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UNCERTAINTY IN NUMERICAL WIND-WAVE MODELS

by Ben W. Timmermans

The modelling of ocean waves is now carried out routinely at meteorological centres

around the world. However, little is know about the source of the uncertainty in

the predictions of waves produced, and sources can be numerous depending on the

specific application. Historically it was felt that the dominant source of uncertainty

originated from incomplete knowledge and expression of forcing winds. However

more recent studies have focused on the underlying physical processes and their rep-

resentations, with some authors questioning whether the limitation of the current

modelling approach has been reached. Recently, methods for the statistical analysis

of complex computer models, including models such as those used for wave predic-

tion, have been developed. In this thesis these methods are applied to perform the

first ever uncertainty analysis of a wave model. These new methods are applied to

the state of the art wave model Wavewatch IIIr.

This thesis principally explores the effect of tuning parameter uncertainty re-

lating to the “Tolman and Chalikov” input and dissipation parameterisation, the

discrete interaction approximation scheme for nonlinear wave-wave interactions and

uncertainty about wind forcing, on wave simulation output, in a range of idealised

cases, and realistically on Lake Michigan. The effectiveness of the statistical meth-

ods is first demonstrated in simple cases, before analysis is performed for progres-

sively more complex simulations. In each case, uncertainty measures are computed

with respect to simulation output in terms of summary wave statistics, typically

including significant wave height and peak period. The analysis reveals nonlinear

response and the relative importance of the various input, which in turn shows the

active physical processes, and where the greatest sources of uncertainty lie. Both

uncertainty about wind forcing and the process of nonlinear wave-wave interactions

are found to be dominant in all cases, although energy dissipation is important in

growing sea states. Finally, observational wave height data is used to perform a pa-

rameter calibration for simulations of stormy conditions on Lake Michigan, leading

to improved performance.





CONTENTS

Contents

1 Introduction and motivation 1
1.1 Tackling uncertainty in complex models . . . . . . . . . . . . . . . . . 4
1.2 Approach and thesis layout . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction to wind-wave modelling 11
2.1 Spectral wave models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Wave modelling and the energy balance equation . . . . . . . 14
2.1.3 Input and dissipation source terms . . . . . . . . . . . . . . . 16
2.1.4 Nonlinear wave-wave interactions source term . . . . . . . . . 18
2.1.5 Wavewatch IIIr: A third generation global wave model . . . 20

2.2 Wave model components and uncertainty . . . . . . . . . . . . . . . . 21
2.2.1 Categorising uncertainty . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Uncertainty about source terms . . . . . . . . . . . . . . . . . 23
2.2.3 Forcing winds . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Numerical schemes and uncertainty . . . . . . . . . . . . . . . 26
2.2.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Uncertainty analysis of wave models . . . . . . . . . . . . . . . . . . . 30
2.4 Physical situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Duration-limited wave growth . . . . . . . . . . . . . . . . . . 33
2.4.2 Fetch-limited wave growth . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Wave response to a turning wind . . . . . . . . . . . . . . . . 35

3 Uncertainty analysis using Gaussian process emulators 37
3.1 Uncertainty in computer simulations . . . . . . . . . . . . . . . . . . 37
3.2 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Introduction to Gaussian process emulators . . . . . . . . . . . . . . . 45

3.4.1 Statistical theory . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 Emulator validation . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Analytical uncertainty and sensitivity analysis using an emulator 59
3.4.5 Further applications of emulators . . . . . . . . . . . . . . . . 63

3.5 A simple example (0-D wave model) . . . . . . . . . . . . . . . . . . . 66
3.5.1 Outline of simulator configuration and experiments . . . . . . 66
3.5.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.3 Emulator construction and validation . . . . . . . . . . . . . . 70
3.5.4 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.5 Comparison with toy model . . . . . . . . . . . . . . . . . . . 75

3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Uncertainty analysis for duration-limited waves in a single grid cell
(0-D) 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Sources of uncertainty and elicitation . . . . . . . . . . . . . . . . . . 82

iii



CONTENTS

4.2.1 Elicitation for Sds . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Elicitation for Snl . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Wind uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.4 Numerical uncertainty . . . . . . . . . . . . . . . . . . . . . . 87
4.2.5 Other sources of uncertainty . . . . . . . . . . . . . . . . . . . 87
4.2.6 Design summary . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Experiments and analysis . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Simulation configuration . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Notes on experiment design . . . . . . . . . . . . . . . . . . . 88

4.4 Experiment 4.A (a), the effect of uncertainty about dissipation physics 90
4.5 Experiment 4.A (b), uncertainty in wave power from a wave energy

converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Experiment 4.B, uncertainty about input, dissipation and nonlinear

interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Further applications of an emulator: Visualisation . . . . . . . . . . . 113
4.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.8.1 Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.8.2 Uncertainty analysis for uncertain parameters and wind speed 115

5 Uncertainty analysis for propagating waves in a channel (1-D) 117
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Fetch-limited wave growth . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.1 Variations on fetch-limited growth . . . . . . . . . . . . . . . . 121
5.3 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . 121
5.3.2 Numerical uncertainty . . . . . . . . . . . . . . . . . . . . . . 122
5.3.3 Uncertainty about wind forcing . . . . . . . . . . . . . . . . . 122

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.1 Design summary . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Simulation configuration . . . . . . . . . . . . . . . . . . . . . 123
5.4.3 Simulation configuration . . . . . . . . . . . . . . . . . . . . . 124

5.5 Experiment 5.A: Fetch-limited growth . . . . . . . . . . . . . . . . . . 124
5.5.1 Uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . 131
5.5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Experiment 5.B: Fetch-limited wave growth with a variable wind . . . 141
5.6.1 Experiment configuration and design . . . . . . . . . . . . . . 141
5.6.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 142

5.7 Experiment 5.C: Linear wind decay . . . . . . . . . . . . . . . . . . . 150
5.7.1 Experiment configuration and design . . . . . . . . . . . . . . 150
5.7.2 Uncertainty and sensitivity analysis for Hs and Tp . . . . . . . 153
5.7.3 Uncertainty and sensitivity analysis for growth rates . . . . . 156
5.7.4 Experiment summary . . . . . . . . . . . . . . . . . . . . . . . 164

5.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.8.1 Wind input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.8.2 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . 165
5.8.3 Static conditions versus dynamic conditions . . . . . . . . . . 165

iv



CONTENTS

6 Uncertainty analysis for directional waves in an idealised (2-D)
ocean 167
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Sources of uncertainty and experiment design. . . . . . . . . . . . . . 167

6.2.1 Notes on experimental design . . . . . . . . . . . . . . . . . . 169
6.3 Experiment 6.A: Source term integration for a turning wind (0-D) . . 169
6.4 Experiment 6.B (a): Turning wind with advection . . . . . . . . . . . 183

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4.2 Experiment design for winds . . . . . . . . . . . . . . . . . . . 183
6.4.3 Wind configuration . . . . . . . . . . . . . . . . . . . . . . . . 185
6.4.4 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.4.5 Experimental configuration and design summary . . . . . . . . 188
6.4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.5 Experiment 6.B (b): Uncertainty in change in wind direction . . . . . 197
6.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Uncertainty analysis for a real 2-D basin: Lake Michigan 201
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.2 Wind regimes and wave climate . . . . . . . . . . . . . . . . . . . . . 204
7.3 Simulation details, sources of uncertainty and elicitation . . . . . . . 207

7.3.1 Simulator configuration . . . . . . . . . . . . . . . . . . . . . . 207
7.3.2 Forcing winds and elicitation of uncertainty about wind con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.3.3 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.3.4 Simulation numerics . . . . . . . . . . . . . . . . . . . . . . . 209
7.3.5 Bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4 Experiments and analysis . . . . . . . . . . . . . . . . . . . . . . . . 210
7.4.1 Design summary . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.5 Experiment 7.A: Spin up times . . . . . . . . . . . . . . . . . . . . . 212
7.6 Experiment 7.B: Southerly winds . . . . . . . . . . . . . . . . . . . . 216

7.6.1 Analysis for Hs . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.6.2 Analysis for Tp . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.7 Experiment 7.C: Northerly winds . . . . . . . . . . . . . . . . . . . . 223
7.7.1 Analysis for Hs . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.7.2 Analysis for Tp . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.8 Experiment 7.D: Changing wind direction . . . . . . . . . . . . . . . 229
7.9 Experiment 7.E: Parameter calibration for high winds . . . . . . . . . 235
7.10 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8 Conclusions 247
8.1 Effectiveness of emulators . . . . . . . . . . . . . . . . . . . . . . . . 247
8.2 Uncertainty in wave model output, and sensitivity to input . . . . . . 248

8.2.1 General comments . . . . . . . . . . . . . . . . . . . . . . . . 248
8.3 Sensitivity to wind input . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.3.1 Energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . 251
8.3.2 Nonlinear wave-wave interactions . . . . . . . . . . . . . . . . 252

8.4 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

v



CONTENTS

9 Notes on future work 255
9.1 Uncertainty and sensitivity analysis for Wavewatch III v4.18 and

larger scale simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.2 Surrogate modelling of nonlinear wave-wave interactions source term . 255
9.3 Bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A Representing the 1-D spectrum 257

B Running designed experiments with Wavewatch III 259
B.1 Wavewatch III sequence of execution . . . . . . . . . . . . . . . . . . 259
B.2 Designed experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B.3 WW3 directory structure . . . . . . . . . . . . . . . . . . . . . . . . . 266

C Towards an analytical solution for uncertainty analysis using the
Matérn correlation function 269

D Numerical integration code for arbitrary (linear) mean and corre-
lation functions 273
D.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

E Wavewath configuration details 295

F A possible approach to designing winds from observational data:
A synthetic example. 297

G Details pertaining to simulation of Lake Michigan. 301
G.1 Communication from GLERL on wind uncertainty. . . . . . . . . . . 301

vi



LIST OF FIGURES

List of Figures

2.1 Example output spectra from a simulation of a developed sea in deep
water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Evolution of the sea state in a homogeneous infinite sea. . . . . . . . 16
3.1 Two contrasting uncertainty distributions induced in simulator out-

put for a simple one dimensional simulator. . . . . . . . . . . . . . . . 42
3.2 An example 100 point maximin LHS based design for two input vari-

ables. Panels 1 and 3 show a histogram of the distribution of the
sampled points in each dimension. The centre panel shows the points
plotted in the design space. The space filling and orthogonal proper-
ties are clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Example of graphical tools to assess consistency of the emulator with
the simulator. Top left: direct comparison of point predictions. Top
right: Standardised errors by point. Bottom left: Standardised errors
ordered by size of error. Bottom right: Q-Q plot for errors against
reference t-distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Diagnostics for the simple linear regression model. . . . . . . . . . . . 68
3.5 Diagnostics for the cubic regression model. . . . . . . . . . . . . . . . 69
3.6 Graphical tools to assess consistency of the emulator with the sim-

ulator. Top left: direct comparison of point predictions. Top right:
Standardised errors by point. Bottom left: Standardised errors or-
dered by size of error. Bottom right: Q-Q plot for errors against
reference t-distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Further emulator diagnostics. . . . . . . . . . . . . . . . . . . . . . . 73
3.8 Emulator diagnostics. Top left: direct comparison of point predic-

tions. Top right: Standardised errors by point. Bottom left: Stan-
dardised errors ordered by size of error. Bottom right: Q-Q plot for
errors against reference t-distribution. . . . . . . . . . . . . . . . . . . 74

3.9 Results from uncertainty analysis. . . . . . . . . . . . . . . . . . . . . 75
3.10 Output from a 1-dimensional deterministic function that exhibits lo-

calised “non-stationarity”. . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11 Evaluation of different emulators for a toy model. . . . . . . . . . . . 77
3.12 Evaluation of different emulators for a toy model. Emulator 3 includes

a nugget term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Reproduction of figures 4 and 5 from TC96, showing local estimates

of parameters a0 and a1 at different (dimensionless) fetches and in
differing atmospheric conditions. . . . . . . . . . . . . . . . . . . . . . 84

4.2 Reproduction of table 2 from TC96, showing optimal parameter val-
ues for the tuning of the dissipation source term. . . . . . . . . . . . . 85

4.3 Time evolution of wave summary statistics for duration-limited growth. 91
4.4 Linear regression model fitted to simulated HS for experiment 4.A . . 92
4.5 Linear regression model incorporating higher order terms fitted to

simulator output (experiment 4.A) . . . . . . . . . . . . . . . . . . . 93
4.6 Graphical diagnostics for an emulator for Hs built with linear terms

in the mean function and Matérn (ν = 3/2) covariance functions. . . 94

vii



LIST OF FIGURES

4.7 Graphical diagnostics for the Hs emulator built with 6th order poly-
nomial mean and Matérn (ν = 5/2) covariance functions. . . . . . . . 96

4.8 Uncertainty analysis for simulated Hs. . . . . . . . . . . . . . . . . . 97
4.9 Linear regression model fitted to simulator output for Te (experiment

4.A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.10 Graphical diagnostics for the Te emulator built with 4th order poly-

nomial mean and Matérn (ν = 5/2) covariance functions. . . . . . . . 100
4.11 Uncertainty analysis for simulated Te in duration limited conditions. . 101
4.12 Visualisation of the power conversion matrix for the Pelamis P1 device.103
4.13 Results of the uncertainty analysis for wave power extraction. Note

the extreme peak in panel (a), and in panels (b) and (c), the nar-
row bivariate probability distribution (black line) that identifies the
specific domain for power output associated with the uncertain wave
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.14 Linear regression model fitted to simulator output for Hs (experiment
4.B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.15 Residuals from a linear regression of log(Hs) plotted against input
(experiment 4.B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.16 Graphical diagnostics for an emulator for Hs built with a mean func-
tion of the form y ∼ 1 + x + x2

8,9 and Matérn (ν = 5/2) covariance
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.17 Uncertainty distributions induced in simulatedHs with three different
input uncertainty specifications for wind speed. . . . . . . . . . . . . 109

4.18 A sample of spectra drawn from the first design set. Noting that one
time point spans 12 hours, time point 61 is at the end of day 30. . . . 111

4.19 Uncertainty distributions induced in simulated Tp with three different
input uncertainty specifications for wind speed. . . . . . . . . . . . . 112

4.20 Simulator response (in Hs) to variation in input parameters. Input
parameters are assinged to the spatial axes and the colours white to
red represent values of Hs from low to high. . . . . . . . . . . . . . . 114

5.1 Geographic arrangement for a simulation of fetch-limited wave growth,
shown with a graph of dimensionless wave height plotted against di-
mensionless fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Evolution of 1-dimensional wave spectra along the fetch. . . . . . . . 119
5.3 Simulations of fetch-limited growth ofHs for different numerical schemes

and physics. Forcing wind speed is 12.5ms−1. . . . . . . . . . . . . . . 125
5.4 Simulations of fetch-limited growth of Tp for different numerical schemes

and model physics. Forcing wind speed 12.5ms−1. . . . . . . . . . . . 125
5.5 Function (5.2) fitted to output from a number of design points. . . . . 127
5.6 Residuals from linear regression of input parameters and wave height

growth coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Graphical diagnostics for emulators of H̃∞, m1 and k1. Matérn (ν =

3/2) covariance function used. . . . . . . . . . . . . . . . . . . . . . . 130
5.8 Uncertainty analysis for Hs growth coefficients. . . . . . . . . . . . . 132
5.9 Uncertainty analysis for Tp growth coefficients. . . . . . . . . . . . . . 133

viii



LIST OF FIGURES

5.10 Sensitivity analysis for the coefficients describing the functional rep-
resentation of growth of Hs . . . . . . . . . . . . . . . . . . . . . . . 135

5.11 Main effects for k1 computed by Monte Carlo from the emulator mean
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.12 Proportion of variance in growth coefficients forHs explained by input
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.13 Sensitivity analysis for the coefficients describing the functional rep-
resentation of growth of Tp . . . . . . . . . . . . . . . . . . . . . . . . 139

5.14 Sensitivity analysis for Hs at increasing distance along the fetch. . . . 144
5.15 Residuals from a linear (1st order) regression model for Tp against

λDIA for different values of fetch. Note that actual values of λDIA are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.16 Graphical diagnostics and sensitivity analysis for Tp at 52km fetch. . 147
5.17 Sensitivity analysis for Tp at increasing distance along the fetch. . . . 149
5.18 Wave growth and decay profiles for different simulations taken from

the first design set (experiment 5.C). These are compared with wave
growth profiles from experiment 5.B, shown by the solid and dashed
lines. Points along the fetch for which an uncertainty analysis was
carried out are designated by red squares and triangles. . . . . . . . . 152

5.19 Sensitivity analysis for Hs at specific points along the fetch. . . . . . 154
5.20 Sensitivity analysis for Tp at specific points along the fetch. . . . . . . 155
5.21 Linear regression models fitted to Hs training data. The first (blue)

line in the growth region is of the form Hs ∼ a0 + a1F + a2F
2. The

second (red) line in the “transition” region is of the form Hs ∼ b0 +
b1F + b2F

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.22 Emulator validation diagnostics for regression coefficients a0, a1 and

a2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.23 Sensitivity analysis for the coefficients describing the initial growth

of wave height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.24 Emulator validation diagnostics for regression coefficients b0, b1 and b2.162
5.25 Sensitivity analysis for the coefficients of the linear regression fit to

the transition region for Hs. . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Time evolution of the simulated 2-D spectrum generated from a turn-

ing wind. Times indicated are relative to the shift in wind direction,
not the start of the simulation. Note that the colour corresponding
to the spectral intensity has been smoothed for visualisation purposes
and may not capture some of the fine detail. . . . . . . . . . . . . . . 170

6.2 Time evolution of mean wave direction when a sudden change in wind
direction of +90◦ occurs, where fp = 2fPM . . . . . . . . . . . . . . . . 171

6.3 Output from five different model runs in the first design set. The top
left panel shows all the data in the other five plotted on common axes.173

6.4 Residuals from linear regression of mean wave direction plotted against
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Graphical diagnostics for an emulator trained on simulated mean
wave direction at t=+4:30. Linear mean and Matérn (ν = 3/2) co-
variance functions were used. . . . . . . . . . . . . . . . . . . . . . . 176

ix



LIST OF FIGURES

6.6 Uncertainty analysis for simulated mean wave direction computed at
time t=+4:30 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.7 Results of the sensitivity analysis for mean wave direction at t=+4:30
hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.8 Residual plots from linear regression and emulator diagnostics. . . . . 178
6.9 Uncertainty analysis for wave directional response computed with the

DIA nonlinear interaction scheme. Mean = 37◦, s.d. = 1.7◦. Some
nonlinearity is apparent from the skewed distribution. . . . . . . . . . 179

6.10 Time evolution of the simulated 2-D spectrum generated from a turn-
ing wind, as computed using the near exact WRT nonlinear interac-
tion scheme. Times indicated are relative to the shift in wind di-
rection, not the start of the simulation. Note that the colour corre-
sponding to the spectral intensity has been smoothed for visualisation
purposes and may not capture some of the fine detail. . . . . . . . . . 180

6.11 Residuals from linear regression of mean wave direction plotted against
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.12 Uncertainty analysis for wave directional response computed with the
WRT nonlinear interaction scheme. Mean = 337◦, s.d. = 5.4◦. Note
that the output at the mean input, and distribution actually coincide
in this instance, indicating a very linear response of the simulator to
the uncertain input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.13 Wind directional profile in time for different choices of control param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.14 Sea state development with time on the 2-D grid. . . . . . . . . . . . 189
6.15 Residual plots from linear regression and emulator diagnostics. . . . . 191
6.16 Uncertainty analysis for simulated mean wave direction computed at

time t=+41:00 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.17 2-D spectrum at a fetch of 545km, at t=+36:00 hours, prior to the

change in wind direction. . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.18 Sensitivity analysis for mean wave direction at 545km fetch, at t=+36:00

hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.19 2-d spectrum at a fetch of 75km, at time t=+36:00 . . . . . . . . . . 195
6.20 Uncertainty and sensitivity analysis for mean wave direction at 75km

fetch, at t=+36:00 hours. . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.21 Sampling distribution for control parameter λtrans. . . . . . . . . . . . 198
6.22 Results from uncertainty and sensitivity analysis at t=+41:00 hours. 199
7.1 Lake Michigan: The left panel shows the lake geography together with

its bathymetry. The top right panel shows some additional regional
information, together with an indication of the longest fetch, marked
by the red line. The bottom right panel shows the location of the
buoys NDBC 45002 and 45007. . . . . . . . . . . . . . . . . . . . . . 203

7.2 Summaries of 5 years (2008 to 2012) of observations at NDBC buoys
45002 and 45007, comprising Hs, Tp and winds. . . . . . . . . . . . . 204

7.3 Direction integrated (1D) wave spectra observed at NDBC 45002 ev-
ery 2 hours starting at 00:00 05/10/2012. . . . . . . . . . . . . . . . . 206

x



LIST OF FIGURES

7.4 Summaries of monthly winds during 5 years of observations at NDBC
buoy 45002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.5 Wind conditions at NDBC 45002 during the first two weeks of Octo-
ber. “Average” winds denoted with the orange and blue dashed lines
are an average of seven locations evenly spaced running approximately
north to south along the axis of the lake. These give an indication of
spatial variability compared with the observation at NDBC 45002. . . 214

7.6 Six runs of the same experiment where each is started 24 hours after
the last. The period of convergence to the solution from the initial
conditions in each case is identified by the orange bands. The differ-
ence in convergence period can clearly be seen. . . . . . . . . . . . . . 215

7.7 A localised average from the GLERL interpolated winds at NDBC
45002 and 45007 during October 2012. Note that the winds observed
at NDBC 45002 are included for comparison. A slight difference is
noticeable due to the localised averaging. . . . . . . . . . . . . . . . . 218

7.8 A comparison of simulated output from the default parameterisation
with observations of waves at NDBC 45002 (panel a) and NDBC
45007 (panel b). A sample of 20 points from a design ensemble gives
an indication of variability in the output. . . . . . . . . . . . . . . . . 219

7.9 Uncertainty and sensitivity analysis forHs simulated at 01:00 09/10/2012,
and 18:00 09/10/2012. . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.10 Uncertainty and sensitivity analysis for Tp simulated at 01:00 09/10/2012,
and 18:00 09/10/2012. . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.11 A localised average from the GLERL interpolated winds at NDBC
45002 and 45007 during October 2012. Note that the winds observed
at NDBC 45002 are included (marked as crosses) for comparison. A
slight difference is noticeable due to the localised averaging. . . . . . 225

7.12 A comparison of simulated output from the default parameterisation
with observations of waves at NDBC 45002 (panel a) and NDBC
45007 (panel b). A sample of 20 points from a design ensemble gives
an indication of variability in the output. . . . . . . . . . . . . . . . . 227

7.13 Uncertainty and sensitivity analysis for Hs . . . . . . . . . . . . . . . 228
7.14 Uncertainty and sensitivity analysis for Tp . . . . . . . . . . . . . . . 230
7.15 A localised average from the GLERL interpolated winds at NDBC

45002 and 45007 during September 2010. Note that the winds ob-
served at NDBC 45002 are included (marked as crosses) for compar-
ison. A slight difference is noticeable due to the localised averaging. . 231

7.16 A comparison of simulated output from the default parameterisation
with observations of waves at NDBC 45002. A sample of 20 points
from a design ensemble gives an indication of variability in the output.232

7.17 Uncertainty and sensitivity analysis for mean wave direction simu-
lated at 23:00 23/09/2010, and 15:00 25/09/2010. . . . . . . . . . . . 234

7.18 Simulated Hs compared with observations at NDBC buoys 45002 and
45007 for the entire month of October 2012. . . . . . . . . . . . . . . 237

7.19 As figure 7.8. Large (red) crosses show the calibration points used to
formulate the cost function. . . . . . . . . . . . . . . . . . . . . . . . 238

xi



LIST OF FIGURES

7.20 Examples of graphical diagnostics for the sixteen emulators formu-
lated for the calibration process. The reference distribution for the
Mahalanobis distance is mean = 80.0, s.d. = 15.8. . . . . . . . . . . . 239

7.21 Simulated Hs using the default parameterisation (black circles) and
the parameterisation after calibration (red crosses), compared with
observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.22 Simulated Hs compared with observations at NDBC 45002 and 45007
using the default parameterisation (black circles), and after calibra-
tion (red crosses) with α = 5, 10. . . . . . . . . . . . . . . . . . . . . 243

7.23 Simulated Tp compared with observations after calibration. Note per-
formance statistics for the default case at NDBC 45002 are RMSE =
1.19s, corP = 0.907, b = −1.01s and at NDBC 45007 are RMSE =
1.21s, corP = 0.889, b = −0.958s. . . . . . . . . . . . . . . . . . . . . . 245

A.1 A Gaussian process model fitted to a number of fetch-limited spectra
(at increasing fetch) as generated by WW3. The spectral shape (solid
black line) is modelled by a GP posterior mean function (solid blue
line) using up to 14 design points (sold black circles.) . . . . . . . . . 258

C.1 Function y = exp(−|x− x′|), where x′ = 1. . . . . . . . . . . . . . . . 270
F.1 Sampled response data and its decomposition into principal compo-

nents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
F.2 A single sampled response, reconstructed using a limited number of

modes. Improvement is evident with the inclusion of additional modes.299
F.3 Probability histograms for the first six response modes. . . . . . . . . 300
F.4 Response profiles corresponding to a number of design points. . . . . 300

xii



LIST OF TABLES

List of Tables

3.1 Sources of uncertainty (0-D example simulation). . . . . . . . . . . . 67
4.1 WW3 input parameters and sampling distributions for experiments

4.A (a), (b) and 4.B . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Experiments presented in chapter 4. . . . . . . . . . . . . . . . . . . . 90
5.1 Experiments presented in chapter 5. . . . . . . . . . . . . . . . . . . . 123
5.2 WW3 switch configuration for chapter 5 . . . . . . . . . . . . . . . . 124
5.3 WW3 input parameters and sampling distributions for experiment 5.A126
5.4 WW3 input parameters and sampling distributions for experiment 5.B143
6.1 Experiments presented in chapter 6. . . . . . . . . . . . . . . . . . . . 168
6.2 WW3 input parameters and sampling distributions for experiments

6.A, 6.B (a) and (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Wind control parameters and sampling distributions for experiments

6.A, 6.B (a) and (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.1 Experiments presented in chapter 7. . . . . . . . . . . . . . . . . . . . 210
7.2 WW3 input parameters and sampling distributions for experiments

7.B, 7.C, 7.D and 7.E . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.3 Tuning parameter values found through calibration (7.E). . . . . . . . 241
7.4 Comparison of performance statistics for the default WW3 parame-

terisation and alternatives found through calibration (7.E). . . . . . . 244
B.1 WW3 programme execution sequence . . . . . . . . . . . . . . . . . . 259

xiii





Declaration of Authorship

I, Ben Timmermans, declare that the thesis entitled Uncertainty in numerical
wind-wave models and the work presented in the thesis are both my own, and
have been generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree
at this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

• where I have consulted the published work of others, this is always clearly
attributed;

• where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself;

• parts of this work have been published as, “Uncertainty in wave power from
a wave model” in the Proceedings of the Ninth European Wave and Tidal
Energy Conference 2011, Southampton, UK

Signed:.......................................................................................................................

Date:..........................................................................................................................





Acknowledgements

I would like to convey my sincere thanks to my supervisor Peter Challenor, for his
continued support, input and confidence in my capability. I am also very grateful
to my co-supervisors, Christine Gommenginger, for her considered input and pos-
itive spirit, and Peter Jan van Leeuwen, for his support, feedback and assistance
with funding. I am grateful to have had the opportunity to undertake this research,
which was funded by the UK National Centre for Earth Observation. Thank you
also to a number of others including; Jeff Blundell for computing support at the Na-
tional Oceanography Centre, Chris Bunney at the UK Met Office for support with
Wavewatch III, W. Eric Rogers at Naval Research Laboratoty, Mississippi (US)
for providing code and assistance with Lake Michigan and Gregory Lang at the
Great Lakes Environmental Research Laboratory (US) for providing forcing winds
for simulations of Lake Michigan. Karl Ropkins (University of Leeds) provided valu-
able help and modification to the “openair” package in R. Thanks also to Richard
Humphreys for proof reading, and in particular to Chris Hughes for numerous help-
ful chats about statistics. A special thanks to my friends who were there during
difficult times, and finally, to my courageous Mum for her unfailing support, and
great strength in the face of extreme adversity.





In loving memory of my Dad.





1 INTRODUCTION AND MOTIVATION

1 Introduction and motivation

Wind driven waves on the surface of the ocean, or wind-waves, have been a focus

of study for many decades. Prediction of wind-waves is relevant to the undertak-

ing of many ocean-based activities. The pioneering oceanographer, Walter Munk,

developed methods to predict sea conditions in order to help the planning of the

“D-Day” landings during World War 2. Since then, the theory of ocean waves has

been developed into modern day global numerical wind-wave models that can make

good predictions of short term wave conditions and future wave climate. Such mod-

els have been developed by numerous institutions for a variety of applications, that

involve simulations ranging from large lakes, to oceanic settings on coastal, regional

and global scales. Applications are diverse - surfers demand accurate swell forecasts,

and in the UK the value of the surfing industry to Cornwall is reportedly in excess

of £50 million annually. This figure is small compared to the financial risk globally

of dangerous sea conditions to shipping and coastal operations, where human life

is also a potential cost of poor understanding of waves. Perhaps of greater value

still is the global wave energy resource, as society looks to the sea for low carbon

and renewable sources of power. Our ability to accurately quantify this resource is

very important to this rapidly growing industry. Furthermore, there has been much

recent interest in the role of waves in moderating the ocean-atmosphere boundary

exchange (Hanley and Belcher, 2009; Huang et al., 2011) and researchers increas-

ingly employ coupled models to better understand the effects of these interactions

(Wolf, 2008; Cavaleri et al., 2012; Janssen et al., 2013). The obvious benefits of un-

derstanding and improving wind-wave predictions provides compelling motivation

for on-going research.

Modern numerical wind-wave models are based upon the principle of specifying

waves in a spectral form. That is, given it is clearly impossible to resolve waves

everywhere, ocean waves, or rather their amplitudes, directions and frequencies

throughout the geographic domain, are necessarily regarded in a statistical sense

and represented by the variance of the sea surface height distributed over a direc-

tion and frequency domain. Spectral wave models do not resolve individual waves

and so cannot predict “freak” waves1 nor do they incorporate necessary physics to

investigate Tsunamis.

Imagine then that on the sea surface there are waves of all frequencies travel-

ling in all directions, and that we can represent this approximately by defining a

“directional frequency spectrum” at any location that specifies the variance in sea

1For a discussion of freak waves and their relationship to spectral wave models, see Janssen
(2002) and Babanin and Rogers. (2014)
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1 INTRODUCTION AND MOTIVATION

surface height attributable to waves at each frequency band and travelling in each

direction. For the purposes of numerical modelling it is necessary to discretise fre-

quency and direction. The time evolution of this directional spectrum can then be

computed according to governing physical laws. Numerical wave models operate by

computing the time evolution of the directional frequency spectrum at each grid

point throughout a geographic domain. The computation of the spectrum (at each

location) is based upon equations governing the propagation of wave energy, and

various physical processes, or source terms, that govern energy input from the wind,

subsequent dissipation and the process of energy transfer between waves. For most

practical purposes such as forecasting for shipping, wave conditions are summarised

by average heights, periods and directions that are calculated from the frequency

spectrum. Modern wave models such as Wavewatch IIIr (Tolman, 2009a) have

been in development for more than 30 years. In that time some important devel-

opments have been made (for an overview, see e.g. Janssen, 2008) but as he notes

there remains considerable uncertainty in a number of areas and the debate as to

the depth of our understanding can be heated. Areas of recent progress, together

with other underlying principles are discussed in chapter 2.

While the performance of forecasts and hindcasts produced from modern day

wave models is generally good (Tolman, 2002c; Bidlot et al., 2002; Ardhuin et al.,

2010) the same studies, and others, often find areas of weakness (Feng et al., 2006;

Cavaleri, 2009). This is unsurprising given the complexities of the physical pro-

cesses, the challenges of numerical representation, the difficulties in obtaining accu-

rate measurements of forcing winds, and the wide range of wave model applications.

Significant parts of the numerical computation are based upon empirical parameter-

isations of the physical processes (e.g. wind input) that have been tuned to match

observation in given conditions. Empiricism in complex numerical models is com-

monplace and the investigation of the physical processes that govern wind-waves

presents a significant challenge to modellers and experimentalists alike. From a the-

oretical position for example, explaining the dissipation of energy due to turbulent

breaking waves is as challenging as measuring the dissipation directly. Rogers et al.

(2012) describes an example of testing a theoretical formulation and Leckler et al.

(2013) and Gemmrich et al. (2013) describe the use of different types of validation

data, none of which are easily obtained. Moreover, sources of uncertainty are not

limited to the theoretical representation of wave physics. Traditionally, wind speed

errors have been regarded as the dominant source of uncertainty in predictions of

wave height (Janssen et al., 1997). Studies such as (Feng et al., 2006) show that

differences between forcing winds (obtained from different high quality sources) can

2



1 INTRODUCTION AND MOTIVATION

result in predicted wave conditions that differ by up to fifty percent (in terms of

wave height) in some cases. In conditions that could potentially be dangerous this is

clearly very significant. There is also the question of numerical uncertainty, that is

errors introduced due to the approximate solution of the underlying physical equa-

tions. Global wave models are typically run at a longitude / latitude grid resolution

of 1 degree, but this is inadequate to resolve smaller islands which can be problem-

atic (Tolman, 2003; de Leon and Soares, 2005). In addition to the discretization of

the geographic domain, both the spectral frequency and directional domains are dis-

cretized. Anomalies arising from this have also been documented (Tolman, 2002a).

Coarse resolution is necessitated by the computational expense of the model, par-

ticularly for global operation. Another implication of computational cost, that will

be discussed in more detail shortly, is the resulting restriction on the number of

model runs that can be performed for the purpose of model analysis and validation.

Global or regional models require tens to hundreds of CPU cores for just a few hours

of fore- or hindcast simulation. Thus, the potential to assess uncertainty through

ensemble runs is limited.

Although a number of studies have explored the issue of uncertainty, or at least

sources of error, in one way or another, none has so far performed a rigorous, com-

prehensive and quantitative assessment. This is not a criticism of the authors given

the challenge and possible extent of the task. Rogers (2002), Rogers et al. (2002)

and Rogers et al. (2005) have tackled the question of sources of errors in perhaps the

most comprehensive manner. Rogers (2002) separates errors in wave modelling into

three broad categories: numerics and resolution, physical formulations and forcing.

The scope of the study is limited to the modelling of low frequency waves (which

is itself a broad area), but each source of error is addressed systematically. Rogers

et al. (2005) approach the issue of model structural error (bias) directly, posing and

answering qualitative questions about the relative magnitudes of errors.

So it is unsurprising that, to date, quantification of uncertainty due to the various

aspects of wave modelling has not been addressed formally in the literature. Yet,

there is a need to answer some fundamental questions about the capacity of wave

models to produce reliable prediction. The following are examples of the type of

scientific questions that have been posed.

1. How influential is the uncertainty in forcing winds in wave model predictions?
(Bidlot et al., 2002)

2. What choice of model input parameter values gives the best performance when
hindcasting wave conditions? (Ardhuin et al., 2010)

3. Has wave modelling reached its limit? (Liu et al., 2002).

3



1 INTRODUCTION AND MOTIVATION

None of these authors had access to a rigorous methodology to explore the ori-

gin of uncertainties in a wave model. Notably, in the context of wave model per-

formance in more extreme conditions, Cavaleri (2009) emphasises the need for a

further reaching investigation of wave model physics, and advocates an extensive

sensitivity analysis in order to better focus development work. He goes further to

suggest that certain statistical methods (which will be introduced shortly), could

possibly be employed, though indicates some skepticism that they may be effective

given the complexities. Of course, the complexity and lack of suitable methods is a

primary reason for the absence (to date) of such analysis. Owing to this absence,

this thesis brings to bear rigorous statistical methods on modern wave models as

advocated by Cavaleri (2009). The objective of this study, therefore, is for the first

time, to establish and apply rigorous methods of quantitative uncertainty analysis to

wave models, and obtain uncertainty measures. Questions such as those posed above

are addressed formally, which thus far has not been possible.

1.1 Tackling uncertainty in complex models

Numerical models are abundant in the all fields of scientific research. It is often

desirable to build a model in order to conduct computer experiments that would

otherwise be impossible in the real world system, and answer “What if. . . ” type

questions. Here, a complex model is defined as one that expresses our detailed

understanding of a nonlinear real world process in terms of a mathematical for-

mulation, that typically comprises numerous dimensions of input and output data,

physical and empirical quantities or parameters, control features, and so on. Having

constructed a model we are usually uncertain about various aspects of both the real

world process and our representation, be they specific values of physical constants,

the “best” values for empirical parameters, the choice of parameterisation, etc. The

model is also likely to be computationally expensive, thus limiting the number of

times we can run the model and explore the effect of uncertainty about its operation.

The increasing availability of high performance computing platforms and the

growth of computational capacity has permitted the implementation of more and

more sophisticated models at higher and higher resolutions2. This has allowed us

to investigate in unprecedented detail and certainly appears a sensible approach,

supported by leading scientists (e.g. Palmer, 2011). There is however debate as to

whether our lust for detail and increased complexity has overtaken our ability to

2Indeed, it often seems unclear whether it is the rapid advance in our understanding and
formulation of scientific problems that drives computational demand, or whether, knowing that
more computational power will be available in the future, we relentlessly plan to utilise it with
ever more complex models!
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obtain improved scientific insight. Anderson (2010) and Rougier and Cruifix (2012)

caution against the increase in sophistication for a number of reasons. Notably,

the difficulty in fully comprehending any complex model and the implications of its

predictions, given the wealth of uncertainty we have about its constituent processes,

their mathematical representation, and the lack of observational data we can bring

to bear in validating the output. Particularly in high profile examples, others are

calling for uncertainties to be addressed more rigorously and consistently (Katz et al.

2013). It may even be the case that output from models of large and complex natural

systems will always be underdetermined by possible observations and they therefore

cannot ever be validated with confidence, as asserted by Oreskes et al. (1994).

A recent example that elucidates these points (though not related specifically

to wave modelling) is that of the difference between successive revisions of earth

system models developed by the UK Met Office Hadley Centre3. Under a future

climate scenario, the “HADCM3LC” model predicted an extensive “dieback” of the

Amazon rainforest, whereas its successor, the “HADGEM2-ES” model predicted

very little change to the forest under the same climatic forcing. This stark contrast is

investigated by Good et al. (2013). The authors attribute the difference primarily to

a change in dry season length (which is itself due to other factors) but acknowledge

a lack of understanding about the physical processes leading to this. Moreover,

with regard to the question of what the conflicting models tell us about the overall

risk of Amazon dieback, the authors state that the risk was, and remains, hard to

quantify. With respect to the range of improvements made in the HADGEM2-ES

model, the authors further acknowledge that “. . . it is not currently possible to say

how significant these improvements might be for the specific case of Amazon forest

projections”. Although only a preliminary study, Good et al. (2013) do not employ

any formal methods of uncertainty or sensitivity analysis and it is perhaps telling

of the complexity and uncertainty involved that this particular (and surprising?)

finding, presumably one of many possible differences in behaviour between the two

models, warrants extensive and onerous follow-up work. For models with potential

and far reaching implications for global policy makers, a priori one might expect

somewhat more certainty, or at least a more robust quantification of it.

Wave models are demonstrably better understood than earth-system models -

indeed, they are often a sub-component of such models - and there is ample oppor-

tunity to validate their performance. However, they exhibit their own shortcomings.

For example, Cavaleri (2009) draws attention to the on-going problem of simulating

waves in more extreme conditions. He cites some examples of where wave models

3http://www.metoffice.gov.uk/climate-guide/science/science-behind-climate-change/hadley
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fail to capture “peak” events and explores why this remains the case, in spite of im-

proved modern measurements of wind (that were traditionally held as responsible

for most error in prediction). He suggests that, given good wind data, if substantive

improvements are to be made, then sensitivity analysis is required.

All but the most parsimonious of numerical models require considerable interro-

gation in order to be understood and improved upon, so a complex model presents

a number of problems with respect to uncertainty analysis. A number of ingredients

are required to proceed. Before these are expounded upon it is necessary to clarify

what is meant by uncertainty. Kennedy and O’Hagan (2001) designate terms for

specific aspects of uncertainty with respect to complex numerical models. This is

discussed in more detail in chapter 3 but for now three terms are introduced. Param-

eter uncertainty refers to our uncertainty about the “true” value(s) for model input

parameters. Model inadequacy refers to the model’s fundamental inability to make

a perfect prediction, even given perfect4 input. Model inadequacy is also commonly

referred to as structural uncertainty, and often associated with systematic model

error. Thirdly, observation error refers to uncertainty about observations of the real

world system in question that are used for validation. Without accounting for this

source of uncertainty, we are clearly limited in what we can determine about how

well the model represents the real world. In this thesis, chapters 4, 5, 6 focus on

parameter uncertainty, with respect to wave model input and dissipation, and non-

linear wave-wave interaction parameterisations. Uncertainty and sensitivity analysis

is used to evaluate wave model response to uncertain input parameters, and obtain

probability distributions for model output. Observation error is discussed in chap-

ters 5 and 7. Section 1.2 describes the approach taken in this thesis to addressing

these sources of uncertainty in wave models.

In terms of performing quantitative analysis of these sources of uncertainty, we

require a range of tools with which to understand and evaluate the effects of the

uncertainty (which are discussed in chapter 3). The terms “uncertainty analysis”,

“sensitivity analysis” and “uncertainty quantification” are ubiquitous in this con-

text. They may occasionally be preceded by the word “global” to imply an analysis

over the whole domain of uncertainty (in a given context). Saltelli et al. (2000)

discusses these methods at length and in a variety of contexts, which are reviewed

in more detail in chapter 3. The details of sensitivity analysis for simulators dif-

fers from sensitivity analysis in software engineering, for example, but the general

principle is the exploration of how information is processed through a model. As

mentioned, complex models require expensive computational resource which there-

4Kennedy and O’Hagan (2001) discuss what is meant by “perfect” input.
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1 INTRODUCTION AND MOTIVATION

fore necessitates efficient methods of uncertainty analysis. Methods described by

Saltelli et al. (2000) generally require the evaluation of integrals for which no closed

form solutions exist (due to the complexity of the model). Numerical solutions are

computationally demanding and thus some sophistication is required to overcome

this difficulty. One possible approach is the use of “surrogate” models. A surrogate

model is an accurate representation of the complex model, formulated in some way

based upon observations of output from the complex model, usually referred to as

“training data”. The principle is that of regression. A simple linear regression model

attempts to explain the relationship between some observed quantity (or dependent

variable) and an independent variable, given the assumption that there is a linear

relationship between the two. If the regression model is good, then it is essentially

capable of predicting the dependent variable for any given value of the independent

variable, with an estimate of uncertainty about the prediction. Imagine, then, that

the observations are output from a complex model and the independent variable is

some input to the complex model. The relationship between the two is unlikely to

be so trivial that a simple linear regression suffices, although this has been used to

good effect (see e.g. Sexton et al., 2003) but it may be a reasonable approximation,

or a more sophisticated regression model could be formulated to do a better job.

If a suitable regression model can be found, then in principle it can predict the

output of the complex model at any given value(s) of the independent variable(s).

Moreover, if the regression model is efficient it can be fitted using few observations

of the complex model, and once fitted, it runs very quickly, much faster than the

complex model. Having obtained a fast surrogate of the complex model that is a

statistically accurate and robust representation, computation of various uncertainty

measures, using the methods of Saltelli et al. (2000) for example, is now possible. It

turns out that certain classes of regression models can in fact perform very well in

this role. Haylock and O’Hagan (1996) outlines the use of this method as applied to

radiological modelling. They cover various aspects of the approach. The regression

model described is commonly referred to as a statistical emulator. The background,

theory and motivation to use statistical emulators is discussed in detail in chapter

3.

Having acquired the appropriate tools, the second aspect of the problem of un-

certainty analysis is that our input uncertainty must be specified. In some cases this

can be relatively straight forward. For example, if the input to a complex model

is the value of some physical quantity that is measured, then the measurement will

have some uncertainty associated with the measuring equipment or method. How-

ever, many physical quantities are difficult, or impossible, to measure directly. In
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these cases a judgement has to be made which typically requires the scientist face a

rather unpleasant issue: an honest appraisal of their knowledge. Furthermore, the

representation of the uncertainty estimate is not always simple, and the expert may

not be familiar with how to characterise this. The process of uncertainty elicitation

has many aspects to it, and may involve the interrogation of one or more experts

by a trained statistician, with the objective of obtaining uncertainty information in

terms of probability and probability distributions. O’Hagan et al. (2006) discusses

expert elicitation in depth and this will be considered further in chapters 3 and 4.

With the above two ingredients - tools to do the job, and an accurate estimate

of our uncertainty - uncertainty analysis can be performed. This may yield, for

example, an estimate of total uncertainty about a specific prediction, or could yield

a measurement of the numerical model’s sensitivity to one or more inputs, given

uncertainty.

1.2 Approach and thesis layout

Noting the objective, the approach in this thesis is to analyse quantitatively the

effects of wave model input uncertainty on model output. Specifically this is with

respect to the tuning parameters of two important physical parameterisations, and

(parametric representation of) wind input. This yields measures of output uncer-

tainty, typically in terms of wave summary statistics, which reveals the strength

of influence of specific input, any nonlinear response and highlights more generally

(and quantitatively) which physical processes are dominant. In turn, this infor-

mation can be used to formulate a strategy that guides further research effort to

maximum effect. Importantly, the proposed analysis captures the effects of un-

certainty on simulations as a whole, including all interactions, which may reveal

different results than if individual sources were considered in isolation.

Analysis is performed for a range of physical situations, beginning with simple

cases. The approach is then to build understanding by increasing simulation com-

plexity incrementally, thus obviating the effect of additional sources of uncertainty

at each stage. Research therefore begins by considering simulations that make use

of a single grid cell in chapter 4 and progresses to a realistic case in chapter 7. The

layout of the thesis is therefore as follows.

Chapter 2 discusses relevant wave modelling history and theory, the current

state-of-the-art and areas of uncertainty. Details of the parameterisations inves-

tigated in this thesis are given, together with a description of relevant physical

situations. Chapter 3 introduces methods of uncertainty and sensitivity analysis

that will be applied in this thesis. This includes background to the principles of

8
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computer experiment design, building statistical emulators and how these can be

used to perform various statistical analysis for computationally expensive numerical

models. Analysis begins in chapter 4, by considering the simple case of a single

grid cell which permits the investigation of duration-limited wave growth. The

effects of uncertainty about input parameters associated with important physical

parameterisations are investigated with respect to simulated wave summary statis-

tics. Relevant uncertainty information is elicited from the literature and used as

input for the analysis. Preliminary findings are discussed, which is followed by an

investigation of how uncertainty about the wave energy dissipation parameterisation

would lead to a probabilistic estimate of wave power extraction from a wave energy

converter (WEC).

In chapter 5 complexity is increased by allowing energy propagation (advection)

in one dimension. This permits the simulation and investigation of uncertain input

on fetch-limited wave growth. The same sources of input uncertainty are inves-

tigated, with respect to both wave summary statistics at specific points along the

fetch, and a parametric representation of the growth profile. Probabilistic sensitivity

analysis is also introduced, so that the effects of specific input can be determined.

This reveals how and where physical processes (or rather their parameterisations)

are active.

In chapter 6 complexity is again increased by allowing energy propagation in

both spatial dimensions. This permits the simulation and investigation of direc-

tional waves. It also allows for the expression of more complex forcing winds, and

some aspects of what is meant by “wind uncertainty” are discussed. Making use

of the same input parameters, designed experiments therefore analyse the effects of

uncertainty on wave direction and directional spreading in the case of a “turning

wind”. In 2-D, this idea is extended by implementing a parametric representation

of the wind, in order to assess the effect of uncertainty about specific aspects of

the wind dynamics (in an epistemic sense). Probabilistic output for wave direction

is obtained, and sensitivity analysis is performed to identify the effects of specific

input. This reveals the relative importance of the accuracy of wind input compared

to uncertainty about the other physical parameterisations.

The experimental work in this thesis concludes with chapter 7, where realistic

hindcasts of waves on Lake Michigan are investigated. Designed experiments are

performed, conditional on historic winds, and the effects of uncertainty about input

parameters in different cases, are identified. The results, in terms of parameter sen-

sitivity, and how these identify active physical processes, are compared to results

found in the idealised cases considered in previous chapters. In the final experi-
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1 INTRODUCTION AND MOTIVATION

ment, poor performance of the wave model is identified in stormy conditions, and

observational data from data buoys is formally incorporate to perform a parameter

calibration for the wave model. This leads to an improved parameterisation in such

conditions.

Conclusions and possible areas of further study are given in chapters 8 and 9

respectively.
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2 Introduction to wind-wave modelling

This chapter presents a background to wind-wave modelling and identifies key as-

pects of uncertainty in terms of model formulation. In this context, these key aspects

are investigated specifically in later chapters. Section 2.1 broadly describes the his-

tory and evolution of the scientific theory underlying spectral wave models. This

includes a description of the state-of-the-art model Wavewatch IIIr that is studied

throughout this thesis. Section 2.2 explores uncertainty in wave models by consid-

ering components of a modern wave model in more detail. It also sets out more

specifically terminology associated with uncertainty and how types of uncertainty

manifest. Section 2.3 summarises literature that describes previous work on uncer-

tainty in wave modelling. The chapter concludes with section 2.4 which describes

important physical situations that are investigated in this thesis.

2.1 Spectral wave models

2.1.1 Background

The modelling of ocean waves is generally regarded as beginning with Sverdrup and

Munk (1947). This work arose from the need to predict wave conditions in order to

make the best preparations for beach landings in Africa and Europe during World

War 2. In the intervening years the theory of the generation and propagation of

wind waves, and the field of wave modelling, has grown enormously. The literature

is extensive, and a full review is not attempted here. For a comprehensive review of

the physical principles the reader is directed to Komen et al. (1994) and Holthuijsen

(2007). Cavaleri et al. (2007) reviews active research areas, and shorter reviews

with some historic perspective are given by Mitsuyasu (2002) and Janssen (2008).

Tolman (2013a) also summarised knowledge gaps and recent areas of progress. This

thesis is concerned with how uncertainty about input affects a modern wave model

and so important relevant aspects of the theory are summarised.

For the purpose of modelling (and by necessity), ocean waves are represented

statistically. Sverdrup and Munk (1947) introduced the idea of “significant waves”

which arose from both practical and statistical considerations. Subsequently, the

study of the statistics of random processes, based on original work by Rice (1944),

contributed significantly to the development of the statistical theory of waves. Longuet-

Higgins (1952) and Pierson (1952) for example, made important contributions to the

analysis of waves in terms of their statistical representation, the latter providing an

in-depth treatment of the properties of the statistics of waves arising in realistic

conditions. It turns out that to a good approximation, the distribution of the sea
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surface height is Gaussian. This implies that the sea surface can be represented as a

linear superposition of waves of random phase, hence why spectral wave models are

often referred to as “phase-averaged”. Given stationarity in time and homogeneity

in space, a Fourier transform of the auto-covariance function with respect to these

temporal and spatial variables yields the spectral “variance density spectrum”. This

quantity summarises the variance of sea surface height associated with a particular

frequency of wave. With some further manipulation, the variance density spectrum

can be presented as the “directional frequency spectrum”, E(f, θ), which is a contin-

uous function of frequency f and direction θ. In a sense this is the “currency” of a

modern wave model and a very important concept. For a more thorough discussion

and derivation see Holthuijsen (2007) (section 3.5). Section 2.1.2 describes how a

wave model evolves the directional frequency spectrum in time through an energy

balance equation.

Knowledge of the directional frequency spectrum is of little practical use. It

cannot be easily measured, nor is it helpful to mariners since it is not readily in-

terpretable. For practical purposes however, various summary statistics can be

obtained from the spectrum. In the real world, for safety or engineering purposes

for example, a measure of wave height or period is typically required. These are ob-

tained from the moments of the spectrum. For a spectrum, E(f, θ), the nth spectral

moment mn is given by,

mn =

∫ ∞

0

∫ π

−π

fnE(f, θ) dθ df (2.1)

Of particular importance is the significant wave height, Hs,

Hs ≈ 4
√
m0 (2.2)

Hs is defined as the average height of the largest 1/3 of waves. A full discus-

sion of this important quantity is provided in Holthuijsen (2007) (section 4.2.2) but

summarised briefly here. Given the Gaussian distribution of sea surface height, indi-

vidual frequency bands, ∆f , turn out to be Rayleigh distributed, and characterised

by m0, the first moment of the frequency spectrum. If the sea state is “narrow

banded”, that is most of the variance (or energy) lies in a narrow frequency band,

then the probability of wave heightH can be reasonably approximated by a Rayleigh

distribution. Given this distribution, using the wave crest height H∗ that satisfies∫∞
H∗ p(H)dH = 1/3, the resulting calculation for the expectation of the height of the
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(a) An example of a directional frequency
spectrum formed from a steady unidirec-
tional wind.

(b) Direction integrated “1-D” spec-
trum obtained from (a). Note statistic
Tz corresponds to zero-crossing period.

Figure 2.1: Example output spectra from a simulation of a developed sea in deep water.

highest third of waves is,

Hs = Hm0 = E{H : H ≥ H∗} =

∫∞
H∗ Hp(H)dH∫∞

H∗ p(H)dH
= 4.004 . . .

√
m0 (2.3)

because the Rayleigh distribution happens to be characterised by the first moment

of the frequency spectrum. Similar results can be obtained for other quantities of

interest. The energy period, Te, and zero-crossing period, Tz, are given by,

Te = m−1/m0 (2.4)

Tz =
√
m2/m4 (2.5)

Peak wave period, Tp, is the value of the modal period (or the reciprocal of the

modal frequency). Other often used averages are the mean period Tm01 = 1/fmean

and the zero crossing period, Tz. Both Holthuijsen (2007) (chapter 4) and Tucker

and Pitt (2001) provide further details.

To get a better feel for these concepts and quantities, figure 2.1 (a) shows a

visualisation of a spectrum, output from a simulation of a steady (unidirectional)

wind over deep water. Note that although there is a clear mode (fp), there is also

a good degree of directional spreading. The direction integrated spectrum, or “1-

D spectrum” seen in panel (b), is more easily interpretable and can be measured

directly by data buoys on the sea surface. The 1-D spectrum can be described by

summary statistics (Hs, fp, etc.) as shown in the top of the figure. Owing to the
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complexity of measuring and utilising the directional frequency spectrum, modern

wave models are routinely validated with respect to observations of Hs, Tp and Te.

Mean direction and directional spread are also important summary statistics and

are discussed further in section 2.4.3. The bulk of the analysis in this thesis is with

respect to these summary statistics, which are used extensively.

Given that the form of the 1-D spectrum, seen in figure 2.1, is typical of a wide

range of unidirectional sea states, it seems apparent that the spectral shape could

be represented more completely, rather than having to reduce it to summary wave

statistics (and thus lose information). This is explored further in appendix A.

2.1.2 Wave modelling and the energy balance equation

With the development of directional frequency spectrum and the advent of com-

puters, wave models for the purpose of forecasting were possible. Early numerical

models arrived in the 1950’s and 60’s but their performance was limited because

they were forced to impose simple parametric forms on the frequency spectrum. To

obtain realistic simulations, the directional frequency spectrum must be evolved in

a more sophisticated way. The problem can be formulated as an energy balance

equation,
dE(f, θ;x, y, t)

dt
= S(f, θ;x, y, t) (2.6)

where S(f, θ;x, y, t) is a source term that accounts for energy loss and gain. Exactly

how this problem is solved depends on whether a Lagrangian or Eulerian formulation

is adopted. The former, which is not discussed here, could be solved by integrating

the source term along all wave paths leading to the point in question. However, the

source term is a function of location and therefore must be computed everywhere5.

For wind-wave modelling this is not a practical approach. An Eulerian approach

dictates that either a Cartesian or longitude-latitude grid be specified, and then the

energy balance for each grid cell be computed. The energy balance in a single grid

cell for each time step is then the sum of energy propagated into the cell and energy

transferred due to the source function, minus the sum of the energy propagated out

of the cell and any losses associated with the source function (e.g. dissipation by

white-capping). See Holthuijsen (2007) section 6.4 for further discussion.

The source function S(f, θ;x, y, t) is of particular importance in this thesis and

so is described further. The work of Pierson and Moskowitz (1964) and Hasselmann

et al. (1973), among others, were significant experimental campaigns designed to

5The “ray-tracing” approach is very effective, for example, for light rays where there are a small
number of sources. It has also been implemented for modelling swell propagation, see Hsu et al.
(2004).

14



2 INTRODUCTION TO WIND-WAVE MODELLING

evaluate the source function and determine how it relates to evolving sea states.

They were able to specify the source function in terms of the frequency spectrum.

In particular the forms of the frequency spectrum that evolve under certain condi-

tions (discussed shortly) have become ubiquitous in wave modelling - the “Pierson-

Moskovitz” spectrum (usually abbreviated to PM) and the “JONSWAP” spectrum

(after the name of the famous study6). In order to better understand the source

function let us rewrite (2.6) based upon an Eulerian approach, which gives the energy

balance equation in deep water,

∂E(f, θ)

∂t
+ cg · ∇x,yE(f, θ) = Swind + Snl + Sds (2.7)

where cg is the group velocity of a particular spectral band, and the spatial deriva-

tive is with respect to the x and y coordinates. A formulation can be easily obtained

for a longitue-latitude coordinate system. The source function has now been sepa-

rated into terms which are respectively wind input, nonlinear wave-wave interactions

(that transfer energy between spectral components), and energy dissipation. These

three terms describe the case for deep water, where energy dissipation from “white-

capping”, that is the breaking of waves, is the only significant dissipative process.

However, in specific situations additional source terms associated with other physical

processes, such as shoaling and bottom friction, may be included. It is important to

note that our understanding of these terms is neither complete nor consistent, and

these are significant sources of uncertainty in a modern wave model. These terms

are discussed below, and further in the context of the uncertainty analysis proposed

in this thesis in section 2.2.2. Before doing so, consider the growth of the spectrum

shown in figure 2.2. There is no advection so these spectra are the time integrated

source function, shown at intervals of 4 hours after starting from calm conditions.

It is clear from the earliest times that wind energy is initially imparted to waves at

high frequency (approximately 0.4Hz). As energy builds and the waves grow, energy

is input at lower frequencies. It is not clear from these figures how energy dissipation

is acting (it is often regarded as quasi-linear, see e.g. Komen et al., 1984), however,

as time evolves we can clearly see energy “piling up” at the low frequency end of the

spectrum. The spectrum becomes more and more narrow banded, corresponding to

more monochromatic characteristics. The cause of this is the nonlinear wave-wave

interactions, Snl, that transfer energy from the intermediate region of the spectrum

to the higher and lower frequency regions. This process is discussed shortly.

