadal variability characterized by the westward

propagation of buoyancy anomalies (Greatbatch and

Zhang 1995; Huck et al. 1999). Colin de Verdière and

Huck (1999) first suggested the oscillations are sustained

by large-scale baroclinic instability, mostly on the basis of

the vertical structure of the perturbations, and are sup-

ported by density variance budgets (te Raa and Dijkstra

2002; Arzel et al. 2006). Huck et al. (2001) performed a

local stability analysis for quasigeostrophic waves and

showed that the mode could be associated with growing

large-scale Rossby waves propagating westward in the

presence of the meridional thermal gradient. Through a

global linear stability analysis, Huck and Vallis (2001)

proved that the oscillation results from an unstable linear

mode, which can be strongly damped by surface restoring

boundary conditions. In parallel to these studies, te Raa

and Dijkstra (2002) interpreted the mode as resulting

from temperature anomalies propagating westward along

the polar boundary, inducing geostrophically alternating

changes in zonal andmeridional overturning and growing

through the phase difference between temperature and

vertical velocity anomalies (referred to as ‘‘generalized’’

baroclinic instability). Moving away from idealized con-

figurations, te Raa et al. (2004) and Dijkstra et al. (2006)

have shown that the mode is not modified when the re-

alistic North Atlantic coastline is used instead of an ide-

alized rectangular basin.

Thesewestward-propagating buoyancy anomalies have

been recently invoked to explain oscillations in an ideal-

ized geometry coupled model (Buckley et al. 2012). The

authors point out potential regions of variance growth on

the eastern and western boundaries of the subtropical

gyre, suggesting Rossby waves are unstable in these re-

gions. In contrast with previous studies that may have

linked too tightly the oscillation mechanism to AMOC

variations, they rather suggest the AMOC variations may

passively respond to the Rossby waves through the ther-

mal wind relation and not play an active role inmodifying

the sea surface temperatures (SSTs) and upper-ocean

heat content budget in the northern regions. This analysis

has been extended to the oscillations in more realistic

coupled simulations, namely, with NCAR CCSM3 and

GFDL CM2.1, highlighting the role of upper-ocean

density anomalies propagating around the subpolar gyre

and geostrophically affecting the AMOC upon their ar-

rival in the northwest region (Tulloch andMarshall 2012).

More recently, Sévellec and Fedorov (2013) rigor-

ously demonstrated the existence of a multidecadal

natural mode of oscillation solely controlled by ocean

dynamics in a realistic ocean general circulation model

(OGCM). Using a linear stability analysis, they found

the least damped oscillatory eigenmode of the system.

The mode period is about 24 yr, and its damping time

scale is close to 40 yr. This oscillation corresponds to a

large-scale baroclinic Rossby wave in the presence of

mean zonal flow and meridional temperature gradient.

Its westward propagation comes from the competition

between three factors (e.g., Tulloch et al. 2009): (i) the

mean eastward zonal advection, (ii) the equivalent

westward advection or geostrophic self-advection that

depends on the meanmeridional thermal gradient in the

ocean, and (iii) the westward advection typical of large-

scale baroclinic Rossby waves (which is related to the

b effect). The damping term is controlled by horizontal

diffusion, and no unstable mode could be found. These

last conclusions also apply in a two-layer, shallow-water

model of the large-scale circulation forced either by wind

or buoyancy forcing, with andwithout bottom topography

(Ferjani et al. 2013, 2014). What salient feature is missing

from these different numericalmodel simulations to allow

unstable modes leading to self-sustained decadal oscilla-

tions is what we investigate further.

To allow baroclinic instability on decadal time scales,

the interactions of at least two baroclinic modes must
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be permitted (Liu 1999). Therefore, we extend the the-

oretical model of Sévellec and Fedorov (2013) by

adding a third level to their idealized two-level model.

This level is included by splitting the first level repre-

senting the pycnocline in two equal parts. As it will be

demonstrated, this allows baroclinic motion inside the

pycnocline and the instability of the multidecadal mode.

This is equivalent to the difference between shallow-

water models with 1.5 and 2.5 layers, the latter allowing

baroclinic instability (Simonnet et al. 2003).

We show that this newly developed idealized model

has a multidecadal mode controlled by westward-

propagating temperature anomalies typical of large-

scale baroclinic Rossby waves, leading to the following

sequence of 1) warming (inducing a positive AMO),

2) decrease in upper-ocean poleward transport (corre-

sponding to a decreasing AMOC), 3) cooling (negative

AMO), and 4) increase in upper-ocean poleward

transport (increasing AMOC), and so on. This mode is

unstable if the zonally averaged pycnocline slope is large

enough. In our experiment, the largest-scale mode is

most unstable for weak slope of the pycnocline. The

instability occurs through a positive feedback when the

upper pycnocline anomaly propagates a quarter period in

advance of the deeper pycnocline anomaly. In this con-

figuration, the upper and deeper pycnocline anomalies

reinforce each other through the advection by anomalous

meridional velocity of the mean temperature gradient

(which is typical of baroclinic instability; Pedlosky 1996).

The structure of the paper is as follows: In section 2,

we formulate the idealized ocean model used to ana-

lytically obtain the multidecadal mode of variability. In

section 3, we discuss the properties of this mode of

variability and its potential instability. In section 4, we

summarize the implications of this study, especially in

the context of the AMO.

2. The set of equations and model configuration

In this section, wewill derive an idealizedmodel of the

ocean circulation and perform its linear stability analy-

sis. The latter consists of computing the eigenvalues and

eigenmodes of the linearized ocean dynamics, that is,

the typical time scales and shapes associated with in-

trinsic ocean variability. We will demonstrate that the

leading eigenmodes correspond to a multidecadal large-

scale baroclinic Rossby wave, which can be interpreted

as the AMO.

The theoretical model consists of a flat-bottom rect-

angular basin (Fig. 1) representing the North Atlantic

(from y0 5 108N to y1 5 708N). The zonal extent of the

ocean isW5 608, and its depth isH5 4500m (Table 1).

The rotation rate varies to represent the curvature of

Earth (b plane).

The set of equations for this theoretical model derives

from the horizontal momentum equations, hydrostatic

balance, nondivergence, a linear equation of state, and

the evolution of temperature by advective–diffusive

FIG. 1. A schematic of the idealized three-level model compris-

ing two upper-ocean levels (levels 1 and 2) and a deep ocean one

(level 3). The model three prognostic variables are the tempera-

tures at the three levels (T 0
1,2,3). The six diagnostic variables are

meridional and vertical velocities at each level (y01,2,3 and w0
1,2,3).

The main parameters are the ocean layer thicknesses h1, h2, and h3
(with the total ocean depthH 5 h1 1 h2 1 h3), the zonal extent of

the Atlantic basin W, and the mean zonal flow u and temperature

T. The intensity of the shading (lighter to darker) represents the

spatial variation of the mean temperature (cooler to warmer),

varying linearly with latitude y in the upper ocean (levels 1 and 2).

In the deep ocean, we use constant values equal to temperature at

the northern basin boundary of the upper ocean. Also, we implic-

itly assume that there is a nonzero vertical temperature gradient in

the upper layers that can support baroclinic Rossby waves due to

the b effect. The dependency of the model variables on space co-

ordinates (zonal x, meridional y, and vertical z) and time t is shown

in parentheses.

