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Bart Baesens, Richard Weber, Profit-based Feature Selection using Support Vector
Machines - General Framework and an Application for Customer Retention, Applied
Soft Computing Journal (2015), http://dx.doi.org/10.1016/j.asoc.2015.05.058

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.asoc.2015.05.058
http://dx.doi.org/10.1016/j.asoc.2015.05.058


Page 1 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

 A novel profit-based feature selection method for churn prediction with SVM is presented. 

 A backward elimination algorithm is performed to maximize the profit of a retention 

campaign. 

 Our experiments on churn prediction datasets underline the potential of the proposed 

approaches.  
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Abstract

Churn prediction is an important application of classification models that

identify those customers most likely to attrite based on their respective char-

acteristics described by e.g. socio-demographic and behavioral variables.

Since nowadays more and more of such features are captured and stored

in the respective computational systems, an appropriate handling of the re-

sulting information overload becomes a highly relevant issue when it comes

to build customer retention systems based on churn prediction models. As

a consequence, feature selection is an important step of the classifier con-

struction process. Most feature selection techniques; however, are based on

statistically inspired validation criteria, which not necessarily lead to models

that optimize goals specified by the respective organization. In this paper we

propose a profit-driven approach for classifier construction and simultaneous

variable selection based on Support Vector Machines. Experimental results

show that our models outperform conventional techniques for feature selec-

tion achieving superior performance with respect to business-related goals.
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1. Introduction

Classification is a very relevant task in many profit-driven applications,

such as e.g. credit scoring or customer retention [3]. It has been shown that

the performance of a classifier can be improved by concentrating on the most

relevant features used for classifier construction. Such variable selection has

important advantages: first, a low-dimensional representation of the objects

enhances the predictive power of classification models by decreasing their

complexity. Having less features also leads to more parsimonious models

which in turn contributes to reduce the risk of overfitting [9] caused by the

curse of dimensionality [19, 30].

Additionally, it allows a better interpretation of the classifier, which is

particularly important in business analytics. Many machine learning ap-

proaches are usually labeled as black boxes by practitioners, who therefore

tend to be reluctant to use the respective methods [10]. A better understand-

ing of the process that generates the data is therefore of crucial importance

in business analytics for decision-making, e.g., by identifying those attributes

that permit explaining customers’ decisions [7].

In the past, statistically inspired techniques have been the most frequently

used approaches to validate both classifiers as well as feature selection meth-

ods. Recently, profit-based measures have been suggested for classifier vali-

dation [35]. In this paper we go one step further and adapt the idea of profit-

driven metrics also to the task of feature selection by introducing several

embedded methods combining the method Holdout Support Vector Machine

(HOSVM) [26] with various validation measures.

To the best of our knowledge, profit-driven feature selection is a novel

approach that has not yet been covered in the data mining and machine

learning literature. Most of the work in business analytics and feature se-
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lection applies traditional, statistically grounded techniques without taking

into account profit-related issues. Our experiments underline that the pro-

posed methods outperform alternative techniques and provide classifiers with

highly relevant features, thus reducing the risk of overfitting while increasing

the related profit at the same time.

The remainder of the paper is organized as follows: Section 2 describes

the cost benefit analysis in the context of customer retention. Section 3

presents Support Vector Machines for classification and the feature selection

techniques studied in this work. The proposed profit-based approach for fea-

ture selection and classification is presented in Section 4. Section 5 provides

experimental results using real-world datasets. A summary of this paper can

be found in Section 6, where we provide its main conclusions and address

future developments.

2. The Cost Benefit Analysis Framework for Customer Retention

Trying to retain customers that are about to leave the company is one

of the most important tasks in the service industry, mainly in the banking

and telecommunications sector. This is driven by the increasing number of

customers willing to change their provider, and the strong competition for

attracting new ones. Therefore, there is an urgent need to develop and apply

accurate models in order to identify current customers who are most likely to

leave the company in a given period of time. Churn can be observed in two

different ways, voluntary, meaning that the customer decides to terminate the

contract, or involuntary, where the company decides to finish the contract

with the customer [4]. In the present work we focus on churn as a voluntary

decision.

If a company is able to identify potential churners, the next step is to

develop marketing campaigns, and retention strategies focusing on this par-

ticular group, thus enhancing customer loyalty and leading to major benefits,

such as e.g.:

3



Page 6 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

• Loyal engaged customers, can generate 1.7 times more revenue than

other customers [18].