As the spectrum continues to develop and wave energy is moved to lower and

6The JOint North Sea Wave Project, Hasselmann et al. (1973).
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Figure 2.2: Evolution of the sea state in a homogeneous infinite sea.

lower frequencies, very low frequency (or long wavelength) waves are formed. These

eventually become what we know as ocean swell. They evolve from storms at sea and

may propagate very long distances around the globe showing very little dissipation

(see e.g. Ardhuin et al., 2009, Young et al., 2013). Note that deep water waves

have a nonlinear dispersion relationship and so are “dispersive”. Physically this

means that waves of low frequency travel faster than those of high frequency. There

is a tendency therefore for wave packets of mixed frequency to disperse over time

(and distance). The mechanisms behind the stability of ocean swell remain an open

question (see e.g. Henderson and Segur, 2013).

2.1.3 Input and dissipation source terms

Returning to the specific source terms, Swind and Sds are discussed here. There is

considerable literature associated with each source term alone and so only a summary

is provided. Cavaleri et al. (2007) discuss the state-of-the-art as was, in respect of

these source terms, although this has not changed hugely since. Swind and Sds are

typically formulated in concert to better cope with maintaining an energy balance.

Wind input is believed to be fairly well understood and the formulation of Swind

in wave models has changed little in the past two decades. Measurements and anal-
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ysis of wind input date back nearly 100 years although notable early work on the

generation of waves is that of Phillips (1957) and Miles (1957). Phillips’ work essen-

tially explained the early linear growth of waves resulting from resonant turbulent

fluctuations. Miles’ theory, variations of which are often employed in modern wave

models (Komen et al., 1994), explains the subsequent exponential growth of waves

due to a shear wind blowing over a wavy surface. Mechanistically, wind blowing

across a wave creates a positive pressure difference over the water moving up at the

rear of the crest, thus “pulling” it up further, and a negative pressure difference at

the front of the crest, thus “pushing” it down. This leads to a positive feedback

mechanism that causes exponential wave growth. In order to characterise the Miles

component of the wind input Snyder et al. (1981) took detailed measurements of

atmospheric pressure fluctuations which they used to determine an empirical form

for Swind. However, this was found to underestimate input at higher frequencies.

In a wave model the exponential input regime is typically expressed in the form

Swind,exp = β(u∗)E(f, θ), where β is a function of the square of wind speed u∗.

Janssen (1991) modified Miles’ theory to include the effects of turbulent airflow and

argued that owing to the complex interaction of wind and waves that a coupled

system of both wave and atmospheric models was required in order to simulate

the true behaviour. Others have taken a slightly different approach. Tolman and

Chalikov (1996) proposed a different formulation based on a fairly intricate speci-

fication of β as a function of frequency. They also incorporate the effect of wind

blowing against (or at a large angle to) the direction of the waves, thus resulting in

a loss of wave energy. An important parameterisation developed and implemented

by Ardhuin et al. (2010)7 also utilises the input scheme of Miles as modified by

Janssen (1991). However, Rogers et al. (2012) highlights that it does not include

some behaviour of the interaction between wind and waves seen in more energetic

conditions. They present an input scheme, based upon earlier work by Tsagareli

et al. (2009) and Babanin et al. (2010), that accounts for the separation of air flow

at high wind speed, and the resulting nonlinearity of energy input. It is clear that

much work remains to be done in this area alone, and it is interesting to note that

the extensive work of Ardhuin et al. (2010) took many years to go from published

research to operational implementation. Janssen (2008) notes that wind input at

high wind speeds (and turbulent ocean) is very hard to express theoretically and

investigate experimentally, and as such it remains an active area of research.

Energy dissipation due to white-capping, represented by Sds, is regarded as the

7As of April 2014 this has become the default input and dissipation parameterisation in the
release version (4.18) of Wavewatch III.
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least well understood aspect of wave modelling (Cavaleri et al., 2007; Babanin and

van der Westhuysen, 2007; Janssen, 2008). While there has been some focus on wind

input over recent years, as just described, many of the resulting parameterisations

incorporate a revised energy dissipation scheme, which has been the main focus

of research. Cavaleri et al. (2007) pose a number of questions that remain to be

answered in relation to this problem such as; How much energy is lost due to white-

capping and where in the spectrum? What causes waves to break and what causes

them to stop breaking? What does the breaking severity depends on? The breaking

of waves is a highly nonlinear process and extremely difficult to explain theoretically,

or investigate experimentally. The lack of rigorous physical theory has led to largely

empirical parameterisations which lack detailed physical interpretation. The early

work of Hasselmann (1974) made some progress by regarding the breaking of waves

as a statistical process. He represents breaking as random pulses and goes on to

derive a source function on a physical basis. Tolman and Chalikov (1996) proposed

a scheme that separated the breaking of low and high frequency waves. Recent

work has focused on a more physical representation of wave breaking. Observations

of wave breaking probabilities such as Banner et al. (2000) and Babanin et al.

(2001) have led to the idea of a threshold, characterised by conditions such as wave

steepness, below which wave breaking does not occur. This has opened up the

possibility of parameterisations that explicitly provide estimates of breaking which

can be directly tested from observations (see e.g. Leckler et al., 2013). The recent

dissipation schemes of Babanin et al. (2010), Ardhuin et al. (2010) and Rogers et al.

(2012) are based much more strongly on these physical processes. Other examples of

input and dissipation schemes that have been proposed over recent years are van der

Westhuysen et al. (2007), Bidlot et al. (2007) and Filipot et al. (2010). Wave energy

dissipation remains an active area of research.

2.1.4 Nonlinear wave-wave interactions source term

Of the three source terms described above, nonlinear wave-wave interactions, repre-

sented by Snl, are in fact the best understood. Through a perturbation analysis of

the free equations of motion for the ocean surface Hasselmann (1962a,b) established

rigorously how energy is transferred between waves. It is somewhat counter intu-

itive, because one might imagine that energy “diffuses”. That is, in the case of a

spectrum with a well defined peak (such as a PM or JONSWAP), the finer structure

of the wave spectrum would degrade with time. However, as Webb (1978) notes,

order near the spectral peak is increased at the cost of increased disorder at higher

frequencies. The process of transfer can be thought of as taking place between two
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pairs of waves. Each pair of waves creates an interference pattern, which in turn are

able to interact causing a scattering effect. As the second pair interacts with the

first, energy is passed between the two waves in the second pair, depending on their

particular wave numbers8. In general this means that the spectral peak is amplified,

and narrows over time, while additional energy (from the wind) in the intermediate

region of the spectrum is also passed to higher frequencies. Webb (1978) generates

the Snl source term arising from a PM type spectrum (see his figure 1). It is highly

nonlinear in both frequency and direction, and so Snl is important to both frequency

and directional development of the sea state.

The chief issue in terms of implementation of this source term is that the exact

solution is computationally prohibitive for any realistic simulation of waves. An

exact computation method is typically available in modern wave models (the Webb,

Resio, Tracy, or WRT scheme is near exact, based upon the work of Webb, 1978,

Tracy and Resio, 1982 and Resio and Perrie, 1992), but it is up to 10,000 times slower

than all other parts of the wave computation. Unsurprisingly cheaper approxima-

tions have been sought, which includes the “Discrete Interaction Approximation”

(DIA) scheme, described by Hasselmann and Hasselmann (1985) and Hasselmann

et al. (1985). The DIA scheme is particularly important as it has been the backbone

of modern wave models for decades allowing for the efficient computation of Snl to

good accuracy. As Tolman (2013b) notes, virtually every wave model still uses the

DIA scheme, and new parameterisations for input and dissipation are still tested in

conjunction with it (e.g. Ardhuin et al., 2010). The basic principle of its operation is

that, for a given spectrum, rather than compute the interaction of all wave compo-

nents in all 4-wave combinations that satisfy the resonance, it considers only a single

representative (or discrete) interaction. In spite of its great effectiveness it has well

known shortcomings, some identified during the original formulation by Hasselmann

et al. (1985). In particular it gives rise to excessive directional spreading in energetic

seas and thus is believed to contribute to the underestimation of waves in stormy

conditions. Various researchers have therefore attempted improvements. Tamura

et al. (2010) for example perform testing of an alternative parameterisation that ex-

hibits improvements over the DIA scheme. Perrie et al. (2010) propose a formulation

for Snl based on an approach different to the DIA. Tolman et al. (2005) suggests the

use of a replacement “surrogate” parameterisation based upon an artificial neural

network (this is briefly discussed further in section 9.2). More recently other efforts

have proved fruitful. Tolman (2013a) and Tolman and Grumbine (2013) describe

the Generalised Multiple DIA which is an extension to the DIA that addresses the

8Wavenumber k and wavelength λ are related as k = 2π/λ.
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previous shortcomings. While maintaining computational efficiency he makes use of

two additional representative interactions (hence multiple DIA). Excellent perfor-

mance is demonstrated in a number of test cases, including in stormy conditions, by

comparison with the exact solution.

Nonetheless, this source term is still subject to debate and its importance is con-

tinually emphasised. Zakharov and Badulin (2011) for example argue that Snl plays

a leading role in the evolution of the wave spectrum, being an order of magnitude

larger than Swind and Sds, and as such it should be regarded with more impor-

tance than it is currently receiving (particularly noting the recent focus on energy

dissipation).

2.1.5 Wavewatch IIIr: A third generation global wave model

Early wave models, referred to as first and second generation, typically imposed

spectral forms parametrically and so were limited in their capability to produce

realistic sea states. Examples of such models are described in SWAMP (1985).

Third generation models were marked by the way they allowed the sea state to

develop realistically through the computation of nonlinear wave-wave interactions.

Examples of third generation models include Wavewatch III Tolman, 2002c,b, 2009a,

the WAM model (WAMDI, 1988; Komen et al., 1994) and the SWAN9 model (Booij

et al., 1999). Wavewatch III (herein referred to as WW3), developed by NCEP10, is

a third generation global wave model utilised by numerous meteorological agencies

worldwide, including the UK Met Office. It is parallelised and typically requires a

HPC platform to run global simulations. In practice, the WW3 software comprises a

number of auxiliary programs that perform various functions such as pre-processing

input (e.g. wind) fields, configuring the spatial grid and post-processing output.

Once appropriate input has been specified for each (in a set of input files), the

programs are run sequentially.

The software comes as source code, and thus an important part of the com-

piling process is that the user must specify which model physics is used. This is

done via a switch file which, as the name suggests, contains a list of abbreviations

that correspond to switches that turn various model features on and off. Different

parameterisations are available for energy input and dissipation, nonlinear wave-

wave interactions, propagation scheme, bottom friction, and so on. By default, Sds

is according to Tolman and Chalikov (1996) (henceforth referred to as TC96), Snl

is computed via the DIA scheme, and a third order finite differencing numerical

9Simulating WAves Nearshore.
10US National Centers for Environmental Prediction, http://www.ncep.noaa.gov/
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scheme is employed to integrate the action balance equation. An important feature

of the code is that typically a “namelist” is provided for each of the various physical

parameterisations and numerical schemes (see Tolman, 2009a, section 4.4.2). These

essentially allow user-defined input to be specified11 which, of importance to this

research, allows input parameter values to be specified conveniently.

Given compilation following choices of switches and appropriate input in terms of

wind forcing and bathymetry, the model can be executed. Output can be obtained

for specific points or fields over a spatial domain. For point output, requests can be

made for the full 2-D frequency spectra, a direction integrated 1-D spectra or simply

a table of wave summary statistics (including Hs, fp etc). Note that in this thesis,

most experiments make use of summary statistics for point output, although this is

supplemented by full 2-D spectra where details are examined more closely. Given

that in this thesis the spectral and directional resolution is often 36× 36, very large

amounts of data can be generated. Computation time is approximately 1-2 minutes

per 4 days of simulation time, run with the aforementioned spectral resolution on a

100 × 100 spatial grid using 64 CPU cores. Single grid cell models can however be

run very rapidly on a desktop machine.

See appendix B for a description of how to run designed experiments with WW3,

or Tolman (2009a) for further details of the model.

2.2 Wave model components and uncertainty

In this section wave model source terms and numerical schemes are considered in

more detail in the context of learning about the effects of uncertainty and conduct-

ing analysis. Before commencing the discussion, there is an important point to bear

in mind. Although the following sections describe approximations associated with

individual source terms and aspects of the numerical wave model, it is not clear a

priori how these sources of uncertainty combine and manifest when running actual

simulations of waves. If the model is nonlinear, this might be quite unpredictable.

The situation is like the problem of measuring a single source term (e.g. dissipation)

on the open ocean. It is extremely difficult because other processes (e.g. nonlin-

ear interactions) are happening concurrently. The same essentially applies to the

simulation of waves. When uncertainty is attributed to some process in a complex

model, via a specific input parameter or grid resolution for example, then a priori it

is not clear what the effect of that uncertainty will be. In simple simulations, such

as those described in sections 2.4.1 and investigated in chapters 4 and 5, the effects

11The flexibility of the parameterisation (i.e. number of free input parameters) depends largely
upon the authors of the code.
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may be more traceable, but even then that is not necessarily so.

2.2.1 Categorising uncertainty

Before considering sources of uncertainty in more detail let us briefly step away

from the modelling of waves to specify clearly what we mean by uncertainty. Recall

from chapter 1 that Kennedy and O’Hagan (2001) (their section 2) set out terminol-

ogy for different types of uncertainty in the context of computer experiments (the

term “code” used here generally refers to a numerical model). Their terminology is

reviewed here, and generally adopted throughout this thesis.

Parameter uncertainty refers to code input parameters, that we regard as un-

known. This source of uncertainty is predominantly studied in this thesis. Note

however that terminology varies across the literature. For example, Williamson

et al. (2012) distinguishes between “model parameters” and “decision parameters”,

where decision parameters are associated with input that reflects a specific policy

decision. In their case decision scenarios were related to real situations, such as

carbon dioxide content of atmospheric forcing (in a climate research context).

Model inadequacy refers to the difference between code output at the true input

values and true value of the process being modelled. The term structural error is also

commonly used to describe the same kind of uncertainty. Kennedy and O’Hagan

(2001) caution that we need to be clear about the meaning of “true” values. For

example, if the input parameters are empirical, “true values” are not at all clear.

A possible interpretation could be the difference between the observed mean value

of the real process, and the code output at inputs determined through a calibration

exercise (see section 3.4.5). That is, where the input has been found to minimise (in

some sense) the difference between code output and the observed mean value of the

process. In this thesis the term structural error is generally used in place of model

inadequacy.

Observation error is self explanatory. This is typically only relevant to the cali-

bration problem but observation error may be significant. In this thesis (see chapter

7) observations are typically of wave summary statistics from data buoys, although

estimates of observation error are not readily available. In addition, observation

error can apply to wind forcing for a wave model, in the sense that the winds are

subject to such errors. However, in this thesis, wind uncertainty is regarded in the

sense of parameter uncertainty, and is described in more detail in section 2.2.3.

The above paragraphs detail the types of uncertainty analysed in this thesis.

Kennedy and O’Hagan (2001) do list additional types of uncertainty that are not

explicitly relevant to this work. However, the term numerical error is also identified

22



2 INTRODUCTION TO WIND-WAVE MODELLING

and used in section 2.2.4. This refers specifically to error associated with the ap-

proximate numerical solution produced by the finite differencing scheme. Otherwise

this would be incorporated into structural error.

2.2.2 Uncertainty about source terms

Details of uncertainty about source terms, and how it is specified is discussed in this

section. In practice, uncertainty about source terms can be expressed and analysed

by means of tuning parameters. In principle, (we would hope) the formulation of a

parameterisation captures the physics to at least a good approximation, and then

input parameters can be adjusted to tune the performance of the parameterisation

to give optimal results (given a comparison with some set of observations). That

is, there is uncertainty about the details of the physical processes, and tuning pa-

rameters provide a means of expressing this. Different choices of parameter values

lead to different parameterisations that may give better performance in different

physical situations. Larger uncertainty often leads to more tuning parameters but

remember that the input space grows geometrically with the number of parameters

so uncertainty can grow rapidly, and it is often not at all clear a priori how pa-

rameters interact, or whether they give rise to nonlinear model response. While for

wave models a discrete number of parameter choices is often prescribed, say two,

for stable and unstable wind stratification (see TC96), in fact a continuous input

space exists, any point in which might be best suited to some given conditions. Our

uncertainty is then essentially what input is the “best” and this can be expressed

though some choice of probabilistic specification (i.e. a probability distribution)

for the input. Typically the probability distribution would be determined through

expert elicitation, or interrogation of the relevant literature.

Bearing this in mind, let us return to consideration of the source terms. Although

the source terms are often written and discussed separately (for good reasons, such

as to specifically identify physical processes), as Ardhuin et al. (2010) note, the

separation is somewhat arbitrary. For example, the input and dissipation parame-

terisations are typically treated together and used as a kind of “tuning knob”. The

two provide a way of balancing energy input and output in equation (2.7). However,

the whole right hand side of (2.7) is nonlinear and so separating the terms while

perhaps convenient, is not necessarily going to lead to the best model. Furthermore,

from a more general modelling point of view, given the possible interactions between

the source terms it is not clear how adjustment of the formulation of individual terms

will result in overall changes. In this sense, the behaviour of the wave model “as a

whole” seems to have been largely overlooked. For example, TC96 performed tun-
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ing on the basis of using the DIA scheme for Snl with specific settings. The same

approach was adopted by Ardhuin et al. (2010), and indeed most other researchers.

On the other hand, analysis and development of Snl tends to be performed on the

basis of a fixed choice of Sds This is even the case for very recent (and important)

developments in the computation of Snl, such as Perrie et al. (2013), Tolman (2013a)

and Tolman and Grumbine (2013) (based upon earlier work by Tolman (2004a)).

All are based on use of the default TC96 scheme, which is itself known to have a

number of shortfalls. In fact, Tolman (2004a), who explicitly analyses the effect of

adjusting the tuning of the DIA scheme with respect to the exact nonlinear com-

putation, represents possibly the only work where in-depth analysis of the effect of

parameter adjustment has been explicitly published. With respect to Sds, important

studies such as Bidlot et al. (2007), Ardhuin et al. (2010) and Rogers et al. (2012)

all perform some kind of parameter tuning but say little or nothing about how it

was undertaken or how uncertainty about the approach might affect performance.

In no cases have parameterisations been adjusted simultaneously, nor have beliefs

about choice of parameterisation been formally incorporated into an analysis via a

probabilistic specification.

The approach to uncertainty analysis taken in this thesis is to consider variation

in both Sds and Snl simultaneously (together with variation in other input in some

cases). This therefore represents a much more comprehensive approach than has

been done before. Consideration of Sds and Snl is limited to TC96 and the DIA

scheme respectively. Detailed analysis of the spectrum, such as that performed by

Tolman (2004a) is not generally undertaken, but the effects of tuning uncertainty

are analysed with respect to wave summary statistics in a variety of cases.

On a practical note, WW3 provides direct user control of input parameters via

namelist input, and the namelists for TC96 and the DIA are designated, SIN2 and

SNL1 respectively. SIN2 provides control over the six parameters associated with

energy dissipation and SNL1 provides control over two key parameters for the DIA

scheme. These parameters, and elicitation and specification of uncertainty about

them, are described in chapter 4.

2.2.3 Forcing winds

Historic studies have shown that improvement in forcing wind accuracy gives a

corresponding rise in wave model performance. Janssen et al. (1997) cites improved

forcing wind fields as the primary reason for wave forecast improvement at the

ECMWF12. Bidlot et al. (2002) provide a model inter-comparison study and note

12European Centre for Medium-Range Weather Forecasting, http://www.ecmwf.int/
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that the (forecasting) centre with the lowest wind speed errors also has the lowest

wave forecast errors. Significant improvements in wind accuracy have been made

over more recent years, however Cavaleri et al. (2007) note that winds still lack short

term variability. Given, say, a 6 hour time step between wind updates in a global

model, it is easy to imagine that there is still considerable room for improvement.

Short term variability associated with storms for example, is often blamed for poor

performance in such conditions. There is no doubt that the improvement in wind

accuracy has alleviated many early problems. Cavaleri (2009) acknowledges such

improvements and suggests that attention should shift back towards wave model

physics if further improvements are to be made. Nonetheless, wind is so fundamental

that there will continue to be examples of where wind accuracy is a major source of

uncertainty. Bricheno et al. (2013) report notable improvements in simulated wind

accuracy (from an atmospheric model) when reducing resolution from 12km to 4km,

and this had knock-on improvement for simulated wave conditions.

A distinction should be made between types of wind forcing that are used in

wave simulations. For example in operational forecast settings a wave model is

forced by winds generated from a forecasting atmospheric model. Studies such as

Bidlot et al. (2002) report and compare performance statistics for such predictions.

However wave models are also used extensively to produce hindcasts from observed

data. Observational wind data may be obtained from land or sea based observational

platforms (such as that used in chapter 7), or as is more common now from satellite

based radar. Chu et al. (2004) use winds observed using the Nasa QuickSCAT

scatterometer to force a wave model for the South China sea. Commonly, simulations

and observations are combined through the use of statistical techniques such as data

assimilation to produce a “re-analysis” product. Uppala et al. (2005) describe the

ERA-40 re-analysis product. While such products result from efforts to achieve high

quality, there are often considerable discrepancies between products. Ponce de Leon

and Guedes Soares (2008) and Feng et al. (2006) use a number of such products to

force wave simulations for comparative purposes and find stark differences in wave

simulation performance. Both conclude that the differences in performance are due

to the differing winds.

In order to investigate the effect of wind uncertainty using quantitative methods

we need to be able to characterise and quantify it in an appropriate way. However,

the complexity of the wind makes this somewhat challenging. Wind quality or ac-

curacy is routinely quantified, and often discussed in terms of summary statistics,

for example Bidlot et al. (2002) uses RMSE, bias and scatter index when comparing

observations with winds simulated by various forecasting centres. Studies such as
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Vogelzang et al. (2011) assess, in considerable detail, the accuracy of global winds

obtained from space-borne scatterometer. They describe the (complex) process of

obtaining wind measurements in this way, and broadly conclude that the accuracy

of winds measured at a resolution of 12.5km is to within 1ms−1 (but do not provide

distributional data). However, the use of single measures to characterise such a mas-

sive amount of complex data is an enormous simplification. Various post-processing

is often required which could involve, for example, truncation error (Bidlot et al.,

2002). Wave models typically utilise winds measured at a height of 10m and so

wind data may require scaling to this height based upon certain assumptions (such

as stable atmospheric flow) which may or may not be fully justified. Additionally,

all of the above studies are with respect to winds observed or simulated globally.

Characterisation of accuracy at the global level will not in general apply to a specific

region and uncertainty may have spatial or temporal dependence. This is particu-

larly important to remember noting that poor performance of a global wave model

is often attributable to very specific geographic regions (see e.g. Ardhuin et al.,

2010). Does this imply therefore that the wind is poorly measured or simulated

in these regions, or that some aspect of the wave model physics is inappropriate?

Clearly that question cannot be answered by performing only a global analysis, and

detailed studies of both forcing wind and wave modelling in the specific region would

be required.

In this thesis, wind uncertainty is addressed in two ways. Firstly, in chapters

4 and 5 the representation of forcing winds is simple. Uncertainty about the wind

is expressed in much the same way as it is described in the above studies, that is

by simply giving it a measure of variance for a fixed speed. In chapter 6 the idea

of wind uncertainty is discussed and developed further by attempting to represent

spatial and temporal uncertainty. To do this, a parameterised approach is used to

create synthetic winds, for the purpose of analysis. The details of each approach

are described further in the relevant experimental description. Although a relatively

simple approach, probabilistic sensitivity analysis yields a quantitative measure of

the influence of the wind speed (or other characterising parameter) including any

nonlinear response induced, which in turn provides detailed insight into the workings

of the wave model.

2.2.4 Numerical schemes and uncertainty

Error associated with the numerical solution to the action balance equation (2.7)

is an important source of uncertainty to be considered. To implement a numerical

solver the spatial and spectral domains have to be discretised which leads to number
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of different types of error and these have been the subject of various investigations

(Booij and Holthuijsen, 1987; Tolman, 1992, 1995, 2002a; Rogers, 2002). Cavaleri

et al. (2007), section 8, discusses and summarises the important issues, which are

also mentioned in Tolman (2009b).

In this thesis numerical error, or uncertainty, is not specifically investigated for

reasons set out at the end of this section. The justification is essentially that,

for the type of experiments conducted, numerical error does not manifest itself

in ways that typically make a big contribution to overall error, given the use of

sufficiently high resolution. However, this issue is discussed further in the following

paragraphs. WW3, like other third generation models (e.g. WAMDI, 1988; Booij

et al., 1999) uses a finite-differencing scheme to solve the action balance equation. It

is possible to implement other schemes, such as finite-element or ray-tracing methods

but each has their own disadvantages. Tolman (1995) and Cavaleri et al. (2007)

provide discussion on this matter. In general, finite-differencing schemes are easier

to implement for wave models. WW3 employs an explicit scheme, which means

that future states are explicitly calculated on the basis of the current one. Explicit

schemes unfortunately give rise to errors that are proportional to the time step and

in some cases can require very small time steps to avoid solution instability. That

is, solutions are not stable unless the size of the time step satisfies the Courant-

Friedrichs-Lewy (CFL) condition described by Courant et al. (1967). This dictates

a minimum time step that scales geometrically with geographic grid and spectral

resolution. Note that the SWAN wave model for coastal waters (Booij et al., 1999)

makes use of an implicit method which does not suffer from this problem. However

implicit schemes are generally not practical for global simulations. WW3 in fact

allows the specification of four different time step criteria in order to obtain optimal

performance. In addition to the global time step, the spatial, intra-spectral and

minimum source term intregration time steps can be specified. In general if the

global time step is sufficiently small the others need not be different. However, WW3

determines these steps dynamically and therefore performance can be improved with

appropriate choices.

Numerical schemes give rise to numerical diffusion and dispersion, which can

affect simulations in various ways. Numerical diffusion arises from even order trun-

cation errors and is an effect that tends to “spread” energy around, as the name

suggests. That is, when looking at time series of wave heights or periods, max-

ima may be slightly underpredicted and minima slightly overpredicted. This would

typically affect highly non-uniform conditions and could be thought of as a loss of

fidelity. First order finite-differencing schemes are computationally cheap and also
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offer numerical stability but suffer considerably from numerical diffusion. Rogers

(2002) provides an illustration of the effect of diffusion when conducting a propaga-

tion test (see his Fig. 1). Numerical dispersion arises due to odd order truncation

errors and tends to cause separation of spectral components (but note that this is

not the same as natural dispersion). This can manifest itself as nonphysical features

or “wiggles” that are essentially oscillations around a solution as it converges. Other

specific effects include the “garden sprinkler effect” (GSE) which is due to coarse

spectral resolution (see e.g. Tolman, 2002a; Janssen, 2008). Due to a discretised

spectral grid, the propagation of swell over a long distance results in the “disinte-

gration” of the swell into discrete geographic features. The continuous spread of

energy is then lost and the resulting arrangement of features resembles the pattern

of a garden sprinkler. An image given in Rogers (2002) provides a nice illustration

(his Fig. 2). Obviously coarse spatial resolution will also result in errors where

geographic features like islands or coastlines are not adequately resolved. All of

these errors are functions of spatial, temporal and spectral resolution but the choice

of numerical scheme is also important. Some first order schemes result in a strong

preference for propagation in a specific direction, whereas higher order schemes can

exhibit little or no numerical diffusion which exacerbates certain problems such as

the GSE.

Tolman (1992) explicitly examines the effects of numerics on a number of ide-

alised and realistic cases for a third generation wave model. He concludes that errors

resulting from numerical schemes can be considerable and must be either removed

or accounted for, and proposes a number of improvements to the numerics in order

to alleviate some issues. Tolman (1995) goes on to make recommendations taking

into account developments. He sets out four requirements for a good numerical

scheme for a third generation wave model based upon experience, these being: 1.

The scheme has to result in accurate propagation of poorly resolved swell fields over

large distances at an angle with the spatial grid. 2. The scheme has to be able

to deal with extremely poor resolutions, in particular, with respect to spectral direc-

tions (see Booij et al., 1999). 3. The scheme should result in negligible spurious

oscillations and/or negative wave energy. 4. When combined with source terms,

the scheme should result in stable fetch-limited growth. His choice of the “ULTI-

MATE QUICKEST”13 third order accurate scheme remains the default scheme in

the current release version of WW3, and is found to have good properties by Rogers

(2002), for example. In the discussion of this subject, Cavaleri et al. (2007) points

13The name derives from the combination of the “QUICKEST” (“QUICK” with Estimated
Streaming Terms) convective scheme (Leonard, 1979) and the “ULTIMATE” total variance dimin-
shing scheme (Leonard, 1991).
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out that the importance of numerics as a source of error depends very much on the

scale of simulation, the type of simulation (e.g. is it dominated by swell?) and the

type of scheme used. For example, Rogers et al. (2002) look specifically at reducing

numerical diffusion at the coastal scale. However, it is important to remember that

the size of these errors are resolution dependent, and they diminish with increasing

resolution, although the rate of improvement may not be monotonic.

The discretisation of the spectral domain gives rise to another potentially im-

portant source of numerical uncertainty, which has not yet been mentioned. The

distribution is generally discretised into between 20 and 40 frequency bins that span

a frequency range from 0 to (typically) about 0.60Hz. The tail of the distribution,

lying beyond the maximum value in this resolved range, is expressed parametrically.

Based upon an assumption that high frequencies are dominated by wave breaking

(see e.g. Holthuijsen, 2007), Phillips (1958) proposed that the tail of the distribu-

tion decayed as f−5. Such a relationship has been shown to be appropriate for a

range of sea states, including growing seas, rather than just JONSWAP type spec-

tra. However, there is a continuing debate as to whether an f−4 relationship is

more appropriate, and it has been shown (e.g. Alves et al., 2003) that the original

JONSWAP data agree better with an f−4 tail, rather than an f−5. In terms of a

contribution to uncertainty this raises at least two important points. Firstly, the

choice of -4 or -5 (or perhaps some value in between) may be influential. For exam-

ple, the wave zero-crossing period given in equation (2.5) is sensitive to the kurtosis

(the fourth moment) of the spectrum. The behaviour of the parametric tail clearly

influences the kurtosis, and therefore any investigation concerned with the evalu-

ating the zero-crossing period might need to be cognisant of its potential impact.

However, as Holthuijsen (2007) notes, for engineering purposes the representation

of the tail as f−5 remains effective and commonplace. This is in fact the case for

the TC96 input and dissipation scheme, where the tail decays as f−5. This cannot

be adjusted without direct modification of the WW3 source code.

Secondly, the magnitude of the influence is dictated by the value of the high

frequency cut off. Frequencies can be resolved up to higher values, thus reducing the

length of the parameterised approximation. In this thesis the frequency is typically

resolved up to 0.67Hz, thus minimising the influence of the parametric tail. Although

not considered in this thesis, it would potentially be straightforward to include the

high frequency cut off as an uncertain parameter and evaluate its effect on simulation

output.

As outlined above, numerical uncertainty is fairly well studied and understood,

and the situations most susceptible to numerical uncertainty typically involve the
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propagation of swell over long distances, use of certain numerical schemes and coarse

spatial or spectral resolution. Since this is not characteristic of simulations investi-

gated here, and high resolution is generally used, numerical uncertainty is judged to

be small and not explicitly investigated in this thesis. However, it is recognised that

for more complex large scale simulations, where there is typically a trade-off between

numerical accuracy and performance, investigation of the effects of numerical error

would be very important.

2.2.5 Boundary conditions

Boundary conditions, that is, the wave conditions or geographic specification at

the boundary of the spatial ocean domain, are potentially an important source of

uncertainty. This is not a concern when performing a global simulation but in many

cases the focus is on a regional or coastal area where a higher resolution simulation

is conducted. Where there is a boundary to the open ocean (when simulating the

North Atlantic for example), the wave conditions at the oceanic boundary need to

be specified. These may be time-dependent wave conditions, expressed in spectral

form or as summary statistics, generated by a larger scale simulation (e.g. global)

at lower resolution (Millar et al., 2007; Rusu and Soares, 2009).

In this thesis, the complications associated with time-dependent boundary con-

ditions (such as an open sea boundary) are avoided by choice of simulation. In

chapters 4, 5 and 6, simulations are idealised. It is assumed and that the waves

generated are entirely due to the specified winds and that no wave systems enter at

the boundaries. Further, there is no reflection at the boundaries and in effect, the

boundaries “absorb” all wave energy. In chapter 7, lake Michigan, by definition, is

entirely enclosed by land and so wave systems cannot be generated remotely. Re-

flection at the coast could potentially be an issue in such a case, perhaps if waves

encountered a sudden cliff face in deep water. However, this is not the case, and

more generally is unlikely to be of interest unless very small scale coastal effects are

important. In any case, an alternate wave model would be required for such situ-

ations because WW3 (version 3.14) does not compute reflection at the boundaries.

2.3 Uncertainty analysis of wave models

As previously discussed there are few examples in the literature of uncertainty and

sensitivity analysis with respect to a wave model. Those that do exist tend to
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describe the problem in quite broad strokes and often consider only global prediction.

Some examples of relevant and related studies are given as follows.

The analysis of Tolman (2004a) is possibly the only published study of a de-

tailed exploration of a (2-D) parameter space. It is a (non-probabilistic) sensitivity

study that details the effects of parameter adjustment of two important parameters

relating to the DIA scheme. The analysis is, however, focussed on the effect of per-

turbation on specific wave spectra rather than hindcasting or prediction scenarios.

The objective is also to develop a new parameterisation, rather than to explicitly

examine the effect of uncertainty.

Examples of a more qualitative uncertainty analysis for a wave model are given

by Rogers (2002) and Rogers et al. (2005). Rogers (2002) examines the sources

of error in the modelling of low frequency (<0.08Hz) wave energy. He specifically

identifies the wind specification and model physics as important sources of error

(numerical error being only a lower order source of error). However, the approach

taken to the investigation is a kind of traditional “one-of-at-time” analysis. That

is, comparison is made by using different forcing winds (from difference sources)

and different model physics (WW3 vs WAM) but each is simply alternated in turn,

without controlled adjustment of any specific elements. Furthermore, a detailed

perturbation of the physics, or winds, is not considered. He concludes that although

the wind forcing appears to be the dominant source of error, model physics is clearly

important too, but that it is, “. . . difficult to make a judgement regarding the skill

of WAM4 physics vs WW3 physics. This is especially true with regard to the [wave]

generation stage . . . ”. While this work provides great insight into the issue of

uncertainty, it lacks a quantitative methodology and therefore is unable to clearly

“disentangle” the sources of error. Rogers et al. (2005) consider the error in global

simulations of waves. They pose questions of interest such as, “If we can identify

a scenario where a wave model’s representation of physics (generation, dissipation,

and nonlinear interactions) is likely to be the primary source of error, is the wave

model bias positive or negative? How does the answer depend on the frequency-

wavenumber range considered, or perhaps the geographic location?”. In answering

the questions they do provide quantitative insight in terms of, for example, the

sign of the bias in certain cases, and while making the recommendation that WW3

would benefit from additional tuning or physics improvement, they do not provide

details as to how this might best be approached. Other studies in the literature

present similar kinds of analysis, but no in-depth quantitative analysis has yet been

identified.

An approach to extreme value analysis that makes use of surrogate models is
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2 INTRODUCTION TO WIND-WAVE MODELLING

given by Gouldby et al. (2014), based upon work by Camus et al. (2011). They gen-

erate large numbers of samples of nearshore conditions by forcing the SWAN model

with boundary conditions from a global model (WW3). Owing to the computational

cost of generating the number of samples typically required for such an analysis, they

construct a statistical “meta-model” based upon the use of radial basis functions

(RBFs). In fact, the form of the meta-model is similar to a regression model with a

mean function based upon the RBFs. Once the model is fitted (or trained) to the

observations, it is used to generate a large sample of nearshore conditions which can

be used for subsequent risk analysis. This is a kind of statistical downscaling and

closely related to statistical emulation which is explained in chapter 3.

Some other interesting work involves the application of so called “soft comput-

ing” methods to predicting wave conditions (usually in terms of summary statistics).

Soft computing techniques include Artificial Neural Networks (ANN), Fuzzy Infer-

ence Systems (FIS) and other learning machines. Mahjoobi et al. (2008) provides a

brief review. Typically the motivation for utilising such methods is the prohibitive

computational expense of running a numerical model, particularly when resolving

complex and localised geographical features in the coastal zone (see e.g. Makaryn-

skyy and Makarynska, 2007). Mahjoobi et al. (2008) present a study into the effec-

tiveness of a number of soft computing methods, specifically ANNs and FISs, as a

means of wave parameter prediction for hindcasts of wave conditions over lake On-

tario. Although these studies are not concerned with assessing the performance of a

wave model and quantifying uncertainty, the methods share commonality Gaussian

process emulators. A neural network, for example, explains variability in terms of

the input training data (much like regression) and therefore can be used for uncer-

tainty analysis. In the aforementioned study, sensitivity analysis showed, perhaps

unsurprisingly, that the relative importance of wind speed was significantly higher

than the other three input parameters. They conclude that of the various soft meth-

ods ANNs gave the best performance though mean square relative error for Hs was

not better than 20% for any system.

2.4 Physical situations

In the final section of this chapter consideration is given to some “idealised” wave

conditions and how they are generated. The motivation for discussing these is that

they are typically used as benchmark cases for studying waves. These situations

are generally brought about by winds blowing continuously, in the case of duration-

or fetch-limited growth, or changing in a predictable way such as the response of

waves to a turning wind. Aspects of wave model skill are assessed and calibrated by

32



2 INTRODUCTION TO WIND-WAVE MODELLING

comparison to such cases (see e.g. TC96, Ardhuin et al., 2010). These cases have

been used extensively for experimentation in this thesis, and their physical basis is

briefly discussed in the following subsections.

2.4.1 Duration-limited wave growth

“Duration-limited” wave growth describes the case where the sea state is governed

by the length of time for which the wind has been blowing. Imagine an infinite sea,

such that energy lost from waves propagating away from the area is exactly balanced

by energy arriving into the area. In the absence of propagation the energy balance

equation (2.7) can be written as,

∂E(f, θ)

∂t
= Swind + Snl + Sds (2.8)

The evolution of this with time is actually shown in figure 2.2. Such simulation

output can be compared with observations or spectra derived from theoretical con-

siderations such as given by Pierson and Moskowitz (1964). In this situation the

wind speed can be regarded as known (and constant), and therefore variation in the

resulting spectra can be directly attributed to adjustment of specific source terms.

Although in this thesis E(f, θ) is typically reduced to Hs or Tp, the approach is the

same. The effect of parameter perturbation on the fully developed sea state (i.e.

where the left hand side of (2.8) is set to zero) is performed in chapter 4.

2.4.2 Fetch-limited wave growth

A well studied phenomenon is that of “fetch-limited” wave growth. The idealised

arrangement for this situation is described in many authoritative texts (see e.g.

Holthuijsen, 2007) but is summarised here. As the name suggests under fetch-

limited conditions wave growth is limited by the length of fetch over which the

wind can impart energy (as opposed to the duration of time). Formally, consider

an infinitely long straight coastline, meeting a very deep ocean. If a steady wind

blows perpendicular to the coastline waves will grow steadily with time. Waves at

a given location will be due to both the sum of energy from direct forcing, and

energy propagated from the upwind direction. At locations close to the coastline

the upwind fetch is short thus limiting the amount of energy propagated to that

point. At locations further and further away the fetch increases, thus increasing the

propagated energy budget. Sufficiently far from the coastline a point is reached that

approximates fully developed conditions, because the incoming energy is balanced

by the out-going energy. The region from the coastline to this point, where the wave
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spectrum remains a function of fetch, is thus called fetch-limited.

Numerous experiments have studied this phenomenon, a famous example is the

JONSWAP campaign (Hasselmann et al., 1973). The experiments were conducted

over a period of ten weeks during 1968 and 1969 with the aim of determining the

source function. An ambitious project, it required the use of thirteen measuring

stations aligned over a stretch of the North Sea, such that when steady winds blew

in the direction of alignment, both wind and waves could be measured accurately.

Direction integrated 1-D spectra were recorded, allowing for the study of the evolu-

tion of the spectrum along the fetch. From those observations the authors were able

to define the following empirical function that fitted the shape of the spectra well,

E(f) = 0.076 x̃−0.22g2(2π)−4f−5exp

{
−5

4

(
f

fp

)−4
}
γ

exp

„
− (f−fp)2

2σ2f2
p

«
(2.9)

σ =

{
σa, for f ≤ fp

σb, for f > fp

(2.10)

where x̃ is the dimensionless fetch (see below), fp is the peak frequency, g is ac-

celeration due to gravity and γ, σa and σb are free parameters to fit the function.

Note also that the multiplicative constant α often seen in front of (2.9), and first

introduced by Pierson and Moskowitz (1964), has been replaced by,

α = 0.076 x̃−0.22 (2.11)

Hasselmann et al. (1973) suggest this relationship based upon scaling considerations.

A visualisation of this is given in figure 5.2. Kahma and Calkoen (1992) discuss the

discrepancies between various observations of fetch-limited growth.

Equation (2.9) was written as a function of “dimensionless” fetch. It turns out

that summary quantities, such as wave height, period and fetch can be written

in a dimensionless form. That is, behaviour of waves is found to scale with wind

speed and so observations in mild conditions can be used learn about waves in more

energetic conditions. In practice this means quantities can be expressed in a kind

of scale invariant way as follows. The dimensionless fetch, F̃ is computed by,

F̃ =
gF

U2
10

(2.12)

where U10 is the wind speed at a height of 10 metres. Dimensionless wave height
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and period are converted in a similar way.

H̃s =
gHs

U2
10

(2.13)

T̃ =
gTp

U10

(2.14)

We make of these quantities in experiment 5.A when considering fetch-limited growth.

2.4.3 Wave response to a turning wind

Another idealised case often used as a benchmark in wave model testing is that of a

“turning wind”. The physical idea is akin to duration-limited growth described ear-

lier, but that at some point during the growth phase, or even under fully-developed

conditions, the wind changes direction rapidly by 90◦. Compared with the previous

two cases the situation of a turning wind is somewhat more dynamic in nature. Dur-

ing the SWAMP (1985) wave model intercomparison study, a turning wind was used

as a benchmark test, as it was by Komen et al. (1994), who also use it as a test case

during wave model development. A number of researchers have studied the case of a

turning wind and made observations of the phenomenon on the ocean. Holthuijsen

et al. (1987) proposed a “relaxation model” based on theoretical considerations and

obtained supporting observational data. The model, which describes the response

of the wave direction to a change in wind direction, is as follows,

∂θ0

∂t
=

1

ε

∂ε

∂t
sin(θw − θ0) (2.15)

where θ0 is the wave direction, θw is the wind direction and 1
ε

∂ε
∂t

is essentially a

dimensionless timescale that can be approximated as a constant.

Perrie and Toulany (1995) propose an alternative model, and Masson (1990) and

van Vledder and Holthuijsen (1993) provide further considerations on this subject.

Of particular note, although numerous observational data have been obtained on this

subject, owing to the difficulty in obtaining accurate data and in well characterised

conditions, there is still considerable uncertainty surrounding this physical process.

Like wave height and period, wave direction is often derived and summarised

from the directional frequency spectrum (figure 2.1). “Mean wave direction” is self

explanatory but it is accompanied by the “directional spread”. Although not exam-

ined extensively in this thesis (see chapter 6, note that wave directional spread is a

measure of variance obtained by integrating the frequency spectrum over direction.
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Holthuijsen (2007) provides the following,

σ2
θ =

∫ +π

−π

[
2sin

(
1

2
θ

)]2

D(θ)dθ (2.16)

where D(θ) is E(f, θ) integrated with respect to frequency. The expression in the

squared parentheses is mathematically more tractable than simply θ.
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3 Uncertainty analysis using Gaussian process em-

ulators

This chapter discusses uncertainty with respect to numerical models more genere-

ally, and related statistical analysis, including statistical models called emulators.

Firstly, in section 3.1, motivation for such analysis is presented. This is followed by

sections 3.2 and 3.3 that describe methods of uncertainty and sensitivity analysis

that will be used in this thesis. Section 3.4 describes a Gaussian process emulator,

which is followed by more details of extended applications in section 3.4.5. The

chapter concludes with section 3.5 which provides some examples of the application

of emulators to simple wave models.

Before proceeding, a note is made on terminology. Where statistical analysis

is performed for numerical models, as is the case in this thesis, the word “model”

becomes overloaded and so to clearly distinguish between a statistical model and a

numerical model, it is customary to refer to the latter as a simulator. This more

clearly emphasises the fact that we are conducting computer simulations of, in this

case, ocean waves. If, on occasion, the word “model” is used in a different context,

it will be preceded by a qualifying word for clarification.

3.1 Uncertainty in computer simulations

Before describing specific methods of analysis in more detail, some comments are

noted on how, in the context of computer simulations, uncertainty is managed and

reported in the literature. Its treatment ranges from the rigorous, where robust

statistical methods are brought to bear on a problem, to less rigorous, where uncer-

tainty is discussed rather qualitatively. For example, Rougier et al. (2009a) apply

robust statistical methods, including the formal incorporation of expert knowledge,

to perform inference for a simulator of the electrodynamics of the upper atmosphere.

This contrasts with the work of Bidlot et al. (2007) which discusses improvements

made to the ECMWF14 operational wave forecasting system. Although the two

cases differ in terms of specific objectives, the level of success is very much related

to understanding simulator uncertainty and sensitivity. In the latter case, there

is an overarching question of uncertainty in wave simulator operation due to un-

known physical and tuning parameters. In relation to the determination of three

such parameters, the authors state that, “A tuning exercise was performed in such

a way that the duration limited growth curve for significant wave height and the time

14http://www.ecmwf.int/

37



3 UNCERTAINTY ANALYSIS USING GAUSSIAN PROCESS EMULATORS

evolution of the Charnock parameter15 resembled as much as possible the correspond-

ing results of the reference model. . . ”. (Footnote added for clarity.) They do not

however provide any information on the certainty of the results nor any detailed

information about how they went about the tuning process (how was the sensitivity

analysis carried out?). They go on to demonstrate good performance of the up-

dated simulator but this leaves questions about their confidence in the final choice

of parameters, and whether further improvement could have been made.

The lack of application of rigorous statistical methods in such cases does not

always imply criticism of the authors since the problems are challenging and ham-

pered by computational cost and complexity. Where computational cost is a barrier,

an (less robust) approach to uncertainty analysis involves running a small ensemble

of simulations. This is commonly performed for large physical simulations, such as

global ocean circulation or climate. Owing to the computational expense of running

the simulation, an ensemble of circa 20 to 50 members is created based upon pertur-

bations of the physics, boundary conditions, etc. The ensemble members are gener-

ated by drawing perturbed inputs from a multivariate distribution that represents

our uncertainty about the initial conditions. The resulting sets of simulation output

(be it sea surface temperature or wave height) provides a measure of uncertainty but

it could be regarded as rather crude since the ensemble size is small. Clayton et al.

(2013) describes a recent implementation of an (23 member) ensemble based system

at the UK Met Office. Multimodel ensembles are also commonly used, perhaps most

notably in the Climate Model Intercomparison Project (CMIP)16. The objective of

this project is to generate large datasets from numerous different simulators in a

coordinated way, in order to obtain a complete assessment of our uncertainty, from

which statements can be made about future climate prediction. A summary of the

projects including details of the experiment design is given in Meehl et al. (2007)

and Taylor et al. (2012). Enormous amounts of research relating to the simulation

of the earth system has arisen from this project. One example relevant to the sim-

ulation of waves is presented by Hemer et al. (2013) who analysed the future wave

climate derived from a subsample of five simulations from the CMIP3 ensemble to

determine expected future wave climate in different regions of the oceans. However

they point out fairly severe limitations in their work in terms of the small sample

size and the range of sources of uncertainty, which include differences in simulators,

atmospheric forcing and the methodology that was used in each case to determine

the future wave climate. They suggest that the uncertainty associated with the re-

15The surface roughness length which relates the sea-surface roughness to wind stress, see e.g.
Komen et al. (1994).

16http://cmip-pcmdi.llnl.gov/cmip5/
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spective methodologies was the dominant source of uncertainty but that the sample

size was too small to determine total uncertainty, and that simulations from the

larger CMIP5 ensemble would be better suited to this task17. Hemer et al. (2013)

do not attempt to explore and quantify in detail uncertainty due to the tuning and

structure of a wave simulator as is performed in this thesis. Multimodel ensembles

capture such uncertainties in a broad sense but cannot be used for a detailed anal-

ysis. Rougier and Goldstein (2014) discuss some issues with respect to the analysis

of uncertainty in the context of running multimodel ensembles and coupled models.

So we can see from this brief discussion there is a range of rigour in the meth-

ods with which uncertainty is analysed and addressed in the literature. It is clear

that computational cost is a key issue preventing detailed uncertainty analysis in

many different cases. In the next section some methods of uncertainty analysis

are reviewed, which reveals why complex and computationally expensive simulators

present such a challenge.

3.2 Uncertainty analysis

The purpose of an uncertainty analysis is to evaluate the uncertainty in an output

induced by uncertainty on the inputs. In a sense there are at least two steps involved,

being elicitation of the input uncertainty, and subsequent calculation. Before any

computation can take place our uncertainty about the input must be determined

and appropriately specified. In this thesis uncertainty will be discussed in terms of

probability and probability distributions. This may be determined from observa-

tional data or more formally in an expert elicitation exercise. One or more experts

with knowledge of the simulator and its input may be questioned in such a way that

their uncertainty can be elicited in terms of probability distributions. An important

aspect of this process is that an expert’s subjective uncertainty be captured and

accurately expressed, although this can be a subject they might rather avoid given

that it requires honesty about the limits of their knowledge. Rougier et al. (2009a),

Brito et al. (2012b) and Brito et al. (2012a) all give examples of how expert knowl-

edge was elicited and incorporated into an uncertainty analysis. Brito et al. (2012a)

provides an appendix giving details of how the elicitation process was conducted,

which highlights its importance. Multiple experts were selected from around the

globe, and were brought together on more than one occasion to provide informa-

tion. The information was consolidated and used as the basis of the risk assessment.

O’Hagan et al. (2006) goes into considerable detail regarding the elicitation process.

17Results from the CMIP5 ensemble were yet to be produced.
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Given that uncertainty is expressed as a probability distribution, the shape of the

distribution will be dictated by the form of the uncertainty. A normal or Gaussian

distribution is symmetric and so represents the probability decaying at the same

rate for values above and below the mean. In contrast, a Beta-distribution can

be specified by choosing appropriate shape parameters18 which results in a “hard”

limit with a minimum or maximum value, implying that there is zero probability

of values beyond this limit (an example of the use of a Beta-distribution is given in

chapter 6). Where very little is known about the value other than it is constrained

by some physical limits, a uniform distribution may be appropriate. Some caution

must be adopted during the elicitation process, however it is conducted, in order

that beliefs are expressed and / or captured accurately. For example, people have a

tendency to give information in a rather rhetorical way - “We’ve always done it like

that. . . ” is a common response to enquiry about why a process is done in a certain

way. By comparison, an expert may feel most comfortable putting firm limits on

the possible values of certain simulator input for similar reasons, but that might not

be their true considered judgement if they think about the situation in a broader

context. Indeed, they may not have given it much prior thought at all. In fact,

when they consider the enquiry in more detail they might concede that hard limits

are unrealistic. It is probably fair to say that in most examples, placing hard limits

on the range of possible values of a parameter that can be quantified, whether it

is simulator input, values of physical constants, consequences of an action, etc. is

unrealistic.

Once the uncertainty distribution for the simulator input has been established,

the next step is to perform statistical inference. This can be described quantitatively

as follows. If the computer simulation is a deterministic function f(·) with inputs

X distributed as G(X), then the purpose of the uncertainty analysis is to determine

the distribution induced in f(X). Specifically, the expectation is computed by,

E{f(X)} =

∫
χ

f(X)dG(X) (3.1)

The form of f(·) dictates how difficult this calculation is to perform. In a simple

case, it may be possible to closely approximate f(·) by a simple linear form such

that for a specific input x,

f(x) ' h(x)Tβ (3.2)

where h(·) is a vector of basis functions and β is a vector of coefficients. If the basis

18In a similar way that a normal distribution is specified by a mean and variance, a Beta-
distribution is specified by two shape parameters typically labelled as α and β.
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functions are sufficiently tractable, such as h(·) = [1, ·]T, then,

E{f(X)} '
∫

χ

h(X)Tβ dG(X) (3.3)

which is trivially solved where G(X) is Gaussian. However if f(·) is some complex

nonlinear operator then the approximation (3.2) will be poor and the integral (3.1)

will therefore need to be solved by some kind of numerical method. A Monte Carlo

approach for example requires a large sample x = [x1 ..xn] to be drawn from G(X)

(where typically n = O(104) to obtain precise probabilistic information), and f(xi)

to be computed at each sample point xi. Often it is prohibitively expensive to

run a complex simulator a number of times sufficient for a Monte Carlo approach.

This provides us strong motivation to seek a more efficient method to address this

problem.

One means of addressing this is through the use of surrogate models. A number

of alternative terms, such as meta-models, are used in the literature to describe

what is an approximate version of the simulator. In broad terms, a surrogate model

can be constructed from output from the simulator in such a way that it accurately

captures the simulator’s behaviour. If the surrogate model executes rapidly, then

uncertainty analysis can be performed using the surrogate model rather than the

simulator. One particular type of surrogate model is the Gaussian process emulator,

which is described in section 3.4.

Given that it is possible to perform the uncertainty analysis using a Monte Carlo

approach, results from such an analysis can tell us different information about the

simulator output and its operation. Specifically, nonlinearity will be evident if the

output distribution is significantly different from the input distribution. Two exam-

ple output distributions generated by a simple simulator with a single dimension of

input are shown in figure 3.1. Panel (a) shows a distribution with a slight skew but

which can be seen to be close to normal, when compared with the normal distribution

fitted to the output mean and variance. We can therefore deduce that the simulator

response is approximately linear. In contrast, panel (b) shows a highly skewed dis-

tribution which also exhibits multiple modes, revealing a highly nonlinear response

in the simulator. Note also that in panel (a) the mean of the output distribution is

very nearly equal to the simulator output at the mean of the input. However, the

nonlinear operation exhibited in panel (b) has resulted in an appreciable difference

between the output mean and the output run at the mean input. In such a case,

if the uncertainty were not considered and only a single run (or small sample) were

evaluated near the mean input (essentially on the basis of a linear response), any
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(a) Uncertainty distribution from a near linear
response in the simulator to its input.
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(b) Uncertainty distribution from a highly non-
linear response in the simulator to its input.

Figure 3.1: Two contrasting uncertainty distributions induced in simulator output for a
simple one dimensional simulator.

subsequent calculation or action based on the result could be misguided.

While an uncertainty analysis tells us about uncertainty induced in the output,

and reveals nonlinearity in the simulator, in the case of multiple dimensions of

input, it does not tell us details about any individual dimension of input such as

how each contributes to the output uncertainty. A sensitivity analysis can give us

this information, which is discussed in the next section.

3.3 Sensitivity analysis

Sensitivity analysis (SA) is a companion to uncertainty analysis in the sense that it

reveals information about how the specific sources of input uncertainty induce out-

put uncertainty. It provides a means of obtaining quantitative measures of influence

for the various sources of uncertainty within the simulator. In a sense this allows

us to “unpick” the inner workings of the model, which we might want to do for

various reasons. French (2003) provides an extensive discussion of the motivations

for performing SA. In the context of this work for example, SA could tell us, quan-

titatively, how simulated wave period responds to change in a given free parameter.

Moreover, we can determine the combined effects of two or more dimensions of input

- that is whether the inputs significantly interact. Specification of our uncertainty

is important in order to obtain meaningful results, but SA is often conducted, if

a little crudely, by giving only a passing thought to the formulation of our beliefs.
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Nonetheless, it may be instructive to determine the change in the output for an

arbitrary change in input or we may simply be curious about what happens when

we push input to more extreme values.

Many different methods of performing sensitivity analysis are well established.

Saltelli et al. (2000) provide a comprehensive and in depth discussion of different

methods and relevant issues. An important distinction to make is the difference

between a simple one-at-a-time (OAT) analysis and a simultaneous analysis that

captures interactions between inputs, and any resulting nonlinearity. An OAT anal-

ysis will only be effective if the simulator has a linear response to all input. A

common approach is to use a variance based method, which involves decomposing

the total variance with respect to each of the input sources. That is, to determine

what proportion of the total variance is attributable to each input. In this way,

sensitivity or importance measures can be defined for each input, which provides

a standardised way of comparing the influence of different input. As we saw in

the previous section for uncertainty analysis, when analysing a complex simulator

typically there are no closed form solutions to the resulting equations for SA, and

so numerical methods are generally required. However, the resulting integrations

usually require at least an order of magnitude more computation power than for a

simpler uncertainty analysis. Moreover, it is usually very difficult to re-use the same

data for further analysis. If the simulator is very fast to execute then these issues

are not important but this is not the case with many modern complex simulators.

Again this provides strong motivation to find a more efficient approach.

Saltelli et al. (2005) provide some examples of sensitivity analysis in practice,

and cover variance based methods. Jacques et al. (2006) propose using a similar

approach in the context of correlated inputs and simulator variation. Oakley and

O’Hagan (2004) also advocate this approach and Lee et al. (2011) gives an example

of its application (utilising an emulator) in the context of the analysis of a numerical

model for atmospheric aerosols. Some of the mathematical formulation for a variance

decomposition approach is provided in the remainder of this section. For some

input x with elements x1 . . . xd that are indepdendent and that correspond to the d

dimensions of input to the simulator, where x is a realisation of the random vector

X we can write the value of some deterministic function y = f(x) as the following

decomposition,

f(x) = E(Y ) +
d∑

i=1

zi(xi) +
∑
i<j

zi,j(xi,j) +
∑

i<j<k

zi,j,k(xi,j,k) + · · ·+ z1,2,...,d(x) (3.4)

where z are referred to as the effects and interactions of the input xi. The main
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effect, zi, is given by,

zi(xi) = E(Y |xi)− E(Y ) (3.5)

the first order interactions, zi,j, are given by,

zi,j(xi,j) = E(Y |xi,j)− zi(xi)− zj(xj)− E(Y ) (3.6)

and the higher order interaction terms follow the same pattern.

The main effect is a function of xi and it is calculated by marginalising over all

other inputs19, x−i, and running the simulator at a subset of values of xi consistent

with our uncertainty. The main effect zi is therefore an expectation and accounts

for the uncertainty about x−i. It can be seen that for a linear function, where there

is no interaction between elements of x, only the main effect term will be of interest.

