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FORECASTING USER ROLES IN ONLINE COMMUNITIES

by Edwin Tye

There is a growing interest in setting up and modeling of online social networks,

as there are major incentives (popularity, monetary) for owners and managers to

understand their own communities. This is especially true for communities that

were set up by businesses because of the time and money invested into building

and maintaining such online platforms. We take the approach that these online

communities operate similarly to an offline environment such that members of

these social networks can be classified into several (social) roles, each asserting a

different impact on the community.

This project focuses on forecasting the number of users in each of the roles of an

online community. The forecasting model is split into two different parts. Part I

models the movement of existing users between the roles, which was formulated

as a linear difference equation upon time discretization. It is treated as an opti-

mization problem where the objective function can take either the form of a least

squares or a non–linear iterative update based on the difference equation, both

with box and linear constraints. Part II predicts the number of new users joining

and currently inactive users returning to the community. It is examined from a

statistical point of view, where we postulate that the number of new users joining is

akin to arrivals in a queue. In order to find the driving factor behind the numbers

of new user joining, a series of models are explored using different independent

variables. Models are built and tested for the two problems separately at first,

then later combined to produce forecasts and their performances were accessed.
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Chapter 1

Introduction

1.1 Motivation

As there are an ever increasing number of people using the Internet, companies

(supermarkets, advertising agencies and telecommunication providers etc) have

begun collecting information about us while we consume information and products.

We are also sharing our personal information willingly on social network websites

like Facebook, that has grown to over one billion users (Facebook, 2013).

The explosive growth of online communities will inevitably continue in both so-

cial and business domains (Ovadia, 2013) where a lot of these communities have

long lasting values. Anderson and Huttenlocher (2012) recognized that Question

and Answers (Q&A) web sites form a knowledge repository similar to Wikipedia,

and Brandtzæ g (2012) concluded that people who used social networking sites

enhanced their existing interactions and built stronger relationships in the long

run – when compared to those who did not.

So, how is an online community defined? Preece (2000) noted that the term

“community” has changed throughout the years in sociology literature and gave

a working definition; an online community consists of a set of people who interact

with one another by sharing information or exchange of service via an online

platform.

Naturally, there are many types of communities as they can be work related or

of personal interests. The Stack Exchange Network (stackexchange.com) is an

example where both types of communities exist on the same platform. This means

that people can participate in multiple communities online just as they do offline.

1

stackexchange.com
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Each online community is managed by a community manager, who may also be the

owner of the community. Community managers oversee the structure and growth

of an online community, ensuring that the community is serving its purpose. So it is

important for community managers not only to understand the current structure

and behavior of their communities, but also in the future. We aim to provide

forecasts and predictions that will enable community managers to make informed

decisions, more precisely, the future role composition of a community.

Role composition represents the number of users of a community in each of the

possible role, where a role categorizes the type of behavior a user exhibits. The

behavior of an individual in a particular community dictates his social role and

(s)he may interact differently with members in different communities (Delamater

and Myers, 2010). As time goes on, the role of a user in a specific community may

change. These changes then affect the role composition and therefore the structure

of the community. A community manager has the ability to act if he knows the

future role composition of his community, depending on his own view of what an

undesirable role composition may look like. Not only does the role composition

act as an indicator to how “healthy” a community is, it has also been used to

predict the number of posts (a common measure of health) in a community using

the number of users in each of the role as covariates (Rowe et al., 2013).

Our task is based on this overview of an online community and we propose a

method for forecasting future role composition. This information will then allow

the community mangers to see the progression path of these groups of individuals

in their respective roles. It is assumed here that a manager of an online community

will be interested in the medium to long term prediction, and have in mind what

an undesirable composition of member types looks like as per the goal of the

community.

1.2 Problem Statement

Assuming that it is possible to characterize the participants (users) in an online

community into their respective social roles. Our aim is to forecast the number of

users in all the roles for some future time.

More concretely, we make forecasts for online communities found in the forums

of SAP Community Network (SCN). These forums were analyzed by Rowe et al.

(2013) who classified all the users into one of the 11 roles in Table 1.1 on a weekly

scn.sap.com
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basis. Given the historical role labels for all the users for time t = 1, 2, . . . , N with

0 Inactive
1 Mixed Novice
2 Distributed Novice
3 Focused Novice
4 Knowledgeable Member
5 Knowledgeable Sink
6 Focused Expert Participant
7 Focused Expert Initiator
8 Mixed Expert
9 Distributed Expert
10 Unclassified

Table 1.1: The roles (including the inactive users) that best represent the
dataset under study by Rowe et al. (2013)

t = N being the current time, we wish to make q time step head forecasts for the

number of users in all the roles.

1.3 Description of Tasks

Denote mj(t) as the number of users in role j ∈ {0, 1, . . . , 10} at time t, computed

by summing over the class label of n observed users

mj(t) =
n∑
s=1

1 {zs(t) = j} (1.1)

where zs is the k dimension indicator vector of role for user s. The quality of the

forecasts are based on the Mean Squared Error (MSE) between the forecasts m̂(t)

and observation m(t)

MSE = (q(k − 1))−1
q∑
t=1

k−1∑
j=1

(m̂j(t)−mj(t))
2, (1.2)

which is summed over the k active roles. The inactive compartment is not included

because we assume that the health of a community is only based on the active

users and the roles they take on. When MSE alone is insufficient to separate

the performance of the models, our secondary concern, the deviation between the

forecasted and actual number of active users, will also be used.
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The total number of active users changes as time progresses. This is due to new

users joining the online community as well as active users becoming inactive.

Number of users in role j at a particular time point is dependent on:

Problem 1

The number of users not in role j take on the role j

Problem 2

The number of new users joining role j from outside the community

We treat these two problems separately because the number of users with role i

becoming role j between two time point is bounded mi(t), the current number of

people in role i at time t. Whereas the maximum number of new users joining a

community is the population of Earth minus the number of currently registered

users for that community. We assume that this quantity is unbounded. The

number of forecasting steps were chosen to be 10, after consultation with SAP.

Our focus in on three of the most active forums, Forum 353, 264 and 256, which

represents the different dynamics observed. A summary on the total and active

number of users at the start and end of the dataset for the three forum of interest

can be seen in Table A.1. Forum 256 has nearly doubled its active user in just

over 2 years (120 weeks) while the other two only has a slight increase.

The dynamics for each of the compartments for the three forums are displayed

in Figure A.1, Figure A.2 and Figure A.3. The graphs show that forum 353 are

relatively stable with forum 256 increasing in certain roles while forum 264 behave

similarly to forum 353 but with bigger changes. Further differences can be seen

in the network graph for forum 264 (Figure A.5) and 353 (Figure A.6) where the

former is much more connected where 3 of the most influential user in forum 264

communicate with each other extensively.

1.4 Outline of the Thesis

This thesis is organized as follows: We begin by introducing the background of

the problem in Chapter 2 where some general information regarding online com-

munities is presented. Details on the origin and structure of the dataset we use

throughout this thesis is described in Section 2.2 before moving on to explore the
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literature on social networks as well the clustering. We then proceed to describe

our modeling efforts in the next two chapters.

The two subproblems mentioned in the previous section are isolated and tackled

separately in Chapter 3 and Chapter 4 respectively. Results for the individual

problems can be found locally within their respective chapters, where Chapter 5

presents the results when the models developed in Chapter 3 and 4 are used in

parallel. More concretely, the remainder of this thesis is organized as follows:

We begin by introducing the basis of our model in Chapter 3. This chapter intro-

duces a compartment model with multiple implementations that generate forecasts

based on observing user roles over time. The focus of this chapter is to model the

movement of existing users between the roles (Problem 1). We defer the fluc-

tuation of active users (Problem 2) to chapter Chapter 4 by assuming that the

number of users joining can be observed even for the forecast. Additionally, we

also study the possibility of modeling the number of inactive users returning from

inactivity as an unbounded count rather than the limited by the number of inactive

users. Both deterministic and stochastic compartment models will be presented

with the rationale behind each model discussed.

Chapter 4 looks at the prediction on the number of new users joining (Problem

2) and returning from inactivity. We hypothesize that the number of new users

come from a Poisson process. This chapter goes through the existing literature on

count data modeling and especially on Poisson regression. A number of variants

of Poisson regression are presented along with the estimation techniques before

showing the performance of the various models.

The two are then combined together in Chapter 5 to provide a multi–step forecast

where the results will also be discussed. We finish off by summarizing the work of

this thesis, discussing the limitations of our models and future research directions

in Chapter 6.





Chapter 2

Background

2.1 Introduction

An online community is formed when people interact with one another via the In-

ternet. Preece (2000) noted that the definition of an online community has changed

through the years which is unsurprising given the new ways of communication and

reinvention of the existing platforms.

The studies of online communities employ techniques used in networks analysis

(Wasserman and Faust, 1994), and have been used in areas such as preventing

the spread of disease (Christakis and Fowler, 2010), obesity (Bahr et al., 2009),

computer virus (Newman et al., 2002), marketing (Trusov et al., 2009) and in-

formation spread (Cha et al., 2009). Our focus is on the roles of a community,

specifically in predicting the number of users in each of the roles at some future

time.

The structure of the dataset will be described first in Section 2.2. Then a summary

of the statistics in Section 2.3 before going onto defining the health of a community

in Section 2.4. Finally, the notion of role as well as its implication in online

communities in Section 2.5.

2.2 Data Structure

SAP Community Network (SCN) is a social networking platform. Primarily de-

signed for users and developers of SAP products to discuss and share ideas, as

7
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well as interact with the company itself. The term user(s) will refer to anyone

that participated in SCN from here onwards, where each individual user is iden-

tified by a unique registration id on the platform. There are a variety of ways

for users to interact with each other, i.e. blogs, starting a poll, private messages,

forums and document collaborations etc. Also, Webinars and videos by SAP in-

troduce/teach different solutions and usage of their products to current as well as

potential customers.

The dataset under study is derived only from the forum sections of SCN; a total

of 95 forums with data from Feburary–2004 to November–2010, which is approxi-

mately a third of the total size in terms of information stored (measured in Giga-

bytes) at the time of extraction. The purpose of the forums is primarily to serve

as an arena for Question and Answers (Q&A) when the answers cannot be found

elsewhere, but tips and information about specific products can also be found.

SAP has designed the SCN platform such that each forum only represents a spe-

cific topic, usually a product of SAP. Furthermore, a moderator of SCN has the

authority to move inappropriate topics to a more suitable forum, as a way to

ensure that relevant information are directed to people that might be interested.

Therefore, we assume that each online community is established based on an in-

dividual forum. This assumption simplifies the analysis to allow for forecasts be

performed for each individual forum while ignoring the rest. It also places a limi-

tation on the amount of information available when making the forecasts as some

forums may be correlated.

As we use the independence assumption on the forums, a user joins a community

at the point where they post their first message. This approach is taken because

we have no data regarding passive participation of the users, i.e. when (s)he visited

the forum previously without posting a message. Furthermore, the assignment of

roles (Section 2.5) to users is solely based information derived from these active

participation via messages.

A collection of messages that all links to the same parent is called a thread, and

each thread belongs to a specific forum. The parent of a thread is the first message

that was created by a user. This thread is related to the other messages either

directly or indirectly through a reply tree structure as seen in Figure 2.1.

The user that posted this first message is the owner of the thread and (s)he can

award points of value 2,6,10 (SAP, 2012) for any message within the thread posted

by a respondent, but with an upper limit of one 10, two 6’s, and an unlimited
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1 (A)

8 (D) 2 (D) 3 (C)

5 (A) 4 (B)

6 (D)

7 (B)

10 (D)

9 (A)

Figure 2.1: A reply tree structure where each box corresponds to a message,
the number and letters indicating the arrival order and the users who posted

the messages respectively

number of 2’s in a single thread. General guideline for the points awardation are

10 – problem solved, 6 – very helpful, 2 – helpful. The thread owner can award

the points as (s)he sees fit after considering the value of each message.

This point system is the basis of the SCN “Contributor Reputation Program”

that keeps track of the points scored by individual users over a rolling 12 month

period. It encourages users within the community to help each other, similar to

other Q&A style sites like stackexchange.com or answers.yahoo.com. It has to

be noted here that the current system has changed slightly from one that was used

whilst the data were generated. The newly implemented scoring system on SCN

has been simplified to 0,5,10.

Using standard notation, the graph G = (V,E) contains the set of vertices V

stackexchange.com
answers.yahoo.com
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that represent users in a community and E the set of edges between users. The

existence of an edge depends on the different interpretations, some authors only

treat a direct reply (message 3 to message 1) as an edge while others takes into

account preceding messages (message 4 to message 1 also forms an edge) instead

of individual messages (Toral et al., 2009). The difference usually stems from the

construction of the forums, as some platforms only allow reply to the whole thread

rather than to specific messages within a thread. For example, a reply at any point

of the thread may imply that (s)he has read previously connected messages i.e.

assuming that when user B posted message 7, (s)he has read messages 1,2,5 and

6 but not message 3. An example of what G looks like with E weighted according

to the number of messages can be seen in Figure A.5 and Figure A.6.

There are also different ways to count the number of exchanges between the

same two users. Directed edges are most commonly used and it can be binary

or weighted. For example, a directed edge was created from user D to user A due

to the reply of message 2 to message 1 and future interaction (messages 8 to 1

and 6 to 5) do not contribute further. Alternatively, weights are assigned to the

edges according to the frequency of contact, which will be 3 as user D has replied

to user A three times as seen in Figure 2.1. Both approaches can be modeled

by distributions from the exponential family (Holland and Leinhardt, 1981; Wang

and Wong, 1987; Handcock et al., 2007; Krivitsky, 2012), the logistic and Poisson

distribution respectively and the corresponding regression formulations have been

developed in the statistics literature.

2.3 Data Overview

A brief summary of the whole dataset and the 6 full years (Jan–Dec) can be seen

in Table 2.1 with a more detailed version in Appendix A.1. Unsurprisingly, the

number of users as well as the number of messages and threads increase year on

year as Internet has become more readily available and affordable. As previously

mentioned, the total number of forums have increased and they contribute to the

additional volume in all areas for SCN. Some existing forums have been attracting

new users and more content has been generated as time progresses, while others

have more or less remained at the same level, see Figure 2.2. It is important to

note that users cannot delete their accounts on SCN as part of the platform design,

so the total number of users is constantly increasing.
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Type Total 2005 2006 2007 2008 2009 2010
Users 107 2 8 18 33 38 49
Threads 450 4 17 41 104 136 163
Threads Solved 104 2 4 8 25 33 31
# Users that solved a thread 11 0.2 0.7 1.5 3.5 4.3 4.4
Messages 1900 16 61 158 422 564 629

Table 2.1: Basic summary statistics for the dataset (in the order of 104)

A more detailed summary of 25 forums, selected based on the activity in terms

of new threads per month, can be seen in Appendix A.1 in decreasing order of

activity. These 25 forums combined made up of just over 80% of the total thread

volume. Even though the forums shown in Appendix A.1 were the most active,

they still varied significantly between them as the highest one generated over 682

threads per month in comparison with the smallest of 93. The total number of

users includes all those who have ever posted in the forum which does not reflect

the total number of active users at any given time. This is because active users

are those who have posted within some time period and most of the users only

contribute sparingly.

There are about 42% of the total users who can currently be considered a “One

post wonder” (people that only posted a single message), where 85% of them

started the only thread they posted in. This is indicative of Q&A type forums

where people go when seeking answers, and it can be seen from Table A.2 that

nearly 24% of messages start a thread. At the same time, 20% of users posted

85% of the total messages, and 20% started 76% of threads. Whittaker et al.

(1998) had similar findings on newsgroups where most messages were attempts to

start a conversation and activities are dominated by a small set of members in the

community. Only 19% of users have scored any points and just over 10% of the

population had solved a thread, further indicating that contributions came from

a minority of users.

The highest number of forums any user has taken part in is 33, but only 0.4% of

total users have participated in more than 10 forums. Additionally, 64% of the

users only ever participated in a single forum, and the number increases to 82%

when including those who posted in two forums. This shows that in addition to

the “One post wonder”, most other people only concentrate in a single forum as

well, which further demonstrates the separation between forums.
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Figure 2.2: Time series of the number of messages per week for the top 5
forums in terms of total messages

2.4 Health of an online community

For a business organization like SAP which has invested time and money into

setting up a platform for people to interact, it is important that the invested

resources do not go to waste. This means that the communities they maintain

should be “healthy”. But how do we tell whether a community is healthy or not?

And what are the factors that affect such health indicators? One of such models is

the “Information System Success Model” (ISSM), originally proposed by DeLone

and McLean (1992) and later revised (DeLone and McLean, 2003). ISSM discusses

appropriate measures of success on many levels including the quality of the sys-

tem, information and user satisfaction to name a few. However, the authors also

noted that the model only acts as a framework and researchers should select the

appropriate dependent variables based on their own objective and interpretation

of success.

ISSM recognizes that user surveys are a good way to measure user satisfaction.

An obvious pair of answer and question is, “Are the participants of the community

satisfied?”, and if the answer is “yes”, then there is confidence in saying that the

community does provide value to users. Unfortunately, it requires asking every

single user the same question at regular intervals. Survey response also assumes

that the users are not lying, although it can be argued that the investment in time

and energy when answering questionnaire alone is proof that the users value the

community. Still, surveys of this kind create a bias when a community has many
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lurkers, a person (may not be a registered user) who never posts despite following

the forum. It can be argued that because lurkers do not post and generate content,

they do not affect the success of a community even though they may make up a

large proportion of the population. But at the same time, revisiting the same

community implies some sort of attachment or satisfaction gained. Nonnecke and

Preece (2000) had found that more than half of members in discussion lists were

lurkers and provided a detailed list of reasons for why they possessed such behavior.

When users of a forum stop gaining gratification from active participation, new

content will no longer be generated. This lack of interaction signifies the end of an

online community under the definition of an online community by Preece (2000).

But at the same time, existing threads may already provide valuable information

for an outsider (a person not previously involved in the community) looking for

answers to their questions. Anderson and Huttenlocher (2012) tried to predict

this long term value of a thread, based on the number of views a thread obtains

in the future. Such measure is similar to the ones mentioned in ISSM where it

suggested that the frequency and the total number of times a user visits are more

accurate representations of satisfaction instead of data obtained by a user survey.

Similarly, a suitable answer for the thread owner signifies user satisfaction as (s)he

has achieved his/her original goal. Statistics of SCN as seen from Table A.3 shows

that on average 62% of threads were either answered or solved. This suggests

that the forums are generally healthy in this aspect; compared to 69% in Stack

Exchange Network (Anderson and Huttenlocher, 2012) and 50% in Yahoo Answers

(Agichtein et al., 2009).

Content generation in terms of total number of threads as well as messages is a

good indicator for the active participation of a forum, but it is not a good measure

of interaction between users given that a new thread may not have any replies to

it. Similarly, Nolker and Zhou (2005) found “chatters” in online communities,

where two users reply to one another in the same thread or different threads.

This can result in a high volume of both messages and threads not only for each

of the individuals but also for the whole community. Therefore, the health of a

community based on volume activity measures alone are not sufficient, because

the number of people participated should also be taken into consideration. In

fact, Morris and Ogan (1996) noted that the Internet can be considered a mass

medium, hence the theory of critical mass (Rogers, 2003) should also apply. A

critical mass occurs when there are enough people involved (say using a service)

for it to be self–sustainable. When the number of people using the service exceeds



14 Chapter 2 Background

the critical mass, it creates a snowball effect such that it becomes beneficial for

other people to also use the service. Therefore, the number of user participating in

a community also reflects on the maturity of the community (Iriberri and Leroy,

2009).

Since the forums on SCN are product specific, interest levels are usually lower for

niche products or those at the end of their lifecycle when compared to a newly

launched products or a core program. These forums are also set out to be Q&A

forums, which means that a new thread is most likely created by a current con-

sumer who encountered difficulties while using the product. Therefore, a lot of

new threads may be due to a failure in the product itself or users facing difficulties

after an update in addition to the natural increase of consumers.

2.5 Roles in Online Communities

Social role is “rights and duties attached to a given status” as defined by Goffman

(1959), and every person carries a different role depending on the situation/com-

munity they are in at any particular moment. The role of a person determines

their behavior, for example, a person can be a mother, daughter, wife and teacher

etc and she will present herself in a suitable manner depending on who she is

dealing with and what she is doing. The research on roles have gained a lot of

interest in areas like diffusion processes for example (Rogers, 2003), a study on

the spread of information or disease in different types of networks. Information

flow is also related to the idea of weak ties (Granovetter, 1973) where the nodes

that connect two cliques for example, are central to the process. These nodes can

be interpreted as the “leader” of a clique (community) who have high influence

and form connections with other cliques. The identification of these nodes can

help in stopping viruses spread on computer networks, epidemic outbreaks and

better marketing strategies just to name a few. But of course, there are different

measures of importance and the usage of such information is network dependent

where the number of edges going in and out of a node may be a good indicator to

the role type.

Role analysis helps in identifying what type of community it is by 1.) The number

of different roles and 2.) The proportion of users in each of the roles (Rogers, 2003).

Himelboim et al. (2009) found certain roles amplified the amount of messages in

a thread where others help and Rowe et al. (2011) found that the current role

information (number of users in each of the roles) was useful in predicting the
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volume of contents generated in the future. Other authors have also found that

certain roles were important for certain communities to succeed, such as discussion

bulletin board (Nolker and Zhou, 2005) or an innovation forum (Hautz et al., 2010).

Therefore, it is beneficial for a community manager to know not only the current

composition of the roles, but also in the future. For example, assume that the

“answer” type of user is important for forums as they deposit their knowledge

that is accessible to all users (Welser et al., 2007), a community manager may ask

“Will the number of people who answer questions decrease in the future?” So, how

do we find out the role of a user?

Given that a role determines a user’s behavior, the reverse is also true and it should

be possible to infer the role given the behavior. Brandtzæ g (2010) summarized

22 studies on the behavior in the Internet media market and provided a unified

typology. Even though many of the roles were proposed without any naming

consistency, the paper grouped them into 8 distinctive type by the user usage

pattern (of each role) as follows

Non–users Sporadics Debaters Entertainment users
Socializers Lurkers Instrumental users Advanced users

Table 2.2: The 8 different type of users as summarized by (Brandtzæ g, 2010)

2.5.1 Clustering Methods

The most common technique in those 22 studies analyzed by Brandtzæ g (2010)

is cluster analysis. Although all 22 studies were focused on online communities,

the notion of clustering communities (in general) can be found as early as Davis

(1967). A nice review on this topic can be found in Jain et al. (1999).

Some of the most common data clustering techniques will be described here as

they will be referred to in Chapter 3. First, it is important to note that the

term clustering can be interpreted as data clustering, graph clustering or even

clustering coefficients on a graph, depending on the discipline. Newman (2003)

remarked that data and graph clustering often get confused and that the algorithm

for one can be used on the other in some situations even though it may not work

well. The goal of data clustering is to find a useful pattern in the data, especially

in high dimension multivariate data that is hard to visualize.

Both graph and data clustering are automated searches that aim to group obser-

vations in a dataset from a similarity perspective, but the way they do are not
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necessarily the same as the underlying hypotheses differs. Data clustering is based

on the idea that a subset of observations is generated by the same process, which

forms individual clusters. Graph clustering comes from a structural perspective

on the whole or subset of vertices V . It can either be based on the quality of

the clusters, i.e. change in connectivity before and after the clusters are formed,

or on a similarity measures, i.e. the similarity of connection between the vertices

(Schaeffer, 2007). For vertices in a clique, they all have similar connections (to

one another) but different to the rest of the graph. This is similar to the setting

when part of a dataset has observations very close to each other and indeed the al-

gorithms for graph and data clustering are interchangeable at time (Dhillon et al.,

2004).