• A direct impact on profitability: a 5% increment in the customer re-

tention rate may lead to a 18% reduction in operational costs [18].

• A decrease of money misspending, focusing resources on churn candi-

dates instead of the whole customer database, reducing marketing and

operational costs [15].

According to this, the churn rate is explicitly included in the following

Customer Lifetime Value (CLV) formula [4]:

CLV =
∞∑
t=1

m(1− c)t−1

(1 + r)t−1
= m

(1 + r)

(r + c)
(1)

where c is the annual churn rate and m stands for the mean of the annual

profit contribution per customer. Parameter r is the annual discount rate.

There are two classical approaches to determine this value. The first one

is the company’s Weighted Average Cost of Capital (WACC). The second

one is to use the discount rate of the particular industrial sector. Given this

formula, and understanding the CLV as the net present value of the profit

for a customer, a decreasing churn rate will impact heavily on the company’s

profitability.

Churn phenomena can be modeled either with time-dependent techniques

[4], or with single period future predictions. In the first category, this kind

of models tries to not assume that the churn will occur in a given period,

determining probabilities of churning up to a number of months, and taking

into consideration time-varying covariates [4]. In the latter, we find ap-

proaches aiming to predict if a customer decides to churn in the next period,

where the most common approaches are based on statistical methods, such

as logistic regression [8, 23, 29], non-parametric statistical models such as

4
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k-nearest neighbor [13], decision trees [39], and other machine learning tech-

niques [15, 36]. A review on customer churn prediction modeling can be

found in [37]. Here we use SVM classifiers to predict churn in a single pe-

riod. Churn rates usually are below 5% [35] for this kind of classification

models, leading to the class-imbalance problem as will be seen in Section 5.

3. Feature Selection for SVM

In this section we present the foundations of SVM for binary classification

and the different feature selection strategies available in the literature, and

we provide a brief description of each method used in this work.

3.1. Binary Classification with Support Vector Machine

Among existing classification methods, Support Vector Machine provides

several advantages such as adequate generalization to new objects due to the

Structural Risk Minimization principle, absence of local minima via convex

optimization, and representation that depends on only a few data points (the

support vectors). All these features reduce the risk of overfitting in classifi-

cation [34]. Additionally, the introduction of kernel functions for nonlinear

classification enhances performance via flexible classifiers, in contrast to tra-

ditional techniques such as logistic regression.

Let F be the feature set, xi ∈ ℜ|F| the feature vector and yi ∈ {−1, 1}
the class label of object i, i = 1, ..., N . T = {(xi, yi); i = 1, ..., N} denotes

the training set.

In our case, xi is the feature vector describing customer i and yi indicates

his/her class label; churners (non-churners) are identified by yi = 1 (yi = −1).
Linear SVM constructs an optimal hyperplane f(x) = w⊤x + b which

tries to correctly separate one class from the other. To achieve this optimal

hyperplane, SVM aims to maximize its margin, defined as the sum of the

distances (with a given metric) between the hyperplane to the closest pos-

itive and negative training patterns. This is equivalent to minimizing the

5
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Euclidian norm of w [34]. Given that a perfect separation between the two

classes is not always possible, a slack variable ξi is introduced for each train-

ing vector xi, i = 1, ..., N whereby C is used as a penalization parameter to

control the training error [34] as shown in model (2).

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi

s.t. yi · (w⊤xi + b) ≥ 1− ξi, i = 1, . . . , N,

ξi ≥ 0, i = 1, . . . , N.

(2)

The previous formulation can be extended to nonlinear classifiers by using

the kernel trick : the training samples are mapped into a higher dimensional

domain H through the function ϕ : x→ ϕ(x) ∈ H [31]. A kernel function

K(x,y) = ϕ(x)⊤ · ϕ(y) defines an inner product in space H , leading to the

following dual formulation:

max
α

N∑
i=1

αi −
1

2

N∑
i,s=1

αiαsyiysK(xi,xs)

s.t.
N∑
i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , N.

(3)

In this work we use both linear SVM as well as the kernel-based formu-

lation with Gaussian kernel, which usually achieves very good results and

is a common choice in the literature [26, 31]. This kernel function has the

following form:

K(xi,xs) = exp

(
−||xi − xs||2

2σ2

)
(4)

6
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where σ > 0 controls the kernel width.