However, interactions may be particularly important in nonlinear systems. Main

effects and first order interactions are functions of only one or two variables and can

therefore be visualised easily giving a clear graphical indication of the sensitivity of

the model to each input parameter, or pair of parameters. It is possible to extend

the method to higher order interactions but they are difficult to interpret and so it

is common practice to focus on lower order terms.

A decomposition for the variance of the effects can be obtained in a way similar

to the above, as follows,

var(Y) =
d∑

i=1

Wi +
∑
i<j

Wi,j +
∑

i<j<k

Wi,j,k + · · ·+W1,2,...,d (3.7)

where Wi = var{zi(xi)} = var{E(Y |xi)}, Wi,j = var{zi,j(xi,j)}, etc. It can be seen

that Wi is the amount by which var(Y ) is reduced if we learned the true value of

xi. In other words, Wi is the proportion of variance attributable to (the input)

xi. Dividing by the total variance var(Y ) gives rise to a scale invariant importance

measure referred to as the main effect index.

Clearly knowledge of an influential input will lead to a greater reduction in the

variance of Y , than knowledge of an inactive input. Somewhat counter intuitively,

where interactions are present, the input with the largest main effect is not neces-

sarily the most interesting. Consider a function with three inputs, linear in x1 but

where x2 and x3 interact in some way. The response of the function to x1 may be

quite strong, resulting in a large main effect. However, even if the response to vari-

ation in x2 or x3 is considerably smaller, the variance arising from their interaction

19The notation −i denotes all dimensions other than i, adopted from Oakley and O’Hagan (2004)
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might be large, resulting in the total variance explained being greater than that for

either x1 and x2, or x1 and x3. There are many aspects of SA that can be brought

to bear on the study of simulator response to input, including the identification of

interesting inputs, screening methods, and so on. The reader is directed to Saltelli

et al. (2000) and Oakley and O’Hagan (2004) and references therein for further

information.

As previously noted, many 10,000s of runs of the simulator are required to under-

take these kinds of analyses which make it prohibitive for all but the most simplistic

of simulators. A robust and efficient alternative approach is therefore desirable, and

one such method that has proved very effective over recent years is the Gaussian

process emulator. In this thesis the methods outlined above will be used extensively,

in conjunction with emulators, to perform analysis for various configurations of a

wave simulator. A detailed description of emulators is provided in the next section

of this chapter.

3.4 Introduction to Gaussian process emulators

As discussed in chapter 1 and section 3.2, uncertainty analysis is important in the use

and application of numerical simulators. However, owing to the prohibitive compu-

tational cost of traditional Monte Carlo methods, alternatives have been developed.

A Gaussian process (GP) emulator is a type of statistical regression model, formu-

lated using a Bayesian approach, that completely represents a simulator, including

the nonlinearity in its operation. It is a robust reproduction of the simulator and

so can be used for the accurate prediction of simulator output at input values for

which the simulator has not been run. It can do this very rapidly and so it becomes

possible to generate the data necessary for a Monte Carlo based uncertainty or sen-

sitivity analysis. In fact, because the principle of emulation is based upon creating

a robust statistical model of the simulator, it is possible to perform statistical infer-

ence analytically for certain choices of emulator construction. Even where this is not

the case, uncertainty analysis can be performed efficiently by utilising components

of the emulator model. This is a very powerful tool and is described in more detail

in section 3.4.4. Another attractive benefit of using an emulator is that once it has

been constructed, typically from less than a few hundred runs of the simulator, it

can be used repeatedly to perform various analyses which avoids having to rerun

the simulator. In effect the simulator output data can be re-used many times over.

A GP emulator is a nonlinear regression model, fitted to output from a simulator,

where the explanatory variables are the various inputs to the simulator. In statistical

terms, it is the complete distribution of the simulator output conditional upon each
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of the input parameters. It draws its name from the use of the Gaussian process

model that is used to represent uncertainty in the simulator. It is closely linked to the

Bayesian linear regression model, but utilises a spatial Gaussian process to describe

the error structure. In the same way that a Gaussian distribution describes a random

variable, the Gaussian process describes a (infinite) collection of variables, any subset

of which is jointly Gaussian. In this way it can be thought of as a distribution

of functions, that arises due to uncertainty about the functional response to the

uncertain input. The emulator model scales well to high dimension input, just as a

multiple regression model is used where there is more than one explanatory variables.

Without making the emulator model too complex and mathematically intractable,

the Gaussian process can be implemented with a mean function formed of linearly

independent basis functions of the input parameters. This is very useful when the

simulator is nonlinear and the form of its output can be approximated by the use

of a few simple basis functions. The choice of the emulator formulation is reliant on

some prior beliefs about the form of the simulator, however in practice this can be

established through the use of simple regression models. The use of an appropriate

mean function and suitable choices for other model components makes the emulator

very efficient and accurate at interpolating the simulator output.

Once choices about the emulator structure have been made the model is condi-

tioned on simulator output - that is, observations from the simulator. The choice

of observations is not arbitrary, but like any good experiment is subject to a de-

sign. Experimental design for building emulators is discussed in detail in section

3.4.2. Conditioned on observations at design points, the GP model, thinking about

a distribution of functions, becomes constrained to those that most closely represent

the form of the simulator output. In practice this constrains the mean of the con-

ditioned GP model to be equal to the simulator output at each design point. The

mean of the emulator is therefore a point predictor of the simulator, and this forms

the basis for interpolation of the simulator output. Being a statistical model, the

emulator also provides an estimate of the uncertainty about each point prediction

(which is zero at the design points). Use of the GP model does not require that the

simulator output is in some way Gaussian distributed, only that this is the case for

the uncertainty within the approximate model. Sometimes however the application

of a transformation to the output data may be required to satisfy this condition20.

Another important aspect of the use of the GP is that the simulator output is as-

20A log-transformation could be used for example, however this can complicate subsequent use of
the emulator because the emulator then computes log-transformed output, which requires a reverse
transformation. However, closed form solutions are then with respect to the log-transformed output
and require careful interpretation if they even obtainable.
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sumed to be quite smooth, in that a data point provides information about other

points in its proximity. This is typically the case for computer simulators although

care must be taken to ensure this is an appropriate assumption, for example if the

simulator included a bifurcation or “tipping point”.

Emulators are a very powerful tool for performing uncertainty analysis for com-

plex numerical simulators. They can be applied and extended in a number of ways,

some of which are discussed further in sections 3.4.4 and 3.4.5. Details of the con-

struction of an emulator are now reviewed, although the reader is directed to the

references in this section for further information, many of which deal with this sub-

ject is considerable depth. In particular, the formulation of the emulator is very

similar to the Bayesian linear regression model, a detailed treatment of which is

provided in O’Hagan and Forster (2004). Rasmussen and Williams (2006) provide

an extensive discussion of the GP and its properties in the context of machine learn-

ing21. The MUCM Toolkit22 is an extensive online resource that covers many aspects

of emulation and provides worked examples and case studies. A useful tutorial is

provided by O’Hagan (2006) and Santner et al. (2003) discusses various aspects of

designing and running computer experiments from both frequentist and Bayesian

perspectives, including the undertaking of uncertainty and sensitivity analysis. Fi-

nally the similarity between emulation for simulators and the method of spatial

“Kriging” is noted. In the field of geostatistics Kriging is a statistical method for

modelling and predicting spatial data. It dates back to the 1960’s where it evolved

as a means of predicting grades of rock ore by means of spatial weighted average.

Cressie (1990) describes the early history of Kriging. Initially it was based upon

finding the best unbiased linear predictor for spatial data but has now developed

into a large field of research. Sophisticated models for spatio-temporal prediction

are now widely used for a variety of spatial-temporal problems. For example, Sahu

et al. (2011) developed a model for forecasting regional ozone levels based upon real-

time data. Emulators are sometimes described as “Kriging for computer models”

since mathematically the two fields share many commonalities. In oceanography and

meteorology these methods are often known as “objective analysis” and “optimal

interpolation”. An obvious difference is that geospatial processes are limited to two

spatial dimensions whereas emulators are typically aimed at exploring up to tens of

input dimensions. However, and with some differences in terminology and notation,

the following mathematical discussion can be found widely in the geostatistics lit-

erature. The reader is directed to Cressie (1993), Stein (1999) and Banerjee et al.

21Notation differs considerably between the literatures of statistics and machine learning.
22http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
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(2004) for in depth coverage of the field.

3.4.1 Statistical theory

A GP is defined by its mean, µ, and covariance function, often written as the product

of a variance and a correlation function, σ2c(·, ·), that is,

η(·) | µ, σ ∼ GP(µ, σ2c(·, ·)) (3.8)

The mean function of the GP can be zero but that assumption would require that the

variation in the data was entirely explained by the covariance function. An effective

mean function is a linear combination of basis functions, which often explains a

good deal of the variability. For basis functions with only linear terms x, where x is

in p dimensions, this is written in vector form h(·)Tβ, where h(·) = [1, x1, . . . , xp]
T

and β is a vector of unknown coefficients. The mean function could, however, be

much more complex where appropriate. A periodic mean function, for example,

may be well suited to certain dynamical simulators (see e.g. Rougier et al. 2009a).

The covariance function explains the relationship between points in the process.

Consider then, that we wish to interpolate, or predict, some quantity at a location

in some space. Our prior beliefs are that the value of the quantity at locations close

to each other will be closely related, and locations far apart will not inform much

about each other. That is, we expect f(x) and f(x′) to be closely correlated when

|x− x′| is small. Beliefs of stationarity can be expressed by ensuring the covariance

depends only on x − x′, for example. This idea is incorporated into an emulator

via the prior specification for the covariance function. Two covariance functions are

described below, but the reader is directed to Rasmussen and Williams (2006) for a

detailed discussion of covariance functions in general.

If the covariance function is expressed in the form,

c(·, ·) = σ2r(x− x′) (3.9)

then one possible, and commonly used form of the correlation function referred to

as the Gaussian, or “squared exponential”23, is expressed as,

r(x− x′) = exp

{
−

p∑
k=1

(xk − x′k)
2

δk

}
(3.10)

23Although commonly used, strictly speaking this terminology is incorrect since it is the expo-
nential of a negative squared distance.
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Here, the sum is over the k dimensions of input and the hyperparameters24 δk are

often referred to as the correlation length scales which are related to the sensitivity

of the output to change in any given dimension of input. In fact, the sensitivity

and degree of nonlinear response of the simulator output to each input can be

readily interpreted in terms of the values of the correlation length scales. Sensitivity

increases with decreasing value of δ. Where x is scaled to {0, 1}, values of δ greater

than unity suggest linearity of response and could indicate insensitivity to an input.

Values of δ less than about 0.05 (i.e. 1/20 of the input range of the given input)

indicate very high output sensitivity and may need specific investigation to ensure

validity of the correlation function. Equation 3.10 implies belief that the simulator

output is smooth, in that the correlation function is infinitely differentiable. This

offers mathematical tractability although the smoothness assumption has proven

to be inappropriate for many simulators. Alternatives advocated by Stein (1999),

Cornford et al. (2002) and Rougier et al. (2009a), are functions from the Matérn

class, which, where x is a scalar, is written as,

r(x− x′) =
1

Γ(ν)2ν−1

(√
2ν
x− x′

δ

)ν

Kν

(√
2ν
x− x′

δ

)
(3.11)

Γ(·) is the Gamma function, Kν is a modified Bessel function of the second kind and δ

is a length scale parameter. The Matérn equation, is parameterised by ν, providing

control over the smoothness. A Gaussian process with Matérn covariance has sample

paths that are ν− 1 times differentiable. Where ν = 1/2 the equation reduces to an

exponential form. Rasmussen and Williams (2006) suggest that choices of ν = 3/2

and ν = 5/2 give the most interesting functions, providing more roughness than the

“squared exponential” form (and removing the complication of the Bessel function).

They provide figures of the functional behavior in (their) section 4.2. The Matérn

function for ν = 3/2 (where x is a scalar) is given by,

rν=3/2(x− x′) =

(
1 +

√
3(x− x′)

δ

)
exp

(
−
√

3(x− x′)

δ

)
(3.12)

where δ is a correlation length scale. At this point the “nugget”25 term is discussed.

The nugget term is commonly added to the covariance function as a way of account-

ing for uncertainty that is not explained by the regression variables. It appears as

24In order to distinguish between input parameters of the simulator and parameters of the sta-
tistical model (i.e. the emulator) the term “hyperparameters” is employed. The hyperparameters
govern the behaviour of the emulator.

25The name originates from geostatistical Kriging used in the mining industry where nuggets of
ore were particularly important.

49



3 UNCERTAINTY ANALYSIS USING GAUSSIAN PROCESS EMULATORS

a small quantity ε added to the diagonal of the observation correlation matrix, or

equivalently subtracted from all the non-diagonal entries. For a covariance matrix

based upon (3.10) with elements σ2ri,j, where subscripts i, j are over the design

points x, and xi,k is the kth dimension of design point xi, the correlation function

with nugget, ε, is computed as,

ri,j(xi − xj) = Ii=jε+ (1− ε) exp

{
−

p∑
k=1

(xik − xjk)
2

δk

}
(3.13)

where Ii=j is the indicator function. The nugget term is discussed, for example,

in Banerjee et al. (2004) and Rasmussen and Williams (2006), where the latter

present a derivation on the basis of noisy observations. Typically the value of ε is

small although the specific value is determined on a case-by-case basis and must be

proportionate to the total variance. It can also be estimated as an additional hyper-

parameter. It may seem unnecessary to make use of a nugget term when conducting

a computer experiment, since for a deterministic simulation the output is known

precisely. However, Gramacy and Lee (2010) assert that there are a number of good

reasons to use one. One practical advantage is that mathematical stability tends

to be improved as a result of better conditioning of the covariance matrix. They

argue that beyond improved mathematical properties, adding noise to the output

reflects that the simulator is fundamentally an approximation, and point out that

many modern simulators are stochastic anyway and so the use of a nugget should be

automatic. Moreover, the nugget term can also account for inappropriate modelling

assumptions such as non-stationarity which again are almost always present to some

degree. However, Andrianakis and Challenor (2012b) investigate the properties of

the nugget and show that the automatic use of a nugget can produce unexpected

results. Specifically, they show that the inclusion of the nugget term can lead to two

distinct modes in the Gaussian process likelihood. In effect this leads to two types of

behaviour. The first is an emulator that smooths but has a posterior mean function

that passes close to the design points, more consistent with an emulator without

nugget term. The second is an emulator with a constant posterior variance, and a

mean function that is less constrained by the design points. They show that in some

cases, and contrary to the belief that the effect of a small nugget may be subtle,

even for values as low as 10−12, either behaviour can be induced. This highlights

that some caution should be used where use of a small nugget term is automatic.

Examples of how a nugget can be used are given in section 3.5.

Given the choice of GP (here linear mean and Gaussian correlation functions can

be assumed) the formulation of the emulator can proceed. Description of the working
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is given in more detail in Haylock and O’Hagan (1996) and Oakley (1999) but here

some important steps and results are summarised. Note also that in the following,

the dependence of c(·, ·) and the output covariance matrix A on hyperparameter δ

is omitted for clarity. Firstly, yT = [f(x1), . . . , f(xn)] is the simulator output at

input points X (a d× n matrix) which yields,

y | β, σ2 ∼ GP(Hβ, σ2A) (3.14)

where H = [1,X] and A is the n × n correlation matrix between the outputs; see

below. A likelihood function for the model is generated by conditioning the prior

GP model (3.8) on the simulator output resulting in,

η(·)|y, β, σ2, δ ∼ GP(m∗(·), σ2c∗(·, ·)) (3.15)

where,

m∗(x) = h(x)Tβ + t(x)TA−1(y −Hβ) (3.16)

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′) (3.17)

t(x)T = (c(x,x1), . . . , c(x,xn)) (3.18)

A =


1 c(x1,x2) . . . c(x1,xn)

c(x2,x1) 1
...

...
. . .

c(xn,x1) . . . 1

 (3.19)

However, we wish to remove the conditioning on the model hyperparameters, β, σ2

and δ. In order to do so we first apply Bayes’ rule and multiply (3.14) by prior

distributions for the hyperparameters. Haylock and O’Hagan (1996) assert that

prior information about the hyperparameters when modelling computer simulations

is typically weak, and so assign the (improper) uninformative prior,

p(β, σ) ∼ 1/σ2. (3.20)

O’Hagan and Forster (2004) derive this improper prior from the normal-inverse-

gamma prior (conjugate to the Gaussian distribution), which can also be used in

this analysis. Omitting some steps here, re-arranging (3.14) and multiplying by

(3.20), it is found that,
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β | y, σ2 ∼ N(β̂, σ2(HTA−1H)−1) (3.21)

where,
β̂ = (HTA−1H)−1HTA−1y (3.22)

is the classical weighted least squares estimator26, and,

σ2 | y ∼ (n− q − 2)σ̂2χ−2
n−q (3.23)

where,

σ̂2 =
yT(A−1 −A−1H(HTA−1H)−1HTA−1)y

n− q − 2
(3.24)

Multiplying (3.21) and (3.15) and integrating with respect to β (which can be

done analytically in this case) yields,

η(·)|y, σ2 ∼ GP(m∗∗(·), σ2c∗∗(·, ·)) (3.25)

where,

m∗∗(x) = h(x)Tβ̂ + t(x)TA−1(y −Hβ̂) (3.26)

c∗∗(x,x′) = c∗(x,x′) + (h(x)T − t(x)TA−1H)(HTA−1H)−1(h(x′)T − t(x′)TA−1H)T

(3.27)

The final step of multiplying (3.23) and (3.25) and integrating with respect to

σ2 yields a t-distribution, with n − q degrees of freedom, for the posterior, written

as,
η(x)−m∗∗(x)√

σ̂2c∗∗(x,x′)
n−q−2

∼ tn−q. (3.28)

Recall however that the covariance function c(·, ·) contains the hyperparameter δ,

but owing to the intractable form of (3.28) it cannot be integrated analytically.

A number of options are available, and are discussed by Rasmussen and Williams

(2006). One option is to integrate numerically using a Markov Chain Monte Carlo

(MCMC) scheme (see e.g. Gilks et al., 1996). This process involves sampling from

the full conditional distribution for the posterior of the length scale parameter, re-

quiring the specification of its prior, which may not be forthcoming. MCMC is

computationally demanding and can also require some experience. Initial settings,

steps sizes, acceptance and rejection criteria all require careful consideration in order

for the method to be effectively and efficiently sample from the posterior distribu-

26The uninformative prior essentially allows the data to dictate β, however use of an informative
prior with respect to β would not recover the classical result. Sacks et al. (1989) discuss the linear
predictor from a frequentist perspective.
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tion. Banerjee et al. (2004) discusses the use of such techniques in Bayesian inference

at length. Another possibility is to make a point estimate of δ and simply plug it

into (3.28). This can be very effective but, as noted by Bayarri et al. (2007) in

so doing variability is underestimated because account is not taken of uncertainty

about δ. When making the point estimate some care has to be taken. Commonly

the posterior distribution for δ is maximised, that is its modal value is found using

an optimisation algorithm which is the equivalent of maximum likelihood estimation

(MLE). However, the shape of the posterior can be very flat and also be multimodal,

making it taxing for the optimisation algorithm. Often the log of the posterior is

maximised, which can alleviate this problem to some degree. The posterior distri-

bution for δ is found by multiplying the likelihood function for the hyperparameters

(3.14) by their prior disitrubtions (3.20), and assigning a uniform prior to δ. The

calculation is covered by Oakley (1999) and the result is given here,

f(δ | y) ∝ (σ̂2)−
n−q

2 |A|−
1
2 |HTA−1H|−

1
2 (3.29)

An alternative to the MLE method is a “leave-one-out” method. The principle is

that candidate values of δ are chosen through a minimisation algorithm, and a set of

n emulators are trained using the simulator output, but with each of the n members

removed. Each emulator is then used to make a prediction of simulator output at the

point which was omitted from the training set. The sum of the differences between

the predictions and the observed values is then minimised by the algorithm, in order

to determine the optimal value of δ.

Once an estimate of δ has been made using the preferred method, the emulator

is ready for testing. Like all models, statistical or otherwise, the emulator must be

validated before it can be put to use. The validation process must assess how closely

the emulator represents the simulator and identify any significant conflicts. There

is no single definitive measure for this but a range of tests and graphical diagnostics

are available. These are reviewed in section 3.4.3. Before proceeding to that section

however, we note that little has been said so far about the design used to generate

the emulator training data. This is an important subject and is discussed in the

next section.

3.4.2 Experiment design

In order to build an emulator observations of the simulator output must be made

according to some kind of design. McKay et al. (1979) were among the first to

consider experimental design for deterministic computer simulators. Sacks et al.
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(1989) also discuss a number of issues relating to design. The design of any scientific

experiment should naturally be such as to obtain information in the most efficient

way thus when conducting a computer experiment we adopt a design in order to

maximise our knowledge of the simulator output from a minimum number of points.

Prior knowledge of the simulator may lead to the choice of a specific strategy however

generally we wish to ensure even and complete coverage of the input space. We also

wish to minimise correlation between variables, that is, ensure as far as possible

orthogonality in the design. McKay et al. (1979) examined properties of a random,

a stratified and a Latin Hypercube design and found that Latin Hypercube sampling

(LHS) had these desirable properties. A LHS design is formulated by dividing the

design space into regions, and then sampling points randomly from within each

region. In a simple two dimensional case for example, 100 design points can be

obtained by dividing each dimension into ten equal regions, and then chossing a

single point at a random position within each of the 100 resulting regions. LHS

based designs have very good space filling qualities, which can be optimised by

maximising the minimum pairwise distance between points, giving rise to the so

called “maximin” LHS design. For example Williamson et al. (2013) achieved this

by employing an optimisation that maximised the harmonic mean of the pairwise

inter-point distances. Other advantages are that designs are cheap to produce and

they scale up to large numbers of dimensions without issue. The properties of an

LHS based design is such that a fairly small numbers of points are required per

dimension and this scales linearly, rather than geometrically, with the number of

dimensions. Loeppky et al. (2009) determine that the rule-of-thumb guidance of 10

points per dimension is well supported by analysis. Craig et al. (2001), Kennedy

et al. (2008) and Lee et al. (2011) are examples where an LHS based design was

employed. An example of a two dimensional LHS design with 100 points is shown

in the centre panel of figure 3.2. The space filling property of the method is readily

apparent. Also shown in panels to the left and right of the centre are the histograms

of the distributions of the design points for each input, which can be seen to be

uniform illustrating how the input space has been divided equally.

A possible alternative is a design based upon a Sobol sequence (Sobol, 1967).

Based upon a quasi-random number sequence, it was originally identified as a means

of performing numerical integration more efficiently than simply relying on random

numbers. Being sequentially generated, it differs from an LHS approach in that

the design can easily be expanded if necessary. This is an attractive feature when

conducting computer experiments since the simulator runs are often expensive, and

if a design was found to be too small, it is wasteful to have to discard those runs.
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Figure 3.2: An example 100 point maximin LHS based design for two input variables.
Panels 1 and 3 show a histogram of the distribution of the sampled points in each dimen-
sion. The centre panel shows the points plotted in the design space. The space filling and
orthogonal properties are clear.

However Challenor (2013) notes that for small numbers of points Sobol sequences

lack the space filling properties of LHS based designs, which is also highlighted by

Santner et al. (2003), who provide a comparison of these two approaches to design.

There is a large and growing literature on computer experiment design. Some

examples include Mease and Bingham (2006) who propose an approach for designs

with unequal cell sizes and Dette and Pepelyshev (2010) who investigate nonuni-

form designs that place a high proportion of points near the design boundary. Qian

(2009) proposes a methodology for nested designs, that can be used in experimental

situations where multilevel emulators are employed. This application of emulators

is discussed further in section 3.4.5. Nested designs for multilevel experiments bears

similarity with the approach proposed by Challenor (2011) who investigates design

for simulators that include switches as input. Many examples of modern simulators

incorporate switches that turn on and off various features. WW3 is a good exam-

ples of this, where a number of different physical parameterisations are available,

the selection of which are governed by a number of switches27. In general, whether

running multilevel experiments or investigating switches, the design must incorpo-

rate sub-designs spanning the switched sub-space, but that also retain qualities such

as orthogonality.

A final note on this topic is that use of a formal design may be a luxury in

some cases. The simulation output may already have been produced by others thus

complicating the analysis. Bastos and O’Hagan (2009) faced this kind of problem

and sub-divided the data set in a randomised way. In this thesis experimental design

27In practice the switched modules are compiled separately leading to a number of different
executables but the selection of these could easily be implemented via an external switching system.
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is entirely based upon a maximin LHS approach, generated using the “lhs” package28

for R.

3.4.3 Emulator validation

Section 3.4 concluded by emphasising that an emulator must be validated for use.

This is of course a key step in the development of any mathematical model whether

numerical or statistical. The literature on validation of emulators is fairly sparse

although since an emulator is a statistical model, principles and methods that apply

to these are generally applicable to emulators. The approach to validation generally

involves making predictions with the model and assessing, using various means, the

quality of the prediction. When building an emulator we therefore need to gain

confidence that both its predictive capability is good and its statistical properties

are a close match to those of the simulator output.

The validation of any model typically proceeds initially by obtaining some kind

of validation data according to a methodology or design and then using the model to

predict the same data. Performance measures are often based upon the mean square

prediction error. Such an approach to model selection is advocated in Santner et al.

(2003) for example. However the emulator provides a lot of information beyond a

simple point estimate. The posterior covariance can also be analysed in different

ways to identify conflicts between the emulator and simulator. Bastos and O’Hagan

(2009) propose a number of diagnostic tools based on the analysis of this data, and

their work has become something of a “go to” reference for emulator validation.

Their approach is discussed in more detail shortly but first a few comments are

made about assessing the validity of an emulator. Part of the formulation process

of an emulator, as described in section 3.4, is to determine appropriate mean and

covariance functions for the prior GP model. A useful exploratory technique is

simply to fit a multiple linear regression to the simulator output. Visual diagnostics

such as plots of the residuals against input can provide clear insight into the structure

of the output data well before any attempt is made to formulate an emulator. It

is often clear from such plots, seen for example in the bottom panels of figure 3.4,

whether the training data might present difficulties. It should be clear, for example,

if the data is exhibiting heteroscedasticity, or whether the multiple regression gives

rise to extreme outlying data. This knowledge is not only valuable when choosing

mean and correlation functions but also for diagnosing performance later.

Assuming an emulator has been formulated, the approach commonly used, and

that is used throughout this thesis, is to run both the simulator and emulator at

28http://cran.r-project.org/web/packages/lhs/index.html
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Figure 3.3: Example of graphical tools to assess consistency of the emulator with the
simulator. Top left: direct comparison of point predictions. Top right: Standardised errors
by point. Bottom left: Standardised errors ordered by size of error. Bottom right: Q-Q
plot for errors against reference t-distribution.

a number of validation points. If available, the validation data is usually an LHS

design of size nval, where nval is typically at least as large as the original design. The

validation process then proceeds by computing a vector of residuals Rval (of length

nval), generated from the emulator posterior mean prediction and the actual output

from simulator. Adopting the notation of Bastos and O’Hagan (2009), Rval =

y∗ − E[η(X∗)|y]. The error covariance matrix V [η(X∗)|y] is also computed, by

obtaining the posterior covariances for each pair of validation points.

Bastos and O’Hagan (2009) propose a number of methods based upon the anal-

ysis of the prediction errors and error covariance, both graphical and numeric, that

can reveal conflicts between the emulator and simulator. An example of the out-

put from the graphical diagnostics is shown in figure 3.3. The top left panel is

a plot of the emulator posterior mean prediction against the simulator output for

each validation point. This gives a very quick indication of the point prediction

accuracy. Taking note of the range of values on the axes, it also shows how much

variance there is in the output from the validation data. The top right panel shows

a plot of standardised error against the prediction. A good emulator will show errors

that are uncorrelated to the emulator prediction, and not reveal any extreme errors.
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Typically we would not expect to see any more than 5% of validation points lying

beyond 2 standard deviations. The bottom left panel is related to the top right, but

is based on a decomposition of the error covariance matrix. This is discussed further

shortly, but in terms of the graphical diagnosis, again for a good emulator we would

expect to see little or no correlation with design point, and no extreme outliers. The

final panel is a Q-Q plot comparing the quantiles of the error distribution with the

reference t-distribution (see equation (3.28)). Here we need to look for significant

deviation from the reference distribution.

Bastos and O’Hagan (2009) also advocate calculation of the Mahalanobis dis-

tance. The Mahalanobis distance (Mahalanobis, 1936) is sometimes referred to as a

generalised interpoint distance. It is similar to the Euclidean distance DEuc,

DEuc =
√
RT

val Rval (3.30)

but accounts for the correlation between points via the covariance matrix,

DMahal =
√
RT

valV
−1Rval (3.31)

The mean value of the reference F -distribution for DMahal is equal to the number

of validation points. Clearly large residuals (i.e. large values in Rval) that do not

correspond with appropriate uncertainties in V will increase the value of DMahal.

Conversely if the posterior variance estimates are large with respect to the residuals

then DMahal will be reduced. In each of these two cases the emulator can be regarded

as overconfident or underconfident respectively. Note that DMahal is quite sensitive

to extreme single residuals and so is a good test for outliers.

Bastos and O’Hagan (2009) discuss ways of examining the error covariance ma-

trix to identify conflicts. That is, by writing V = GGT, a vector of transformed

(standardised) errors is obtained from G−1R. In fact, it is clear to see that this

is equivalent to decomposing the Mahalanobis distance. There are different ways

of decomposing V , two of which are discussed by Bastos and O’Hagan (2009).

One important issue is the interpretation of any decomposition. An eigenvalue

decomposition is often used to identify dominant modes, which might for example

suggest large variances associated with individual points. However, the eigenvalue

decomposition projects the information onto a new basis creating linear combina-

tions of variances, which loses the correspondence with individual validation points.

In contrast, the Cholesky decomposition, which computes the lower triangular ma-

trix G, retains variances that are still linked to individual validation points. In this

case, the variance in each row is conditioned on the variance for the previous entries.
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However, the decomposition is sensitive to the ordering of the validation points, and

given that the ordering is (initially) typically random, this confuses any subsequent

interpretation. The authors therefore advocate a re-ordering, or pivoting, of the

rows (that correspond to the validation points) such that the first row is the one

with the largest variance. The decomposition is therefore applied to P TV P , where

P is the permutation matrix, and the resulting “pivoted Cholesky errors” can be

plotted. An example is displayed in the bottom left panel of figure 3.3. This allows

for a more obvious interpretation - any resulting grouping in the validation points

can be linked directly to the size of variance, and individual points. The “pivoted

Cholesky errors” are what is displayed in the bottom left panel of figure 3.3. In

practice, outliers or trends identified by this approach usually correspond closely

with the plot of standardised error against the prediction.

The overarching point of the validation is of course to identify conflicts. If

outliers or trends that suggest a conflict are identified this could be for a number of

reasons which are not always easy to diagnose. Typically, one or more underlying

assumptions are being violated, such as non-stationarity or homoscedasticity of the

data. Problems are most commonly encountered when the emulator training data

set is too small or does not adequately sample the design space. This can lead to

poor estimates of the correlation length scale or localised fitting problems. This kind

of problem tends to show up very clearly in the diagnostics described above. Poor

choices of emulator prior mean and correlation function will often lead to noticeable

conflicts, as is demonstrated in section 3.5.

In summary, the tools described are very useful and used widely in this thesis

where the general approach is to generate a number of validation data sets according

to the same design as used for the training data. However since there is no definitive

test for the “perfect” emulator the results from these kinds of tools are inevitably

subject to interpretation. Experience is also a valuable asset when formulating and

validating an emulator. Once confidence has been gained that an emulator is in good

agreement with the simulator it can then be put to use in performing analysis. In

the next section we look in more detail at how uncertainty and sensitivity analysis

can be performed analytically using an emulator.

3.4.4 Analytical uncertainty and sensitivity analysis using an emulator

In this section an analytical approach to statistical inference with emulators is dis-

cussed. An emulator executes very rapidly, even for designs of a 1000 points or more,

and so statistical inference can be conducted numerically. Monte Carlo methods can

easily be implemented by either using the emulator posterior mean function in place
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of the simulator29 or making draws from the emulator posterior distribution. How-

ever, recall that the emulator is a complete statistical representation of the simulator

so it is possible, given certain assumptions, to infer statistical information analyt-

ically from the emulator posterior mean and covariance functions. An example of

how this can be done is given by Oakley and O’Hagan (2004). The inference gives

rise to a considerable number of integral expressions, all of which, together with

derivations, are given in the MUCM Toolkit30, with further discussion provided by

O’Hagan (2011). Here, a summary is given of the important results, with relevant

discussion where appropriate.

Firstly, a few important points are highlighted. In particular, if the approach

taken is in accordance with Oakley and O’Hagan (2004), in order to keep the math-

ematics tractable the emulator has to be formulated with a Gaussian correlation

function. The mean function need not be limited to h(x) = [1,x] as is commonly

advocated, but some additional calculations are required if more complexity is to

be used. Furthermore, weak prior information (as described in section 3.4.1) has to

be imposed and the prior uncertainty distributions for the input variables must be

multivariate normal.

O’Hagan (2011) derives fourteen integrals, and uses these to express another

eight. Many of the details are not duplicated here but some consideration is given

to integrals relevant to uncertainty analysis. Recall equation (3.1), and let us proceed

to determine the expectation of the distribution induced by the uncertain input g(x).

If f(·) is closely approximated by the emulator posterior mean function m∗∗(·) in

(3.26) then the expectation of the induced output distribution with respect to the

emulator is (using the notation of O’Hagan, 2011, where E∗ denotes the expectation

of the emulator) given by,

E∗{E(f(x))} = RT
h β̂ +RT

t e

where,

Rh =

∫
χ

h(x) dg(x) (3.32)

Rt =

∫
χ

t(x) dg(x) (3.33)

e = A−1(y −Hβ̂) (3.34)

29The term simulation is often used, in the context of Monte Carlo analysis, to mean drawing
samples (see e.g. the MUCM Toolkit.) It is avoided here for clarity.

30http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
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It is also of practical interest to consider,

E∗{V ar(f(x))} = (I1 − V ar∗[M ]) + (I2 − E∗[M ]2)

where (using the same notation) M = E(f(x)) and, with reference to the emulator

posterior covariance function (3.27),

V ar∗[M ] =

∫
χ

∫
χ

c∗∗(x,x′) dg(x) dg(x′) = σ̂2[U −RT
t A

−1Rt + (Rh −GTRt)
TW (Rh −GTRt)]

I1 =

∫
χ

c∗∗(x,x) dg(x) = σ̂2[Ũ − trA−1Rtt + trW (Rhh − 2RhtG+GTRttG)]

I2 =

∫
χ

m∗∗(x)2 dg(x) = β̂TRhhβ̂ + 2β̂TRht e + eTRtte

These expressions introduce the integrals Rh, Rt, Rhh, Rht, Rtt, U, Ũ which are defined

as,

Rh =

∫
χ

h(x) dg(x) Rt =

∫
χ

t(x) dg(x)

Rhh =

∫
χ

h(x)Th(x)dg(x) Rht =

∫
χ

h(x)t(x)Tdg(x)

Rtt =

∫
χ

t(x)t(x)Tdg(x) U =

∫
χ

∫
χ

c(x,x′) dg(x) dg(x′)

Ũ =

∫
χ

c(x,x) dg(x)

Inspection of these integral forms reveals that for suitable choices of mean and

correlation functions, and uncertainty distribution g(x), analytical solutions can be

obtained. O’Hagan (2011) proceeds to derive such solutions on the basis of choosing

linear mean, Gaussian correlation function and a joint normal distribution g(x).

It is clear that in such a case the mathematics are tractable. Where a Gaussian

correlation function is used and the integrations are with respect to multivariate

normal distributions, expressions can be obtained in a form that permits the use of

the definite integral,∫ ∞

−∞
exp

{
−(ax2 + bx+ c)

}
dx =

√
π

a
exp

{
b2 − 4ac

4a

}
The resulting analytical expressions are extremely fast to compute, and a very pow-

erful tool.

Furthermore the integrals are extended for the purpose of sensitivity analysis as
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described in section 3.3. The main effects for input variables w is as follows starting

with,

E∗{E(f(x−w|xw))} =

∫
χ−w

E∗(f(x−w|xw)) dG−w|w(x−w|xw)

for some distribution G conditional on xw. This can be rewritten in terms of two
integrals,

E∗{E(f(x−w|xw))} = Rw(xw)β̂ + Tw(xw)e

where

Rw(xw) =

∫
χ−w

h(x)TdG−w|w(x−w|xw) (3.35)

Tw(xw) =

∫
χ−w

t(x)TdG−w|w(x−w|xw) (3.36)

If we note that E∗{M} = Rhβ̂ + Rte where Rh and Rt are unconditional on

any input parameters and integrals over the whole parameter space as previously

defined, we can use (3.5) to determine the posterior mean for a main effect i,

E∗{zi(xi)} = {Ri(xi)−Rh}β̂ + {Ti(xi)−Rt}e

Note that this expression is a function of xi and so can be plotted to visualise the

main effect. These expressions can be further developed in order to find the variance

attributable to each input, and also extended to w = [i, j] to find the interactions

between the two inputs i and j. See the MUCM Toolkit and O’Hagan (2011) for

further details. This approach to uncertainty and sensitivity analysis is extremely

efficient but unfortunately has some drawbacks.

In practice many authors have noted that the Gaussian correlation function is

inappropriate, including Trucano et al. (2006) who reported that for their GP model

based upon a Gaussian correlation function the covariance matrix of observations

became ill-conditioned very quickly. Unfortunately, a lot of work is required to

obtain closed form solutions if an alternative is chosen such as a Matérn function,

which exhibits much more stable mathematical properties. A derivation of an ana-

lytical solution for the Rt integral, given the choice of a Matérn (ν = 3/2) correlation

function and g(x) normally distributed (in one dimension), is shown in appendix C.

Although potentially useful, the mathematics is extremely laborious and has to be

performed for every variation of correlation function, and is further complicated if

the choice of uncertainty distribution is something other than Gaussian.

Nonetheless, by forming a set of integrals from the emulator mean and covariance

functions as shown in O’Hagan (2011) we can progress by integrating numerically. It
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turns out to be efficient to utilise the built-in numerical integration schemes of soft-

ware packages, such as R. This allows for fairly arbitrary choices of emulator mean

function, correlation function and input uncertainty distributions. Code to perform

various inference including the computation of main effects, first order interactions

and their resulting sensitivity measures has been developed as part of this research

and is given in appendix D, and is utilised throughout this thesis.

3.4.5 Further applications of emulators

Many extensions and modifications of the basic principles of emulation have been

reported in the literature. For completeness some of these are mentioned briefly

in this section. The reader is also directed to the MUCM Toolkit for extensive

discussion of many of these issues.

Complex simulators almost always provide more than one output and in more

than one form, and it is desirable to build an emulator that can represent this.

Fricker and Oakley (2013) discuss the issues surrounding this problem and pro-

vide a comparison of approaches. They refer to simulators producing “field out-

put” where, as the name suggests, output is in some sense on a referenceable grid

structure and can be expressed by some kind of covariance structure. Conversely,

“multiple-type output” simulators produce various output that includes summary

or discrete parameters such as global average surface temperature. Where output is

low dimension and (approximately) uncorrelated it can be most straightforward to

build separate emulators for each output of interest. However, this is often not the

case. Where output is high dimension, it may be desirable to perform dimension re-

duction. Higdon et al. (2008) describe the application of emulation to an implosion

physics simulation where output dimension was of order 104. They utilised principal

component decomposition that captured approximately 99% of the uncertainty with

only the first five components. They do, however, caution that a more chaotic and

less forced system may not be so easily represented by so few components. Rougier

(2009) and Conti and O’Hagan (2010) give further examples of the development of

emulators to tackle complex multivariate simulators.

There are many cases where a simulator can be run at different levels of accuracy.

For dynamic geospatial type simulations this is typically a difference in spatial (or

temporal) resolution. Low resolution simulations are cheap to run but do not capture

the small scale dynamics that are available at higher resolutions. However it has been

pointed out by Williamson et al. (2012) out that low resolution simulations often

capture underlying trends, much the same as their high resolution counterparts.

Here the term “multilevel” emulator is used to designate an emulator conditioned
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on information from the same simulation but at different precisions. Often higher

precision results may be obtained at a higher computational cost by, for example,

running at higher resolution in space or time. It can often be observed that the

faster (lower resolution) run approximately captures much of the average or trend

in the slower higher resolution output. Kennedy and O’Hagan (2000) employed this

property to use fast approximate runs to build emulators of slower more expensive

simulators at higher resolution. An accurate emulator is built from many cheap

simulator runs that captures the average behaviour and then from much fewer runs

of the expensive simulator, a further emulator is built to predict the difference. The

large potential gain in computational efficiency makes this approach particularly

attractive. A possible design strategy for such an experiment is described by Qian

(2009).

Calibration of a simulator is the process of identifying the parameter values that,

in some sense, give the best performance. The parameters may be physical quanti-

ties that are poorly known or estimated, or could be entirely empirical. The task

of calibration is then to find the “best” set of values of the parameters, which is

usually determined on the basis of finding the most accurate parameterisation with

respect to some kind of observed (real world) data. Trucano et al. (2006) suggests

that “. . . the purpose of calibration is to adjust a set of code input parameters as-

sociated with one or more calculations so that the resulting agreement of the code

calculations with a chosen and fixed set of experimental data is maximized.” They

contrast this with a definition of validation: “. . . to quantify our confidence in the

predictive capability of a code for a given application through comparison of calcula-

tions with a set of experimental data.”. The two are closely linked and both require

the comparison of simulator output with real world observations. However simulator

validation introduces some philosophical considerations and so any direct compari-

son of simulation output with observations must be treated carefully. Discussion of

the many complex issues surrounding the validation and calibration of simulators is

beyond the scope of this thesis but Trucano et al. (2006) provide lengthy discussion

and relevant references.

Since the approach to emulation involves building a complete statistical model

of a simulator, it also lends itself to the incorporation of real world observations,

and treating them in a probabilistic way. Kennedy and O’Hagan (2001) present an

approach to calibration based upon statistically modelling the (numerical) model

discrepancy - the difference between observations and the simulator output. This

approach is similar to that of multilevel emulation but there the difference was

between simulator output at differing precision. By modelling the difference between
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observations and simulation output as an independent GP (the model discrepancy,

also referred to as an “inadequacy function”) the uncertainty about the tuning

parameters can be characterised. This information can then be used to choose

optimal values. The model proposed by Kennedy and O’Hagan (2001) is given by,

zi = ζ(xi) + ei = ρη(xi,θ) + δ(xi) + ei (3.37)

although they note that other choices could easily be argued. Here, zi is the ith

observation of the true process ζ(·). ρ is a regression term, η(·,θ) is the simula-

tor output (i.e. the emulator) where θ represents the parameters to be calibrated,

δ(·) is the so called inadequacy function and ei represents any residual uncertainty,

assumed Gaussian. We can see that once the observational errors have been ac-

counted for by ei, the inadequacy function δ(·) represents the difference between the

(emulated) simulator and reality. Appropriate choices of θ will therefore minimise

the sum of η(·,θ) and δ(·), and can be regarded as optimal in some sense. The

mathematics involved for a full Bayesian calculation of the various posterior distri-

butions is in general not practical and simplified in various ways in order to find

solutions. The authors perform a comparison between the Bayesian approach to

calibration (and subsequent prediction) and more traditional methods such as min-

imising the least squared errors between prediction and data, noting a substantial

improvement. Trucano et al. (2006) provides further discussion of both the general

concepts of calibration (in the context of code verification and validation) and the

approach proposed by Kennedy and O’Hagan (2001). Simulator calibration can be

achieved by using an emulator in conjunction with other more traditional methods

such as minimisation of a cost function or a genetic algorithm. In spite of the obvi-

ous efficiency, examples of calibration using such approaches are not yet abundant

in the literature, particularly with respect to complex geospatial simulators. Gre-

goire et al. (2010) for example make use of a LHS based design for an ensemble of

runs in an effort to better calibrate a climate simulator. They do not formulate an

emulator but more simply specify a cost function, based upon a variety of impor-

tant output from the climate simulator, that can be computed for each ensemble.

This is undoubtedly an improvement on previous studies cited in the paper, where

a sequential one-at-a-time tuning approach was employed but use of an emulator

in such a case would be very effective, and allow a much more detailed analysis

of the parameter space. Sexton et al. (2012) utilise the emulation methodology

of Rougier et al. (2009b) (which is similar to that described in this chapter) and

follow a methodology similar to Kennedy and O’Hagan (2001) by estimating the

inadequacy function by using output from an ensemble of simulators. By incorpo-
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rating observational data Williamson et al. (2013) employ another variation on this

approach to explore and characterise the parameter space for a climate simulator,

leading to a parameter subspace that gives rise to improved operation. In chapter 7

this type of problem is discussed further, and a calibration of WW3 is performed in

a somewhat less complex way, by using fast emulators to minimise a cost function

with respect to observations of waves on Lake Michigan.

3.5 A simple example (0-D wave model)

Having covered the relevant theory underlying emulators, an example of an appli-

cation to a wave simulator is given in this section. This elucidates how an emulator

works in practice and highlights some of the steps involved. The analysis performed

for more complex wave simulations throughout this thesis is conducted in much the

same way as shown here. Firstly the analysis is motivated, and the physical situ-

ation is summarised, together with relevant aspects of the simulator configuration.

The construction of the emulator then proceeds and once complete, an uncertainty

analysis is performed. Following the example, a simple “toy model” is examined to

explore issues identified in the example.

The focus in the example is not on the physical simulation but on how the

emulator is implemented and utilised. Details of the simulator are therefore limited

to those necessary for this purpose. Similar simulator configurations are looked at

more formally in chapter 4.

3.5.1 Outline of simulator configuration and experiments

The efficacy of a wave simulator is tested by its ability to generate the correct sea

state in various conditions. In “fully developed” wave conditions in deep water (see

e.g. Holthuijsen, 2007), this is equivalent to setting the left-hand-side of (2.7) to

zero, giving,

Swind + Snl + Sds = 0 (3.38)

This states that energy input from the wind is balanced locally by nonlinear inter-

actions and dissipation. The sea state is described fully by the directional spectra

however in this simple case the wind is constant in time and direction the spectrum

is more conveniently described by wave summary statistics alone. In this experi-

ment the peak period (Tp) of the spectrum is examined. Recall that the terms on

the left-hand-side of (3.38) allow some control over the energy balance and shape

of the spectrum through tuning parameters. These were discussed in chapter 2 and

are explored further in chapter 4. There is uncertainty about the “best” choices
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Table 3.1: Sources of uncertainty (0-D example simulation).

Source

term Sources of uncertainty Category Distribution

Swind Wind speed: Observation Wind speed

May take any constant value. ∼ N(10.0, 0.52)

Stable or unstable flow.

Snl Tuning of DIA source function. Parameter N/A

Sds TC96 dissipation source function Parameter sdsa0

Various empirical tuning parameters. ∼ N(4.8, 0.22)

(sdsa0 and sdsa2 selected) sdsa2

∼ N(2.0, 0.22)

of these parameters and so they can be regarded as random variables that can be

investigated using an uncertainty analysis. By representing our uncertainty about

them we can generate probabilistic output which tells us about the distribution of

output, and how this is affected by any nonlinearity. It may also be possible to rec-

oncile findings with understanding of the simulator and how we expect the relevant

physics to operate (i.e. do we expect to see any nonlinearity?).

The experimental approach here is that the wind speed, together with two tuning

parameters from the TC96 parameterisation are regarded as sources of uncertainty.

Uncertainty about these inputs is expressed in the form of probability distributions.

The distribution of wind speed is assumed to be normal with a mean value of 10ms−1

and standard deviation of 0.5ms−1. Two dissipation tuning parameters, sdsa0 and

sdsa2, that govern the behaviour of Sds are studied and these are also regarded as

normally distributed. Uncertainty ranges for these were determined on the basis

of model tuning as discussed in Tolman and Chalikov (1996). The source of input

uncertainty and their specification are summarised in table 3.1. (These are discussed

in more detail in chapter 4). This experiment does not require energy propagation

in the simulator, which in effect is treating the geographic domain as an infinite sea.

As a result only a single grid cell is required.

Following section 3.4.2 a maximin LHS design covering the 3-dimensional param-

eter space is adopted. Six 50 point designs were generated although considering the

analysis of Loeppky et al. (2009) who suggest designs should be at least 10 points per

dimension, this may be excessive. Here we are interested in the steady state of the

simulator, according to (3.38), so it was run until the sea state reached equilibrium.

In practice this requires approximately 30 days of simulation time. Details of the
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Figure 3.4: Diagnostics for the simple linear regression model.

work flow for generating and running an ensemble for WW3 are given in appendix

B. Once run, we proceed by exploring the relationship between the output (Tp) and

the uncertain input parameters using simple regression modelling.

3.5.2 Linear regression

To emphasise the principle of emulation, a simple regression model can be imple-

mented with ease, and from which much can be learned about the data. Note that a

linear regression model differs from an emulator in that it assumes that the residuals

from the linear relationship are independent and it ignores correlation between the

design points. A linear model is fitted to the first three designs (150 points) and we

see some general diagnostics in figure 3.4. The top panels show that a simple linear

model appears to do a reasonable job of explaining the trend in the data. However,

inspection of the residuals plotted against each of the inputs (bottom panels) shows

very high correlation between the output and sdsa2. A model with a cubic rela-

tionship to that input would capture more of the trend. In fact, terms up to fifth

order were found to explain the variance best. A regression function of the form

Tp ∼ 1+x[1,2,3] +x2
3 +x3

3 +x4
3 +x5

3 was fitted for comparison and the same graphical
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Figure 3.5: Diagnostics for the cubic regression model.
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diagnostics are shown in figure 3.5. The higher order model reduces the residual

standard error from 0.141 to 0.082. Initially however, for the purpose of compari-

son, we proceed to construct an emulator with a simple linear mean function of the

form Tp ∼ 1+x[1,2,3]. In the absence of any prior information about the smoothness

of the simulator the Gaussian correlation function is adopted.

3.5.3 Emulator construction and validation

Following section 3.4 and using the output from the first designed experiment we

proceed to train the emulator and determine the length scale parameters. This is

done by taking the maximum from the posterior distribution for δ, and plugging

it into expressions (3.26) and (3.27). Formulation of the posterior requires the

specification of prior information for δ but in the absence of strong prior information

a uniform non-informative improper probability distribution can be assumed. The

uniform prior is a constant term and so does not appear in (3.29) and does not affect

the optimisation. The logarithm of (3.29) is thus,

log(f(δ | y)) ∝ −1

2

{
(n− q)log(σ̂2) + log|A|+ log|HTA−1H|

}
(3.39)

The maximisation routine found a number of modes, the maximum of which corre-

sponded to values of δ of (0.587,1.011,0.0275) Following section 3.4.3 performance

of the emulator was assessed by computing the Mahalanobis distance and use of a

range of graphical diagnostic tools. The second design set of output data was used

for validation, and the results are shown in figure 3.6. The observed value of the

Mahalanobis distance was 440, which is clearly many standard deviations from the

reference distribution with mean and s.d. of 50 and 14.6 respectively. Reviewing the

panels from top left to bottom right in figure 3.6 we see that the absolute predictions

of the simulator are quite good (noticeably better than the simple linear regression)

and therefore have confidence we are on the right track. Secondly we see that a

number of points are predicted poorly, but also have very low variances estimates

and appear as outliers in the top right and bottom left panels. Thirdly, the pivoted

Cholesky errors suggest that the variance estimate is reasonable but there may be

some local fitting problems. Finally, the mismatch in the Q-Q plot shows that the

emulator is underestimating the variance in the “positive” tail. There is however,

no clear evidence of error correlation, or obvious signs of clustering or patterns that

might suggest some fundamental problem with our underlying assumptions. Given

that we already saw the correlation between Tp and sdsa2 in the linear regression

modelling, it is likely that the GP is struggling to capture that behaviour. The
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Figure 3.6: Graphical tools to assess consistency of the emulator with the simulator.
Top left: direct comparison of point predictions. Top right: Standardised errors by point.
Bottom left: Standardised errors ordered by size of error. Bottom right: Q-Q plot for
errors against reference t-distribution.
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estimate of the correlation lengths may be inappropriate at this point.

So we proceed on the basis that our beliefs about the structure of the simulator

are reasonable and that additional data points will correct possible localised fitting

issues and the emulator’s overconfidence. Half the validation data set was thus added

to the emulator training data and the MLE of δ repeated. δ is now determined to

be (0.0609, 1.9590, 0.1083), which differs substantially from the previous estimate.

Note that, depending on the structure of the posterior distribution, and the type

of optimisation algorithm used to determine the length scale parameters, it is quite

common to find multiple modes. This can be particularly problematic where design

points are sparse. In some cases the posterior might be very flat, thus making it

difficult for the optimisation algorithm to find a consistent maxima. There is no

single way to mitigate this problem so at the very least it is advisable to run the

optimisation algorithm using a number of randomised initialisation points. The

commonly used “optim” command in R31 provides different algorithms and it may

be advantageous to try more than one. Also, for lower dimensional cases, it is

possible to visualise the posterior to explore any problems. If inconsistent results

persist, it may be that one or more modelling assumptions are inappropriate.

In the context of this issue, bear in mind that the optimisation approach ig-

nores uncertainty about the correlation length scales. Recall that a uniform prior

is specified for the length scale (see section 3.4.1), whereas if we had stronger prior

information it would be possible to incorporate this, which may alleviate the issue

of selecting inappropriate choices of values due to poor optimisation performance.

The added complexity would, however, necessitate the use of an MCMC method to

fully characterise the emulator posterior distribution.

Figure 3.7 (a) shows that the new emulator is much improved however, figure

3.7 (b) reveals a small number of “extreme” outliers (points 23 and 33) that are

not consistent with normally distributed errors. Incorporating more design points

at this stage could lead to an improved estimate of the correlation length scales,

however with presence of a small number of extreme outlying points suggests both a

poor length scale estimation and some localised fitting problems. Another important

point here is that we have not used a nugget term in the training data covariance ma-

trix. This would probably be useful here, but we also have other avenues to explore,

specifically that we already suspect a prior mean function with higher order terms

will explain more variance. Also, we note that the Gaussian correlation function is

not always appropriate so rather than persist with this approach it may be more

advantageous to modify the model. As noted previously (e.g. Rougier et al. 2009a)

31http://www.r-project.org/
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(b) Validation set #4

Figure 3.7: Further emulator diagnostics.

the Gaussian correlation function may be too smooth for many simulators and thus

an alternative such as a function from the Matérn family may be better. Therefore

the model is modified by utilising the Matérn correlation function (ν=3/2), and

incorporating the higher order mean function in the prior model. Designs 1 and 2

were retained for the training data and results of the validation studies are shown

in figure 3.8. The Mahalanobis distances for validation against set 3 and 4 were

39.8 and 51.6 respectively, within 1 s.d. of the mean of the reference distribution,

suggesting good agreement between emulator and simulator. The diagnostics also

show superior statistical properties to the previous emulator. No nugget term was

used in this particular case and there does not seem any advantage in doing so.

At this point we judge the emulator to be robust and fit-for-purpose. In the next

section an uncertainty analysis using the emulator is performed.

3.5.4 Uncertainty Analysis

Once satisfied that the emulator is a robust approximation of the simulator we can

proceed to perform analysis. A powerful feature of the emulator is that once built

and validated it can be used for numerous statistical analyses. This contrasts with

a standard Monte Carlo approach whereby it is not so easy to reuse the model

runs. Using this emulator an uncertainty analysis is performed. Recall that the

expectation of the simulator output given the uncertain input was given by (3.1).

One way of computing this integral using the emulator is, in fact, a Monte Carlo

approach. This can be done since the emulator mean function can be run extremely
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(b) Validation set #4

Figure 3.8: Emulator diagnostics. Top left: direct comparison of point predictions. Top
right: Standardised errors by point. Bottom left: Standardised errors ordered by size of
error. Bottom right: Q-Q plot for errors against reference t-distribution.

quickly. So 10,000 samples are drawn from the (joint) distribution for the simulator

inputs (described at the beginning of section 3.5) and run on the emulator. The

output, in the form of a histogram is shown in figure 3.9. So utilising the emulator we

have been able to obtain probabilistic output from the wave simulator, WW3. This

output shows the prediction of Tp from WW3 in the case of a “fully developed” sea

state in deep water when accounting for uncertainty about two tuning parameters

sdsa0, sdsa2 and forcing wind speed. There are a number of features of the histogram

to be discussed. Firstly the total variance is important. We can see that there is

no appreciable probability of values of Tp below 10.5s or above 13.5s. However,

between ±2 s.d. there is approximately 2 seconds of variation. In reality this kind

of difference would unlikely be dramatic in terms of safety at sea or at the coast,

however it is nonetheless an appreciable percentage of the mean prediction and shows

that our uncertainty is not trivial. The distribution itself is approximately normal,

but notice that near the peak there is clearly a heavier weighting of probability

towards lower values. In spite of this, the distribution mean lies slightly higher than

the simulated value at the mean input. The discrepancy is a measure of nonlinearity

in the simulator. In highly nonlinear systems the distribution mean might lie far

from the output generated from the input mean, which could be problematic if

linearity was being assumed. Here the discrepancy is small, and the approximate

normal shape of the distribution suggests the response is close to linear. There is

however clearly a degree of nonlinearity giving rise to skewed shape near the peak.
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Figure 3.9: Results from uncertainty analysis.

The impact of these findings would depend upon the specific application. In terms

of the performance of a wave simulator, it is perhaps unsurprising that behaviour

is quite linear in this simple case. It would be of interest to determine the relative

importance of the different input here, particularly whether the wind input is more

dominant. This is explored further in chapter 4 and later in this thesis.

Before we leave this chapter and move on to perform uncertainty analysis for

more complex configurations of WW3, a brief digression is made to consider the

issue of poor emulator fitting seen in figure 3.7. This is done by means of “toy

model”, or in this case a simple deterministic function with a single input.