The most well known data clustering method is the k–means, a term coined by

Macqueen (1967). It has been used to find patterns in multivariate observations

in many fields of study and is one of the most used algorithm in data mining (Wu

et al., 2007). The main idea is that the set of observations can be split into a total

of k number of groups. This is achieved by placing each observation into one of

the k groups by minimizing the total squared distance

f(C; y) =
k∑
j=1

n∑
i=1

zi,j(yi − cj)
>(yi − cj), (2.1)

where yi is the observation of user i, cj represents the centroid of group j and the

latent variable zi,j is an indicator function for user i belonging to group j. Hence,

zi is a vector of length k that sum to 1 and it can be interpreted as a categorical

random variable generated from a multinomial distribution

Z ∼Mk(1,π) (2.2)

with mixing proportion π satisfying

k∑
j=1

πj = 1, 0 ≤ πj ≤ 1 ∀j. (2.3)

The power and popularity behind k–means is that (2.1) can be applied to any mea-

sure of distance/similarity such as those produced via the kernel method (Schölkopf

et al., 1997, 1998). The kernel method maps the raw observations into a higher

dimension feature space in an attempt to discover non–linear relationships in the

data, which the clusters generated using squared distance are unable to recognize.
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Finding the optimal clusters in kernel k–means can be formulated as spectral clus-

tering problem/normalized cut (on a graph) (Dhillon et al., 2004) and in terms

of non–negative matrix factorization (Ding et al., 2005), where efficient algorithm

exists.

Regardless of the distance formulation, the k–means algorithm outputs a single

label for each observation regardless of how close it is to the centroid of its own

group relative to the others. This type of method falls under the category of hard

clustering as each data point only belongs to a single group. Conversely, soft

clustering provides the probability of an observation being in any given group.

Fuzzy k–means (Everitt et al., 2009) is an example of soft clustering. Other soft

clustering techniques include model/distribution based approaches, for example,

Gaussian Mixture Model (GMM) (Banfield and Raftery, 1993) produce probabil-

ities of belonging to each of the cluster for all the observations through the use of

Gaussian distributions. The general form (density function) of a mixture model

for the ith observation given the parameters θ is expressed as

f(yi;θ) =
k∑
j=1

πjfj(yi; θj) (2.4)

where π satisfies (2.3). GMM is a special case that assumes fj(·) is a p dimension

multivariate normal (MVN) probability density function with the corresponding

mean µj and covariance Σj, expressed as

f(yi) =
k∑
j=1

πj(2π)−p/2 |Σj|−1/2 exp

{
−

(yi − µj)>Σ−1j (yi − µj)
2

}
. (2.5)

Let τi,j = P(zi = j | yi; θj) be the probability that observation yi belongs to the

jth mixture with θj representing the parameters of the probability distribution,

then estimating the mixing proportion from the current set of observation is πj =

n−1
∑n

i=1 τi,j. To assign a label to each individual user, i.e. converting it to hard

clustering can be done by finding the mixture with the highest probability for each

yi, the mixture j corresponding to the largest τi,j. Alternatively, if we only allow

a scalar variance Σj = σ2I ∀j, then τi,g → 1 if cluster g is the closest to yi (in

terms of ‖yi − µj‖2) as σ2 → 0.

If the variance is fixed, say Σ = I, then k–means can be seen as a special case

of GMM where the log–likelihood function (2.5) and the objective function of k–

means (2.1) differ by a constant. The difference between the two method lies in
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the method of determining the centroids cj and parameters θj. In k–means, each

data point only contributes once to the centroid of the group it belongs, but it

contributes to all the parameters in every component of the mixtures fj(θj) in mix-

ture modeling. The results obtained in the estimation process are not necessarily

optimal as there will be many local minima for both (2.1) and (2.4), especially

when the data are of high dimension.

Fraley and Raftery (2002) further detailed the difficulties and limitations of using

GMM, especially when the data are not Gaussian, linear or of quantitative mea-

sure. If the data are not Gaussian or linear, it may be possible to solve the issue by

normalizing or by using other distributions (McLachlan and Peel, 2000). But the

challenge remains if the explanatory variables are discrete or ordinal as converting

integers to reals does not necessarily reflect the true difference. Therefore, the

measure of distance between data point is the most important aspect of cluster-

ing, and one that usually requires expert knowledge given the data on hand. The

choice of model and method reflects a prior believe on the data (McLachlan and

Peel, 2000), i.e. standard k–means assumes that the data have Euclidean distance

separation and variables are of similar measure, where GMM assumes that the

data are all normally distributed.

Another disadvantage is that the number of clusters have to be pre–determined

before running the algorithm. Therefore, a range of values, k = 1, 2, . . . , n needs

to be evaluated in order to determine the most suitable number of total clusters

by using some model selection criteria such as AIC, BIC, Silhouette Coefficient,

etc (Kaufman and Rousseeuw, 2005). This is because over–parameterization the

number of clusters does not yield clusters with zero observation. Using k–means

as an example, if k is larger than the true number of cluster G, then ideally πj = 0

for j = k + 1, . . . , G. But because a lower objective value can be obtained from

(2.1) by putting the currently empty cluster centroids cj, j = k+1, . . . , G onto the

observations, such that cj = yi for some i, j such that zi,j = 1. Hence, a cluster

cannot be empty. Advanced methods that allow a more “automated” approach

to select the number of clusters in GMM can be found in the literature, but they

are all computationally intensive, see Marin et al. (2005); Lee et al. (2008) and

references therein.

Sneath (1957) was one of the first to form clusters by linking similar data points

one–by–one which is now known as Hierarchical clustering, a popular method

in graph clustering literature. The basic idea is to divide or aggregate the ob-

servations repeatedly using a similarity measure until all observations have been
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split/joined up. The data points in each cluster can then be recovered immedi-

ately given a pre–specified number of clusters that is required. This similarity

measure can be any metric (Euclidean/squared Euclidean/Manhattan distance)

that is deemed suitable for the dataset and faces the same difficulty given non–

quantitative variables.

A major difference between mixture model and hierarchical clustering is that clus-

ters in the latter approach are formed by combining lower level clusters on the

dendrogram, i.e. a new cluster is created by splitting a current cluster while ig-

noring the rest of the dataset. This is different to k–means or mixture model

where an addition cluster on the current partition can take observations from any

of the existing clusters. A model (probability distribution) based approach can be

incorporated into hierarchical clustering and more details can be found in Fraley

and Raftery (2002).

2.5.2 Usage in Role Analysis

Golder and Donath (2004) observed that members of an online community can

be classified into several roles, the role that each user takes also carry certain

constraints or freedom in their actions. The impact on the community also dif-

fers between the roles as the community tends to be defined by the knowledge

and belief of the more well known members, who usually generate a lot of posts.

But a user who generates a significant amount of contents can also be unimpor-

tant to the community if the information can be regarded as spam. Hierarchical

clustering and k–means were used in Chan et al. (2010) and Maia et al. (2008)

respectively. Visualization techniques are also popular in social network analysis

especially for small datasets (Freeman, 2000). Welser et al. (2007) separated the

users into groups based on visualization before confirming the feasibility of the

groups by regression analysis. Mixture models were attempted by Handcock et al.

(2007) which used GMM on the set of spatial distances by projecting the similarity

between users using the latent space approach suggested by Hoff et al. (2002). As

clustering is performed in a lower dimension (in the latent space) that allows easy

visualization, it enables the end user of the algorithm to verify the result against

their prior hypothesis of both the number and structure of the clusters.

A user is defined to have joined a community only if (s)he has posted a message. An

inactive user is defined to be a user who have not posted for a significant period

of time. “Lurkers” are those users who do not post in the forum but consume
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contents, so a lurker who has stopped posting will be considered an inactive user

as they are not separable in our data.

The classification of “inactive” user also depends on the length of the time period

considered. If a dataset is constructed by aggregating all the actions each indi-

vidual user has performed since the inception of a forum, then none of the users

can be considered inactive by the previous definition of user joining a community.

On the other hand, if the dataset is constructed by aggregating actions within

the past year, then every user who have not within this one year period will be

considered as inactive. Therefore, the length of time of participation to use for

the classification of inactive users needs to be chosen carefully.

As SCN does not allow deregistration, one obvious problem is making the dis-

tinction between inactive users who are still consuming the contents (lurkers) and

those who have left the community as they are identical from the data’s per-

spective. Therefore, the time window for which to observe the community is very

important because not only the dynamics (number/type of users) changes through

time, the speed (frequency of post) can also be significantly different. There is usu-

ally no justification regarding the size of the time window apart from what appears

to be suitable after initial analysis. Indeed, Nolker and Zhou (2005) mentioned

in their conclusion that the choice of one year was arbitrary and further research

needs to be done in this area.

Additionally, the nature of the clustering algorithms means that every single user is

assigned to a cluster. This will either force outliers to be in a cluster of their own or

join a nearby cluster. Therefore, explicit splitting criteria have been used to place

user into pre–defined groups, similar to SAP’s points recognition program (SAP,

2012) that is currently in place. This method is similar to a decision tree without

the learning phase, where the biggest advantage is speed. Its simplistic structure

allows easy interpretations, but at the same time, requires expert knowledge on

the community with regard to the number of roles and the features exhibited by

users under different roles.

The same dataset had been studied by Rowe et al. (2013) and found the roles in

Table 1.1 to best represent the 33 forums analyzed , based on k–means clustering

on the first six months of the dataset using silhouette coefficient as model selec-

tion criteria. After identifying the appropriate user type and the corresponding

behavior pattern that derived such roles, users are placed in those roles for the

rest of the dataset on a weekly basis using a rolling 6 month time window. This

ensures that the total number of roles and their relative meaning stay consistent
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over time. We perform our forecasts based on the assignment of the roles on each

of the user over the two year period by Rowe et al. (2013). The focus is placed

on the existing forums (> 6 months of data) and ignore the newly created ones as

they are deemed to have insufficient data. A forum is treated as a single commu-

nity and each user can have a different role in different forums at the same time

point. The role of a user can change between time points and is considered to be

inactive when (s)he did not post any messages within the observed time window.

2.6 Modeling of Online Communities

Analysis on online communities benefited from the previous works on offline com-

munities, where existing techniques developed in other fields (graph theory, social

science, statistics etc) are also applicable. Graph growing models are probably

the most well known method to model and infer an online community. Random

graph (Erdös–Rényi model) (Erdös and Rényi, 1959) or preferential attachment

(Barabási–Albert model) (Barabási and Albert, 1999) are widely used because they

have been observed in real networks. An online community can then be forested

by identifying a model that fit the structure and attributes of a community with

the correct parameter. Forecasts are then obtained by via simulation using the

graph growing algorithm and the current state of the community. However, we

only wish to infer the “active” users and their respective roles and not all the users

who have participated in a forum.

Granovetter (1973) originally and later revised Granovetter (1983) the theory of

week ties, where he argued that the only possible connection between two strongly

connected social networks is a week one. This idea of macro interaction of com-

munities that are subsets of a larger communities fueled the introduction of block-

models (White et al., 1976; Boorman and White, 1976). Blockmodels were an

attempt to not only separate sub–groups (blocks) of a community but also the

role structure within a block. This was then further developed by Holland and

Leinhardt (1981) into the p1 graph model, using distributions from the exponential

family to model the existence of an edge between two people, and has since been

generalized into the class of Exponential Random Graph Model (ERGM) (Wang

and Wong, 1987; Wasserman and Pattison, 1996, 1999; van Duijn et al., 2004;

Snijders et al., 2006).

ERGMs have been used to study communities on its own and in conjunction

with other methods. Hoff et al. (2002) modeled the existence of an edge between
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users in a social network using logistic regression and latent variables. Clustering

were then performed on the latent variables to identify the different types of roles

and the belonging of each user to his/her respective role (Handcock et al., 2007).

But, like all clustering techniques, the algorithms works on static data that is

time sliced data over some pre–determined time period. The assumption of an

exponential family distribution on the edge provides a flexible formulation, such

as the discrete time temporal extension to ERGM developed by Hanneke et al.

(2010). This temporal extension allows analysis and prediction to be performed

on the social network using a series of observations taken at equally space time

points. But the model can only accommodate observations that all have the same

number of users, as the model relies on having the same normalizing constant,

which does not cancel out between time steps when the graph changes size, i.e.

when users join or leave.

Both of these approaches only deal with certain aspect of our problem where a

static ERGM does not forecast the role composition for some future time period

while the temporal extension has fixed number of users. Furthermore, using a

time sliced set of data implies that only the active users during the specified time

period are observed. This in fact ignores the valuable information provided by the

“inactive users” (those that have not participated in the community for a prolong

period i.e. six months, one year), as we built our model based on the observed

role of every user in a community over time.



Chapter 3

Main Methodology

3.1 Compartment Model Introduction

Compartmental models have been used in many disciplines (Godfrey, 1983) and are

usually represented as a graph where compartments are the nodes. A compartment

represents a collection of contents that is indistinguishable from each other, with

the ability to travel into another compartment, this ability being represented by

a directed edge.

A popular usage of compartment models is in the field of epidemiology where the

SIR (susceptible, infectious, recovered) and its extension SEIR (E for exposed)

model (Bailey, 1975) are used to model the progression of disease. In both of

the models, each compartment represents the people at a particular stage of the

disease and a set of differential equations are used to model the rate of people

transitioning from one stage to the next. The modeling of SIR has also been

applied to individuals in a network (Newman, 2003), where the infection is passed

on from one node to the next. Such models are central to the understanding

in spreading of diseases, which is important in both prevention and detection of

outbreaks as demonstrated by Christakis and Fowler (2010).

Compartmental models is also a general case of population models that are com-

monly used in ecology to model the changes in the size of a population. Denote

N(t) as the population of a species at time t. Then the simplest population is

N(t+ ∆t) = N(t) +B(t,∆t)−D(t,∆t), (3.1)

23
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where the change in population size is governed via birth B(t,∆t) and death

D(t,∆t) in the same time period (Turchin, 2003). This can be used to model say,

the total number of active users in an online community where the number of new

users joining and leaving the community is B(t,∆t) and D(t,∆t) respectively. A

more complex population model, i.e. one that models a set of age groups in a pop-

ulation, is obtained by extending N(t) in (3.1) to a vector with the corresponding

movement between age groups. Population models were also used to model the

change in size of multiple species (Law and Blackford, 1992; Scheffer et al., 2001;

Gibson, 1998; Yoshida et al., 2003; Geritz and Kisdi, 2004; Scheffer and van Nes,

2006), most of them were based on the famous Lotka–Volterra equation (Lotka,

1925) which described the interactions between a predator and prey.

Our aim is to model the number of users in each of the roles through time, where

the role of a user can change as time progresses. Here, each compartment is used

to represent a specific role and the mass of a compartment is the total number of

users in that role. An example can be seen in Figure 3.1 with 4 different roles as

well as additional users joining the system via a single role. It also demonstrates

that all possible paths need not exist as users in the New User compartment only

have edges going in the outward direction. In the setup of Figure 3.1, none of the

users are allowed to leave the community, so the total mass of the compartments

increases with users joining the community. On the other hand, the size of the

community is subject to fluctuation if the users are allowed to leave a community.

The remainder of this chapter is as follows. An overview of the compartment model

formulation will be discussed first in Section 3.2, where the connection between a

linear compartment model and Markov chain is made. In particular, Section 3.2.3

introduces a variant of the base model that does not model inactive users directly.

Estimation of the parameters in the deterministic setting will be discussed in

Section 3.3 and Section 3.4 before moving on to the stochastic versions in Section

3.5. Finally, Section 3.6 compares the result between the different estimation

methods discussed throughout the chapter.

3.2 Mathematical Formulation

Given the classification of role on each of the user at (equally spaced) time points

t = 1, 2, . . . , N , observed weekly, the number of users transitioning from role i to
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Figure 3.1: An example of a compartment model with 4 different user roles
in a system

j between week t and week t+ 1 is

vi,j(t) :=
n∑
s=1

1 {zs(t+ 1) = j, zs(t) = i}, (3.2)

where zs(t) is the indicator vector of length k (from Section 2.5.1). Let mi(t) be

the number of users (mass) for role i at time t and m(t) the corresponding vector

for all roles . We define our compartmental model as a discrete time Markov chain

(DTMC) with contribution from external sources a(t) as

m(t+ 1)> = m(t)>P(t) + a(t)>, (3.3)

where P(t) the transition probability matrix with elements

Pi,j(t) := m−1i (t)vi,j(t) (3.4)

given the mass mi and the flow vi,j. The matrix P is also known as a Markov

matrix or a right stochastic matrix, where the following conditions are satisfied∑
j

Pi,j = 1 ∀i, 0 ≤ Pi,j ≤ 1 ∀i, j (3.5)
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The external sources a(t) at time t is an aggregate from both the number of users

joining b(t) and the number of users leaving c(t).

a(t) = b(t)− c(t) (3.6)

If we are willing to make assumptions about P(t) and a(t) for future time period

t > N , then a q–steps ahead forecasts starting from N can be obtained by using

(3.3) iteratively for a point estimate (expected value) or the full forecasting dis-

tribution generated via simulation. Simply baseline models constructed using the

observed transition matrices P(t).

3.2.1 Expected Transition

First we assume that the future rates will stay constant over time, and estimate

P by taking the average over the N − 1 number of historical observations (given

N observed mass vector)

P̂ = E(P) = (N − 1)−1
N−1∑
t=1

P(t) (3.7)

This will be refereed to as DE, the expected transition matrix, under a deterministic

formulation where P̂ is fixed during the forecast.

3.2.2 Last Transition

There may also be reasons to believe that the most recent observed rate P̂ =

P(N − 1), denote it as DL, will produce the best forecasting as it reflects the

current state of the system. Unless P is constant over time, our forecast diverge

by a factor of δ = E(P)−P(N − 1) at each step.

3.2.3 Contribution from External Sources

As previously mentioned in Chapter 2, we cannot distinguish between the users

who have left the community and those who are just inactive. Therefore, we may

want to model the “inactive” users as a role, or simply assume that all of them

have left the community with some maybe rejoining later.
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Our model makes no restriction on which roles the inactive users are allowed to

return to, but instead allow collected data to naturally provide such information,

using the observed transitions v0,j (3.2).

In the latter case, the number of users leaving the compartments can be modeled

by c(t) (3.6), but the non–negative constraint makes it a very difficult task. This is

because not only do the current masses define the bounds cj(t) ≤mj(t)∀j, which

might be small (< 5) for some mj, they can also change (possibly towards zero)

in the forecast. So we use the transition probability to model the number of users

leaving where the non–negativity condition is automatically satisfied.

Now the joining vector b(t) consists of both the number of new users joining and

the additional users who are returning from inactivity, b(t) = bJoin(t)+bReturn(t).

Even though both bJoin and bReturn are vectors of length k, equal to the number

of active compartments, it was observed in the data that users joined and returned

only to some and not all the compartments. The frequency of any users joined

or returned to certain compartments were also low. Therefore, we simplify the

modeling process by modeling the sum of the vectors as follows:

yJoin(t) =
k∑
j=1

bj,Join(t), yReturn(t) =
k∑
j=1

bj,Return(t).

Given prediction ŷJoin(t), the number of users joining each compartment can be

found using a proportional vector γ. Evidently, the resulting prediction for a

particular compartment b̂j = γj ŷj is not guaranteed to be an integer.

However, note that the observations bJoin(t) can be interpret as a realization from

some stochastic process such as

bJoin(t) ∼Mk(yJoin(t), γJoin(t)) (3.8)

where Mk is a k dimension Multinomial distribution. Using this stochastic rep-

resentation for both bJoin and bReturn, we have integer predictions for each sim-

ulation. However, the expected forecasts are not integers even though the other

statistics such as the confidence interval, mode, median of the forecasted distribu-

tions are.

These two different interpretations will be referred to as I and W respectively,

and can be summarized as follows
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Inactive role as a compartment (I)

For the case where inactive users belong to a compartment, our external

contribution
∑

j aj(t) (3.6) is simply the number of new users joining at

time t, yJoin(t), and P(t) is a [k × k] matrix.

Without inactive compartment (W)

For the other setup, let 0 be the index that represents the inactive compart-

ment such that m0 is the inactive compartment, then aj(t) consists of both

the number of new users joining and the number of users returning from the

inactive state to compartment j at time t,
∑

j aj(t) = yJoin(t) + yReturn(t).

The migration rate matrix P−0(t) is now of dimension [k − 1× k], where the

subscript −0 signifies the removal of the row indexed 0.

The second case is a complement of the first, where the inactive users are effectively

unobserved because the forecast does not depend on the number of inactive users

even though m0 exist in the forecast. To eliminate the inactive compartment

completely, we can let our migration rate matrix be of dimension [k − 1× k − 1]

where 1−
∑

j Pi, j contains the extra flow out of compartment i (those originally

flowing out of the system). This means that the row sum of P is not necessary

one, but the diagonals still have the same bound 0 ≤ Pi,i ≤ 1.

Predictions of yJoin and yReturn will be the discussed in detail in Chapter 4. For

now, we assume that both yJoin, yReturn are observed even in the forecast and

demonstrate a (potential) addition benefit when the inactive users are not modeled

as a compartment.

3.2.4 Comparing Formulation of Inactive Users

We demonstrate the difference in prediction, in terms of MSE, between the formu-

lation I and W described previously. Recall that the “inactive” users are defined

to include both the users who have left the community and those not making active

contribution that is observable in our data. Given that P is governed by m (3.4),

we have P0,0(t)→ 0 as m0(t)→∞ if vi,i(t) is constant over time. Therefore, E(P)

will not be a good estimate for the inactive compartment when serial correlation

exists.

The sample correlation of the forums were investigated and it was found that P0,0

had significant autocorrelation at the first lag for all forums. An example can be

seen in Figure B.1 where it shows the sample autocorrelation of the first 20 lag of
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P0,0 for forum 353. Autocorrelation was also found in P0,j for some j elements

but only for a limited number of forums. Therefore, the W formulation was an

attempt to eliminate the difficulty in modeling the autocorrelation of P0,0 or any

of those that might also exist in P0,j.

Assuming that yReturn can be predicted accurately, it is possible to greatly in-

crease the forecast performance by eliminating the inactive compartment. We

demonstrate this by producing forecasts for a 10 week period using E(P) with the

observed yJoin, yReturn over 90 consecutive weeks for forum 353 and report their

MSE.

Apart from a few points (6 to be exact) in Figure 3.2, all the others lie below the

diagonal line, the area that corresponds to a higher MSE for the I formulation.

The average MSE over all 10 time and 10 roles is 40 and 27 showing a major

improvement in the forecast by removing the inactive compartment. This finding is

similar to other forums as well, i.e average MSE of 18 and 17 for forum 256, 75 and

51 for forum 264, under I and W respectively. Such results suggest that the quality

of the forecasts may be improved by removing the inactive user compartment and

predict yReturn separately. The two formulations, W and I, will be compared

throughout and especially in Chapter 5 when predictions of both yJoin and yReturn

will be used in the forecasts.