3.2. Related Work on Feature Selection

There are three main approaches developed for Feature Selection (for

further information see [19]):

• Filter methods: These methods take place before applying any classi-

fication algorithm, and use statistical properties of the features aiming

at filtering out the ones that contribute less information. Classical

examples are χ2 statistic, which measures how independent the dis-

tribution of each feature against the class labels is [33], Information

Gain (also known as Mutual Information) which uses information en-

tropy in order to decide how relevant a given feature is [5, 33], and the

Fisher Criterion Score (F ), which estimates each feature’s relevance

independently of the others, as shown in (5):

F (j) =

∣∣∣∣∣ µ+
j − µ−

j

(σ+
j )

2 + (σ−
j )

2

∣∣∣∣∣ (5)

where µ+
j (µ−

j ) is the mean of the j-th feature’s values in the positive

(negative) class and σ+
j (σ−

j ) is the corresponding standard deviation.

• Wrapper methods: These methods go through the set of features in

order to score possible feature subsets regarding their predictive poten-

tial. This approach is computationally demanding because it has an

exponential size on the input, but in most cases provides better results

than filter methods [19, 24]. The most popular wrapper strategies are

Sequential Forward Selection (SFS) and Sequential Backward Elimina-

tion (SBE). SFS starts with an empty set of features, and then tries

out the features one at a time, and includes in each iteration the most

relevant one (according to a particular classification method) of the re-

maining set. SBS is the opposite of the first method, starting with the

7
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entire feature set and calculates one by one their statistical significance,

eliminating in each iteration the least significant one.

• Embedded methods: These models perform feature selection simul-

taneously with classifier construction, which means searching in the

combined space of both hypotheses and features. Similar to wrapper

methods, this approach is specific for each classification method, and

therefore includes the relation of the feature dependencies with the clas-

sifier. However, embedded methods are computationally less intensive

than wrapper methods [19].

These three feature selection strategies are depicted in Figure 1. Back-

ward elimination approaches are the most common strategy for wrapper

or embedded feature selection due to the before-mentioned advantages [19].

Therefore we used this strategy for feature selection.

Figure 1: Feature selection strategies

One popular embedded method, which is relevant for the remainder of this

paper, is known as Recursive Feature Elimination (RFE-SVM) [20]. The goal

8
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of this approach is to find a subset of size r among |F| variables (r < |F|),
eliminating those features whose removal leads to the largest margin of class

separation. Since the margin is inversely proportional to the Euclidean norm

of the weight vector, this value can be rewritten in terms of the dual variables

of SVM:

W 2(α) =
N∑

i,s=1

αiαsyiysK(xi,xs). (6)

The RFE-SVM algorithm can be extended in several ways. In particular,

in [26] we proposed a modification of the contribution measure (6) based on

the misclassification errors instead of the margin. The backward elimination

algorithm was also modified, including a holdout step: the classifier was

trained on a training subset, while the number of misclassified instances was

computed on a validation subset extracted from the training set, leading to

the HOSVM method.

Feature selection can also be an unsupervised task [1]. Unsupervised

feature selection focus on a target concept rather than on class labels, where

observations that are close to each other in the feature space should belong to

the same target concept [41, 42]. Some approaches that follow this principle

using spectral graph theory are SPEC [41] and Laplacian Score [22]. In the

same context, Zhang and Hancock [40] proposed a feature selection strategy

based on hypergraph clustering.

4. Proposed profit-based feature selection and classification ap-

proach

We propose different embedded methods for profit-based feature selection

using Support Vector Machines which are inspired by HOSVM [26]. The ra-

tionale behind our approaches is that we eliminate those features whose re-

moval has the least impact on the final profit, considering the respective costs

and benefits. This will be measured using profit-based metrics, namely MPC

and EMPC, as well as using the H measure, leading to the feature selection

9
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methods called HOSVMMPC , HOSVMEMPC , and HOSVMH , respectively.

To evaluate the respective models, a variety of performance measures

has been proposed in the literature [35]. Section 4.2 provides a detailed

description of such metrics. In Section 4.3 we present our methods for profit-

based feature selection and classification. While in this paper we focus on

churn prediction, the respective methods are introduced in a rather generic

way to facilitate their use in different applications.

4.1. Notation and preliminaries

For a given sample x, a classifier C will produce a score s ∈ [0, 1], where

by convention a high score means the corresponding customer is more likely

to churn. A threshold value t is defined to provide a crisp classification of

all customers based on their scores. All instances with s ≤ t are classified as

non-churners (y = −1), whereas instances for which s > t are classified as

churners (y = 1).