3.5.5 Comparison with toy model

It is often instructive to use a much simpler experiment to investigate specific phe-

nomenon. The emulator diagnostic tools shown in figure 3.7 (b) revealed two points

for which the posterior variance estimates were very small, such that the mean

predictions lay beyond 4 s.d. from the validation data. A possible explanation

for this is non-stationarity in the data and a simplistic “toy model” is now used

to show how it could give rise to such fitting problems. An example of a deter-

ministic function with a single input is shown in figure 3.10. The output, given by

F(x) = 5.5x+3.15 cos(4.5x)+0.4 exp
(
−(x−0.5

0.2
)2
)
sin(50x), exhibits non-stationarity

in the sense that there is a region of shorter scale variation in an otherwise smoothly
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Figure 3.10: Output from a 1-dimensional deterministic function that exhibits localised
“non-stationarity”.

varying function. Another way of describing it, in terms of an emulator covari-

ance function, is that the correlation length scale is a function of the input rather

than constant. A series of emulators are built using the output from this function,

and consideration is given to the specifics of the design and how it can affect the

emulator’s performance. A simple linear prior mean function is adopted, with a

matern (ν = 3/2) covariance function. The design for the first emulator comprising

10 points, shown in figure 3.11 (a) is space filling, but evidently leads to a poor

emulator since the design points capture only the general trend, missing the shorter

scale variation. The MLE of the correlation length scale is 1.9, which is clearly

inappropriate. The graphical validation diagnostics for this design, shown in figure

3.11 (b), highlight the poor resulting variance estimates. However, if we set the

value of δ to 0.10 and re-validate, we obtain a much better emulator, as indicated

by figures 3.11 (c) & (d). Furthermore, the Mahalanobis distance has been reduced

from 170 in the first instance to 10.8. Noting that for half of the validation points

the emulator mean function prediction is actually very close to the simulator but

with large variance, we might seek to improve the design to obtain a better localised

fit, and determine a more accurate correlation length scale. At this stage increas-

ing the number of design points will improve the emulator mean prediction, and is

likely to lead to a better estimation of correlation length scale. An important point

to emphasise however is that non-stationary data exhibits a non-constant correla-
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(b) Emulator 1a diagnostics
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(c) Emulator 1b: δ = 0.10
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(d) Emulator 1b diagnostics

Figure 3.11: Evaluation of different emulators for a toy model.
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tion length scale and so there is no “right” answer. Additional design points may

lead to a better length scale estimate, but it can be highly dependent upon where

the design points lie. The new design points may capture the shorter length scale

which may bring improvement, but for very short length scales could also cause the

posterior variance to inflate drastically away from design points, which is generally

inappropriate for the majority of the training data. The emulator would then be-

come underconfident. Conversely, the additional design points may not lie in the

shorter length scale region and the estimate may remain unaffected. In this case,

the posterior uncertainty will not inflate enough away from design points and the

consequence for the emulator is that the posterior variance for predicted points in

the shorter length scale region will be massively underestimated, yielding “extreme”

outliers. Figures 3.12 (a) & (b) illustrate this. Here 15 design points are used (an

increase of 50%) but the MLE of the correlation length was still 0.80, considerably

larger than expected given complete knowledge of the simulator. Just as with the

example in section 3.5.3 (figure 3.7) the validation diagnostics reveal extreme out-

liers, indicating the emulator’s overconfidence. The point here is that simply adding

more design points (where possible, and it may not be if the simulator is unavail-

able) should be done with some consideration and may not lead to improvement.

Indeed, it could be at some performance costs, as very large designs will lead to

large covariance matrices that can become ill-conditioned (although this is not an

issue in such a simple example).

To illustrate the point further, a final emulator design shown in figure 3.12 (c)

has only 10 design points but uses a nugget term and has the value of δ set to 0.19.

It does not quite capture the fine structure of the nonstationary region but has

more robust statistical properties, as shown by the graphical diagnostics in figure

3.12 (d). The observed Mahalanobis distance is 8.6, which lies very close to the

reference value of 10.0. In effect, the nugget term has accounted for the uncertainty

in correlation length scale and the invalidity of the non-stationarity assumption. A

final observation here on this subject is that, in a sense, where the training data do

not quite meet the underlying assumptions the number of design points and nugget

term have a kind of opposing relationship. That is, a sparsity of design points leads

to larger variance in many regions since nothing has been learned about it. As design

points are added, the variance is typically reduced because we have better knowledge

of the whole region. However, adding a nugget term and relaxing the requirement

for the prediction to pass through each design point, i.e. we have uncertainty about

the exact location or value, is akin to asserting that although we have a design point

in a certain location, we do not have such a strong belief in it - which is somewhat
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(b) Emulator 2 diagnostics
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(c) Emulator 3: δ = 0.19
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(d) Emulator 3 diagnostics

Figure 3.12: Evaluation of different emulators for a toy model. Emulator 3 includes a
nugget term.
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like saying we have a lower density of design points.

Other emulators based upon different statistical models can deal with this type

of problem in difference ways, for example a nonstationary covariance function could

be employed. Wang and Neal (2012) and Yin et al. (2011) both propose modified

kriging type models to appropriately handle inhomogeneous data. Further discussion

of this is not made here but this example highlights a type of issue that can be

encountered when building a statistical emulator.

3.6 Chapter summary

In this chapter the details of a range of aspects of the creation and application

of Gaussian process emulators has been reviewed. The methods and approach de-

scribed are used extensively throughout this thesis in order to investigate the effect

of uncertainty in the tuning of a wave simulator and in its wind input. The ap-

proach used generally follows that described in section 3.5. In the next chapter

these methods are applied to a range of simple configurations of WW3, with a fo-

cus on duration limited wave conditions in deep water, with consideration of how

uncertainty in wave conditions could affect predicted wave power extraction from a

device.
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4 Uncertainty analysis for duration-limited waves

in a single grid cell (0-D)

4.1 Introduction

The investigation of uncertainty in WW3 begins in this chapter by considering

simple simulations of waves with the purpose of analysing the effects of input pa-

rameter and forcing wind uncertainty. During development wave simulators are

validated and tuned against simple physical cases for which observational data is

available. Consideration of such cases is therefore a sensible starting point and is

also a means of gaining confidence in the analytical methods without introducing

too much complexity that might unnecessarily obfuscate findings and understand-

ing. Waves generated in duration-limited conditions are an example of such a case,

which is fundamental in assessing whether the source function of a simulator can

correctly reproduce realistic sea states. The SWAMP (1985) study (see their chap-

ter 7), ran simulations to generate both duration- and fetch-limited wave growth in

order to compare the performance of a range of first and second generation spectral

simulators. Komen et al. (1994) performed investigations in a similar way for the

purpose of validating the WAM simulator. In this chapter a similar experimental

approach is taken in that computer experiments are conducted for simulations of

waves that recreate duration-limited conditions, but with the addition of performing

quantitative uncertainty analysis.

Spectral wave simulators operate on the basis of computing the local wave direc-

tional frequency spectrum as governed by the energy balance equation (2.7). Recall

from section 2.4.1 that in the case of duration-limited conditions in deep water the

energy balance equation reduces to,

∂E(f, θ)

∂t
= Swind + Snl + Sds

In terms of the physics, the situation is equivalent to an infinite homogeneous sea

surface such that energy propagating from a region is equalled by the energy propa-

gated into the region. In terms of the geographic arrangement, a single grid cell be

can used, and wind is simply specified by a speed in a constant direction. In this

chapter fully developed conditions are considered, which is expressed by setting the

left hand side of (4.1) to zero. In order that this is satisfied, the simulation is run

until the rate of change of the resulting spectrum, in terms of Hs and Tp, is less than

0.1% per time step.

There is uncertainty about the form of each of the source terms in (4.1). The
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specific details of each, and the elicitation of the uncertainty are discussed in section

4.2. Table 3.1 identifies the categories of uncertainty that are investigated in this

chapter and these are summarised again here; Swind requires a wind specification, in

terms of a magnitude and direction, that is typically subject to observational un-

certainty; Snl is typically an approximation to the well understood physical process

of nonlinear wave-wave interactions but requires tuning via parameters; Sds is typ-

ically an empirical formulation of the poorly understood physical process of wave

energy dissipation. This chapter does not address structural uncertainty, and so

direct comparison with real world observations is not made. Structural uncertainty

is discussed further in chapter 7.

The investigation of uncertainty in this chapter is limited to consideration of

tuning parameters associated with the TC96 dissipation scheme and the DIA non-

linear wave-wave interaction scheme. In the final experiment uncertainty about wind

speed is also introduced. The effect of this uncertainty is analysed with respect to

wave summary statistics for wave height and period. The structure of the chapter is

as follows. In section 4.2 the relevant sources of uncertainty are discussed in detail

and elicitation is conducted. Experiments are summarised and described in sections

4.3, 4.4, 4.5 and 4.6. Although the experiments in this chapter are fairly simple in

their configuration, they can be extended to situations of relevance to the real world,

which has been done in section 4.5 where a simple uncertainty analysis is performed

for the case of wave power extraction by a wave energy converter (WEC). Section 4.7

briefly examines how emulators can be used for the purpose of visualisation before

the chapter concludes with a summary of important results in section 4.8.

4.2 Sources of uncertainty and elicitation

The experiments conducted in this chapter investigate parameter uncertainty asso-

ciated with the parameterisations for energy dissipation (TC96) and the nonlinear

wave-wave interaction (DIA) terms. Additionally, in experiment 4.B, forcing wind

speed is also regarded as uncertain. The uncertainty associated with parameters

and its elicitation is discussed in more detail in the following subsections.

As discussed in chapter 2 most source term parameterisations include a number

of uncertain tuning parameters. However, elicitation of their associated uncertainty

is made more complicated since often the literature (and indeed the authors them-

selves!) reveals little about the extent of the sensitivity analysis conducted or the

method employed to obtain the tuning. Anecdotally, the methods used are informal

and often carried out by hand. The problem is exacerbated by the fact that parame-

terisations often involve numerical parameters that have little direct relevance to real
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world physics and as such can neither be measured directly nor inferred from phys-

ical theory. Their uncertainty distribution must typically be elicited by considering

the fit to observational data. As has been mentioned, this situation is not limited

to the field of wave modelling. Smith et al. (2008) made updates and improvements

to the FAMOUS climate simulator alleviating some systematic errors, but evidently

used only an ad-hoc approach taking no account of the effects of interaction of their

modifications.

4.2.1 Elicitation for Sds

The widely used TC96 input and dissipation scheme (Tolman and Chalikov, 1996;

Tolman, 2009a) is implemented in WW3. At the time of its development, much of

the physics of energy dissipation was (as it largely remains today), poorly under-

stood. However, it is something of a testament to its effectiveness that it has until

very recently been the “default” scheme for the release version of WW3. Tolman

and Chalikov (1996) took the approach of defining governing equations for energy

dissipation in low and high frequency regimes of the wave spectrum. The dissipa-

tion processes are represented empirically, and are tuned to fit observational data.

The tuning process is carried out by the authors, though the implementation of the

scheme within the WW3 code permits the user to enter their own choice of values

for a number of tuning parameters. These are considered in more detail.

The authors express Sds as the sum of Sds,l and Sds,h thus,

Sds = Sds,l(f, θ; b0, b1, φmin) + Sds,h(f, θ; a0, a1, a2) (4.1)

The detailed formulation of the terms Sds,l and Sds,h, which is quite convoluted,

is given in Tolman and Chalikov (1996) and Tolman (2009a). It is important

to note however that the terms are parameterised as functions of six parameters

a0, a1, a2, b0, b1 and φmin, which govern how the scheme dissipates energy. Specific

values of these parameters were determined by fitting the empirical formulation to

observed data for fetch-limited wave growth under conditions of stable and unsta-

ble wind stratification. The tuning process, as described in Tolman and Chalikov

(1996), is quite lengthy and not reproduced here in its entirety for the sake of clarity.

Essentially it proceeds in a sequential manner, beginning with treatment of the pa-

rameters associated with high frequency dissipation. For each parameter the choice

of value is made on the basis of some criteria, but the process does not account

for the way the parameters might interact together. Figure 4.1 (a) and (b) show

figures 4 and 5 from the original work to give some insight into the process. The
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(a) (b)

Figure 4.1: Reproduction of figures 4 and 5 from TC96, showing local estimates of
parameters a0 and a1 at different (dimensionless) fetches and in differing atmospheric
conditions.

observational data used for tuning (see Kahma and Calkoen, 1992) was taken in at-

mospheric conditions of both stable and unstable air flow, as the effect of gustiness

tends to allow larger sea states to build (see e.g. Abdalla and Cavaleri, 2002). So it

can be seen that parameters a0 and a1 are estimated locally, that is, at a given fetch

and in given wind conditions. A number of points are raised here. Firstly, a global,

or even regional, wave model clearly has to be able to predict waves in all wind con-

ditions simultaneously, but the TC96 parameterisation is therefore approximating

by using only a single value for parameters that show variability across condition

types. Therefore by selecting only a single value, uncertainty about the resulting

conditions is being introduced. Secondly, while the wind conditions may result from

either stable or unstable atmospheric conditions, there is not an on / off transition

between the two. Thus the process of fitting neglects the possibility of intermediate

states and associated parameter values. Again uncertainty is introduced, this time

by virtue of the lack of data. Thirdly, as mentioned no account is taken of the way

the parameters might interact together. While a sequential approach might give the

feeling that the “best” values are being chosen at each step, it completely overlooks

very large regions of the parameter space. Finally, a very important aspect relating

to uncertainty introduced by the tuning process is that no explicit account has been

taken of observational error.

In order to conduct an uncertainty analysis, a probability distribution for these

parameters must be elicited in some way. The most straightforward approach is to

make use of figures 4.1 (a) and (b), and similar analysis for other parameters provided

in Tolman and Chalikov (1996). Considering figure 4.1 (a) in more detail, it can
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Figure 4.2: Reproduction of table 2 from TC96, showing optimal parameter values for
the tuning of the dissipation source term.

be seen that the suggested value of a0 appears to be relatively consistent across

all fetches and wind conditions. Tolman and Chalikov (1996) provide estimates

from these figures, given in their table 2 (reproduced in figure 4.2), of a0 = 4.8

and a0 = 4.5, for stable and unstable conditions respectively. However, variation is

clearly present and it is suggested that where both conditions might be encountered,

a0 might best be represented as N(4.8, 0.22). This is justified on the basis that

there is no reason to impose hard limits on the possible upper and lower values of

a0 (as could be implied by the use of beta- or uniform-distributions for example).

Furthermore, the data do appear to constrain the value of a0 quite well, implying

a distribution with a distinct mode and rapidly diminishing tails, consistent with

a normal distribution. Considering figure 4.1 (b), a good deal more spread in the

observed (local) estimates of parameter a1 is evident. In fact, when compared to the

optimal values shown in 4.2, it is evident how much uncertainty has been introduced.

Of particular note is that there is an order of magnitude difference for the values of

a1 depending on whether it is tuned to stable or unstable stratification. It might be

inferred from this that simulator response is not very sensitive to this parameter.

Noting again that for a global wave simulation where both stable, unstable and some

intermediate states of atmospheric stability need to be represented simultaneously,

it is not immediately apparent what probability distribution might best characterise

the uncertainty about the possible value of a1. In the absence of any strong reason

to choose a specific alternative, a log-normal distribution is chosen. Elicitation

of probability distributions for the remaining tuning parameters a2, b0, b1 and φmin

followed in a similar fashion and the resulting distributions are shown in table 4.1.

For the remainder of this thesis the dissipation parameters will, in accordance with

their WW3 input namelist label, be referred to as sdsa0, sdsa1, sdsa2, sdsb0, sdsb1

and phimin.

Finally, note that Sdiss is very much a closure term in (3.38), as noted by Tolman

and Chalikov (1996), and the determination of it’s exact form is largely established

through a process of tuning, owing to the lack of detailed knowledge of the real

dissipation process. In light of this some caution is taken in performing experiments

because, in the absence of clear information about the uncertainty associated with
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the parameteristion, it is quite possible to explore areas of the parameter space that

yield unrealistic output.

4.2.2 Elicitation for Snl

The DIA scheme is a fast approximation to the exact non-linear interaction calcu-

lation. Given it is an approximation, it does not necessarily follow that the best

performance in any given situation will be attained with a single tuning, and this is

indeed not the case. While there have been a few studies (almost exclusively by Tol-

man) that explore the effects of tuning in terms of accurate spectral reproduction,

there is very little information on how this affects realistic simulations. Details of

the error introduced by the DIA as compared with the exact computation are docu-

mented in, for example, Hasselmann et al. (1985) and Tolman and Chalikov (1996).

Note the two principle free parameters are designated λ and C, and relate to prop-

erties of the integration. Henceforth these will be referred to as λDIA and CDIA.

Hasselmann et al. (1985) suggest values of the tuning parameters, λDIA = 0.25 and

CDIA = 3×107, without discussing any sensitivity analysis in detail. The authors use

language such as, “After some experimentation . . . ” and “Satisfactory agreement

with the exact computations was obtained with the configuration . . . λ = 0.25.”,

suggesting some kind of sensitivity analysis was undertaken. However, Tolman and

Chalikov (1996) when formulating their source term parameterisation, undertook

some sensitivity analysis with respect to the DIA tuning. Not much detail is pro-

vided about how the adjustment was made but they found that a reduction in the Snl

term was required by means of setting CDIA = 1×107. This change was made on the

basis that it spread the errors associated with the DIA more evenly across the spec-

tral range, rather than weighting them more toward higher frequencies. Since this

earlier work little seems to have been done to determine simulation sensitivity to the

tuning of the DIA. Tolman (2004b) does however present detailed information about

how tuning, via parameters λDIA and CDIA, affects the accuracy of the approxima-

tion. He in fact maps the resulting error as a function of both λDIA and CDIA, using

the ranges, [0.12, 0.30] and [9×106, 4×107] respectively. During a calibration process

conducted with respect to spectra generated by the exact nonlinear computation for

duration- and fetch-limited growth, he identifies values for CDIA and λDIA of approx-

imately 1.5×107 and 0.16 respectively (λDIA ≈ 0.20 in developed conditions). These

values are somewhat lower than those recommended by Hasselmann et al. (1985).

Nonetheless this information suggests credible ranges within which the integration

should at least be stable, and where the results are not unphysical. For CDIA then,

this information suggests some kind of range about an approximate mean of 107 and
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so a log-normal distribution is chosen such that CDIA ∼ logN(7, 0.122). In effect this

sets P{CDIA < 4.3 × 106} = P{CDIA ≥ 2.3 × 107} = 0.001. Initially, retaining the

historical default value as the mean, λDIA ∼ N(0.25, 0.031252) is adopted, setting

P{λDIA < 0.15} = P{λDIA ≥ 0.35} = 0.001. These distributions are essentially cen-

tralised around the value specified in the literature with a variance commensurate

with any available information. If observational data were being incorporated into

this analysis in order to constrain the parameter space (see e.g. Williamson et al.,

2013), broader more speculative prior distributions could be specified.

4.2.3 Wind uncertainty

The wind specification for the experiments in this chapter is simply that of a con-

stant speed and so uncertainty about that is easily interpretable. If the wind speed

was derived from a measurement, or a simulation (from an atmospheric numerical

model), then precise uncertainty information would be available. The natural vari-

ability associated with the wind is not incorporated into the uncertainty specification

here. The effect of wind gustiness is incorporated into the input and dissipation pa-

rameterisaton, by using different parameter values. Moreover, the wave simulator

cannot resolve wind variability on very short time scales, even if the data was avail-

able (e.g. from an anemometer). In reality the wind direction may also be subject

to variability on some short time scale but again this kind of aleatory uncertainty is

subsumed by the parametric specification.

For the experiments in this chapter, the wind speed was regarded asN(10.0ms−1, 0.52).

4.2.4 Numerical uncertainty

As discussed in section 2.2.4, numerical error is minimised by using high spatial

and spectral resolution. Here, in the absence of the advection terms in (3.38),

there is no spatial grid so we are only concerned with spectral resolution. The

number of frequency bins is set to 36, somewhat higher than the default number

of 24. The number of directional bins is set to 24, but given energy is not being

propagated and the simulation output is direction integrated, this is judged to be

of little consequence.

4.2.5 Other sources of uncertainty

No other sources of uncertainty were analysed.

87



4 UNCERTAINTY ANALYSIS FOR DURATION-LIMITED WAVES IN A
SINGLE GRID CELL (0-D)

4.2.6 Design summary

Following the elicitation and discussion of uncertainty in the previous sections, table

4.1 lists the parameters that are regarded as uncertain and the probability distribu-

tions assigned to them.

4.3 Experiments and analysis

Experiments conducted to investigate the effect of uncertainty on input parameters

are presented in the following subsections and listed in table 4.2.

4.3.1 Simulation configuration

WW3 was configured with the TC96 and DIA source term package. A list of all

the switches used for the build is given in appendix E, and see Tolman (2009a) for

details. Wind is specified as a homogeneous field with a uniform direction using

the ww3 shel input file. It is possible to specify time and strength variation within

the input file, thus avoiding the need to process more complex files with the field

pre-processor.

Note that in this configuration that uses only a single grid cell, several days of

simulation time in WW3 can be run in seconds on a modern desktop computer.

LHS designs of 60 points take approximately ten minutes to execute.

The reader is directed to appendix B for more detailed coverage of running WW3.

4.3.2 Notes on experiment design

In general, for each of the experiments presented here, 60 point maximin LHS designs

were generated, as described in section 3.4.2. Design ranges are typically dictated by

the choice of input distribution. For example, given a Gaussian input distribution,

the design range would be ±4 s.d. about the mean, ensuring that the input region

of interest is well covered by the resulting emulator. Some care has to be taken

however, because if the design is too large, it is possible that the emulator will not

be well validated in the (small) central region of interest. On the other hand, overly

constraining the input region could limit the capability of the emulator, if, for exam-

ple, at a later date it became desirable to perform an analysis over a broader input

space. Additionally, as described in section 3.4.2, it is often desirable to generate at

least two LHS designs. The first is used to generate the training data. The second,

is typically used to validate the emulator. Depending upon the size of the design

it is sometimes necessary to include additional design points. These may be taken

from the second design, with a further design generated for subsequent validation.
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Table 4.1: WW3 input parameters and sampling distributions for experiments 4.A (a),
(b) and 4.B

.

Switch Description Tuning Default Sampling

parameter value distribution

[Variable Assignment in WW3 manual]

ST2 Dissipation
(TC96)

Low fre-
quency
dissipation

SDSA0 [a0] 4.8 N(4.8, 0.22)

Low fre-
quency
dissipation

SDSA1 [a1] 1.7× 10−4 log10N(−3.293, 0.1772)

Low fre-
quency
dissipation

SDSA2 [a2] 2.0 N(2.0, 0.22)

High fre-
quency
dissipation

SDSB0 [b0] 3.0× 10−4 N(−3.25 × 10−3, (9.375 ×
10−4)2)

High fre-
quency
dissipation

SDSB1 [b1] 0.47 N(0.5250, 0.031252)

High fre-
quency
dissipation

PHIMIN
[φmin]

0.003 N(0.003, (1.0× 10−4)2)

NL1 Nonlinear
interactions
(DIA)

LAMBDA
[λ]

0.25 N(0.25,0.06252)

NLPROP [C] 107 log10N(7, 0.11932)
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Table 4.2: Experiments presented in chapter 4.

Experiment Description

Experiment 4.A (a) Uncertainty analysis for energy dissipation in fully devel-
oped conditions.

Experiment 4.A (b) Uncertainty in wave power from a wave energy converter.

Experiment 4.B Uncertainty analysis for uncertain input and wind speed
in fully developed conditions.

Although this approach tends to minimise the ultimate size of the training data

set of the emulator, which obviously reduces computational burden and improves

emulator performance, a possible disadvantage is that different designs have to be

combined. The “maximin” criteria32 ensures good spatial coverage for an individual

design, but when two such designs are combined there is no such constraint, and

points may end up being clustered in an unhelpful way, which at best might reduce

efficiency, and at worst give rise to ill-conditioning of the observation covariance

matrix. It may seem sensible therefore to generate larger designs, in order to avoid

creating additional designs. Training and validation points could then be drawn

form the single large design.

Experiments presented in this thesis tend to take the former approach, where

design size is minimised initially, and additional LHS designs are subsequently gen-

erated33. This is generally found to be effective, without causing numerical or val-

idation issues. It is also convenient, because additional point selection algorithms

are not required (i.e. a single large design does not need to be sub-sampled), and

wave simulations tend to be relatively cheap to produce (particularly in chapters 4

and 5).

4.4 Experiment 4.A (a), the effect of uncertainty about dis-

sipation physics

In the first experiment in this chapter the uncertainty distribution induced in simu-

lated Hs and energy period, Te, by uncertainty about the tuning of high frequency

dissipation physics is obtained. The specific input parameters regarded as uncer-

tain are sdsa0, sdsa1 and sdsa2 which are distributed according to table 4.1. The

output distribution gives us the variance arising due to the input uncertainty and

also illustrates whether the simulator is nonlinear in this case. The wind speed was

32“Maximin” refers to the maximisation of the minimum interpoint distance.
33In practice, it is convenient to create and run four separate designs at the outset.

90



4 UNCERTAINTY ANALYSIS FOR DURATION-LIMITED WAVES IN A
SINGLE GRID CELL (0-D)

0
2

4
6

8
10

12

Days from simulation start

0 6 12 18 24 30

Hs

Te
Tp

Figure 4.3: Time evolution of wave summary statistics for duration-limited growth.

regarded as known with a constant speed of 10ms−1. The simulator provides output

at locations and time intervals specified by the user. The form of the output can

also be requested and options include summary wave statistics in fields or, for point

output, 1-D wave spectra or the full 2-D spectrum. For this experiment, summary

statistics at point output were requested at 12 hourly intervals. The time evolution

of Hs and Te is shown in figure 4.3. We can see that the behaviour of the time

evolution of all quantities is asymptotic. The sea state responds within hours and

so convergence is rapid during the first few days but continues appreciably over a

further week or two. The behaviour of Tp appears to be less regular than either

Hs or Te. This is attributable to the finite spectral resolution and the simulator’s

determination of the peak. Owing to the nonlinear movement of energy within the

spectrum, the peak frequency does not always “follow” the growth of the spectrum.

At times this can give rise to a somewhat discontinuous behaviour of Tp, as seen

here. Equation (4.1) is satisfied where t → ∞ which is most closely approximated

at t=30 days in figure 4.3. Simulation output at t=30 days is therefore used for the

analysis in this experiment.

Having output from a designed experiment we now proceed to formulate an

emulator in the same way as section 3.5 by fitting a multiple regression model of the

form y ∼ 1 + x[1,2,3] to the output data to gain some understanding of the response

to each input parameter. y denotes the simulator output (Hs at time t=30 days

in this case) and x[1,2,3] the input parameters sdsa0, sdsa1 and sdsa2 respectively.
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Figure 4.4: Linear regression model fitted to simulated HS for experiment 4.A

Regression diagnostics are shown in figure 4.4. The strong correlation of the output

with the input parameter sdsa2 is clear, whereas sdsa0 and sdsa1 appear to have

only a small approximately linear influence. As in section 3.5 this information can be

used to formulate a prior mean function for the emulator. The relationship between

sdsa2 and the output data is explained by higher order terms and so terms of up to

sixth order in sdsa2 are employed in the regression basis functions. A new regression

model of the form y ∼ 1 + x[1,2,3] + x2
3 + x3

3 + x4
3 + x5

3 + x6
3 is fitted and it can be

seen in figure 4.5 that much of the trend has been explained by the model leaving

residuals that are approximately normally distributed.

Note that the choice of terms in the mean function is determined by a statistical

significance test on the coefficients when performing the linear regression. Typically,

those that reject the null hypothesis at 95% confidence level are included. In some

cases strong correlation between the output and high order terms of the input is

revealed. Less formally, a visual inspection of regression diagnostics will usually

justify the use of the first few terms in the mean since the structure of the output

is quite clear. If not, there is probably little improvement in the resulting emula-

tor through the inclusion of numerous or higher order terms. Noting the improved
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Figure 4.5: Linear regression model incorporating higher order terms fitted to simulator
output (experiment 4.A)
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(a) Validation with design set #2
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(b) Validation with design set #3

Figure 4.6: Graphical diagnostics for an emulator for Hs built with linear terms in the
mean function and Matérn (ν = 3/2) covariance functions.

mean function, two emulators are constructed for comparison and to illustrate the

difference in performance. Firstly, only linear terms of the three input parameters

are used in the prior mean function, that is y ∼ 1 + x[1,2,3]. A Matérn (ν = 3/2)

covariance function completes the emulator prior specification and the correlation

lengths were determined using maximum likelihood estimation. Graphical diagnos-

tics of the emulators performance are shown in figure 4.6. It is evident that this

emulator is doing a reasonable job at fitting the data. The Q-Q plot indicates that

the distribution of the residuals is deviating slightly from the reference distribution

and exhibit light (panel (a)) and heavy (panel (b)) tails. The top left panels in

figures 4.6 (a) and (b) show that the emulator mean function is doing a very good

job of making point predictions of the simulator. The observed Mahalanobis dis-

tances for the two cases were 32.0 and 66.8 respectively. Compared to the reference

distribution with mean 60.0 and s.d. 16.2, this suggests reasonable agreement of

the model however the lower observed value for the first validation data set sug-

gests over estimation of the variance. The graphical diagnostics also suggest some

other possible conflicts. Specifically, figure 4.6 (b) reveals the presence of outlying

points. If this was a general trend then it might imply an underestimation of the

variance, due perhaps to a poor estimation of the correlation lengths. However,

with just one or two isolated points, this is probably indicative of a localised misfit

due to the design. A quick inspection of the design points shows that 39 is located

at [0.9310, 0.07404, 0.6072], and 59 is located at [0.00930, 0.9955, 0.9846]. These are
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both on the edge of the design, and indeed no. 59 is right in the corner, and so

with regards to any subsequent uncertainly analysis undertaken using the emulator,

because the misfit lies well outside the range of interest, it is unlikely to have any

measurable effect. In both validation cases shown in figure 4.6 (a) and (b), the Q-Q

plot indicates deviation from the expected reference t-distribution implying that the

normality assumption for the data might be too strong. In fact, we know that the

residuals are highly correlated with sdsa2 and we can use this information to build

a more robust emulator. Other options to make improvements at this point could

include the use of a nugget term, addition of design points or a re-assessment of the

correlation lengths.

At this point we make some adjustments. Firstly, recalling the findings of the

earlier regression exercise, a prior mean function of the form y ∼ 1 + x[1,2,3] + x2
3 +

x3
3 + x4

3 + x5
3 + x6

3 is adopted, along with Matérn (ν = 5/2) correlation function.

Secondly, on the basis of anticipating some non-stationarity in the data, a nugget

term was added to the emulator model. Lastly, the new emulator is rebuilt trained

with a slightly larger data set, in an attempt to rectify the localised fitting problems.

Noting the outlying points in figure 4.6 (b) a small subset of points were taken from

design set #3, including those outliers, and added to the training data. This is

likely to bring about a new estimate of the correlation length scales which should

also lead to improvement. The correlation length scale parameters were determined

again through MLE and the resulting emulator was again validated. Results from

validation with designs #2 and #4 are shown in figure 4.7. Observed Mahalanobis

distances of 62.5 and 50.8 for the two sets respectively suggest good agreement of

the emulator with the data. The graphical diagnostics do not reveal any specific or

substantial conflict. It is noticeable that there is a clustering of points exhibiting

high predicted variance atHs values of around 4.2m. The contrast with the predicted

variance at larger wave heights indicates heteroscedasticity in the data. In fact this

is also evident from the linear regression diagnostics seen in figure 4.5. The lower

middle and right hand panels both show non-constant variance. Nonetheless, the

emulator appears to be robust so we can now proceed to perform statistical inference.

The objective is to obtain the uncertainty distribution in simulation output (in

terms of Hs and Te) induced by the uncertainty about the input parameters. An

uncertainty analysis is thus performed using the emulator mean function in a Monte

Carlo type approach. Recall from section 4.2 that input uncertainty distributions

were derived from the literature. The analysis thus proceeds by drawing 10,000 sam-

ples from the joint distribution, which are then rescaled to the range 0 to 1 and used

as input data for the emulator. The emulator is then run for each input point yield-
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(b) Validation with design set #4

Figure 4.7: Graphical diagnostics for the Hs emulator built with 6th order polynomial
mean and Matérn (ν = 5/2) covariance functions.

ing an output distribution for Hs. In this case since two different emulators were

built for comparison, one with only linear terms of the input parameters and one

with higher order terms, both are used for the uncertainty analysis. The resulting

distributions from each emulator are shown in figures 4.8 (a) and (c) respectively.

Before discussing specifics of the distribution, a cursory comparison of panels (a)

and (c) suggests the difference between the output from the two different emulators

is very small. The modifications implemented in the second emulator have made

little practical difference in this case. It is reasonable to conclude from this that the

we need not be especially concerned about trying to achieve “perfect” output diag-

nostics when formulating our emulators. That is not to say we can be complacent

but using the diagnostics with an element of pragmatism should lead to successful

analysis.

Let us now look at the uncertainty distributions. These tell us about the resulting

variance in predictions and nonlinearity within the simulator. Addressing the total

uncertainty first, the distribution s.d. is 0.2m but the rapid decay of the tails gives

rise to appreciable probability of much of the total range of possible values. For

example, we can see that for values of Hs lying between approximately 4.5m and

4.8m, the probability density is approximately uniform. Moreover, the difference

between the 12.5 and 87.5 quantiles is almost exactly 0.5m indicating the breadth of

the distribution. This result reveals considerable spread resulting from the tuning

uncertainty and really draws attention to the problem of relying on predictions
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Figure 4.8: Uncertainty analysis for simulated Hs.
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based only upon single values (such as the mean input). Regarding the nonlinearity,

the input probability distribution is a multivariate normal and any deviation from

normality in the output is attributable to nonlinear response. Deviation is clearly

evident from these results. It is interesting to note that the distribution exhibits

bimodality and has rapidly decaying tails. This is attributable to the response

to sdsa2, which is evident from figure 4.5. The nonlinearity essentially results in

a broadening of the probability distribution but does not cause a large difference

between the simulation output at the mean input and the distribution mean.

Interpretation of this result should be taken in the context of tuning an empirical

parameterisation. That is, in this case the uncertain parameters are not physical

quantities that are part of a well established theory. They arose as a result of a

search for the best fitting parameterisation. The nonlinearity is thus probably not

attributable to some aspect of wave physics but rather a feature of the author’s

choice of mathematical expression that was found to be most effective in terms of

reproducing observed sea states. However, in general identification of behaviour like

this is important and may, for example, be a useful verification of expected behaviour

or highlight something unexpected, such as emergent behaviour or an error.

In addition to the uncertainty distributions shown in figure 4.8 (a) and (c), pan-

els (b) and (d) have yet to be discussed. These show a Q-Q comparison between the

uncertainty distribution computed using the emulator and the same analysis com-

puted directly using WW3. In this case the simulator is fairly cheap to run so the

requisite 10,000 runs could be obtained on a desktop workstation. While the point

of using an emulator is to circumvent such a direct approach, it can nonetheless

be a useful check where practicable34. Inconsistency between the probability dis-

tributions is clearly negligible which gives us good confidence that both emulators

are performing very well. It is worth highlighting that the 10,000 simulation runs

(performed on a desktop workstation) took 18 hours to compute. Contrast this with

the 21 minutes it took to obtain the four 50 point latin hypercube designs.

At this point the experiment is extended to include an uncertainty analysis of Te.

Again we have a single dimension of output, derived from the full wave spectrum.

Emulators were formulated in the same way as for significant wave height. Given

that Hs and Te are derived from the same data correlation is expected and we might

imagine similar results prior to the analysis. Figure 4.9 shows a linear regression of

the data and patterns of response similar to those discovered in figure 4.4 are clear.

In this case a prior mean function with up to 4th order terms in sdsa2 was used

in combination with a Matérn (ν = 5/2) prior covariance function. This yielded a

34Typically running 10,000 simulations, even using a fast code, is highly laborious.
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Figure 4.9: Linear regression model fitted to simulator output for Te (experiment 4.A)

99



4 UNCERTAINTY ANALYSIS FOR DURATION-LIMITED WAVES IN A
SINGLE GRID CELL (0-D)

9.5 10.0 10.5

9.
5

10
.0

10
.5

Simulator

E
m

ul
at

or

9.5 10.0 10.5

−
2

−
1

0
1

2

Emulator predictions

S
ta

nd
ar

di
se

d 
er

ro
rs

40

0 10 20 30 40 50 60

−
2

−
1

0
1

2

Pivoting order

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

40

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

(a) Validation with design set #2
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(b) Validation with design set #4

Figure 4.10: Graphical diagnostics for the Te emulator built with 4th order polynomial
mean and Matérn (ν = 5/2) covariance functions.

robust emulator as supported by the graphical validation diagnostics seen in figure

4.10. The resulting uncertainty analysis yields the probability distribution shown

in figure 4.11 (a). As expected the shape of the distribution is closely comparable

to that for Hs shown in figure 4.8. The same pattern of nonlinearity is evident

which was somewhat expected since the two quantities are derived from the same

frequency spectrum. By comparison, the values of Te corresponding to the 12.5 and

87.5 quantiles are 9.5s and 10.3s respectively. We can also see in figure 4.11 (b) that

the emulator reproduced the direct uncertainty analysis with great accuracy.

This concludes experiment 4.A (a), which has successfully obtained the uncer-

tainty distributions induced in simulations of Hs and Te for fully developed sea

states. A direct comparison of the results from the emulator with results from the

simulator revealed that the emulators reproduced the simulator behaviour almost

exactly. The uncertainty distributions, together with regression analysis, have re-

vealed nonlinearity in the simulator response attributable to the input parameter

sdsa2. In fact, the emulators for Hs and Te can now be combined in a useful way to

provide insight into the field of renewable energy from waves, and this is explored

in the next experiment.
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Figure 4.11: Uncertainty analysis for simulated Te in duration limited conditions.

4.5 Experiment 4.A (b), uncertainty in wave power from a

wave energy converter

The worlds oceans offer an abundant source of energy in the form of waves. Various

studies, such as Boud and Barnett (2012), Cornett (2008) and Mackay et al. (2010a)

have attempted to quantify the available resource on regional and global scales. The

UK is well placed to take advantage of this resource, particularly in the north where

long period swell arrives from the west, across the north Atlantic. Recent estimates

of the resource available to the UK (Boud and Barnett 2012) suggests that it could

be circa 75TWh/yr or a mean power output of approximately 10GW. Over recent

years commercial devices have been developed that can extract energy directly from

the waves. They come in a variety of designs and are generally referred to as wave

energy converters (WEC). The Pelamis Wave Power35 devices operate offshore and

by contrast the Oyster device built by Aquamarine Power36 operates in the surf zone.

Although few devices have been commercially deployed, development is ongoing and

there is nonetheless enormous potential for resource extraction. As such, manufac-

turers, utility companies and governmental agencies have a variety of interests in

the potential resource. Knowing about the long term resource associated with the

wave climate is important to investors who seek long term financial return, whereas

short term variability is key to both implementing grid technology (see e.g. Reikard,

35http://www.pelamiswave.com/
36http://www.aquamarinepower.com/
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2013) and trading in real-time energy markets. It is thus important to understand

the uncertainty associated with both the short and long term resource assessment.

An analysis was carried out by Mackay et al. (2010a) and Mackay et al. (2010b)

in order to assess uncertainty about wave energy resource as predicted by a wave

simulator on both short and long time scales. They used statistical post-processing

to calibrate wave hindcasts, in order to reduce uncertainty in the prediction of mean

wave power extraction from different hindcasts. In order to assess the prediction

of short term wave conditions in the context of forecasting incoming wave energy,

Reikard et al. (2011) compared the performance of a numerical physics model (the

ECMWF WAM model) and statistical methods, including an autoregressive model

and an artificial neural network. The study addresses uncertainty in terms of de-

viation from observed conditions, and concludes that a combined approach using

an autoregressive model based upon simulated forecast conditions gives the most

reliable prediction. However, Reikard et al. (2011) do not attempt to investigate

the underlying sources of uncertainty. In fact, none of these articles investigate the

underlying sources of uncertainty in a wave simulator or how these contribute to

uncertainty in predicted WEC power extraction. In order to take a step in that

direction we can perform an uncertainty analysis, based upon what we have learned

about uncertainty in tuning, and utilising information about the power response of a

WEC. It is typical for WEC manufacturers to provide a power conversion matrix for

a device that specifies the power output of a WEC in a given sea state expressed in

terms of Hs and Te. A number of such conversion matrices for different devices are

given in Reikard (2013) which includes in particular the widely studied Pelamis P-1

device. The response table is not reproduced here but a visualisation of the function

is shown in figure 4.12. By utilising the emulators formulated in experiment 4.A (a),

the response function can be used to compute the uncertainty distribution in power

extraction, given a forecast subject to uncertain tuning as is being investigated in

this thesis. So we proceed by drawing a sample of 10,000 points from the input prob-

ability distribution and run them on the Hs and Te emulators. The resulting sets of

output are used as input to the power conversion matrix. The resulting uncertainty

distribution is shown in figure 4.13 (a). The remarkable feature of this result is

the extremely narrow peak in an otherwise fairly broad distribution. However the

presence of this peak can be explained with closer inspection of the output from the

wave simulator and the response function, as seen in figure 4.13 (b). The uncertainty

distributions for Hs and Te are highly correlated. The (2-dimensional) domain is

superimposed on the WEC response function, seen in panel (b) and appears like

an almost straight line owing to the high degree of correlation between Hs and Te.
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Figure 4.12: Visualisation of the power conversion matrix for the Pelamis P1 device.

A closeup of the region of response and the joint output distribution is shown in

panel (c), which reveals that the correlation causes the joint distribution to align

with the contour of the power response function, at a power of 487kw, thus giving

rise to to a large sampling frequency in a very narrow range of power output. It

may be purely circumstantial that the variability induced in simulated Hs and Te by

the uncertain tuning parameters gives rise to a very peaked distribution (due to the

correlation in Hs and Te). However, if one imagines for a moment that the natural

variability in sea states typically exhibits such a correlation between Hs and Te as

we have seen, then it would be advantageous (and indeed quite intentional) that the

WEC power response function exhibits contours coincident with the gradient of the

correlation. This would in general lead to a more consistent power output which

would undoubtedly be more easily supplied to an electricity grid. The details of

optimal WEC design are beyond the scope of this work but this simple investigation

could easily be extended to explore more thoroughly the implications of uncertainty

about resource from a wave simulation. An extension of this work would be to ac-

count for uncertainty in the power conversion matrix itself. For example, it may be

that in practice many other factors beyond simply the sea state, in terms of Hs and

Te, give rise to variability. In terms of wave energy, the angle of incidence, wave

steepness, or even surface obstructions such as an abundance of seaweed could be

factors to include. The engineering and electrical generation may also be subject

to some variability. Such information could be elicited from experts as described in

section 3.2.
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Figure 4.13: Results of the uncertainty analysis for wave power extraction. Note the
extreme peak in panel (a), and in panels (b) and (c), the narrow bivariate probability
distribution (black line) that identifies the specific domain for power output associated
with the uncertain wave conditions.
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This investigation highlights how learning about uncertainty in the wave simula-

tor can be used to obtain probabilistic information in related studies. Only a limited

number of sources of uncertainty were considered here although this could easily be

extended. Notably this example is not dynamic - a key assumption being that wave

conditions are fully developed. A constant wind speed is also assumed but this can

be relaxed by regarding the (constant) speed as unknown. In this way the wind

speed can be regarded as an additional uncertain input parameter. This approach is

taken in the next experiment, where the analysis is expanded to a number of other

uncertain input tuning parameters.

4.6 Experiment 4.B, uncertainty about input, dissipation

and nonlinear interactions

In this experiment we return to the analysis of the simulator output induced by

incomplete knowledge about input parameters and tuning. This experiment is the

same as experiment 4.A (a) but the scope of analysis is extended to include a wider

range of sources of uncertainty. Now, six tuning parameters associated with the

TC96 input and dissipation scheme are regarded as uncertain, these being sdsa0,

sdsa1, sdsa2, sdsb0, sdsb1 and phimin. In addition, two parameters, λDIA and

CDIA that govern the exact form of the DIA scheme for nonlinear interaction are

considered. Uncertainty distributions determined in the elicitation are listed in table

4.1. The forcing wind speed is regarded as constant in time, but uncertain in terms

of its constant value. It is specified as N(10.0ms−1, 0.52).

As before, the simulation was run for 30 days to ensure that fully developed

conditions were achieved. Proceeding in the usual way, training data was obtained

by generating four 60 point LHS designs and running the simulator for each design.

Note that in this case the actual design range included 0 < λDIA ≤ 0.5, which turned

out to be important, as discussed shortly. Output was obtained for the usual wave

summary statistics for each 12 hourly time point. Initially analysis is performed

for Hs data at t=30 days. Inspection of the initial linear regression, seen in figure

4.14, reveals a very distinct trend, but more importantly unrealistic predictions of

Hs. Values of Hs exceeding 10m are not likely to be observed given a wind speed

of approximately 10ms−1. This is not necessarily problematic in terms of building

an emulator provided an appropriate model can be found but there is little value in

expending effort in constructing an emulator to fit unrealistic or spurious data. The

probable cause of the extreme output is that the value of an input parameter has been

set too far outside its intended range. To diagnose this problem, the data were log-

transformed in order to constrain the more extreme values, and a regression model
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Figure 4.14: Linear regression model fitted to simulator output for Hs (experiment 4.B)

was fitted so that the residuals could be inspected. These are shown in figure 4.15.

Significant correlation is only evident for the input parameter, λDIA, associated with

the DIA scheme. More importantly, it appears that this parameter is responsible for

the extreme values of Hs, as they are closely correlated to low values (as λDIA → 0).

A close inspection of the bottom left panel indicates a uniform relationship between

λDIA and Hs between scaled values of 0.3 and 0.7, corresponding to actual values

of 0.15 and 0.4. Outside of this range the variance appears to grow rapidly and

the response becomes more nonlinear and extreme. It might therefore be expected

that more realistic values of Hs are obtained within this range. This is consistent

with some information elicited in section 4.2, that suggested values of λDIA below

0.12 maybe unrealistic. In this case the extreme values are avoided by redesigning

the experiment with 0.125 < λDIA < 0.375 to alleviate potential fitting problems.

This is inefficient in that the output data already obtained is not reused however

the simulator is cheap to run so a redesign is a possible option.

Regression modelling of the new data reveals very little correlation of the resid-

uals with output Hs for all parameters. Squared terms were added to the basis

functions for the 8th (CDIA) and 9th (wind speed) input parameters of the emulator

mean function. A Matérn correlation function (ν = 5/2) was also chosen and the

emulator was trained to the log(Hs). A nugget term, equal to 1.5× 10−4, was found

to give the best fit. The emulator was trained using the whole of the first design set,

and half of two subsequent designs in an attempt to capture some extra points and

correct localised fitting issues, likely due to the outliers observed during the initial

regression. Determination of the correlation length scales was done using maximum

likelihood estimation. Only a single maximum was identified by the optimisation

routine. Inputs 2, 3 and 7 gave rise to length scale values below unity, being 0.7822,
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Figure 4.15: Residuals from a linear regression of log(Hs) plotted against input (exper-
iment 4.B)

0.3595 and 0.4384 respectively. An implication of this is that these inputs are the

most sensitive, and that the others may be relatively inactive. A sensitivity analysis

(see section 3.3) would be needed to obtain quantitative sensitivity measures, but

to some extent qualitative information can be inferred from the correlation lengths

alone. Output from validation diagnostics is shown in figures 4.16 (a) and (b). Each

validation set consisted of 60 points and the emulator performed well, suggesting

no conflict with the simulator. The Mahalanobis distances for the two cases were

56.1 and 56.0 respectively, as compared with the reference distribution with mean

60.0 and s.d. 13.2. Proceeding on the basis that the emulator is representing the

simulator adequately an uncertainty analysis was performed. The joint distribution

as specified in table 4.1 was slightly modified in light of the findings about λDIA. A

distribution of N(0.25, 0.03125) for λDIA was adopted. 25,000 samples were drawn

randomly from the joint distribution, scaled to the appropriate emulator input value

107



4 UNCERTAINTY ANALYSIS FOR DURATION-LIMITED WAVES IN A
SINGLE GRID CELL (0-D)

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

Simulator

E
m

ul
at

or

0.5 1.0 1.5 2.0 2.5

−
2

−
1

0
1

2

Emulator predictions

S
ta

nd
ar

di
se

d 
er

ro
rs

38

0 10 20 30 40 50 60

−
2

−
1

0
1

2

Pivoting order

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs 38

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

(a) Validation with design set #3

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

Simulator

E
m

ul
at

or

0.5 1.0 1.5 2.0

−
3

−
2

−
1

0
1

2

Emulator predictions

S
ta

nd
ar

di
se

d 
er

ro
rs

8

0 10 20 30 40 50 60
−

3
−

2
−

1
0

1
2

Pivoting order

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

8

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Theoretical Quantiles

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

(b) Validation with design set #4

Figure 4.16: Graphical diagnostics for an emulator for Hs built with a mean function of
the form y ∼ 1 + x + x2

8,9 and Matérn (ν = 5/2) covariance function.

(between 0 and 1) and run using the emulator mean function. The resulting distri-

bution in wave height is shown in figure 4.17 (a). The resulting distribution has a

mean and s.d. of 3.84m and 0.63m respectively. It deviates from a normal, being

slightly skewed, which may be attributable to the log-normal sampling distribution

for inputs sdsa1 and CDIA. However, the fitted normal distribution shows that the

deviation is fairly small. The standard deviation of 0.63m is quite substantial given

a mean of 3.8m. Using this simple analysis it is possible to investigate the contri-

bution to the variance of the uncertainty due to an individual input, such as wind

speed. To do so, the analysis was run again but setting the wind speed distribution

to N (10, 0.052)ms−1, a 99% reduction in the variance. The resulting histogram is

shown in figure 4.17 (b). The output variance of 0.18m shows a reduction of 0.21m,

or 54%. It would therefore be reasonable to conclude that in the case of duration-

limited wave conditions wind speed uncertainty is indeed the dominant factor, since

the remaining 46% of the variance is explained by the other eight input parameters.

The near Gaussian shape of the output distributions indicates that the simulator

response is nearly linear.

An alternative analysis can be performed by expressing the wind speed as a

uniform-distribution, although here it is used more as a tool to see what effect

the change of distribution has on the analysis. Use of a prior uniform distribution

implies “hard” limits to the range of values, which in most physical situations seems
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(b) Uncertainty distribution for Hs with wind
speed variance reduced by 99%.
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(c) Uncertainty distribution for Hs with wind
speed distributed as ∼ unif(9.0, 11.0)ms−1.

Figure 4.17: Uncertainty distributions induced in simulated Hs with three different input
uncertainty specifications for wind speed.
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implausible37. Wind speed would seem to fall into that category too (that is where

P (w.s. = x) > 0 but P (w.s. = x + ∆x) = 0) however there might be situations

where a uniform distribution was a reasonable approximation, such as a wind climate

in a specific region for example. Proceeding nonetheless, the input distribution is

represented as wind speed ∼ unif(9, 11)ms−1. Figure 4.17 (c) shows that the effect

is to cause a broadening of the peak of the uncertainty distribution. The effect

is consistent with the strong influence of the wind speed, and the broadening is

directly attributable to the broad and “flat” uniform distribution. This also shows

us that the output uncertainty distribution is very sensitive to the prior distribution

for the wind speed, so in any subsequent study this should be carefully considered.

No examination of other input parameters is conducted here although a wide range

of similar analyses could be performed in order to determine the sensitivity of the

output uncertainty to the input specification. More rigorous quantitative sensitivity

analysis for other input parameters is carried out in subsequent chapters.

Following on from the analysis of simulated Hs, we now turn our attention to

the behaviour of simulated wave period. Within the wave modelling community

performance of spectral wave models tends to have more of a focus on wave height

rather than period. Perhaps as a result of this, performance of wave simulators

with respect to predicting period is sometimes poor. There are many measures of

wave period (see chapter 2) so when discussing wave period we have to be cognisant

of the wave frequency spectrum. A number of 1-D (direction integrated) spectra

from a design set are shown in figure 4.18. Examination of the design space can

be very useful in giving us a feel for how input uncertainty manifests itself in the

output. The data exhibit only unimodal JONSWAP type spectra (see section 2.4.2),

as expected in such a situation38. In this case the peak period, Tp, has a clear

interpretation and is a useful summary statistic, particularly given that the sea

states are well developed. The spectra also show how the shape of the spectral

peak changes between design points. For example, it is evident that in the sample

shown there is more variability in Hs than Tp. There is also considerable variation

in the overall shape of the spectra. It is also clear that the design still spans regions

of the simulator input space that give rise to unrealistic conditions. The previous

uncertainty analysis generated a distribution for Hs with a mean of 3.83m and a

s.d. of 0.63m, so 9.06m (bottom right panel) is somewhat extreme!39.

37The temperature of liquid water at atmospheric pressure can clearly not be below 0C or above
100C, so a distribution with a hard limit for possible water temperature, in some situations, could
be conceivable.

38Bimodal or multimodal spectra typically arise where the wind exhibits temporal variability or
there is interaction between wave systems originating from different locations.

39A quick inspection of that particular design point informs us that it lies at the very edge of
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Figure 4.18: A sample of spectra drawn from the first design set. Noting that one time
point spans 12 hours, time point 61 is at the end of day 30.

Having confirmed that Tp has a sensible interpretation in this case we proceed to

construct an emulator, initially using the same structure as that for Hs with a small

nugget value of 1.8×10−5. This was found to be very effective, which is likely due to

high correlation between Hs and Tp. Recall that we already saw that there was high

correlation between Hs and Te in the last experiment. Graphical diagnostics are not

shown for brevity but they revealed almost exactly t-distributed residuals with no

outliers and the Mahalanobis distances were 58.3, 53.6 and 65.7 for three validation

sets. The emulator was used to perform the same uncertainty analysis as for the

Hs data, the results of which are shown in figure 4.19. The histogram in panel (a)

indicates a distribution very close to normal. The difference when the input wind

speed variance is removed, shown in panel (b), is however quite dramatic. There is

a 65% variance reduction in the output, indicating the strength of influence of the

wind, and showing that uncertainty about the simulator tuning has less of an impact

on predicted Tp than Hs. The sensitivity of the uncertainty distribution to the wind

speed is also highlighted in panel (c) where the use of a uniform prior distribution

causes considerable broadening. If wind were not influential we would expect to see

little difference between the three figures. A final point is made regarding the tail at

the design space, at location [0.0759,0.94,0.090,0.0095,0.18,0.091,0.040,0.013,0.98]
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(a) Uncertainty distribution for Tp.
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(b) Uncertainty distribution for Tp with wind
speed variance reduced by 99%.
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(c) Uncertainty distribution for Tp with wind
speed distributed as ∼ unif(9.0, 11.0)ms−1.

Figure 4.19: Uncertainty distributions induced in simulated Tp with three different input
uncertainty specifications for wind speed.
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the lower end of the distribution in panel (b). Having removed the dominant effect of

the wind, the more nonlinear effects of other tuning parameters become evident. The

implication is that if the uncertainty about wind speed was very small, for example if

very accurate measuring equipment or simulations were available, then nonlinearity

within the wave simulator could become important (although the overall variance

would clearly be much reduced).

This analysis concludes experiment 4.B. We have seen that even where eight

important tuning parameters are regarded as uncertain, these account for a fairly

small proportion of the total uncertainty about the prediction of Hs and Tp in

fully developed conditions. The single largest contribution is due to uncertainty

about wind speed, where an input normal distribution with a s.d. of only 0.5ms−1

accounts for 54% and 65% of variance in simulatedHs and Tp respectively. Nonlinear

behaviour in the wave simulator was found to be largely absent. Before concluding

this chapter, we briefly explore how an emulator can be used to visualise simulator

response to input variability.

4.7 Further applications of an emulator: Visualisation

In this short section a description is provided of how an emulator can be used to

visualise output from a simulator. Since the emulator is orders of magnitude faster

than the simulator, it is possible to take advantage of its capability of generating

large amounts of data. One way of doing so is through visualisation. Many modern

data analysis packages can project data in at least 3 dimensions. Here, the R40

software package with the “rgl” library41 can be used, together with the emulator

mean function, to draw iso-“response”-surfaces in 3-D space. That is, for three dif-

ferent input parameters, the full parameter space can be explored yielding a 3-D

map of the output space (Hs for example) and representing this with surfaces of

constant output. Colouring the surfaces helps to show the response in the output.

Figure 4.20 was produced in such a way making use of one of the emulators formu-

lated in experiment 4.A. Experiment 4.A (a) examined the three input parameters

sdsa0, sdsa1 and sdsa2. The emulator mean function constructed in section 4.4

is therefore a function of these three variables. Each of the three axes therefore

corresponds to an input parameter but note that values of the input parameters

re-scaled to between 0 and 1 are shown on the axes. The plotting procedure locates

the iso-surfaces through an optimisation process that requires many executions of

the target function, which would be rendered prohibitive without the speed of the

40http://www.r-project.org/
41https://r-forge.r-project.org/projects/rgl/
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Figure 4.20: Simulator response (in Hs) to variation in input parameters. Input param-
eters are assinged to the spatial axes and the colours white to red represent values of Hs

from low to high.

emulator.

Since the visualisation uses the OpenGL42 system, the plot can be moved and

rotated to examine any interesting features. In figure 4.20 we see from the colour

variation and iso-surfaces of constant values of Hs, that there is a broadly linear

variation with change in each parameter. However their interactions do lead to some

nonlinearity, particularly for low values of sdsa2. This can be compared with the

findings of the regression diagnostics shown in figure 4.4. The diagnostics revealed

that the simulator had a nonlinear response to input sdsa2 (bottom left panel)

and we can in fact see that response in figure 4.20 as sdsa2 (on the vertical axis)

increases.

With some extra work this approach could be extended to allow exploration of a

much higher dimensional space. “Browsing” high dimension spaces is not necessarily

very useful since the spaces are very large but visualisation can be very helpful where

we are interested in specific parameters, or regions of the input space. In the next

chapter the main effects of individual inputs are visualised which is a very powerful

means of understanding and determining their influence.

42http://www.opengl.org/
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4.8 Chapter summary

In this chapter we have seen Gaussian process emulators applied to simple simula-

tions of waves produced by WW3. A number of important findings have been made

which are discussed below.

4.8.1 Emulation

Emulators have been shown to be an effective method for performing uncertainty

analysis for simple configurations of WW3. In both experiments 4.A and 4.B emula-

tors were found to validate based upon a range of statistical tests. Furthermore, in

experiment 4.A (a) direct comparison of uncertainty distributions generated by an

emulator and directly from the simulator revealed almost identical results. From this

we can draw confidence that emulators can be applied to more complex simulations

of waves. A final cautionary note is made regarding the experiment design because

we have seen that the initial choice of parameter space (see experiment 4.B) gave

rise to highly unrealistic output. In addition, we have seen (in figure 4.15) that as

parameters are pushed towards their extremes, the uncertainty in simulator output

can exhibit non-constant variance. We must be cognisant of such issues.

4.8.2 Uncertainty analysis for uncertain parameters and wind speed

In experiment 4.B, uncertainty analysis was performed for simulated Hs and Tp in

fully developed conditions, accounting for uncertainty in the six tuning parameters

that govern the high and low frequency dissipation for the TC96 input and dissi-

pation parameterisation, and two parameters that govern the tuning of the DIA

scheme for wave-wave nonlinear interactions. Wind speed was also regarded as un-

certain, giving rise to uncertainty distributions in simulated Hs and Tp summarised

by mean values of 3.83m and 11.26s and variances of 0.392 and 0.607 respectively.