The two formulations, W and I, will be compared throughout this thesis. We

assume that both yJoin and yReturn are observable in the forecasts in this chapter,

i.e. all the prediction error only comes from the transition matrix which allows

easier comparison between the modelling of P, and predictions ŷJoin, ŷReturn used

in Chapter 5 to capture the total uncertainty in the forecasts.

3.3 Estimation of Transition Matrix

In addition to taking the expectation, the transition matrix P as well as the

proportional vector γ can be estimated using just the observed mass. Let γJoin be

the proportional input vector of the form (3.8), then by using augmented matrix

and vector

P†(t) =

[
P(t)

γ>Join(t)

]
, m†(t)

> =
[
m(t)> yJoin(t)

]
, (3.9)
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Figure 3.2: Scatter plot between the MSE obtained under the two different
formulations over a 90 week period for forum 353.

where yJoin(t) is the observed total number of users joining at time t, we can write

(3.3) as

m(t+ 1)> = m†(t)
>P†(t) (3.10)

The complementary case of W where the inactive users are effectively “unob-

served” can be expressed as

P† =

 P−0

γ>Join(t)

γ>Return(t)

 , m†(t)
> =

[
m(t)>−0 yJoin(t) yReturn(t)

]
. (3.11)

There are two different ways to formulate our problem for the estimation of P.

The first one is based on making a single step forecast at each stage, which is the

same formulation as in a classical time series setting. While the other one takes

a starting point, say the first observation, set it as an initial value and forecast

using (3.3) through all observed time points.

The single step update can be interpret as a linear difference equation, or equiv-

alently a vector time series. Even though parameter estimation in time series

has simple expressions under certain formulation, such as vector autoregression

(Hamilton, 1994, chap. 11), they are all based on the normality assumption which

our data do not. Furthermore, we have to respect the constraints of a Markov

matrix (3.5) and the additional constraints coming from the data (such as an
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unobserved flow from state i to j). This result in a constrained optimization

problem when estimating our parameters, the non–diagonal elements of P, and is

tackled in Section 3.3.1. Similarly, the same argument applies when estimating

the parameters under an iterative update, which will be tackled in Section 3.3.2.

Although square loss is use almost exclusively in the following section, we have

stated the problem under a generic loss function L(·, ·) whenever possible. This is

because square loss can be interpreted as a maximum likelihood estimation under

a Gaussian distribution and alternative distribution such as the Poisson can also

be used. Our focus is place in comparing between the two formulations, linear

and non–linear, as the resulting estimates are similar under different loss function.

Furthermore, when the loss is measured using a distribution from the exponential

family, the difficulty in the estimation is virtually identical as the objective function

is still twice differentiable.

3.3.1 Single Step Update

First, we treat our parameter estimation problem as solving (3.3) with observations

for both m(t + 1) and m(t) at all time points. This is to say that the forecast is

only for a single step

m̂(t+ 1)> = m(t)>P + b̂(t)>. (3.12)

Estimating P† given the observed m(t), b̂(t) can be put in the form of a linear

system AX = B by combining the N − 1 set of (3.10) where

A =


m†(1)>

m†(2)>

...

m†(N − 1)>

 , X = P†, B =


m(2)>

m(3)>

...

m(N)>

 . (3.13)

But the solution of (3.13) (say by least squares) is not guaranteed to satisfy the

element constraints (3.5), and they need to be enforced. First, recognize that a

linear system AX = B can also be solved column–wise, which can be written as

C = A⊗ Ik, x =


X1

X2

...

Xk

 , d =


B1

B2

...

Bk

 (3.14)
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where Bi is the ith row of the matrix B, ⊗ is the Kronecker product and Ik is

an identity matrix of k dimensions. Then our constrained optimization problem

under some loss function L(·, ·) can be written in standard form

arg min
x

L(Cx,d) (3.15)

s.t. Qx = u (3.16)

Rx ≤ v (3.17)

lb ≤ x ≤ ub (3.18)

with C and d previously defined. Given that P is a Markov matrix, it has to

satisfy ∑
j

Pi,j = 1, 0 ≤ Pi,j,

with the first contributing to (3.16) and the latter to (3.18). Note that the com-

bination of the equality and non–negative constraints implies that Pi,j ≤ 1∀i, j.
Similarly, the proportional vectors also has the same set of constraints∑

γi = 1, 0 ≤ γi ∀ i.

When the forecast of the inactive users are not of concern, then (3.15) becomes

N∑
t=2

L(m̂−0(t),m−0(t))

where estimated transition matrix has the column 0 removed and the equality is

now an inequality
∑

j:j 6=0 Pi,j ≤ 1 to keep a nice expression with a linear objective

function. Additionally, we assume that the observed transitions are the results of

some true transition plus/minus some additional error, so the true transition prob-

ability should fall within the range of the ones already observed. Our restricted

minimum becomes

Pi,j ≥ max {(1− δ) min {Pi,j(1),Pi,j(2), . . . ,Pi,j(N − 1)} , 0} = l̂bi,j (3.19)

and maximum

Pi,j ≤ min {(1 + δ) max {Pi,j(1),Pi,j(2), . . . ,Pi,j(N − 1)} , 1} = ûbi,j, (3.20)

both with a compensation factor δ to account for tail values that have yet to be

observed. We use the term “observed bounds” when referring to equations (3.19)
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and (3.20) while setting δ = 0.05 for our estimation.

Using the observed bounds ensure that an unobserved edge between two compart-

ments will result in an estimated transition probability of zero. An example of this

can be seen in Appendix B.1 where the transition from state 2 to state 1 has never

been observed, as shown by E(P) (Table B.1), but the estimation performed using

the natural bounds (Table B.2) has P̂2,1 = 0.018. This is corrected when using

the observed bounds (Table B.3) as both l̂b, ûb is equal to zero. Therefore, the

observed bounds is preferred because it respects the data rather than the model

definition and we denote this formulation as PEL. Finding the solution to PEL

(3.15, 3.16, 3.17, 3.18) was done by using the MATLAB function lsqlin which

required only a few seconds and less than 100 iterations.

3.3.2 Iterative Update

We can also use a long term forecasting interpretation where a P is used for a q

steps forecast starting at some initial time point t0. Let the initial value at time

point t0 be the observed mass

m̂(t0) = m(t0)

and forecast using the update equation

m̂(t+ 1)> = m̂(t)>P + b̂(t)>, (3.21)

such that the forecast at time t + 1 depends on the forecast at time t. Which

is to say, given some initial conditions and total number of forecasting steps, we

wish to find a P̂ that forecast/interpolate as closely to the historical observation

as possible. We denote this formulation as PENL.

This can also be written in the form of (3.3) by augmenting the matrices like (3.9),

i.e. for the I formulation, we replace the observed mass m(t) by the predicted mass

m̂(t) and let the predictions b̂(t) be (3.8) where we wish to infer γ using actual

observations yJoin(t)

m†(t) = [m̂(t) ; yJoin(t)] .

The augmented probability matrix P† is the same as the one in (3.9) but our

objective function does not have a nice form as it is non–linear due to the iterative

forecast process. The constraints are the same as previous formulation and our
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optimization problem under the update (3.21) for q number of steps now become

arg min
P,γ

q∑
t=1

L(m(t0 + t), m̂(t0))

s.t.
∑
j

Pi,j = 1 ∀ i (3.22)

l̂bi,j ≤ Pi,j ≤ ûbi,j ∀ i, j.

Any initial value/ starting point can be chosen, such as the start of the historical

data at t0 = 1 such that q = N − 1, or say only on the last 10 observations with

t0 = N − q and q = 10.

The formulation (3.22) assumes that all the elements in P are variables that needs

to be estimated. This is in fact not necessary because the diagonals are determin-

istic functions of the non–diagonals

Pi,i := 1−
∑
j:j 6=i

Pi,j.

We have an equivalent formulation by changing the equality to an inequality con-

straint ∑
j:i 6=j

Pi,j ≤ 1 ∀ i.

Both of these formulations were attempted using the MATLAB function fmincon

using their in built interior–point algorithm and ran 50 times using the built–

in MultiStart function. Majority (≥ 80%) of the attempts converged to the

same solution and the first formulation with equality constraint was found to be

significantly faster.

3.3.3 Comparison of Update

A forecast of 99 weeks under the I formulation with initial value at the first

observation m(1) using the observed yJoin at each time period can be seen in

Figure B.4. The plot shows the in–sample forecast for two different P̂†, estimated

under an absolute loss and square loss function over all roles, as well as the forecast

under E(P†).

Both sets of estimated P̂† produced very similar forecasts, but the elements in P̂†

are very different apart from the proportional vector γ̂. Both of the estimated



Chapter 3 Main Methodology 35

transition matrix also look very different to E(P†). A first look suggests that the

P̂ under square loss is not aperiodic because P1,1 = 0 and P1,2 = 1, but in fact this

is not true when looking at the eigenvalues. In fact, the stationary distribution has

all the mass in the inactive role/state when under square loss, whereas it spreads

over 3 different states when it is under the absolute loss estimation. Both sets of

eigenvalues of P̂ contain elements which are complex, which is not the case for

E(P).

It is also of interest to compare the two different formulations, in the linear setting

PEL (3.12) and the non–linear update PENL (3.21). We would normally expect

to see the estimated P̂ from the linear formulation to fluctuate less than estimate

from the non–linear formulation. This is because, as the name suggests, the change

is linear between two consecutive time steps in the former, i.e. does not have to

account for change of direction, such as oscillation if it exists.

We check this hypothesis using our dataset. We estimated the transition matrix

under both formulation using the first 100 observed mass with both under the

square loss function to provide an appropriate comparison. We first look at a 99

steps forecast using the two different P̂† with t0 = 1 under I formulation. The

forecast can be seen in Figure 3.3 which is also a replicate of the interpolation in

the estimation for the PENL case. There are significant differences between the

forecast where PENL fluctuates a lot more than PEL in all the compartments.

While both estimation out–performed E(P), PENL had better performance as

shown in Figure B.5, where PENL dominates PEL in error for more than three

quarters of in–sample forecast. Out–of–sample forecast performance are compared

in Section 3.6.
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3.4 Combination of Transition Matrices

The methods mentioned above aim to find all the elements of P† using the observed

mass as well as the historical P†(t) to obtain the lower and upper bounds of each

element, which is a stark contrast to E(P†) where the estimation ignores the

observed mass completely. A compromise between the two would be to estimate

P† using both the observed mass and transition matrix, which has the potential to

generate better forecasts as it tries to use both sets of information. Let the N − 1

observed P† be

P† ∼ F̂N−1(w) (3.23)

where F̂N−1 is the empirical distribution and w = (w1, w2, . . . , wN−1) the corre-

sponding weight vector for each of the observations. Now, we describe two methods

that uses the historical observed transition matrices.

3.4.1 Weighted Mixture of Matrix

A simple extension to (3.7) is to find a weighted average of (3.23)

P̂† =
N−1∑
t=1

wtP†(t),
N−1∑
t=1

wt = 1, wt ≥ 0, (3.24)

we denote this weighted approach as DW. Taking the sample average of P† is

a special case using uniform weights wt = (N − 1)−1,∀t. The constraints (3.24)

automatically ensures that (3.5) are satisfied.

Both of the formulations mentioned in Section 3.3, where the forecasts are (3.12)

or (3.21), can be used. For the linear case, the objective function is

arg min
w

N−1∑
t=t0

∥∥∥∥∥m(t+ 1)−
N−1∑
i=1

wiP
>
† (i)m†(t)

∥∥∥∥∥
2

, (3.25)

which can also be written in the constrained least squares form

arg min
w

‖Aw − b‖2

s.t.
N−1∑
i=1

wi = 1 (3.26)

wi ≥ 0 ∀i,
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by computing m̂i(t+ 1) = P>† (i)m†(t), and let

A =


m̂1(t0 + 1) m̂2(t0 + 1) · · · m̂N−1(N)

m̂1(t0 + 2) m̂2(t0 + 2) · · · m̂N−1(N)
...

...
. . .

...

m̂1(N) m̂2(N) · · · m̂N−1(N)


with the corresponding response as

b =
[
m>(t0 + 1) m>(t0 + 2) · · · m>(N)

]>
.

When A is full rank, (3.26) is strictly convex. The vector w is of length N − 1,

the same number of observed P. Dimension of the vector m̂i(t) depends on the

number of roles we are interested in, which in our case is 10 excluding the inactive

role. In order for A to have more rows than columns, the number of steps N − t0
needs to be greater than (N − 1)/10. If there are identical transitions matrices,

i.e. P†(i) = P†(j) for some i, j then the number of variables as well as columns in

A decreases by the number of repeated P†(t).

3.4.2 Exponential Penalty

Another weighted approach using a time discount factor similar to exponential

smoothing in the time series literature (Holt, 2004), denoted as DP. This method

aims to find a P̂† between DE and DL that has the optimal amount of local

trend. We introduce a time discount factor (penalty) α ∈ [0, 1] that controls the

contribution of P†(t) based on how far back the observed matrix is from the last

observation at time t0. Denote by P̂†(α) the expected value of (3.23) under penalty

α,

P̂†(α) =
N−2∑
j=0

wjP†(N − 1− j), wj ∝

{
1 if j = 0

αj if j = 1, 2, . . . N − 2.
(3.27)

such that αj follows a finite geometric series with the normalized weight wj,∑
wj = 1. This weighted approach can be understood as the following three
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settings;

α = 0 ⇒ wj

{
1 if j = 0

0 otherwise
(3.28)

α ∈ (0, 1) ⇒ wj =
1− α

1− αN−1
αj, j = 0, 1, . . . , N − 2 (3.29)

α = 1 ⇒ wj = 1/T, j = 0, 1, . . . , N − 2 (3.30)

where (3.28) and (3.30) represent the previous two deterministic method, namely

DL and DE respectively. As this penalized approach also contains the two baseline

models, it provides a hint on expected behavior based on the recent history (subject

to the number of in–sample steps used) where α̂, the estimated penalty is an

indication of the strength of the local trend. Assuming that the future behavior

is similar to the current trend, our tuning should guarantee the performance to

be at least as good as the two baseline models of DE and DL. The optimization

problem under linear formulation is

arg min
α

N−1∑
t0=1

∥∥∥∥∥m(t0 + 1)− 1− α
1− αN−1

N−2∑
j=0

αjP>(N − 1− j)m(t0)

∥∥∥∥∥
2

s.t. 0 ≤ α ≤ 1

(3.31)

and multiple minima may exist as demonstrated in Figure 3.4. Similarly, the same

can be found for the non–linear formulation (Figure B.2). Although the objective

function is not guaranteed to be convex, the optimal value α̂optim (α̂ from herein)

is bounded and is easily found by evaluating a set of equally spaced points over

the interval [0, 1].

Given α̂, this value determines the relative contribution of P†(t) and there is a

decision on how to use the observed data. More specifically, the number of P† to

use in the estimation and forecast stage when t0 6= 1. The objective function is

to minimize the MSE of the observed masses from m(t0) to m(N) and obtain α̂,

where the following three scenarios arise;

Scenario 1 (S1)

Estimate using the observed P†(t) from 1 to t0 and forecast with t = 1, . . . , t0.

Scenario 2 (S2)

Estimate using the observed P†(t) from 1 to t0 and forecast with t =

1, . . . , N − 1.



40 Chapter 3 Main Methodology

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

An example of non−convex objective function.  MSE evaluated over the support of α

α

M
S

E

Figure 3.4: An example of two minima for the penalized transition matrix
obtained in forum 264 under I at week N = 94, evaluated over 1000 equally

spaced point over the interval [0, 1]

Scenario 3 (S3)

Estimate and forecast using observations of P†(t) for t = 1, . . . , N − 1.

Two of these scenarios, S1 and S3, are also possible for the weighted vector w. But

S2, which has the same α̂ as S1, exists because the penalty α applies regardless of

the total number of observations where the vector w is of a fixed length. In both

S1 and S2, there was no overlap of information, i.e. the error were measured on

m(t0 + 1) to m(N) whereas α̂ was estimated based on observations from P†(1) to

P†(t0).

We demonstrate the differences among the three choices using the same method

as those in Section 3.2.4 under a non–linear formulation. Estimation and forecast

for a 10 week period were performed over 90 consecutive weeks. Both the W and I

formulation were tested using the observed yJoin and yReturn for both the estimating

and forecasting stage. For Scenario 1 and 2, a suitable end point, t0 = N − 10,

was chosen to be the same period as the desired forecast as an attempt to mimic

the predictions within the historical observations.

The scatter plot between the set of α̂ between S1 and S3 for forum 353 can be

seen in Figure 3.5 with the diagonal line representing x = y, i.e. α̂ is equal under

both scenarios. The plot shows that α̂ can differ significantly between S1 and S3
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formulations. Over 90 consecutive weeks for forum 353 using the observed yJoin
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I W
S1 S2 S3 S1 S2 S3

Average MSE 91 115 90 29 31 25
Number of lowest MSE 35 9 47 28 13 50

Table 3.1: The average error and the number of times a scenario has achieved
the lowest error over a 90 week period for forum 353

with virtually no correlation. This is true whether the inactive compartment was

included or not, demonstrating the number of observations affects α̂ significantly.

It is further demonstrated by Figure 3.6, especially in the case of S3. Where the

two sets of α̂ under W and I have a strong positive correlation, all the points only

deviate slightly from the diagonal line. Although the majority of the points in S1

also fall near the diagonal line, a number of α̂ differs by a large margin between

the I and W formulation.

Table 3.1 shows the MSE as well as the number of times a scenario achieved

the lowest MSE over the 90 separate forecasts. Clearly, S3 produced the best

result out of the three, and Table 3.1 demonstrates the superior performance

when not using the inactive compartment as the average MSE is lower for all

three scenarios. The performance of S2 suffered while using more observations

than S1, but this does not generalize to other forums as well (Table B.4, B.5, B.6)

with S2 beating S1 dependent on both the forum and the formulation for the

inactive users. Nevertheless, S3 dominates both S1 and S2 consistently.

These results suggest that S3 should be used, because it has the best performance

in addition to the natural usage of the available data – all observed P†(t) from 1

to N − 1 are available for both the estimation of α̂ and forecasting. Whereas S1

and S2 only use P†(t) up to N − 1 and ignore the most recent observations, those

exact observations we think are more important when forecasting and attempt to

place more weights on them through the use of α̂.

3.5 Stochastic Transition Matrix

Under the previous assumption that the observed classification of users z(t) is cor-

rect at all time t, the difference in transition probability P(t) between time points

implies some form of stochasticity. A common assumption used on compartmental
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models is a Gaussian error (Jacquez, 1972)

Pi,j(t) ∼ N (Pi,j, σ
2
i,j), ∀ i, j and i 6= j. (3.32)

When the underlying system is actually stochastic, it is important to correctly

model this, as a deterministic formulation can yield incorrect results (Soong and

Dowdee, 1974). Matis and Wehrly (1979) demonstrated this further using the

Jensen’s inequality

h(E(X)) ≤ E(h(X)) (3.33)

where h(·) is a convex function, such as the recursive use of the Markov chain (3.3)

to obtain our forecast. Therefore, the expected forecast is the sample average of

the simulated forecasts, obtained using (3.3) where P at each of the forecasting

steps is a realization from some generating process. The output of the expected

forecast computed via simulation is different to one obtained using P as evident

from (3.33).

3.5.1 Parametric

The Gaussian assumption is satisfied only when the observations do appear nor-

mally distributed, but the bounds imposed by (3.5) makes the normal distribution

a poor choice. This is supported by the data where many zeros can be observed

for some Pi,j and E(Pi,j) is close to zero or when Var(Pi,j) is large. Therefore, a

truncated univariate normal (TUVN)

X ∼ N (µ, σ2, µ−, µ+) (3.34)

is a better representation where the support of the distribution is defined by the

lower and upper bound µ−, µ+. Furthermore, the Gaussian assumption allows easy

extension into the multivariate form that allows dependency between the random

variables.

3.5.1.1 Truncated Multivariate Normal

Let P−i represent the vector of the ith row without the ith column of the matrix

P and X = P−i is our random variable. The correlation structure of all the rates

going out of state i can be modeled by a Truncated Multivariate Normal (TMVN)
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(3.35) of d dimension, where the realization x is subject to the linear inequality

lb ≤ Rx ≤ ub. The linear inequality extends the box constraints of (3.34) as

lb is a p dimension vector and R is a [p× d] matrix. It allows us to enforce the

vector constraint as well as the element wise constraints in (3.5).

X ∼ Nd(µ̂, Σ̂; R, lb,ub) (3.35)

The inequalities are defined by R = [Ik−1 ; ek−1]
>, lb = [ek−1 ; 0] and ub =

[ek−1 ; 1], where ec is a c length column vector of 1’s. Even though efficient sam-

pling procedures have been developed, see Yu and Tian (2011) and references

therein, parameters in (3.35) cannot be estimated in closed form due to the dif-

ficulty induced by the linear equality when evaluating the normalizing constant∫
lb≤Rx≤ub

φ(x)dx. The estimation problem is exaggerated for our dataset because

there are forums with ≈ 50 data points over 10 dimensions (one dimension for a

role).

Another formulation which simplifies the estimation is to assume that only the di-

agonals of P follows a TMVN with only element wise constraints 0 ≤ diag(P) ≤ 1,

such that we only model the total flow out of the compartments, and the propor-

tions for each of the flow. Modeling the proportions can be done via a Dirichlet

distribution or alternative methods such as sum of log–normals (Gelman et al.,

1996) or a Logistic-normal (Aitchison and Shen, 1980). We use the Dirichlet

assumption for simplicity and the ease of ML estimation. The stochastic repre-

sentation is then

(1−P−1i,i (t))P−i(t) ∼ D(k − 1,α),

such that the generating process for the non–diagonals realizations are

diag(P) ∼ Nk(µ̂, Σ̂;µ−,µ+) (3.36)

ci ∼ D(k − 1, α̂i) (3.37)

P−i = (1−Pi,i)× ci for i = (1, . . . , k). (3.38)

This sacrifices the ability to model the correlation between migration rates going

out of a compartment, but allows modeling of the correlation on the total outgoing

rate between the compartments. Again, the difficulty of estimating the parameters

of TMVN remains even though the linear inequality does not exist due to the curse

of dimensionality. Here, we propose to simplify the multivariate distribution into

their univariate marginals TUVN where their correlation structure is determined
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by a copula such that the number of parameters (without closed form solution)

reduces from O(k2) to O(k).

3.5.1.2 Truncated Univariate Normal With Copula

Given a vector of random variables X = (X1, . . . , Xd) with joint distribution F

and the marginal of variable i as Fi(xi) = Pr(Xi ≤ xi). Then a copula C is a

function that maps Id to I where the copula of F is one that satisfies

F (x) = C(F1(x1), F2(x2), . . . , Fd(xd)). (3.39)

In essence, a copula is a function that constructs the dependence between the

marginals using the fact that all probability distribution satisfy Fi(Xi) = Ui ∼
U [0, 1] ∀i, and the copula is unique when all Fi are continuous. This means

that given any set of marginals, we have a joint distribution with the correlation

properties of the chosen copula. A more comprehensive overview of copula can be

found in Nelson (1999).

The Gaussian copula represents the case when the correlation structure is being

induced by a normal distribution and it can be written as

CGa(u) = ΦΩ(Φ−1(u1),Φ
−1(u2), . . . ,Φ

−1(ud)), (3.40)

where Φ is the c.d.f. of the standard normal and ΦΩ is the c.d.f. of a multivariate

normal with correlation matrix Ω and mean 0. This is a popular choice due

the simplicity of sampling from a multivariate normal even in high dimension.