Following the notation presented in [35], we define:

• Prior probabilities: π−1 and π1 are the prior probabilities of a given

sample to belong to class −1 or 1, respectively.

• Probability distributions: For a given score s, the probability den-

sity functions for non-churners and churners are f−1(s) and f1(s), re-

spectively, whereas the cumulative density functions are denoted by

F−1(s) and F1(s).

• Cost-benefit terms: We define b−1 (b1) as the benefit of a correctly

classified non-churner (churner), and c−1 (c1) as the cost of a misclassi-

fied non-churner (churner). We also define θ = (b1 + c1)/(b−1 + c−1) as

the cost benefit ratio to simplify notation. Both, the optimal threshold

as well as the profit will depend only on this ratio of costs and benefits.

10
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4.2. Classical and profit-based measures for model validation in churn pre-

diction

The literature proposes various performance measures for classification

models; see e.g. [12]. A frequently used measure is the AUC, which is the

area under the ROC curve. A receiver operating characteristic (ROC) curve

is a graphical representation of the classification performance with varying

threshold t, or, in other words, a plot of the sensitivity versus one minus the

specificity, i.e. F−1(t) as a function of F1(t):

Sensitivity = F−1(t),

Specificity = 1− F1(t),

AUC =

∫
F−1(s)f1(s)ds.

The area under the ROC-curve is often used to assess a classifier’s perfor-

mance. In simple terms, the AUC of a classification method is the probability

that a randomly chosen positive observation will be ranked higher than a ran-

domly chosen negative one [16]. A larger AUC indicates better performance.

Sensitivity and specificity are useful to compute the AUC, and also to ob-

tain the contribution metrics used in our proposal. In particular, the profit

function is computed based on sensitivity and specificity.

The problem with traditional measures, such as AUC, is that they im-

plicitly make unrealistic assumptions about misclassification costs [21, 38].

Several performance metrics have been proposed to overcome this problem.

Those relevant for the present work on churn prediction will be described,

but first we analyze the cost benefit structure of customer churn models.

When setting up a customer retention campaign, a fraction η of the cus-

tomers with the highest propensity to churn is contacted (incurring a cost of

f per person) and an incentive to stay leading to a monetary cost d is offered.

Among these customers there are true would-be churners and false would-be

11
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churners. We assume that in the latter group everyone accepts the incentive

and does not churn, because they did not have the intention in the first place

[38]. For the former group, on the other hand, a fraction γ accepts the offer

and thus results in an earned customer lifetime value (CLV ) (Equation 1),

whereas the fraction (1 − γ) effectively churns despite the incentive. In the

other fraction (1 − η) of customers, which is not contacted, all would-be

churners churn, and all non-churners stay with the company. This process is

summarized in the following formula [29]:

Profit = Nη [(γCLV + d(1− γ)) π−1λ− d− f ]− A, (7)

where η is the targeted fraction of customers, CLV is the customer lifetime

value (see Equation 1), d is the cost of the incentive (offer), f is the cost of

contacting the customer, and A are the fixed administrative costs. The lift

coefficient λ is the fraction of churners in the targeted fraction η of customers

divided by the base churn rate for all the customers π−1 [35]. Finally, γ is

interpreted as the probability of a contacted churner accepting the incentive

and thus not churning. Here CLV , A, f , and d are positive, and for coherence

CLV > d. In this scheme it is clear that η depends on the choice of the

threshold t, and this enables the company to decide upon the fraction of

customers to be targeted by the retention campaign.

We study the average profit instead of the total profit, and discard the

fixed cost, A, since this cost is independent to the choice of classifier. We

define the average classification profit of a classifier for customer churn as

follows:

PC(t; γ, CLV, δ, ϕ) = CLV (γ(1− δ)− ϕ) π−1F−1(t)− CLV (δ + ϕ) · π1F1(t).

(8)

where δ = d
CLV

and ϕ = f
CLV

. We also note that b−1 = CLV (γ(1− δ)− ϕ),

12
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and c1 = CLV (δ + ϕ).

Given a training set of customers T with features F we study three

different measures, described as follows:

• The Maximum Profit Criterion for Customer Churn (MPC):

If we assume that all the parameters in Equation (8) are known, for a

given classifier C we will obtain a deterministic performance measure.