Importantly, an input uncertainty for wind speed defined as N(10.0ms−1, 0.52)

contributed 54% and 65% of the output uncertainty for Hs and Tp respectively.

This result is a good initial indication of the relative importance of the wind input.

Given this result, it is reasonable to expect that wind uncertainty might dominate

in a similar way for other more complex cases.

Having made an initial assessment of the influence of uncertainty in tuning pa-

rameters and forcing wind speed, in the next chapter this investigation is continued

in the context of fetch-limited wave growth.
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5 Uncertainty analysis for propagating waves in

a channel (1-D)

5.1 Introduction

In the previous chapter wave simulations were run in a single grid cell under duration-

limited conditions, in order to explore the effects of uncertainty on input parameters

associated with energy dissipation and nonlinear wave-wave interactions. In some

realistic cases, such as a large lake where waves are almost entirely due to the local

wind conditions (i.e. not arriving from distant locations), it may be possible to

use experiments similar to those in the previous chapter, involving only the source

functions without propagation, for fore- or hindcasting. However for most practi-

cal applications associated with the open ocean it is necessary to propagate energy

from place to place. WW3 achieves this by solving the energy balance equation (5.1)

complete with advection terms.

∂E(f, θ)

∂t
+ cg · ∇x,yE(f, θ) = Swind + Snl + Sds (5.1)

In this chapter, spatial propagation is introduced by considering a number of

cases related to fetch-limited wave growth (see section 2.4.2). The simulation of

fetch-limited wave growth can be done utilising only a single spatial dimension, thus

the investigation of this phenomenon provides a useful way of introducing energy

propagation, and its associated complexity, while maintaining a fairly simple physi-

cal configuration. The experiments presented in this chapter involve the application

of emulators to investigate uncertainty on parameter tuning and wind forcing, in

much the same way as the previous chapter. The wind forcing in this case is now

expressed in a slightly more complex manner. That is, even in a single spatial di-

mension with constant conditions (effectively independent of time), the wind must

still be expressed as a function of space, and uncertainty about the wind must there-

fore be characterised and appropriately expressed. Specific details about uncertainty

associated with forcing wind, input parameters and numerical error are discussed in

detail in section 5.3. The scope of the analysis is also extended in this chapter to

include probabilistic sensitivity analysis as described by Oakley and O’Hagan (2004)

and summarised in chapter 3. This provides a formal and comprehensive evaluation

of the influence of input parameters and any interactions.

The scope of this chapter is to derive uncertainty measures for the summary

statistics Hs and Tp for a number of scenarios of interest related to fetch-limited

conditions. In section 5.2 the physical arrangement, relevant physics and sources
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Figure 5.1: Geographic arrangement for a simulation of fetch-limited wave growth, shown
with a graph of dimensionless wave height plotted against dimensionless fetch.

of uncertainty are discussed. Section 5.3 details the sources of uncertainty that are

specifically considered. Section 5.4 describes the experimental configurations used to

perform the analysis, and the results obtained. Experimental results are described

in sections 5.5, 5.6 and 5.7 before key findings in this chapter are summarised in

section 5.8.

5.2 Fetch-limited wave growth

Fetch-limited wave growth is described in section 2.4.2 but some points are discussed

further here in relation to conducting these experiments. As previously described,

we have a situation where wind blows steadily, perpendicular to the coastline, over

the land and then out to sea. The distance out to sea, or fetch, over which the

wind has blown, limits how developed the wave conditions can become assuming

that the wind has been blowing continuously for sufficient time. The sea state is

thus independent of the duration that the wind has blown, limited only by the fetch.

In terms of investigating this through simulation, a geographic arrangement similar

to that depicted in figure 5.1 is used. The simulation configuration is comparable

to a very long deep water channel. The spatial boundaries are effectively perfect

absorbers, so no wave energy crossing the boundary returns, and no wave energy

enters at the boundary. The channel is split into a number of grid cells (typically

50, each of 20km in this chapter) with a wind blowing parallel to the direction of the

channel. The lower part of figure 5.1 shows a typical profile of Hs along the fetch.

The axes show the dimensionless quantities F̃ and H̃. These were defined in section

2.4.2 and provide a wind speed invariant representation of the wave growth. Given

a wind speed of 12.5ms−1, the non-dimensional fetch corresponding to 1000km is
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Figure 5.2: Evolution of 1-dimensional wave spectra along the fetch.

approximately 6.3 × 104. Figure 5.1 shows that this corresponds very closely to

fully developed conditions (denoted by H̃∞ = 2.4). Similar growth curves can

be obtained for other summary statistics such as Tp. These growth curves derive

from the growth of the 1-D spectrum, an example of which, generated by WW3

using default settings, is shown in figure 5.2. The magnitude of the spectral peak

increases with fetch as wave energy is accumulated but, through the process of

nonlinear wave-wave interactions, energy is transferred to lower frequency waves,

and hence the peak period decreases as the sea state develops. For comparison, the

spectrum as parameterised in terms of fetch by the functional form derived through

the JONSWAP experiment (Hasselmann et al., 1973), is overlaid. The fit is generally

good but the simulation seems to over estimate the width of the peak at shorter

fetch. This is probably attributable to a focus on getting better performance at long

fetch for a global simulations. Examples of poorer performance of WW3 at short

fetch have been documented (e.g. Ardhuin et al., 2007).

In this chapter, analysis will not explicitly consider the 1-D spectrum but will

focus on the growth curves for wave summary statistics as seen in figure 5.1. Some

authors (see e.g. Breugem and Holthuijsen, 2007) have opted to characterise such

growth curves by means of fitting empirical functions. Breugem and Holthuijsen
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(2007) propose a set of equations as follows,

log(H̃) = H̃∞[tanh(k1 log(F̃ )m1)]p (5.2)

log(T̃ ) = T̃∞[tanh(k2 log(F̃ )m2)]q (5.3)

Each is characterised by four coefficients, e.g. H̃∞, k1, m1 and p, which are deter-

mined by fitting the function to data using a regression method. Note that in the

following experiments, p and q are assumed known and equal to 0.572 and 0.187

respectively (consistent with Breugem and Holthuijsen, 2007). The dimensionless

quantities F̃ , H̃ and T̃ are computed from (2.12), (2.13) and (2.14),

F̃ =
gF

U2
10

H̃s =
gHs

U2
10

T̃ =
gTp

U10

Breugem and Holthuijsen (2007) used a least-squares approach to fit expressions

of the form (5.2) and (5.3) to a variety of observational data from experimental

studies. They obtained values for the coefficients H̃∞, k1, m1, T̃∞, k2 and m2 in

order to characterise the wave growth. By doing so, the spectral information (that

is in terms of simulation, a spectrum at each point along the fetch) is reduced to

only three coefficients. The three coefficients are not orthogonal, meaning there

is correlation between them, which might hamper subsequent analysis. However,

a justification for using a non-orthogonal basis may be to achieve better physical

interpretation. In this case, the physics of the wave growth is complex and the

use of a (fairly arbitrary choice of) empirical functional representation does little to

enlighten us. Furthermore, Breugem and Holthuijsen (2007) do not offer any specific

physical justification for their choice. Nonetheless, perhaps some broad insight can

be gained so let us consider each coefficient in turn. H̃∞ correlates exactly with the

maximum value of H̃s, and therefore also total wave energy. Its interpretation is

therefore equivalent to Hs in fully developed conditions, which is in fact what we

saw in chapter 4. Unfortunately k1 and m1 are not so easily interpreted. Owing

to the functional form, they are correlated with each other, and both contribute

to the gradient of the (log of) growth as seen in figure 5.1. Given that the growth

region shows a power law relationship, it may be more useful to regard that region

separately and perform analysis with respect to the gradient alone. (This kind of
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approach is taken in experiment 5.C). It is difficult to say much more without further

analysis, but we might however expect there to be considerable correlation between

the results of any uncertainty or sensitivity analysis for each of these coefficients.

Note that this particular representation is used in experiment 5.A only, where

inference for parameter uncertainty is performed with respect to these coefficients as

generated by the wave simulator. Subsequent experiments in this chapter consider

summary waves statistics at specific points along the fetch (5.B), and make use

of alternative parameterisations using simple regression methods (5.C). These are

discussed in the relevant experiments.

5.2.1 Variations on fetch-limited growth

In reality many variations of idealised fetch-limited growth can occur. Researchers

have considered the case of “slanting” fetch for example (Ardhuin et al., 2007), where

the wind blows at an angle to the shoreline. Due to the “along-shore” component

of wind, this effectively creates waves corresponding to longer fetches along tracks

perpendicular to the shore. In keeping with the experimental approach adopted

in this chapter and making use of the single channel configuration, other possible

variants include modified wind profiles, where the wind is seen to decay as a function

of fetch. Imposing the condition that the wind remains constant in time, different

kinds of wave growth profiles are created. An experiment to investigate an example

of this is conducted in sections 5.7 where the wind speed is configured to decay with

distance.

5.3 Sources of uncertainty

5.3.1 Parameter uncertainty

Parameter uncertainty is specified in the same way as for experiments in the previ-

ous chapter. No new sources of parameter uncertainty associated with wave physics

are introduced. The TC96 input and dissipation scheme remains unchanged to-

gether with the DIA scheme for the nonlinear wave interactions source term. The

distributions assigned to the input parameters are as previously specified (see table

4.1). Since the input, dissipation and nonlinear source terms are now operating over

a spatial domain, with energy being transported, the effects of uncertainty on the

processes may differ from the previous findings.
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5.3.2 Numerical uncertainty

Experiments conducted in the previous chapter do not involve energy propagation

so the calculations are actually source term integrations only. Numerical uncertainty

is introduced into the source term integration via the discretisation of the spectral

domain. This was previously managed by adopting a (high) resolution of 36 fre-

quency bins spanning the full range of the spectrum (alleviating the need for a long

parametric tail). Furthermore, since the analysis data were essentially derived from

the source function (i.e. there was no time dependence), then there is no contribu-

tion to numerical uncertainty from the choice of time step. The same arguments

apply to the experiments conducted in this chapter but since we are now considering

advection the relevant sources of numerical uncertainty are mentioned.

Numerics were discussed in section 2.2.4 in detail so the important points are

briefly mentioned. Regarding the advection scheme, the third order “ULTIMATE

QUICKEST” propagation scheme of WW3 is employed (see Tolman, 2009a). Tol-

man (1995) found this to be a robust scheme for a range of situations where numerics

can cause trouble, but specifically it is able to compute stable fetch-limited growth.

Therefore, making use of high spatial and spectral resolution, and choosing appro-

priate values of the time step to satisfy the CFL condition, numerical uncertainty

should be small.

As in chapter 4, the spectral resolution corresponds to 36 frequency bins over a

range from 0.050 to 0.67Hz, and grid cells are 20km long over a total fetch of 1000km.

The spatial resolution is very much higher than would be adopted for an operational

global simulation, where 1 degree of latitude is approximately 111km. Note that

since we are investigating propagation in a single direction only, propagation in

the perpendicular direction is deactivated in the simulator. This effectively results

in homogeneous conditions (like chapter 4) in the perpendicular direction. Given

that swell travelling at 20ms−1 would take 1000 seconds to cross a cell, the overall

simulation time step is typically set to a very conservative value of 500 seconds,

which still remains economical.

5.3.3 Uncertainty about wind forcing

For experiments 5.B and 5.C the wind specification is regarded as uncertain. The

experimental arrangement requires that the wind speed is specified, with no spatial

or temporal variation. Given this simple case we can regard the wind speed as not

known precisely and express it as a Gaussian distribution. Noting the discussion of

wind speed uncertainty in section 2.2.3, the distribution is specified as windspeed ∼
N(12.5ms−1, 0.52). Experiment 5.C considers a wind that decays with fetch, where
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Table 5.1: Experiments presented in chapter 5.

Experiment Description

Experiment 5.A Investigation of uncertainty about fetch-limited growth.

Experiment 5.B Exp 5.A modified with a variable wind.

Experiment 5.C Exp 5.B modified with a steadily decaying wind in space.

the initial wind speed is drawn from the same distribution.

5.4 Experiments

The experiments are listed in table 5.1 and are described below.

Experiments 5.A and 5.B consider the well studied case of fetch-limited growth

of waves forced by a constant wind. This also includes consideration of uncertainty

on the wind speed, as previously mentioned. Experiment 5.C augments 5.B by

introducing a change in the wind profile such that the wind strength diminishes

with fetch. In addition to output from uncertainty analyses, sensitivity measures

are determined for input parameters which reveals their influence, any resulting

nonlinearity and relative importance.

5.4.1 Design summary

Listings of input parameter sampling distributions for each experiment are given

in their respective sections. Note that owing to the chronological development of

this research, the input distributions used in experiment 5.A (given in table 5.3)

differ slightly from those listed in table 4.1. Three or more LHS designs are created

for each experiment. Typically the first one or two design sets are used as training

data for emulator formulation with an additional design used for validation. Further

designs are not always necessary but are cheap enough to produce in this case. They

are typically used for further emulator validation or exploratory analysis.

5.4.2 Simulation configuration

All the experiments conducted in this chapter are configured with a wind blowing,

constant in time, aligned to the direction of propagation, as depicted in figure 5.1.

Propagation of energy perpendicular to the direction of the channel was disabled in

the WW3 code. The water depth was set at 1km. To ensure that a steady state

in time was achieved for the wave statistics along the fetch, simulations were run

until the change in Hs (or Tp) was less than 0.1% per (hourly) time step. This was
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Table 5.2: WW3 switch configuration for chapter 5

Swtich Function

PR3 “ULTIMATE QUICKEST” 3rd order propagation scheme.

FLX2 Friction velocity computed according to TC96 scheme.

WNT1 Linear interpolation of wind in time.

WNX1 Linear interpolation of wind in space.

typically achieved within approximately 48 hours. Important switches relating to

the configuration of WW3, that dictate model physics and propagation, are shown

in table 5.2. See appendix E for a full switch listing.

5.4.3 Simulation configuration

5.5 Experiment 5.A: Fetch-limited growth

In this first experiment the effect of uncertainty about parameter tuning for TC96

dissipation on wave growth along the fetch is investigated. The approach is to

make use of the parameterisation of the wave growth as described in section 5.2.

Before discussing the analysis and results it is useful to inspect some output from

the simulator. Output from single runs of the wave simulator, showing growth of

Hs and Tp, using default tuning are shown in figure 5.3 and figure 5.4 respectively.

The simulation was forced with a wind speed of 12.5ms−1, but the fetch and

wave parameters have been scaled to dimensionless quantities. Output from three

different simulations is shown to give an indication of variability associated with

different numerical schemes and physics. Firstly, the first order scheme is shown

for comparison but not routinely used for operational fore- or hindcasting with

WW343. The two other simulated data sets utilise the third order propagation

scheme but differ in that one uses the DIA nonlinear interaction scheme and the

other utilises the full nonlinear computation. Also included is the idealised curve as

found by Breugem and Holthuijsen (2007) from observational data. The region of

fetch-limited growth is apparent before fully developed conditions are reached near

F̃ = 105. Notably, there is a considerable difference between the three simulations,

none of which very closely reproduces the idealised growth curve (given by the dashed

line). Interestingly the poorest fit to the idealised case is the simulation run with

the most accurate physics. However, this is explained by the fact that by default the

TC96 input and dissipation scheme is tuned in conjunction with the (approximate)

43The WAM wave model actually employs a first order scheme.
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Figure 5.3: Simulations of fetch-limited growth of Hs for different numerical schemes
and physics. Forcing wind speed is 12.5ms−1.
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Figure 5.4: Simulations of fetch-limited growth of Tp for different numerical schemes and
model physics. Forcing wind speed 12.5ms−1.
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Table 5.3: WW3 input parameters and sampling distributions for experiment 5.A

Switch Description Tuning Default Sampling

parameter value distribution

[Variable Assignment in WW3 manual]

ST2 Dissipation
(TC96)

High frequency
dissipation

SDSA0 [a0] 4.8 N(4.8, 0.122)

High frequency
dissipation

SDSA1 [a1] 1.7× 10−4 N(1.7× 10−4, (4.25× 10−6)2)

High frequency
dissipation

SDSA2 [a2] 2.0 N(2.0, 0.052)

Low frequency
dissipation

SDSB0 [b0] 3.0× 10−4 N(3.0× 10−4, (7.5× 10−6)2)

Low frequency
dissipation

SDSB1 [b1] 0.47 N(0.47, 0.0122)

Low frequency
dissipation

PHIMIN
[φmin]

0.003 N(0.003, (7.5× 10−5)2)

DIA nonlinear scheme. It would not therefore be expected that simply “plugging

in” the exact physics would immediately give an improved result. The other two

cases show similarity and do fit the observational data better, in particular at longer

fetch. It is well known that the default TC96 tuning is based upon obtaining better

performance for longer fetch, which is clearly supported. The simulator appears to

reproduce the growth of Hs better than the growth of Tp but again this is probably

due to a focus on obtaining better performance for Hs, which is generally the case.

The experiment proceeds by generating three maximin LHS designs of 80 points

over the uncertain parameters shown in table 5.3. Simulation output (in terms of Hs

and Tp) is obtained for a total of 34 geographical points along the fetch, these can be

seen in figure 5.3. For each run (or equivalently, design point), equations 5.2 and 5.3

are fitted using a nonlinear least squares fitting algorithm. Coefficients H̃∞, k1, m1,

T̃∞, k2 andm2 then form sets of training data for emulators. A sample of output from

six simulations from the first design set is shown in figure 5.5. The points, marked by

circles, are output from WW3 and the solid black lines are the function (5.2) fitted

using the least squares algorithm. In general it can be seen that the data conform

well to the functional shape. Although the idealised function assumes a constant
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Figure 5.5: Function (5.2) fitted to output from a number of design points.

gradient in the growth region, this is not strictly reproduced by the simulations. This

is seen most clearly for run #47. The gradient appears to increase slowly from short

fetch before reducing again just before the sea state reaches asymptotic development.

In contrast, the fitted function conforms very closely to the simulation output in the

fetch-limited region for run #38. This highlights the loss of information due to the

fitting process, and we can see that more information has been lost for point #47

than #38. For the analysis, the impact of this is not immediately clear but in this

experiment the functional basis appears in general to be a good fit to the data.

Having obtained sets of the six coefficients (three for growth of Hs and three

for Tp), emulators are trained to each. We proceed by using multiple regression

to determine trends in the response of the training data to variation in the input

parameters. Plots of residuals from a linear model for each input parameter (six in

total), for each of the sets of coefficients (H̃∞ and k1, m1) shown in figures 5.6 (a),

(b) and (c) reveals linear response to the input parameters for coefficient H̃∞ but

some nonlinear response for m1, k1. The residuals plotted against sdsa2 and phimin,

for the regression of the H̃∞ data (figure 5.6 (a)), exhibit heteroscedasticity. The

variance clearly diminishes from its maximums at the extremes of the input value

range and reaches a minimum at the centre. This could suggest that the parame-

ters were not intended to be adjusted much outside of their central range because
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Figure 5.6: Residuals from linear regression of input parameters and wave height growth
coefficients.
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the simulator response becomes more pronounced. Interestingly the relationship be-

tween parameter phimin and the residuals reveal a structure that appears to show

divergence, particularly at the lower end of the range where an isolated cluster of

points is visible. Again this may be symptomatic of setting the parameter to a value

well outside of its intended range, thus resulting in spurious simulator output.

After further regression testing the following choices of emulator prior mean

functions were chosen. (For convenience, input parameters are denoted by x with

the appropriate subscript.) H̃∞ ∼ 1 + x[3,5,6], m1 ∼ 1 + x[1,3,5,6] + x2
3 + x3

3 and

k1 ∼ 1 + x[1,3,5,6] + x2
3 + x3

3. Observe that no mean function has dependence on

x2 or x4 (corresponding to sdsa1 and sdsb0 ). This is indicative that the output

is largely insensitive to those inputs. It is also interesting to see from figures 5.6

(b) and (c) that the response of m1 is essentially the inverse of k1. This suggests

that it would be fairly straightforward to represent the wave growth data with only

two coefficients rather than three, since m1 and k1 are highly correlated. This

also seems consistent with the point mentioned earlier that fetch-limited growth

region is essentially governed by a power law and therefore could be represented

by just a straight line - that is, that only two degrees of freedom are required for

the representation. A similar approach is considered in experiment 5.C where wave

growth is parameterised using a linear regression model.

Emulators were constructed for the three coefficients using the aforementioned

prior mean functions and Matérn (ν = 3/2) covariance functions in all cases. The

second design set was used to validate each emulator and the output from the

graphical diagnostics is shown in figure 5.7. Some outlying points are apparent,

likely due to some localised non-stationarity or heteroscedacity (observed in the

linear regression, see figure 5.6). Nugget terms (ν = 1.5× 10−8, 5× 10−6, 5× 10−4)

are used in order to improve the posterior variance estimate for some outlying points

although validation point number 7 can be seen as an outlier in all diagnostics. In

effect the nugget term compensates for the modelling assumptions (e.g. stationarity)

being too strong for the data. Furthermore, owing to numerical problems with the

covariance matrix coefficient, k1 required log-transformation when formulating the

emulator. This is probably attributable to the very small values of the variance

obtained (' 10−8). The emulators exhibit observed Mahalanobis distances of 87.4,

77.5 and 77.1 and in general appear to be robust.

Analysis for Tp is approached in the same way. Emulators for each of the coeffi-

cients T̃∞, k2 and m2 were built with the same prior mean functions and covariance

functions as for the Hs coefficients. Figures are not provided for the initial regression

and emulator validation diagnostics however it was found that the response of the
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Figure 5.7: Graphical diagnostics for emulators of H̃∞, m1 and k1. Matérn (ν = 3/2)
covariance function used.
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coefficients to input parameter uncertainty was similar.

5.5.1 Uncertainty analysis

Having successfully constructed emulators, we proceed to perform uncertainty analy-

sis. This was carried out by simulating realisations from the emulator mean function.

The input uncertainty distributions are specified in table 5.3. Distributions result-

ing from the uncertainty analysis for Hs growth coefficients are shown in figure 5.8.

The output distributions for H̃∞ and k1 are fairly symmetrical suggesting broadly

linear response. Output for m1 shows slight bi-modality. More importantly, the

variance for H̃∞ and k1 is unable to explain the difference deviation from the ob-

served values. For H̃∞ the distribution standard deviation is 0.004, compared with a

mean of 0.26, and the real world observed value lies many standard deviations from

the mean. H̃∞ has a clear physical interpretation and so we can get a sense of the

magnitude of this difference. The difference between the mean of the distribution

and the observed value is approximately 0.02. This is a dimensionless quantity but

making use of (2.13), we find it corresponds to approximately 0.3m at a wind speed

of 12.5ms−1. Furthermore, the 2.5 percentile of the uncertainty distribution corre-

sponds to H̃∞ ≈ 0.248 ≈ 0.19m. This shows that the tuning uncertainty specified

here cannot account for the discrepancy and that some other important sources of

uncertainty have not been accounted for. One possible implication is that there are

structural errors in the simulator. Another source of uncertainty not considered is

that of the wind which is considered further in the next experiment.

Similar behaviour of the simulator is seen in figure 5.9 for the growth of Tp, which

is to a large degree anticipated because Hs and Tp tend to be highly correlated in

idealised cases. In considering these results, firstly attention is drawn to the non-

linearity in response evidenced by the skewed output distributions. This contrasts

with the response of the coefficients relating to growth of Hs. More importantly, for

T̃∞ in panel (a), the observed value as reported by Breugem and Holthuijsen (2007)

is 7.69 which is well above any plausible value drawn from the uncertainty distribu-

tion. In fact, the distribution has a standard deviation of 0.07 which is less than 1%

of the mean value suggesting that T̃∞ is broadly insensitive to the dissipation tun-

ing. Figure 5.9 (a) indicates a very rapid decay in the upper tail suggesting higher

values are in general much less likely. The results for m2 and k2 seem to be more

consistent with the idealised observations, which lie within the ±3 s.d. range of the

output uncertainty distributions. Notably the mean value of k2 lies very close to

the observed value. Since there is correlation between the coefficients, the fact that

k2 alone appears to correspond well with observation is not strong evidence of good
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Figure 5.8: Uncertainty analysis for Hs growth coefficients.
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Figure 5.9: Uncertainty analysis for Tp growth coefficients.

performance of the simulator. The large discrepancy between simulated T̃∞ and the

observed value is clearly indicative of some shortfall. One might therefore seek to

account for other sources of uncertainty that specifically influence the response of

T̃∞ without drastically affecting m2 and k2, in order to help explain the discrepancy.

However, as noted earlier, the discrepancy may be due to structural error and it may

be prudent to improve the representation of the physics in order to find a systematic

correction. As a final note on the comparison of the uncertainty analysis results for

Hs and Tp there appears to be a stronger nonlinear response in Tp. Given that Hs

and Tp are typically highly correlated in cases such as this, it seems unlikely that

the differing responses have a physical basis. The dissipation parameterisation is

clearly introducing nonlinearity, although owing to the empiricism used in the for-

mulation of the parameterisation, and the difficulty in interpreting the coefficients

in a physical sense, drawing more robust conclusions is challenging.

5.5.2 Sensitivity analysis

Before moving on to the next experiment the analysis can be extended by running

a sensitivity analysis. This determines quantitatively which input parameters con-

tribute to the variance. The initial regression exercise established that variation in

sdsa2 induced a nonlinear response but did not tell us about the magnitude of the

response. Recall from section 3.3 that the main effect of an input parameter x1 is

the expectation of the output distribution induced by the (joint) input distribution

conditional on x1. The main effect zi(x1) is therefore a function of x1. Expressed

mathematically the main effect zi(xi) for input xi is,

zi(xi) = E(Y |xi)− E(Y ) (5.4)
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where Y is the simulator output distribution and the expectation is with respect to

the joint input distribution g(x). (See also equation 3.5). The integrals can be com-

puted numerically by simulation using the emulator mean function but we also saw

in section 3.4.4 that such sensitivity measures could be computed by analytical in-

tegration of the emulator posterior mean and covariance functions. O’Hagan (2011)

provides details of how to obtain analytical expressions in the case of a Gaussian

correlation function (which makes the mathematics a good deal more tractable) and

generic (linear) mean function. However, O’Hagan (2011) also provides a number

of general integrals which, it turns out, can be integrated numerically fairly rapidly.

Using this approach an arbitrary choice of mean and correlation functions can be

used. This approach is made use of here and throughout the rest of this thesis (de-

tails of the code is provided in appendix D). Inference for the main effects, computed

using this method, are shown in figure 5.10. What we see in each panel are six lines

each corresponding to an input parameter. The value on the vertical axis indicates

the percentage change in the expectation of the output distribution, conditional on

the parameter in question, the specific value (scaled to between 0 and 1 according

to the design) of the parameter is read from the horizontal axis. Considering figure

5.10 (a), if we take phimin (designated by the green dashed line) as an example, it is

clear that variation of this parameter induces the strongest response. The response

is close to linear with a negative slope. Note that the x-scale is effectively different

for each input, and for phimin [0, 1] corresponds to [2.25× 10−3, 3.75× 10−3]. So as

phimin is increased from 2.25×10−3 to 3.75×10−3, the expectation of the simulator

output conditional on phimin decreases almost linearly. Notice also that the range

spans the entire design space of the emulator for phimin, the limits of which fall at 4

standard deviations from the mean of the input for the uncertainty and sensitivity

analysis. In a sense this is slightly deceptive, because the probability assigned to

values at the edge of the design (assuming a Gaussian distribution) is typically van-

ishingly small, and so contribution to E(Y ) is also small. In terms of interpreting

figure 5.10, this means that the effect at the limits does not contribute significantly

to the analysis44. If we consider a different input parameter such as sdsa2, it can be

seen in figure 5.10 (b) that the response is nonlinear at the high end of its range,

but the nonlinearity lies beyond 1 standard deviation (a scaled value of 6.25) from

the mean and so has a diminishing effect. By contrast the central region that is

within 1 s.d. exhibits a linear response, which is very weak. Considering the effects

on H̃∞, it can be seen immediately that, with the exception of phimin, the input

44It is for this reason that in general if the emulator performance is poor only for one or two
design points at the very edge of the design, we need not be concerned as these effects do not
contribute to subsequent analysis.
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Figure 5.10: Sensitivity analysis for the coefficients describing the functional represen-
tation of growth of Hs
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parameters have very little influence at all. Even at the limits of their respective

ranges the main effects are 1% or less. Given the low rate of change associated with

each parameter we can conclude that in order to induce an effect large enough to

obtain simulation output close to the observed value (of 0.24), a sizable perturbation

would be necessary in any given parameter. As previously stated, on the basis that

the input parameters were not intended to be perturbed by such amounts, it is likely

that structural errors are significant.

Interpretation of figure 5.10 (c) has to be mentioned in particular because the

analysis is with respect to log(k1). Recall that some numerical problems were en-

countered when building the emulator, owing to the very small values of the variance.

Since inference has therefore been made with respect to log(k1) interpretation is less

straightforward and results should be treated cautiously. Unlike certain inference

measures such as the expectation and variance, the sensitivity measures derived here

cannot simply be reverse transformed and expressed in terms of k1. For example,

the main effects will be substantially larger than the approximate range of ±6%

(although clearly not exp(6) ≈ 400%). What is notable from figure 5.10 (c) is the

similarity with figure 5.10 (b). m1 and k1 actually have an inverse correspondence

but since values of k1 lie between 0 and 1, the log function inverts it, and as a result

the response is very similar to m1. An alternative way of proceeding would be to

draw samples from the emulator mean function using a Monte Carlo approach and

compute the sensitivity measures from the transformed output45. Main effects for k1

computed in such a way are shown in figure 5.11. We have recovered the “inverse”

behaviour with respect to m1 and as expected the effects are large with respect to

the mean value of k1. However, given the lack of a clear physical interpretation for

k1 the results still require some consideration.

What we do not see with this kind of plot is the response due to interaction

of different input parameters. More is said about this shortly, after discussing the

parameter sensitivity measures. In section 3.3 we saw that the total variance induced

in the output could be decomposed in terms of the variance due to the effect of each

input. A measure Wi = var{zi(xi)} was defined that is the amount of variance

explained by learning the true value of xi. These measures are computed in a

similar way to the main effects, that is by direct numerical integration of emulator

posterior mean and covariance functions. Bar plots showing Wi, or equivalently

45One difficulty when computing the integrals numerically (via simulation) is that even for
an emulator coded in a package such as R or Matlab, the number of simulations required is
computationally demanding. A way around this is to use, for example, the DICE Kriging package
(http://cran.r-project.org/web/packages/DiceKriging/index.html) for R which is coded directly in
C and so runs very much faster than interpreted code written within the R environment.
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Figure 5.11: Main effects for k1 computed by Monte Carlo from the emulator mean
function.

the percentage of variance explained, for each input are given in figure 5.12. The

bar plots correspond well to the main effect plots shown in figure 5.10. That is,

the parameters exhibiting the largest main effects contribute the most variance. In

fact, sdsb1 and phimin, which govern low frequency energy dissipation, dominate the

variance. Given the correlation between m1 and k1 it is unsurprising that essentially

the same response is observed. We can gain some physical insight at this point.

Recall that H̃∞ corresponds to fully developed conditions (that is, the sea state

beyond the region of fetch-limited growth). We can see that its variability, in terms

of uncertainty about energy dissipation as governed by the input parameters under

examination, is due almost exclusively to phimin. So in fact, were we to attempt to

improve our simulation of Hs by obtaining output closer to the observed values (see

figure 5.9), we could do this for H̃∞ by reducing the value of phimin. Furthermore,

noting the correlation between the coefficients, we can see (quantitatively) what

effect this would have on both m1 and k1. Following the logical process, we can

also see that although m1 and k1 would both be affected by a change in phimin,

they are both primarily governed by sdsb1. This potentially gives us a way of

compensating for any change due to the adjustment of phimin without affecting

H̃∞. Recalling the inverse relationship between m1 and k1, adjustment of sdsb1

will increase one and decrease the other, so we would remain constrained by their

correlation. Nonetheless, these results give us very clear insight into how uncertainty
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Figure 5.12: Proportion of variance in growth coefficients for Hs explained by input
parameters.
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Figure 5.13: Sensitivity analysis for the coefficients describing the functional represen-
tation of growth of Tp

about the energy dissipation tuning parameterisation affects the wave simulator in

this case.

A further and important point seen by inspection of the bar plots in figure 5.12

is that the variance explained sums to approximately 100%. The specific quantities

show that the total main effect variances are 97.0%, 98.6% and 98.7% of the total

variance (for H̃∞, m1 and k1 respectively). The remaining (small) proportion of

variance is explained by interactions between parameters. Since the interactions are

small, little would be gained from a further analysis so it is not presented here.

We now consider the results from the same kind of sensitivity analysis for the

growth of Tp. Recall that the uncertainty distributions, seen in figure 5.9, for the

output growth coefficients exhibited nonlinearity so we expect to see evidence of this

in the results of a sensitivity analysis which are shown in figure 5.13.

Evidence of nonlinear response is shown in all three cases but most pronounced

in panels (b) and (c) with respect to variation in sdsa2 and sdsb1. sdsa1 and

sdsb0 remain almost inactive. Notice that the response of T̃∞ differs from all the

other cases seen so far because sdsa2 actually accounts for the largest proportion of
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the variance. Response of m2 and k2 are closely comparable to m1 and k1. Input

parameters sdsb1 and phimin account for the majority of the variance with 7.5%

remaining unexplained.

This concludes the analysis for this experiment and so findings are summarised.

Uncertainty analysis yielded output probability distributions for the maximum wave

height and period at effectively infinite fetch (H̃∞ and T̃∞). These have a clear phys-

ical interpretation and by comparison with observational data, in figures 5.8 (a) and

5.9 (a), we get a sense of the “accuracy” of the simulator given the input uncertainty.

Values of these coefficients derived from oceanic observations lie well outside of the

range of the output distributions suggesting possible structural errors in the simula-

tor, or that other important sources of uncertainty were not included in the analysis.

The uncertainty analysis also generated distributions for the coefficients (m1, k1, m2

and k2), which seemed to be more commensurate with real world observed values.

However, their physical interpretation is less clear. Although they express informa-

tion about the rate of wave growth, and in a sense can be measured, it is not clear

how they correspond to specific aspects of dissipative physical processes. That is,

they are not related to quantities we might expect to be relevant such as viscosities,

drag co-efficients, turbulence parameters or other similar components of a fluid sys-

tem that could readily be measured or inferred. As such, they do not tell us much

about the physics involved.

Some connection to the theory can be obtained by considering the coefficient H̃∞,

which specifies the limit of growth at an effectively infinite fetch. Noting that wave

height is essentially a measure of the total energy in the system, in a well developed

sea state almost all the energy will be stored in the low frequency end of the spectrum

(c.f. figure 5.2). Thus, dissipation of this energy will be important in governing the

limiting wave height. It is therefore not surprising to find that the input parameter

that governs the representation of the low frequency dissipation process, phimin,

is most influential. TC96 describe phimin as a parameter that gives some control

over the “full-growth” of waves at long fetch (see their section 5), consistent with

findings here. Indeed, phimin is by far the dominant source of variance in the output

distribution for H̃∞ contributing 87% of the total variance. Obtaining physical

insight from m1, k1, m2 and k2 is more difficult because the sea state is a function

of fetch, and these coefficients are derived from data along the whole fetch, which

covers a range of sea states. In the next experiment simulation output at specific

fetch is evaluated directly, rather than making use of any parametric representation.

This will allow for the investigation of specific sea states (rather than some kind of

average over fetch).
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Finally, the results of the analysis of T̃∞ are highlighted because this coefficient

did in fact exhibit sensitivity to parameters governing high frequency dissipation.

Noting that H̃∞ and T̃∞ are typically well correlated, it might be expected that

their sensitivity to parameters was very similar but that appears not to be the case.

There are a variety of measures of wave period and some are more sensitive to higher

frequency regions of the spectrum than others (e.g. Tz). We therefore might expect

high frequency dissipation to be more relevant to younger sea states but given T̃∞

characterises a fully developed sea state, the influence of sdsa2 is curious. However,

we should also bear in mind that the total variance for T̃∞ is actually very small,

with a standard deviation amounting to less than 0.1 (mean value 7.0).

The functional representation of wave growth is clearly a useful means of pa-

rameterising the data for fetch-limited growth but provides only limited scope for

physical insight. Given that the sea state evolves along the fetch, with the peak

period shifting to progressively lower values, it would be insightful to see how the

sensitivities of Hs and Tp change with fetch. In the next experiment fetch-limited

growth is analysed in a similar way but with consideration of specific points along the

fetch. In addition, uncertainty about wind speed is incorporated in to the analysis.

5.6 Experiment 5.B: Fetch-limited wave growth with a vari-

able wind

Experiment 5.A is now extended by regarding the wind speed as uncertain, together

with the addition of tuning parameters associated with the DIA nonlinear wave-

wave interactions. This is a natural extension given that we want to learn about the

effect of wind uncertainty (albeit in this simple case), and also noting that the DIA

scheme is so closely linked to both the TC96 input and dissipation parameterisation

and good wave model performance.

5.6.1 Experiment configuration and design

The experimental arrangement is exactly the same as for experiment 5.A but with

the inclusion of additional uncertain input. The experiment proceeds by performing

analysis for specific locations along the fetch. Experiments evaluate the response of

Hs and Tp at specific points, without using a dimensionless representation in this

case. This choice is made in order to clearly identify the effect of wind uncertainty

without scaling the output. Initially, six points along the fetch were chosen, at

141



5 UNCERTAINTY ANALYSIS FOR PROPAGATING WAVES IN A
CHANNEL (1-D)

distances of 52.3km, 104km, 260km, 367km, 517km and 917km46. The spacing of

the points reflects the slowing rate of development of the sea state. Results of the

analysis is presented only for fetches of 52.3km, 260km and 917km because there

was little difference between other points. This is discussed further shortly.

Input parameter specifications for the uncertainty analysis in this experiment

are shown in table 5.447 The introduction of uncertainty about the tuning of the

DIA is a natural progression since the TC96 scheme was tuned in conjunction with a

specific choice of DIA tuning. It is instructive to find out whether there is significant

interaction between the two parameterisations. Regarding uncertainty about the

wind, given the idealised case of wave growth under investigation, variability can

only be characterised in limited ways. Most obviously, we can simply draw the wind

speed from a Gaussian distribution. This ignores any possible spatial variation or

“gustiness”, but helps us investigate the notion that may be some average systematic

bias in the wind measurement. As in the previous experiment, six LHS designs

spanning the parameter space as specified in table 5.4 were generated.

5.6.2 Sensitivity analysis

Simulation output in terms of Hs and Tp at specific points along the fetch is used

to train a number of emulators. Linear regression (not shown) revealed that mean

functions of the form Hs ∼ 1 + x[2,3,4,5,7,8,9] + x2
4 were appropriate and Matérn (ν =

3/2) correlation functions were used. Indices for x correspond to the variables in

the same way, with the addition of x7, x8 and x9 corresponding to λDIA, CDIA and

wind speed respectively.

Results of the sensitivity analysis for output Hs at the three locations is shown

in figure 5.14. Main effects for each input together with explained variance are

shown. At a fetch of 52km, the distribution of Hs has a variance corresponding

to a standard deviation of 0.19m. This however increases to 0.29m at a fetch of

207km, and to 0.43m at a fetch of 917km. So it appears that the uncertainty

increases approximately linearly with wave height, and in this case is about 10%

of Hs. Nonlinear response is evident, particularly due to λDIA at short fetch. The

main effects, seen in 5.14 (a), (c) and (e) reveal the almost linear (and strong)

influence of the wind input. The dominance of λDIA, CDIA and wind speed is quite

striking. What is also striking is that parameters associated with energy dissipation

are now seen to have appreciable influence only at short fetch. At increasing fetch,

46The apparently irregular values stem from the logarithmic spacing specified in the WW3 output
file.

47This input specification is consistent with chapter 4 (shown in table 4.1), although with the
reduction of the variance of λDIA made in experiment 4.B.

142



5 UNCERTAINTY ANALYSIS FOR PROPAGATING WAVES IN A
CHANNEL (1-D)

Table 5.4: WW3 input parameters and sampling distributions for experiment 5.B

Switch Description Tuning Default Sampling

parameter value distribution

[Variable Assignment in WW3 manual]

ST2 Dissipation
(TC96)

High fre-
quency
dissipation

SDSA0 [a0] 4.8 N(4.8, 0.22)

High fre-
quency
dissipation

SDSA1 [a1] 1.7× 10−4 log10N(−3.293, 0.1772)

High fre-
quency
dissipation

SDSA2 [a2] 2.0 N(2.0, 0.22)

Low fre-
quency
dissipation

SDSB0 [b0] 3.0× 10−4 N(−3.25 × 10−3, (9.375 ×
10−4)2)

Low fre-
quency
dissipation

SDSB1 [b1] 0.47 N(0.5250, 0.031252)

Low fre-
quency
dissipation

PHIMIN
[φmin]

0.003 N(0.003, (1.0× 10−4)2)

NL1 Nonlinear
interactions
(DIA)

LAMBDA
[λ]

0.25 N(0.25, 0.031252)

NLPROP [C] 107 log10N(7, 0.11932)

Wind speed - - N(12.5ms−1, 0.52)
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(f) Mean = 4.2m; S.D. = 0.61m

Figure 5.14: Sensitivity analysis for Hs at increasing distance along the fetch.
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the contribution to the total variance by dissipation diminishes almost entirely.

The results here seem to support the historic beliefs that uncertainty about winds

dominated simulation error. Given the input uncertainty is characterised by a s.d.

of 0.5ms−1, it has a remarkably strong individual effect, contributing at least 28%

to the output variance in each case. However, the input parameters associated with

the DIA contribute in excess of 63% of the variance at 200km fetch and beyond. In

terms of the wave simulator operation, this is evidence perhaps that the importance

of the DIA, and the Snl source term in general, is to a degree overlooked, especially

considering the focus in recent years on the development of input and dissipation

schemes.

We now move on to discussion of the sensitivity analysis for Tp. Before consider-

ing the results, findings of linear regression are described because highly nonlinear

response to λDIA was identified. Other parameters, apart from wind speed, were

seen to be largely inactive by comparison. Plots of the residuals from a first order

regression model against λDIA are shown in figure 5.15. The nonlinearity arises from

some kind of divergent behavior, as the value of λDIA is increased beyond approxi-

mately 0.31. Although nonlinear response is evident at the shorter fetch of 53km it

does not manifest in quite the same way. This behaviour is mathematically interest-

ing but, physically, almost certainly spurious. The most obvious explanation is that

λDIA was never intended to be adjusted much beyond its default value of 0.25. That

is, in this particular example, the approximate solution yielded by the DIA scheme

with values of λDIA beyond approximately 0.31, together with some other combi-

nations of input parameter values, results in highly unphysical behaviour. This is

problematic in terms of formulating an emulator because an assumption of the sta-

tistical model is continuity of the data. This could be avoided by redesigning the

experiment to exclude the specific region of input space (where 0.31 < λDIA < 0.4).

Given the input uncertainty specification λDIA ∼ N(0.25, 0.06252), we see that the

problematic region lies beyond 1 s.d. and would therefore make only a limited

contribution to any analysis. Formal investigation of that specific region would re-

quire the use of a statistical model appropriate to discontinuous data. The output

data for 52km fetch appears to be continuous, if somewhat divergent at the high

end, so we may be able to obtain some analysis. Making use of a linear function,

Tp ∼ 1 + x[3,4,7,9] + x2
7 + x3

7 + x8
7 + x9

7 + x10
7 and a nugget term an emulator yields the

graphical diagnostics in figure 5.16 (a). Notice that the output data set is narrowly

distributed with a mode near the lower end of the scale, between approximately 4

and 7 seconds. The higher (or more extreme) values are sparse and are likely related

to high input values of λDIA. Similar points are also observed in figure 5.15 (a), at
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for different values of fetch. Note that actual values of λDIA are shown.
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Figure 5.16: Graphical diagnostics and sensitivity analysis for Tp at 52km fetch.
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the higher end of the range. With a number of outliers and a fairly irregular error

distribution, the emulator does not validate terribly well, which is likely due to the

heteroscedasticity of the training data. Results of a sensitivity analysis are shown

in figures 5.16 (b) and (c) and reflect the strong influence of λDIA and wind speed.

However we should be cautious in interpreting them due to the poor fit of the em-

ulator. In particular notice the response of the wind speed. It no longer shows a

linear relationship that we expect but induces more of a cyclical response around a

linear trend, which is symptomatic of the poor emulator performance48. Nonethe-

less, at least qualitatively we can see from figure 5.16 (c) that the input dissipation

parameters actually have an appreciable influence at short fetch, very much like

the case for Hs. Given the questionable emulator performance, the experiment is

redesigned with 0.15 < λDIA < 0.30 which removes the divergent behaviour arising

from higher (and lower) values. Emulators are found to validate far more robustly,

although some discontinuity is still evident for the response at short fetch for higher

values of λDIA. A nugget term (=0.5) was included in the emulator in order to com-

pensate for the fact that the model assumptions (i.e. constant variance) appear too

strong for the data. Results of the uncertainty and sensitivity analysis are shown

in figure 5.17. Total variances remain quite small, rising to approximately s.d. =

0.4s at the longest fetch. Noting that the joint input uncertainty distribution is now

different between the experiments for Hs and Tp, we see a much lower variance (as

a proportion of the mean) at all fetches. With respect to the results at 52km fetch,

notice first that they, at least qualitatively, have not changed substantially. λDIA

and wind speed still dominate the response but a number of dissipation parameters

also contribute significantly to the total variance. Notice also that we have recovered

the strong linear dependence of Tp on the wind speed. The pattern of influence is

comparable to that for the Hs output data with two notable differences. Firstly,

although again λDIA is seen to induce a strong nonlinear response, the form of the

response is different for Hs and Tp. Secondly, the response to CDIA is weaker for

Tp. Figures 5.17 (d) and (f) reveal how at longer fetch λDIA and wind speed are the

dominant sources of variance. This is consistent with analysis results of the Hs data

and no doubt due to the correlation between the two quantities. Note also that the

main effect variances account for 96.5%, 99% and 99.5% of the total variance for

the output at the three fetches respectively, revealing that there is little parameter

interaction.

Before moving on to the final experiment in this chapter, let us briefly summarise

the results. Regarding the total variance induced in the output measures, Hs is seen

48Think of this a bit like the GP mean function “oscillating” between design points.
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(f) Mean = 9.0s; S.D. = 0.43s

Figure 5.17: Sensitivity analysis for Tp at increasing distance along the fetch.
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to be most sensitive to input uncertainty, with a distribution characterised by a s.d.

of 0.61m at the longest fetch. This is substantial given a mean of 4.2m. An important

finding in regard to the overall objectives in this thesis is the determination that

wind input is highly influential. In all situations, that is at short and long fetch,

for output Hs and Tp, wind speed was found to contribute at least 27% to output

variance. In developed sea conditions this was seen to be as high as 47%. This

finding is particularly interesting noting that the input uncertainty for the wind

speed, N(12.5ms−1, 0.5), is arguably conservative. However, it is clear that other

input parameters do contribute significantly given their uncertainty specifications.

Specifically, the nonlinear wave-wave interactions parameterisation is at least as

influential. In all cases, other than for Tp at short fetch (where it was 32%), the

combined contribution to output variance was at least 40% and sometimes exceeded

60%. These findings highlight the importance of nonlinear interactions, at least in

terms of how the DIA scheme is implemented in WW3. Relatively small (percentage)

adjustments in the tuning parameters can induce nonlinear response and influence

simulation output substantially. Finally, an important point is that at short fetch for

developing seas, energy dissipation is clearly more active. There is a big contrast

between its influence at short and long fetch, where it is almost entirely absent.

With these findings in mind, we now move on to the final experiment where the

wind configuration is modified.

5.7 Experiment 5.C: Linear wind decay

5.7.1 Experiment configuration and design

Possibly the simplest extension to the previous experiment is that of a wind speed

that decays along the fetch (though remains constant in time). This remains a

fairly contrived arrangement but could be envisaged in reality as resulting from

some kind of spatial dissipation of the wind. Drop in wind speed is perhaps more

easily imagined as a transitory or dynamic effect but over a larger scale it could

endure for long enough to result in such a scenario as being investigated here. The

objective is to learn about how this variation of fetch-limited wave growth compares

to the previous example, and whether it gives rise to any significant difference in

response to uncertainty. More specifically, do the same processes act in the same

way and does uncertainty about tuning and wind speed have the same effect on

those processes.

The experimental configuration here is modified only by the change in forcing

wind profile. The profile has an initial wind speed, which is regarded as uncertain
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in the same way as the previous experiment, characterised by N(12.5ms−1, 0.52).

The wind speed decays to zero at the end of the 1000km fetch. The resulting

growth profile obviously differs from the previous case in that steady fully developed

conditions are not reached. A situation is expected in which the waves grow along

the fetch until the wind speed falls to a point where it can no longer support wave

growth. This location is governed in some way by wind speed, energy dissipation

and nonlinear interactions. After that point, waves will diminish as the wind speed

drops to zero.

The uncertain parameters and experiment design remain the same (as set out

in table 5.4 with the adjustment of λDIA), comprising three maximin LHS designs.

Before proceeding to perform the analysis let us examine the evolution of the sea

state along the fetch. An arbitrary sample of nine simulations from the first design

set are shown in figure 5.18. The output data in this experiment is plotted on

a common scale with simulations (generated from exactly the same input) from

experiment 5.B, in order to draw a comparison. As anticipated, the growth of Hs

gradually departs from the fetch-limited case seen previously due to the decaying

wind speed. Variation between samples can be seen, particularly in the overall

magnitude of wave height and period. Looking more closely it can be seen that the

“transition” region, from growth to decay, that lies at approximately 300km, exhibits

variation in terms of its rate of change at the onset of decay. In slight contrast, the

evolution of Tp exhibits a steady monotonic increase in all cases, although the slower

rate of increase is consistent with the decaying wind. The continued growth along

the fetch in spite of the diminishing wind speed is indicative of the continuous

process of energy transfer, via wave-wave nonlinear interactions, to lower and lower

frequencies (and higher periods). With respect to Tp only, runs #36 and #57 exhibit

discontinuity which appears somewhat unphysical. Run #57 in particular contains

two erratic step increases. A closer look at the underlying spectra reveals that

in these cases it is bimodal, and the step change is attributable to a change in

dominant mode at that point. This highlights that Tp must be interpreted with

care. Bimodality seems unlikely in this “smooth” and idealised case, and is likely

attributable to some region of the design space that results in less realistic output.

In order to examine the transition region at around 300km and investigate waves

at long fetch, the conditions at points highlighted by red squares and triangles are

chosen for analysis. Emulators are trained in the usual way and the results are

discussed in the next section.
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Figure 5.18: Wave growth and decay profiles for different simulations taken from the
first design set (experiment 5.C). These are compared with wave growth profiles from
experiment 5.B, shown by the solid and dashed lines. Points along the fetch for which an
uncertainty analysis was carried out are designated by red squares and triangles.
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5.7.2 Uncertainty and sensitivity analysis for Hs and Tp

Emulators were formulated and sensitivity analysis forHs and Tp at fetches of 292km

and 917km are carried out (marked by the red squares and triangles respectively, in

figure 5.18). Mean functions of the form Hs ∼ 1 + x[2,3,4,6,7,8,9] + x2
7 + x3

7 and Hs ∼
1 + x[2,3,4,6,7,8,9] + x3

7 were used for fetch 292km and 917km respectively. Nonlinear

response to λDIA (denoted by x7) is again observed. Results for the analysis of Hs

are shown in figure 5.19. The results bear resemblance to those for the case of fetch-

limited growth at long fetch shown in figure 5.14. Evidently energy dissipation is

not very active at both of these locations, in terms of either low or high frequencies.

However, as seen previously nonlinear interactions are clearly influential, and wind

speed uncertainty is responsible for the largest proportion of variance. There is in

fact little difference between the two locations. Given the lack of influence of energy

dissipation at longer fetch seen here, we can regard this as further evidence that

effects of energy dissipation are more confined to the evolution of waves in young

sea states.

Emulators were also formulated and trained using output for Tp. Linear re-

gression identified that terms up to order 8 in λDIA explained the trend in out-

put. Mean functions of the form Tp ∼ 1 + x[2,3,4,5,7,8,9] + x2
7 + x3

7 + x5
7 + x6

7 and

Tp ∼ 1 + x[2,3,4,5,7,8,9] + x2
7 + x3

7 + x4
7 + x6

7 + x7
7 + x8

7 were used for fetch 292km and

917km respectively. Also note that a large nugget term was required to compensate

for heteroscedasticity induced by λDIA. Results of sensitivity analysis for Tp are

shown in figure 5.20. The dominance of the wind speed and lack of sensitivity to

other input is consistent with previous findings. As with the results for Hs, we can

see that as the sea state develops the influence of the nonlinear interactions slowly

diminishes. Note also the highly linear dependence of Tp on the wind speed and the

nonlinear dependence on λDIA.

In general, these results are very similar to the fetch-limited case. Wind speed

has been found to be the dominant source of uncertainty in every case although

the tuning of the DIA scheme, in particular the parameter λDIA, is also highly

influential. Other input parameters associated with the tuning of both low and high

frequency wave energy dissipation of the TC96 parameteristion are largely inactive.

In the next part of this experiment the output is parameterised in a similar way

to that used in experiment 5.A. This allows for the analysis of growth and decay

rates, rather than wave summary statistics at specific points.
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Figure 5.19: Sensitivity analysis for Hs at specific points along the fetch.
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Figure 5.20: Sensitivity analysis for Tp at specific points along the fetch.
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5.7.3 Uncertainty and sensitivity analysis for growth rates

Considering figure 5.18 we can see variation in the growth and decay process of wave

height. Between 200km and 400km the wind drops below a strength sufficient to

maintain the growth of wave height, and beyond this point the wave height begins to

decay. Further inspection of figure 5.18 suggests that we could define three regions

along the fetch. Firstly, there is a region of growth up to approximately 200km.

This is comparable to the fetch-limited growth region seen in experiments 5.A and

5.B although here, since the wind speed is continuously decaying along the fetch,

the growth rate also decays with fetch. Secondly, between approximately 200km

and 400km there is an initial region of decay, where the wave height begins to

diminish. This region exhibits a variation in terms of how rapidly the decay occurs.

For example runs #43 and #50 seem to show a fairly rapid decay, while runs #29

and #57 show a much broader profile. Thirdly, at fetches beyond 400km a region

of fairly steady decay is observed.

In order to investigate the growth, and initial decay regions, the output data

is represented parametrically. Second order linear regression models, of the form

Hs ∼ a0 + a1F + a2F
2, are fitted to output data for Hs. Note that the models are

fitted to the actual data, not its log as typically shown in figure 5.21 for example.

The use of such models therefore reduces the output data to three coefficients, a0,

a1 and a2 corresponding to the three terms. Physically, the constant term in the

model essentially corresponds to absolute Hs (this is analogous to H̃∞ in experiment

5.A). The first order term (in fetch) corresponds to the rate of change of Hs with

fetch, which is the transferral of wind energy to wave energy with fetch. Higher

order terms correspond to higher order effects and so in this case the 2nd order term

captures the rate of change of net energy transfer. Second order models were found

to fit the growth region from approximately 35km to 95km, and the transition region

from approximately 200km to 400km. Examples of such models are shown in figure

5.21.

Analysis of the initial growth region is discussed first. The linear model captures

the wave growth well, as indicated by the modal average of the multiple R-squared

values for the regression fitting for the three design sets, of 0.9978. The three coef-

ficients, a0, a1 and a2 provide information about wave growth, as mentioned above.

Analysis therefore proceeds by training emulators to each of the coefficients and

running a sensitivity analysis. A few points are mentioned regarding the construc-

tion of the emulators. Prior mean functions were determined through the use of

simple regression methods as discussed previously. For coefficient a0 a function of

the form a0 ∼ 1 + x[2,3,4,5,7,8,9] + x3
7 + x5

7. Here we again see higher order terms
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Figure 5.21: Linear regression models fitted to Hs training data. The first (blue) line
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associated with the response to λDIA. a1 has dependence only on λDIA, CDIA and

wind speed with the form, a1 ∼ 1+x[7,8,9] +x2
7 +x3

7. a2 has linear dependence on all

input except sdsa0 and phimin (which are inactive). Matérn (ν = 3/2) covariance

functions are employed in all cases. Emulator graphical diagnostics are shown in

figure 5.22. Emulator performance is good, but notice that the emulator posterior

variance appears to increase for predictions of each of the three coefficients. This

reflects the fact that the terms in the linear model that is used to represent the

simulation output explain less and less of the variance of the output, with increas-

ing order. That is, the higher the order of the term, the more “noisy” it is, and

the weaker the relationship to the output data. This seems to suggest that there

is weaker higher order dependence on the uncertain input. The emulator for the

highest order term, a2, therefore has the highest prediction uncertainty. The em-

ulator for the coefficient of the lowest order term, a0, (which is closely related to

maximum Hs) makes very good point predictions with low variance, indicating the

strong relationship between the input parameters and a0. Results from the sensitiv-

ity analysis are shown in figure 5.23. Again a strong linear response to wind speed

is shown in all cases, consistent with previous findings. The influence of the input

on coefficient a0 is similar to that seen for Hs at short fetch in figure 5.14 (b) in the

previous experiment. In fact, the results of the uncertainty analysis are comparable

with the mean and s.d. of 1.9m and 0.23m seen in that case. A similar comparison

can be made between the response of a1 and the response of Hs at longer fetch

(∼ 200km). The influence of input, dominated by nonlinear interactions and wind

speed, is very similar. This is physically consistent since, in the absence of higher

order effects, the growth rate will closely correspond to the maximum wave height,

seen at approximately 200km. The influence of input on a2 is interesting, being dis-

tinctly different from anything we have seen previously. Evidently parameters sdsb0

and sdsb1, both associated with low frequency energy dissipation, are influential and

induce nonlinear response, suggesting that energy dissipation is important in higher

order physical effects (at least in terms of the simulator’s representation of them).

The mean value of -0.1 signifies the decline in wave growth. In the absence of clear

connections between the input and the details of physical properties or processes

that might be associated with higher order effects, it is hard to gain more in-depth

physical insight. That is a drawback of the empiricism used in the parameterisations

under investigation here. Nonetheless the results do suggest energy dissipation is

responsible for higher order behaviour.