Substitute the LHS of (3.40) with the RHS of (3.39)

F (x) = ΦΩ(Φ−1(u1),Φ
−1(u2), . . . ,Φ

−1(ud))

then recognizing that Z ∼ N (0,Ω) = Φ−1Ω (U) with U ∼ U [0, 1] and F (x) = u, we

have

z = (Φ−1(F1(x1)),Φ
−1(Fd(x2)), . . . ,Φ

−1(Fd(xd))),

which implies that the random vector X from our joint distribution is a transfor-

mation on the realization of Z:

X = (X1, X2, . . . , Xd) = (F−11 (Φ(Z1)), F
−1
2 (Φ(Z2)), . . . , F

−1
1 (Φ(Zd)))
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This is also known as NORTA (NORmal To Anything) (Cario and Nelson, 1997)

and it only requires the knowledge of the marginals and it’s inverse F−1i in addition

to the correlations between pairs of random variables. The common strategy is

to obtain the Spearman rank correlation of X and construct an appropriate Ω

for (3.40) (Cario and Nelson, 1997; Ghosh and Henderson, 2003; Avramidis et al.,

2009; Channouf and L’Ecuyer, 2009) depending on the type of marginals. Ghosh

and Henderson (2003) gave an example where rank correlation was superior to

product–moment correlation, further justifications and examples can be found in

Embrechts et al. (2002) and therein.

Let the Spearman rank correlation matrix be ρS and the element ρS(i, j) be the cor-

relation between two variables Xi, Xj, an exact transformation (3.41) was derived

by Kruskal (1958) between rank and product–moment correlation when F (X) is

continuous such that Ω (3.40) yields the desired correlation for X:

Ωi,j = 2 sin

(
ρS(i, j)

6

)
. (3.41)

But Ω̂ obtained directly using (3.41) is not guaranteed to be positive semi–definite

(Ghosh and Henderson, 2003) for a feasible correlation matrix even when all the

marginals are continuous (Ghosh and Henderson, 2002). So an approximation is

required by minimizing d(Ω̂,Ω) where d(·) is some distance function.

Replace TMVN with the copula formulation for diag(P), parameters estimation

can be performed univariately (Cohen, 1950; Halperin, 1952) and obtaining the

Spearman rank correlation is trivial. Inversion of TUVN is the same as a standard

normal with an adjusted normalizing constant, which is approximated with a high

precision on modern computers. But when the estimated parameters correspond

to a scenario where the majority of the density of a p.d.f. is outside the boundaries

[0, 1] of (3.5), the inversion provides a poor representation of the distribution and

a sampled based inversion should be used by generating J sample from X ∼
N (µ̂, σ̂2;µ−, µ+) (using for example, an algorithm by Damien and Walker (2001))

and finding the Juth value of the sorted realizations for the marginal given uniform

realization u from the copula.

3.5.1.3 Binomial Formulation

A Markov chain interpretation also implies that the model is stochastic by nature.

Simulating a discrete time Markov chain given the estimated transition matrix P̂
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can be done on a state to state basis, by first finding the number of people leaving

a state through a binomial distribution

wi ∼ B(mi, 1− P̂i,i) (3.42)

then allocate them into its possible destination using a multinomial distribution

v−i ∼Mk−1(wi, P̂−i), (3.43)

where P̂−i represents the ith row without the ith element of P̂ and v−i is the flow

vector out of compartment i.

Forecasts generated using this formulation results in non–negative integers for all

roles and all forecasting time steps. This has a more natural interpretation when

compared to the forecasts generated using the truncated normal distribution (non–

negative reals). As mentioned previously in Section 3.2.3, the expected forecasts

are not integers while other common statistics (of a distribution) are.

3.5.2 Mixture of Historical Transition Matrices

The binomial formulation (Section 3.5.1.3) is a parametric model that uses the

same P̂i,i across all time. The hypothesis that transition probabilities are constant

or not can be verified using the contingency table test by Anderson and Goodman

(1957). Applying it to our data reveals that most of the elements in P are not

constant.

We extend the two weighted methods in Section 3.4 and introduce stochasticity

via the corresponding weighted empirical distribution. Given a weight vector w,

a sample from the empirical distribution can be expressed as a mixture with the

following stochastic representation

P∗ =
N−1∑
t=1

ztP†(t), Z = (z1, z2, . . . , zN−1), Z ∼MN−1(1,w). (3.44)

Estimation under the linear formulation (Section 3.3.1) for both the weight vector

ŵ and penalty α̂ are the same as the deterministic version (Section 3.4). This is

because we only need the expectation for a single step.

For the non–linear formulation (Section 3.3.2), the MSE curve over α can also be

multimodal for the stochastic version like the deterministic setup (Figure B.2).
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Given that there is only a single parameter, bounded by 0 and 1, it is feasible to

evaluate and obtain α̂ using say 100 equally spaced points, we denote this method

as SP. The forecasts generated using the expected transition matrix given α̂ can

be significantly different from the expected forecast obtained via Monte Carlo as

explained previously. Figure B.3 shows the difference in MSE over α between the

two, where the curves become similar as α → 0 and is identical when α = 0 as

both of them reduces to DL.

For the weights of (3.24), denoted as SW, we employ a direct search with a

generating set search algorithm (Lewis et al., 2007) using the MATLAB function

patternsearch. The initial value is obtained by finding the set of weights that

gives the lowest objective value out of a set of samples, which includes the vertices

as well as 100 random realizations sampled uniformly from the N − 2 simplex

(Rubin, 1981). Both the forecasts used in penalized and weighted estimation are

generated by taking the sample average of the Monte Carlo simulated forecast,

of 104 iterations, which approximates the expected value of the forecast. An

approximation is used here because computing all the realization requires too

much time.

Assuming that the N − 1 observed P†(t) are all unique, then there exists (N − 1)q

possible realization at the qth forecasting step. Although the empirical distribution

approach is time consuming in the estimation, it is significantly faster than the

Binomial formulation when generating the confidence interval for the forecast.

This is because the Binomial formulation requires a sample from both (3.42) and

(3.43) for each of the k−1 roles at each time step. On the other hand, the empirical

approach only need a P†(s), where s is a random integer from {1, 2, . . . , N − 1}.

3.6 Results

We compare all the models mentioned previously, the estimated matrices PEL

and PENL in Section 3.3 as well as the penalty DP and weighed approach DW

in Section 3.4. The results of both the I and W formulation are investigated, using

the actual observations of yJoin, yReturn for the forecast. All of these methods can

use either all N observation t0 = 1, q = N − 1 or the last 10 observations with

t0 = N − 10, q = 10 in estimation.

We have also considered the idea of using t0 = N − 10 for DW even though the

solution of (3.26) may not be unique due to rank deficiency. When this happens,
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Method W I
DL 149 149
DE 26 40

(a) Forum 353

Method W I
DL 90 90
DE 17 18

(b) Forum 256

Method W I
DL 218 227
DE 51 75

(c) Forum 264

Forum 353 Forum 256 Forum 264
t0 t0 t0

Method Formulation 1 N − 10 1 N − 10 1 N − 10

PEL
W 49 34 27 20 93 65
I 32 117 21 19 122 68

PENL
W 49 39 45 22 80 80
I 46 35 36 21 113 72

DPL
W 27 25 18 18 51 48
I 35 26 15 17 58 52

DPNL
W 27 25 16 17 51 47
I 37 26 16 16 63 53

DWL
W 25 27 18 19 49 50
I 29 30 18 19 54 56

DWNL
W 25 28 21 20 52 56
I 30 29 24 19 57 61

(d) MSE under different estimated methods

Table 3.2: Summary of error over 90 consecutive weeks for all methods, each
with a 10 week ahead forecast for three different forums. Both formulations of
the inactive users were used with initial observation in the estimation either at
m(1) or m(N − 10), where N is the total number of observed mass. Numbers
highlighted in green is the lowest MSE achieved between the methods under the

same number of observations.

we remove one of the repeated columns through a QR decomposition. The de-

terministic models (Section 3.3) will be examined first before moving on to the

stochastic models (Section 3.5).

3.6.1 Deterministic Models

The number of observations N changes as time progresses, i.e. for the 90 predic-

tions in consecutive week, N ranges from 20 to 110. The two baseline models, DE

and DL, only have one variant where all the observations were used. Summary

results in terms of MSE can be seen in Table 3.2, which are averages over the 90

consecutive weeks where a 10 steps ahead forecast was made at each of the 90

weeks. The baselines of DE and DL for forum 353, 256 and 264 are in Table 3.2a,

3.2b, 3.2c respectively, with the forecasts in Table 3.2d for all three. As seen in

Table 3.2, all the proposed methods were either similar or worse than DE in the
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Expected Transitions

Figure 3.7: MSE of different methods across time for forum 264.

W setting. Strictly speaking, comparison between I and W is unfair as the latter

depends on yReturn, which will be unobserved during the forecast. This is an issue

which will be revisited in Chapter 4 and Chapter 5.

On the other hand, most of the methods performed better than DE under the

I formulation and even outperformed the W formulation, contrary to DE. In

particular, DP and DW generally has better performance when t0 = N − 10.

This is because a community goes through changes as time progresses and using

the full observations ignores the local dynamic. When the full set of observations

were used for DP, the set of α̂’s obtained (in both I and W) were all very close

or exactly 1 most of the time under the non–linear formulation. Hence, it failed

to exploit the recent trend and ended up with an almost identical forecast to DE.

Furthermore, α̂ under the linear and non–linear formulation when t0 = 1 was

almost identical across all the 90 weeks attempted. This is due to the restriction on

the set of feasible solutions and
∥∥∥P̂L
† − P̂NL

†

∥∥∥2, the matrix norm on the difference

between the matrices under the linear and non–linear formulation, increases as

the model complexity increases. The MSE across time in Figure 3.7 shows the

difference between the linear and non–linear formulation, and the two diverge

with increasing model complexity, i.e. DP is a restricted version of DW because

a set of weights that correspond to any α value can always be found. Similarly,

the parameter space of DW is only a subset of PEL/PENL.
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Method W I
DL 5882 1225
DE 7613 1317

(a) All N

Method W I
DL 80 206
DE 74 204

(b) N up to 90

Method W I
DL 5020 4628
DE 32743 25220

(c) N from 91

All N N up to 100 N from 101
t0 t0 t0

Method Formulation t0 = 1 N − 10 t0 = 1 N − 10 t0 = 1 N − 10

PEL
W 2290 1186 128 90 9498 4838
I 2009 1113 83 80 8429 4556

PENL
W 7340 1124 181 88 31205 4581
I 6703 1434 110 90 28679 5913

DPL
W 2010 1189 75 63 8850 4942
I 3066 1615 74 66 13040 6779

DPNL
W 5130 1744 80 64 21967 7345
I 7208 2284 74 67 30990 9764

DWL
W 2135 967 74 70 9005 3956
I 2604 1308 79 74 11025 5421

DWNL
W 4272 1536 92 81 18207 6387
I 6050 1817 97 84 25886 7593

(d) MSE under different estimated methods

Table 3.3: Forum 50, with additional information after splitting the time
period at 90. Summary of error over 90 consecutive weeks for all methods,
each with a 10 week ahead forecast for three different forums. Both formulation
of the inactive users were used with initial observation t0 in the estimation at
either m(1) or m(N − 10), where N is the total number of observed mass at

the current week.

For a forum that has a sudden change in behavior, such as forum 50 (Figure

A.4), the predictability is low after the change (at approximately N = 100) as

seen in Table 3.3. When setting a cut off point at N = 100, the difference in

predictability of the two periods is evident in Table 3.3. The most successful

forecasts were produced by DL for the latter period. This shows that none of the

other methods adapted fast enough to the change of dynamics in the community.

All the methods did adapt to the local structure when t0 = N − 10 as it discarded

older observations before the shift in community dynamic occurred. An example is

to look at the changes of α̂ when using fewer observations, say by using t0 = N−5

instead of t0 = N − 10, which then shows that α̂ for the former is always lower for

time periods N > 100.

Figure 3.8 shows information on the number of new users joining and returning

for all the compartments apart from the inactive users, which instead shows the

number of inactive users and the total migration rate going out (1 − P0,0). Not
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only was there a sudden surge of new users as well a return of inactive users, they

also came through different compartments, i.e. changes in γJoin, γReturn. Even

though the number of in–samples steps determine how sensitive the model is to

recent trend, the effect of this will not be investigated further and the estimation

of α is tuned by using the same number of steps as the desired out–of–sample

forecasts which is fixed at 10.

In such scenario, it will be of major benefit if one can predict the change in

dynamics. Unfortunately, such prediction usually require deep insights to the

system and take into account many factors. The detection of shifts (in dynamics)

will also help in discarding irrelevant observations but it is out of the scope of this

thesis. We refer interested readers to the change point analysis literature; such as

Rabiner (1989), Chib (1998) and Poor and Hadjiliadis (2008).
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Forum 353 Forum 256 Forum 264
Method Formulation MSE Coverage MSE Coverage MSE Coverage

SB
W 26.74 95 17.77 95 50.72 95
I 40.48 94 17.20 95 74.56 94

SG
W 26.74 91 17.70 94 324.59 90
I 40.51 91 17.45 95 347.96 90

SP
W 29.24 89 21.95 86 58.79 85
I 29.73 88 16.77 92 65.20 85

SW
W 29.90 93 18.11 95 150.32 76
I 31.34 92 20.15 93 73.65 72

Table 3.4: Summary of error over 90 consecutive weeks for the three stochastic
methods as described in Section 3.5, each with a 10 weeks ahead forecast for

three different forums.

3.6.2 Stochastic Models

The performances of the three different stochastic methods described in Section 3.5

will be explained in detail in this section. The Gaussian, Binomial and penalized

methods described in Section 3.5.1.2, Section 3.5.1.3 and Section 3.5.2 are denoted

as SG, SB and SP respectively.

In addition to MSE, the quality of the forecast is also measured by the coverage,

defined as the percentage of out–of–sample observations that falls within the 95%

pointwise confidence interval of the mean forecast, constructed via a Monte Carlo

using J iterations, over all user roles and forecasted time steps.

Coverage = (qk−1)

q∑
i=1

k−1∑
g=1

1
{
m∗g,0.025J(t0 + i) ≤ mg(t0 + i) ≤ m∗g,0.975J(t0 + i)

}
(3.45)

Results were generated using the same set of observations points from the deter-

ministic formulation, see Table 3.4. As mentioned previously, SB is a simulation

version of a discrete time Markov chain that also provides the confidence interval.

Hence, the almost exact MSE of SB in Table 3.4 and baseline of Table 3.2. The

coverage of SB obtained is approximately 95% across all three forums, and none

of them fell lower than 70 throughout all 90 weeks.

For SG, the results were similar for two forums but Forum 264 also demonstrated

that this formulation can yield extremely poor results. This is because even though

the expected value of the estimated TUVN (3.34) should be similar to diag(E(P)),

it can be dramatically different when the observed transitions are either clustered
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near the boundaries or spread evenly across the support [0, 1]. In fact, only two

weeks produced very poor forecast in Forum 264 while the rest performed very

similarly to SG like the other two forums.

Although SG has a lower coverage than SB for the three forums in Table 3.4,

this is not always true because the variance of an TUVN is dependent on both

the mean and variance while the variance of a Binomial is p(1 − p). Although

the introduction of correlation did not change the sample mean of the resulting

forecasts, it did lead to a different set of confidence intervals that are narrower in

general.

Similarly for SW, forecasts for forum 264 were poor in certain weeks, different

from those of SG. The coverage for SW were also the lowest out of the proposed

methods for forum 264, due to the fact that the optimal weight vector ŵ had

the majority of the weights placed on only a few observations. Note that ŵ is a

minima that is not necessary global while α̂ is.

Both the MSE and coverage differ significantly for SP when compared to the other

methods. The coverage was inferior for both the W and I formulation, whereas

the MSE was only better when under the I formulation. Average coverage was

close to 90% in most cases, but a more detailed analysis revealed that it has huge

variability, anywhere from 10% to 100%. The amount of coverage follows closely

with α̂, given that as α→ 0, P̂→ P(t0) and the sample variance Var(P)→ 0.

We also considered the idea of using α̂L, the penalty estimated under the linear

formulation (3.31), to generate our Monte Carlo forecast but the results (in both

MSE and coverage) were worse nearly all the time. This is simply due to the fact

that the two sets of α̂ were significantly different. Similar to the deterministic

models, it fails to provide adequate forecasts when the forum undergoes sudden

change.





Chapter 4

Auxiliary Problem

4.1 Introduction

The models and results in the previous chapter (Chapter 3) assumed that we

have the observations for both the number of users joining (yJoin) and returning

(yReturn) to a community from inactivity, but in reality such information is not

available. Now, we turn our attention to making such predictions for both of

these unknowns.

As both yJoin or yReturn are non–negative integer sequential observations, obtained

at equally spaced time points, they can be interpreted as a Poisson process, similar

to say, the number of calls a telephone center receives in some fixed time period.

Serial correlation cannot be seen at the start of the time series but tends to ap-

pear with an increasing number of observations in most forums. Neither of them

seem to possess any (obvious) seasonal pattern, but Corr(yJoin, yReturn) is usually

statistically significant.

Unfortunately, low value observations (< 5 or even 0) are not uncommon so classic

time series analysis based on the Gaussian assumption seems inappropriate. Also

note that if a series of observations are generated from a Poisson process, they are

independent of each other by definition. The focus of this chapter is to introduce

models that predict Y = [yJoin yReturn] either univariately or simultaneously as a

multivariate response and is organized as follows.

First, we provide some generic and basic information of the Poisson family models

that sets the scene for the rest of the chapter. An overview of count data prediction

is presented in Section 4.2 before moving on to describe the univariate Poisson

57
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regression in Section 4.3. Section 4.4 then details the estimation procedures for the

simple Poisson regression, and the more popular version with regularization. The

case of an overdispersed Poisson, when the equal mean–variance assumption of the

Poisson fails to hold, is discussed in detail in Section 4.5. Both the univariate case

(Section 4.5.2) and the extension to the multivariate version (Section 4.5.4) will

be covered, where correlation between our response is modeled in addition to the

overdispersion. A simple state space model with a latent autoregressive process,

namely the AR(1), will be introduced in Section 4.5.3. Finally, the performance

of all the models discussed will be compared in Section 4.6.

4.2 Regression of Count Data

Count data occurs naturally where the observations belong to the set of non–

negative integers. The most common approach to model and predict such obser-

vations is to use regression. A regression model is based on the assumption that

y is the conditional mean E(y | X = x) of a bivariate distribution F (Y,X) given

µ(x), σ2(x) – functions on x for the mean and variance. The aim is to find a model

that relates the observation Y to µ(x). There have been many models developed

to model count data in both the (static) regression and the (dynamic) time series

setting, a summary can be found in Cameron and Trivedi (1998) and only a brief

introduction is provided here.

The Poisson distribution y ∼ P(λ) is the most common and obvious choice to

model count data as its support is defined by N. Regression using the Poisson

distribution assumes that log(λ) = x>β with regression coefficients β, a more in

depth introduction will be covered in Section 4.3. As the counts get large, the

Poisson can be approximated by the normal distribution y ∼ N (λ, λ) and the

standard linear regression may be appropriate. When the counts are small, simply

extensions by changing the basic assumptions of the Poisson regression like the

quasi–Poisson have been used, and will be covered in Section 4.5 together with

the Negative–Binomial model. In the case of excessive zeros, zero inflated Poisson

or the hurdle model provides ways to model the zeros separately to the Poisson.

For counts that are all larger than 4, Bartlett (1936) proposed to take the square

root of the observations so that they appear normal after the transformation.

Anscombe (1948) later derived
√

(Y + 3/8) using Taylor expansion under the aim

of stabilizing variance and Brown et al. (2009) used
√

(Y + 1/4) under the ar-

gument of minimizing bias. These are also known as “root–unroot” method and
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are useful because of the normality assumption on the transformed data and have

been used to tackle inhomogeneous Poisson process (Shen and Huang, 2008; Brown

et al., 2009). But care should be taken when regressing
√
y on x because the squar-

ing the prediction is not a monotonic transformation, i.e. the prediction
√
ŷ = −1

is bigger than any prediction −1 <
√
ŷ < 1. An alternative transformation is to

take the natural logarithm of Y and is especially useful when data is skewed. Due

to the fact that the log of 0 is not defined, some small value is usually added to the

observations before taking the log. Note that the predictions given by the direct

inverse of these transformations h(·) using the estimated regression coefficient β̂

are biased because

E(h(x>β̂)) 6= E(h(x>β̂ + ε)).

This can be demonstrated by the Lognormal case, X ∼ logN (µ, σ2), where

E(X) = exp(µ+ σ2/2) contains an additional term (variance contribution) in the

exponent compare to the direct inverse transform of h(·) = exp(·). Appropriate

techniques like using the Lognormal regression directly or the smearing estimate

of Duan (1983) should be used when considering transformation techniques.

Alternative count modeling, also based on Poisson process are available. For ex-

ample, “renewal equation” used in epidemiology (Fraser, 2007) assumes that the

next new observation comes from a Poisson distribution with the mean a weighted

average of past observations. The model carries an important idea in disease trans-

mission in that the number of new cases are dependent on the current number of

infected individuals minus those recovered. This idea is similar to the classic time

series models based on the Gaussian assumption but is not considered as a time

series model on discrete observations. Rather, time series models on count data

are usually understood in the literate (Jung et al., 2006) to be one of the two;

parameter–driven and observation–driven.

Parameter–driven models fall into the category of state–space models (Durbin and

Koopman, 2001) which also includes classic time series theories when observations

are of the Gaussian nature (Hamilton, 1994; Brockwell and Davis, 2009). For

non–Gaussian observations, a temporal dependency is constructed using a latent

autoregressive process that is independent of the observations, before transforming

into the range of the observations. In contrast, observation–driven models, as the

name suggest, use past observations to propagate the error forward. An INteger

AutoRegressive (INAR) model that uses the last p observations is defined as (Jin-

Guan and Yuan, 1991)

Xt = ψ1 ◦Xt−1 + ψ2 ◦Xt−2 + . . .+ ψp ◦Xt−p + εt, (4.1)
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where ψi ◦ Xt−i is the binomial thinning operator such that ψi and Xt−i defines

the probability and the observation of a binomial distribution respectively. The

error εt is a non–negative integer valued realization governed by some probability

distribution. When εt (4.1) comes from a Poisson distribution then it is known as

the Poisson auto–regression (Al-Osh and Alzaid, 1987; McCabe et al., 2011).

Unfortunately, the time series approaches we just described carry interpretations

that do not appear to fit our data. The renewal equation assumes that the number

of new users arose due to the influence of “recent new users” while observations

from INAR have a proportion of “past new users” remaining. Such interpretation

seems counterintuitive given our data and definition of new users. Therefore, we

will not pursuit them further in this thesis.

4.3 Univariate Poisson Introduction

Regressions that are based on the exponential family with density of the form (4.2)

are call Generalized Linear Model (GLM) which includes the linear regression. It

contains θ the parameter of interest, a(φ) the dispersion factor and y the obser-

vations with normalizing constant c(y, φ). Then differentiating (4.2) shows that

b′(θ) = E(y) = µ and in fact b(θ) is the cumulant that described the moment of

the distribution.

f(yi; θ, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(y, φ)

}
(4.2)

This formulation connects the linear predictor η to the response through a link

function g(y) = η, so that regression in the linear predictor η = x>β can be

transformed to the range of the response under the inverse link µ = g−1(η). The

dispersion φ is a measure of the model hypothesis and estimated using

φ̂ = (n− p)−1
n∑
i=1

(yi − ŷi)2

Var(ŷi)
, (4.3)

where n and p are the number of observations and covariates respectively. The

Poisson distribution is a member of the exponential family defined by a single

parameter λ with p.d.f.

f(y;λ) =
e−λλy

y!
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and the log–likelihood function

L(λ; y) ∝ y log(λ)− λ.