TABLE 1. Parameters of the idealized model.

h1 600m First-layer thickness

h2 600m Second-layer thickness

h3 3300m Third-layer thickness

H 4500m Total ocean depth

W 608 Zonal basin size

L 608 Meridional basin size

k 2 3 103m2 s21 Horizontal tracer diffusivity

ky 1025 m2 s21 Vertical tracer diffusivity

g 9.8m s22 Acceleration due to gravity

f 1024 s21 Coriolis parameter

b 1.5 3 10211 m21 s21 b effect (the gradient of

planetary vorticity)

aT 2 3 1024 K21 Thermal expansion coefficient

aS 7 3 1024 psu21 Haline contraction coefficient

DT 220K Mean meridional temperature

contrast

DS 21.5 psu Mean meridional salinity contrast

u 1022 m s21 Mean zonal velocity in layers

1 and 2
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processes (calculations are restricted to temperature

for simplicity, but numerical applications are done for

equivalent temperature, i.e., density, to implicitly ac-

count for salinity). These equations can be simplified by

assuming low viscosity (Re � 1, i.e., viscous forces are

negligible) and small inertial terms (Ro � 1, i.e., hor-

izontal equations are in geostrophic balance), where

Re is the Reynolds number and measures the ratio of

inertial forces to viscous forces, and Ro is the Rossby

number. These assumptions are valid for the large-

scale ocean circulation and lead to the geostrophic

balance. Thus, we obtain the noninertial set of equa-

tions in Cartesian coordinates described by Salmon

(1998) in the absence of friction or viscosity:

2f y52
1

r0
›xP , (1a)

fu52
1

r0
›yP , (1b)

›zP52rg , (1c)

r5 r0[12aT(T2T0)], and (1d)

DtT5 ›x(k›xT)1 ›y(k›yT)1 ›z(ky›zT) , (1e)

where t is time; x, y, and z, are the zonal, meridional, and

vertical coordinates; u, y, and w are the zonal, meridio-

nal, and vertical velocities; P is the pressure; r (r0) is the

(reference) density; T (T0) is the (reference) tempera-

ture; f is the Coriolis parameter; g is Earth’s gravity ac-

celeration; aT is the thermal expansion coefficient; ›t, ›x,

›y, and ›z are the time, zonal, meridional, and vertical

partial derivatives; Dt is the material derivative (5›t 1
u›x 1 y›y 1 w›z); and k and ky are the horizontal and

vertical eddy diffusivity coefficients, respectively.

Note that this set of equations corresponds to the first-

order balance of the widely used quasigeostrophic dy-

namics (Pedlosky 1979). It is also often referred to as

planetary geostrophic equations (geostrophic regime of

type 2 in Phillips 1963; Colin de Verdière 1988; Salmon

1998), stressing its validity to the study of basin-scale

ocean dynamics.

To further simplify the system, the equation of evo-

lution of temperature is linearized. For that purpose, we

split the temperature field in a time-mean term and an

anomalous term. Then, by assuming that the latter is

always significantly smaller than the former, we neglect

second-order terms. Note that the zero-order term de-

scribes the balance of the mean state, which will not be

explicitly solved but rather used as a control parameter

of the linearized dynamics. A scaling argument using the

basin horizontal and vertical scale shows that vertical

diffusion is much smaller than horizontal diffusion and

thus can be neglected. Themeanmeridional and vertical

velocities are neglected (y 5 w 5 0, respectively), re-

stricting the mean state to a zonal flow at leading order,

which is particularly accurate in the outcropping region.

This assumption does not imply the absence of meridio-

nal overturning but its overall weakness compared to the

zonal jet. Finally, in the linearized advective–diffusive

equation for temperature anomaly, we consider an in-

finitely large meridional extent (›y 5 0, for the temper-

ature anomaly). This last assumption is not needed, but it

allows for an easier mathematical treatment of the prob-

lem. It implies that the horizontal deformation and prop-

agation are primarily zonal (the latter being also consistent

with a weak zonal gradient of mean temperature).

Following these assumptions, we obtain a new set of

equations:

›tT
052u›xT

0 2 y0›yT2w0›zT1 k›xxT
0 , (2a)

f›zy
0 5aTg›xT

0 , (2b)ð0
2H

y0 dz5 0, and (2c)

›xu
0 1 ›yy

0 1 ›zw
0 5 0, (2d)

where u0, y0, and w0 are the zonal, meridional, and ver-

tical velocity anomalies; T 0 is the temperature anomaly;

u is the mean zonal velocity; and ›yT and ›zT are the

mean meridional and vertical gradients of temperature,

respectively. The thermal wind balance [(2b)] derives

from the geostrophic balance together with the hydro-

static equilibrium [(1)]. The baroclinic condition [(2c)]

derives from the vertical integration of the non-

divergence equation with surface and bottom rigid

conditions (w0jz50 5w0jz52H 5 0) and u0 5 0 (since ›y5 0

for the temperature anomaly).

After discretization over three levels (following

Fig. 1) and assuming no mean terms in the deeper level,

the advection diffusion [(2a)] becomes

›tT
0
152u›xT

0
12 y01›yT2w0

1›zT1 k›xxT
0
1 , (3a)

›tT
0
252u›xT

0
22 y02›yT2w0

2›zT1 k›xxT
0
2, and (3b)

›tT
0
35 k›xxT

0
3 , (3c)

whereas the thermal wind balance [(2b)] and the baro-

clinic condition [(2c)] are

y012 y025
aTg

2f
(h1›xT

0
1 1h2›xT

0
2) , (4a)

y022 y035
aTg

2f
(h2›xT

0
21 h3›xT

0
3), and (4b)

h1y
0
21 h2y

0
21 h3y

0
35 0, (4c)
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where the indices correspond to the three levels from the

surface to the deep ocean, and h1,2,3 are the constant

thicknesses of each level related by h11 h21 h35H. To

obtain this last set of equations, the vertical discretiza-

tion follows the Arakawa C grid (together with simple

linear interpolations, if needed). Using the three last

equations, we can express the meridional velocity in

levels 1 and 2 of the idealized model:

y015
aTg

2Hf
[h1(h21 h3)›xT

0
11 h2(h21 2h3)›xT

0
2

1 h23›xT
0
3], and (5a)

y025
aTg

2Hf
[2h21›xT

0
11 h2(h32 h1)›xT

0
21 h23›xT

0
3] . (5b)

In principle, the mean zonal velocity u and the mean

meridional and vertical gradients ›yT and ›zT, re-

spectively, can be different between the two upper

levels. However, here we choose to use the same values

over the two upper levels for a more straightforward

comparison with the two-level approach of Sévellec and
Fedorov (2013) and to reduce the number of parameters

in the linearized dynamical system.

Finally, using the nondivergence together with the

thermal wind, we can express the vertical velocities at

each level using Sverdrup (1947) balance. Thus, as-

suming w0jz50 5 0, the vertical motion is obtained by

vertically integrating (2d):

w0
1 52

h1
2

b

f
y01 , (6a)

w0
1/252h1

b

f
y01, and (6b)

w0
25w0

1/22
h2
2

b

f
y0252

b

2f
(2h1y

0
11 h2y

0
2) , (6c)

where b5 ›yf is the gradient of planetary vorticity; w
0
1/2

is the anomalous vertical flow between layers 1 and 2;

andw0
1 andw0

2 are the anomalous vertical flow at levels 1

and 2, respectively.