Before concluding this experiment, a similar analysis is performed for the transi-

tion region, as indicated by the red lines in figure 5.21. The linear model of the form
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Figure 5.22: Emulator validation diagnostics for regression coefficients a0, a1 and a2.
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Figure 5.23: Sensitivity analysis for the coefficients describing the initial growth of wave
height.
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Hs ∼ b0 + b1F + b2F
2 is fitted to the output data. The mode and mean averages

of the multiple R-squared for the model are 0.997 and 0.982 respectively suggesting

that it captures the variability well. In the same way as before, three emulators are

formulated, one for each of the coefficients b0, b1 and b2. As in previous cases we

expect to see dependence mainly on wind speed uncertainty and the DIA scheme,

given that the sea state is not growing in this region. Diagnostics for the emulators

are shown in figure 5.24. A small number of outlying points can be seen suggesting

that the modelling assumptions may be too strong in all cases, although the emu-

lator performance looks reasonable. In some cases the linear model was probably

more poorly fitted to the simulation output data and therefore we might expect a

few outlying points. The diagnostics show a pattern similar to that seen previously,

where the emulator fits the coefficient for the lowest order term, b0 in this case,

but exhibits high posterior variance when predicting coefficients for the higher order

terms, b1 and b2. Again, it is likely therefore that the poorer emulator fitting is

due to the additional uncertainty introduced by the regression fitting process. As

a result large nugget terms (0.44, 0.33) were used in these cases. In fact it may

be reasonable to infer directly from the diagnostics that the output data are ex-

plained almost entirely by coefficient a0. Subsequent sensitivity analysis reveals the

results shown in figure 5.25. The response of coefficient b0 is similar to a0 seen in

figure 5.23 (a) and very similar to the results for the point analyses shown in figure

5.19. We see a very strong influence of sdsa2 in the response of b1, which also bears

some comparison with the response of coefficient a2, although the specific pattern

is again something new. The proportion of the variance explained by the main ef-

fects appears to be dominated by energy dissipation. The response of b2 looks more

familiar, and is in fact comparable to the response of coefficient a1. Note also that

the influence of wind speed appears to be largely absent in the response of both

b1 and b2. This suggests that while the overall magnitude is strongly dependent

upon the wind speed, the way in which the transition from wave growth to decay

occurs is not, and influenced predominantly by the simulation physics. This seems

physically consistent with the following qualitative description. Since wave height

is a measure of total of energy, the maximum wave height, correlated with a0, is

strongly governed by wind speed. However, as the wind speed diminishes and an

energy balance is achieved (i.e. the wave height ceases to grow), the influence of the

wind rapidly disappears leaving only the simulation physics. The general trend in

the decay of wave height appears to be governed strongly by the dissipation physics,

which is what we would expect. Figure 5.23 (b) and (f) also suggest that nonlinear

interactions (via λDIA) have a strong influence on the rate of decay.
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Figure 5.24: Emulator validation diagnostics for regression coefficients b0, b1 and b2.
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Figure 5.25: Sensitivity analysis for the coefficients of the linear regression fit to the
transition region for Hs.
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5.7.4 Experiment summary

In this experiment we have learned more about fetch-limited “type” wave growth

by examining a situation where wind speed is seen to decay with fetch. Uncertainty

and sensitivity analysis of Hs and Tp at specific points along the fetch have revealed

very similar results, in terms of the influence of wind speed and wave physics, to

that for idealised fetch-limited growth. Specifically, at fetch beyond 200km, only

wind speed and nonlinear wave-wave interactions have an appreciable effect. For

Hs only, the initial wave growth rate and behaviour in the “transition” region were

analysed by using a second order linear regression model to characterise the output

data. This appeared to be effective and indicated that higher order effects, in terms

of wave growth and decay, and their respective rates as of a function of fetch, were

very much governed by the physics of the simulator, particularly energy dissipation.

In the absence of a clear connection to specific physical processes for the input

parameters, or without looking deeply into the underlying physics, it is difficult to

make more robust statements about the underlying processes and how well they are

represented in the simulator.

5.8 Chapter summary

In this chapter the results of uncertainty analysis for simulation output of Hs and

Tp under conditions of fetch-limited growth, and a variant, are presented. In exper-

iment 5.A, a functional representation of simulated fetch-limited growth was used

and sensitivity analysis performed with respect to the effect of uncertain tuning pa-

rameters. In experiment 5.B, the scope of the analysis was adjusted and extended

to include additional tuning parameters for the DIA nonlinear wave-wave interac-

tion scheme and uncertainty about wind speed. Sensitivity analysis was performed

for specific points along the fetch. Experiment 5.C considered a variation of fetch-

limited growth by introducing a wind structure that decayed with fetch. In general

emulators were found to be very effective although situations arose, largely due to

the dramatic effect of large perturbations to λDIA, where output data had to be

carefully considered.

Specific points are summarised in the follow sections.

5.8.1 Wind input

Unsurprisingly wind input is found to be highly influential in developed seas both

in terms of Hs and Tp. It typically accounts for between 25% and 50% of output

variance in such cases. It is found to be less important (although still very sig-
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nificant) at short fetch and also less important with respect to how the sea state

evolves with fetch. Findings of experiment 5.C show explicitly that where the energy

transfer from wind to waves approaches zero, the influence of wind speed also dimin-

ishes. Recall also that for all experiments uncertainty on the initial wind speed was

characterised by windspeed ∼ N(12.5ms−1, 0.52). In chapter 2 this was argued to

be conservative so its importance relative to other sources of uncertainty generally

appears to be high.

5.8.2 Tuning parameters

Tuning parameters associated with energy dissipation are found to be most influ-

ential at fetches of up to 100km. This is consistent with the qualitative argument

that energy dissipation is a highly influential process in developing seas where white-

capping is prevalent, and there is a strong energy deficit between wind and waves.

This suggests that dissipation is also important in dynamic situations, driven by

rapid increases in wind speed. Such situations have not yet been explored but they

would no doubt be an interesting research focus. See section 5.8.3 for additional

comments.

In contrast, the tuning of the DIA scheme appears to be influential beyond

100km, with its importance increasing fairly quickly with fetch. Specifically, bothHs

and Tp are sensitive to perturbation of the parameter λDIA. For the majority of un-

certainty analyses in this chapter its input specification was λDIA ∼ N(0.25, 0.0152),

after adjustment owing to unphysical results. In experiment 5.B it was found that

for values at the extremes of this range some kind of divergence in the output was ev-

ident in some cases (see figure 5.15). Although its physical interpretation is less clear

it nonetheless offers a powerful means of adjusting the behaviour (and potentially

performance) of the simulator. Given that few published studies exist that examine

the DIA scheme in detail (e.g. Tolman, 2004a), particularly in an operational sense,

the findings here are important.

5.8.3 Static conditions versus dynamic conditions

Noting the comments in the previous section relating to the importance of energy

dissipation in dynamic situations, we should be mindful that the investigation so

far largely ignores dynamic effects. That is, in this chapter steady state situations

have been investigated, where an energy balance between wind and waves exists. We

have not explored how uncertainty on the tuning parameters or wind speed influence

simulations where there is not a balance, i.e. where there is a (strong) energy

imbalance, and the sea state is growing in time. The way uncertainty manifests in
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such dynamical situations remains unknown. This may very well differ from the

results seen so far. For example, the importance of dissipation physics may change

depending on the rate of wave growth and so on. In the next chapter we take

another step towards investigating dynamic effects by considering more complex

dynamic winds, and their effect on wave direction. Also, more dynamic conditions

are investigated in a realistic case in chapter 7.
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6 Uncertainty analysis for directional waves in an

idealised (2-D) ocean

6.1 Introduction

Having gained an appreciation of how uncertainty in input affects the idealised cases

of developed conditions (in chapter 4) and fetch-limited growth (in chapter 5), now

complexity of simulation is increased to examine a wider range of phenomenon. In

this chapter the experiments continue to investigate uncertainty in the same way, but

2-dimensional wave propagation is allowed. This permits more explicit investigation

of directional waves, and also allows for the specification of more complex winds.

A brief review of studies into waves arising from a change in wind direction, or

turning wind, is given in section 2.4.3. Like the cases of duration- and fetch-limited

growth, this kind of physical phenomenon is often used as a benchmark for assessing

wave model performance (see e.g. SWAMP, 1985; Komen et al., 1994). In terms of

assessing the effect of uncertainty on wave direction, it is a natural starting point.

In this chapter wave direction is characterised and expressed by the commonly used

summary statistics of mean direction and directional spread.

Two experiments are conducted in this chapter. Firstly, experiment 6.A considers

how wave direction responds to a wind that turns abruptly through 90 degrees.

Like experiments in chapter 4 this is done using only a single grid cell and so is an

investigation of the source function only. This then allows for a comparison with the

same experiment conducted with advection on a spatial grid. A grid, of 1000km×
1000km, is therefore introduced in experiment 6.B, which is conducted in two parts.

The forcing wind for the experiment is formulated parametrically, allowing for a

more detailed investigation of the effect of wind uncertainty. Uncertainty about

wind input, and the approach to parameterising the wind is described in section

6.4.3. The rest of the chapter is structured as follows. Sources of uncertainty and

general points on the experimental approach are discussed in section 6.2. Experiment

6.A and 6.B parts (a) and (b) are presented in sections 6.3, 6.4 and 6.5 respectively,

followed by a short chapter summary in section 6.6.

6.2 Sources of uncertainty and experiment design.

The experiments conducted in this chapter are summarised in table 6.1 and are

described in detail in their respective sections. Sources of parameter uncertainty

and their sampling distributions, related to energy dissipation and the DIA scheme,

are not changed from experiment 5.B (table 5.4) and are listed in table 6.2. The
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Table 6.1: Experiments presented in chapter 6.

Experiment Description

6.A Investigation of wave direction due to a turning wind, in a single grid cell.

6.B (a) Exp 6.A with advection, configured on a large spatial grid.

6.B (b) Exp 6.B (a) modified with wind parameterisation.

Table 6.2: WW3 input parameters and sampling distributions for experiments 6.A, 6.B
(a) and (b)

.

Switch Description Tuning Default Sampling

parameter value distribution

[Variable Assignment in WW3 manual]

ST2 Dissipation
(TC96)

High fre-
quency
dissipation

SDSA0 [a0] 4.8 N(4.8, 0.22)

High fre-
quency
dissipation

SDSA1 [a1] 1.7× 10−4 log10N(−3.293, 0.1772)

High fre-
quency
dissipation

SDSA2 [a2] 2.0 N(2.0, 0.22)

Low fre-
quency
dissipation

SDSB0 [b0] 3.0× 10−4 N(−3.25 × 10−3, (9.375 ×
10−4)2)

Low fre-
quency
dissipation

SDSB1 [b1] 0.47 N(0.5250, 0.031252)

Low fre-
quency
dissipation

PHIMIN
[φmin]

0.003 N(0.003, (1.0× 10−4)2)

NL1 Nonlinear
interactions
(DIA)

LAMBDA
[λ]

0.25 N(0.25, 0.031252)

NLPROP [C] 107 log10N(7, 0.11932)
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specification of wind uncertainty is however now more complex. In experiment 6.A

wind speed alone is specified (in the same way as chapter 5) but a parameterised

wind is defined in experiment 6.B. This allows for the specification of uncertainty

about wind speed, direction and dynamics (in terms of the time scale for change

to occur). A detailed explanation of the parameteristion, together with parameter

specifications, is provided in section 6.4.3.

Numerical uncertainty is minimised by adopting a high directional resolution for

the wave frequency spectrum, of 36 bins. The spatial grid used in experiment 6.B

has dimensions of 1000km× 1000km and a (high) resolution of 20km per cell (as in

chapter 5) thus minimising numerical error associated with energy propagation.

6.2.1 Notes on experimental design

For experiment 6.B, noting the increase in the number of dimensions of the param-

eter space, typically four maximin LHS designs of 80 points are run for the purpose

of exploratory analysis, emulator training and validation. 60 points designs were

adopted for experiment 6.A. Note that on the high resolution spatial grid, four days

of simulation time for 320 design points (four designs) takes approximately 6 hours

when run on 64 cores of a powerful HPC.

6.3 Experiment 6.A: Source term integration for a turning

wind (0-D)

The purpose of this experiment is to determine the effect of parameter and wind

speed uncertainty on the predicted response and evolution of simulated wave direc-

tion. The case of a “turning wind” is considered. As discussed in section 2.4.3,

turning winds have been observed on the open ocean and the situation is often used

a benchmark case for wave simulator testing and calibration. SWAMP (1985), for

example, compare simulations of this phenomenon produced by a number of different

simulators. In this experiment their example is followed for the purpose of perform-

ing uncertainty and sensitivity analysis. Wave summary statistics, derived from the

directional frequency spectrum, typically used to describe wave direction are mean

wave direction and directional spread. These quantities are typically produced as

default output from a wave simulation.

In formulating the experiment, SWAMP (1985) advocated making a sudden

change in wind direction at the point in time where fp = 2fPM , where fPM is the

peak frequency of a fully developed sea state as identified by Pierson and Moskowitz

(1964). That is, the sea state is in some sense “halfway” developed. This approach
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Figure 6.1: Time evolution of the simulated 2-D spectrum generated from a turning
wind. Times indicated are relative to the shift in wind direction, not the start of the
simulation. Note that the colour corresponding to the spectral intensity has been smoothed
for visualisation purposes and may not capture some of the fine detail.

has also been taken here. This experiment utilises the same single cell configuration

that was considered in section 4.6 where duration limited conditions were investi-

gated. The configuration uses a forcing wind of 10ms−1 in a direction of 270◦ which

was turned abruptly by +90◦. The condition fp = 2fPM = 0.255 was found to

be satisfied at a time of +04:30 hours from evolution from calm conditions. For

sea states exhibiting multi-modal or skewed directional frequency distributions the

mean direction may differ from, say, the direction of the peak frequency (assuming

a distinct peak exists), so caution is required. It is clearly important to inspect the

entire directional spectrum for irregularity. The time evolution of the simulated 2-D

spectrum for the (design) mean input is shown in figure 6.1. The development of

wind-sea in the new (wind) direction becomes distinctly evident from approximately

+1:30 hours onwards. As the sea state evolves the new wind-sea appears to merge

with the existing spectrum and the direction of the spectral peak gradually aligns

with the new wind direction. Notably the spectral “shape” appears to remain quite
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Figure 6.2: Time evolution of mean wave direction when a sudden change in wind
direction of +90◦ occurs, where fp = 2fPM .

consistent throughout the transition. That is, the sudden change in direction does

not give rise to the formation of a well defined second spectral peak, but rather there

is a steady transition, and the initial spectrum at time +00:00, in a sense, is simply

rotated about the origin - it retains its shape in the spectral space. This is in part

due to the modest change in direction and wind speed (10ms−1), and with a larger

directional shift and higher wind speed we might expect a second spectral peak to

form as part of the transition to the new sea state. The 2-D spectrum is now re-

duced to mean direction and directional spread, the time evolution of which, for the

mean run, are shown in figure 6.2. The solid black line shows the time evolution of

the mean direction. The change in wind direction at time +00:00 is clearly evident

as the wave direction immediately, and rapidly, begins to adjust. The transition

is smooth with a fairly linear initial response that has diminished considerably by

the time a direction of 340◦ is reached. The corresponding evolution of directional

spread is given by the dashed black line. Notably, we can see that the spread in-

creases from the very beginning of the simulation and then, commensurate with the

change in wind direction, increases again more rapidly. Interestingly, after approx-
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imately t=+03:00 the gradient (red solid line) of the mean wave direction seems

to track the change in directional spread quite closely, although lags it by about 3

hours. The evolution of directional spread is also quite easy to see visually from

figure 6.1, with the largest spread happening between t=+2:00 and t=+4:00 hours.

A broadening of the directional spectrum is expected given that a new wind-sea in

the new direction is being generated concurrent with an existing wind-sea.

The final information provided in figure 6.2 is the blue dotted line showing a

fitted directional relaxation model as proposed by Holthuijsen et al. (1987). Recall

equation (2.15), which describes how wave direction responds to a changing wind.

∂θ0

∂t
= τ̃ sin(θw − θ0)

This model was fitted to the simulated data, with the resulting curve shown by the

blue line, where τ̃ = 0.5 was found by a nonlinear least squares algorithm. This value

is lower than those generally estimated from direct observation by Holthuijsen et al.

(1987) although the fit is quite poor immediately after the directional change. The

fit is much better after t=+2:00. Compared with the model, the simulator does not

appear to give a sufficiently rapid response. However, the relaxation model itself is

based upon a number of approximations and, as shown in Holthuijsen et al. (1987),

does not give consistent results when compared to observations, observational error

being high.

The analysis here therefore investigates how variability within the wave simulator

effects predictions of this type of phenomenon. A designed experiment was run using

the same design as experiment 4.B. Output from a sample of five runs from the first

design set are shown in figure 6.3. The top left panel shows the output from all

five runs on the same axis for comparison. This sample suggests that uncertainty

in simulator tuning can produce different rates of directional change, but that the

direction tends to converge closely after about 20 hours. In terms of performing an

analysis, there are a number of options. The simulator output in this case could

be parameterised by means of a functional form, in a similar way to the output for

fetch-limited growth in chapter 5. We could, for example, fit a relaxation model as

discussed (and seen in figure 6.2). However, this form is not flexible enough to fit

well in all cases and in the absence of a suitable expression, particularly something

with a physical basis, we can proceed by analysing specific points in time. A possible

criteria for selecting a specific point could be to choose the point with the highest

variance across the design data. Time point t=+4:30 hours exhibits the largest

variance (79.5◦), which is also apparent qualitatively on inspection of the top left

panel of figure 6.3. Use of such a criteria is justified given the objective is to evaluate
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Figure 6.3: Output from five different model runs in the first design set. The top left
panel shows all the data in the other five plotted on common axes.
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the variance and explain its origin. Note however that all time points in a series

appear to be highly autocorrelated and so similar analysis results would be expected

for each point. Also notice that because the initial direction is the same in all cases,

the magnitude of the direction at most time points is directly correlated to the initial

rate of directional change.

So in proceeding to formulate an emulator for mean wave direction at t=+4:30,

initial linear regression, shown in figure 6.4 (a), reveals an output dependence very

similar to that seen in figure 4.15. A strong nonlinear correlation with λDIA is ob-

vious. An updated regression model of the form, mean dir ∼ 1 + x[1,2,3,4,5,6,7,8,9] +

x2
[3,4,7] + x3

7 + x4
7, was formulated residuals from which are shown in figure 6.4 (b).

An emulator was constructed using the same formulation for the prior mean func-

tion and a Matérn (ν = 3/2) covariance function. Two training data sets (totalling

120 points) were sufficient to build an emulator with robust statistical properties.

Results from the emulator validation are shown in figure 6.5. The observed Maha-

lanobis distance was 55.0 (compared with the reference distribution having mean

and s.d. of 60.0 and 13.9) and the graphical diagnostics do not reveal any obvious

conflicts. Using the emulator posterior mean function a Monte Carlo uncertainty

analysis was performed to obtain an uncertainty distribution, shown in figure 6.6.

The fairly rapid decay from the mode into a broad tail is likely due to the strong

nonlinear response to λDIA. Sensitivity analysis confirms this, the results of which

are shown in figure 6.7. The total variance, with s.d. = 4.1◦, is small given the total

change in wind direction of 90◦. Recall that the nonlinear wave-wave interactions

play an import role in the response of the sea to a changing wind direction, so sensi-

tivity to the tuning of the DIA was expected. Note also that the input uncertainty,

λDIA ∼ N(0.25, 0.03125), is larger than that used in the previous chapter so we

might expect other input to be more influential were this reduced. The other input

to the simulator has little influence, giving a change of no more than ±2 degrees

over the entire range of variation.

We now move on to consider the behaviour of wave directional spread under

conditions of uncertain input. The same design and simulation output were used,

a small sample of which we have already seen in figure 6.3. Initial linear regression

reveals a response similar to mean wave direction, yielding a linear model of the

form spread ∼ 1+x[4,5,7,8] +x2
7 +x3

7 +x4
7. Residuals from this model plotted against

input are shown in figure 6.8 (a). Four design sets were used to train the emulator in

order to reduce the posterior variance on point estimates. Results from the graphical

emulator validation are shown in figure 6.8 (b). The observed Mahalanobis distance

was 54.8 and the graphical diagnostics do not reveal any obvious conflicts. As before
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Figure 6.4: Residuals from linear regression of mean wave direction plotted against input.
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Figure 6.5: Graphical diagnostics for an emulator trained on simulated mean wave
direction at t=+4:30. Linear mean and Matérn (ν = 3/2) covariance functions were used.

176



6 UNCERTAINTY ANALYSIS FOR DIRECTIONAL WAVES IN AN
IDEALISED (2-D) OCEAN

Simulated mean direction(°)

P
ro

ba
bi

lit
y 

de
ns

ity

320 325 330 335 340 345 350

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Mean direction simulated at input mean
Distribution mean
Fitted normal

Figure 6.6: Uncertainty analysis for simulated mean wave direction computed at time
t=+4:30 hours.
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Figure 6.7: Results of the sensitivity analysis for mean wave direction at t=+4:30 hours.
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(a) Residuals from linear regression of wave directional spread plotted
against input
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Matérn (ν = 3/2) covariance functions were used

Figure 6.8: Residual plots from linear regression and emulator diagnostics.
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Figure 6.9: Uncertainty analysis for wave directional response computed with the DIA
nonlinear interaction scheme. Mean = 37◦, s.d. = 1.7◦. Some nonlinearity is apparent
from the skewed distribution.

the emulator posterior mean function was used to perform a Monte Carlo uncertainty

analysis. Figure 6.9 shows the output distribution which, interestingly, appears to

resemble a reflection of the uncertainty distribution for mean wave direction. This is

explained by considering figure 6.2, which shows that after approximately t=+2:30

directional spread becomes inversely correlated with mean direction. Note however

that the distribution has s.d. = 1.6◦, which is small in absolute terms. In an

experimental context it is questionable as to whether such a small variance would

be detectable. Given the low variance a sensitivity analysis is not performed in this

case. It may be that directional spreading is more sensitive to input uncertainty in

a different physical context but this is not investigated further here.

This experiment has revealed that tuning of the DIA scheme plays an impor-

tant role in the simulation of wave direction, again highlighting the importance of

nonlinear wave-wave interactions. Noting this importance, and before concluding

this experiment, a comparison is made with similar simulations but where the ex-
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Figure 6.10: Time evolution of the simulated 2-D spectrum generated from a turning
wind, as computed using the near exact WRT nonlinear interaction scheme. Times in-
dicated are relative to the shift in wind direction, not the start of the simulation. Note
that the colour corresponding to the spectral intensity has been smoothed for visualisation
purposes and may not capture some of the fine detail.

act method of computing the nonlinear interactions (denoted WRT49) is employed

in place of the DIA scheme. The exact method is not routinely utilised by wave

modellers and operational centres owing to its computational burden. For these

simpler cases however it is viable. The same design data is used to generate four

more training data sets50. Note that the two dimensions that were previously asso-

ciated with the two DIA tuning parameters, λDIA and CDIA, were not used. This

is less efficient in terms of a space-filling design but it is less time consuming to

progress in this way rather than to specifically create and run a new design. An

inspection of the resultant 2-D spectra from the “mean” run are shown in figure

6.10. It is remarkable that even in this simple case there is a noticeable difference

49The so called Webb-Resio-Tracy scheme, see section 2.1.4.
50A 60 point design took 35 minutes using the WRT computation method, as opposed to 1

minute with the DIA scheme.
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Figure 6.11: Residuals from linear regression of mean wave direction plotted against
input.

between the spectra resulting from the DIA approximation and the WRT solution.

The former, seen in figure 6.1, shows a “uniform” spectral shape, that exhibits lit-

tle temporal variation other than its direction. The latter more clearly shows the

formation of a new wind-sea (spectral mode) at 270◦ from approximately t=+02:00

onwards. Furthermore, the initial spectral peak appears to diminish almost entirely

before the formation of the new system. While the DIA spectra give the impression

of a regular “turning spectra”, the WRT spectra have a much more irregular form

throughout their evolution. Given that the WRT scheme is a near exact solution we

could regard the spectra in figure 6.10 as being closer to the “truth” but this would

be complacent. Recall that the dissipation scheme is tuned on the basis of using

the approximate DIA scheme and therefore uncertainty is still present. Nonetheless,

making use of the WRT scheme means that tuning of the DIA is no longer relevant

and so influence of λDIA, for example, is removed. In order to see whether simu-

lated wave direction responds in the same way to uncertain input, an uncertainty

analysis is performed. Using the same training data for mean wave direction at

time t=+04:30 (as in the previous cases) linear regression was performed to iden-

tify an emulator prior mean function. Residuals plotted against input are shown in

figure 6.11. Evidently, after removing uncertainty about tuning the DIA scheme,

and the strong nonlinear influence of λDIA, wind speed exhibits the most nonlinear

correlation with the evolution of directional waves. Other inputs exhibit only linear
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Figure 6.12: Uncertainty analysis for wave directional response computed with the WRT
nonlinear interaction scheme. Mean = 337◦, s.d. = 5.4◦. Note that the output at the mean
input, and distribution actually coincide in this instance, indicating a very linear response
of the simulator to the uncertain input.

relationships to the simulation output. After successfully training an emulator using

two design sets with a mean function such that mean dir ∼ 1 + x[2,3,4,5,9] + x2
[3,9] an

uncertainty analysis was performed. It is immediately apparent from figure 6.12 by

the fairly close fit of the normal distribution curve that the simulator response is

quite linear. This is predictable given that wave energy dissipation does not have

particular directional importance. The mean value of 337◦ is slightly higher than

the distribution mean for the DIA scheme (331◦), suggesting a slightly closer fit to

the relaxation model discussed at the beginning of this experiment. The variance in

this case is however almost exactly the same, with a s.d. of 5.6◦. This is interesting

because having removed λDIA, the dominant source of uncertainty, we might have

expected the variance to have been reduced by an appreciable amount. Given it

has not, it would appear that the WRT scheme interacts with the wind input and

dissipation to generate an equivalent variance to the DIA (conditional on λDIA and

CDIA).

This analysis brings the experiment to a close. We have seen that mean wave

direction is sensitive to parameter tuning, and particularly to λDIA which has a

highly nonlinear influence, when using the DIA scheme. The total variance is modest

but shows that output uncertainty may be appreciable in some cases. In contrast

to other situations, seen in chapter 5, wind speed is not found to be dominant. In
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practice of course wave direction is computed on a spatial grid which can lead to

the loss of directional information in some cases (e.g. the garden sprinkler effect

occurs due to lack of spectral resolution when propagating waves, see section 2.2.4).

A spatial grid is therefore introduced in the next experiment, which also involves a

more complex wind specification.

6.4 Experiment 6.B (a): Turning wind with advection

6.4.1 Introduction

This experiment is an extension of experiment 6.A. The objective is to measure the

effect of uncertainty about certain aspects of the wind on wave direction. As in

experiment 6.A, the simulation involves a turning wind, however in this case com-

plexity has been added by parameterising the wind which allows for control over how

the change in wind direction takes place. By making use of the parameterisation,

only a single computer experiment is run, but two different analyses are performed,

which comprise the two parts (a) and (b) of this experiment. The wind parameteri-

sation is explained in section 6.4.3. In contrast with experiment 6.A, the simulation

is now run on a 2-D spatial grid, with a resolution of 50×50 cells and a total extent

of 1000× 1000 kilometres, comparable with chapter 5.

Before describing the experimental configuration in detail, section 6.4.2 more

generally discusses the issue of experimental design for winds. Section 6.4.4 then

briefly discusses how uncertainty in initial conditions is controlled before results of

the statistical analysis are presented in section 6.4.6.

6.4.2 Experiment design for winds

Before continuing with the experimental description, this section provides a context

for the approach to the investigation of winds in this chapter, and also has relevance

to chapter 7. Sensitivity analysis in the previous chapters established the importance

of accurate wind input, which is widely recognised as crucial to good wave modelling.

The wind is stochastic in nature, so to conduct an experiment it was specified as

some kind of average - a single number defining the speed in the previous examples.

However, the use of an average value clearly ignores any short term variability.

Moreover, for global wave simulations temporal resolution is not often better than

a few hours so there is little scope to capture short term variation.

In the idealised cases that have been investigated so far the “fixed” wind condi-

tions arise specifically from the intent of researchers to observe such conditions in

nature. However, as simulation complexity grows, so does that of the forcing wind.
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In experiment 6.A a simple turning wind was precisely specified, but it is easy to

imagine real variability in its behaviour, such as the rate of turn, the initial and final

wind speeds, and so on. In larger scale realistic cases it may be very difficult to ex-

press the variability in such clear terms. Possibly, in localised or specific regions, or

on appropriate times scales, winds may be well characterised by a small number of

“average” parameters (e.g. a strong prevailing direction). The use of such averages

is particularly important in this research because, in order to perform uncertainty

analysis using an emulator, a design is required that spans the simulator input space.

The input space so far has largely been in relation to input parameters, which lie

on convenient scales, and can usually be regarded as uncorrelated. The (average)

wind speed can also be regarded conveniently as a parameter for the purpose of

design and analysis. However, it should immediately be clear that where the input

is stochastic, or has stochastic properties, the “input space” becomes more difficult

to define. Specifically, as the representation of the wind becomes more complex

(like a realistic wind), it cannot generally be well described by a convenient set of

parameters lying in some orthogonal space. Furthermore, even if it could be, how

would that representation relate to wind uncertainty - and what in fact do we mean

by “wind uncertainty”? In order to investigate complex winds in a way consistent

with the approach so far, it is clear that these issues need to be resolved.

To define uncertainty about wind is certainly as much a philosophical problem as

a practical one. To do so implies we have obtained, or can elicit, meaningful informa-

tion or beliefs about wind variability, and then quantify them in a mathematically

convenient and tractable way. The type of scientific question would dictate how this

might be approached. For example, in the case of a wave forecast the winds may

be generated by an atmospheric simulation, and it may be possible to obtain some

probabilistic information about them by perturbing the input (parameters) of the

atmospheric simulator in some meaningful way. In the case of producing a hindcast

a similar approach might be possible, if using an atmospheric simulator, but typi-

cally the objectives of the hindcast would be different. That is, hindcasts are often

used as a means of testing and measuring the skill of a simulator, and therefore the

forcing winds would probably be of the “best” quality, in an effort to minimise the

source of error. Historic wind products sometimes have known uncertainty, such as

low or high regional biases, and so on. Such information could then be used, perhaps

by simply adjusting and sampling the average wind speed commensurate with the

uncertainty, in a similar way to previous experiments, where the wind speed was

regarded as a random variable. If the wind data were obtained from observation

stations, then it is possible uncertainty information could be derived based upon
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known equipment accuracy.

Our beliefs and specification of uncertainty therefore depends on the situation

and the questions being asked. Whatever the circumstances may be, in order to

make use of an emulator a design space has to be specified. Where some kind

of overall systematic error is present, akin to the idealised cases investigated so

far, this seems possible. That is, wind speed is regarded as a dimension of input

and incorporated into the design. However, where we have reason to believe the

form of variability is much more complex, such as could be imagined in the case

of forecasting realistic winds, we must find a mathematical basis that allows us to

specify the uncertainty in a meaningful way, and that also allows us to incorporate

it into a design. As mentioned, if an atmospheric simulator could be perturbed

(via input parameters) to provide probabilistic information, it may be possible to

directly incorporate that input into a design. The wind uncertainty would then be

directly linked to some parametric scale as required. Winds are not generated from

an atmospheric simulator in this thesis and so this approach is not discussed further.

If the winds were obtained solely from direct observation and are fairly abundant,

a comparable approach might be to analyse the wind climatology in order to iden-

tify and quantify the variability in some way. For example a principal component

analysis may yield dominant modes and their probability distributions, which could

then be used to formulate meaningful uncertainty information. Each mode could

then be regarded as a dimension of input and incorporated into a design. This still

leaves some important questions, such as whether the “designed” winds are sensible,

or even physically realistic. This approach is not pursued further in this thesis but

an example of how a design over winds could be generated, using synthetic data, is

given in appendix F.

In this experiment a parameterised wind representation is introduced, in order

to make inference about a wider range of wind properties. Bearing in mind idealised

cases are still under consideration, and we are largely examining the sensitivity of

the wave model to idealised changes in wind, a parametric formulation based upon

a stream function is proposed. This allows physically realistic wind variability, in

terms of average speed and direction, and temporal variation of those properties, to

be specified and easily incorporated into a designed experiment. The approach is

explained in detail in the experimental discussion in the next section.

6.4.3 Wind configuration

The objective of this experiment is to investigate uncertainty about a wider range

of wind behaviour, and its effect on wave direction, in a similar way to the turning
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wind. In experiment 6.A the wind turned suddenly through 90◦. But consider the

situation where there is uncertainty about exactly how far the wind will turn, and

how quickly it will turn. How might this affect the prediction of waves? Investigat-

ing this situation will provide a deeper insight into the sensitivity of the simulator

to wind conditions. In order to perform an uncertainty analysis the wind is now

represented parametrically. The wind speed components in the x and y directions

are derived from a stream function to ensure consistency with physical theory. This

is described shortly. In addition, two parameters, θtrans and λtrans, are incorporated

into the generating function to allow for the adjustment of the directional change

and transition period respectively.

In terms of the experimental time line, the wind can be thought of as initially

blowing from the “west”, which is from a direction of 270◦. At some time, t1, the

wind begins to change direction before reaching its new direction, 270◦ + θtrans.

Note that the new direction is always reached at time t2, and t1 can be a maximum

of 6 hours prior to t2. t1 is controlled by the parameter λtrans which can take

values −1 < λtrans ≤ 1. The relationship between λtrans, t1 and t2 is therefore

t1 = t2 + 6λtrans. Consideration of the consequences of different values of λtrans

reveals more about how we can control the behaviour of the wind. Firstly, set

λtrans = 0. t1 then equals t2 and so there is no transition time. If θtrans = 90◦ then

we would recover the same conditions as experiment 6.A, which is an abrupt change

of 90◦ in wind direction. Secondly, if −1 < λtrans < 0, then the transition time would

be anything up to 6 hours, depending on the exact value. Thirdly, if 0 < λtrans < 1

the behaviour changes slightly. The wind maintains its original direction until t2

when it abruptly changes direction, but t1 becomes positive so a transition begins

from the new direction back to the original direction. t1 is then effectively after

t2, up to a maximum of 6 hours. However, note that λtrans = 0 corresponds to

a six hour transition, and λtrans = 1 corresponds to a instantaneous directional

change, followed rapidly by a reversion (a little like a delta function). In a sense this

“breaks” the symmetry of the scheme but it allows for an experimental design over

a continuous range that includes λtrans = 0 without introducing an erratic “pulse”

in wind direction. We make use of this feature in experiment 6.B (b) where it is

discussed further. Figure 6.13 shows a schematic diagram of the time profile of the

wind for three different variations in control parameters. Note that in practice the

simulator requires wind updates to be input at specified times. Therefore, where

a transition period is specified (i.e. where λtrans 6= 0), the transition period is

divided into twelve time steps. A transition time of 6 hours therefore corresponds

to (maximum) time steps of 30 minutes each. Note also that the simulator linearly
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Figure 6.13: Wind directional profile in time for different choices of control parameters.

interpolates winds in time so the transition retains the intended linear change in

direction.

In order to create winds that conform to the described situation it is straight-

forward to create them directly. However, we can make use of a stream function

to demonstrate consistency with physical laws in this, albeit, simple case. If the

objective was to generate winds in a more complex situation, with greater spatial

and temporal variability, it would be necessary to ensure that they were physically

consistent in this way. The stream function arises from the continuity equation for

incompressible flow which in two dimensions is,

∂u

∂x
+
∂v

∂y
= 0 (6.1)

The flow velocity u = (u, v, 0) can be written in terms of a vector potential Ψ =

(0, 0, ψ(x, y)) such that u = ∇×Ψ and then,

u =
∂ψ

∂x
and v = −∂ψ

∂y
(6.2)

So by specifying a functional form for Ψ, and obtaining the flow velocity vectors from

(6.2) it is possible to obtain fairly arbitrary flows that are physically consistent. In
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order to obtain winds consistent with the aforementioned scheme, the following

stream function is used.

ψ(x, y, t) = swind

{
y cos

(
α(t, λtrans)

2π θtrans

360

)
+ x sin

(
α(t, λtrans)

2π θtrans

360

)}
(6.3)

where α(t, λtrans) is a linear function of t that results in transitions according to

the diagram in figure 6.13. (The complete form is not written for brevity.) Note

that (6.3) is linear in x and y and so the resulting velocity components are spatially

homogeneous over the grid (consistent with experiment 6.A).

The approach here remains somewhat contrived but is primarily intended as a

means of examining the simulator sensitivity to more complex winds. Proceeding

then, a single designed experiment is conducted, the output from which is used in

both parts of experiment 6.B.

6.4.4 Initial conditions

The new wind specification necessitates further consideration of the initial condi-

tions. This is because the transition period is with respect to a fixed completion

time (i.e. not a fixed start time). That is, a longer transition period must begin at

an earlier time in the simulation in order to complete at the designated time. In

previous experiments initial conditions were typically “integrated out” by running

the simulation to a steady state in time. In order to avoid this problem a spin-up

period is ensured so that the initial sea state is approximately the same regardless of

the transition time. Figure 6.14 shows the evolution of the sea state, in terms of Hs

and Tp, in the mean run. We can see that after a period of 36 hours a maximum is

reached and the system is in an equilibrium state. Simulations are therefore subject

to a spin-up time of 36 hours to minimise initial conditions uncertainty51.

6.4.5 Experimental configuration and design summary

In addition to the uncertainty distributions for WW3 input parameters specified in

table 6.2, the control parameters listed in table 6.3 jointly form the input specifica-

tion for experiment 6.B. Note that the experiment is designed over ranges of [−1, 1]

and [45, 135]◦ for λtrans and θtrans respectively. Four 80 point maximin LHS based

designs were run.

51Note that there may be a small amount of variation in the initial sea state due to the choice
of input parameters.
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Figure 6.14: Sea state development with time on the 2-D grid.

Table 6.3: Wind control parameters and sampling distributions for experiments 6.A, 6.B
(a) and (b)

.

Control Fixed value in Sampling distribution

variable experiment 6.B (a) in experiment 6.B (b)

λtrans 0 Beta(1, 5)

θtrans 90◦ N(90◦, 102)
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6.4.6 Analysis

Having discussed the approach to the wind specification and the resulting experiment

design, we now move on to the analysis. Some steps in the analysis, including the

formulation of the emulator are relevant to experiment parts (a) and (b), since the

same emulator is used. Given a spatial grid of 1000km × 1000km output of mean

wave direction at a point near the centre of the grid (500km, 545km)52 is used for

analysis. Waves at this point are due not only to the local wind conditions but also

due to energy propagated from upwind regions of the grid. Noting the spin-up time

of 36 hours and a wind speed of 10.0ms−1, conditions will be fetch-limited at 545km,

although well developed. Recall that in experiment 6.A a criteria of fp = 2fPM was

used as a basis to specify the onset of the changing wind direction. An important

difference here is that the sea state is more developed (fp ≈ fPM).

In experiment 6.A, maximum variance of wave direction was adopted as the

criteria for the point (in time) of analysis. However, owing to the experimental design

in this case, this criteria ceases to be so meaningful. In fact, the variance is found to

increase with time because there is not asymptotic behaviour in all cases, owing to

the effect of variability in λtrans. If the same time point for analysis is adopted for

consistency, which was t=+4:30, it corresponds to approximately t=+41:00 in this

case (if λtrans = 0), relative to the start of the simulation. Proceeding on this basis

in order to draw a comparison an emulator can be constructed. Linear regression

suggests that a mean function of the form mean dir ∼ 1 + c(1, x[3,7,10,11] + x2
[7,10] +

x3
[4,10] + x4

[7,10]) is appropriate, implying nonlinear response to parameters sdsa2,

λDIA and λtrans. Input plotted against residuals is shown in figure 6.15 (a). The

emulator, fitted with a nugget term of 0.04, appears to validate well as suggested

by diagnostics shown in figure 6.15 (b). Before using the emulator to perform an

analysis, consider that in order to re-create experiment 6.A in terms of the input

uncertainty specification, λtrans and θtrans can be regarded as known, and set to 0 and

90◦ respectively. Adopting the same specification for the remaining uncertain input

(shown in table 6.2) we can proceed to perform an uncertainty analysis by sampling

from the emulator posterior mean function. The resulting uncertainty distribution

for mean wave direction, shown in figure 6.16, can be compared with the distribution

computed in experiment 6.A, shown in figure 6.6. Immediately it is clear from a

simple visual inspection that the two histograms have a similar shape, although their

parameters are quite different. The means are 289◦ and 331◦ respectively, showing

that significantly more directional change has taken place in the earlier experiment.

52The 45km offset from the centre is due to an irregular scale in the simulator point output
specification.

190



6 UNCERTAINTY ANALYSIS FOR DIRECTIONAL WAVES IN AN
IDEALISED (2-D) OCEAN

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

sdsa0

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

sdsa1

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

sdsa2

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

sdsb0

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

sdsb1

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

phimin

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

λDIA

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

CDIA

0.0 0.2 0.4 0.6 0.8 1.0
−

10
0

10
20

wind speed

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

λtrans

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

θtrans

(a) Residuals from linear regression of mean wave direction plotted
against input

270 280 290 300 310 320 330

28
0

30
0

32
0

Simulator

E
m

ul
at

or

270 280 290 300 310 320 330

−
3

−
2

−
1

0
1

2
3

Emulator predictions

S
ta

nd
ar

di
se

d 
er

ro
rs

41

61

0 20 40 60 80

−
3

−
2

−
1

0
1

2
3

Pivoting order

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

41

61 72

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Theoretical Quantiles

P
iv

ot
ed

 C
ho

le
sk

y 
er

ro
rs

(b) Graphical diagnostics for an emulator trained on simu-
lated mean wave direction at t=+41:00 hours.

Figure 6.15: Residual plots from linear regression and emulator diagnostics.
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Figure 6.16: Uncertainty analysis for simulated mean wave direction computed at time
t=+41:00 hours.
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Figure 6.17: 2-D spectrum at a fetch of 545km, at t=+36:00 hours, prior to the change
in wind direction.

The variance is also much larger in the earlier case. Consider however that in this

case wave energy is constantly propagating into the measurement region, even after

the change in wind direction. The waves arriving will retain directional properties

from earlier sea states (i.e. the original wind direction) and therefore the directional

change will be much slower than for the homogeneous case. Bear in mind also that

the new wind sea being created is at much higher frequency and lower energy, and

it will take time for nonlinear interactions to transfer energy to lower frequencies

in the new prevailing wind direction. Looking at the sea state more explicitly it is

possible to learn about how the changes are manifested. The sea state has had time

to develop, and therefore has a well defined directional peak, seen in figure 6.17.

Contrast this with figure 6.1 and note that the directional peak is considerably

broader. Where the directional change occurs at an earlier sea state we may see the

variance increase significantly. A sensitivity analysis will not reveal why the total

variance is low as such, but we want to see how the input parameters contribute

to the total. Before reviewing the result a point is made about this particular

analysis because a new issue is introduced. The analysis is being performed on the

basis that λtrans and θtrans are known exactly, and they are thus specified with zero

variance. Without modification, the semi-analytical approach to the computation

(see appendix D) produces spurious results because the integration scheme cannot

correctly handle a probability distribution with zero variance. In order to avoid the

issues (at least temporarily), input distributions with small variances were specified

such that λtrans ∼ N(0, 0.052) and θtrans ∼ N(90, 1.0). A standard deviation of 0.05
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(b) Mean = 289; S.D. = 2.3

Figure 6.18: Sensitivity analysis for mean wave direction at 545km fetch, at t=+36:00
hours.

for the distribution of transition time corresponds to approximately 15 minutes.

Figure 6.18 (a) shows the main effects of each input parameter on the mean wave

direction. Recall that the main effects show the influence of each parameter over the

entire input space of the design, and that here the prior variance of λtrans for the

uncertainty analysis is small (thus for the sensitivity analysis tightly constraining

its variability to the centre region of the figure). In spite of its highly nonlinear

behaviour, the contribution to the total variance from λtrans is therefore small, and

λDIA is again seen to be most influential. With the exclusion of the influence of λtrans

these results are highly consistent with the results of experiment 6.A, although the

total variance in this case is very much smaller.

Noting the previous comments relating to the maturity of the sea state in this

case in contrast to experiment 6.A, by way of better comparison a quick investigation

of the case for younger sea states can be undertaken by utilising different output

data from this experiment. That is, the geographic grid gives rise to fetch-limited

wave conditions and so a variety of sea states are available for analysis. So far

in this experiment data near the centre of the grid, at a fetch of 545 km, were

analysed. However, by considering wave conditions at shorter fetch, the sea state

will be “younger” and more dominated by wind-sea. Output data at 75km, the

shortest fetch available in this case53, is therefore studied. The 2-D spectrum at

t=+36:00 is shown in fig 6.19. It is clear to see that the sea state is less developed

53Owing to the choice of output points specified in the WW3 simulation configuration.
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Figure 6.19: 2-d spectrum at a fetch of 75km, at time t=+36:00

(fp ≈ 0.16Hz) and that the directional spread is much greater. Proceeding in the

same way, an analysis is performed by training an emulator to the output data

for mean wave direction at time t=+41:00. Using a mean function of the form

y ∼ 1+x[7,10,11] +x2
[7,10] +x3

[7,10] +x4
[10], it was found that the emulator validated well

with 160 training points (two design sets). Results of uncertainty and sensitivity

analysis are shown in figure 6.20. The output distribution now has mean = 341◦

and s.d. = 3.9◦, which is much closer to the results for experiment 6.A (of mean

= 331◦ and s.d. = 5.6◦). The main effects of the input are very similar to those

at 545km fetch, but notice now that θtrans has a much stronger and more linear

influence. Owing to their small input variances the effects of λtrans and θtrans are

not manifested in the uncertainty distribution, which is dominated by λDIA. Input

parameters related to energy dissipation remain largely inactive.

So, in summary, the behaviour of wave direction on a homogeneous grid is closely

comparable to that at short fetch. Sensitivity is quite low is all cases but is domi-

nated by λDIA and control parameters related to the wind. In developed sea states

wave direction is less sensitive, and change is (unsurprisingly) observed on longer

time scales.

Directional spreading is not investigated for the following reasons. At time point

t=+41:00, and 545km along the fetch the mean and variance of directional spread for

the design data are 40.5 and 7.02 degrees respectively. At time point t=+41:00, and

75km along the fetch the mean and variance of directional spread for the design data

are 28.0 and 4.02 degrees respectively. Noting that the joint uncertainty distribution
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(a) Output uncertainty distribution.
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(c) Mean = 341; S.D. = 3.9

Figure 6.20: Uncertainty and sensitivity analysis for mean wave direction at 75km fetch,
at t=+36:00 hours.
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for the input will constrain that variability considerably, particularly considering

the most influential parameters relating to the wind are constrained to a very small

variance, it is judged that further analysis is of limited value since there is very little

variance to explain.

In the next part of this experiment, the analysis is extended by specifying larger

variance for the wind control parameters λtrans and θtrans.

6.5 Experiment 6.B (b): Uncertainty in change in wind di-

rection

Imagine a situation where a change in wind direction could occur but there is un-

certainty about exactly how it will proceed. That is, it could be a sudden shift

in direction, as a weather front moves though for example, or it could be a more

gradual change over a period of a few hours. There may also be uncertainty about

the new direction of the wind. In such a situation it would be useful to obtain

probabilistic information about the possible resulting conditions.

In order to perform such an experiment we can make use of the wind parame-

terisation, and emulators that have already been formulated. In part (a), the wind

control parameters λtrans and θtrans were constrained by a small input uncertainty,

but now they are respecified. Elicitation is required to determine the appropriate

uncertainty specification, which might typically proceed by examining a set of wind

observational data relevant to the region of interest. However, given the idealised

and hypothetical nature of this experiment the following is proposed. Firstly, λtrans

governs the rate of the directional change. If we suppose that the change takes

place on a time scale between 3 hours (with zero probability) and zero hours (with

maximum probability), with probability increasing exponentially, the appropriate

sampling distribution for λtrans could be something like that shown in figure 6.21.

The probability density function is based upon a Beta-distribution with shape pa-

rameter values of α = 1.0 and β = 5.0. Secondly, a specification for the probability

of θtrans is required. In the absence of a review of observational data, it is simply

asserted that the directional change is uncertain with a mean value 90◦. A Gaussian

distribution is therefore specified such that θtrans ∼ N(90◦, 102). Here we maintain

the assumption that all uncertain input is uncorrelated, including λtrans and θtrans.

However, were the probability distributions obtained from observations it may prove

that this assumption is too strong. The results of uncertainty and sensitivity anal-

ysis, given the new input specification, are shown in figure 6.22. Results from both

short (75km) and long (545km) fetch are shown and it is interesting to see the dif-

ference between the two cases. At short fetch, output variance is dominated by the
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Figure 6.21: Sampling distribution for control parameter λtrans.

influence of θtrans and as a result the uncertainty distribution is highly Gaussian.

Contrast this with output at long fetch where we see that λtrans dominates output

uncertainty and as a result the distribution is skewed towards lower angles. The

difference in response of the two different sea states is quite striking. At short fetch

where the sea state is not so well developed the new wind direction is very important

to the short term evolution of the wave spectrum. The s.d. of 6.3◦ is appreciable.

At long fetch near the grid centre, the inertia of “the system” is clearly quite large

since the variance remains low and the resultant wave direction (at between 5 to

8 hours after the directional change) is largely insensitive to θtrans. It would be

reasonable to conclude that in coastal waters at short fetch accurate knowledge of

the wind is crucial to good directional simulation. Note finally that λDIA is seen

to be influential in spite of the others sources of uncertainty, and the importance

of accurate nonlinear wave-wave interactions is again reiterated. This experiment

concludes the investigation of the simulation of a turning wind.

6.6 Chapter summary

The effects of uncertain input on simulated mean wave direction in the context of

a wind turning through 90◦ were analysed. Uncertain input includes parameters

relating to energy dissipation and nonlinear wave-wave interactions, together with

control parameters that govern the behaviour of the wind. Important results are

summarised as follows.

In the analysis of simulation output for a source function only (no advection)
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75km fetch.
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Figure 6.22: Results from uncertainty and sensitivity analysis at t=+41:00 hours.
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and a case with advection at 75km fetch on a 1000km square grid, similar output

uncertainty distributions were observed suggesting commonality in how the sea state

responds to the change in wind direction. In the case for the source function only,

analysis was conditional on the change in wind, and input parameter λDIA was found

to dominate output uncertainty (> 70% variance). When a parametric representa-

tion of the wind was employed for the case at 75km fetch, wind control parameters

governing the rate and magnitude of the directional change were found be influen-

tial jointly accounting for over 60% of output variance. Mean wave direction was

found to be most sensitive (> 50% variance) to the magnitude of the change in wind

direction. Input parameter λDIA was also found to be highly influential (> 25%).

At longer fetch (545km), output uncertainty was dominated by the rate of change

in direction ( 60%), and input parameter λDIA ( 20%). The total variance however

was 60% of that at shorter fetch (3.8◦ as opposed to 6.3◦), highlighting the inertia

of the more developed sea state.

Results show that input parameters governing energy dissipation were largely

inactive in all experiments, indicating that, at least in terms of how WW3 operates,

energy dissipation does not play an important role in simple directional phenomenon.

This does not seem entirely consistent with van Vledder and Holthuijsen (1993) who

conduct numerical experiments and determine that the effect of Snl on turning rate

is an order of magnitude smaller than the effect of Sds and Sin. However their study

is not the same, and is with respect to the exact (WRT) nonlinear scheme, and the

DIA is known to exhibit excessive directional spreading. Additional study would

be required to say more about this. A qualitative comparison of the full nonlinear

wave-wave interaction calculation, and the approximate DIA scheme was made and

distinct differences in directional structure of the 2-D wave frequency spectrum were

observed. Together with the observed influence of λDIA, this is further evidence of

the importance of tuning the DIA scheme appropriately.
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7 Uncertainty analysis for a real 2-D basin: Lake

Michigan

Having examined the effect of uncertainty about parameter tuning and wind input

for a range of idealised cases we now turn our attention to a real case. This broadens

the scope of possible investigation in at least two important ways. Firstly, real wind

data can be used. This can include a much higher degree of spatial and temporal

variation than we have seen so far and may result in much more pronounced dynamic

effects. Forcing winds are discussed in detail in the next section. Secondly, it is now

possible to incorporate observational data more directly. We have previously seen

simulation output compared qualitatively to observational data in chapter 5, in

the specific physical case of fetch-limited wave growth. Wind and wave conditions

are monitored on Lake Michigan by operational data buoys that provide hourly

observations of the direction integrated wave spectrum and summary statistics. This

abundant data can be used to learn more about uncertainty in the simulation of

waves. Specifically we can obtain measures of departure of simulator output from

observations, and learn about bias, and possible structural error in the simulator.

This is discussed further in section 7.9. In addition to these important aspects of

the investigation, different physical processes may need consideration. For example,

the lake is shallow in parts and so bottom friction or shallow water 3-wave nonlinear

interactions may be relevant. Although such effects are not investigated in this

chapter, primarily because points of observations and analysis are located in deep

water, discussion of these additional sources of uncertainty is provided in section

7.3.

The research in this chapter therefore investigates how the effect of tuning un-

certainty affects simulations of a real case, and whether the findings that we have

seen so far in idealised cases are comparable. At the end of the chapter, emulators

are used to determine a choice of parameter values that give better performance in

energetic conditions. In the next section, the choice of Lake Michigan as the focus of

research is discussed and justified. Section 7.2 describes the typical wind and wave

climate observed on the lake, followed by section 7.3 which discusses elicitation of

relevant uncertainty information and section 7.4 which summarises the experiments

conducted. Since dynamics are now a consideration, before conducting formal sta-

tistical analysis, an experiment in section 7.5 investigates “spin-up” of the simulator,

in order to identify the typical time scales required to minimise the effects of uncer-

tainty about initial conditions. In sections 7.6, 7.7 and 7.8 a number of wind regimes

lasting periods of three to four days, and comparable to those investigated in chap-
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ters 5 and 6, are used to force simulations where uncertainty about simulator tuning

is present. Emulators are used in a similar way to previous experiments in order to

evaluate the effects of parameter uncertainty on simulated output of summary wave

statistics at buoy locations. Finally in section 7.9 a simple calibration experiment

is performed for prevalent (energetic) wave conditions seen typically in October.

Two new parameterisations are identified that give much better performance of the

simulator than the default settings.

7.1 Motivation

The choice of Lake Michigan for the final series of experiments is justified as follows.

It is a well studied case, the subject of operational forecasts and is a test case for

wave model updates (see e.g. Liu et al., 2002; Rogers and Wang, 2007; Ardhuin

et al., 2010; Alves et al., 2011). With a total length of 494km, fetches can be long

enough to generate waves large enough to be dangerous to shipping and coastal

areas. An abundance of real world observational data is available from a number of

weather stations situated on and around the lake54. Of specific importance are two

buoys operated by the U.S. National Data Buoy Center (NDBC), designated NDBC

45002, located in the central north of the lake and NDBC 45007 located in the central

south of the lake, as seen in figure 7.1 (bottom right image). These buoys capture

various environmental data at hourly intervals including an estimate of the direction

integrated (1-D) wave spectrum, together with common summary statistics such as

Hs and Tp. The lake is large enough to support the evolution of fairly well developed

sea states (“short swell” with Tp ≈ 9s) and wave heights of approximately 5m can be

achieved. However, longer swell is not present which prevents wave systems arriving

from other (distant) locations. An important implication of this is that interacting

sea states do not readily take place and as such the wave conditions are dominated

by the local wind sea, which can be well described by summary statistics. These

qualities limit the scope of the analysis to that concerning wind-sea, however much

of the analysis conducted in the previous chapters is directly relevant as the focus

was on developing seas and directional waves. The absence of interacting sea states,

and potentially multi-modal spectra, considerably simplifies the analysis which, at

this stage, is advantageous. It is therefore argued that Lake Michigan is a good

subject at this stage of the thesis. Progression to a full ocean basin would be a

natural (and desirable) follow-up to this study and is discussed briefly in chapter 9.

54See http://coastwatch.glerl.noaa.gov/marobs/marobs.html for a complete list.
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Figure 7.1: Lake Michigan: The left panel shows the lake geography together with its
bathymetry. The top right panel shows some additional regional information, together
with an indication of the longest fetch, marked by the red line. The bottom right panel
shows the location of the buoys NDBC 45002 and 45007.
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(a) Winds measured by NDBC 45002.
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(b) Winds measured by NDBC 45007.
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Figure 7.2: Summaries of 5 years (2008 to 2012) of observations at NDBC buoys 45002
and 45007, comprising Hs, Tp and winds.

7.2 Wind regimes and wave climate

Abundant wind data is available from the numerous weather stations located through-

out the region of the North American Great Lakes. Hourly wave data is provided

by a number of buoys, including NDBC 45002 and 45007 (which are used in this

chapter and provide by the NDBC55). Summary statistics for the wave and wind

climate on the lake measured at the buoys for the five year period between 2008

and 2012 (inclusive) are given in figure 7.2. Wind climate is shown in panels (a)

and (b). The prevailing conditions correspond well to the orientation of the lake,

that is, in terms of the where the largest extents of open water lie with respect to

the buoy locations. For NDBC 45002 this is south-southwest and for NDBC 45007

55See e.g. http://www.ndbc.noaa.gov/station history.php?station=45002
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this is to the north and south. Although the surrounding land is fairly low lying,

the prevalence of the directions aligned with the lake suggests that it attenuates all

other wind directions.

The distributions of Hs and Tp are seen in panel (c). In terms of Hs we can

see that the distributions for both buoys are comparable with incidents of slightly

larger waves in the south of the lake being more common. The median value of Hs

is less than 1 metre for both locations on the lake illustrating that wave conditions

are generally subdued. The situation is similar for Tp where the distributions are

closely comparable. With approximately 50% of observations of Tp between 2 and 4

seconds, the sea state is generally not developed. However in the south of the lake

an appreciable number of observations show Tp exceeding 6 seconds.

Both buoys provide a measurement of the direction integrated spectrum. Al-

though the analysis in this chapter is concerned with wave summary statistics, it is

instructive to examine the spectral data. Specifically we are concerned with whether

the spectra exhibit bi-modality, which might require more careful analysis. Some

examples of spectra observed in October (when conditions tend to be more ener-

getic), 2012 are shown in figure 7.3. We see that they are typically unimodal and

resemble the form of a JONSWAP spectra. However, in a few cases we can see

that the spectral peak has apparently been attenuated, and the spectral form shows

bi-modality. There are different possible explanations for this, one is that given a

strong wind, a sudden change in wind direction could bring about the rapid evolu-

tion of a wave system in the new direction. The associated peak would then appear

at a higher frequency, as seen in figure 7.3, panels 3 and 13 (counting across from

the top left). In fact an example of this effect produced by a simulation was seen in

section 6.3 (e.g. figure 6.10). This is not necessarily the case however and it could

also be that the data are unreliable. For example, the bottom left panel shows that

Hs and Tp were not calculated or recorded for some reason (such as internal error

or noisy reading at that particular time), thus suggesting the spectral information

is also unreliable (and that the bimodality is spurious). In this particular case a

review of the data does indeed show a change in wind direction of +70 degrees

beginning at approximately 22:00 04/10/2012 and lasting until 03:00 05/10/2012.