Matching the Poisson p.d.f. to (4.2), we get θ = log(λ) and b(θ) = λ with φ = 1.

Hence, g(·) = log(·) is known as the log link function and the linear predictor is

log(λ) = x>β. Fitting the model and estimation of β will be covered in Section

4.4. Given the estimated regression coefficient β̂, the most straight forward way

to quantify the fit of a GLM is the Deviance

D(y; ŷ) = 2 (L(y; y)− L(y; ŷ)) , (4.4)

two times the difference between the log–likelihood of the full and estimated model.

The scalar of 2 makes (4.4) equivalent to MSE for a normal model, so the deviance

is distributed as χ2. For other members of the exponential family, deviance is

asymptotically χ2. This allows model comparison between nested models using

likelihood ratio tests (McCullagh and Nelder, 1989) based on the χ2. Deviance

has also been used as a direct model comparison in Bayesian statistics (Spiegel-

halter et al., 2002) where the deviance (4.4) only consists of the estimated model.

It is especially useful when comparing model estimated using simulation based

methods, where model selection is done by comparing the Deviance Information

Criterion (DIC), commonly defined as

DIC = D(θ̄) + 2pD, (4.5)

where

pD = D̄ −D(θ̄) (4.6)

with D̄, θ̄ being the sample average of the deviance and the parameters from the

simulation. Like other covariance type penalty (such as AIC/BIC), the model with

a lower DIC is the favorable model and it penalizes overparameterization through

the effective number of parameters pD.

Goodness of fit on any model cannot be based on the likelihood alone. Information

on the residuals, such as the Durbin–Watson test (Durbin and Watson, 1971)

on autocorrelation and Cook’s distance (Cook, 1979) to detect outliers, provides

important assessment on the model fit. But unlike the normal model, the raw

residuals ei = yi − ŷ should not be used because the residuals should be normally

distributed. Furthermore, there is no strict definition on the source of error in other
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GLM and there exist many definitions of residuals. The most common adjustment

is the Pearson residuals

ePearson =
yi − ŷi√
Var(ŷi)

,

which is the raw over the standard deviation like the central limit theorem. Other

definition of residual like the deviance residual

eDeviance = sgn(yi − ŷi)
√
D(yi; ŷi)

where sgn(·) is the sign function, and the linear predictor residual

eLP =
g(yi)− g(ŷi)√
g′(µ̂i)2 Var(ŷi)

are also used to represent the different ways errors enter into GLM. Pearson resid-

uals is the most popular choice because it is required to estimate dispersion, where

φ̂ (4.3) is summed over the Pearson residuals squared divided by the model degree

of freedom. Therefore, it is readily available and is routinely used for model diag-

nosis, especially for models that uses a theoretical dispersion such as the Binomial

and Poisson.

The Poisson distribution has a mean–variance relationship, i.e. E(y) = Var(y) = λ,

hence the theoretical value of φ = 1 and deviation from that show signs of a poor

fit. As φ̂ scales with n− p, the model degree of freedom, a better model in terms

of deviance can yield higher dispersion.

4.4 Estimation Procedures

The basic linear regression y = Xβ + ε assumes that the response y has a linear

relationship with the linear predictor Xβ and the error ε, where E(ε) = 0,Var(ε) =

σ2. Finding the regression coefficients to the linear system is usually expressed

using the normal equation

β̂ = (X>X)−1X>y.

This is because it contains the Hessian (X>X) of the linear model which con-

tributes to the variance Var(β̂) = σ̂2(X>X)−1, where σ̂2 is estimated after finding

β̂. This is also known as ordinary least squares (OLS) and is a special case of the

generalized least squares (GLS) which assumes E(ε) = 0 and Var(ε) = Ω. The
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regression coefficients of GLS is obtained via

arg min
β

(y −Xβ)>Ω−1(y −Xβ).

and the solution can be shown (Hayashi, 2000, sec. 1.6) to have

E(β̂) = (X>Ω−1X)−1X>Ω−1y, Var(β̂) = (X>Ω−1X)−1. (4.7)

When Ω is a diagonal matrix, then it is also known as weighted least squares (WLS)

and both WLS/GLS are fundamental building blocks in the estimation of GLMs’.

We start off with the maximum likelihood estimation (MLE) in Section 4.4.1

before moving on to the Bayesian formulation that incorporate prior information in

Section 4.4.2. We also make the connection between the Bayesian formulation and

the so called shrinkage estimators through the Maximum–a–posteriori estimation

(MAP). Finally, we present simulation based estimation, namely Monte Carlo

Markov Chain (MCMC) which will be used in the latter part of this chapter when

the likelihood becomes intractable.

4.4.1 Maximum Likelihood Estimate (MLE)

The set of regression coefficients β in the linear predictor η can be found by max-

imizing the log–likelihood function (4.8) or equivalently, minimizing the negative

log–likelihood function.

L(θ; yi, φ) ∝ yiθi − b(θi)
a(φ)

(4.8)

Standard procedure to obtain β̂ is to use the Iterative Reweighted Least Square

(IRLS) algorithm (4.9), derived by using a Taylor’s expansion on the first derivative

of the log–likelihood (Hardin and Hilbe, 2007, sec. 3.3). Convergence check can

be performed on either the log–likelihood
∣∣L(t+1) − L(t)

∣∣ < ε or in the regression

coefficients
∣∣∣β(t+1)
p − β(t)

p

∣∣∣ < ε ∀ p for some tolerance value ε. As the name suggest,

β is estimated by performing a series of weighted least squares (WLS)

(z(t) −Xβ)>W(t)(z(t) −Xβ) (4.9)
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in the linearized version of the log–likelihood to obtain the updated β(t+1). Both

z(t),W(t) are in fact functions of β(t) here, defined as

zi = (yi − µi)g′(µi) + x>i β − offseti (4.10)

wi,i = (a(φ) Var(yi)g
′(µi)

2)−1. (4.11)

The variable offset in (4.9) can be thought to have a regression coefficient of 1

that provides the ability to incorporate prior knowledge into the fitting procedure.

In the Poisson case, offset is usually used to model the rate of a process because

ηi = x>i β + offseti becomes ex>
i βeoffseti , so the mean parameter exi>β = λi

describes the rate yi/e
offseti .

As (4.9) is a WLS, it is immediate that β at each iteration including β̂
MLE

, is

distributed according to

β(t+1) ∼ N (c(β(t)),H−1(β(t))),
c(β) = H−1(β)X>W(β)z(β)

H(β) = X>W(β)X
(4.12)

where H(β) is the expected Fisher information (4.13), usually denoted as I(β)

or more generally as I(θ). We use H(β) because it is also the expected Hessian,

variance of the log–likelihood gradient.

I(θ) = E

((
∂L
∂θ

)2 ∣∣∣ θ) (4.13)

An alternative is to use Newton–Raphson to estimate our parameters, which uses

the observed Hessian (4.14). Then the two formulations (4.13) and (4.14), are

in fact equivalent under a canonical link function which means that c(β),H(β)

can be obtained directly using the gradient and Hessian of the log–likelihood (4.8)

instead of evaluating (4.9, 4.10, 4.11)

I(θ) = − ∂2L
∂θ∂θ>

∣∣∣ θ (4.14)

Obviously, IRLS is a generic algorithm and it can be used to solved other types of

regression problem in addition to GLM. For example, the Least Absolute Deviation

regression, where the objective is to minimize |y−Xβ|, using the appropriate W, z

(Vanderbei, 1998, chap. 12).
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4.4.2 Maximum–a–posteriori (MAP)

The Bayesian formulation is based on Baye’s Rule (4.15) where a prior f(θ) is

placed on the parameter of interest such that the posterior f(θ | y) is proportional

to the likelihood f(y | θ) times the prior. The parameters in the prior distribution

are called hyperparameters which can either be fixed or estimated.

f(θ | y) =
f(y | θ)f(θ)

f(y)
(4.15)

The posterior can be obtained analytically for certain models i.e. in the case of

a linear regression. In the GLM setting, the MAP estimate is the mode of the

posterior and it can be obtained by extending the IRLS algorithm for those priors

with a first and second derivative. For example, if a Gaussian prior is placed on

β with hyperparameters b0,B0 as the mean and variance, the posterior is

f(β | y,X,b0,B0) ∝ f(y | β,X)f(β | b0,B0). (4.16)

Because we can write the likelihood as a WLS (4.9), which can be interpreted as

a normal distribution with covariance matrix W−1, (4.16) becomes

f(β | y,X,b0,B0) ∝ φ(z | Xβ,W−1)φ(β | b0,B0)

where φ is the normal distribution density function. Then take the natural loga-

rithm and ignore the covariance term (as they vanish in the derivative)

L(β | y,X,b0,B0) ∝ −
1

2

(
(z−Xβ)>(z−Xβ)

W−1 +
(β − b0)

>(β − b0)

B0

)
(4.17)

shows the addition of a prior to (4.8) is equivalent to adding pseudo observations

b0 with weights B−10 . Therefore, we can also write (4.17) in the form of (4.9)

‖W̃1/2(z̃− X̃β)‖2, z̃ = [z ; b0] , X̃ = [X ; Ip] , W̃ =
[
W ; B−10

]
which is a GLS as the weight matrix is no longer diagonal unless B0 is a diagonal

matrix. Therefore, finding the solution with the addition of a Gaussian prior is no

harder than a standard GLM. The regression coefficients are now distributed as

(4.18) (West et al., 1985; Gamerman, 1997) and it approaches the MLE solution
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as both b0,B0 → 0.

β ∼ N (c(β),H−1(β)),
c(β) = H−1(β)(X>W(β)z(β) + B0

−1b0)

H(β) = X>W(β)X + B0
−1 (4.18)

Both the hyperparameters do not have to be fixed, but estimated from the data

by iteratively going through the estimation of b0,B0 given β (Lindley and Smith,

1972). When the prior mean is assumed to be zero and the covariance is a scalar,

it can be shown that the estimation of (4.17) is equivalent to placing a restriction

on the squared norm of the regression coefficient, one of the popular shrinkage

methods.

4.4.3 Regularization Methods

Regularization methods aim to solve an ill–posed problem by favoring certain

solution. This idea in regression was first introduced in the form of ridge regression

by Hoerl and Kennard (1970) to find the least squares solution via

β̂ = (X>X + λI)−1X>y,

where λ is some pre–determined value. The first benefit of this is to make the ma-

trix (X>X+λI) diagonal dominant to ensure that it is invertible. The second is to

improve prediction as Stein (1956) and later James and Stein (1961) showed that

an unbiased estimator does not necessarily achieve the lowest MSE for the nor-

mal distribution. This can be seen from the Bias–Variance decomposition where

MSE = Variance + Bias2 (Narsky and Porter, 2013, sec. 5.6), and the addition of

λ is an attempt to lower the MSE by introducing bias into the estimation. The

third is to prevent overfitting because the effective degree of freedom increases as

λ increases (Hastie et al., 2009).

Ridge regression is in fact the same as (4.17) when the prior is the normal distri-

bution given that z(β) = y and W (β) = σ−2. Let B0 = τ 2I and b0 = 0, then we

can see that λ = σ2/τ 2 (Lindley and Smith, 1972). In the GLM setting, the ridge

estimator can be seen from a penalization point of view by letting b0 = 0, λ = B−10 ,

such that our objective function becomes

arg min
β
−L(β; y,X, φ) +

λ

2
‖β‖2. (4.19)
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Writing (4.19) in the equivalent form (4.20) shows that ‖β̂
Ridge
‖2 ≤ ‖β̂

MLE
‖2 and

they are only equal when t ≥
∑p

j=1(β̂
MLE

j )2. Hence, ridge regression is also known

as a shrinkage method.

arg min
β

−L(β; y,X, φ)

s.t.
∑p

j=1 β
2
j ≤ t

(4.20)

The same connection can also be made for another popular shrinkage estimator,

the Lasso (Tibshirani, 1996), where the penalty is applied to the L1 norm of the

parameters (4.21).

arg min
β
−L(β; y, φ) + λ‖β‖1 (4.21)

This is a popular method because it also acts as a variable selection method by

forcing components to zero (Hastie et al., 2009). The L1 penalty is equivalent to

placing a Laplace prior (4.22) on β, which can be seen from (4.21) by using the

same argument as the ridge. But the Lasso estimator cannot be incorporated into

the estimation of GLM as easily as the ridge, because ‖β‖1 is not differentiable

everywhere. Estimating (4.21) is a much harder optimization problem and many

methods have been proposed throughout the years, such as Tibshirani (1996);

Osborne et al. (2000); Efron et al. (2004); Lee et al. (2006); Park and Hastie

(2007); Goeman (2010); Friedman et al. (2010), in an attempt to not only estimate

a single λ, but for the whole path of λ ranging from 0 to some large value where all

β’s are zero. Selecting the appropriate λ is then quantified through some model

selection criteria such as Mallow’s Cp (Efron et al., 2004) or cross–validation (Park

and Hastie, 2007) to prevent overfitting.

f(x;λ) =
λ

2
e−λ|x| (4.22)

Although (4.18) only holds for a normal distribution prior, it is useful in MCMC

estimation. This is because random samples from other common priors, such as

the t–distribution and Laplace distribution, have a normal mixture representation

(Andrews and Mallows, 1974). Park and Casella (2008) used the mixture repre-

sentation to build up a hierarchical structure for the Laplace prior and performed

their estimations using MCMC. It is important to note that shrinkage is not ap-

plied to the intercept and usually on a standardized design matrix to ease the

interpretation of the regression coefficients as the magnitude becomes compara-

ble.
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4.4.4 Monte Carlo Markov Chain (MCMC)

Estimation of the parameter can also be thought of as making inference on the

posterior distribution, where the point estimate of MAP represents the mode of

the posterior. Let f(θ) be an unnormalized density function such that p(θ) =

f(θ)/
∫
f(θ)dθ is a probability density function. The main advantage of MCMC

is that it draws samples from f(θ) directly and therefore is able to make inference

on f(θ) even when the normalizing constant is unknown. Details of using MCMC

and the convergence theory behind it can be found in (Gelman et al., 2003; Robert

and Casella, 2005) so the following discussion will be brief.

The idea behind MCMC is to construct a Markov chain on the stationary distri-

bution π(·) that is the same as the posterior of the parameter. Each move on the

Markov chain corresponds to generating a new sample, and the moves must be

reversible, i.e. satisfying the detail balance condition

π(θ∗)q(θ∗, θ) = π(θ)q(θ, θ∗),

where q(θ, θ∗) is the transition density from θ to θ∗. Metropolis–Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) is a general algorithm that satisfies the

reversibility condition (Chib and Greenberg, 1995) by proposing a move θ → θ∗

with density q(θ∗ | θ) and accepting the move with probability

α(θ, θ∗) = min

{
p(θ∗)q(θ | θ∗)
p(θ)q(θ∗ | θ)

, 1

}
. (4.23)

A popular choice is to perform a random walk by using a symmetric distribution

such as the normal distribution with some covariance matrix V and the proposal

generated by θ∗ ∼ N (θ,V). This means that q(θ∗ | θ) = q(θ | θ∗) and they cancel

in (4.23), so only the evaluation of the likelihood is required. Selecting a suitable

covariance matrix V that explores the posterior well is a difficult task and usually

requires a lot of tuning, either manually or automatically through some adaptive

schemes such as those described in Roberts and Rosenthal (2009).

Gibbs sampling is a special case of the Metropolis–Hastings where the acceptance

probability is 1. It exploits the fact that a conditional distribution is proportional

to its joint distribution (without normalizing constant), and obtaining samples

from certain distributions are relatively straight forward. Therefore, it is suffice

to sample from each and everyone of the conditionals iteratively, see Casella and

George (1992) for a more in depth discussion.
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When there are multiple parameters of interest, θ = (X1, . . . , Xp) say, they can be

performed simultaneously on the full joint distribution f(θ) by making Metropolis–

Hastings move or a Gibbs sampling step if available. Although a Gibbs sampling

step may not exist for the full joint distribution, it may exist in the conditional

distributions. Let F be a set that contains all indexes for the parameters of interest

θ, A a subset of F with complement Ac such that A ∪Ac = F . Then there may

exist a Gibbs sampling step for the conditional f(XA |XAc), where A may consist

of multiple or a single element of θ.

The predictions can be generated within the MCMC scheme, which accounts for

both the inferred variance of the parameters and the model uncertainty. Let the

parameter of interest be θ and denote ypred as the prediction of y, then the posterior

predictive distribution is

f(ypred | y) =

∫
f(ypred | θ)f(θ | y)dθ, (4.24)

i.e. the integral of the likelihood function of ypred with respect to the posterior

distribution of the parameters θ. When making out–of–sample predictions, i.e. y+

is the unobserved response with observed covariates x+ and ŷ+ be the prediction

on our true value y+, then (4.24) can be written as

f(y+ | x+) =

∫
f(y+ | θ)f(θ | x+)dθ, (4.25)

where the again samples from (4.25) provides a summary of the distribution. Ob-

taining samples in regression for a member of the exponential family only re-

quires a few additional steps during the estimation stage, namely, at each iteration

t = 1, 2, . . . , J

1. Given samples β(t) and observation x+

2. Compute η
(t)
+ = x>+β

(t)

3. Sample from y
(t)
+ ∼ f(g−1(η

(t)
+ ))

where µ = g−1(η) is the prediction and f(·) the density of the distribution.
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Figure 4.1: Observed (blue) and predictions (red) by the fitted model of the
first 19 observations, using both the lagged and time dependent covariates

4.4.5 MCMC Estimation For Poisson Regression

As mentioned previously, regularization methods prevent overfitting by restricting

the contributions of the regression coefficients. We begin by briefly demonstrating

the benefit before moving on to describe the MCMC setup of a Poisson regression.

A total of 19 observations, the number of users returning to forum 353, was fitted

using 15 variables and the MLE version produced a near perfect fit, see left panel of

Figure 4.1. A standard t–test revealed that none of the β’s estimated under MLE

were significant even though three of the regression coefficients had an absolute

value larger than 30. When estimated under a Gaussian prior on the regression

coefficients with the variance parameter estimated via MCMC, only the trend/sea-

sonality remains. To make it more comparable, we find the MAP estimates by

using the point estimate λ = σ̂2, the sample average of the MCMC simulation.

The AIC for MAP is 57 (lower than MLE) while the significant reduction in the

effective number of parameters as it decreased from 16 to 6.2. Now, we turn to

the MCMC formulation and the sampling schemes of the parameter simulations.

For the Poisson regression, Albert (1992) tackled it using a quasi–likelihood for-

mulation and used Gibbs sampling at the mode of β. Gamerman (1997) used

(4.18) to perform a series of Metropolis–Hastings steps. Frühwirth-Schnatter and

Wagner (2006) used an approximate Gibbs sampling procedure through the use

of a finite normal mixture to represent log(λ), which is linear in terms of β. Chib

et al. (1998) used a t–distribution proposal with the variance evaluated at the
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mode of the conditional distribution at each iteration, while Martin et el. 2011

performed a random walk using a scaled covariance matrix at MAP.

For a standard Poisson regression, the only parameter of interest is β. From a

Bayesian perspective and the arguments in Section 4.4.2, we will also infer the

variance parameter by assuming b0 = 0,B0 = σ2I. It can also be written as

βj ∼ N (0, σ2) ∀j, (4.26)

and either one will be used depending on which provides the more compact expres-

sion. As mentioned in Section 4.4.3, this formulation is akin to the ridge estimator

but unlike the MAP estimation, we can use the conjugate prior

σ−2 ∼ Ga(a0, b0)

to infer the distribution of σ2 given some hyperparameters a0, b0. It is usually

performed using diffuse hyperparameters a0 = b0 = ε where ε is something small

like 0.001 such that the gamma distribution has an expectation of 1 and a large

variance. But this may be a poor choice and alternatives such as the lognormal

(Barnard et al., 2000) or uniform distribution as a prior has been used in the

literature (Gelman, 2006). A non–parametric estimate of σ2 can also be done using

an empirical Bayes technique (Casella, 2001) that only requires the evaluation of

the conditional expectation. Despite the alternatives, we use a diffuse conjugate

prior as it has the advantage of preserving a closed form posterior with a simple

Gibbs sampling step, which amounts to sampling

(σ−2)(t+1) ∼ Ga(a, b) (4.27)

where a = a0 + p/2 and b = b0 + ‖β(t)‖2/2. The same gamma prior is applicable

for the Lasso using the formulation of Park and Casella (2008) as

βj ∼ N (0, τ 2j ), τ 2 ∼ Exp(λ2/2), λ2 ∼ Ga(a0, b0). (4.28)

To sample the regression coefficients, we use the sampling plan in Zeger and Karim

(1991); Gamerman (1997), a Metropolis–Hastings steps based on (4.18). This is

because the posterior of β

f(β | y,X, σ2) ∝ fP(y | X,β, σ2)fN (β | σ2), (4.29)

does not have any close form solution for a Poisson density. But because the
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Poisson uses a canonical link function, one iteration of (4.9) is simply a Newton

step, where the gradient and Hessian are (C.5) and (C.6) respectively. Therefore,

we can evaluate c(β),H(β) directly given β(t) and (σ2)(t). The proposal β∗ is then

drawn from from (4.18) with transition probabilityN (β∗ | c(β(t)),H−1(β(t))). The

acceptance probability (4.23) at each iteration given the proposal is

min

{
N (β(t) | c(β∗),H−1(β∗))N (β∗ | b0,B0)

∏n
i=1 fP(yi | xi,β∗)

N (β∗ | c(β(t)),H−1(β(t)))N (β(t) | b0,B0)
∏n

i=1 fP(yi | xi,β(t))
, 1

}

with reverse transition probability computed using the proposal β∗. This is an

unconventional choice as a multivariate t–distribution (MV T ) (Chib et al., 1998)

is more commonly used as the proposing distribution,

β∗ ∼MV T (µ,V, v0) (4.30)

where µ is the mean, V0 the variance and v0 some pre–determined degree of

freedom, say 5 or 10. Then there are two common ways to find µ, both making use

of the information at the mode. Let the regression coefficients and variance at the

mode be βM and VM respectively, both can be found by a few Newton steps on the

conditional (4.29). The first is to let µ = βM which requires the calculation of the

transition probability q(·, ·). The second scheme omits the transition probability

via a reflect in the proposal with µ = βM − (β(t) − βM) (Chib and Greenberg,

1995; Chib et al., 1998) as it becomes a random walk, i.e. the forward transition

is
q(β∗,β(t)) = MV T (β∗ | βM − (β(t) − βM),VM , v0)

= MV T (β∗ + β(t) − 2βM | 0,VM , v0)

which is the same as the backward transition q(β(t),β∗).