Taking the maximum value over all possible thresholds, we have the

following assessment metric [35]:

MPC = max
t

PC(t; γ, CLV, δ, ϕ). (9)

This way we obtain the fraction of the customers that should be tar-

geted η̄mpc in order to maximize the profit generated by the retention

campaign, given by:

η̄mpc = π−1F−1(T ) + π1F1(T ), (10)

with

T (γ) = argmax
t

PC(t; γ, CLV, δ, ϕ). (11)

• The Expected Maximum Profit Measure for Customer Churn

(EMPC): In this particular case and following [38], we model γ, the

probability of a churner accepting the incentive, as a Beta distributed

random variable, leading to the following formula for the Expected Max-

imum Profit for a classifier C :

EMPC =

∫
γ

PC(T (γ); γ, CLV, δ, ϕ) · h(γ)dγ, (12)

with T (γ) being the optimal threshold (Equation (11)) and h(γ) the

probability density function for γ. The parameters α and β related to

13
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the Beta distribution of γ were obtained from a previous work in churn

prediction [38]. Analogous to MPC, the percentage of the customers

targeted in the retention campaign for this metric is equal to:

η̄EMPC =

∫
γ

[π−1F−1 (T (γ)) + π1F1(T (γ))] · h(γ)dγ, (13)

It is important to note the influence of γ in this equation since it has

a direct impact on the cost benefit ratio:

θ =
b1 + c1

b−1 + c−1

=
δ + ϕ

γ(1− δ)− ϕ
(14)

• The H-Measure: Hand [21] proposed the H measure as an alterna-

tive to the AUC. The difference between H-measure and MP-measures

is that H only focusses on costs. Hence, the focus is not on the ex-

pected maximum profit, but on the expected minimum loss, defining

the average classification loss Q as:

QC(t; c, b) = b · [cπ−1 (1− F−1(t)) + (1− c)π1F1(t)] , (15)

with c = c0
c−1+c1

and b = c−1 + c1. Here, the cost benefit ratio on which

the optimal threshold T depends, is θ = 1−c
c
.

Calculating the value of the expected minimum loss requires assump-

tions on the probability density functions of both b and c. Assuming

that b and c are independent, and defining w(b, c) as the joint probabil-

ity density function of b and c, whereas u(c) and v(b) are the marginal

probability density functions of c and b, respectively, the explicit re-

lationship between these densities is w(b, c) = u(c) · v(b). Hence, the

expected minimum loss L is equal to:

L = E[b]

∫ 1

0

QC(T (c); b, c) · u(c)dc, (16)

14
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with E[b] = 1 for an appropriate choice for the unit in which b is mea-

sured. We assume that c follows a Beta distribution with parameters

α and β, characterized as follows:

uα,β(x) =

{
xα−1·(1−x)β−1

B(1,α,β)
if x ∈ [0, 1],

0 else,
(17)

with α, β > 1, and:

B(x, α, β) =

∫ x

0

tα−1 · (1− t)β−1dt. (18)

Finally, to arrive at the H measure, a normalization is performed to

obtain a performance measure bounded by zero and one:

H = 1−
∫ 1

0
QC(T (c); b, c) · u(c)dc

π0

∫ π1

0
c · u(c)dc+ π1

∫ 1

π1
(1− c) · u(c)dc

, (19)

here u(c) is shorthand notation for uα,β(c). The denominator gives the

misclassification loss for the worst classifier, namely a random classi-

fier. Note also that the integration over c ∈ [0, 1] corresponds to an

integration over θ ∈ [0,+∞), and thus of a ROC curve tangent slope

going from plus infinity to zero.

4.3. HOSVM Algorithm for Profit-based Feature Selection and Classification

Since we are dealing with class-imbalanced data, we first redefine the

Holdout SVM algorithm to incorporate a resampling step. We propose and

empirically study two strategies: random undersampling and a combination

of random undersampling with SMOTE, an intelligent resampling technique.

The purpose of the algorithm is to find a subset K (K ⊆ F) of features,

such that the performance of the SVM classifier using this subset’s features

is maximized, considering a training set T . This set is split into a training

15
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subset T R and a validation subset V . The training subset T R is resam-

pled into a new subset T R′, where the classifier is constructed, in order to

achieve a balanced classification problem. The validation subset is finally

used to construct a suitable loss function for the churn prediction problem.

Accordingly, the Holdout approach for profit-based feature elimination and

classification is provided in Algorithm 1.