Since we know the meridional velocity anomalies as

function of temperature anomalies, we also have the

expression of the anomalous vertical motion in the two

upper levels:

w0
152

aTgb

4Hf 2
[h21(h21 h3)›xT

0
1

1 h1h2(h2 1 2h3)›xT
0
21 h1h

2
3›xT

0
3], and (7a)

w0
252

aTgb

4Hf 2
fh21(h21 2h3)›xT

0
11 [4h1h2h3

1 h22(h11 h3)]›xT
0
21 h23(2h11 h2)›xT

0
3g . (7b)

Wehave obtained both the expression of the vertical and

meridional velocity in the first and second level,making the

system fully closed. Now using (5) and (7) in (3), we obtain

the closed set of partial differential equations:

›tT
0
152

�
u1

aTg

2Hf
[h1(h21 h3)]›yT2

aTgb

4Hf 2
[h21(h21 h3)]›zT

�
›xT

0
1

2

�
aTg

2Hf
[h2(h21 2h3)]›yT2

aTgb

4Hf 2
[h1h2(h21 2h3)]›zT

�
›xT

0
2

2

�
aTg

2Hf
h23›yT2

aTgb

4Hf 2
h1h

2
3›zT

�
›xT

0
31 k›xxT

0
1 , (8a)

›tT
0
252

�
aTg

2Hf
(2h21)›yT2

aTgb

2Hf 2

�
h21

�
h2
2
1 h3

��
›zT

�
›xT

0
1

2

(
u1

aTg

2Hf
[h2(h32 h1)]›yT2

aTgb

2Hf 2

"
2h1h2h31

h22
2
(h11 h3)

#
›zT

)
›xT

0
2

2

�
aTg

2Hf
h23›yT2

aTgb

2Hf 2

�
h23

�
h11

h2
2

��
›zT

�
›xT

0
31 k›xxT

0
2, and (8b)

›tT
0
35 k›xxT

0
3 . (8c)

Further, we expand temperature anomalies into

Fourier harmonics in the zonal direction:

T 0
k5 �

n

h
Tcn
k cos

�np
W

x
	
1Tsn

k sin
�np
W

x
	i

,

whereTcn
k andTsn

k are theFourier coefficients,n (51, 2, 3. . .)

is the wavenumber, k (51, 2, 3) is the level index, and c and s

refer to the cosine and sine function coefficients, respectively.

Mathematically there is no limit to n. However, since the

geostrophic assumption in (1a)and (1b)breaksdown for scale

smaller than the first baroclinic Rossby radius of deformation

SEPTEMBER 2015 SÉVELLEC AND HUCK 2193



(’20km at midlatitude), we set the physical limit to nmax 5
200 (i.e., a length scale of;25km).

Lateral boundary conditions are needed to constrain

the advection–diffusion equation and to fully solve the

problem. To obtain such conditions, we define two

boundary layers (at the west and the east of the basin).

These boundary layers connect the geostrophic interior

to the basin boundaries. In the appendix, we consider in

details the ocean dynamics in the boundary layers to

constrain the Fourier expansion, which only describes

the interior solution of the problem where geostrophic

balance applies (geostrophic balance filters Kelvin

waves as well as short Rossby waves).

On long time scales, such as decadal, we assume that the

basin boundary layers can be treated as being continuously

adjusted. This follows the study of Johnson and Marshall

(2002), for example, who showed that the basin boundary

adjustment in the Atlantic occurs over 2–3 months and is

largely achieved by Kelvin waves propagating along the

basin boundaries including the equator. For the idealized

model, this assumption corresponds to the adjustment at

all times of the east and the west boundary layers together:

›thTiEB 5 ›thTiWB, where h.iEB and h.iWB denote 3D

spatial averages for the east and west boundary layers,

respectively. This means that warming (or cooling) in both

east andwest boundary layers occurs at the same time.We

also assume that the Kelvin waves, involved in this west–

east adjustment, conserve their vertical structure. This al-

lows us to apply independently the boundary layer con-

dition for each level (e.g., a warming of the west boundary

layer at level 1 leads to a warming of the east boundary

layer at level 1 but does not affect level 2 and level 3 east

boundary layers).

Applying these assumptions together with the temper-

ature advection–diffusion equation, we demonstrate in

the appendix that the appropriate boundary conditions for

the interior solution become ›xT
0jEast 52›xT

0jWest and

T 0
East 52T 0

West (for details, see also Sévellec and Fedorov

2013). We apply these conditions for the three levels. In

summary, they are a consequence of two factors: 1) the

basin boundary is set by Kelvin waves’ dynamics, and 2)

the boundary layers’ dynamics are necessary to connect

the geostrophic interior solution with the basin boundary.

In the context of the Fourier expansion, these boundary

conditions restrict the solution to odd wavenumbers (n5
1, 3, 5. . .) and allow for continuous oscillations.

Using (8) leads to a linear dynamical system (with

solely ordinary differential equations that make the

system easier to solve) with 6 degrees of freedom cor-

responding to the six Fourier amplitudes:

›t

0
BBBBBB@

Tcn
1

Tsn
1

Tcn
2

Tsn
2

Tcn
3

Tsn
3

1
CCCCCCA

5

0
BBBBBBBBBBBBBBBBBB@

2k
�np
W

	2
A1,2 0 A1,4 0 A1,6

A2,1 2k
�np
W

	2
A2,3 0 A2,5 0

0 A3,2 2k
�np
W

	2
A3,4 0 A3,6

A4,1 0 A4,3 2k
�np
W

	2
A4,5 0

0 0 0 0 2k
�np
W

	2
0

0 0 0 0 0 2k
�np
W

	2

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBB@

Tcn
1

Tsn
1

Tcn
2

Tsn
2

Tcn
3
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The off-diagonal nonzero terms in (9) are calculated as
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�
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where terms including u correspond to mean advection;

terms including ›yT correspond to geostrophic self-

advection (i.e., advection linked to anomalous meridio-

nal velocities of the background meridional temperature

gradient); and terms including b correspond to long

(nondispersive) baroclinic Rossby wave propagation. In

very idealized settings, such as 1.5-layer shallow-water

equations (where the dynamics are solely controlled by

the first baroclinic mode), the geostrophic self-advection

and the mean advection exactly cancel each other; this is

known as the non-Doppler effect (Rossby et al. 1939;

Held 1983; Killworth et al. 1997; Liu 1999).

3. Results

a. Linear stability analysis: Amultidecadal oscillation

To investigate the stability and exhibit the preferred

modes of variability of this model, we perform a linear

stability analysis that consists of computing the eigen-

values and eigenmodes of the Jacobian matrix of the

linearized dynamical system (9). Unlike correlation-

based analyses (e.g., empirical orthogonal functions

analysis), linear stability analysis ensures the dynamical

coherence of the time evolution of the modes (Monahan

et al. 2009). There exists as many eigenvalues as degrees

of freedom in the system (in our case nmax, where nmax is

the highest wavenumber n) that provide information on

the stability of the system; if the real part of a single

eigenvalue is strictly positive, the system is unstable.

More specifically, each eigenvalue sets if perturbation in

the ‘‘natural’’ direction of the system defined by the

associated eigenmode is stable or not (negative or pos-

itive real part, respectively) and is oscillatory or not

(nonzero or zero imaginary part, respectively). In the

rest of the study, particular attention will be given to

describe the changes in the stability (eigenvalues) and

the natural directions of the system (eigenmodes) with

modifications of the model parameters (namely, strati-

fication and horizontal diffusivity).

As will be demonstrated later, the eigenvalues show

the existence of a large-scale oscillatory mode at multi-

decadal time scales. The eigenmode associated with

these time and spatial scales is characteristic of a large-

scale baroclinic Rossby wave. This oscillation can be

unstable for relatively low stratification. When unstable,

the eigenmodes are consistent with baroclinic instability

(Pedlosky 1996). Overall, we will demonstrate, through

this linear stability analysis, that ocean dynamics

develops a mode of variability with period and pattern

similar to the AMO, which is potentially unstable (de-

pending on the stratification).

The linear system described by (9) reveals six eigen-

values (l1,2,3,4,5,6), two of which are simply set by the

diffusive time scale: l5,6 5 2k(np/W)2. These two ei-

genvalues are associated with purely decaying standing

modes (i.e., nonpropagating) with signatures in all three

layers, associated with the horizontal diffusion. These

standing modes allow anomalies in the deep ocean to

slowly vanish. The other four eigenvalues follow

l1,252k
�np
W

	2
6

1ffiffiffi
2

p [2A2
1,22A2

3,42 2A1,4A3,2
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�np
W
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2
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where the power of one-half is a generalization (from R

to C) of the square root function (from R
1 to R), such

that X1/2 5
ffiffiffiffiffi
X

p
if X $ 0 and X1/2 5 i

ffiffiffiffiffiffiffijXjp
if X , 0,

where X 2 R.