We demonstrate the efficiency of the three sampling schemes mentioned previously,

IRLS – which samples from (4.18) and MVTM/MVTR that samples from (4.30)

at the mode and under reflection respectively. Define the inefficient factor as

Ineff = 1 +
∑∞

k=1 ρ(k) (Kass et al., 1998), where ρ(k) is the autocorrelation at lag

k. Taking the number of iterations, G, over the inefficient factor yields Effective

Sample Size (ESS), which is ESS = G/Ineff and is a common measure for the

efficiency in generating samples. The aim is to achieve as little autocorrelation in

the sample as possible, with ρ(k) = 0 for all k (i.e. Ineff = 1) indicating that we

have i.i.d. realizations.

Samples of β for number of users joining forum 353 using the first 100 observations

were generated using all 3 sampling schemes described above, the results can be



Chapter 4 Auxiliary Problem 73

Prior Method Ineff (min/max) Time Ineff × time

No Prior
IRLS 3.10 (1.90/4.21) 23.06 71
MVTM 4.07 (2.84/6.61) 27.60 112
MVTR 27.84 (13.84/53.49) 23.61 657

Normal
IRLS 2.39 (1.96/3.25) 24.21 57
MVTM 3.04 (1.91/4.77) 30.95 94
MVTR 24.08 (14.34/37.52) 26.87 646

Laplace
IRLS 3.78 (1.81/6.98) 24.78 94
MVTM 4.06 (2.43/9.54) 32.10 130
MVTR 25.26 (14.56/44.05) 26.18 661

Table 4.1: Forum 353 with first 100 observations. Demonstrating the differ-
ence in inefficient factor (Ineff) and the time taken (seconds) between the 3

methods for regression coefficients for 1× 105 iteration

seen in Table 4.1. The average Ineff between all p regression coefficient were

reported, as well as the maximum and minimum for the three schemes mentioned

above. The total time taken, for 1× 104 iterations as well as the total inefficiency

(denominator of ESS) can also be seen. It was found that for our data, sampling

using IRLS is about as efficient as MVTM but MVTR performed extremely badly.

When taking into account the time spent, IRLS had better performance as it is a

quicker procedure. This is because finding the mode requires a few extra Newton

steps, average of about 5 regardless of prior, compare to the two used in IRLS.

Taking these few extra Newton steps are relatively expensive, as it scales with the

number of observations and covariates. Autocorrelation plots in Figure C.1 for

the Gaussian prior and Figure C.2 for the Laplace prior again demonstrates that

MVTR was clearly inferior to the other two schemes.

4.5 Overdispersed Poisson

A common problem with count data is that the equal mean–variance relationship of

the Poisson is not satisfied. Overdispersion is the case when the estimated disper-

sion is higher than the theoretical value of 1. Conversely, underdispersion occurs

when it is under 1. We place our focus in the models that account for overdis-

persion because underdispersion usually occurs when there are excess amounts of

zero, a scenario that rarely occurs in our data. When the observed underdispersion

is not due to zeros, a simply quasi–Poisson can be applied when the counts are

not large and is usually a sign of overfitting by the model or the data being highly

predictable.
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A regression based approach (Cameron and Trivedi, 1990) can be used to test for

both under and overdispersion. Let α be a latent variable acting on h(ŷ) (usually

equal to ŷ or ŷ2, the quasi–Poisson and negative binomial model respectively) that

accounts for the extra variance, we test the hypothesis

H0 : Var(y) = ŷ

H1 : Var(y) = ŷ + αh(ŷ) (4.31)

The alternative model H1 can also be written as (y − λ)2 = y − αh(ŷ) + ε where

log(λ) = x>β̂ is simply the MLE prediction. This is a least squares with α as

regression coefficient without an intercept where a standard t–test applies. The

alternative model (4.31) also represents the general case of heterogeneity (4.32)

where the extra variability ui of yi is unaccounted for by our covariates xi.

Y ∼ P(λ̃), λ̃ = λU (4.32)

4.5.1 Quasi–Poisson and Negative Binomial

The most simple case of overdispersion (4.32) is when u = (1+α) which correspond

to h(ŷ) = ŷ in (4.31). This is referred to as the quasi–Poisson because the variance

differs by a factor of α relative to the standard Poisson. Some authors (Cameron

and Trivedi, 1998) also refer them as NB1 model as α is acting on ŷ, whereas

NB2 models refer to the case αŷ2. The most well known case of the NB2 model is

the negative binomial, also known as the Poisson–Gamma (PG) mixture (Cameron

and Trivedi, 1998, sec. 4.2.2) where the rate λ is distributed according to a Gamma

distribution.

With the introduction of covariates, the Poisson–Gamma is usually expressed in

the form of (4.33), where the Gamma distribution X ∼ Ga(a, b) is parametrized

with shape a and rate b such that E(X) = ab−1,Var(X) = ab−2.

yi ∼ P(λiui)

log(λi) = x>i β

ui ∼ Ga(γ, γ)

(4.33)

MLE estimation for both the NB1 and NB2 only require a change in the variance

function to accommodate the extra variance. Standard estimation procedures for

Poisson, described in Section 4.4.1, applies but with an extra parameter α. It is
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obtained initially through the estimated dispersion (4.3) as α = φ̂−1, then updates

as α(t+1) = α(t)φ̂(t) at each iteration, until φ̂ = 1 or within some suitable tolerance

when converged.

In MCMC, the posterior simulation includes the latent variables/missing data as

they are also generated at each iteration. This is known as data augmentation as

the introduction of “observed” missing data lead to a complete likelihood. For a

historical account, see Meng and van Dyk (1997) who also described its connection

with the EM–algorithm, the MLE estimation through the generation of the missing

data.

Our full set of parameters in the negative binomial model therefore becomes θ =

(β,u, γ), where u are the missing values.

f(β, γ,u | y) ∝ fP(y | β,u)fGa(u | γ)fN (β | b0,B0)f(γ) (4.34)

Sampling β under a Gaussian prior is the same as a standard Poisson regression

using the IRLS formulation as described in Section 4.4.5 as the regression coeffi-

cients are orthogonal to the other parameters, β ⊥ u, γ. The only difference is the

additional conditioning on u which means that λi becomes λ̃i = λiui for both the

gradient and the Hessian.

There is no natural (conjugate) prior for γ. Therefore we use a uniform prior

U(0, ub0) with ub0 something large say 1000. Since γ is the reciprocal of α (4.31),

a value of 100 corresponds to virtually no dispersion. Sampling the posterior of γ

f(γ | u) ∝ fGa(u | γ)fU(γ | 0, ub0) (4.35)

has to resort to either a random walk or slice sampling (Neal, 2003) as γ exists

in both parameters of the gamma distribution. Given that it is univariate and

bounded by 0, ub0, slice sampling appears to be a natural option because tuning

the sampler is not a necessity as it only changes the time spent for each iteration

and not the convergence.

Elements updates can be performed for the vector u given that ui ⊥ uj. As the

gamma distribution is the conjugate prior to the mean parameter λ of a Poisson

distribution, we have a Gibbs sampling step as the conditional posterior of u

f(u | y,β, γ) ∝ fP(y | β,u)fGa(u | γ) (4.36)
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is a compound of the Poisson and Gamma distribution. Let y ∼ P(λu) and

u ∼ Ga(a, b), then dropping the constants in (4.36) yields

f(u | y, a, b, λ) ∝ (λu)ye−λu

y!

ba(u)a−1e−bu

Γ(a)

∝ uy+a−1e−(b+λ)u,

which means that the next iteration of the dispersions can be generated by

u
(t+1)
i ∼ Ga(yi + γ(t), λ

(t)
i + γ(t)) ∀ i. (4.37)

given that a = b = γ.

4.5.2 Poisson–Lognormal (PLN)

Although the extra variance in the form αŷ2 is usually associated with the Poisson–

Gamma model, it is in fact a general result, see Appendix C.2. Therefore, the

heterogeneity can be of another form such as the log–normal distribution U ∼
logN (0, σ2). Because the covariates are linked with λ under a log function, this

has a very intuitive interpretation as

yi ∼ P(λ̃i)

log(λ̃i) = x>i β + vi

vi ∼ N (0, σ2).

(4.38)

Using the moments derived by Bulmer (1974)

kthmoment = exp

{
kµ+

k2

2
σ2

}
, (4.39)

the expectation and variance for the marginals of Y is readily available (by plug-

ging it into (C.3) and (C.4))

E(Y | X) = λe
σ2

2

Var(Y | X) = λe
σ2

2 + λ2eσ
2

(eσ
2 − 1).

So a Poisson–Lognormal is only equivalent to a standard Poisson when the Lognor-

mal distribution is degenerate, i.e. σ2 = 0, and it can only account for overdisper-

sion like the negative binomial. Using a Gaussian assumption increases the flexi-

bility of the model such as including an autoregressive structure (Section 4.5.3) or
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extends to the multivariate case (Section 4.5.4). But this flexibility comes at a cost

because using a Gaussian assumption means that there is no close form estimation

for (4.38) and its extension. Therefore simulation based technique like simulated

moments (Gouriéroux and Monfort, 1997), or more complicated techniques such

as importance sampling or MCMC are usually used.

When only the first two moments are specified, the variance of the dispersion

u can be estimated using a quasi–likelihood (McCullagh, 1983) which can also

incorporate a first order serial correlation, i.e. vt = ρvt−1 (Zeger and Qaqish,

1988). Special cases arise when the linear predictor of an exponential family is of

a Gaussian nature; a random effect model such as (4.38) or more generally a linear

mixed model (McCulloch et al., 2008) or a state space model when autocorrelation

exist (Durbin and Koopman, 2001).

The estimation process for the Poisson–Lognormal is similar to those described in

Section 4.5.1 for the Poisson–Gamma and the same procedure can be used for β.

The variance parameter σ2 that governs the dispersion v can be sampled easily if

a conjugate prior is used. Alternatively, we can assume that the overdispersion is

of reasonable magnitude and place a uniform prior with some upper bound ub0 on

the standard deviation

σ ∼ U(0, ub0). (4.40)

An upper bound of say 2 is suitable while preserving a proper posterior. This is

because σ = 2 corresponds to an overdispersion of α ≈ 3000 in the y2 term (4.31),

while α = 4.67 when σ = 1. So an upper bound of ub0 = 2 is relatively large,

given that σ > 1 brings the suitability of the model into question. Obtaining a

sample from (4.40) is simply (σ2)∗ ∼ s2/χ2(n− 1) where s2 =
∑n

i=1 v
2
i subject to

satisfying (σ2)∗ ≤ ub0 imposed by the prior bounds (Appendix C.3.2).

The same sampling scheme for each element of v is the same as β as vi ⊥ vj for

i 6= j. We use the IRLS sampling scheme where the parameters corresponding

proposal for vi (4.41) is found by swapping v and β in (4.18), i.e. let offseti =

x>i β and use (4.10, 4.11). Again, this can also be achieved by differentiating the

log–likelihood directly and obtain the gradient and Hessian (C.7, C.8).

v(t+1) ∼ N (c(v(t)),H−1(v(t))),
c(v

(t)
i ) = H−1(v

(t)
i )W(v

(t)
i )zi(v

(t)
i )

H(v
(t)
i ) = W(v

(t)
i ) + (Σ(t))

−1 (4.41)
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4.5.3 Poisson–Lognormal With Autoregressive (PLNAR)

As mentioned previously, the use of a Gaussian assumption in the latent noise v

allows it to extend the standard Poisson by introducing correlation in v. One of

them is serial correlation such as the AR(1) when y is a time series. To make

it explicit that our observations come from a time series, we write (4.38) with T

number of observations as

yt ∼ P(λ̃t), log(λ̃t) = x>t β + vt, t = 1, 2, . . . , T (4.42)

where the dispersions are

vt | v<t ∼ N (φvt−1, σ
2) for t > 1 (4.43)

and the first one being

v1 ∼ N
(
0, (1− φ2)−1σ2

)
. (4.44)

A benefit of including an autoregressive term is that future predictions are also

driven by the dispersion. It is commonly used with time varying covariates to

make multi step ahead predictions in a time series.

The serial dependence increases the complexity of the estimation and requires

more advanced simulation based methods such as a Monte Carlo EM (Chan and

Ledolter, 1995), importance sampling (Jung et al., 2006) or MCMC (Yu and Meng,

2011). Although the autoregressive process can be extended to an arbitrary, of

p order, only the estimation of an AR(1) is of interest here as explained later in

Section 4.6.

Sampling of the dispersion is similar to the Poisson–Lognormal, but now the con-

ditional posterior is

f(vt | v−t, φ, σ2,β, yt) ∝ fP(yt | vt, φ, σ2,β)fN (vt | v−t, φ, σ2), (4.45)

where v−t is the vector of v without the element vt. The conditionals are not the

same as (4.43, 4.44) because the conditional of vt+1 and vt+2 is dependent on vt and

vt+1 respectively. So a p order autoregressive model (4.45) requires conditioning

on both sides that involves terms up to vt−p, vt+p. Although the conditionals

of the dispersions are now different to the Poisson–Lognormal, the marginals of

the dispersion are vt ∼ N (0, δ2) where δ2 = (1 − φ2)−1σ2 and is equal for all t.

The corresponding full joint distribution of v is a multivariate normal with zero



Chapter 4 Auxiliary Problem 79

mean and covariance matrix with diagonals as δ2 and autocovariance in the off–

diagonals. The conditionals can then be obtained from the full joint distribution

(see Appendix C.4) through a double sided conditioning up to the pth order, which

is 1 in this case. For t = 2, . . . , T − 1, the conditional prior of the dispersions are

vt ∼ N
(
φ(vt−1 + vt+1)

1 + φ2
,

σ2

1 + φ2

)
(4.46)

where the first and last dispersion are

v1 | v2 ∼ N (φv2, σ
2), vT | vT−1 ∼ N (φvT−1, σ

2), (4.47)

and they represent the fN (·) contribution in (4.45) where the Poisson part fP(·)
is simply

fP(yt | vt, φ, σ2,β) ∝ − exp
{
x>t β + vt

}
+ ytvt.

Updates are performed by making single moves through v1 to vT , but this can

equally be done in the reverse order by going from vT to v1. Although they can

also be performed using the IRLS update (4.41), there is no speed advantage using

the IRLS over a t–distribution proposal. This is due to the fact that the vt’s are

only single dimension variables, unlike β and v in the PLN model (4.38) which

updates as a block.

Both the autocorrelation and the variance parameter only depend on v. So the

variance σ2 can be sampled using the same uniform prior with an upper bound

like the Poisson–Lognormal. As φ ∈ (−1, 1) is a necessary condition for an AR(1)

process to be stationary, a flat (proper) prior is a suitable (and commonly used)

choice instead of a normal distribution. We sample the variance using a Gibbs

step

(
T∑
t=2

(vt − φvt−1)2 + (1− φ2)−1v21)σ2 ∼ inv–χ2(T − 1).

while using a Metropolis–Hastings step for φ by first generating φ∗ via

φ∗ ∼ N (φ̂, ŝ−1σ2)1 {φ∗ ∈ (−1, 1)}, φ̂ = ŝ−1
T∑
t=2

vtvt−1, ŝ =
T−1∑
t=1

v2t ,

and accept with probability

min

{
N (v1 | 0, (1− (φ∗)2)−1σ2)

N (v1 | 0, (1− (φ(t))2)−1σ2)
, 1

}
.
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For the details and the origin of these equations, see Appendix C.4.2.

4.5.4 Poisson–Multivariate Lognormal (PMLN)

When the dispersion takes the form of a normal distribution, it can be easily

extended to the multivariate case. A multivariate Poisson response of k dimension

(Aitchison and Ho, 1989) is written as

Yi,j ∼ P(λ̃i,j)

log(λ̃i,j) = x>i βj + vi,j

vi ∼ Nk(0,Σ) ∀ i.
(4.48)

This was used by Chib and Winkelmann (2001) to model health care utilization

and airline incidents, who also investigated the scenario when the dispersion vi

follows a multivariate t distribution. We simplify the notation here by assuming

that the same design matrix X is used for all k response. Let σi,j = Σi,j, the

correlation between the response i, j is

Corr(Yi, Yj) = E(Yi)E(Yj)(exp {σi,j} − 1). (4.49)

Alternatively, modeling count data with multiple responses can also be formulated

as a multivariate Poisson (Johnson et al., 1997), where the correlation structure

is built using an additional independent Poisson. For the simplest bivariate case,

(Y1, Y2) ∼ BiP (λ1, λ2, λ0), it has a latent variable representation with three inde-

pendent Poisson Zi ∼ P(λi), i = 0, 1, 2,

Y1 = Z1 + Z0

Y2 = Z2 + Z0

such that Z0 = Cov(Y1, Y2). This allows the introduction of covariates to the

latent variable Z0 that may reveal information regarding the correlation between

Y1, Y2. Jung and Winkelmann (1993) performed maximum likelihood estimation

on a bivariate Poisson using Newton’s method. Tsionas (1999) implemented the

Bayesian version using MCMC, the MLE equivalent via the EM–algorithm (Karlis

and Ntzoufras, 2003) have also been used. A more flexible covariance structure

was implemented by Karlis (2003) through the introduction of additional latent

Poisson into the model. But the problem is the restriction that the Poisson random

variable Z0 ≥ 0 by definition, which means that it lacks the ability to model
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negative correlation unlike (4.49). Similarly, the same is true for the multivariate

Poisson–Gamma mixture where it can only model a positive correlation (Nelson,

1985; Schmidt and Rodriguez, 2011).

The correlation contribution from (4.49) does not only depend on the standard

deviations. It exhibits a negative correlation when either σi,j < 0 or E(Yi)E(Yj) <

0, but because σi,j depends on the size of σi and σj, this model relies on the data

being overdispersed as well as modeling Σ accurately. The conjugate prior for

the covariance of a normal distribution is the inverse–Wishart distribution, but is

well known to have problems; the impact on the correlation due to the strength

of the variance (Barnard et al., 2000), and the bias that it introduce (O’Malley

and Zaslavsky, 2008). Therefore we use the separation strategy of (Barnard et al.,

2000) and model the covariance as

Σ = diag(σ)R diag(σ)

by assuming independence between standard deviation and correlation with sep-

arable independent prior f(σ,R) = f(σ)f(R). Unfortunately, σ cannot be sam-

pled using the schemes mentioned previously in Section 4.4.5 when the same prior

σj ∼ U(0, ub0) ∀j is used. This is because the conditional

f(σ,R | v) ∝ fN (v | σ,R)f(σ)f(R) (4.50)

consist of a multivariate normal and changing an element of σ also changes Σ. We

turn to a Metropolis–Hastings update using a uniform random walk, σ∗j = σ
(t)
j +

δs, S ∼ U(−0.5, 0.5) with δ being a scaling factor that is adjusted during the burn–

in period. For the (non diagonal) elements of R, we employ a proper joint uniform

prior f(R) ∝ 1 and sample using slice sampling. This was preferred instead of

a random walk given that the bounds of the conditional distribution (which is

narrower than Ri,j ∈ [−1, 1], the natural bound) can be obtained analytically

(Barnard et al., 2000, sec. 5).

Alternatively, using the knowledge that a k–dimension multivariate normal ran-

dom variable is generated using a deterministic transformation on k uncorrelated

standard normal realizations (Devroye, 1986), we can write the dispersions as

vi = diag(σ)R1/2ξ, ξ ∼ Nk(0, I). (4.51)
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10/06/2010 - 16/06/2010

Predicting covariates

16/06/2010

Current time

24/06/2010 - 30/06/2010

Prediction at lag 2

06/05/2010 - 02/06/2010

Training covariates

20/05/2010 - 16/06/2010

Training response

Figure 4.2: Example regression for a lag of 2 using lagged exogenous regressors

The joint posterior of σ,R can now be written as

f(σ,R | y,X,β, ξ) ∝
n∏
i=1

k∏
j=1

fP(yi,j | exp
{
x>i βj + vi,j

}
)f(σ,R), (4.52)

which consist of the Poisson likelihood without the Gaussian component. These

two formulations, (4.52) and (4.50), are referred to as “ancillary augmentation”

and “sufficient augmentation” respectively by Yu and Meng (2011) because of the

role the missing values v play in the posterior of σ,R. Experimentation (Figure

C.3 for example) shows that the parameterization of (4.52) is much more efficient

in our model for both σ and R.

4.6 Results

We compare the models described previously by comparing their DIC over time as

well as their predictive performances. To make predictions for future yJoin, yReturn

more than one week ahead using static regressions, we make use of lagged regres-

sors. We construct a design matrix X for the q forecasting steps at time t0 using

observations of those in Table 4.2 at t0 − j where j = 1, . . . , q. So we assume

that the number of new users joining at time t0 + 1 is dependent on the covariates

observed at time t0 upon discretization. To produce the jth step ahead prediction

given the current observation at t0, we use the lagged covariates j steps behind t0

for the model estimation stage and use the current observations xt0 for prediction,

i.e. yt0+q = x>t0β. Therefore x0 is used for the prediction of all q steps. This is

demonstrated in Figure 4.2 where we use covariates that are 2 lags behind the

current observed time t0, X = (x1,x2, . . . ,xt0−2) against y = (y1+2, y2+2, . . . , yt0)

to estimate our model, the prediction for the number of users joining and returning

at t0 + 2.

The variables in Table 4.2a were selected because they all seem to be naturally

linked to how many users may join a community: the number of active users reflect
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# of active users
# of active threads
# of messages
# of new threads created
# of points awarded

(a) Lagged Covariates

cos(2πt/(52/2)) sin(2πt/(52/2))
cos(2πt/(52/4)) sin(2πt/(52/4))
cos(2πt/(52/8)) sin(2πt/(52/8))
cos(2πt/(52/13)) sin(2πt/(52/13))
cos(2πt/(52/26)) t

(b) Time Covariates

Table 4.2: Variables thought to be useful in predicting the number of users
moving in and out of communities

the size of the community and a larger community tends to attract people (non

users), the number of active threads and messages posted shows interest level,

and new threads represent fresh information which other people (non users) may

find useful. Alternatively, we can use a set of covariates that depends on time

(Table 4.2b). Let t = (1, 2, . . . , T ) be a vector with length equal to T number

of observations, then our time covariates consist of t and trigonometry functions

cos(2πt/(52/i)), sin(2πt/(52/i)) for a set of suitable i, say 26, 13, 8, 4, 2 that enable

us to model possible seasonality in the data over both the long and short term.

Obviously, sin(2πt/2) is not suitable because it is equal to 0 for all t and it was

not used.

4.6.1 Quality of Fitted Models

First, we compare the DIC between methods and the two proposed sets of covari-

ates. Three different versions of the prior were tested: a fixed prior (4.26) with

σ2 = 100, the variance σ2 inferred via (4.27) is denoted as L2 and the Laplace

prior (4.22) with λ estimated via (4.28) denoted as L1. We denote the straight

Poisson, Poisson–Lognormal and Poisson–Gamma as P, PLN and PG respectively.

The combined DIC of yJoin and yReturn was also calculated and will be used to

compare against the PMLN model later. Before that, we look at the performance

of the two sets of covariates, see Table 4.3.