Algorithm 1 Holdout algorithm for profit-based feature elimination and
classification
Input: The original set of features F
Output: An ordered vector of features F †

1. F † ← ∅
2. repeat

3. (T R,V)← Holdout using T
4. T R′ ← Resampling(T R)
5. Λ← SVM Training using T R′

6. I ← argminI
∑
j∈I

LOSS(−j)(Λ, T R′,V), I ⊂ F

7. F ← F \ I
8. F † ← (F †, I)
9. until F = ∅

The SVM classifier trained in T R′ (Step 5) is given by Λ = (α, b), and this

information is an input for LOSS(−j)(Λ, T R′,V), the novel loss functions we
propose in this work. Here we suggest to calculate measures MPC, EMPC,

and H using subset V when attribute j is removed. Intuitively, the attribute

whose removal leads to a higher profit (or a lower cost, for the H metric) has

to be eliminated from the dataset. To adapt these metrics, we first notice that

our proposals only differ with the original versions of MPC, EMPC, and H

in the computation of the score (and therefore the probability distributions),

while the cost and benefits of a given solution as well as the definition of γ are

not affected. Following the ideas of the contribution measures for RFE-SVM

and HOSVM, we define s
(−j)
k , i.e. the score of a sample k ∈ V when attribute
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j is removed as follows:

s
(−j)
k (Λ, T R′,V) =

∑
i∈T R′

αiyiK(x
(−j)
i ,x

v(−j)
k ) + b (20)

where x
(−j)
i is a sample from the resampled training subset when attribute j is

removed and x
v(−j)
k means validation object k with feature j removed. To reduce

the algorithm’s computational complexity, the vector α is assumed to be equal

to the solution of Formulation (4) even if one attribute has been removed, as

suggested in [20].

The following loss functions are proposed for Step 6 of the algorithm, where

the only difference between the original metrics is the redefinition of probability

distributions based on the new score formula s(−j):

• H measure:

LOSS(−j)(Λ, T R′,V) = H(s(−j)) (21)

• Maximum Profit (MPC):

LOSS(−j)(Λ, T R′,V) = MPC(s(−j)) (22)

• Expected Maximum Profit (EMPC):

LOSS(−j)(Λ, T R′,V) = EMPC(s(−j)) (23)

Using these loss functions in Step 6 of the algorithm leads to the three variants

of our proposed approach called HOSVMH , HOSVMMPC , and HOSVMEMPC ,

respectively.

Finally, in Step 6 the algorithm determines a set I of features to be eliminated.

While one could choose a single element of F , this would be inefficient if there are
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many irrelevant features. On the other hand, removing too many features at a

time increases the risk of eliminating relevant features [20].

5. Experimental Results

In this section we report experiments on three churn prediction problems using

the proposed model and alternative feature selection approaches. We first describe

the datasets we used. Then the experimental setting is presented, followed by the

results.

5.1. Description of datasets

The three data sets we used are from class-imbalanced binary-classification

problems and will be described next.

• UCI-Telecom: This customer churn dataset available from the UCI reposi-

tory [2] contains information of 5,000 customers from a telecommunication

company, described by 20 attributes.

• Operator 1: This telecommunication dataset was originally studied by [28],

and contains data from 47,761 customers described by 47 variables. It was

used for benchmarking machine learning methods in [35] under the name of

Operator 1 (O1).

• Cell2Cell: This dataset was proposed in [14] as a case study, and was pre-

viously used in [35] for benchmarking machine learning methods under the

name of D2.

Table 1 summarizes the relevant information for each benchmark dataset:

Dataset #variables #examples(min.,maj.) churn rate

UCI-Telecom 20 (707;4,293) 14.4%
Operator 1 47 (1,761;46,000) 3.7 %
Cell2Cell 73 (406;20,000) 2.0 %

Table 1: Number of variables, number of examples of each class and churn rate for all
three datasets.
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5.2. Proposed experimental setting

The KDD process [3, 17] is applied to develop all churn prediction models;

a well-known methodology which has been successfully used in business analyt-

ics, e.g. for churn prediction and credit scoring [6]. The relevant steps of the

methodology follow:

• Feature ranking and model selection: The following procedure was used

for feature ranking and hyperparameter setting. Training and test subsets

are obtained using a 10-fold cross-validation, which is a common procedure

for validation in churn prediction [35]. In particular, we used stratified

sampling to generate the 10 partitions, making sure that the proportion of

churners/non-churners is similar in each fold. Feature ranking and classifica-

tion is then performed in the training set, and the classification performance

is computed by averaging the test results. The training set was resampled

considering two alternatives: random undersampling and a combination of

random undersampling and SMOTE oversampling. Model selection was

performed via grid search along different predefined feature subsets. The

following values were studied: C ∈ {2−7, ..., 27} and σ ∈ {2−7, ..., 27}.