To test the growth or decay of these eigenmodes (i.e.,

stability or instability of the system), we build a control

parameter, measuring the intensity of the mean vertical

gradient of density c such that

›zT52
2c

h11 h2

�
DT2

aS

aT

DS

�
, (10)

where DT and DS are the mean temperature and salinity

contrast across the meridional direction, respectively,

and aS is the haline contraction coefficient. In the same

way, we assume a mean meridional gradient of density:

›yT5
2

L

�
DT2

aS

aT

DS

�
, (11)

where L is the meridional extent of the basin.

Mean vertical and meridional temperature gradients

are computed in terms of equivalent temperature that

takes into account salinity through a linear equation of

state. Computing the solution explicitly for salinity

would lead to exactly the same solution in terms of

spatial shape and time scales, where salinity anomaly

would partially compensate temperature anomaly

(equivalently to the mean gradients).
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By combining (10) and (11), c, which measures the

intensity of the stratification, can be expressed as c 5
(h1 1 h2)/(uL), where u 5 2›yT/›zT. Thus, c is also a

measure of the isopycnal slope of themean state u. More

precisely, the coefficient c is the inverse of the isopycnal

slope normalized by the aspect ratio of the pycnocline.

In general, we expect c ’ 1, whereas c � 1 corresponds

to flat isopycnals and c � 1 corresponds to important

outcropping of the isopycnals. Next, we will test the in-

fluence of this parameter on the linear stability analysis,

that is, how the stratification, or the ispoycnal slope,

modifies the system stability. Results from the linear

stability (i.e., the eigenvalues l1,2,3,4) with varying c are

summarized in Fig. 2 using parameters values from

Table 1.

The stability analysis reveals the existence of eigen-

modes with decadal to multidecadal periods (Fig. 2a).

For values of c larger than approximately two, the two-

level model of Sévellec and Fedorov (2013) captures

well the lower branch, corresponding to a damped ei-

genmode with a vertical structure close to a first

baroclinic mode. The addition of the third level leads

to a major difference: the emergence of an unstable ei-

genmode when the meridional density gradient is strong

compared to the vertical gradient (for c # 0.33). This

eigenmode represents an oscillation with a period

around 23 yr. This bifurcation appears through the in-

teractions of the lower branch with the upper branch

(for c . 2 in Fig. 2a). The latter branch corresponds to

eigenmodes with a vertical structure closer to a second

baroclinic mode. When unstable, the mode period is

particularly robust, varying between 22 to 33 yr when c

is modified by more than one order of magnitude

(Fig. 2a). As will be demonstrated later, the instability

mechanism has the same behavior and properties as

classical baroclinic instability but is acting on a basin

scale. Following Colin de Verdière and Huck (1999),

we call it a large-scale baroclinic instability.

The modes can be described by their signature on

large-scale ocean metrics such as mean sea surface

temperature (i.e., the AMO index) and AMOC (Fig. 3).

The AMOC anomaly is simply the zonal integration of

FIG. 2. Characteristic time scales of the two pairs of oscillatory eigenvalues for n5 1 mode as

a function of c measuring the mean vertical density gradient coefficient (or the inverse of the

isopycnal slope), given by (10). (a) Period and (b) real part of the eigenvalue (inverse of the

growth rate). The period corresponds to the time for an anomaly to cross the basin twice (once

for the positive anomaly to go fromwest to east and once for the following negative anomaly to

go from west to east; describing a full oscillation). Gray lines follow the results including solely

two levels, that is, a single upper and a deep level [following Sévellec and Fedorov (2013),

modified for the parameters of Table 1], in which case the real part of the eigenvalue is the

inverse of the diffusivity time scale.
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the meridional transport in the two upper layers

[W(h1y
0
1 1 h2y

0
2)]. All the modes (independent of c, n, or

the particular pair of eigenmodes) show an AMOC

anomaly that leads the zonally averaged SST anomaly

by a quarter cycle. Therefore, the multidecadal mode of

variability can be described in four phases: (i) an in-

crease of AMOC corresponding to an increase in pole-

ward heat transport, (ii) leading to a warming of SST.

The associated geostrophic flow extracts from the mean

meridional temperature gradient a positive and negative

temperature anomaly along the western and eastern

basin boundaries, respectively. (iii) This east–west

density difference causes a negative AMOC anomaly

[(5)], leading to a decrease of meridional heat transport

and so (iv) a cooling of SST. This oscillation results from

the westward propagation of generalized large-scale

baroclinic Rossby waves, where the meridional gradi-

ent of potential vorticity includes both the classical

planetary b effect and the meridional density gradient,

referred to as geostrophic self-advection (Sévellec and

Fedorov 2013), reinforcing each other (note the latter is

often larger than the former) and leading to the exact

same four phases of oscillation. This description is con-

sistent with both OGCM and idealized analysis of

Sévellec and Fedorov (2013) and also the mechanism

described by te Raa and Dijkstra (2002).

Even if the three processes contributing to the ad-

vection of temperature (i.e., the mean advection, the

self-advection, and b-effect propagation) can be aca-

demically separated by their mathematical expression

[cf. Fig. 4, following (3)], they are still physically linked.

For example, the mean zonal advection is partially

controlled by the mean meridional gradient of density,

linking the mean flow to the self-advection and ex-

plaining the non-Doppler effects (Rossby et al. 1939;

Held 1983; Killworth et al. 1997). More fundamentally

for the description of the above paragraph, the self-

advection and b-effect propagation are tightly linked.

Indeed, it is the divergence of the meridional flow or

AMOC [through the set of (6)] that induces the ther-

mocline undulation related to the baroclinic Rossby

waves. This made the oscillatory sequence described by

the four phases between AMOC and SST (see para-

graph above) also fundamentally linked to the classical

large-scale baroclinic Rossby wave propagation induced

by the b effect. However, it is important to note that,

except for low isopycnal slope and away from the bi-

furcation, we found that the self-advection (i.e., advec-

tion of mean meridional temperature gradient by

meridional velocity anomalies) term dominates over the

mean zonal advection and the b-effect propagation

(Fig. 4).

This stability analysis demonstrates that the covari-

ability of AMOC and SST is an intrinsic property of the

ocean dynamics, and their relation is tied to a quarter-

phase delay. This relation derives from the existence of

large-scale baroclinic Rossby waves. However, this re-

sult should be carefully interpreted. Actually, despite

good qualitative relation between theAMOCvariability

and SST variability, the quantitative link is more in-

tricate. Given a normalized temperature anomaly, the

AMOC anomaly is independent of the wavenumber n,

FIG. 3. Large-scale signature of the eigenmodes for n5 1mode (a) after and (b) before both the fork bifurcation and the instability (c5
0.3 and 0.35, respectively). The first and second pair of eigenmodes are displayed in subpanels 1 and 2, respectively. Solid black, dashed

black, and solid gray lines represent zonally averaged SST [i.e., the AMO index; the zonal average of T 0
1, (10

21 K)], ocean heat content

[OHC; the zonal average of (h1T
0
1 1 h2T

0
2 1 h3T

0
3)/H, (1022 K)] and AMOC anomalies [zonal integration of h1y

0
1 1 h2y

0
2, (Sv)]. The

amplitude is arbitrary. The exponential growth/decay is suppressed. The spatial patterns and temporal evolution associated with these

eigenmodes are shown in Fig. 7.
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whereas zonally averaged SST anomaly decreases as n

increases. This implies that the quantitative relation

between AMOC and zonally averaged SST anomalies

depends on the wavenumber. To summarize, it is cru-

cial to know the horizontal spatial scale of the anomaly

(i.e., the wavenumber n) to make any quantitative

prediction on the relation between AMOC and SST

anomalies.

b. Instability threshold of the multidecadal oscillation

For all n modes, for high value of c, the two pairs of

eigenmodes are oscillatory decaying (Fig. 2b); the decay

time scale is controlled solely by the horizontal diffusion

process. Decreasing c changes the period and shape of

the two pairs of eigenmodes but does not modify the

decay time scale (Figs. 2, 5) until the imaginary part of

the eigenvalue of the two pairs of oscillatory eigen-

modes are strictly identical (so that both growth rate,

period, and shape are identical). At this stage, the two

pairs of eigenmodes are merging, and there is a non-

unique way to define the eigenmodes, since the two

shapes cannot be separated by their intrinsic time scales.