The results were generated over the same 90 week period as seen in Chapter 3

and the average DIC per observation of forum 353 can be seen in Table 4.3. Even

though none of the yJoin and yReturn’s were deemed to be overdispersed when using

the lagged covariates, 76 and 74 out of the 90 weeks had φ̂ > 1 for yJoin, yReturn

respectively. This is not the case for the time covariates where 31 achieved a p–

value lower than 0.05 for yJoin for the hypotheses test for overdispersion described

in Section 4.5 with 79/90 weeks had φ̂ > 1. For yReturn, 54 weeks had φ̂ > 1 with

none not them being statistically significant at the 0.05 level
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Lagged Covariate Time Covariate Combined
Method Prior yJoin yReturn yJoin yReturn yJoin yReturn

P
Fixed 5.9331 3.7805 6.1818 3.7127 6.1275 3.7943
L2 5.9316 3.7699 6.0993 3.6183 6.0241 3.7290
L1 5.9296 3.7734 6.0967 3.6260 6.0007 3.7156

PLN
Fixed 5.9427 3.7783 6.1089 3.7381 6.1259 3.8213
L2 5.9406 3.7664 6.0320 3.6376 6.0141 3.7480
L1 5.9380 3.7629 6.0284 3.6401 6.0001 3.7276

PG
Fixed 5.9273 3.7756 6.1177 3.7132 6.1177 3.7983
L2 5.9257 3.7662 6.0429 3.6182 6.0122 3.7299
L1 5.9234 3.7621 6.0392 3.6215 5.9918 3.7103

Table 4.3: The average DIC per observation over 90 weeks for both the number
of users joining and leaving for forum 353 using different methods and priors

Prior
Fixed L2 L1

Lagged Covariates 9.7033 9.7017 9.6972
Time Covariates 9.7445 9.5829 8.9005
Both Covariates 9.8073 9.5848 8.5642

Table 4.4: The average DIC per observation averaged over 90 weeks using
PMLN that model both yJoin and yReturn simultaneously with different prior

for forum 353

We can see from Table 4.3 that the lagged covariates performed better than the

time covariates for yJoin and the exact opposite for yReturn. Both the regularization

methods had lower DIC than a fixed prior, as expected, with L1 version dominating

L2 in most of the cases. Although PG appears to perform better than PLN, a more

detailed look into the individual weeks revealed that neither model dominated

the other and it depends on the level of dispersion. When there is significant

overdispersion i.e. tested significant at the 0.05 level, then PLN has lower DIC

than PG and showing the flexibility of the Gaussian assumption. But whenever φ̂

is lower than ≈ 1.1 then PG provides the better fit. Also, P with regularization is

the best when φ̂ < 1 in comparison with the two overdispersed model as expected.

Obviously, we can leverage both sets of covariates in Table 4.2 by combining

them together. But it failed to perform any better for both yJoin and yReturn.

Furthermore, the fit for yReturn at earlier weeks were nearly perfect (see Figure

4.1), and the overparameterization led to convergence issue for the models without

regularization. This was because Var(β) was extremely large, so the proposals

were all very far away from the mode and the current value. Using both set of

covariates tended to improve model fit as the number of observations increased,

but only marginally.
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Prior
Fixed L2 L1

yJoin 5.9301 5.9257 5.9218
yReturn 3.7422 3.6479 3.6521

Table 4.5: The average DIC per observation over 90 weeks using the PLN–
AR(1) model under different prior for forum 353

Modeling of both the responses together was also attempted, again with the three

different priors. Separate variance parameters for each response were estimated

in the L1 and L2 setting. We can see that modeling both Y = [yJoin yReturn]

simultaneously using PMLN (Section 4.5.4) yield a lower DIC when compared

combining the two separate models, i.e. min(yJoin) ≈ 5.9 and min(yReturn) ≈ 3.6

in Table 4.3 and they added up to 9.5. This was also true in some cases where

neither of the responses were overdispersed. More importantly, it was not just the

combined DIC that got smaller, but also individually for each response suggesting

that the correlation should not be ignored.

This would seem rather obvious when looking at the residuals from a standard

Poisson, which were correlated nearly all the time. Furthermore, there was a

difference between the dispersion estimated under a model under regularization

and one without. Since a regularized model is more conservative in the fit, it

usually has a higher dispersion (but not guaranteed to be overdispered) than the

one obtained from the MLE. As the dispersions were effectively there to model

the remaining error not captured by the covariates, an overdispersed model under

regularization provided an opportunity for PLN/PG to improve the fit. In the

cases where there were significant correlation between the residuals of the two

responses, PMLN was able to exploit this artifact and improved even further.

It is unsurprising then that PLN–AR(1) failed to provide a better fit overall as

the residuals did not usually exhibit autocorrelation, even though they did in the

actual observations. The introduction of the covariates was able to account for the

autocorrelation, especially for yReturn where it was obviously there exist some sort

of seasonality given the impact of the time covariates. The DIC of the PLN–AR(1)

model can be seen in Table 4.5, and when looking at the result carefully, it could

be observed that the average deviance was virtually the same as PLN but now

pD (the effective number of parameter) has increased. Difference between PLN

and PLN–AR(1) decreased as the number of observations increased, because the

degree of freedom has also increased and the covariates no longer captured the

time effects accurately.
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P PMLN PLN–AR(1)
Lagged Combined Lagged Combined Time

yJoin yReturn yJoin yReturn yJoin yReturn yJoin yReturn yJoin yReturn
304.4 66.5 306.9 69.5 319.0 63.6 318.9 64.2 307.6 54.7

Table 4.6: The MSE (top) over a 10 weeks ahead forecast averaged over 80
weeks for both the number of users joining and leaving for forum 353 using

different methods and priors

4.6.2 Out–of–Sample Performance

For the predictive ability of the models, we compare the MSE for the out–of-

samples observations. The mean prediction (sample averages of the inferred pa-

rameters) usually does not give the best performance nor is it necessarily represen-

tative of the predictive distribution. Instead, we use the median of the simulated

predictions as our point prediction (Barbieri and Berger, 2004), where the full set

of simulated samples will be inserted into the compartment model in the next

chapter.

The PLN–AR(1) model used the time covariates and made a 10 weeks forecast,

while the static regression models were trained separately, one for each of the 10

predictions. Only PMLN was tested because PLN is a special case when correlation

do not exist. If we used the same time period as Chapter 3 to perform a 10 weeks

ahead prediction, the first week at N = 20 using the static regression has only 10

observations at lag 10 with 19 at lag 1. This meant that we had more variables than

observations when both the lagged and time covariates were used (16 in total),

and the predictions were way off the actual observations so we omitted them from

the results. Instead, we started at N = 30 and ran through the remaining 80

weeks. All the models were inferred under a Laplace prior.

The averaged results can be seen in Table 4.6, with the lagged and combined co-

variates shown because the time covariates were not competitive at all for yJoin.

Although the PMLN provided the better fit, the predictive power was not as im-

pressive as demonstrated in Table 4.6. The addition correlation in PMLN improved

the predictions of yReturn while the reverse was true for yJoin. The PLN–AR(1)

surprisingly had a good performance for yReturn even though autocorrelation was

rarely observed but failed to improve yJoin.

The time series and density plot of the 80 consecutive predictions can be seen in

Figure 4.3 and Figure 4.4 respectively. Figure 4.3 clearly shows that PLN–AR(1)

had the lowest averaged MSE and higher number of lowest MSE for yReturn. Using
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Figure 4.3: Time series plot for the out–of–sample MSE for both yJoin and
yReturn over the 80 weeks for forum 353. All three models are under a Laplace

prior.

both sets of covariates yielded better prediction apart from a 20 week period

starting from week 50. Density plot of the MSE showed that PLN–AR(1) had

the lowest variance in addition to the mean. A straight Poisson using the lagged

regressors had the lowest MSE in terms of the mode, and the minimum MSE

achieved over the 80 forecasts.

On the other hand, there was no clear winner for yJoin. The combined set of

covariates performed similarly to the lagged covariates for most of the weeks, es-

pecially from week 73 onwards where there was virtually no difference. The biggest

difference was seen from approximate week 50 to week 73, where the combined

set of covariates performed the best from week 50 to week 62, then had the worst

performance between the three models. Density plot in Figure 4.4 showed that the

lagged covariates had the least variance and the MSE of the modes was smallest

of the three. Like yReturn, using more covariates again failed to increase the pre-

dictive power, where a higher MSE was observed for both the mean and the mode.

The almost identical MSE curve at the last quarter of Figure 4.3 suggests that the

difference may be due to overfitting, given that the number of observations, hence

the degree of freedom, increases as time progresses.
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Figure 4.4: Density plot for the out–of–sample MSE for both yJoin and yReturn
over the 80 weeks for forum 353. All three models are under a Laplace prior.

4.6.2.1 Summary

Given that there were no obvious autocorrelation structure in the latent variables

and the time covariates were not useful in the predictions of yJoin, we assumed

that the lagged variables will be sufficient for prediction. PLN–AR(1) predicted

yReturn well where the additional autocorrelation structure increased the predictive

power. This could be compared to the migration rates of the compartment model

where the total rates going out of the inactive compartment were also autocorre-

lated. So instead of modeling the autocorrelation in the migration rate, which was

problematic because of the constraints, we have switched to modeling the actual

user counts.

The PLN–AR(1) model is more flexible and includes the PLN, which is a spe-

cial case when the autocorrelation coefficient φ = 0. Therefore, the PLN–AR(1)

should always be attempted when there exist overdispersion. Introducing the au-

tocorrelation structure effectively overparameterizes the model, and hope that a

first order process captures enough useful information if it exists. This approach is

similar to classic time series analysis where the order of an AR model is estimated
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base on expanding the autocorrelation structure because φp+1 has a theoretical

value of 0 for an AR(p) model.





Chapter 5

Main Results

5.1 Introduction

In this chapter, we consider the full forecasting problem. That is to say, we

make forecast for a finite number of time steps using the compartmental models

described in Chapter 3 given the predictions on the number of users joining a

community based on the methods in Chapter 4 at the corresponding future time

points. The alternative formulation that makes use of the predictions on the

number of users returning from inactivity will also be tested and compared against.

From the observations in Section 4.6, predictions of yReturn are made either using a

straight Poisson or PLN–AR(1) Section 4.5.3, both under a Laplace prior. When-

ever there is overdispersion, we use the PLN–AR(1) and a straight Poisson when it

is not overdispersed. It is the same for yJoin but the PLN model is used instead of

PLN–AR(1) because the lagged covariates were better suited. For the determinis-

tic models, we use the median of the predictive distribution (4.25) while drawing a

sample at each updating step (3.21) of the forecast for the stochastic models. The

realization of a stochastic transition matrix P is the same as Section 3.6, which is

based on one of the models introduced in Section. 3.5.1.2, 3.5.1.3, 3.5.2.

We also introduce another stochastic baseline here, where forecasts are made by

drawing from the empirical distribution of the transition matrices uniformly. This

is equivalent to SP (Section 3.4) when α = 1, we denote this baseline as SE.

91
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Method W I
DL 177 175
DE 45 73

(a) Forum 353

Method W I
DL 94 95
DE 29 26

(b) Forum 256

Method W I
DL 256 263
DE 72 122

(c) Forum 264

Forum 353 Forum 256 Forum 264
t0 t0 t0

Method Formulation t0 = 1 N − 10 t0 = 1 N − 10 t0 = 1 N − 10

PEL
W 60 52 36 28 107 83
I 53 135 31 25 79 262

PENL
W 65 56 52 29 91 100
I 64 58 45 26 124 99

DPL
W 44 52 28 25 74 75
I 65 51 24 23 95 81

DPNL
W 45 50 28 24 72 73
I 69 51 24 23 104 84

DWL
W 43 52 29 26 71 79
I 55 53 27 26 82 87

DWNL
W 44 54 32 27 70 85
I 54 54 34 25 83 92

(d) MSE under different estimated methods

Table 5.1: Average MSE of the out–of–sample forecast error over 90 con-
secutive weeks for all methods, each with a 10 weeks ahead forecast for three
different forums. Both formulations of the inactive users were used with initial
observation t0 in the estimation at either m(1) or m(N − 10), where N is the

total number of observed mass.

5.2 Results

The result of the deterministic formulations can be seen in Table 5.1 and the

stochastic formulations in Table 5.2. The baselines outperformed nearly all the

proposed models under the W formulation, but most of the proposed model per-

formed better than the baseline under the I formulation.

When t0 = N − 10, MSE under both the W and I formulation were very similar

through time, an example that shows the MSE through time for SP can be seen in

Figure D.1. For both the weighted and the penalized method, the quality of fore-

casts by the I formulation had effectively been pulled towards the W formulation,

such that the error are approximately the same, if not better.

As expected, both the baseline and our forecast have higher MSE than Table 3.2

where the actual observations of yJoin, yReturn were used. The baseline MSE were

≈ 1.5 times higher when predictions of the external factos were used in (Table 5.1)
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Forum 353 Forum 256 Forum 264
Method Formulation MSE Coverage MSE Coverage MSE Coverage

SE
W 42.81 95 30.37 94 73.77 94
I 73.84 93 22.25 98 124.65 93

SB
W 43.20 97 26.58 95 75.08 90
I 72.94 96 26.75 95 122.32 89

SG
W 43.36 91 26.53 94 348.48 95
I 73.04 91 26.04 94 394.24 96

SP
W 47.58 93 24.44 90 76.55 92
I 50.74 90 16.26 98 84.09 91

SW
W 55.94 90 25.49 95 182.85 74
I 64.02 90 27.23 93 120.86 71

Table 5.2: Summary of error over 90 consecutive weeks for the three stochastic
methods as described in Section 3.5, each with a 10 weeks ahead forecast for

three different forums.

place of the actual observations (Table 3.2). But the affect of the external factors

depends on the proposed model, i.e. the method of obtaining P̂.

In the deterministic approach, the MSE increased consistently when the predicted

external factors are used when P̂ are estimated based on either the weighted or

penalized method. The biggest change in MSE was found in PEL and PENL,

with the former even yielded an overall lower MSE such as the case for forum 264

under the W formulation.

Modeling the inactive users in a compartment usually results in a lower MSE for

the stochastic models (Table 5.2) and not for the deterministic models (Table

5.1). In fact, the MSE by the stochastic model is similar to the deterministic

model for all 3 forums even when the forecasts (for each of the roles) are different,

i.e. Figure D.3 where the MSE for DP and SP under the W formulation are 104,

116 respectively.

Similar to Section 3.6, SG has shown that the forecast can be of poor quality

(Forum 264), while the penalized method makes the performance between the

two formulations comparable, see Figure D.2. The coverage on the other hand is

nearly always higher when using parametric models. We show in Figure 5.5 how

the parametric based SB compare against the of the empirical models in SE and

SP.

It should be noted that coverage (3.45) is defined to have a target value of exactly

95%. Therefore, any deviation from 95%, even when it is higher, can be considered
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Method Forum 353 Forum 256 Forum 264
W 45 66 50
I 82 73 73

Table 5.3: Percentage of times SP achieved a lower MSE than SE when
comparing within each of the formulations, i.e. 45 in forum 353 under W

indicate that SP has a lower MSE for 45% of time

a poor reflection of the real confidence intervals. Figure 5.1, 5.2, 5.3 shows the

scatter plot between the MSE and coverage, where the plot for forum 264 have 3

outliers removed, the original can be seen in Appendix D Figure D.4.

In addition to the MSE and coverage, it is also of interest to see the percentage

of time a model perform best out of the five proposed, we show this for the three

forums in Figure 5.6, 5.7, 5.8. Furthermore, a direct comparison between SE and

SP can be seen in Table 5.3 with the time series plot in Figure 5.4.

The kernel density plot of the raw error, e = ŷ− y, over all time and the 3 forums

for each of the roles can be seen in Figure 5.12, 5.13, 5.14 for the W formulation

and Figure 5.9, 5.10, 5.11 for the I formulation. The mode of both SE and SB

are usually away from 0 regardless of formulation. Differences between the density

of SB and SE are small, while SP and SE are much greater even though their

overall MSE (Table 5.2) are comparable.

In addition to the individual roles, Figure 5.15 shows the raw error between the

total number of active users predicted. The top figure, Figure 5.15a, was generated

by using the predicted external factors with the bottom figure Figure 5.15b using

the forecasts in Section 3.6, i.e. both yJoin, yReturn are assumed to be observed.

The top figure displays the kernel density when the external factors are predicted

while the bottom figure uses the actual observations. Note that the multimodal

feature in Figure 5.15a exist in both the W and I formulation.
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5.3 Discussion

Our recommendations are based on the results in the previous section would be to

use SP when making forecasts based on the observed results. The error generated

by SP is closest to being symmetric and centered around 0, with a magnitude (of

the errors) comparable, if not better than the other stochastic methods. Quality

of the forecasts measured by MSE and coverage suggest that the simple empirical

approach of SE represents the data well when compared to the parametric model of

SB which requires a lot more computation time. More importantly, the stochastic

models provides a set of confidence interval while achieving a similar performance

(in terms of MSE) when compared to the deterministic models.

Performance for SW is poor for all 3 forums instead of just forum 264 as discussed

in Chapter 3. SP worked well because the feasible region is constrained between

the expected and the last observed transition matrix, with α = 1 for the former

and α = 0 the latter. Both are suitable candidate solutions, instead of SW

where the optimal set of weight can be placed on observations that minimizes the

objective function well but fails to predict accurately. Therefore, we can view SP

as a safeguard method that prevents overfitting.

However, the coverage by SP can be significantly (and usually) lower than SE

given the penalty α governs not only the mean forecast, but also the width of the

confidence interval. Therefore, coverage can be low (< 0.5) as α̂ is low enough that

the forecast is nearly deterministic as previously mentioned. SW suffers from the

same problem where neither of the parametric methods do. This does not imply

that SB guarantees a higher coverage, relative to the empirical methods, even

though it is majority of the time as seen in Figure 5.5.

Another benefit is that both the I and W formulation produced results that were

equally good for SP. Saving computation time and simplifying the forecast without

the prediction of yReturn. All other methods on the other hand performs better

under the W formulation usually have a lower MSE, as evident from Table 5.2,

which is expected and consistent with how our models behave.

Recall the model definition from Section 3.2 and note that the total flow going out

of the inactive compartment can be interpreted as a regression without intercept

(or centered)
k∑
j=1

v0,j(t) =
k∑
j=1

P0,jm0(t), (5.1)
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with regression coefficients P0,j’s for all active compartments. Therefore, without

the adjustment on the autocorrelation of P0,j’s, the predicted number of users

returning is greater than the actual number, with increasing deviation as time

progress. This can be observed from the kernel density plots in most of the roles,

with most distribution skewed to the right (and greater than zero) for SE and SB.

This was further demonstrated in Figure 5.15 which shows the raw error between

the predicted and observed total number of active users. The skewness to the right

on the kernel density indicate that the models over predict the number of active

users much more when under the I formulation. The difference between the first

and the tenth forecasting step in Figure 5.15b is an illustration of how the over

prediction aggregate over time.

Prediction of new users compounded on the over prediction as shown by the dif-

ference between Figure 5.15a and Figure 5.15b, with the latter generated using

the forecasts in Section 3.6, i.e. both yJoin, yReturn are assumed to be observed.

Given well predicted external factors, it would appear that SP have mitigated the

over prediction caused by the compartment model. This isolation shows a clear

direction in which we can improve our forecasts.

Furthermore, the density curve of the raw error for SP has a thicker tail but less

skewed than SE. It is unsurprising then that the former has a lower error when

using the absolute instead of square loss, when averaged over all weeks in each of

the 3 forums. Robustness of the SP method gives us confidence in saying that it

is the best out of all our proposed options.
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MSE over time for three methods, without the inactive compartment for 3 forums
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(a) Under the W formulation

MSE over time for three methods, with the inactive users in a compartment for 3 forums
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Figure 5.4: The MSE over time between SB, SE and SP for 3 forums for
both formulations
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Coverage over time for three methods, without the inactive compartment for 3 forums
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Coverage over time for three methods, with the inactive users in a compartment for 3 forums
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Figure 5.5: The coverage over time between SB, SE and SP for 3 forums for
both formulations
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Figure 5.6: The fraction of time a method achieved the lowest MSE in forum
353. Each formulation sum to 100.
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Figure 5.8: The fraction of time a method achieved the lowest MSE in forum
264. Each formulation sum to 100.

Density plot of the raw error over all time generated with inactive users in a compartment for the 10 roles in Forum 353
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Figure 5.9: Kernel density plot of the raw error for each of the roles in forum
353 under the I formulation for 3 methods over all time
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Density plot of the raw error over all time generated with inactive users in a compartment for the 10 roles in Forum 256
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Figure 5.10: Kernel density plot of the raw error for each of the roles in forum
256 under the I formulation for 3 methods over all time

Density plot of the raw error over all time generated with inactive users in a compartment for the 10 roles in Forum 264
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Figure 5.11: Kernel density plot of the raw error for each of the roles in forum
264 under the I formulation for 3 methods over all time
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Density plot of the raw error over all time generated without the inactive compartment for the 10 roles in Forum 353
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Figure 5.12: Kernel density plot of the raw error for each of the roles in forum
353 under the W formulation for 3 methods over all time

Density plot of the raw error over all time generated without the inactive compartment for the 10 roles in Forum 256
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Figure 5.13: Kernel density plot of the raw error for each of the roles in forum
256 under the W formulation for 3 methods over all time
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Density plot of the raw error over all time generated without the inactive compartment for the 10 roles in Forum 264
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Figure 5.14: Kernel density plot of the raw error for each of the roles in forum
264 under the W formulation for 3 methods over all time
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Density plot of the raw error  between the predicted and the actual number of active users for week 1 and week 10 of the forecasted steps of all 3 forums
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(a) Forecasts are generated using the predicted ŷJoin, ŷReturn

Density plot of the raw error between the predicted and the actual number when the predictions were generated using the observed external factors
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Figure 5.15: Kernel density plot of the raw error between the predicted and
the actual active users at week 1 (Left panels) and week 10 (Right panels) of
the forecast over 3 forums, two methods SE and SP under both formulations

are shown





Chapter 6

Concluding Remarks

6.1 Summary

The motivation for the work of this thesis was based on the increasing impact

of online communities, as a thriving community provides knowledge for both the

existing and future users. Our models were built based on the perspective that each

user in an online community has a certain online social role. We first presented

the motivation and method of identifying the different users in Chapter 2, before

proceeding to tackle the problem initially defined in Chapter 1; generating role

composition forecasts of an online community for some future time point. We

separated our problem into two parts; the movement of users between the various

roles were investigated in Chapter 3 using a compartment model, then Chapter 4

tackled the problem of predicting the number of new users joining a community

and those returning from inactivity using variants of Poisson regression.

Extensive testing for the proposed methods were performed for 3 forums over the

span of a two years period. We found that the simple models that make use

of observed transition matrices performed best for a deterministic forecast. The

overall out–of–sample MSE generated by the stochastic and deterministic models

are similar. Furthermore, the stochastic models have the benefit of constructing

confidence intervals for each of the roles. The 95% confidence interval around the

expected forecast at each of the role contains approximately 95% of the out–of–

sample observations, suggesting that the confidence interval is useful. In particu-

lar, the penalized method (Section 3.4.2) provided a mean of describing the impact

of current trend using a single parameter. The errors obtained from the stochas-

tic penalized method also appeared more homoscedastic than the other proposed

109
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methods. Therefore, we recommend this penalized approach while predicting the

total number of users joining and returning when making forecasts.

Predictions of external factors, the number of new users joining the community

and users returning from inactivity, was found to be important. The error it

contributed was significant as it had doubled the MSE when compared against

a forecast generated using the actual observations. When the system is allowed

to run for a prolonged period, the role composition undergoes fluctuations when

there are incoming new users as demonstrated in Figure 3.3.

6.2 Difficulties and Future Research

The models used for forecasting compose of the two separate problems, investi-

gated and discussed separately in Chapter 3 and Chapter 4. Therefore, we discuss

the possible avenues that can be explored for each of them individually. A clear

outline of the problems we stumbled upon and a detailed description of the topics

that merit further investigation is presented below.