• Model stability and influence of the parameters: The performance of all

methods was studied for different parameter values to assess their impact

on the final classifier.

The toolbox LibSVM [11] was used for standard SVM approaches.

5.3. Results

In this section, a summary of the results is presented to facilitate assessing the

best performance of the respective approaches. Tables 2, 3, and 4 summarize the

average performance among different feature subsets for each method in datasets

UCI-Telecom, Cell2Cell, and Operator 1, respectively.

We consider the following metrics: AUC, EMPC, MPC and H measure. The

EMPC and MPC measures are reported in Euro (e) per customer. The best

performance among all methods is highlighted in bold type. We also indicate with

one asterisk where the performance is significantly worse than the best method at
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a 10% significance level, with two asterisks at a 5% significance level, and with

three asterisks at a 1% significance level. An independent two-sample t-test is used

to make pairwise comparisons between the mean of each approach and the best

method for a particular dataset using as hypothesis that the mean performance

of the proposed approach is equal to the mean performance of the best available

method. Results are displayed for the best resampling strategy, which was random

undersampling for each dataset.

Fisher RFE HOSVMEMPC HOSVMH HOSVMMPC

AUC 62.4** 63.5* 64.5 64.4 64.6
EMPC 2.21** 2.45 2.58 2.55 2.61
MPC 2.06** 2.36 2.51 2.49 2.55
H 0.064** 0.089 0.092 0.085 0.094

Table 2: Average performance for all methods and metrics, UCI-Telecom dataset.

Fisher RFE HOSVMEMPC HOSVMH HOSVMMPC

AUC 64.81*** 94.09 94.09 94.13 94.13
EMPC 0.224*** 0.879 0.860 0.860 0.859
MPC 0.223*** 0.876 0.859 0.860 0.859
H 0.097*** 0.462 0.429 0.381 0.385

Table 3: Average performance for all methods and metrics, Cell2Cell dataset.

Fisher RFE HOSVMEMPC HOSVMH HOSVMMPC

AUC 49.65** 54.35 54.49 55.18 54.47
EMPC 0.006 0.006 0.008 0.007 0.007
MPC 0.005 0.006 0.007 0.007 0.006
H 0.001*** 0.001 0.002 0.001 0.002

Table 4: Average performance for all methods and metrics, Operator 1 dataset.

From Table 2 (UCI-Telecom dataset) we observe that the proposed method

using the MPC measure for feature elimination and classifier construction has best
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overall performance for all the different metrics. The method outperformed Fisher

Score with a 5% significance in all metrics and RFE-SVM with a 10% significance

for AUC. While HOSVM with EMPC is never significantly lower than the best

method for all metrics, HOSVM with the H measure performed significantly lower

with a 5% significance when considering EMPC and MPC as assessment metrics.

From Table 3 (Cell2Cell dataset), the proposed method HOSVM with MPC

measure has best AUC, while RFE-SVM performed better for the other metrics.

Fisher Score is again outperformed by all other methods with a 1% significance

in all metrics, while the other methods never perform significantly lower than the

best method.

Finally, from Table 4 (Operator 1 dataset), the proposed method has a better

performance for metrics EMPC and H, while HOSVM based on H measure achieves

better results in AUC and MPC. Again, Fisher Score is outperformed in AUC (5%

significance) and H measure (1% significance), while the remaining approaches are

never significantly lower than the best method for all metrics.

In order to analyze the feature selection performance of all methods for dif-

ferent subsets of variables, Figures 2 to 4 summarize the best performance for an

increasing number of selected features for all three datasets. For each subset of

features, the mean AUC is displayed for the methods Fisher Score, RFE-SVM,

and the best proposed method according to this measure (HOSVM based on MPC

measure for UCI-Telecom and Cell2Cell datasets, and HOSVM based on H mea-

sure for Operator 1 dataset). Results are displayed also for the best resampling

strategy in each case.
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Figure 2: AUC versus the number of ranked variables for different feature selection ap-
proaches. UCI-Telecom dataset.
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Figure 3: AUC versus the number of ranked variables for different feature selection ap-
proaches. Cell2Cell dataset.

22



Page 25 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

No. of Selected Features

C
V

 A
U

C

Fisher+SVM
SVM−RFE
HOSVM (H)

44
47

50
53

56
59

61

5 7 10 15 25 35 45

Figure 4: AUC versus the number of ranked variables for different feature selection ap-
proaches. Operator 1 dataset.