After this point, the pairs of eigenmodes remain oscil-

latory decaying (for n5 1 mode, the period of both pairs

of oscillatory eigenmodes is 23 yr), but one is more sta-

ble and the other less stable than before the bifurcation,

when the damping time scale is solely set by the hori-

zontal diffusion (Fig. 2b, where the gray line indicates

the damping set by the horizontal diffusion). It is only

when the instability of the less unstable pair of oscilla-

tory eigenmodes overcomes the horizontal diffusion

process that the steady state exhibits an unstable mul-

tidecadal mode of variability (Fig. 2b).

The merging of the eigenmodes is not straightforward

to describe from classic theories of large-scale Rossby

waves (Pedlosky 1996). For the low value of the iso-

pycnal slope (c . 2), the propagation is mainly con-

trolled by the baroclinic Rossby wave term (in

comparison to the propagation by geostrophic self-

advection). In this regime, as expected from classic

theory, the vertical structure of the eigenmodes corre-

sponds almost exactly to a first and second baroclinic

mode (Fig. 5). The propagation speed increases linearly

with the vertical stratification intensity (so that the pe-

riod of the modes decreases linearly with c). In this re-

gime, the solution of Sévellec and Fedorov (2013)

captures the solution of the three-level model (gray line

vs lower branch in Fig. 2a). Decreasing the stratification

further (0.33 , c # 2) results in an increase of the

propagation speed of the slow pair of eigenmodes (for-

merly second baroclinic mode) and a further decrease of

the propagation speed of the fast pair of eigenmodes

(formerly first baroclinic mode), the latter diverging

from the solution of Sévellec and Fedorov (2013).

During this phase both pairs of eigenmodes become

more and more surface intensified (Fig. 5). This surface

intensification is obtained through a mixture of first and

second baroclinic modes. This implies that the faster

(slower) pair of eigenmodes is partially controlled by the

second (first) baroclinic mode, making it slow down

(accelerate) and get closer to the propagation speed of

second (first) baroclinic mode. Here, the propagation

speed of two pairs of eigenmodes converges. Also, the

mixture of the first and second baroclinic modes makes

the two pairs of eigenmodes nonorthogonal and in-

teraction becomes possible. The surface intensification

FIG. 4. As in Fig. 3, but for the three advective terms of (3): mean zonal advection (black solid lines), meridional self-advection (black

dashed lines), and vertical advection related to the b effect (gray solid lines). The advective terms are zonally and vertically averaged over

the two first levels. In all cases, the self-advection dominates over the two other terms.
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increases when the stratification is decreased until the

signature of both pairs of eigenmodes are almost zero in

the second level (Fig. 5). At the bifurcation, the two

pairs of eigenmodes are virtually identical with the same

surface-intensified pattern, the same period, and the

same damping time scale.

The fork bifurcation, that is, the location of the critical

value of c when lr is split from one branch to two

branches (Fig. 2b), is independent of n. However, since

the diffusive damping time scale is shorter for the

highest zonal wavenumbers (with a n22 dependency),

the largest modes are unstable for a higher value of c.

This suggests that the largest modes require lower iso-

pycnal slope to become unstable (i.e., to overcome the

horizontal diffusion). Only the three largest zonal

modes (associated with n 5 1, 3, 5) are able to become

unstable (Table 2), whereas higher zonal wavenumbers

never overcome the horizontal diffusion.

Since several modes of different wavenumber can be

unstable for the same value of c, we defined the leading

unstable mode as the one with the highest growth rate.

We obtain that for c# 0.05, the leading unstable mode is

n 5 5; for 0.05, c# 0.27, it is n 5 3, and for 0.27, c#

0.33, it is n5 1. In summary, we can identify four regimes:

1) for high isopycnal slope (c # 0.05), we expect the

ocean to be first unstable through the n 5 5 mode,

corresponding to an oscillatory period of ;6 yr;

FIG. 5. Shape of the two pairs of oscillatory eigenmodes (each column) for n5 1 mode as a function of c, given by

(10). Each row corresponds to a variable of the two first levels of the idealizedmodel (i.e., the Fourier coefficients for

n5 1): (top to bottom) Tc1
1 , Ts1

1 , Tc1
2 , and Ts1

2 . The eigenmodes have no signature in the deep ocean, the third level of

the idealized model. For each variable, plus symbols (1) represent the real part and crosses (3) represent the

imaginary part. For high values of c, the shape of the two pairs of eigenmodes (1 and 2 vs 3 and 4) are different but

slowly converge when c is decreased until they are strictly identical at the bifurcation and for lower values of c.

TABLE 2. Characteristics of the instability.

Zonal

wavenumbers (n) c at the instability

Unstable

oscillatory period

1 0.33 21.5 yr

3 0.30 7.0 yr

5 0.23 4.5 yr
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2) for intermediate isopycnal slope such as 0.05 # c #

0.27, we expect the ocean to be unstable through the

n 5 3 mode, corresponding to an oscillatory period

between 10.5 and 7.5 yr;

3) for intermediate isopycnal slope such as 0.27 , c #

0.33, we expect the ocean to be unstable through the

n 5 1 mode, corresponding to an oscillatory period

between 23 and 21.5 yr; and

4) for low isopycnal slope (c . 0.33), we expect the

ocean to remain stable.

Note that in the first case described above, for high

isopycnal slope (c # 0.05), the n 5 1 mode and n 5 3

mode are also both unstable, but their growth rate is

weaker than n5 5 mode. Based on the OGCM study of

Sévellec and Fedorov (2013), we expect c ’ 1, that is,

between cases 3 and 4 above.

To extensively map the instability, we compute the

period of the leading unstable eigenmode as a function

of the vertical density gradient and horizontal diffusion

(Fig. 6). In the absence, or for a low value (,100m2 s21),

of horizontal diffusion, the period is controlled by the

small spatial-scale Fourier mode, which corresponds to

high-frequency oscillation. Since our model assumes

geostrophy (Ro � 1), this limit reaches the validity of

our approach (Colin de Verdière 1986). However, as

soon as horizontal diffusion is not negligible, the leading

unstable mode corresponds to larger spatial-scale

Fourier modes. The vertical density gradient influence

on the period of the oscillatory eigenmodes remains

limited except close to the bifurcation. The horizontal

diffusion selects the spatial scale of the instability and

thus the period (i.e., different Fourier modes have very

different oscillatory periods), whereas the vertical den-

sity gradient (variation of c from 0 to 0.3) controls

weaker variation of the period by roughly 10%. Indeed,

the vertical stratification influences the wave speed

through the classical b effect, and hence the period of

the oscillatory eigenmodes, but its impact remains lim-

ited because of the larger geostrophic self-advection

through the mean meridional temperature gradient

(Fig. 4; Sévellec and Fedorov 2013). Since in this model

the horizontal diffusion represents effective diffusion

induced by the eddy field, one can expect a non-

negligible horizontal diffusion and so a selection of the

largest Fourier modes (as shown in Fig. 6). Following

our calculation, we also show that the largest spatial-

scale Fourier modes are more likely to be destabilized

FIG. 6. Period of the leading unstable eigenmodes as a function of the mean vertical density

gradient coefficient c and the horizontal diffusion coefficient. Each value was evaluated over

the 21 largest Fourier modes of the idealized model. Contour interval is 1 yr. The dotted region

corresponds to the absence of the unstable mode. Large change in the period is concomitant

with the change in the Fourier mode associated with the leading unstable eigenmode. The five

main regions are labeled by their respective Fourier mode number n, and hTi represents the
averaged period for these regions.
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for weak isopycnal slope (i.e., c close to the instability)

than higher ones (Fig. 6).