This provides us some confidence that the buoy is reporting observations accurately.

These data therefore reveal that bi-modality can occur, and should cause us to be

a little cautious about using Tp as a measure of the spectrum since it may not be

well defined in some cases.
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Figure 7.3: Direction integrated (1D) wave spectra observed at NDBC 45002 every 2
hours starting at 00:00 05/10/2012.
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7.3 Simulation details, sources of uncertainty and elicitation

A summary of the simulation configuration is given in section 7.3.1 before sources of

uncertainty are discussed in the following subsections. Sources include; parameter

uncertainty, forcing winds, initial conditions, simulation numerics and bathymetry.

In common with previous experiments in this thesis the parameterisation of wave

energy dissipation and nonlinear wave-wave interactions is regarded as uncertain

and the input specification for these remains unchanged. The remaining sources are

discussed in the following subsections and an experiment design summary is given

in section 7.4.1.

7.3.1 Simulator configuration

The input specification is replicated from the operational simulation used by the

US Naval Research Laboratory56. The simulation differs from previous cases in that

the geography is specified on a longitude / latitude grid. The geographic resolution

is dictated by the bathymetry which is specified with a resolution of 66× 127 that

yields grid cells of resolution 0.049× 0.036 degrees. Compared with a typical global

simulation this arrangement is particularly high resolution. A spectral resolution of

29 frequency bins with 36 directional bins is used. In respect of the bathymetry that

includes shallow water, in contrast to previous experiments, WW3 is compiled with

the “JONSWAP” bottom friction parameterisation. The full switch configuration

used to compile the WW3 source code is given in appendix E.

7.3.2 Forcing winds and elicitation of uncertainty about wind conditions

Approximately 100 observation stations, including NDBC 45002 and 45007, are lo-

cated in and around Lake Michigan and the wider great lakes region. Researchers

at the Great Lakes Environmental Research Laboratory (GLERL57) produce data

sets of winds for Lake Michigan by interpolating the data from all observational

platforms. The resulting winds are specified on a longitude / latitude grid with a

resolution of 131× 251. Note that these winds are at approximately twice the reso-

lution of the geographic grid. However, bearing in mind that they are interpolated

from much more sparsely deployed weather stations, the high resolution should not

be interpreted as an indication of excellent fidelity.

A communication from GLERL (see appendix G) suggests that little information

is readily available as to what uncertainties are associated with the wind data. In

56Kindly provided by W. Eric Rogers, NRL, Mississippi.
57http://www.glerl.noaa.gov/
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principle, given access to the interpolation scheme, and details of the “over-water”

correction method it may be possible to specify and express uncertainties in a way

that could then be included in the experiment design. This could potentially incor-

porate knowledge of uncertainties associated with specific weather stations or re-

gions, if available. The approach would then require the formulation of “uncertain”

winds, where the uncertainty was expressed using some kind of suitable parameter-

isation. In effect it would be similar to the approach demonstrated in chapter 6,

where synthetic winds were generated through a simplistic parameterisation.

Owing to the complexity of the problem, and lack of readily accessible uncer-

tainty information, the analysis in this chapter is conditional on the winds as given.

7.3.3 Initial conditions

Analysis in previous chapters largely avoided the issue of uncertainty associated

with initial conditions by running simulations to an equilibrium state - essentially

to a solution independent of time. In the case of dynamic forcing winds, the wave

simulator will converge to a solution, but there will be a period of time between

the start of the simulation and when convergence has been achieved. The length of

that period of time will be a function of the accuracy of the initial conditions. For

example, the initial conditions may be a calm sea but if the “real” conditions (that

is, the simulation of the real conditions) are more energetic then it will take some

time for the simulator to “spin-up”. If the initial conditions are a close match to

the real conditions then the spin-up period will clearly be shorter.

Thus the uncertainty in initial conditions discussed here describes how close

those conditions are to the converged solution. Note that for a wave simulator this

differs from the problem of initial condition uncertainty as typically encountered

when running atmospheric models, for example, where the dynamics of the system

can cause it to diverge drastically if the initial conditions are incorrectly specified.

The wave simulator converges regardless, but the time taken to do so will be related

to how close the initial conditions match the converged solution. As such a spin-up

will generally be necessary to ensure convergence.

This issue is likely to be far less consequential in a simulation of a large lake

than in a larger regional or global situation, since the state-space of possible wave

conditions is much smaller. Importantly there will be a lack of swell, or waves

generated remotely that would be particularly important in a global setting. Clearly

in a global simulation, waves generated from a distant storm could take a long time

to arrive, and if the specification of initial conditions was incorrect, those distant

waves may arrive too late or too early (or not all!). By contrast, a lake lacks this kind
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of possibility and we are therefore only concerned with a spin-up to local conditions.

Provided sufficient time is allowed, uncertainty about the initial conditions will

be inconsequential. WW3 allows the user to initialise a simulation by attempting

to approximate a fetch-limited JONSWAP spectrum at each geographic point from

the local wind conditions. This feature reduces spin-up time, and so is utilised for

all the simulations in this chapter. The spin-up time required is investigated and

determined in experiment 7.A (section 7.5).

7.3.4 Simulation numerics

Simulation numerics are not investigated in this chapter however a few points are

noted. Compared with global simulations commonly run with spatial resolutions

of around one degree, and a directional frequency spectrum of 24 frequency bins

in 24 directions, the resolution used here is very high. The spatial resolution is of

the order of hundredths of a degree and the frequency spectrum is represented with

29 frequency bins in 36 directions. This is computationally achievable because the

simulation is of small geographic extent, and given the high resolution, numerical

uncertainty or errors arising due to coarse resolution, are minimised and not expected

to contribute significantly to simulation error.

It is in fact quite likely that due to the fairly small geographic extent of the

simulation, and the constraints of the lake on the possible range of wave systems

(i.e. limited to fairly localised systems), very similar results could be obtained from

a much simplified simulation. That is, one with much lower spatial and spectral

resolutions. This would be an interesting extension to this particular investigation

but is not addressed further here.

7.3.5 Bathymetry

A potentially important source of uncertainty when simulating waves in shallower

water is bathymetry. The research in this thesis is focussed on deep water only and

so uncertainty about bathymetry is not specifically investigated. Lake Michigan is

shallow at the coast and the effects of bathymetry may be significant in these regions.

However, experiments in this chapter are concerned with conditions measured at the

two data buoys NDBC 45002 and 45007. The buoys are situated in water depths

of 175m and 160m respectively, and recalling that shoaling occurs only at a water

depth below half the wavelength, it is clear that the necessary wavelengths will not

be achieved (in excess of 300m) and therefore shoaling is not going to affect waves

at these points. Note also that the water depth increases from the shoreline in all
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Table 7.1: Experiments presented in chapter 7.

Experiment Description

Experiment 7.A Investigation of simulation spin-up time.

Experiment 7.B Parameter uncertainty analysis for southerly wind.

Experiment 7.C Parameter uncertainty analysis for northerly wind.

Experiment 7.D Parameter uncertainty analysis for a turning wind.

Experiment 7.E Parameter calibration for wave conditions during October 2012.

locations (see figure 7.1), so no shallow areas that could affect the assumption of

deep water conditions are located far from the shore

7.4 Experiments and analysis

Five experiments are presented in this chapter. The experiments are listed in table

7.1 and are described below.

Experiment 7.A measures spin-up duration using winds over a six day period.

The objective is to establish a minimum time required to spin-up in order to remove

the effects of initial condition uncertainty. The simulator is run with default settings

in this case. Experiments 7.B, 7.C and 7.D are uncertainty experiments conditional

on three different wind regimes each lasting a few days. The conditions approximate

idealised experiments run in previous chapters and the objective is therefore to

determine the effect of parameter uncertainty but also make a comparison with

previous findings. The objective of experiment 7.E is to show how emulators can be

used to calibrate a wave simulator. Output data from experiment 7.B is used for

this experiment and a number of different emulators are constructed for simulated

Hs. A cost function based upon the squared differences between the simulation and

observations is formulated and minimised in order to find optimal tuning parameter

values.

7.4.1 Design summary

Table 7.2 lists the parameters that are regarded as uncertain and the distributions

assigned to them. For the designed experiments presented in this chapter, six 80

point maximin LHS designs were generated, as described in section 3.4.2. Design

ranges are typically ±4 s.d. about the mean, according to table 7.2.

210



7 UNCERTAINTY ANALYSIS FOR A REAL 2-D BASIN: LAKE MICHIGAN

Table 7.2: WW3 input parameters and sampling distributions for experiments 7.B, 7.C,
7.D and 7.E

.

Switch Description Tuning Default Sampling

parameter value distribution

[Variable Assignment in WW3 manual]

ST2 Dissipation
(TC96)

High fre-
quency
dissipation

SDSA0 [a0] 4.8 N(4.8, 0.22)

High fre-
quency
dissipation

SDSA1 [a1] 1.7× 10−4 log10N(−3.293, 0.1772)

High fre-
quency
dissipation

SDSA2 [a2] 2.0 N(2.0, 0.22)

Low fre-
quency
dissipation

SDSB0 [b0] 3.0× 10−4 N(−3.25 × 10−3, (9.375 ×
10−4)2)

Low fre-
quency
dissipation

SDSB1 [b1] 0.47 N(0.5250, 0.031252)

Low fre-
quency
dissipation

PHIMIN
[φmin]

0.003 N(0.003, (1.0× 10−4)2)

NL1 Nonlinear
interactions
(DIA)

LAMBDA
[λ]

0.25 N(0.25,0.031252)

NLPROP [C] 107 log10N(7, 0.11932)
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7.5 Experiment 7.A: Spin up times

In this experiment spin-up times are examined but no uncertainty analysis is per-

formed. The objective is to measure the length of time required in order to ensure

convergence of the solution in different conditions. Note that WW3 has been con-

figured to initialise the local wave spectrum as a fetch-limited JONSWAP based

upon the local wind conditions. This differs from previous experiments where waves

developed from calm conditions, and has the advantage of converging to the solution

faster. However, simulations initialised during energetic conditions are anticipated

to take more simulation time to converge to the true solution. The approach here is

therefore to select a period of time during which a range of conditions are present,

and run the same simulation a number of times but in each case initialising the sim-

ulation at progressively later intervals throughout the period. Note that the issue

of spin-up can, to a large degree, be mitigated by a sensible choice of initialisation

time (i.e. during calm conditions), which we are generally free to make (but might

not always be possible).

We proceed therefore by reviewing the weather over Lake Michigan throughout

the year in order to identify periods of variability. Monthly wind rose diagrams

spanning five years (2008 to 2012) for May through to December for winds observed

at NDBC 45002 are shown in figure 7.4. Note that during the winter months much of

Lake Michigan is covered with ice so observational data are available sporadically,

if at all, which causes the spurious looking observations for December, and the

lack of data during January to April. Conditions are generally consistent during

the spring, and then in August wind strength increases slightly before becoming

much stronger and more variable in October. Energetic conditions are the most

interesting, most relevant to ocean based activities and safety, and often predicted

with the poorest skill. October therefore appears to be a good choice for further

investigation. Observations of wind speed and direction measured by NDBC 45002

for the first two weeks in October 2012 are shown in figure 7.5. Observations at

the buoy are shown together with an average wind, derived from seven points lying

approximately evenly spaced on a line of constant longitude along the lake axis.

The data were obtained from the GLERL interpolated winds. The average data

provide an indication of the spatial variability which in general is quite low, that is,

the winds measured at the buoy are a good representation of the winds throughout

the entire lake. It can be seen that during most of this period the wind speed

consistently exceeds 5ms−1 with highs of 15ms−1 in some instances, and there is

substantial directional variability. The largest waves are generated by winds from

the north or south, aligned to create the longest fetch, and so these conditions are
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(b) June
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(c) July
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(d) August
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(e) September
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(f) October
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(g) November

Frequency of counts by wind direction (%)

5%

10%

15%

20%

25%

30%

35%

40%

mean = 5.9

calm = 0.0%

0−2 2−4 4−6 6−13.4

(m s−1) 

(h) December

Figure 7.4: Summaries of monthly winds during 5 years of observations at NDBC buoy
45002.
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Figure 7.5: Wind conditions at NDBC 45002 during the first two weeks of October.
“Average” winds denoted with the orange and blue dashed lines are an average of seven
locations evenly spaced running approximately north to south along the axis of the lake.
These give an indication of spatial variability compared with the observation at NDBC
45002.
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Figure 7.6: Six runs of the same experiment where each is started 24 hours after the
last. The period of convergence to the solution from the initial conditions in each case is
identified by the orange bands. The difference in convergence period can clearly be seen.

of most interest. An example of this can be seen in the period of a few hours before

and after 00:00 09/10/2012 where the wind speed is approximately 15ms−1 and

the direction approaches 180◦, which is broadly aligned with the longest fetch. In

contrast, between the 05/10/2012 and 07/10/2012, although the wind speed remains

fairly strong at approximately 10ms−1 the direction can be seen to be approximately

270◦, blowing west to east.

In order to examine spin-up times, winds during the period of six days between

00:00 04/10/2012 and 00:00 09/10/2012 were used to force six simulations, each

beginning 24 hours after the previous. This provides six different initial conditions

each exhibiting different wave conditions. Output from the simulation in terms of

Hs, Tp and mean wave direction at NDBC 45002 is shown in figure 7.6. In each

panel, the start of each of the six simulations is indicated by the left side (dashed

line) of each of the orange rectangles, which coincide with each 24 hour period.

During each period, the dashed black lines converge fairly quickly to meet the solid
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black line, which is the output from the initial 6-day experiment (i.e. the converged

solution). The right edge of each rectangle shows when the simulation achieved

convergence. The convergence criteria used in each case is based upon a moving

average difference threshold taken over three hours. The thresholds are 0.01m, 0.1s

and 1 degree for Hs, Tp and mean wave direction respectively. These thresholds are

fairly onerous given the other sources of uncertainty but they serve to ensure any

oscillation around the convergence is accounted for. We can see in panel (a) that

in this case for Hs ≈ 2m, the spin-up period is generally around 12 hours or less.

However, the spin-up time is considerably longer where Hs ≈ 4m taking nearly 24

hours to achieve convergence. This pattern is also seen in panels (b) and (c) for

Tp and mean wave direction respectively. Note that the wave direction converges

fairly rapidly in all cases, which is consistent with wind-sea dominated conditions.

A general observation is that the initial conditions of each simulation always appear

to be of very low energy. We can see in panels (a) and (b) that both Hs and Tp

have to “climb” a long way to reach the converged solution. This is not investigated

further here but it is possible that the fetch-limited JONSWAP spectrum imposed is

limited by the short west to east fetch. In contrast, the initial wave direction tends

to be well aligned to the solution.

Since wave conditions on Lake Michigan rarely exceed 4 metres, ensuring a period

of at least 24 hours of simulation time has elapsed before experiments are conducted

will eliminate any uncertainty due to initial conditions. This practice is adopted

for the remaining experiments in this chapter. This is perhaps excessively onerous

because typically simulations are initialised where the wave conditions are signif-

icantly smaller than 2 metres. If the computational cost of simulations was very

high, a shorter spin-up time might be considered. Having addressed this issue, we

now move on to the first experiment which focuses on the same period in October

2012.

7.6 Experiment 7.B: Southerly winds

The objective of this experiment is to investigate how parameter uncertainty affects

waves on Lake Michigan generated by southerly winds. Specifically, for the period

of time between 08/10/2012 and 10/10/2012 the wind maintains a fairly constant

direction that might give rise to conditions similar to the fetch-limited case studied

in chapter 5. Owing to the dynamics however there are expected to be differences

since neither the direction nor the wind strength remains constant. Uncertainty

and sensitivity analysis is conducted for simulation output at the location of NDBC

45002 during the peak conditions.
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Observations of the wind from NDBC 45002 and NDBC 45007 during the four

day period between 08/10/2012 and 11/10/2012 are shown in figure 7.7. During

the period beginning 00:00 08/10 the wind profile is fairly constant in direction

while wind speed is seen to increase steadily from 8ms−1 to 16ms−1. The direction

is approximately aligned with the lake resulting in a fetch spanning much of its

400km length. In order to progress with the uncertainty analysis, the GLERL

winds were used to force an ensemble of simulations according to the experimental

design described in section 7.4.1. An initial inspection of the simulation output

data, together with wave observations at NDBC 45002 and 45007, is shown in figure

7.8. Simulated Hs and Tp are shown by the solid lines, together with observations

(denoted with circles and crosses respectively) from NDBC 45002 in panel (a) and

NDBC 45007 in panel (b). Output generated using the default input values is shown

as dark (red and blue) lines. A sample of 20 points from the first design data set

are also shown for comparison, to give an indication of the variability due to tuning

uncertainty.

Firstly, we can see from the observations that the largest waves (approximately

4m) are observed at NDBC 45002, consistent with the (approximately) southerly

wind. These coincide very closely with the peak wind speed. Looking at the data

for NDBC 45002 in panel (a) first, the default parameterisation clearly underpre-

dicts Hs and Tp during the energetic period. The spread in the sample of output

data provides an indication of the possible variability in prediction, suggesting that

certain choices of parameterisation could give much better performance. However,

of the 20 samples shown, only the more “extreme” output appears to coincide with

the observations. Moreover, although the spread shows substantial variability in

terms of the magnitude of Hs there is a high level of temporal correlation between

samples. This implies that variation in possible parameterisations tends only to lead

to a change in overall magnitude rather than significantly modifying the temporal

structure or dynamic response. We can see that the observed Hs profile at 00:00

09/10/2012 reaches a peak close to 5 meters which is maintained for approximately

12 hours. Every sample run however predicts a decaying Hs profile during this pe-

riod. This is possibly indicative of a structural error in the simulator, or may be

due to the omission of an important source of uncertainty in the analysis, which

could include poorly specified forcing winds. Similar trends are seen in the data for

Tp. Again, the temporal structure is well captured by the simulator but all of the

output samples are underpredictions. It appears, at least from this small sample,

that in spite of a fairly large variance on the distributions of input parameters the

simulator is unable to closely match the observations.
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Figure 7.7: A localised average from the GLERL interpolated winds at NDBC 45002 and
45007 during October 2012. Note that the winds observed at NDBC 45002 are included
for comparison. A slight difference is noticeable due to the localised averaging.
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Simulated and observed wave statistics at NDBC 45002
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(a) Sample of simulated output at NDBC 45002, compared with observations.

Simulated and observed wave statistics at NDBC 45007

2012−10−08 2012−10−09 2012−10−10 2012−10−11

0
1

2
3

4
5

H
s (

m
)

3
4

5
6

7

Hs

WW3 simulated Hs
Tp

WW3 simulated Tp

(b) Sample of simulated output at NDBC 45007, compared with observations.

Figure 7.8: A comparison of simulated output from the default parameterisation with
observations of waves at NDBC 45002 (panel a) and NDBC 45007 (panel b). A sample of
20 points from a design ensemble gives an indication of variability in the output.
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Moving on to consideration of the data observed at NDBC 45007, shown in figure

7.8 (b) interestingly we see a different story. The default parameterisation gives a

good hindcast for Hs, showing good agreement with the observations. Variation in

the samples is comparable to that in panel (a) and the temporal structure of sim-

ulated output also appears to be in good agreement with observations. Simulation

of Tp is improved but once again it is underpredicted, and even the most extreme

sample output tends to fall below the observed values. The fact that hindcasts for

different locations show markedly different skills again suggests the possibility of

structural errors in the simulator which affect more energetic sea states more dra-

matically. Another cause of this is that the winds could be less accurately measured

at NDBC 45002.

Before attempting to address questions relating to structural errors or biased

forcing winds, we wish to look at how the simulator behaves in more detail. Specifi-

cally, in chapter 5 uncertainty and sensitivity analysis were performed for simulations

of fetch-limited growth and sensitivity measures were determined for the input pa-

rameters at different values of fetch. Although the case here is not exactly equivalent

to fetch-limited growth it does bear similarity, and we can perform similar analy-

sis. Figure 7.7 shows that the wind direction remains fairly constant between 12:00

08/10/2012 and 18:00 09/10/2012, with a mean direction of 212 degrees and s.d. of

9 degrees. During this period the wind speed increases from approximately 10ms−1

to 18ms−1 before falling back to about 10ms−1. Given a period of approximately

24 hours with a wind speed of 15ms−1, conditions would be approximately fetch-

limited up to about 460km58. However, towards the end of this period the wind

speed decays towards 10ms−1 and conditions may therefore become more dynamic.

Simulation output at NDBC 45002 for two particular points in time are therefore

chosen for analysis. The first is at the maximum wave height achieved, seen to be

at 01:00 09/10/2012 in figure 7.8. The second is at 18:00 09/10/2012 where, as

mentioned, the conditions are postulated to be closer to fetch-limited. Emulators

for Hs at both time points were formulated with prior mean functions of y ∼ 1 +

x[3,4,5,6,7,8] + x2
[3,5,7] + x3

[3,7] and Matérn (ν = 3/2) correlation functions.

7.6.1 Analysis for Hs

Results of the uncertainty and sensitivity analysis forHs are shown in figure 7.9. The

results for the uncertainty analysis of simulated Hs, figure 7.9 (a), show a broadly

linear response to the input uncertainty. Consistent with this, the main effects in

58The onset of the fully developed limit occurs at a non-dimensional fetch of approximately
2× 104, so for a wind speed of 15ms−1, this corresponds to a real fetch of approximately 460km.
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Figure 7.9: Uncertainty and sensitivity analysis for Hs simulated at 01:00 09/10/2012,
and 18:00 09/10/2012.
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panel (c) also exhibit a broadly linear response, the exceptions being sdsa2 and λDIA

which showed similar behaviour in many previous experiments. The most significant

difference with the analysis at the two time points is that the variance is explained by

different inputs parameters, seen in panels (e) and (f). Clearly the tuning of the DIA

scheme is most influential in both cases. With reference to figure 5.14 we can draw

some comparisons with the analysis for fetch-limited growth that were conducted in

experiment 5.B. The output distributions are comparable, but the variances are a

little lower in this case. However this is at least in part due to the lack of input wind

variability. The analysis for the peak conditions (at 01:00 09/10), seen in figure 7.9

(b), shows a similar pattern of influence across the input parameters to that seen

for Hs at short fetch, where the tuning for energy dissipation has an appreciable

effect. The variance explained by the dissipation parameters is less than that seen

at 52km but greater than that at 207km in experiment 5.B, so we might conclude

that the situation is broadly similar to fetch-limited growth at (perhaps) 100km.59

The analysis for Hs at the second time point reveals parameter influence very much

like that at fully developed conditions, that is, comparable to figure 5.14 (f) for

experiment 5.B (without input wind variability). This suggests that the sea state is

well developed, which is actually what we would expect given that the wind speed

is decaying from energetic conditions at this point. In a sense it may be in a state

of “relaxation”. Evidently in such states the tuning of the dissipation parameters is

somewhat irrelevant. This seems reasonable in that dissipation often tends refer to

“white-capping”, which is prevalent as a sea state grows from strong winds. As the

sea relaxes and wave energy is propagated from the local region energy dissipation

is much reduced, and so in terms of the simulation, we would not expect to see

much influence. We can conclude from this that nonlinear wave-wave interactions

appear to have a dominant effect in both idealised “steady state” cases and dynamic

conditions. Finally note that the total variance that remains unexplained by the

main effects is less than 5.0% in both cases showing that interactions between input

parameters is small.

Although we have learned about the relevant effects of the different tuning pa-

rameters and parameterisations, it should be born in mind that analysis here is with

respect to Hs (and Tp in the next section), both of which are summary measures.

As such we do not see how the uncertainty acts upon the form of the complete wave

spectrum. That is, although a certain choice of DIA parameterisation might appear

to give a better simulation of Hs or Tp in some situations, that does not necessar-

ily mean the underlying frequency spectrum is accurate, or even realistic. A more

59This could be easily verified by an additional experiment.
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detailed study would be required in order to explore this.

7.6.2 Analysis for Tp

Results of the uncertainty and sensitivity analysis for Tp are shown in figure 7.10.

Considerable nonlinearity is apparent in the uncertainty analysis, and the sensitivity

analysis reveals that λDIA accounts for 75% of the variance at the maximum con-

ditions, and 93% in the latter conditions. Panels (c) and (d) show that apart from

λDIA, the other parameters lead to a main effect of no more than a 5%, even at the

extremes of the parameter ranges. This compares very closely with the results of

experiment 5.B where Tp was also seen to be influenced almost exclusively by λDIA

and wind speed. The size of the variances in experiment 5.B are a little larger than

in this case but this is at least partially explained by the lack of wind variability.

In contrast with experiment 5.B for the analysis of Tp at short fetch, here there is

little interaction between the input variables, calculated to be less than 5% in both

cases.

This result is further evidence that Tp is less strongly linked to the dissipation

parameterisation (and its tuning) than Hs. In practical terms this means that we

have much less control over the adjustment of Tp, and an implication is that it is

constrained (either intentionally or otherwise) within the structure of the simulator.

Given that there is little means to adjust the performance, the general underesti-

mation of Tp suggests that there are structural errors giving rise to the low bias.

The next experiment considers a similar case but uses forcing winds in the opposite

direction.

7.7 Experiment 7.C: Northerly winds

This experiment is somewhat complimentary to the previous in that the wind is

blowing strongly, and aligned to the length of the lake. In this case however the

wind is northerly and so the largest waves are located in the south. The wind

profile is shown in figure 7.11. Note that the (apparent) erratic directional changes

are actually an artifact of the averaging process, averaging values that cross the 360

to 0 degree boundary. The observational data, indicated by the crosses, show that

the direction is sustained for the four day period with very little variation. The wind

speed is seen to increase from approximately 5ms−1 to 17.5ms−1.

We are interested in seeing how the effect of uncertainty in the simulation changes

as the wind speed increases, and whether this is comparable to both the previous ex-

periment, and findings for fetch-limited growth in chapter 5. Figure 7.11 shows that
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Figure 7.10: Uncertainty and sensitivity analysis for Tp simulated at 01:00 09/10/2012,
and 18:00 09/10/2012.
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Figure 7.11: A localised average from the GLERL interpolated winds at NDBC 45002
and 45007 during October 2012. Note that the winds observed at NDBC 45002 are in-
cluded (marked as crosses) for comparison. A slight difference is noticeable due to the
localised averaging.
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the wind conditions are very steady for the twelve hours following 00:00 29/10/2012

with a wind speed of approximately 10ms−1. Very similar conditions are seen during

the 12 hours preceding 00:00 31/10/2012, although the wind speed is approximately

17.5ms−1. Given these conditions we expect the waves at NDBC 45007 to be ap-

proximately fetch-limited. Time points 12:00 29/10/2012 and 00:00 31/10/2012 (at

NDBC 45007) are therefore chosen for analysis. These results can be compared with

the previous experiment, and with experiment 5.B in order to identify commonality.

The experiment design is copied identically from experiment 7.B. Before per-

forming that analysis, an initial inspection of some of the simulation output, seen

in figure 7.12, reveals some important issues. Firstly, in similarity with experiment

7.B, we see that simulation of smaller waves at shorter fetch, measured at NDBC

45002 in this case, is far better than that for larger waves. Figure 7.12 (a) shows

that the default simulation tracks the observations quite closely until about the final

12 hours for Hs and 24 hours for Tp, when it begins to under-predict both measures.

However, panel (b) shows that the onset of under-prediction is much earlier for

NDBC 45007, and during the peak conditions is quite drastic for both Hs and Tp.

We appear to be seeing similar results to experiment 7.B, but with the wind reversed

so that the energetic waves at NDBC 45007 are now under-predicted. Secondly, the

spread of simulations in the design set seems to suggest that for Hs the observed

values fall within the range of output induced by parameter variability. In similar-

ity with experiment 7.B this is not the case for Tp, which is again systematically

underpredicted. Thirdly, some strange behaviour is apparent in the simulation of

Tp for NDBC 45002. It appears that some combination of parameter values caused

spurious simulations of Tp although oddly this only seems to apply to prediction

at NDBC 45002. Recall however that discontinuity in output for Tp was seen in

experiment 5.B as a result of high values of λDIA and what we see here maybe the

same issue. Note the design range in this case is 0.1 < λDIA ≤ 0.4. The spurious

data need not be a concern at this stage provided an emulator can be fitted to the

data, and in fact the design point associated with this run lies on the edge of the

design. Analysis of the simulation data for Hs and Tp is undertaken in the following

sections.

7.7.1 Analysis for Hs

Emulators were formulated in the same way as experiment 7.B and used to perform

uncertainty and sensitivity analysis for Hs, the results of which are shown in figure

7.9. Here again we see the same kind of response to input parameter uncertainty

that we saw in the previous experiment and the tuning of the DIA scheme is clearly
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Simulated and observed wave statistics at NDBC 45002
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(a) Sample of simulated output at NDBC 45002, compared with observations.

Simulated and observed wave statistics at NDBC 45007
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(b) Sample of simulated output at NDBC 45007, compared with observations.

Figure 7.12: A comparison of simulated output from the default parameterisation with
observations of waves at NDBC 45002 (panel a) and NDBC 45007 (panel b). A sample of
20 points from a design ensemble gives an indication of variability in the output.
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Figure 7.13: Uncertainty and sensitivity analysis for Hs
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of most influence. There is remarkably little difference between the analysis at

the two different time points, which suggests that the physics was similar in both

cases. At the latter time point, figure 7.13 (f) seems to indicate that the sea state is

growing more than the earlier time point, since it is consistent with the response of

conditions at shorter fetch. This is characterised by more influence of the dissipation

input parameters and CDIA.

7.7.2 Analysis for Tp

Results of the uncertainty and sensitivity analysis for Tp are shown in figure 7.14.

Again it is immediately obvious that the results are similar to those found in the

previous experiment. λDIA accounts for most of the variance in both cases (92% and

87% respectively). The same nonlinear response to its variation is also exhibited in

the output uncertainty distribution. Importantly the total variance induced in Tp, as

a percentage of the mean value in both cases, is 3.5% and 3.6% respectively, which

compares to 11.0% and 9.8% in the case of Hs. This is also consistent with the

previous experiment and further highlights that Tp is considerably more constrained

than Hs.

7.8 Experiment 7.D: Changing wind direction

The previous two experiments considered situations that created wave conditions

that were broadly fetch-limited. The wind was therefore fairly constant in time. In

this experiment we consider a different kind of wind behaviour, in order to analyse

the uncertainty induced in simulated wave direction. This allows for some com-

parison with the findings made in chapter 6 where response to a turning wind was

considered. There are however some differences between the two situations. Exper-

iment 6.B investigated the response of the wave simulator to an abrupt change in

wind direction (through 90◦). Over Lake Michigan such abrupt changes are typically

transitory and occur during periods of high variability, thus making them a more

complex case to study. The forcing wind in this experiment has been chosen on the

basis of exhibiting a consistent change in direction over a short time scale. The two

cases also differ in terms of geographic scale, where experiment 6.B was conducted

on a 1000km× 1000km square grid with 50 cells each of length 20km, as compared

with grid cells with a length of approximately 4km. Nonetheless, the wave condi-

tions in both cases will be dominated by the local wind conditions and so the larger

grid size will have a limited impact. A time series showing a summary of the forcing

winds in this case is shown in figure 7.15. The winds, that occurred in September
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(d) Main effects for Tp at 01:00 09/10
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Figure 7.14: Uncertainty and sensitivity analysis for Tp
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Figure 7.15: A localised average from the GLERL interpolated winds at NDBC 45002
and 45007 during September 2010. Note that the winds observed at NDBC 45002 are
included (marked as crosses) for comparison. A slight difference is noticeable due to the
localised averaging.
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Simulated and observed wave statistics at NDBC 45002
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Figure 7.16: A comparison of simulated output from the default parameterisation with
observations of waves at NDBC 45002. A sample of 20 points from a design ensemble
gives an indication of variability in the output.

2010, exhibit a steady directional change that swings through 270 degrees from east-

erly to northerly over a period of three days. Comparing these conditions with the

analysis conducted in chapter 6, the directional transition here is gradual as opposed

to sudden. Furthermore the wind strength shows some variability, although tends

to increase during the period. We may therefore not expect to see quite the same

response to parameter uncertainty. The experiment was run according to the same

design as experiment 7.B and 7.C. Simulated mean wave direction for the period at

NDBC 45002, produced by the default parameterisation, together with output from

a sample of the design points is shown in figure 7.16. The default output appears

to reproduce the observed data with reasonable accuracy. The spread in the output

sampled from the design is generally small and reduces to almost zero at a number

of points. Variability appears to be positively correlated to the rate of directional

change. It can be seen that during the 20 hours beginning approximately 18:00

23/09/2010, when the direction remains constant, the variability in the design sam-

ple is very small. This is in contrast to the subsequent 36 hours when the direction

is changing, and the variability is increased. Intuitively this seems reasonable since

the waves follow the direction of the wind. In the absence of a changing wind di-

rection, there is no reason why a perturbation in the wave physics should give rise

to a change in wave direction. However, clearly perturbed physics can result in a
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slower or faster rate of change of direction, as indicated by the increased variability.

Departures from the observational data are evident, particularly during the latter

part of the simulation. Consistent with the findings of the previous experiments,

the variability in the design sample does not suggest that uncertainty in parameter

tuning can account for the discrepancy between the simulation and observations.

On the basis that the time points that exhibit the highest variance are the

most interesting, and important (given that physical processes are most active),

uncertainty and sensitivity analysis is performed for the two time points that exhibit

the highest variance across the six design data sets. These are 23:00 24/09/2010

and 15:00 25/09/2010 (with s.d.’s of 13.4 and 14.8 degrees respectively). Results are

shown in figure 7.17. Both cases show similarity, the most striking point being the

response of wave direction with respect to λDIA. As we have seen previously with

wave height and period in a number of experiments, it is highly nonlinear, in contrast

to the other uncertain input parameters. In this case the resulting uncertainty

distributions in panels (a) and (b) have some interesting properties. They are both

skewed, the first in (a) towards the low end, the second in (b) towards the high

end, but more importantly both have extremely long tails on the low end, with a

minimum value in the distribution (for the given MC sample) of 290◦. Inspection of

the main effects in panels (c) and (d) show why this comes about. At a scaled value

of 0.7 (corresponding to a value of λDIA of approximately 0.31) the response begins

to fall very rapidly in both cases. The input probability distribution for λDIA is

N(0.250, 0.031252) which results in P (λ = 0.31) ≈ 0.05. So values of λDIA greater

than 0.31 are sampled with a low probability but owing to the rapidly changing

response it is clear that the corresponding values of wave direction will be many

standard deviations from the output distribution mean. Thus the resulting output

distribution has a very long tail. Note that the value of 0.31 for λDIA corresponds

closely with the discontinuous behaviour in response found in experiment 5.B.

In both cases λDIA contributes approximately 50% to the output variance. Re-

sponse to the other input parameters is fairly linear but together they contribute

44% and 40% of the remainder respectively, leaving 6% and 10% unexplained by the

main effects. This shows that there is some interaction between the inputs but it is

fairly small. Moreover, the total variances of 6.7 (s.d. = 2.6◦) and 5.6 (s.d. = 2.4◦)

are also small, given that the observed values lie more than 4 s.d. from the mean.

This suggests that other sources of uncertainty are required to explain the large

difference, and that model structural error may be present.

This brief investigation into the directional response of the wave simulator in

a realistic case has highlighted at least two important points. Firstly, at the two
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Figure 7.17: Uncertainty and sensitivity analysis for mean wave direction simulated at
23:00 23/09/2010, and 15:00 25/09/2010.
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different time points during the wind transition, that showed the highest variation

in the simulation, the total variance in the results of an uncertainty analysis was

found to be small (s.d. ≈ 2.5◦), and could not account for the difference between the

simulation output and the observed values. Possible explanations for this include

unreliable observations, inaccurate forcing winds or structural error in the model.

In the absence of a rigorous estimate for either the observations or the wind uncer-

tainty, determination of possible structural error is difficult. However, given that

discrepancy between simulation output and observation seen in experiments 7.B

and 7.C were substantial only for the most energetic conditions, we might conclude

that any uncertainty in the forcing winds, or the observations, was highly correlated

with wind speed. This is no doubt an important area of further study. Secondly,

we have seen that perturbation of the tuning parameters associated with energy

dissipation tends to induce an approximately linear response in contrast with the

nonlinear wave-wave interactions, specifically λDIA. The response due to λDIA seen

in experiment 6.B was also highly nonlinear but of a different form. Nonetheless, in

this experiment like many others, the simulator response tends to be dominated by

uncertainty about λDIA.

7.9 Experiment 7.E: Parameter calibration for high winds

Noting the poor performance of WW3 with respect to simulating the more energetic

wave conditions on Lake Michigan, this chapter is concluded with an example of a

possible means of better calibrating the simulator. In order to do this we need a

means of evaluating the performance of the simulator in order to identify the “best”

calibration. A simple approach could involve formulating a cost function based on

the mean squared difference between simulation output and observations, and this

is followed here, although with the following considerations. Such an approach is

statistically naive and does not account for observational error or uncertainty in the

model discrepancy. That is, in contrast to the analysis conducted so far, beliefs

about the best (or most informative) input parameter values are not incorporated

and the resulting model discrepancy term is not statistically modelled. In the pro-

posed approach the input parameter space is constrained by the design space of

the emulator, but otherwise no preference for specific parameter values is expressed.

The resulting (“optimal”) choice of input parameters is therefore dictated by the

choice of observational data (with no consideration for observational error) and could

potentially lead to unphysical choices of parameterisations and over-fitting.

There is a growing literature on more comprehensive statistical approaches to this

kind of problem. The method of “history-matching” (see e.g. Craig et al., 1996 and
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Williamson et al., 2013) involves consideration of a broad input parameter space and

proceeds to “rule out” unphysical regions of that space based upon comparison with

observational data. This approach incorporates uncertainty information but is also

efficient, and helps avoid wasted effort associated with the modelling of regions of

the input space that result in complex, nonlinear and unphysical output60. History-

matching can be used in conjunction with a probabilistic calibration methodology.

Such a methodology is described by Kennedy and O’Hagan (2001), which is briefly

summarised in section 3.4.5. They formulate a model discrepancy term but rather

than it being a simple measure of error, it is a complete probabilistic description

of how the simulator output relates to observations (as a function of the uncertain

inputs). It is in fact modelled as a GP much like the simulator response is emulated

in this thesis. Trucano et al. (2006) commend the approach of Kennedy and O’Hagan

(2001) but point out that the methods required for analysing the resulting posterior

probability distributions are complicated. Noting the apparent lack of literature

describing the calibration of a wave simulator, probabilistic or otherwise, a simpler

approach is undertaken here (acknowledging its shortfalls). However, methods such

as those described above are being increasingly employed for complex simulators of

various kinds (see Williamson et al., 2013 and references therein) and it would be a

very natural next step to bring them to bear on a wave simulator. This is mentioned

briefly in section 9.1.

The initial approach then is to formulate a simple cost function based on pre-

dictions and observations of Hs at both buoys 45002 and 45007. The choice of

ignoring Tp, or any more detailed information derived from the spectrum, is two

fold. Firstly, it is substantially simpler to consider Hs alone rather than to derive

more complex cost functions, and secondly we have seen that the simulator consis-

tently under-predicts Tp even using “extreme” choices of input parameter values.

Any calibration process based upon Tp would preferentially select choices of param-

eter values that necessarily result in “extreme” parameterisations. We therefore

choose to avoid this issue by using data associated only with Hs on the basis that

simpler cost functions can be formulated and useful progress can be made. This does

not preclude improved simulations of Tp resulting from the calibration although any

improvement would be coincidental61.

Hourly observations of Hs are available at both NDBC 45002 and NDBC 45007

for the entire month of October 2012. A comparison of these with output from

60Recall that here we have seen larger values of λDIA give rise to apparently unphysical output.
61Note however that Hs and Tp tend to be highly correlated and it is not unreasonable to expect

that a new parameterisaton identified through a calibration exercise based solely on Hs will also
improve simulation of Tp.
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Figure 7.18: Simulated Hs compared with observations at NDBC buoys 45002 and 45007
for the entire month of October 2012.

a simulation with default tuning parameter values, in the form of a scatter plot,

is shown in figure 7.18. The underprediction of Hs at medium to high values is

immediately clear. Three commonly used statistics for quantifying the performance

are the root mean square error (RMSE), bias (b, defined here as the difference

between the mean of each data set) and Pearson correlation (corP ).

Ideally we would wish to calibrate with respect to all of the available data,

which in this case would be the entire time series. However, the emulators used

so far have been univariate in their prediction, and so to utilise such emulators

in the calibration process we would need an emulator for each time point. Other

alternatives are also possible. For example, since there is clearly a high degree of

autocorrelation in the data a more efficient representation for the time series could

be found and the resulting data set used as training data. In the example here

only a limited number of points are used with a view to formulating an emulator

for each point. Eight different time points are specified (identified by large crosses

in figure 7.19) at regular intervals throughout the month. The calibration points

include a range of observations, that exhibit both positive and negative prediction

errors. A total of sixteen calibration points are used, eight associated with each

buoy. Calibration is performed by minimising the sum of the squared distances at

each of these points. The general trend of the simulation is to underestimate Hs and

so at some points, notably the third, forth and fifth, the deviation is very large. The

resulting calibration will represent a trade-off between fitting the simulator output

237



7 UNCERTAINTY ANALYSIS FOR A REAL 2-D BASIN: LAKE MICHIGAN

Simulated and observed wave statistics at NDBC 45002
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Figure 7.19: As figure 7.8. Large (red) crosses show the calibration points used to
formulate the cost function.

to both the lower values of Hs (which are simulated quite well by default) and the

more extreme points (which tend to be significantly underestimated).

In practice this means that a total of sixteen emulators are required, one for each

calibration point. Making use of a common emulator formulation, using a mean

function of the form y ∼ x3,4,5,6,7,8 + x2
3,5,7 + x3

3,7 and a Matérn (ν = 3/2) correlation

function, it is straightforward and fairly quick to construct the emulators. When

using larger numbers of emulators in this way (and some researchers have advocated

using hundreds or even thousands) there is a risk that some will be fitted quite poorly,

owing to the degree of automation required. With fewer emulators, and where a

consistent formulation is adopted, it is straightforward to inspect the diagnostics

and gain more confidence in their performance. A sample of diagnostics is shown in

figure 7.20. Some of the validation tests show outlying points but on the whole the

emulators appear robust. Having successfully formulated the emulators we proceed

by using the emulator posterior mean functions to formulate a cost function. The

form of the cost function initially chosen is based upon a simple sum of the squared

differences between the simulator and observations, as follows,

C =
P∑

i=1

(Hs(Sim.45002)i
−Hs(Obs.45002)i

)2 + α

P∑
i=1

(Hs(Sim.45007)i
−Hs(Obs.45007)i

)2 (7.1)
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Figure 7.20: Examples of graphical diagnostics for the sixteen emulators formulated for
the calibration process. The reference distribution for the Mahalanobis distance is mean
= 80.0, s.d. = 15.8.
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which can also be written as,

C = BTSB (7.2)

where,

B =



Hs(Sim.45002)1 −Hs(Obs.45002)1
...

Hs(Sim.45002)P −Hs(Obs.45002)P

Hs(Sim.45007)1 −Hs(Obs.45007)1
...

Hs(Sim.45007)P −Hs(Obs.45007)P


(7.3)

and S is a 2P × 2P diagonal matrix with the first P diagonal elements set to 1,

and the remainder set to α. Writing (7.1) in this way highlights how the cost

function can be interpreted in terms of uncertainty about the observations. The

matrix S appears very much like the inverse of the covariance matrix V in equation

(3.31) for the Mahalonobis distance. In that context, we could assume that S

represents some kind of Gaussian measurement error or uncertainty. Firstly, then,

noting that S is diagonal, we are implying that observations are independent and

uncorrelated. This is clearly not a reasonable assumption since the time series is

autocorrelated. Secondly, with the inclusion of α in the diagonal, we are able to

adjust the “variance” associated with the observations made at NDBC 45007. A

higher value of α implies a higher weight, or lower variance, associated with these

observations. Furthermore, with a constant variance given to each data buoy we

are asserting that the variance is not a function of the wave height, and as such

giving a higher weight to larger observations. We may expect uncertainty in the

observations to scale with their magnitude, thus in some sense “moderating” the

influence of high valued observations. With the cost function formulated as given,

“moderation” (i.e. re-weighting of the observations) can be achieved rather crudely

using α, although in the absence of any information on measurement error, its

adjustment must be made pragmatically. Also, this affects all observations made

at each data buoy simultaneously, rather than individual measurements. If more

detailed information about observation error were available it could be incorporated

in S. Noting the comments above, we can see that the cost function has a number

of limitations. Nonetheless, it represents a starting point for the calibration process

in this particular case, and could be developed, as described, were more information

on observation uncertainties available.

In this case, P is set to 8, and α is set to 1 initially. Making use of an exponential

transform to modify the input domain of optimisation to [−∞, 0], the cost function
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Table 7.3: Tuning parameter values found through calibration (7.E).

Parameter Calibration
#1 (α = 1)

Calibration
#2 (α = 5)

Calibration
#3 (α = 10)

sdsa0 4.94 4.8 4.91
sdsa1 6.31× 10−5 6.31× 10−5 0.00316
sdsa2 1.44 1.71 2.12
sdsb0 -0.007 -0.00698 -0.007
sdsb1 0.68 0.7 0.4
phimin 0.001 0.003 0.0023
λDIA 0.28 0.28 0.29
CDIA 3.33× 106 3.33× 106 8.32× 106

is then minimised using a constrained quasi-Newton method. This is necessary in

order to avoid evaluating the emulators outside their validated range of [0, 1]. The

optimisation method is described in Byrd et al. (1995).

Tuning parameter values found to minimise the cost function (7.1) with α = 1

are shown in the second column of table 7.3. Using the new parameterisation, results

of a simulation for the month of October 2012 are shown in figure 7.21. The com-

parison of these with observation are shown by red crosses, together with a similar

comparison made between the default parameterisation and observations, shown by

black circles. What we can see immediately is that the simulator now has a positive

bias in conditions where Hs is below approximately 3 metres. However, at the most

extreme values of Hs, above 3 metres, we see that the simulator is performing very

much better. Noting that the new parameterisation results in a strongly positive

bias, it appears that the process of fitting the more extreme values has had the

undesirable effect of causing an increase in simulated Hs in all conditions. In effect

it has over-fitted the extreme data. On the assumption that the minimisation of the

cost function located the true minimum, it would seem that there is no combination

of tuning parameters values within the range of the analysis that can give good

estimates of both low and high values of Hs. The calibration process is therefore

finding a balance between fitting calm conditions (which are simulated well by de-

fault), and fitting extreme conditions (which are simulated poorly by default). In

order to penalise parameterisations that cause deviation from the (generally good)

simulation in calmer conditions (e.g. at NDBC 45007 in this case), the cost function

can be modified using the weighting parameter α. Increasing the value of α has the

desired effect, so the calibration process was therefore repeated for α = 5, 10. The

values of the parameters found during the calibration are given in table 7.3 (columns

3 and 4). Before moving on to consider the results let us consider the values of the
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Figure 7.21: Simulated Hs using the default parameterisation (black circles) and the
parameterisation after calibration (red crosses), compared with observations.

tuning parameters identified. Recalling that these parameters do not generally have

a specific physical interpretation, the physical insight we can gain may be somewhat

limited. However, it is clear that those parameters seen previously to be influential

are active here. Specifically, sdsa2 shows an increasing trend as the cost function

penalises more extreme conditions. sdsb0, which has previously shown to give a

negative linear response in Hs, is found to be optimal at its low design limit. CDIA

is found to be optimal at its low design limit in the first two cases but as the cost

function penalises more extreme conditions, higher values are preferential. Since

this typically induces an inverse response in simulated Hs, this behaviour is also

consistent with that seen previously. An important question raised here is, given

that some parameter values have been pushed to their design limits, would a more

effective parameterisation be found if the experiment was designed over a wider

parameter space? The answer would appear to be that they might very well be,

although any further extension to the parameter space would be further away from

our beliefs according to the original elicitation. The method of history-matching

could be a useful tool to explore this further.

Proceeding without further consideration of the specifics of the parameteri-

sations, comparison of simulation results with observations for calibration with

α = 5, 10 are shown in figure 7.22. We can see that with the higher weighting

on the calibration points for NDBC 45007 (where calmer conditions are typically

observed), the resulting parameterisation gives output with a reduced bias. The
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Figure 7.22: Simulated Hs compared with observations at NDBC 45002 and 45007
using the default parameterisation (black circles), and after calibration (red crosses) with
α = 5, 10.
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Table 7.4: Comparison of performance statistics for the default WW3 parameterisation
and alternatives found through calibration (7.E).

NDBC 45002 NDBC 45007
Default α = 1 α = 5 α = 10 Default α = 1 α = 5 α = 10

RMSE 0.433 0.325 0.247 0.317 0.531 0.490 0.374 0.404

corP 0.972 0.971 0.973 0.937 0.942 0.949 0.951 0.943

b -0.23 0.250 0.078 -0.021 -0.19 0.368 0.167 -0.03

top panels, for α = 5, show that a bias remains, particularly for predictions at

NDBC 45007, however good performance is still seen for the more extreme values

of Hs. The bottom panels, for α = 10, show that the positive bias has been largely

removed but at the price of poorer performance at the more extreme values, par-

ticularly at NDBC 45007. Nonetheless, regarding the simulator’s skill in predicting

conditions for the period of October 2012, where stormier conditions are expected

(and it probably applies more generally to such conditions), both new parameterisa-

tions give better performance than the default. These are summarised in table 7.4.

From a safety point of view, underestimation of wave conditions is generally far more

dangerous than overestimation62, especially in extreme conditions. Consequently it

could be argued that either of the new parametrisations (α = 5 or α = 10) should

be implemented for stormy weather. The fact that the default scheme dramatically

underpredicts in extreme conditions is certainly something that needs correcting.

Although the calibration process did not incorporate observational data for Tp

at either buoy, it is instructive to see how well Tp is simulated using the new pa-

rameterisations. Scatter plots are shown in figure 7.23. The poor performance in all

cases is quite apparent. We have seen throughout this thesis that Tp is fairly insen-

sitive to changes in tuning and this case is very similar. In spite of the considerable

performance improvement in the simulation of Hs obtained through the calibration

process, the new parameterisations do not appear to have much affect on Tp. The

largest improvement is seen for α = 10 where the RMSE and bias at NDBC 45002

are reduced by 18% and 32% respectively. These are significant improvements but

the overall predictive skill remains fairly poor.

In summary of this experiment some further comments are made. Firstly, the

calibration process illustrated here is simple and does not formulate model discrep-

ancy or take into account observation uncertainty. The choice of cost function is

also somewhat pragmatic, and involves only a limited amount of the available in-

62Other costs may be associated with overestimation of conditions, but these are usually mea-
sured in economic terms, for example due to the unnecessary suspension of public services.
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Figure 7.23: Simulated Tp compared with observations after calibration. Note perfor-
mance statistics for the default case at NDBC 45002 are RMSE = 1.19s, corP = 0.907, b =
−1.01s and at NDBC 45007 are RMSE = 1.21s, corP = 0.889, b = −0.958s.
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formation. However what has been shown is that emulators can be used to great

effect when calibrating a simulator. It has been clearly demonstrated that improved

performance can be obtained quite cheaply. Owing to project time constraints this

particular problem is not considered in more detail here but it is easy to see that

there are a range of possible avenues to explore that might give even better results.

Specifically, the form of the cost function could be investigated, which might in-

volve the inclusion of more information via the use of additional emulators. A more

sophisticated approach might involve history-matching (Williamson et al., 2013) or

the more complete probabilistic framework of Kennedy and O’Hagan (2001). Devel-

opment of a more efficient representation of the time series data, or an emulator that

accounts for the autocorrelation would also take this problem forward. Any one of

these approaches might give further improvement in parameterisation for the con-

ditions on Lake Michigan, and could no doubt be easily extended to other regional

or global wave modelling problems.

7.10 Chapter summary

In this chapter uncertainty about tuning of the wave simulator has been investi-

gated in the context of a realistic example. The issue of uncertainty about initial

conditions was considered in experiment 7.A and determined that typically at least

24 hours spin-up time was required in the most energetic conditions. Experiments

7.B, 7.C and 7.D performed uncertainty and sensitivity analysis for different wind

regimes in energetic conditions. In all cases uncertainty with respect to the DIA pa-

rameterisation for nonlinear wave-wave interactions was found to dominate output

variance (always contributing between approximately 50% and 90%). Furthermore

in energetic cases, tuning uncertainty could not account for the discrepancy between

simulation output, in terms of Hs and Tp, and values observed by data buoys. Close

temporal correlation between the simulation output and the observed quantities sug-

gest that either a bias exists in the forcing winds or observations of waves in more

energetic conditions, or that structural error in the simulator causes a systematic

underprediction of waves during more energetic conditions. Finally in experiment

7.E a calibration exercise was performed in order to obtain a better parameterisation

for the simulation of Hs in energetic conditions (typically seen in October). Sixteen

emulators were used in order to explore the parameter space and minimise a cost

function. Two resulting parameterisations improved the skill of the simulator for

the period of October 2012.
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8 Conclusions

In this thesis the effect of uncertainty on input to a numerical wave simulator has

been investigated. The objectives were to perform quantitative uncertainty analysis,

in order to shed light on some fundamental, and thus far unanswered, questions

relating to uncertainty in wind-wave modelling. The motivation for this work was

detailed in chapters 1 and 2. The proposed theory and methods, particularly relating

to Gaussian process emulators, were discussed in chapter 3. Chapter 4 set out

the scope of the uncertainty analysis, which also included elicitation of the input

uncertainty. This was followed by analysis of simple wave model configurations and

concluded by an investigation into how the uncertainty might affect predictions of

generated wave power from a wave energy converting device. Chapter 5 extended

the uncertainty analysis to situations of fetch-limited wave growth, making use of

energy propagation in 1-dimension, and introduced sensitivity analysis for input

parameters. Chapter 6 investigated simulations with a second spatial dimension,

allowing for the investigation of directional waves, and the specification of more

complex forcing winds. Finally, chapter 7 investigated realistic simulations on Lake

Michigan and drew comparisons with findings from idealised cases. Also, an updated

parameterisation was determined that gave improved performance in energetic wind

conditions.

In the following sections final comments are made and conclusions drawn with

respect to the findings of this research. Firstly the effectiveness of emulators is sum-

marised. Secondly some general comments are made about the effect of uncertainty

on simulations of waves. Thirdly, individual sources of uncertainty are discussed

before providing some final comments.

8.1 Effectiveness of emulators

The approach to performing uncertainty and sensitivity analysis using Gaussian

process emulators has proved very effective. Three uncertain input parameters were

specified in chapter 4 and up to twelve were used in chapter 6. By identifying

appropriate choices of the mean function through standard regression techniques,

and typically making use of a nugget term, emulators were found to robustly vali-

date. Detailed consideration of the behaviour of emulators in simple cases, shown

in section 3.5.5 elucidated how problems can arise. However, results of uncertainty

analysis using emulators, when compared with a direct Monte Carlo analysis on the

simulator (see e.g. figure 4.8), revealed no appreciable difference between the two.

In subsequent chapters emulators have successfully been used;
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1. To perform quantitative uncertainty and sensitivity analysis with respect to
parameter uncertainty, for a range of output wave summary statistics in a
range of idealised and realistic cases;

2. To identify nonlinear response to simulation input;

3. As surrogate models to build a fast cost function based upon simulated and
observed data, that can be minimised in order to find an improved parame-
terisation.

Recall also that efficient code (see appendix D) was written to perform uncertainty

and sensitivity analysis by direct numerical integration of the emulator posterior

functions.

There is one specific example of where significant problems were encountered

when attempting to fit an emulator, in chapter 5 (see figure 5.15). For input param-

eter λDIA > 0.31 the response of Tp at fetches of 207km and 917km (and probably in

between) exhibits a distinct discontinuity. Adjustment to the design was therefore

made in order to exclude the discontinuous region because a requirement is that the

training data is continuous. The source of the discontinuity remains unexplained but

we can see that it manifests only with respect to variability in λDIA for output Tp in

certain sea states. No other discontinuities were discovered and it is not in general

expected to be a feature of simulator output (or any underlying physical process).

Note that Tolman (2004b) identifies bifurcation in λDIA (for 0.16 < λDIA ≤ 0.20)

when optimising the DIA with respect to the exact nonlinear computation. There

is no immediate evidence that these two phenomenon are related but he specu-

lates that the cause could be either a false minimum in the optimisation routine or

genuinely as a result of strongly nonlinear integration.

8.2 Uncertainty in wave model output, and sensitivity to

input

8.2.1 General comments

General comments are summarised into three main points. The first relates to overall

uncertainty induced by uncertain parameter tuning and wind forcing. The second

highlights the issue of parameter uncertainty and how this relates to structural error.

The third, captures more generally the value of the work in this thesis in terms of

providing a basis for further research. This also incorporates some notes on the

nonlinear nature of wave physics and speculates as to what further research might

reveal.
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Based upon elicited uncertainty information (see chapter 4), output probability

distributions for Hs and Tp have been computed using emulators in a number of

cases. Output uncertainty is typically characterised with a s.d. of approximately

10% and <5% of absolute value of Hs and Tp respectively. Such results are ob-

served consistently throughout this thesis whether in highly idealised cases or in

the dynamic cases of simulations of Lake Michigan. In the case of Lake Michigan,

simulations were conditional on the winds but nonetheless comparable output vari-

ance was found. This highlights firstly, that our uncertainty in tuning does give rise

to appreciable output uncertainty. In practical terms this means for example that

2.5% of waves will have significant height exceeding 3.6m, where the mean signifi-

cant height is 3m. Secondly, it is notable that Tp is considerably more constrained

than Hs by the simulator. That is, the same input uncertainty results in approxi-

mately half of the output uncertainty for Tp compared to Hs. When compared to

observational data this appears to contribute to poor simulator performance for Tp.

We have also seen than in spite of the large output variance induced by the input

uncertainty, that in conditions of strong winds particularly, parameter uncertainty

cannot fully account for the discrepancy between output and observations. Calibra-

tion of the simulator (see section 7.9) resulted in a reduction in RMSE associated

with Hs for stormy conditions but at the cost of performance in less energetic con-

ditions. Furthermore, Tp data was not included in this process, although it is clear

from from the large systematic underprediction that no amount of parameter ad-

justment could result in particularly good performance. Bearing this in mind, two

points are made. Firstly, clearly parameter tuning of the TC96 and DIA schemes

can lead to significant performance improvement in certain conditions, particularly

for Hs. Secondly however, the structure of the parameterisations appears to con-

strain adjustment to systematic increase in wave height predictions in all cases, and

cannot give rise to the change necessary for accurate Tp prediction without drastic

intervention (which seems unrealistic). Note also that in the realistic cases forced

by strong winds, simulation output for Hs with mean 4m and s.d. 0.4m clearly

cannot account for observed values of approaching 6m. Poor performance in en-

ergetic conditions is well known and improvements have been made but findings

here are further evidence of important structural errors in the simulator. In the

absence of uncertainty information about the observational data (wind speeds and

wave heights) it is difficult to make more detailed statements. Proceeding on the

basis that the observational error is small we can say with confidence that some

kind of substantial structural error is present. This seems particularly likely when

considering the simulator’s sensitivity to the forcing wind. Although strong, in the
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fetch-limited case at approximately 200km, the main effect of the wind on Hs sug-

gested that an increase of 1ms−1 wind speed would result in 15% increase in Hs.