6.2.1 Compartment Model

As mentioned previously in Section 3.5.2, parameter estimation in the empirical

based stochastic models are based on approximating the expected forecast via

Monte Carlo simulation. Time taken to generate a set of samples, say 104, only

required one second even with q = 10 steps in our forecast, which is independent

of the number of observed transitions matrices N − 1. The exact expected value

on the other hand, is dependent on the number of observations. To see this, let

A(i) = wiP
>(i) and for simplicity assume that yJoin(t) = 0 for t = 1, 2, . . . , N − 1

in the estimation. Then, the expected value of a one step ahead forecast starting

at t0 is

E(m̂(t0 + 1)) =
N−1∑
i=1

A(i)m(t0),

and for a q step forecast is

E(m̂(t0 + q)) =
N−1∑
i=1

N−1∑
j=1

. . .

N−1∑
k=1

N−1∑
z=1

A(z)A(k) . . .A(j)A(i)m(t0), (6.1)



Chapter 6 Concluding Remarks 111

where the set of indices F = {i, j, . . . , k, z} contains q elements, that is, a q sum-

mation over the q multiplicative weighted transition matrix A. It is of interest to

investigate whether there exists an efficient computation for the (N − 1)q summa-

tion in (6.1).

Evidently, computing the expected value explicitly includes E(m̂(t0 + q− 1)), the

expected forecast at the t0 + q − 1, which also exists in the current optimization

problem

min

q∑
i=1

‖m(t0 + i)− E(m̂(t0 + i))‖2 . (6.2)

The optimization problem (6.2) can be thought of in terms of minimizing the

squared norm of a constant vector (observed m) minus the random vector (our

forecast) that is dependent on the stochastic process. As we are taking the expec-

tation with respect to the forecast, (6.2) is the RHS of

E(‖c− ξ‖2) ≥ ‖c− E(ξ)‖2, (6.3)

which underestimates the error. A challenge will be to tackle the optimization

problem that takes the expectation on the squared norm, LHS of (6.3).

Efficient estimation of the parameters in the empirical based stochastic models

namely, SP and SW, should be explored. The current method used for both

problems do not take into account the information on the derivative. This is be-

cause computing the gradient is nearly as hard as computing the objective function.

Making use of the previously simplified objective function (6.1), and differentiate

with respect to wg yields a summation that is one order lower

∇wgE (m̂(t0 + q)) = qP>(g)
N−1∑
i=1

N−1∑
j=1

. . .

N−1∑
k=1

A(k) . . .A(j)A(i)m(t0).

This, of course, is proportional to E(m̂(t0 + q − 1)), which brings back issues

regarding the efficient computation of the summation terms. Other derivative

free methods such as those that uses function approximations to the objective

function with respect to the parameters, i.e. radial basis functions Jones et al.

(1998); Gutmann (2001); Wild and Shoemaker (2013) may be a good alternative.

An efficient implementation in both the interpolation and picking initial sets of

points is required because the feasible region is defined in a (N − 2)–simplex. The

common choice of evaluating the corners and the mid point of all edges for a d
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dimension problem equates to d+(d(d−1)/2) function evaluation, which is highly

inappropriate for large d such as 100 in our problem (Chapter 3).

There also exists a few other interesting adjustments to the model formulation;

• Changing the number of in–sample tuning steps in the non–linear estimation.

This will allow more or less adaptation on the current trend by having more

or less tuning steps used.

• When estimating the transition matrix directly, additional constraints that

restrict the amount of change when compared to some reference matrix Pref ,

such as the expected transition matrix or latest observed transition matrix,

i.e.
∣∣∣Pi,j(t0)−Pref

i,j

∣∣∣ ≤ δ for some pre–defined value δ, such as a factor of

the sample variance.

• Model the autocorrelation on the vector P0, the set of migration rates going

out of the compartments containing inactive users. One particular approach

would be to use a latent autoregressive construction as described in Section

4.5.3, but with a Binomial density (3.42) instead of a Poisson density that

models the total number of users returning directly.

• Further correlation structure can be imposed onto the migration rates if we

do not assume the forums to be independent. This implies that forecasts are

produced for more than one forum simultaneously and also the estimation

of the correlations.

Alternatively, other formulation for compartmental models can also be used. No-

tably, the standard deterministic differential equation that is seen commonly with

compartmental models (Godfrey, 1983; Brauer and Castillo-Chavez, 2001). Then

assume that the observations m(t) = y(t) + e(t) are realizations from some un-

derlying process with error e. Our discrete time Markov chain interpretation is

just one of the three common types of stochastic formulation based on differen-

tial equations. The other two are continuous time Markov chain and stochastic

differential equation (Brauer et al., 2008, chap. 3).

6.2.2 Prediction of External Factors

The predictions on the external factors only used a limited number of covariates,

they may be improved by exploring other variables that may be relevant. Further
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extension to the PLN–AR(1) model such as a latent vector autoregressive (VAR)

on yJoin, yReturn may further improve the predictive power, i.e. extending (4.48)

such that the dispersion with VAR(1) is

vi ∼ Nk(Φ1vi−1,Σ) for i 6= 1, (6.4)

where Φ1 is a [k × k] matrix that contains the first order autoregressive elements.

Evidently, this further increases the model complexity that is already lacking a

close form solution. Hence, requiring samplers that are more efficient than those

currently used in Chapter 4. A brief survey of the current MCMC literature

provides no shortage of ideas, where the higher efficiency sampling can be done

using techniques such as: include manifold information of the posterior (Girolami

and Calderhead, 2011), adaptive Hamiltonian schemes (Hoffman and Gelman,

2014), alternating between different parameterization (Hobert et al., 2011) and

subsampling (Bardenet et al., 2014), etc.

Models outside of the Poisson family were not investigated due to the low value

counts observed in the data. This is not a limitation on other datasets where the

number of new users joining say, are consistently in the hundreds. Additionally,

there is the possibility of predicting the vector of users joining each of the roles

directly. Hence, eliminating the estimation of the proportional vector γ (3.8).

Forums with a sudden burst of new users were also ignored, because it was a rare

event for the data under study from SAP. If the cause of this surge can be linked

to an event, say an advertisement campaign or an event like a conference, then

the predictability may be high, especially if the events happen periodically.

Finally, seasonality in the data were not properly explored. A one week dis-

cretization was used throughout the thesis, where no obvious seasonality could be

observed. Using different time discretization such as month or day of the week

may reveal seasonality patterns that our models are able to exploit.
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A.1 Data summary for some forums

Forum id # Total User at N = 1 # Total User at N = 120
353 588 2339
256 287 1424
264 1018 3445

Forum id # Active User at N = 1 # Active User at N = 120
353 542 636
256 264 442
264 974 1009

Table A.1: The number of total and active users at two different time point
for the 3 forums of interest
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Figure A.1: The number of users in each of the compartments through time
for forum 353
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Figure A.2: The number of users in each of the compartments through time
for forum 264
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Figure A.3: The number of users in each of the compartments through time
for forum 256
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Figure A.4: The number of users in each of the compartments through time
for forum 50

Figure A.5: Network graph for forum 264 with data collected under a 13
week time window ending at time N=120. The bigger the node, the higher the
betweenness centrality the node has and an edge with higher weight is darker
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Figure A.6: Network graph for forum 353 with data collected under a 13
week time window ending at time N=120. The bigger the node, the higher the
betweenness centrality the node has and an edge with higher weight is darker
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Appendix B

B.1 Estimated probability matrix under differ-

ent constraints

0.8913 0.0150 0 0 0.0039 0 0.0216 0.0346 0.0147 0.0033 0.0155
0 0.9252 0.0365 0.0000 0.0000 0.0013 0.0002 0.0001 0.0006 0.0357 0.0002
0 0.0352 0.8909 0.0002 0 0.0454 0.0005 0.0004 0.0013 0.0257 0.0003
0 0.0005 0.0025 0.9137 0 0.0043 0.0066 0.0292 0.0270 0.0107 0.0055

0.0294 0 0 0 0.9265 0 0 0.0392 0.0049 0 0
0 0.0020 0.0504 0.0009 0 0.9240 0.0010 0.0001 0.0033 0.0181 0.0004

0.0014 0.0090 0.0092 0.0243 0 0.0141 0.8593 0.0136 0.0313 0.0056 0.0322
0.0031 0.0028 0.0069 0.0456 0.0034 0.0004 0.0067 0.8575 0.0229 0.0207 0.0301
0.0009 0.0015 0.0061 0.0204 0 0.0121 0.0139 0.0085 0.9328 0.0005 0.0033

0 0.0022 0.0017 0.0001 0 0.0014 0.0001 0.0005 0.0000 0.9938 0.0003
0.0016 0.0054 0.0041 0.0045 0.0003 0.0051 0.0103 0.0277 0.0014 0.0362 0.9034

Table B.1: The expected value of P for forum 353 using 100 observations. A
0 indicates that the edge does not exist and 0.0000 is some small value
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0.5011 0.4835 0 0 0 0 0 0.0154 0 0 0
0.0018 0.7571 0.1771 0 0.0015 0.0538 0 0.0087 0 0 0

0 0.1498 0.7887 0 0 0 0 0 0 0.0616 0
0 0.0435 0 0.8586 0 0 0 0 0.0979 0 0
0 0 0.2031 0.2794 0.5141 0 0.0034 0 0 0 0
0 0.0738 0 0 0 0.9051 0 0 0 0.0211 0
0 0 0 0.0902 0 0 0.8285 0.0813 0 0 0

0.0013 0 0 0.0023 0 0 0 0.6705 0.2289 0 0.0971
0.0103 0.0739 0 0.0438 0 0 0.0098 0.0648 0.7973 0 0

0 0 0 0 0 0.0015 0 0 0 0.9985 0
0 0 0 0.0364 0 0 0.0695 0 0 0 0.8941

Table B.2: The estimated P matrix using the natural bounds of [0, 1] for
forum 353 using 100 observations of P

0.5494 0.3744 0 0 0 0 0 0.0761 0 0 0
0 0.9041 0.0791 0 0.0004 0.0108 0 0.0056 0 0 0
0 0.0546 0.8650 0 0 0.0156 0 0.0004 0 0.0643 0
0 0.0160 0 0.8783 0 0 0 0 0.1048 0 0.0008

0.1069 0 0 0 0.9765 0 0 0.0165 0 0 0
0 0.0177 0.0251 0 0 0.9421 0 0 0 0.0151 0
0 0 0 0.0790 0 0 0.8322 0.0846 0.0043 0 0
0 0 0.0640 0 0 0 0 0.6704 0.1716 0 0.0940

0.0157 0.0217 0.0086 0.0432 0 0 0.0135 0.0741 0.8231 0 0
0 0 0 0 0 0.0009 0 0 0 0.9991 0
0 0 0 0.0357 0 0 0.0619 0 0 0 0.9023

Table B.3: The estimated P matrix using bounds defined by the past ob-
served rate mint:1,...,T {Pi,j(t)} and maxt:1,...,T {Pi,j(t)} for forum 353 using 100

observations of P

B.2 Comparison of Formulations

I W
S1 S2 S3 S1 S2 S3

Average MSE 76 105 67 40 42 35
Number of lowest MSE 38 3 50 18 33 40

Table B.4: The average error and the number of times a scenario has achieved
the lowest error over a 90 week period for forum 56

I W
S1 S2 S3 S1 S2 S3

Average MSE 55 61 54 19 18 16
Number of lowest MSE 42 14 35 34 24 33

Table B.5: The average error and the number of times a scenario has achieved
the lowest error over a 90 week period for forum 256
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I W
S1 S2 S3 S1 S2 S3

Average MSE 127 163 124 59 57 47
Number of lowest MSE 42 5 44 20 24 47

Table B.6: The average error and the number of times a scenario has achieved
the lowest error over a 90 week period for forum 264
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Figure B.1: Autocorrelation plot of the first 20 lags for the transition P0,0,
the number of user remains in the inactive compartment.

Penalty used for the in sample tuning
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Figure B.2: MSE over a set of α values using the inactive compartment for a
10 step in–sample tuning using 100 observations for forum 353
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Penalty used for the in sample tuning
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Figure B.3: MSE over a set of α values without the inactive compartment for
a 10 step in–sample tuning using 80 observations for forum 264
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C.1 Comparison Between Different Proposal For

Poisson Regression

The following two plots were generated using 1 × 105 samples, after a burn–in

period of 1 × 103 iterations. The prior of the variance is σ−2 ∼ Ga(a0, b0) or

λ2 ∼ Ga(a0, b0) with a0 = b0 = 0.001 for both. The figures used the first 100

observations from forum 353 using lagged covariates.
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Figure C.1: Autocorrelation plot over 50 lags for σ2 under Normal prior
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Autocorrelation of λ parameter in Laplace prior
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Figure C.2: Autocorrelation plot over 50 lags for λ under Laplace prior
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Figure C.3: Difference in autocorrelation between the two different sampling
scheme for the Multivariate Poisson Log–normal

C.2 Conditional Mean and Variance of Overdis-

persed Poisson

The marginal of Y in the general case of heterogeneity (4.32) can be derived using

the law of total expectation

E(X) = EY (EX|Y (X | Y )) (C.1)
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and the law of total variance

Var(Y ) = EX(VarY |X(Y | X)) + VarX(EY |X(Y | X)). (C.2)

The Poisson regression model with dispersion has mean parameter λ̃ = λu. Let

E(U) = µU ,Var(U) = σ2
U and λ is fixed. When the equal mean–variance relation-

ship

E(Y | λ, U) = λ̃

Var(Y | λ, U) = λ̃

is satisfied, the expectation of Y is

E(Y | λ) = EU [E(Y | λ, U)] = EU(λ̃)

= λE(U) = λµU (C.3)

and the variance

Var(Y | λ) = EU [Var(Y | λ, U)] + VarU [E(Y | λ, U)]

= EU(λ̃) + VarU(λ̃)

= EU(λu) + VarU(λv)

= λµU + λ2σ2
U . (C.4)

Therefore, the mixture takes on the form of a NB2 model when µU = 1 such that

the equal mean–variance relationship is satisfied.

C.3 Poisson–Lognormal Sampling Information

C.3.1 Gradient and Hessian

For the Poisson regression with Gaussian prior β ∼ N (b0,B0), let λ = eXβ, then

posterior is

L(β | y,X,b0,B0) ∝ y>Xβ −
∑

λ− 0.5 log(|B0|)− 0.5(β − b0)
>B−10 (β − b0)
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with gradient and Hessian as

∂L
∂β
∝ X>y −X>λ−B−10 (β − b0) (C.5)

∂2L
∂β∂β>

∝ −X> diag(λ)X−B−10 . (C.6)

Similarly, in the Poisson–Lognormal case where the mean is λ = eXβ+v with

dispersion v ∼ ND(0,Σ) of D dimension. Here, we derive the case for the general

case, where Σ = σ2 in the univariate case. Both the gradient and the Hessian for

β are the same as above as ∇βλ = λ. The conditional posterior of vi is

L(vi | Yi,Xi,β,Σ) ∝ Y>i vi −
∑

λi − 0.5 log(|Σ|)− 0.5(v>i Σ−1vi).

Write Xβ+v as Xβ+Iv, then it is obvious that the derivatives for the dispersion

v are

∂L
∂v
∝ Yi − λi −Σ−1vi (C.7)

∂2L
∂v∂v>

∝ − diag(λi)−Σ−1 (C.8)

C.3.2 Sampling Variance Parameter Under Uniform Prior

Posterior of σ2 given prior p(σ2) is

f(σ2 | v, µ) ∝ fN (v | µ, σ2)p(σ) (C.9)

where the likelihood is

fN (v | σ, µ) ∝ σ−n exp

{
− 1

2σ2

n∑
i=1

(vi − µ)2

}
.

We would like to have an uninformative prior and instead assign the prior p(σ) to

be a uniform distribution of some given range σ ∼ U(0, ub). Then the prior for

the variance only has contribution from the Jacobian

p(σ2) = p(σ)

∣∣∣∣ ∂σ∂σ2

∣∣∣∣ ∝ σ−1. (C.10)
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The posterior (C.9) becomes

f(σ2 | v, µ) ∝ (σ)−(n+1) exp

{
− 1

2σ2

n∑
i=1

(vi − µ)2

}

∝ (σ2)−((n−1)/2+1) exp

{
−(n− 1)

2σ2

∑n
i=1(vi − µ)2

n− 1

}
,

so σ2 is of the form of a scale–inv–χ2 distribution with d degree of freedom and τ 2

the scale,
(τ 2d/2)d/2

Γ(d/2)
x−(d/2+1) exp

{
−dτ

2

2x

}
,

that equates to d = n− 1 and

τ 2 =

∑n
i=1(vi − µ)2

n− 1

is the unbiased estimator for the variance of v. Because sampling from X ∼
inv–χ2(d, τ 2) is equal to (τ 2d)−1X ∼ inv–χ2(d), the variance is

(
n∑
i=1

(vt − µ)2)−1σ2 ∼ inv–χ2(n− 1). (C.11)

But (C.10) is also true when p(σ) ∝ 1, a uniform prior over (0,∞]. So the bound

ub on the standard deviation is only a restriction to guard against large σ, and

subsequently large v where the MCMC procedure may fail.

C.4 AR(1) Conditionals

C.4.1 Dispersions

The multivariate normal distribution of d dimension is denoted as (C.12) with

E(X) = µ,Var(X) = Σ.

X ∼ Nd(µ,Σ) (C.12)

Let’s partition the random vector X into

X =

[
X1

X2

]
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of size q and d− q respectively, with mean and covariance structure as

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then the conditional mean and variance of X1 given the realization X2 = x2 can

be expressed as

E(X1 |X2 = x2) = µ1 + Σ12Σ
−1
22 (x2 − µ2) (C.13)

Var(X1 |X2 = x2) = Σ11 −Σ12Σ
−1
22 Σ21 (C.14)

(Anderson, 1984) which is summarized as

X1 |X2 = x2 ∼ Nq
(
µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
. (C.15)

We wish to find the conditional distribution of the dispersion vt under an AR(1)

model by conditioning on all the other dispersions v−t. This is equivalent to condi-

tioning on both vt+1, vt−1 as higher lag dispersion do not enter into the conditional.

Let the vector X = (vt vt+1 vt−1), which is distributed as (C.12) with µ = 0 and

Cov(vt, vt+1) = φδ2

Cov(vt+1, vt−1) = φ2δ2,

where δ2 = (1− φ2)−1σ2 such that

Σ = δ2

 1 φ φ2

φ 1 φ

φ2 φ 1

 . (C.16)

Substituting the corresponding elements of (C.16) into (C.15) yields

vt | vt+1, vt−1, φ, σ
2 ∼ N

(
φ(vt+1 + vt−1)

1 + φ2
,

σ2

1 + φ2

)
for t = 2, 3, . . . , T − 1 where the first and last element of v is

v1 | v2, φ, σ2 ∼ N
(
φv2, σ

2
)

(C.17)

and

vT | vT−1, φ, σ2 ∼ N
(
φvT−1, σ

2
)
. (C.18)
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C.4.2 Sampling Variance and Autoregressive coefficients

We first derive the general case of an AR(p) model before showing the specific case

of an AR(1). The joint posterior of an AR(p) model with σ2 and φ = (φ1, . . . , φp)

is

f(φ, σ2 | v) ∝ N (v1:p | 0,Σ)

[
T∏

t=p+1

N (vt | φvt−1:t−p, σ
2)

]
f(σ2)f(φ) (C.19)

where vt−1:t−p = (vt−1, vt−2, . . . , vt−p)
> and Σ is the p dimension covariance matrix

of the joint distribution, i.e.

Σ =


γ0 γ1 · · · γp−1

γ1 γ0 · · · γp−2
...

...
. . .

...

γp−1 γp−2 · · · γ0

 (C.20)

where γj denotes the autocovariance of lag j. γ = (γ0, γ1, . . . , γp−1) is the first p

element of the first column vector of A = σ2(Ip×p − F⊗ F)−1, where

F =

[
φ−p φp

1 0

]
(C.21)

is the first order difference equation of a p order autoregressive process (Hamilton,

1994, chap. 1). Let Σ = σ2Ω, the first term in (C.19) can be written as

N (v1:p | 0,Σ) = (2πσ2Ω)−1/2 exp

{
−

vT1:pΩ
−1v1:p

2σ2

}
, (C.22)

sampling σ2 is a standard Gibbs sampling of a linear regression of (C.11)

(
T∑

t=p+1

(vt − φvt−1:t−p)
2 + vT1:pΩ

−1v1:p)
−1σ2 ∼ inv–χ2(T − 1). (C.23)

For φ, recognize that the second term in (C.19)

T∏
t=p+1

N (vt | φvt−1:t−p, σ
2) = (2πσ2)−1/2 exp

{
−
∑T

t=p+1(vt − φvt−1:t−p)
2

2σ2

}
,
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which is again a linear regression with β = φ, y = (vT , vT−1, vp+1)
> and X =[

v>T−1:T−p ; v>T−2:T−p−1 ; . . . ; v>p+p:p+1

]
. The distribution of the regression coeffi-

cients can be found by applying standard OLS theory (i.e. (4.12)) with a Gibbs

sampling step

β∗ ∼ N (β̂, σ2(X>X)−1) (C.24)

where β̂ = (X>X)−1X>y. Evidently, a sample from (C.24) does not guarantee

stationarity and a proposal is only valid if the largest eigenvalues of (C.21) is

smaller than 1. Then, sampling from (C.19) using a Metropolis–Hastings has

acceptance probability

min

N (v1:p | 0,Σ∗)
[
q(φ | φ∗)

∏T
t=p+1N (vt | φ∗vt−1:t−p, σ2)

]
N (v1:p | 0,Σ)

[
q(φ∗ | φ)

∏T
t=p+1N (vt | φvt−1:t−p, σ2)

] , 1
 , (C.25)

where Σ∗ is the adjusted covariance matrix given φ∗. If we use the Gibbs proposal

of (C.24), then the acceptance probability is reduced to

min

{
N (v1:p | 0,Σ∗)
N (v1:p | 0,Σ)

, 1

}
(C.26)

because (C.24) is a Gibbs step, i.e. the acceptance probability is 1, and it replaces

the terms in the square brackets (both the nominator and denominator) of (C.25).

Now for the AR(1) model, we proceed by first using the knowledge of (C.24) and

(C.26). We sample φ(t+1) by first generating our proposal via

φ∗ ∼ N (φ̂, ŝ−1σ2)1 {φ ∈ (−1, 1)}, φ̂ = ŝ−1
T∑
t=2

vtvt−1, ŝ =
T−1∑
t=1

v2t ,

where 1 {·} is an indicator function that ensure the AR process remains stationary

given our proposal. Then accept φ∗ with probability

min

{
N (v1 | 0, (1− (φ∗)2)−1σ2)

N (v1 | 0, (1− φ2)−1σ2)
, 1

}
. (C.27)

For the variance, it is a direct application of (C.23). Substituting in the corre-

sponding terms where γ0 = (1− φ2)−1σ2 gives

(
T∑
t=2

(vt − φvt−1)2 + (1− φ2)−1v21)σ2 ∼ inv–χ2(T − 1). (C.28)
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D.1 Graphs of Combined Result
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Figure D.1: The MSE over time between the two formulation for all three
forums. Only the non–linear estimation of SP is demonstrated.
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MSE over time between the two formulation for DP over 3 forums
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