c. Instability mechanism of the multidecadal
oscillation

To further understand the instability, we focus on the

eigenmodes computed before and after both the ‘‘fork’’

and the instability (c 5 0.35 and 0.30, respectively). As

expected from the eigenvalues analysis, the two pairs of

eigenmodes for both cases are oscillatory waves propa-

gating westward (Fig. 7). However, the structures of the

two pairs of eigenmodes differ. In one case, before the

instability (c 5 0.35), a pair of eigenmodes corresponds

to a level-1 temperature anomaly in phase with the level-

2 temperature anomaly [Figs. 7b(1)–(2), close to a first

vertical baroclinic mode], whereas the other pair of ei-

genmodes corresponds to temperature anomalies out of

phase between level 1 and level 2 [Figs. 7b(3)–(4), close

to a second vertical baroclinic mode]. The in-phase pair

of eigenmodes propagates faster (period of 18 yr) than

the out of phase one (period of 26 yr), and they are both

decaying because of the horizontal diffusion process

(with an e-folding time scale of 36 yr). Right before the

instability, both pairs of eigenmodes become more and

more surface intensified as the stratification decreases

(c going from 2 to 0.35), so that at the bifurcation they

have only a surface signature (with virtually no level-2

signature). This convergence in pattern is accompanied

by a convergence in period, so that the two pairs of

eigenmodes are indistinguishable. In the other case,

after the instability (c 5 0.30), one pair corresponds

to a level-1 temperature anomaly in advance by a

quarter phase to the level-2 anomaly [Figs. 7a(1)–(2)],

whereas the other pair corresponds to a level-1

anomaly delayed by a quarter phase to the level-2

anomaly [Figs. 7a(3)–(4)]. Both pairs correspond to an

oscillation with a period of 22 yr. However, the former

is unstable (with a growth time scale of 19 yr), and the

latter is stable (with decay time scale of 9.2 yr). The

enhanced instability of the eigenmodes leaning toward

the mean flow (i.e., level-1 temperature anomaly in

advance of level-2 temperature anomaly with respect

to the westward propagation) is consistent with classic

theory of baroclinic instability (Pedlosky 1996). Un-

like in the stable regime, the phase mismatch between

the two upper levels can be seen in the slight lag be-

tween zonally averaged SST and ocean heat content

[Figs. 3b(1)–(2)].

Note that the period and growth of the pair of eigen-

modes corresponding to level-1 and level-2 temperature

anomalies in phase can accurately be approximated by

the pair of eigenmodes obtained with a model having a

single upper layer (corresponding to the average of

levels 1 and 2; Sévellec and Fedorov 2013) only at low

isopycnal slope (c . 2; Fig. 2). For high isopycnal slope,

the solutions of the two models diverge, since the single

upper-level model cannot represent, by construction,

the second baroclinic mode, and so temperature

FIG. 7. Eigenmodes for the Fourier n5 1 mode (a) after and (b) before both the fork bifurcation and the instability. In both cases, there

exists two pairs of eigenmodes (the two rows) with a signature in level 1 and 2 of the idealized model (the two columns). (a) and

(b) correspond to c5 0.3 and 0.35, respectively. Subpanels 1 and 3 denote the level 1 and subpanels 2 and 4 denote the level 2. The first and

second pair of eigenmodes are displayed in 1–2 and 3–4, respectively. Thick solid line corresponds to zero value. Grayscale shading is used

for positive values. Contours without shading indicate negative values. Contour intervals for level 1 and 2 are 0.06K and 6mK, re-

spectively. The amplitude is arbitrary. The exponential growth/decay of anomalies is suppressed.
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anomalies intensified at the surface or the quarter phase

delay between the two upper levels.

Before the instability, one can understand the period

difference between the in-phase eigenmode and the out-

of-phase eigenmode (the first and second baroclinic

modes, respectively) by looking at the impact of tem-

perature anomaly at levels 1 and 2 on the vertical and

meridional velocities, following the two sets of (5) and

(7). Actually, the anomalous meridional and vertical

velocities result in the propagation of nondispersive

large-scale baroclinic Rossby waves [for further com-

ments see Sévellec and Fedorov (2013)]. Applying (5),

which is derived from the thermal wind balance and the

baroclinic condition, reveals a striking difference be-

tween meridional velocities induced by temperature

anomalies at levels 1 or 2. A temperature anomaly at

level 1 leads to meridional velocities at levels 1 and 2 of

opposite sign, whereas the same anomaly at level 2 leads

to meridional velocities of the same sign at levels 1 and 2

(Fig. 8). On the other hand, for vertical velocities [(7)],

temperature anomalies at level 1 and level 2 lead to

velocities of the same direction (Fig. 8).

Thus, applying (5) and (7) suggests that in-phase

anomalies in levels 1 and 2 have a constructive impact

on velocities (Fig. 8), whereas out-of-phase anomalies

have a compensated effect (except for the meridional

velocities at level 2). This suggests that in-phase anom-

alies, that is, the first baroclinic mode, induce stronger

velocities and hence propagate faster (top-left panel of

Fig. 9) than out-of-phase anomalies, that is, the second

baroclinic mode (top-right panel of Fig. 9), consistently

with classical theory of baroclinic Rossby waves

(Pedlosky 1996). This leads to the shorter period of the

in-phase eigenmode compared to the out-of-phase ei-

genmode. Sévellec and Fedorov (2013) assumed a single

upper-oceanic layer, corresponding to the average of

layers 1 and 2 of this study; consequently, their solution

corresponds to the in-phase eigenmode (i.e., the first

FIG. 8. Impact on the meridional and vertical velocities of a temperature anomaly in the (a1–3) level 1 or (b1–3) 2

for the Fourier n5 1 mode. (a1) and (b1) represent the temperature anomaly imposed in level 1 and 2, respectively.

(a2) and (b2) represent the meridional and vertical velocities response in level 1 (black and gray lines, respectively).

(a3) and (b3) represent the meridional and vertical velocities response in level 2 (black and gray lines, respectively).

Solid and dashed lines are associated with the shape of the Fourier coefficient (cos and sin, respectively) and their

impact on the meridional and vertical velocities in levels 1 and 2, so that solid and dashed temperature curves are

associated with solid and dashed velocities curves, respectively.
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baroclinic mode), the fastest pair of eigenmodes (gray

line vs the lower branch in Fig. 2a).

Following the same approach, one can understand

how the structure of the two pairs of eigenmodes after

the instability leads to an unstable and a stable eigen-

mode. On the one hand, we suppose a temperature

anomaly such as the level-2 signature is in a quarter-

phase delay with the level 1 [e.g., the solid line in Fig. 8a(1)

and the dashed line in Fig. 8b(1)]. The level-1 anomaly

induces a northward flow in the center of the basin at

level 2 [solid black line in Fig. 8a(3)]. Through ad-

vective interaction with the meridional temperature

gradient, this induces a warming in the center of the

basin at level 2 (bottom-left panel of Fig. 9). Since this

warming corresponds to the shape of the initial level-2

temperature anomaly, the latter is reinforced. This level-2

temperature anomaly, with this quarter-phase delay,

induces a northward flow in the west of the basin and

southward flow in the east in level 1 [dashed black line in

Fig. 8b(2)]. These velocities extract from the mean

temperature gradient a warm anomaly in the west and a

cold anomaly in the east in level 1 (bottom-left panel of

Fig. 9), hence reinforcing the initial level-1 anomaly.

