Power Budget Analysis for Waveguide Enhanced Raman Spectroscopy

Zilong Wang¹, Michalis N. Zervas¹, Philip N. Bartlett², James S. Wilkinson¹

1. Optoelectronics Research Centre, University of Southampton, SO17 1BJ

2. Chemistry, University of Southampton, SO17 1BJ

Introduction

Surface-enhanced Raman Spectroscopy (SERS) is a powerful tool for chemical analysis which can suffer from poor repeatability due to the sensitive nature of plasmonic interactions. Waveguide- enhanced Raman spectroscopy (WERS) is emerging as a competitive analytical tool which avoids nanostructured noble metal surfaces but which potentially provides comparable surface enhancements in a sensor format [1,2]. Comparison of these approaches suffers from ill-defined definitions of surface enhancement. We present a power budget analysis of WERS, relating the received power in a Raman emission line to the incident pump laser power, using waveguide surface intensity and Raman cross-section, allowing WERS optimisation and clear comparison of surface-enhanced techniques.

Waveguide modelling and optimisation

Fig 1 . Left) Three layer slab waveguide structure; Right) Toluene/Ta₂O₅ interface intensity against varied of core thickness

- Modelling methods
- Matrix method: formulate mode equation for multilayer slab waveguide structure.
- 2. Muller's method: calculate all the mode solutions.
- Waveguide design considerations
- High index contrast: $n(Ta_2O_5)/n(SiO2) = 1.465$. Both core and substrate assumed to have low loss.
- Raman emission of waveguide materials are not in the range of interest.

low loss.

- Optimised interface intensity
- Emitted Raman $P_{Raman} \propto I_{surface}$
- The optimised core thickness is 120 nm @ 638 nm excitation wavelength.
- Parameters such as wavelength, material index, number of layers and their thickness can be tuned to achieve the optimal performance.

Instruments, apparatus & results

A clean and clear streak of

excellent waveguiding with

light observed indicates

Fig 2. Instrument apparatus.

- M1, 2, 3 are mirrors.
- L1: lens with f1=25.4 mm;
- LPF: low pass filter with cutting edge at 650 nm;
- L2: lens with f2 = 30 mm. All lens with diameter 25 mm.
- Spectrometer: QE \approx 90%; slit width: 200 μm

Fig 3. Light prism-coupled into the slab waveguide

- Choice of Toluene: 1) known Raman cross-section; 2) random orientation as liquid.
- Raman peaks of Toluene can be observed at the right frequencies (Raman shifts).
- Feature broadening due to spectrometer slit width.
- Area under each peak gives collected Raman energy.

Fig 4. A. Raman spectra collected from waveguide surface, integration = 60 s; B. After baseline subtraction; C. Peak fitting to spectrum feature at around 1, 000 cm^{-1} region.

Power budget analysis

Fig 4. Loss illustrated in the instrument system

- 70mW unpolarised light arriving at the prism base, and half of them 35 mW of light will excite TM mode in waveguide.
- The waveguide loss is estimated to be 1 dB/cm
- Differential Raman cross section of Toluene $\frac{a\sigma}{d\Omega}$ is $350 \times 10^{-32} \ cm^2 \cdot sr^{-1}$ [3].
- The total emitted power from waveguide excitation in the collection region is calculated to be 2.24×10^{-13} W
- The effective collection area¹: Length: 1.16 mm; and width: 700 μm.

1. These length and width are within the collection cone by using a multi-mode collection fibre with 1 μ m core diameter and NA of 0.58. The collection cone both depends on image system (L1, L2) and collection fibre.

Table 1. Summary of efficiencies and their corresponding methods and values

Efficiency	Method	Value
Coupling efficiency (η_1)	Measured & calculation	10%
Propagation efficiency (η_2)	Measured	70.1%
Excitation efficiency (η_3)	$\eta_3 = \frac{\int \frac{\rho \cdot A}{M} \cdot N_A \cdot I(x) \cdot 4\pi \cdot \frac{d\sigma}{d\Omega} \cdot dx}{P_{pump}}$	$7.45 \times 10^{-9}\%$
Collection efficiency (η_4)	$\Omega = 2\pi \times (1 - \sqrt{1 - (\sin\theta)^2})$ $\eta_4 = \frac{\Omega}{4\pi}$	1.2%
Entrance slit efficiency (η_5)	Datasheet & calculation	40%
Grating efficiency (η_6)	Spectrometer datasheet	60%
Quantum efficiency (η_7)	Spectrometer datasheet	90%

Theoretical analysis: $P_{det} = P_0 \cdot \eta_1 \cdot \eta_2 \cdot \eta_3 \cdot \eta_4 \cdot \eta_5 \cdot \eta_6 \cdot \eta_7 \approx 5.80 \times 10^{-16} \ W$

Experimental data: $P_{det}' = 5.02 \times 10^{-16} W$

Conclusion

- Very good agreement between theoretical value and experimental data.
- The knowledge of how much power in and out as well as the efficiency of each part in between makes it suitable for making direct comparison with other configurations.

References & Acknowledgement

- 1. A. Dhakal et al., Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides, Opt. Lett., 2014, 39, 4025-4028.
- 2. J.S. Kanger et al, Waveguide Raman Spectroscopy of Thin Polymer Layers and Monolayers of Biomolecules Using High Refractive Index Waveguides., J. Phy. Chem., 1996, 100, 3288-3292.
- 3. Ru, E. C., & Etchegoin, P. G. (2009). Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. Elsevier.

Funded by the European Research Council under the EU C 7th Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 291216