In Figure 2 (UCI-Telecom dataset) it can be observed that the proposed ap-

proach (HOSVM based on MPC measure) achieves the best performance (AUC

0.648 with 18 attributes), and then smoothly decreases its performance. In con-

trast, Fisher Score and RFE-SVM significantly decrease their performance when

removing variables.

For Figure 3 (Cell2Cell dataset), a similar behavior between RFE-SVM and

the proposed approach (HOSVM based on MPC measure) is observed, although

best performance is achieved with the latter method (0.948 with 55 attributes).

Fisher Score, in contrast, removes relevant attributes after 55 attributes, which

significantly decreases the method’s performance.

Finally, in Figure 4 (Operator 1 dataset), we observe an important gain by

using feature selection compared to the case with all attributes. Best performance

is achieved with HOSVM based on H measure (AUC=0.595), while the alternative

approaches also help to improve predictive performance but with lower accuracy

and in a less stable form.

The previous figures highlight that the proposed approaches outperform al-
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ternative feature selection methods, which can be clearly observed since the cor-

responding line is almost always above the others, i.e., the proposed approaches

have higher AUC for the different subset of features. However, no clear trend

can be inferred from these figures, which is somehow expected due to the high

class-imbalance and overlap that strongly affects the predictive performance.

Three main conclusions can be drawn from the previous results: first, the

proposed method clearly performed better than the alternative approaches used

in this work, since for all datasets the proposed strategy achieves the maximum

performance for a given number of features, and the best overall performance (av-

erage performance among all subsets of features), with the only exception being

the Cell2Cell dataset, where RFE-SVM has better overall performance when us-

ing EMPC, MPC and H measure. Secondly, our experiments demonstrate the

usefulness of feature selection in terms of predictive performance, even for low-

dimensional applications such as churn prediction, since the best solution was

always found when performing an adequate feature selection. Finally, data re-

sampling proved to improve results in all datasets, demonstrating its effectiveness

at tackling the class imbalance issue. Undersampling seemed to be more relevant

than oversampling in our case, which is somehow expected given the large size of

the dataset.

6. Conclusions

In this work we present a backward elimination approach for classification and

embedded feature selection using SVM. The proposed method studies three differ-

ent evaluation measures suitable for class-imbalance problems, and, in particular,

for churn prediction problems: the H measure, the MPC metric, and the EMPC

measure. While the H measure provides a framework to explicitly consider the

misclassification costs as a measure of predictive performance [21], MPC [35] and

EMPC [38] go one step further and incorporate the benefits of retention campaigns

into the churn prediction task, resulting in very powerful and goal-oriented metrics

for model assessment. The main difference between MPC and EMPC is that the

latter considers the decision of a potential churner to accept a retention incen-

tive as a random variable, and then computes the expected profit of the retention
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campaign for telecommunication companies.

In contrast to the available literature on this topic, which aims at selecting

the best model among various classification methods using statistically motivated

performance measures, our objective is to provide a framework that allows the

adequate selection of the hyperparameters and the right features for classifier con-

struction, focusing on one method, namely Support Vector Machines, but using

profit-based performance measures. Our approach presents the following advan-

tages, based on a comparison with other feature selection approaches for Support

Vector Machines in churn prediction applications:

• The proposed method allows to explicitly incorporate costs and benefits

obtained from the classification task for churn prediction, leading to a feature

selection process especially designed for this particular application.

• The proposed approach achieves better predictive performance than other

feature selection techniques in churn prediction problems, considering both

traditional assessment metrics (such as AUC) and profit-based measures.

• Our strategy is very flexible and allows using different kernel functions for

nonlinear feature selection and classification using SVM. Furthermore, it can

also be extended to other classification methods than SVM.

There are several opportunities for future work. The feature selection process

can be extended to other business analytics applications, such as e.g. credit scoring

[6, 32]. While the EMPC metric can be adapted to incorporate the costs and

benefits of accepting or rejecting loan applicants, logistic regression can be set as

the baseline classifier, which is the most common classification method for this

task due to regulatory reasons [32]. Additionally, the costs of variable acquisition

and usage can be incorporated into the model, enriching the feature selection

process. A step in this direction was presented in [25], where the the features’

costs are explicitly incorporated into the model via binary variables and a budget

constraint. Another venue for future research would be the extraction of business

rules from a developed SVM-model in order to gain interpretability; see e.g. [27].
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