Overall, the level-1 anomaly feeds the level-2 anomalies

and vice versa (bottom-left panel of Fig. 9). In a linear

framework, this positive feedback implies a possible

instability or growth mechanism.

On the other hand, in a symmetric manner, if the

level-2 anomaly is a quarter phase in advance of the

level-1 anomaly, the anomalies cancel each other (i.e.,

negative feedback), which implies a damping of the

initial anomalies in a linear framework (bottom-right

panel of Fig. 9).

This change in the vertical structure of the multi-

decadal mode of variability can be used to determine if

the mode is stable or unstable. If the multidecadal mode

FIG. 9. Schematic of the geostrophic self-advection behavior for low and high isopycnal slope

(leading to a stable and an unstable mode, respectively) in the two upper levels of the idealized

model. The warmer to colder background temperature, equivalent in both levels, is indicated by

the orange to blue color gradient.Cold andwarm temperature anomalies are indicated by the blue

and red circles, respectively. The solid and dashed arrows indicate the geostrophic flow induced by

the first- and second-level anomalies, respectively. Red and blue arrows indicate warming and

cooling induced by meridional transport by the anomalous velocity of the mean temperature

gradient, respectively. (Propagation by mean advection of anomalous temperature and through

the b effect exists but is not indicated in the figure.) Dark arrows indicate feedback, where the

anomalous velocity directly impacts the core of the anomalous temperature, whereas light arrows

indicate propagation through self-advection. For low isopycnal slope, the two pairs of eigenmodes

are close to the first and second vertical baroclinic modes, where the constructive or destructive

self-advection between the two levels modifies the propagation speed of the first-level anomaly.

For high isopycnal slope, the first and second baroclinic modes are mixed leading to feedback

(positive or negative depending on which level is in advance with respect to the westward prop-

agation) between the two levels and thus to instability or damping.
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exhibits a deep signature in phase or out of phase with its

surface signature (even with surface intensification), the

mode is stable. If the mode has a deep signature delayed

by a quarter phase from its surface signature, the mode is

unstable. Thus, we have a criterion to distinguish between

an exogenous and an endogenous mode of variability.

From an oceanic perspective, the former requires external

forcing to be stimulated (e.g., atmospheric synoptic noise),

whereas the latter is self-sustained with no need of ex-

ternal forcing.

Since this instability process is based on meridional

advection, its efficiency is proportional to the meridi-

onal density gradient (i.e., ›yT in our idealized case).

However, it is only possible if the b-effect propagation

is not too fast (›zT is weak). This explains the overall

structure of the bifurcation in the linear stability anal-

yses; that is, stable for low isopycnal slope, unstable for

high isopycnal slope.

The interaction between levels 1 and 2 for high iso-

pycnal slope (i.e., in the unstable regime) is not repre-

sented in the Sévellec and Fedorov (2013) approach,

which only represents anomaly behavior averaged over

the pycnocline (first baroclinic modes). This explains

the limit of validity of Sévellec and Fedorov (2013)

study to low isopycnal slope, that is, away from in-

stability (Fig. 6).

The description of the instability and the vertical tilt

of anomaly, that is, the quarter-phase delay between

level-1 and level-2 anomalies, is typical of baroclinic

instability (Pedlosky 1996). In our case, on planetary

scale, we also consider horizontal diffusion (by meso-

scale eddies) that acts as a scale selection, allowing the

gravest mode to be more sensitive to instability than

short-scale mode.

4. Conclusions

In this study, we demonstrate the existence of an

oceanic multidecadal mode of variability associated

with the westward propagation of large-scale baroclinic

Rossby waves. This mechanism of variability could be

responsible for the observed North Atlantic variations

on the multidecadal time scale, often referred to as the

AMO, which shows similar westward propagation, pe-

riod time scale, and basin spatial scale (Frankcombe

et al. 2008; Frankcombe and Dijkstra 2009; Chylek et al.

2011). This multidecadal variability has significant im-

pact on climate by modifying evaporation/precipitation

of bordering regions of the North Atlantic (Sutton and

Hodson 2005) and hurricane activity over the tropical

North Atlantic (Goldenberg et al. 2001), for instance.

Our result on the importance of the large-scale baro-

clinicRossby waves for themultidecadal variability of the

AMOC is consistent with earlier studies of Huck et al.

(1999), Colin de Verdière and Huck (1999), te Raa and

Dijkstra (2002), and Sévellec and Fedorov (2013). This

confirms that the large-scale baroclinic Rossby waves

are amajor candidate to explain theAMO. In particular,

we generalize the result of Sévellec and Fedorov (2013)

to include one more degree of freedom on the vertical

(i.e., addition of a vertical level). Through this modifi-

cation, we demonstrate that this multidecadal mode

becomes unstable if the mean isopycnal slope is

strong enough.

In our calculations, the largest-scale mode is the most

unstable one (i.e., unstable for the weakest isopycnal

slope) because of the large-scale selection due to hori-

zontal eddy diffusion. The instability itself is induced

by a feedback between anomalies in the upper pycno-

cline and in the deeper pycnocline. This process is con-

trolled through the meridional advection by anomalous

velocity of the mean meridional density gradient. It is

only possible if the density anomaly in the upper pyc-

nocline propagates in advance of the deeper pycnocline

anomaly, with respect to the westward propagation. All

these results are consistent with the classical theory of

baroclinic instability (Charney 1947; Eady 1949) where,

in our study, a scale selection process is added through

horizontal eddy-induced diffusion and leads to a large-

scale baroclinic instability (Huck et al. 2001). In the

classical framework of vertical normal modes of the

stratification, our results suggest that the instability re-

sults from the interaction (coupling) of the first and

second baroclinic modes, the only ones remaining in our

simplified three-level model. This means that the sta-

bility of the mode can be determined through its vertical

structure. This analytical result is consistent with nu-

merical experiments in OGCM; in Sévellec and Fedorov
(2013), the least damped oscillatory eigenmode is close

to a first vertical baroclinic mode, whereas in Arzel et al.

(2006), the sustained oscillatory mode leans toward the

mean flow (encompassing the first and second vertical

baroclinic modes).

Sévellec and Fedorov (2013) have shown the existence
of the large-scale mode in a low-resolution OGCM in

realistic configuration with a coefficient of horizontal

tracer diffusivity equivalent to the one used in our study.

They also demonstrated that this mode was the leading

oscillatory mode, suggesting that the scale selection by

horizontal diffusion mentioned in our study is valid.

However, since horizontal diffusion, represented by a

Laplacian operator, is a parameterization of subgrid

processes, this result is not easily transposable to the real

ocean. It can be argued that this is the action of the

operator itself, and therefore of the parameterization

rather than the process, that selects the large scale.
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Despite this caveat, the presence of this mode in a high-

resolutionmodel (Huck et al. 2015) tends to confirm and

potentially generalize our analytical result, where eddy

turbulence selects the gravest scale. Despite being en-

couraging, the validity of our analytical result for nu-

merical models with different resolutions, and that for

dynamics covering a broad spectrum of processes of

different scales, needs to be further clarified in

the future.

In low-resolution models, fronts are usually far too

diffusive, for instance along the western boundary and

North Atlantic Current. This potentially explains the

damping of the multidecadal oscillation in Sévellec and
Fedorov (2013). Simply moving to higher-resolution

models will tighten the main fronts and increase the

amount of energy available for baroclinic instability,

both at mesoscale and large scale. Buckley et al. (2012)

suggests baroclinic instability of the western and/or

eastern boundary currents as well could excite basin

modes. Since buoyancy budgets may not allow a robust

localization of the growth, it may be difficult to un-

ambiguously identify which region contributes the most.

In a recent study, LaCasce and Pedlosky (2004) sug-

gested that large-scale baroclinic Rossby waves could

not be maintained because of the impact of small-scale

baroclinic instability on the front of the large-scale wave.

This result, a priori, contradicts our finding that large-

scale baroclinic Rossby waves are the most unstable in

the presence of eddy-induced diffusion. To test the two

views, we have performed high-resolution modeling

with a primitive equations model in an idealized flat-

bottom rectangular basin configuration of the North

Atlantic (Huck et al. 2015). This study demonstrates the

existence of sustained large-scale baroclinic Rossby

waves in the presence of eddy turbulence, although it

remains unclear if the large-scale mode is stable and

sustained by the eddies’ synoptic noise or if the mode is

unstable. Its mere presence supports the theoretical re-

sult presented here.

Large-scale baroclinic instability, as well as its sub-

sequent adjustment through an oceanic multidecadal

oscillation (controlled by large-scale Rossby wave dy-

namics), is a potential explanation for the 20–30-yr sig-

nature of the Atlantic multidecadal oscillation.

Actually, this large-scale mode has an impact on the

AMO index (defined as the spatial average of sea sur-

face temperature in the North Atlantic) by modifying

the temperature in the upper ocean on a basin scale,

consistent with observations by Frankcombe et al.

(2008), Frankcombe and Dijkstra (2009), and Chylek

et al. (2011). In this context, the AMO can be explained

by a 20–30-yr NorthAtlantic oscillation, corresponding to

an intensification of the AMOC followed by a basin-scale

warming, an AMOC decrease, a cooling, and so on. Thus,

tracking this mode of variability (e.g., propagation of

large-scaleRossbywaves), aswell as its possible instability

(e.g., increase of meridional slope of the pycnocline as a

precursor of the AMO), would increase decadal climate

predictability.

On the other hand, following the hypothesis suggested

by Griffies and Tziperman (1995), two studies demon-

strate that this exact same multidecadal oscillation can

be sustained by atmospheric noise (Frankcombe et al.

2009; Sévellec et al. 2009), even in its stable regime.

Since we have obtained a criterion, consistent with the

classic theory of the baroclinic instability, on the sta-

bility of the multidecadal mode of variability, in future

work, we will apply this criterion to coupled GCMs

[from the IPCC’s Fourth Assessment Report (AR4) and

AR5 of Stocker et al. (2014)] and in situ observations.

Looking at the leaning angle of temperature anomalies

will potentially answer if the multidecadal mode is an

endogenous or exogenous oceanic mode of variability,

that is, if it is a self-sustained oceanic mode or if it is

sustained by external stimulation (e.g., from synoptic

atmospheric dynamics), respectively. Sensitivity is

certainly expected to the model resolution affecting

the mean state, the subgrid-scale parameterizations

(eddies), vertical mixing, and air–sea interactions.
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APPENDIX

Zonal Boundary Conditions

In this section, we derive the east and west boundary

conditions needed for the idealized model. The ideal-

ized model, by assuming geostrophic balance, only de-

scribes the interior solution. The boundary layers are

necessary to connect the interior flow to the basin

boundaries.

To conform to the setup of the idealized model, we

introduce two boundary layers (of width d) at the

western and the eastern sides of the basin (Fig. A1). We

assume that the geostrophic balance is achieved at the

outer edge of the boundary layers, that is, at the in-

terface between a boundary layer and the interior. We

also assume that geostrophic flow slips freely along the

outer edge, that is, at the interface between a boundary
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layer and the interior. Finally, and consistently with

the results of Johnson and Marshall (2002) and with

the behavior of the OGCM in Sévellec and Fedorov

(2013), we assume that the two boundary layers are

coupled at all times, that is, adjusting together to

perturbations.

To formulate the boundary conditions, we start from

the general advection–diffusion equation for tempera-

ture [independently of the set of (1)]:

›tT52›x(uT)2 ›y(yT)2 ›z(wT)1 ›x(kx›xT)

1 ›y(ky›yT)1 ›z(kz›zT) ,

where x, y, and z are the zonal, meridional, and vertical

coordinates (Fig. A1); u, y, and w are the zonal, merid-

ional, and vertical velocities; and kx, ky, and kz are the

zonal, meridional, and vertical diffusivities. For the sake

of simplicity, we make the horizontal diffusion co-

efficients constant and equal to kh.

After vertical and meridional integrations, with the

assumption of zero heat flux at the ocean surface

(kz›zTjz50 5 0), the advection–diffusion equation re-

duces to

›thTiz,y52›xhuTiz,y1 kh›
2
xhTiz,y , (A1)

where hTiz,y 5
Ð 0
2H

ÐL
0 T dydz.

We also use the nondivergence of the velocity field:

›xu1 ›yy1 ›zw5 0.

After vertical and meridional integrations, this equation

becomes ›xhuiz,y 5 0. Integrating from the outer edge of

the western boundary layer to the outer edge of the

eastern boundary layer, we obtain hujdiz,y 5 hujW2diz,y.
Thermal wind balance together with the free-slip

condition (›xyjd 5 ›xyjW2d 5 0) yields ›2xT 5 0 at the

outer edge of the boundary layers; therefore, along the

border between the boundary layers and the interior

flow, we can neglect the second term on the right-hand

side of (A1).

Adding the equations for integrated temperature at

the outer edge of each boundary layer and applying the

results from the flow nondivergence, we obtain

›t(hTjdiz,y1 hTjW2diz,y)52hujdiz,y(h›xTjdiz,y
2 h›xTjW2diz,y) . (A2)

Returning to (A1) and integrating it zonally over the

western and eastern boundary layers, with the as-

sumption of zero heat flux at the solid boundaries, we

obtain that the integrated boundary layer tempera-

tures evolve as

›thTiWB 52h(uT)jdiz,y1 khh›xTjdiz,y ,
›thTiEB 5 h(uT)jW2diz,y2 khh›xTjW2diz,y ,

where hTiWB 5
Ð d
0 hTiz,y dx and hTiEB 5

ÐW
W2d hTiz,y dx.

Now assuming that the two boundaries adjust together,

through Kelvin waves on time scales much shorter than

FIG. A1. The idealized model basin with the boundary layers set at the western and eastern

sides (WB and EB, respectively).
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large-scale Rossby waves, ›thTiWB 5 ›thTiEB, and again

applying the flow nondivergence, we obtain

hujdiz,y(hTjdiz,y1 hTjW2diz,y)
5 kh(h›xTjdiz,y1 h›xTjW2diz,y) . (A3)

In the context of the idealized model, (A2) and (A3)

become

dt(T
0
West1T 0

East)52uWest(›xT
0jWest 1 ›xT

0jEast),

(A4a)
and

uWest(T
0
West 1T 0

East)5 kh(›xT
0��
West

1 ›xT
0��
East

) ,

(A4b)

where West and East refer to the western and eastern

boundaries of the interior, geostrophic region.

Combining these two equations, we obtain

dt(T
0
West1T 0

East)52
u2West

kh
(T 0

West1T 0
East) . (A5)

Time integrating (A5) yields

T 0
West(t)1T 0

East(t)5 e2(u2
West/kh

)t[T 0
West(0)1T 0

East(0)] .

This means that for sufficiently long times (at which

the two boundary layers are fully coupled, i.e., for

t � kh/u
2
West ’ 50 days), we have T 0

West 1 T 0
East 5 0.

Finally, using this equality and simplifying (A4b) yields

a set of two boundary conditions for the interior solution

in the idealized model:

T 0
East 52T 0

West, and (A6a)

›xT
0jEast 52›xT

0jWest . (A6b)
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