This clearly falls well short of the uncertainty that would be required to explain the

above mentioned discrepancy (of nearly 2m, or 50%). It therefore seems unlikely

that forcing wind speed uncertainty is contributing significantly and that structural

error is the main issue. More discussion about how the specific sources of uncertainty

influence output could be used to direct improvement in the presence of structural

error are given shortly.

As a final, more general point on parameter uncertainty, this work has identified

little interaction between tuning parameters. In idealised cases this is perhaps not

surprising owing to the linear combination of source terms in the formulation of the

energy balance equation. However, given the clearly nonlinear nature of ocean waves

(including nonlinear wave-wave interactions), we might have expected generally to

see more nonlinearity and interaction between components of source terms, regard-

less of their specific formulation. That is, it may be unrealistic to expect accurate

representation of the physical processes without more explicit nonlinear behaviour

being evident in the analysis. Rogers et al. (2012) makes a point of highlighting

that certain nonlinear phenomenon (relating to wind input and wave breaking) are

captured in their new parameterisation. The parameterisation of Ardhuin et al.

(2010) now implemented in WW3 is based upon the WAM4 input source term, with

a new dissipation scheme, and offers a very wide range of tuning parameters. This

may be indicative of the more complex (and nonlinear?) representation that might

be required, and in light of the findings made in this thesis it would extremely in-

teresting to examine the inner workings of that particular expression of the physics.

This is explored further in section 9.1.

8.3 Sensitivity to wind input

Historically forcing wind has been regarded as the dominant source of uncertainty.

Findings in this thesis generally seem to support this point of view. Specifically,

simulations have shown very strong sensitivity to wind speed and directional uncer-

tainty in all relevant experiments. Where winds are subject to biases of the order of

at least 1ms−1, especially over long periods of time, we might expect considerable

resultant error in wave simulation output.

However, this is clearly not the whole story. As noted above, even the strong

sensitivity cannot account for the large discrepancy between output and observations

in certain conditions, and it is clear that other source terms also induce strong

sensitivity. To say more about how wind uncertainty manifests in general is far
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from straightforward. Performing analysis for uncertainty about forcing winds is

extremely challenging - in fact it is very difficult to even state what we mean by

wind uncertainty. As such, in any given case we are likely only to be able to make

general statements, particularly on large or global scales. On smaller scales it may

be possible to undertake more detailed experiments, as was done with the synthetic

winds in experiment 6.B, and these may be useful for obtaining better localised

results.

Although the simulations for Lake Michigan in chapter 7 are conditional on the

wind input, it is clear that simulator performance is superior (and generally very

good) in less energetic conditions. Alves et al. (2011) finds similar behaviour for Lake

Michigan when using the previous release of WW3 (as used here) and demonstrates

improved simulation using a version of the parameterisation of Ardhuin et al. (2010).

This highlights that structural errors are being addressed, and that given higher

quality winds, a focus on addressing shortfalls in the representation of the physics

is indeed the most prudent approach at present.

8.3.1 Energy dissipation

We have seen that parameters that govern energy dissipation in the TC96 scheme

are most influential in growing sea states. For example, this was seen in 5.14 panel

(b) which showed growth of Hs at a fetch of 52km. This should of course be expected

because wave breaking is most active at this time. However, even where they are

most active, they tend to account for a modest proportion of the total variance,

typically <25%. With confidence in the input probability distributions (that is, if

the elicitation process was reasonable), that would suggest that energy dissipation

is, in most cases, of less importance than other sources of uncertainty (i.e. wind

forcing and nonlinear wave-wave interactions).

The “pattern” of influence, that is the relative proportions of output variance

explained, appears to be remarkably consistent across experiments of the same kind

(e.g. idealised fetch-limited growth in chapter 5 compared with similar growth on

Lake Michigan in chapter 7, compare figure 5.17 (b) with figure 7.10 (c)). Typically

sdsa0 and phimin are virtually inactive, whereas sdsa1, sdsa2, sdsb0 and sdsb1 are

influential, although often induce fairly linear response. There is no apparently obvi-

ous connection to be made between their relative importances, and their relationship

to the physical process, which is either low or high frequency energy dissipation in

this case. It would therefore seem reasonable that these input parameters could

be regarded only as set of “knobs” that could be used to arbitrarily re-tune the

parameterisation as necessary, without much further consideration for their physical
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interpretation. In fact, although not consistent with the elicitation previously con-

ducted, their input probability distributions (or more specifically their variances)

could be somewhat arbitrarily increased to obtain a wider range of control. The rel-

ative influence of each parameter would then be adjusted. Such an approach might

give more insight into the operation of the wave model, although the input would

not necessarily capture our beliefs. We can only speculate as to whether the authors

of the original work ever believed the credible range of parameters to be so wide.

8.3.2 Nonlinear wave-wave interactions

The substantial, and typically highly nonlinear, influence of the tuning of the DIA

scheme (via parameters λDIA and CDIA) cannot be understated. This is particularly

interesting given recent work such as Zakharov and Badulin (2011) who argue that

the dominance of nonlinear interactions in the dynamics of the wave spectrum are

somewhat overlooked. These findings would in fact suggest that effort should be

expended seeking improved (but computationally cheap) parameterisations for the

nonlinear integral (see also section 9.2‘ below). It is no surprise that this is indeed

on-going (Tolman, 2013a) but given the huge expenditure in developing improved

input and dissipation schemes over recent years, one has to question whether the

balance of research effort is sensible.

Research in this thesis has not focussed on the detailed sensitivity of the full 2-D

nonlinear transfer function spectrum to DIA adjustment (like the work of Tolman

(2004a)) but rather on the actual impact of tuning of the DIA as implemented in

a wave simulator. It is particularly interesting that Tolman (2004a) found optimal

values of λDIA of between 0.16 and 0.20 whereas tuning in section 7.9 suggests values

closer to 0.28. To take this forward a detailed study of the resultant spectra should

be undertaken to examine why this is the case. It would seem that the nonlinear

source term is a particularly important aspect of wave modelling that has perhaps

been overlooked for too long. Future research should not only focus on improved

parameterisations alone, but part of any study should also incorporate analysis of

its interaction with other source terms, perhaps by using emulator methods. This

is particularly important noting that new parameterisations, such as that presented

by Tolman (2013a) introduce further tunable parameters.

8.4 Final thoughts

Returning to the original questions posed in chapter 1, we are now in much stronger

position to provide answers, at least within the scope of experiments conducted
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in this thesis. It may also be possible to speculate beyond these examples with a

reasonable degree of confidence.

1. How influential is the uncertainty in forcing winds in wave model predictions?

Regarding the wind speed, with a distribution characterised byN(12.5ms−1, 0.52)

it is typically the dominant source of uncertainty, and accounts for between

than 25% and 50% of output variance of bothHs and Tp. For higher wind speed

or more variable winds we might expect this to be proportionately higher. In

cases involving directional waves, uncertainty about the wind dynamics was

also shown to dominate output uncertainty (>50%). This suggests it is likely

to be the dominant source of uncertainty in a much broader range of cases.

2. What choice of model input parameter values gives the best performance when

hindcasting wave conditions? Sensitivity analysis has revealed detailed quan-

titative information about the effect of each parameter on simulated Hs and

Tp in a range of cases. This alone is sufficient to make adjustments pragmat-

ically, but a more formal approach based upon real world observations has

been demonstrated in chapter 7 to yield “optimal” parameter values that give

improved performance in certain conditions. Given the approach was rela-

tively simple, success here strongly suggests that even using the outdated63

TC96 and DIA parameterisations, improved performance could be gained in

localised regions, or even on larger scales without the need for expensive re-

formulation of the physics. Moreover, recently developed parameterisations

could benefit enormously from the application of the methods employed here.

3. Has wave modelling reached its limit? Over the past few years alone the

development of wave modelling has been considerable. Improvement in model

physics (e.g. Ardhuin et al., 2010) has resulted in improved performance.

However, that improvement was made without the potential benefits afforded

by the methods presented here which are argued to provide a solid foundation

for future research of this kind. Noting these potential benefits, in terms of

both incorporating our beliefs into analysis, and learning about the effects of

uncertainty and wave model sensitivity, it seems entirely reasonable to believe

that its limits have not been reached. In particular the full benefits of recent

work are unlikely to have yet been realised. It is the conclusion of this author

that the application of these methods in different ways, and in any number of

cases, would bring immediate gains.

63Recalling the abundance of recent research output and update to WW3.
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Some brief further thoughts on potentially rich areas of related future research,

and how to exploit them to maximum effect, are given in chapter 9.
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9 Notes on future work

9.1 Uncertainty and sensitivity analysis for Wavewatch III

v4.18 and larger scale simulations.

The timing of this project seems a little unfortunate with regards to the timing and

availability of major updates to WW3. WW3 version 4.18 was released publicly in

the second quarter of 2014 and incorporated many new physical parameterisations

relating to energy input and dissipation and nonlinear wave-wave interactions. The

work in this thesis lays an important foundation in terms of what we might expect

to see with regards to the investigation and adjustment of other wave model param-

eterisations and in light of this it would be very interesting to examine in detail,

using the methods presented here, recently developed physical schemes. In particu-

lar, the work of Ardhuin et al. (2010) and Tolman (2013a) offer many demonstrable

performance enhancements (including on Lake Michigan). However, neither of these

has been examined rigorously by methods used in this thesis, either when operating

independently or together in a simulation. The methods of history-matching and

probabilistic calibration could also be implemented. More importantly, what has

yet to be done is apply these methods to larger scale simulations. A sensible next

step, that would allow for the investigation of quite complex realistic situations while

alleviating certain issues such as highly variable boundary conditions, is suggested

to be the Gulf of Mexico.

9.2 Surrogate modelling of nonlinear wave-wave interactions

source term

GP emulators have been used to perform uncertainty analysis with respect to a

wave model in this thesis but they do have other applications. Andrianakis and

Challenor (2012a) used an emulator to act as a fast (and accurate) representation

of a (computationally expensive) fine scale parameterisation for convective mixing.

Tolman et al. (2005) present preliminary results from experimentation of using an

artificial neural network (ANN) to act as a fast surrogate for the nonlinear source

term. It would appear that if an ANN could be trained to give useful results, that a

GP emulator could also. The problem is not however trivial. A key issue is that the

enormous variability in realistic sea states leads to a massive input / output space

(i.e. some kind of space incorporating all possible sea states). Some kind of highly

efficient dimension reduction technique would also be required. Tolman et al. (2005)

considered only a set of single peaked spectrum thus limiting the problem for the
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purpose of investigation. Nonetheless, wave spectra do have certain characteristics

that might, to a degree, circumvent this problem. The nonlinear source term also

exhibits a very specific structure (in frequency / direction space) that may therefore

be less problematic to deal with than it might first appear. This would also lead to

an interesting experimental design problem.

9.3 Bathymetry

Over recent years, in part owing to the gathering momentum in the marine re-

newables industry, modelling of the coastal zone has become important. This can

be a particularly complex problem owing to the richer diversity of physical pro-

cesses involved. An important aspect of this modelling is the representation of the

bathymetry. Uncertainty is either introduced through low resolution, or even absent

bathymetric data, but it is also introduced because bottom topology can change over

time due to sediment transport or erosion. Extensions to the methods described here

could be used to perform uncertainty analysis that takes into account bathymetric

uncertainty.
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A Representing the 1-D spectrum

Unidirectional sea states, particularly in more developed seas, typically exhibit a

spectral shape that resembles the well known JONSWAP spectrum (in 1-D). For

some kind of distribution of sea states expressed in the form of a 1-D spectrum

(perhaps obtained from observational data buoys), it may be straightforward to

capture the variability using an empirical or parametric basis. Within the wave

model, the spectrum is represented by, typically, between 20 and 40 frequency bins.

However, since the size of each bin is correlated with its neighbours, owing to the

spectral shape, then there could be a number of ways of reducing the number of

dimensions required to represent a spectrum. In this appendix, the use of a Gaussian

process model is briefly explored as a means of representing the 1-D spectrum in

a flexible way, with a view to emulating simulation output with a lower loss of

information than occurs when considering summary statistics (e.g. Hs and Tp)

alone.

We start by assuming that the spectrum exhibits a well defined peak frequency,

fp. Spectral intensity tends to decay rapidly on either side of the peak, as frequency

increases or decreases. This point is therefore used as a design point for a Gaussian

process model. Other design points may then be specified with respect to the peak

frequency. Examples are shown in figure A.1, where design points are chosen based

upon a logarithmic series, specifically, [0.08,L1,L2,L3, fp]Hz, where L1 comprises

five points on a base 10 logarithmic scale between 0.912 and fp, L2 comprises five

points between 1.07fp and 1.8fp and L3 comprises four points between 2.3fp and

0.6Hz. Working in this way we can avoid problems with modelling the spectral peak,

that arise due to extreme gradient, that would be encountered for more arbitrary

(e.g. LHS) designs. The Gaussian process model is formed in the same way as

emulators described in chapter 3, with a mean function linear in frequency and a

Matérn (ν = 3/2) correlation function.

From a visual inspection, we can see from the examples shown in figure A.1

that the approach appears to perform quite well up to frequencies of approximately

0.3Hz. However, beyond this, the behaviour of the GP mean function, particularly

in the bottom two panels (at longer fetch), likely due to the positioning of the

design points and fairly short correlation lengths scales (0.035, 0.044, 0.024, 0.024

respectively), diverges from the spectral function in an unhelpful way. It is clear that

further investigation of this approach is required before it could be more formally

implemented, but nonetheless it appears promising. A logical next step would be

to develop a prior mean function that more closely represents the spectral shape.

This would likely facilitate a more efficient design requiring fewer than the 10 to 15
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Figure A.1: A Gaussian process model fitted to a number of fetch-limited spectra (at
increasing fetch) as generated by WW3. The spectral shape (solid black line) is modelled
by a GP posterior mean function (solid blue line) using up to 14 design points (sold black
circles.)

design points used here. Each design point could then be emulated separately or

jointly when performing uncertainty or sensitivity analysis for spectral wave model

output.
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Table B.1: WW3 programme execution sequence

Programme Purpose Description

ww3 grid Grid preprocessor. Configures the spatial grid, together with rel-
evant numerical (CFL parameters) and tun-
ing parameters via namelists.

ww3 strt Initial conditions pre-
processor.

Configures initial conditions for the wave
spectrum, e.g. calm or JONSWAP.

ww3 prep Field preprocessor. Pre-processes various input fields, such as
winds. Typically supplied as separate input
files.

ww3 shel Numerical solver. This is the parallelised part of the code.
This takes input prepared by the above pro-
grammes.

ww3 outp Point output proces-
sor.

On completion this programme interrogates
the (binary) output, and provides point out-
put in specific files. Other similar pro-
grammes can provide tracks or fields of out-
put if requested.

B Running designed experiments with Wavewatch

III

B.1 Wavewatch III sequence of execution

The operation of WW3 for the purposes of running designed experiments is sum-

marised here, although the reader is directed to Tolman (2009a) for extensive discus-

sion of its operation. WW3 comprises a number of auxiliary programs that are run

in sequence. These are briefly described in table B.1. Each program reads an input

file that specifies its various configuration information. The input files are named

according to the programme name, e.g. ww3 grid.inp. This cannot be changed

but it can be linked to any other file name for convenience. A batch of input files

typically needs to be created for the ensemble run. If the files are large, i.e. for

ensembles of winds, these may need to be created “on-the-fly” to avoid exceeding

storage allocation. A listing of the shell batch execution script (ww3 multi cell.sh)

is given below.

1 #!/bin/sh

2 #PBS -S /bin/bash

3 #PBS -l nodes =2: ppn=12

4 #PBS -l walltime =00:45:00

5
6 module load R

7 module load openmpi/1.6.4/gcc_of2

259



B RUNNING DESIGNED EXPERIMENTS WITH WAVEWATCH III

8
9 # -----------------------------------------#

10 # Filename: ww3_multi_cell.sh

11 # Script to run ten cells with spatially

12 # variable wind patterns.

13 # Serial or parallel capability.

14 #

15 # -----------------------------------------#

16 TIME_NOW="‘date +%d%h%H%M%S‘"

17
18 # Number of procs.

19 # NUM_PROCS=8

20 # PR3 propagation.

21 PATH_E=/home/bwt1g10/ww3_3.14/built_exes/xy.PR3.lin.mpi

22 PATH_SER=/home/bwt1g10/ww3_3.14/built_exes/xy.PR3.lin.shrd

23
24 SHEL_COM="mpirun -np ${NUM_PROCS} ${PATH_E}/ww3_shel"

25
26 echo

27 echo " Operating in MPI mode , ${NUM_PROCS} processors."

28 echo

29
30 # Input directory.

31 # echo "Workdir: $PBS_O_WORKDIR"

32 # PATH_H=$PBS_O_WORKDIR

33 # PATH_H=$PWD

34 # cd ${PATH_H}

35 PATH_I=${PATH_H}/input

36
37 # Create a new output directory and path.

38 # mkdir ${PATH_H}/output/${TIME_NOW}

39 # PATH_O=${PATH_H}/output/${TIME_NOW}

40 PATH_O=/scratch/bwt1g10/‘echo ${PATH_H} | cut -d’/’ -f5 ,6‘/output/${TIME_NOW}

41 mkdir -p ${PATH_O}

42
43 # Find the type of run (e.g. training , validation etc.)

44 RUN_TYPE=‘ls -l ${PATH_I}/vars | gawk ’{ print $10 }’ | sed -e ’s/^.*_\(.*\)_.*_

.*$/\1/’‘

45 RUN_SUBTYPE=‘ls -l ${PATH_I}/vars | gawk ’{ print $10 }’ | sed -e ’s/^.*_\(.*\)_

.*$/\1/’‘

46 # PARAMS_SUMMARY=${PATH_O}/${RUN_TYPE}_av_hs

47 SPECTRA_SUMMARY=${PATH_O}/${RUN_TYPE}_spectra

48 CELL_HS_AV=${PATH_O}/cell_hs_average

49 CELL_TE_AV=${PATH_O}/cell_te_average

50 TIME_EVOLVE_HS=${PATH_O}/time_evolve_hs

51 TIME_EVOLVE_TE=${PATH_O}/time_evolve_te

52
53 # Create a file to record the code config that was used.

54 echo ${PATH_E} > ${PATH_O}/run_info

55 echo ${PATH_SER} >> ${PATH_O}/run_info

56
57 # File to record successful and failed runs.

58 SUCCESS_SUMMARY=${PATH_O}/${RUN_TYPE}_success

59 FAILED_SUMMARY=${PATH_O}/${RUN_TYPE}_failed

60
61 # Copy important input files.

62 cp input/*grid_*.inp ${PATH_O}
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63 cp input/*shel_*.inp ${PATH_O}

64 cp input/winds_* ${PATH_O}

65 cp input/vars ${PATH_O}

66
67 # Capture which paramters are considered.

68 NUM_INPUT_FILES=‘ls input/grid_* | grep -c ’grid’‘

69 # NUM_INPUT_FILES=1

70 COUNT="1"

71 PARAM_NAMES=‘cat input/grid_1.inp | grep -B2 ’\$ End Parameters ’ | head -1 | sed

-e ’s/^..//’‘

72 # echo "${PARAM_NAMES} Hs(m) L(m) Tmean(s)" > ${PARAMS_SUMMARY}

73 # echo "${PARAM_NAMES }" > ${SPECTRA_SUMMARY}

74
75 # Begin Wavewatch job.

76 # -----------------------------------------#

77
78 # Loop over input files.

79 # Note that each loop assumes all relevant parameterised files (e.g. grid , shel ,

etc) have the same file number.

80 while [ "${COUNT}" -le "${NUM_INPUT_FILES}" ]

81 do

82
83 GRID_FILE="input/grid_${COUNT }.inp"

84 SHEL_FILE="input/shel_${COUNT }.inp"

85 STRT_FILE="input/ww3_strt1_bt.inp"

86 FIELDS_FILE="input/prep_${COUNT }.inp"

87 OUTPUT=${PATH_O}/ww3_output_${COUNT}

88 FAILED_RUN="0"

89
90 # 1. Grid pre -processor -----------------------------------------------------

91
92 echo " WW3: Executing grid preprocessor."

93
94 ln -s ./${GRID_FILE} ./ww3_grid.inp > ${OUTPUT} 2>&1

95 ln -s ./input/bottom_${COUNT} ./bottom_${COUNT}

96 echo " WW3: Executing grid preprocessor." >> ${OUTPUT}

97 # ${PATH_E}/ww3_grid >> ${OUTPUT} 2>&1

98 ${PATH_SER}/ww3_grid >> ${OUTPUT} 2>&1

99 rm ./ww3_grid.inp ./bottom_${COUNT}

100
101 # 2. Initial conditions -----------------------------------------------------

102
103 echo " WW3: Configuring initial conditions."

104
105 # ln -s ./${STRT_FILE} ./ww3_strt.inp >> ${OUTPUT} 2>&1

106 echo " WW3: Configuring initial conditions." >> ${OUTPUT}

107 ${PATH_SER}/ww3_strt >> ${OUTPUT} 2>&1

108 # rm ./ww3_strt.inp

109
110 # 3. Input fields -----------------------------------------------------------

111
112 echo " WW3: Configuring fields."

113
114 ln -s ./${FIELDS_FILE} ./ww3_prep.inp >> ${OUTPUT} 2>&1

115 ln -s ./input/winds_${COUNT} ./winds_${COUNT}

116 echo " WW3: Configuring fields." >> ${OUTPUT}

117 ${PATH_SER}/ww3_prep >> ${OUTPUT} 2>&1
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118 rm ./ww3_prep.inp ./winds_${COUNT}

119
120 # 4. Main program -----------------------------------------------------------

121
122 echo " WW3: Executing shell."

123
124 # ln -s ./${SHEL_FILE} ./ww3_shel.inp >> ${OUTPUT} 2>&1

125 echo " WW3: Executing shell." >> ${OUTPUT} 2>&1

126 ${SHEL_COM} >> ${OUTPUT} 2>&1

127 # Captured failure.

128 if [ $? != 0 ]

129 then

130 FAILED_RUN="1"

131 fi

132
133 # rm ./ww3_shel.inp

134
135 # 5. Point output -----------------------------------------------------------

136
137 echo " WW3: Table of mean wave paramters."

138
139 for OUTP_FILES in ‘ls input/ww3_outp*‘

140
141 do

142 ln -s ${OUTP_FILES} ./ww3_outp.inp

143 ${PATH_SER}/ww3_outp >> ${OUTPUT} 2>&1

144 rm ./ww3_outp.inp

145 done

146
147 # echo " WW3: GrADS output ."

148
149 # ln -s ${PATH_I}/ww3_gx_outp_bt.inp ./gx_outp.inp

150 # ${PATH_E}/gx_outp >> ${OUTPUT} 2>&1

151 # rm ./gx_outp.inp

152
153 # ln -s $path_a/colorset.gs .

154 # ln -s $path_a/spec.gs .

155 # ln -s $path_a/source.gs .

156 # echo ’script ww3_ts1 ’ > spec_ids

157 # echo ’WAVEWATCH III TEST ’ >> spec_ids

158
159 ## 5a. Set up GrADS if necessary.

160 #

161 # grads -pc "run spec"

162 # gxps -c -i plot.grads -o $path_o/spec.ps

163 # rm -f plot.grads

164 #

165 # echo ’ GrADS sources ’

166 #

167 # grads -pc "run source"

168 # gxps -c -i plot.grads -o $path_o/source.ps

169 #

170 # 6. Gather relevant output data. -------------------------------------------

171
172 echo " WW3: Wavewatch execution complete."

173
174 if [ "${FAILED_RUN}" = "0" ]
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175 then

176
177 # Capture the parameter values.

178 PARAMS=‘cat ${GRID_FILE} | grep -B1 ’\$ End Parameters ’ | head -1 |

sed -e ’s/^..//’‘

179
180 # Loop over tab files.

181 for TAB_FILES in ‘ls tab*ww3 ‘

182 do

183 cat ${TAB_FILES} | sed -e ’1i ’"${PARAM_NAMES}"’’ \

184 -e ’1i ’"${PARAMS}"’’ \

185 > ${PATH_O}/‘echo ${TAB_FILES} | sed -e ’s/\.ww3//’‘_${COUNT}

186 done

187
188 echo ${COUNT} >> ${SUCCESS_SUMMARY}

189
190 # Move transfer files.

191 # mv ww3 .68060123. hs ${PATH_O}/ww3 .68060123. hs_${COUNT} 2> /dev/null

192 for SPC_FILES in ‘ls ww3.*.spc ‘

193 do

194 mv ${SPC_FILES} ${PATH_O}/${SPC_FILES}_${COUNT} 2> /dev/null

195 done

196
197 # Move the restart file.

198 mv restart.ww3 ${PATH_O} 2> /dev/null

199
200 else

201 PARAMS=‘cat ${GRID_FILE} | grep -B1 ’\$ End Parameters ’ | head -1 |

sed -e ’s/^..//’‘

202 echo ${COUNT} >> ${FAILED_SUMMARY}

203 fi

204
205 # Clean up.

206 rm *ww3 2> /dev/null

207 # rm wind.ww3 2> /dev/null

208 # mkdir ${PATH_O}/dump_${COUNT} 2> /dev/null

209 # mv *ww3 ${PATH_O}/dump_${COUNT} 2> /dev/null

210
211 COUNT=‘expr ${COUNT} + 1‘

212
213 done

214
215 # Following completion copy the summary files for download.

216 # cp ${CELL_HS_AV} ${PATH_O}/../${RUN_TYPE}_${RUN_SUBTYPE}_hs_av

217 # cp ${CELL_TE_AV} ${PATH_O}/../${RUN_TYPE}_${RUN_SUBTYPE}_te_av

218 # cp ${TIME_EVOLVE_HS}_1 ${PATH_O}/../${RUN_TYPE}_${RUN_SUBTYPE}_hs_time

../code/ww3 multi cell.sh

B.2 Designed experiments

The running of a designed experiment proceeds by writing an input file that contains

all of the parameter values in columns, with the appropriate column header (e.g.

var sdsa0), typically written out from R. Template files are then created for all
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relevant WW3 input files that need to be modified. A place holder for each variable

is written into the template, as ¡var sdsa¿. A processing script called generate.sh

then writes the appropriate variable values into the place holders. Typically at least

the grid input file needs to be rewritten ww3 grid.inp but if custom winds are used

for each ensemble member then ww3 prep.inp will also need writing. Input files

for the ww3 shel and ww3 strt may also need creating. Once template files have

been created (and checked!) and the list of parameters is ready, the generate.sh

shell script writes out the entire ensemble input. For winds, this also instigates

automatic R processing to write the wind files.

1 #!/bin/sh

2
3 ###########################################

4 # Script for writing multiple input files #

5 # -----------------------------------------#

6 # Version 2.0 13/10/2011 #

7 # * Takes 25 parameters #

8 # * Writes R files and runs R to generate #

9 # the input wind fields. #

10 # #

11 ###########################################

12
13 # Assign variables #

14 #===================#

15
16 VARS_FILE="vars"

17
18 # Process the files #

19 #===================#

20
21 VAR_LIST=‘cat ${VARS_FILE} | head -1‘

22 VAR_NAME_1=‘echo ${VAR_LIST} | gawk ’{ print $1 }’‘

23 VAR_NAME_2=‘echo ${VAR_LIST} | gawk ’{ print $2 }’‘

24 VAR_NAME_3=‘echo ${VAR_LIST} | gawk ’{ print $3 }’‘

25 VAR_NAME_4=‘echo ${VAR_LIST} | gawk ’{ print $4 }’‘

26 VAR_NAME_5=‘echo ${VAR_LIST} | gawk ’{ print $5 }’‘

27 VAR_NAME_6=‘echo ${VAR_LIST} | gawk ’{ print $6 }’‘

28 VAR_NAME_7=‘echo ${VAR_LIST} | gawk ’{ print $7 }’‘

29 VAR_NAME_8=‘echo ${VAR_LIST} | gawk ’{ print $8 }’‘

30 VAR_NAME_9=‘echo ${VAR_LIST} | gawk ’{ print $9 }’‘

31 VAR_NAME_10=‘echo ${VAR_LIST} | gawk ’{ print $10 }’‘

32 VAR_NAME_11=‘echo ${VAR_LIST} | gawk ’{ print $11 }’‘

33 VAR_NAME_12=‘echo ${VAR_LIST} | gawk ’{ print $12 }’‘

34 VAR_NAME_13=‘echo ${VAR_LIST} | gawk ’{ print $13 }’‘

35 VAR_NAME_14=‘echo ${VAR_LIST} | gawk ’{ print $14 }’‘

36 VAR_NAME_15=‘echo ${VAR_LIST} | gawk ’{ print $15 }’‘

37 VAR_NAME_16=‘echo ${VAR_LIST} | gawk ’{ print $16 }’‘

38 VAR_NAME_17=‘echo ${VAR_LIST} | gawk ’{ print $17 }’‘

39 VAR_NAME_18=‘echo ${VAR_LIST} | gawk ’{ print $18 }’‘

40 VAR_NAME_19=‘echo ${VAR_LIST} | gawk ’{ print $19 }’‘

41 VAR_NAME_20=‘echo ${VAR_LIST} | gawk ’{ print $20 }’‘

42 VAR_NAME_21=‘echo ${VAR_LIST} | gawk ’{ print $21 }’‘

43 VAR_NAME_22=‘echo ${VAR_LIST} | gawk ’{ print $22 }’‘
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44 VAR_NAME_23=‘echo ${VAR_LIST} | gawk ’{ print $23 }’‘

45 VAR_NAME_24=‘echo ${VAR_LIST} | gawk ’{ print $24 }’‘

46 VAR_NAME_25=‘echo ${VAR_LIST} | gawk ’{ print $25 }’‘

47
48 COUNT="2"

49 VARS=‘cat ${VARS_FILE} | sed -ne ’’${COUNT}’p’‘

50
51 while [ "${VARS}" != "" ]

52 do

53
54 VAR_1=‘echo ${VARS} | gawk ’{ print $1 }’‘

55 VAR_2=‘echo ${VARS} | gawk ’{ print $2 }’‘

56 VAR_3=‘echo ${VARS} | gawk ’{ print $3 }’‘

57 VAR_4=‘echo ${VARS} | gawk ’{ print $4 }’‘

58 VAR_5=‘echo ${VARS} | gawk ’{ print $5 }’‘

59 VAR_6=‘echo ${VARS} | gawk ’{ print $6 }’‘

60 VAR_7=‘echo ${VARS} | gawk ’{ print $7 }’‘

61 VAR_8=‘echo ${VARS} | gawk ’{ print $8 }’‘

62 VAR_9=‘echo ${VARS} | gawk ’{ print $9 }’‘

63 VAR_10=‘echo ${VARS} | gawk ’{ print $10 }’‘

64 VAR_11=‘echo ${VARS} | gawk ’{ print $11 }’‘

65 VAR_12=‘echo ${VARS} | gawk ’{ print $12 }’‘

66 VAR_13=‘echo ${VARS} | gawk ’{ print $13 }’‘

67 VAR_14=‘echo ${VARS} | gawk ’{ print $14 }’‘

68 VAR_15=‘echo ${VARS} | gawk ’{ print $15 }’‘

69 VAR_16=‘echo ${VARS} | gawk ’{ print $16 }’‘

70 VAR_17=‘echo ${VARS} | gawk ’{ print $17 }’‘

71 VAR_18=‘echo ${VARS} | gawk ’{ print $18 }’‘

72 VAR_19=‘echo ${VARS} | gawk ’{ print $19 }’‘

73 VAR_20=‘echo ${VARS} | gawk ’{ print $20 }’‘

74 VAR_21=‘echo ${VARS} | gawk ’{ print $21 }’‘

75 VAR_22=‘echo ${VARS} | gawk ’{ print $22 }’‘

76 VAR_23=‘echo ${VARS} | gawk ’{ print $23 }’‘

77 VAR_24=‘echo ${VARS} | gawk ’{ print $24 }’‘

78 VAR_25=‘echo ${VARS} | gawk ’{ print $25 }’‘

79
80 LOC_COUNT=‘expr ${COUNT} - 1‘

81
82 # Loop over the dfferent input templates files.

83 for TEMPLATE in ‘ls inp_template*‘

84 do

85
86 TEMP_TYPE=‘echo ${TEMPLATE} | cut -f3 -d’_’‘

87 OUTPUT_FILE="${TEMP_TYPE}_${LOC_COUNT }.inp"

88
89 cat ${TEMPLATE} | sed \

90 -e ’/^\$ End Parameters/i \$ ’${VAR_NAME_1}’ ’${VAR_NAME_2}’ ’${VAR_

NAME_3}’ ’${VAR_NAME_4}’ ’${VAR_NAME_5}’ ’${VAR_NAME_6}’ ’${VAR_

NAME_7}’ ’${VAR_NAME_8}’ ’${VAR_NAME_9}’ ’${VAR_NAME_10}’ ’${VAR

_NAME_11}’ ’${VAR_NAME_12}’ ’${VAR_NAME_13}’ ’${VAR_NAME_14}’ ’$

{VAR_NAME_15}’ ’${VAR_NAME_16}’ ’${VAR_NAME_17}’ ’${VAR_NAME_18}

’ ’${VAR_NAME_19}’ ’${VAR_NAME_20}’ ’${VAR_NAME_21}’ ’${VAR_NAME

_22}’ ’${VAR_NAME_23}’ ’${VAR_NAME_24}’ ’${VAR_NAME_25}’’ \

91 -e ’/^\$ End Parameters/i \$ ’${VAR_1}’ ’${VAR_2}’ ’${VAR_3}’ ’${VAR

_4}’ ’${VAR_5}’ ’${VAR_6}’ ’${VAR_7}’ ’${VAR_8}’ ’${VAR_9}’ ’${

VAR_10}’ ’${VAR_11}’ ’${VAR_12}’ ’${VAR_13}’ ’${VAR_14}’ ’${VAR_

15}’ ’${VAR_16}’ ’${VAR_17}’ ’${VAR_18}’ ’${VAR_19}’ ’${VAR_20}’
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’${VAR_21}’ ’${VAR_22}’ ’${VAR_23}’ ’${VAR_24}’ ’${VAR_25}’’ \

92 -e ’s/<’${VAR_NAME_1}’>/’${VAR_1}’/g’ \

93 -e ’s/<’${VAR_NAME_2}’>/’${VAR_2}’/g’ \

94 -e ’s/<’${VAR_NAME_3}’>/’${VAR_3}’/g’ \

95 -e ’s/<’${VAR_NAME_4}’>/’${VAR_4}’/g’ \

96 -e ’s/<’${VAR_NAME_5}’>/’${VAR_5}’/g’ \

97 -e ’s/<’${VAR_NAME_6}’>/’${VAR_6}’/g’ \

98 -e ’s/<’${VAR_NAME_7}’>/’${VAR_7}’/g’ \

99 -e ’s/<’${VAR_NAME_8}’>/’${VAR_8}’/g’ \

100 -e ’s/<’${VAR_NAME_9}’>/’${VAR_9}’/g’ \

101 -e ’s/<’${VAR_NAME_10}’>/’${VAR_10}’/g’ \

102 -e ’s/<’${VAR_NAME_11}’>/’${VAR_11}’/g’ \

103 -e ’s/<’${VAR_NAME_12}’>/’${VAR_12}’/g’ \

104 -e ’s/<’${VAR_NAME_13}’>/’${VAR_13}’/g’ \

105 -e ’s/<’${VAR_NAME_14}’>/’${VAR_14}’/g’ \

106 -e ’s/<’${VAR_NAME_15}’>/’${VAR_15}’/g’ \

107 -e ’s/<’${VAR_NAME_16}’>/’${VAR_16}’/g’ \

108 -e ’s/<’${VAR_NAME_17}’>/’${VAR_17}’/g’ \

109 -e ’s/<’${VAR_NAME_18}’>/’${VAR_18}’/g’ \

110 -e ’s/<’${VAR_NAME_19}’>/’${VAR_19}’/g’ \

111 -e ’s/<’${VAR_NAME_20}’>/’${VAR_20}’/g’ \

112 -e ’s/<’${VAR_NAME_21}’>/’${VAR_21}’/g’ \

113 -e ’s/<’${VAR_NAME_22}’>/’${VAR_22}’/g’ \

114 -e ’s/<’${VAR_NAME_23}’>/’${VAR_23}’/g’ \

115 -e ’s/<’${VAR_NAME_24}’>/’${VAR_24}’/g’ \

116 -e ’s/<’${VAR_NAME_25}’>/’${VAR_25}’/g’ \

117 -e ’s/<winds_file_name >/winds_’${LOC_COUNT}’/g’ \

118 -e ’s/<bottom_file_name >/bottom_’${LOC_COUNT}’/g’ \

119 > "${OUTPUT_FILE}"

120 done

121
122 COUNT=‘expr ${COUNT} + 1‘

123 VARS=‘cat ${VARS_FILE} | sed -ne ’’${COUNT}’p’‘

124
125 done

126
127 # Run R to generate the wind files.

128 rm bottom_* 2> /dev/null

129 for R_FILES in ‘ls windsR* bottomR*‘

130 do

131
132 R CMD BATCH ${R_FILES}

133 mv ${R_FILES} R_input_files

134 rm *Rout

135 done

../code/generate ww.sh

B.3 WW3 directory structure

The directory structure used for running the code is as follows.

1 fetch_limited_2.d

2 |-- input

3 | |-- R_input_files
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4 | | |-- bottomR_1.inp

5 | | ‘-- windsR_1.inp

6 | |-- archive

7 | | |-- inp_template_simple_windsR

8 | | |-- ww3_outp_table_param_centre.inp

9 | | |-- ww3_outp_table_param_east.inp

10 | | |-- ww3_outp_table_param_north.inp

11 | | |-- ww3_outp_table_param_south.inp

12 | | ‘-- ww3_outp_table_param_west.inp

13 | |-- bottom_1

14 | |-- control_var

15 | |-- create_fetch_points.R

16 | |-- design_data

17 | | |-- archive

18 | | | ‘-- fetch_lim1_design_1_data

19 | | |-- fetch_lim2.tar

20 | | |-- fetch_lim2_design_1_data

21 | | |-- fetch_lim2_design_2_data

22 | | |-- fetch_lim2_design_3_data

23 | | |-- fetch_lim2_design_4_data

24 | | |-- fetch_lim2_design_5_data

25 | | ‘-- fetch_lim2_design_6_data

26 | |-- generate_ww.sh

27 | |-- grid_1.inp

28 | |-- inp_bottom_50cell

29 | |-- inp_template_bottomR

30 | |-- inp_template_grid

31 | |-- inp_template_prep

32 | |-- inp_template_windsR

33 | |-- mean_var

34 | |-- mean_var_beta

35 | |-- prep_1.inp

36 | |-- simple_1.inp

37 | |-- stream_function_winds_sq.R

38 | |-- template_shel

39 | |-- test_var

40 | |-- test_winds_file

41 | |-- vars -> ./mean_var_beta

42 | |-- w3_outf_params1.inp

43 | |-- winds_1

44 | |-- ww3_outp_1Dspec_021200. inp

45 | |-- ww3_outp_2Dspec_020000_p36_series.inp

46 | |-- ww3_outp_2Dspec_021200_fetch.inp

47 | |-- ww3_outp_2Dspec_021600_fetch.inp

48 | |-- ww3_outp_2Dspec_042300_fetch.inp

49 | |-- ww3_outp_means_centre_fetch_020000_series.inp

50 | |-- ww3_outp_means_centre_fetch_021600. inp

51 | |-- ww3_outp_means_centre_fetch_042300. inp

52 | |-- ww3_outp_means_centre_fetch_p36_010000_series.inp

53 | |-- ww3_outp_table_param_north_fetch_020000_series.inp

54 | |-- ww3_outp_table_param_south_fetch_020000_series.inp

55 | |-- ww3_shel.inp

56 | |-- ww3_strt_FLjonswap.inp

57 | ‘-- ww3_strt_calm.inp

58 |-- output

59 |-- run_batch.sh

60 |-- run_reports
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61 | |-- run_batch.sh.e1271242

62 | |-- run_batch.sh.e1271838

63 | |-- run_batch.sh.e1272418

64 | |-- run_batch.sh.e1313311

65 | |-- run_batch.sh.e324434

66 | |-- run_batch.sh.e346310

67 | |-- run_batch.sh.e347398

68 | |-- run_batch.sh.e358601

69 | |-- run_batch.sh.o1271242

70 | |-- run_batch.sh.o1271838

71 | |-- run_batch.sh.o1272418

72 | |-- run_batch.sh.o1313311

73 | |-- run_batch.sh.o324434

74 | |-- run_batch.sh.o346310

75 | |-- run_batch.sh.o347398

76 | ‘-- run_batch.sh.o358601

77 |-- ww3_multi_cell.sh

78 |-- ww3_multi_cell_login.sh

79 |-- ww3_shel.inp -> ./input/ww3_shel.inp

80 ‘-- ww3_strt.inp -> ./input/ww3_strt_FLjonswap.inp

81
82 7 directories , 72 files

../code/fetch limited 2 tree
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C Towards an analytical solution for uncertainty

analysis using the Matérn correlation function

O’Hagan (2011) derives analytical expressions for a number of important results

when conducting inference with a GP emulator. This was made more straightfor-

ward by the use of joint normal distributions for the prior uncertainties, and a prior

Gaussian correlation function (3.10) for the emulator. Subsequent multiplication

required during the calculation results in another Gaussian form, which leads to a

closed form solution. In the case where, say a Matérn correlation function is used, no

such closed form solution exists. Here a brief analysis of this problem is presented.

We proceed in a similar fashion to O’Hagan (2011) section 4.1 by considering

the scalar function,

c(x, xk)ϕ(x) =
(
1 +D|x− xk|

)
exp
(
−D|x− xk|

)
exp
(
−1

2
(x−m)TB(x−m)

)
(C.1)

where D =
√

3/l and l is a correlation length scale parameter.

Immediately we see that the presence of the abs function hampers our progress.

We wish to calculate the following integral,∫ ∞

−∞
c(x, xk)ϕ(x)dx (C.2)

and consideration of the function exp(−|x − x′|) seen in figure C.1 reveals that

integration can be done in two parts by setting the limits of integration from −∞
to x′ in the first sum, and then x′ to ∞ in the second. So in terms of our functions

of x and xk that is,∫ ∞

−∞
c(x, xk)ϕ(x)dx =

∫ xk

−∞
c(x, xk)ϕ(x)dx+

∫ ∞

xk

c(x, xk)ϕ(x)dx (C.3)

At this point we expand out the terms and rearrange to give,∫ xk

−∞
c(x, xk)ϕ(x)dx =

∫ xk

−∞
P(x, xk) exp

(
Q(x, xk)

)
dx (C.4)∫ ∞

xk

c(x, xk)ϕ(x)dx =

∫ ∞

xk

P′(x, xk) exp
(
Q′(x, xk)

)
dx (C.5)
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Figure C.1: Function y = exp(−|x− x′|), where x′ = 1.

where,

P(x, xk) =
(
1−D(x− xk)

)
(C.6)

P′(x, xk) =
(
1 +D(x− xk)

)
(C.7)

Q(x, xk) = D(x− xk)−
1

2
(x−m)TB(x−m) (C.8)

Q′(x, xk) = −D(x− xk)−
1

2
(x−m)TB(x−m) (C.9)

Noting that P(x, xk) multiplies the exponential, in order to find closed form solutions

we require that P(x, xk) = aR(x) + S(xk) where R(x) = d
dx

Q(x, xk), thus yielding a

term d
dx

Q(x, xk)exp(Q(x, xk)).

So working on the expressions for P and Q for the moment (we will address P′

and Q′ for later), after some re-arranging we find,

d

dx
Q(x, xk) = −(Bx−Bm−D) (C.10)

And after more work it can be shown that,

P(x, xk) =

[
1 +Dxk −Dm− D2

B

]
− D

B
[Bx−Bm−D] (C.11)
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where,

aR(x) = −D
B

[Bx−Bm−D] (C.12)

S(xk) =

[
1 +Dxk −Dm− D2

B

]
(C.13)

Thus a = D/B and so,

a

∫ xk

−∞
R(x) exp

(
Q(x, xk)

)
dx =

D

B
exp
(
Q(xk, xk)

)
(C.14)

We now have to deal with the integral for the remaining S(xk) term. Rearranging the

terms in Q(x, xk), and making use of the standard solution for the definite integral

of a Gaussian form,∫ xk

−∞
S(xk) exp

(
Q(x, xk)

)
dx =

(
1 +Dxk −Dm− D2

B

)
exp
(D2

2B
−Dxk +Dm

)√ π

4B/2

(
erf

(√
B

2
(xk − (

D

B
+m))

)
+ 1

)
(C.15)

Summing (C.14) and (C.15) then gives an expression for (C.4), which is the first

part of the desired integration. Similar expressions can be derived for (C.5) but are

not shown here, however the total sum then equals the full integration (C.2).
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D Numerical integration code for arbitrary (lin-

ear) mean and correlation functions

A detailed guide to the computation of variance based sensitivity measures is pro-

vided in the MUCM Toolkit64. A large number of integrals have to be computed,

and for mathematically tractable choices of emulator covariance function (namely

Gaussian) and joint distribution for the analysis inputs (typically independent Gaus-

sian), the entire computation can be done analytically. However as noted in chapter

3, it is often more efficient to adopt a covariance function other than a Gaussian,

such as one of the Matérn family of functions. Now the resulting integrations be-

come more difficult, largely owing to the intractable abs function (see appendix C

for an indication).

D.1 Integrals

It is fairly straightforward, if a little laborious, to integrate the emulator function

numerically, in order to obtain the integrals listed in the MUCM Toolkit. Com-

putation is thus slower than an analytical solution but substantially better than

attempting to use the emulator code as part of a Monte Carlo integration scheme.

Not all the integrals are discussed but Rhh and Rht are considered. O’Hagan (2011)

lists (in section 2.4) a number of integrals used to conduct various inference. Of

particular note are,

E∗[M ] =

∫
m∗(x) dg(x) (D.1)

Var∗[M ] =

∫ ∫
v∗(x, x′) dg(x) dg(x′) (D.2)

E∗[V ] = (I1 − Var∗[M ]) + (I2 − E∗[M ]2) (D.3)

where,

I1 =

∫
v∗(x, x) dg(x) (D.4)

I2 =

∫
m∗(x)2 dg(x) (D.5)

Given the expressions for the emulator posterior mean and covariance functions,

(3.26) and (3.27) respectively, it is fairly easy to see how (D.1) are computed by a

number of other integrals given by O’Hagan (2011), section 3.1. For example if we

64http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ProcVarSAGP.html
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integrate (3.26) with respect to g(x),

E∗[M ] =

∫
m∗(x) dg(x) =

∫
h(x)Tβ̂ + t(x)Te dg(x) (D.6)

=

∫
h(x)T dg(x)β̂ +

∫
t(x)T dg(x)e (D.7)

= RT
h β̂ +RT

t e (D.8)

where e = A−1(y−Hβ̂). In section 4.1, O’Hagan (2011) goes on to provide analytical

solutions for RT
h and RT

t , given choices of h(x) = [1, x]T and Gaussian correlation

function for the prior model. In the general case of linear mean with basis functions

incorporating higher order terms of x, and arbitrary correlation function, analytical

solutions are not readily available. However, it is possible to make use of the integral

forms given in section 3.2 by simply integrating numerically to obtain each term. On

a modern computer system, and depending on the number of dimensions and size of

the design matrix, the integrations tend to take seconds to minutes. Code is listed

below for a number of integrals listed in O’Hagan (2011), although the remainder

are used only for the calculation of Var∗[V ], which has not been used in this thesis.

1 # source ("/home/ben/phd/code/R/experiments/canals/scale_3a_thesis.d/R_Hs_125_peak_

grad/auto_unc_sens_analysis_v1.2.R")

2 #======================================================================#

3 # Perform emulator based uncertainty and sensitivity analysis.

4 # This is "semi" analytical ...

5 #======================================================================#

6
7 # Set number of design points.

8 i_n <- num_design_points

9
10 # Specify which emulator to analyse.

11 emulator_index <- 1

12
13 nu <- 0

14 delta <- mat_max_delta[,emulator_index]

15 beta <- mat_beta

16
17 print(paste("Emulator: Delta = ", delta))

18 print(paste("Emulator: Beta = ", beta))

19 print(paste("Emulator: Sigma ^2 = ",sigmasq[emulator_index ]))

20
21 # Set up the pieces to perform the integrals.

22 # Conventions used from MUCM toolkit.

23 invA <- array_matinvA[,,emulator_index]

24 G <- invA %*% H

25 W <- solve(t(H) %*% G)

26 e <- invA %*% ( mat_fD - H %*% beta )

27
28 P1 <- e

29 P3 <- invA %*% H

30 P2 <- solve( t(H) %*% P3 )
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31
32 # List of dimensions.

33 seq_dim <- seq(1,i_p)

34
35 # ----------------------------------------------------------------------#

36 # Emulator design range (analysis must be within these ranges).

37 param_labels <- c("sdsa0","sdsa1","sdsa2","sdsb0","sdsb1","phimin",expression(

lambda[DIA]),expression(C[DIA]),"windspeed")

38 des_par_ran <- cbind(

39 rbind (4.0000 ,5.6000) ,

40 rbind ( -4.0000 , -2.5850),

41 rbind (1.2000 ,2.8000) ,

42 rbind ( -0.00700 ,0.00050) ,

43 rbind (0.4000 ,0.6500) ,

44 rbind (0.0026 ,0.0034) ,

45 rbind (0.15 ,0.3) ,

46 rbind (6.523 ,7.477) ,

47 rbind (10.5 ,14.5)

48 )

49
50 # Specify the sampling distributions.

51 # Either mean and s.d. or range limits for uniform.

52 p1_dist <- c(4.8000 ,0.2000)

53 # LOG10

54 p2_dist <- c( -3.293 ,0.1769)

55 p3_dist <- c(2.000 ,0.2000)

56 p4_dist <- c( -0.003250 ,0.0009375)

57 # p4_dist_unif <- c(0.05*des_par_ran [2 ,4]+0.95*des_par_ran [1 ,4] ,0.95*des_par_ran

[2 ,4]+0.05*des_par_ran[1 ,4])

58 p5_dist <- c(0.5250 ,0.03125)

59 #p5_dist <- c(0.450 ,0.080)

60 p6_dist <- c(0.0030 ,0.00010)

61 #p6_dist <- c(0.0025 ,0.00050)

62 p7_dist <- c(0.25 ,0.015)

63 # nlprop log10

64 # p8_dist <- c(6.523 ,7.477)

65 p8_dist <- c(7 ,0.1193)

66 # Wind speed (normal).

67 p9_dist <- c(12.5 ,0.5)

68
69 # Re -scale the ranges.

70 func_log_rescale <- function(x,RA) { ( log10(x)-RA[1])/(RA[2]-RA[1]) }

71 func_lin_rescale <- function(x,RA) { ( ( x-RA[1] ) / (RA[2]-RA[1]) ) }

72 func_lin_rescale_sd <- function(x,RA) { x / (RA[2]-RA[1]) }

73
74 # Generate the sampling distributions.

75 m_var <- rbind(

76 c(func_lin_rescale(p1_dist[1],des_par_ran[,1]),func_lin_rescale_sd(p1

_dist[2],des_par_ran[,1])),

77 c(func_lin_rescale(p2_dist[1],des_par_ran[,2]),func_lin_rescale_sd(p2

_dist[2],des_par_ran[,2])),

78 c(func_lin_rescale(p3_dist[1],des_par_ran[,3]),func_lin_rescale_sd(p3

_dist[2],des_par_ran[,3])),

79 # p4

80 c(func_lin_rescale(p4_dist[1],des_par_ran[,4]),func_lin_rescale_sd(p4

_dist[2],des_par_ran[,4])),

81 # runif(unc_MC_res ,func_lin_rescale(p4_dist_unif[1],des_par_ran[,4]),func
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_lin_rescale(p4_dist_unif[2],des_par_ran[,4])),

82 c(func_lin_rescale(p5_dist[1],des_par_ran[,5]),func_lin_rescale_sd(p5

_dist[2],des_par_ran[,5])),

83 c(func_lin_rescale(p6_dist[1],des_par_ran[,6]),func_lin_rescale_sd(p6

_dist[2],des_par_ran[,6])),

84 c(func_lin_rescale(p7_dist[1],des_par_ran[,7]),func_lin_rescale_sd(p7

_dist[2],des_par_ran[,7])),

85 c(func_lin_rescale(p8_dist[1],des_par_ran[,8]),func_lin_rescale_sd(p8

_dist[2],des_par_ran[,8])),

86 c(func_lin_rescale(p9_dist[1],des_par_ran[,9]),func_lin_rescale_sd(p9

_dist[2],des_par_ran[,9]))

87 )

88
89 # The input uncertainty distribution is multivariate normal characterised by:

90 # mean m and covariance matrix B.

91 m <- m_var[,1]

92 vec_var <- m_var[ ,2]^2

93 B <- diag(1/vec_var , i_p, i_p)

94
95 # Gaussian correlation matrix.

96 C <- diag(1/delta^2, i_p, i_p)

97
98 # Integration control.

99 sub_divs <- 250

100 rel_tol <- 1e-7

101
102 #======================================================================#

103 # Uncertainty analysis.

104 # We compute various uncertainty measures by integrating the emulator

105 # functions.

106 # Linear mean assumed , arbitrary correlation function.

107 #======================================================================#

108 # Set up various functions.

109 # ----------------------------------------------------------------------#

110 # Prob density function.

111 func_w_x <- function(x,i)

112 {

113 func_in <- cbind( rep(x,length(i)) , rep(i,each=length(x)) )

114 apply( X=func_in ,1,FUN=function(x) { ((2*3.141593) ^-0.5)*sqrt(B[x[2],x[2]]) *

exp(-0.5*(x[1]-m[x[2]]) * B[x[2],x[2]] * (x[1]-m[x[2]])) } )

115 }

116
117 # func_w_x <- function(x,i)

118 # {

119 # ((2*3.141593) ^-0.5)*sqrt(B[i,i]) * exp(-0.5*(x-m[i]) * B[i,i] * (x-m[i]))

120 # }

121
122 # ----------------------------------------------------------------------#

123 # Gaussian correlation function , c(x,x_prime).

124 # func_int_cx <- function(x2,x1 ,i,j)

125 # {

126 # exp( -( ( C[i,i] * ( as.vector(x1) - x2 )^2 ) ) ) *

127 # ((2*3.141593) ^-0.5)*sqrt(B[i,i]) * exp(-0.5*(x2 -as.vector(m[i])) * B[i,i] *

(x2 -as.vector(m[i]))) *

128 # ((2*3.141593) ^-0.5)*sqrt(B[j,j]) * exp(-0.5*(x1 -as.vector(m[j])) * B[j,j] *

(x1 -as.vector(m[j])))

129 # }
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130 # Gaussian correlation function.

131 # func_tx <- function(x,i,k) { exp(-((x-D[k,i]) * C[i,i] * (x-D[k,i]))) }

132 # Gaussian "R_t" expression.

133 # func_Rt <- function(x,i,k) { ((2*3.141593) ^ -0.5)*sqrt(B[i,i]) * exp(-0.5*(x-m[i

]) * B[i,i] * (x-m[i])) * exp(-((x-D[k,i]) * C[i,i] * (x-D[k,i]))) }

134 # ----------------------------------------------------------------------#

135 # Matern correlation function order 3/2, c(x,x_prime).

136 DD <- sqrt (3) / delta

137 func_int_cx <- function(x2,x1 ,i,j)

138 {

139 sapply(X=x2 ,FUN=function(x,x1) { prod( 1 + ( DD[i] * abs( as.vector(x1) - x )

) ) },x1=x1 ) *

140 exp( -( DD[i] * abs( as.vector(x1) - x2 ) ) ) *

141 ((2*3.141593) ^-0.5)*sqrt(B[i,i]) * exp(-0.5*(x2 -as.vector(m[i])) * B[i,i] * (

x2 -as.vector(m[i]))) *

142 ((2*3.141593) ^-0.5)*sqrt(B[j,j]) * exp(-0.5*(x1 -as.vector(m[j])) * B[j,j] * (

x1 -as.vector(m[j])))

143 }

144 # Matern correlation function , t(x).

145 func_tx <- function(x,i,k) { (1+DD[i]*abs(x-D[k,i])) * exp(-DD[i]*abs(x-D[k,i]))

}

146 # Matern "R_t" expression.

147 func_Rt <- function(x,i,k) { ((2*3.141593) ^ -0.5)*sqrt(B[i,i]) * exp(-0.5*(x-m[i

]) * B[i,i] * (x-m[i])) * (1+DD[i]*abs(x-D[k,i])) * exp(-DD[i]*abs(x-D[k,i])

) }

148 # ----------------------------------------------------------------------#

149 # Matern correlation function order 5/2, c(x,x_prime).

150 # DDa <- sqrt (5) / delta

151 # DDb <- 5 / (3 * delta ^2)

152 # func_int_cx <- function(x2,x1 ,i,j)

153 # {

154 # sapply(X=x2,FUN=function(x,x1) { prod( 1 + ( DDa[i] * abs( as.vector(x1) - x

) ) + ( DDb[i] * abs( as.vector(x1) - x )^2 ) ) },x1=x1 ) *

155 # exp( -( DDa[i] * abs( as.vector(x1) - x2 ) ) ) *

156 # ((2*3.141593) ^-0.5)*sqrt(B[i,i]) * exp(-0.5*(x2 -as.vector(m[i])) * B[i,i] *

(x2 -as.vector(m[i]))) *

157 # ((2*3.141593) ^-0.5)*sqrt(B[j,j]) * exp(-0.5*(x1 -as.vector(m[j])) * B[j,j] *

(x1 -as.vector(m[j])))

158 # }

159 # Matern correlation function , t(x).

160 # func_tx <- function(x,i,k) { ( 1 + DDa[i]*abs(x-D[k,i]) + DDb[i]*abs(x-D[k,i])

^2 ) * exp(-DDa[i]*abs(x-D[k,i])) }

161 # Matern "R_t" expression.

162 # func_Rt <- function(x,i,k) { ((2*3.141593) ^ -0.5)*sqrt(B[i,i]) * exp(-0.5*(x-m[i

]) * B[i,i] * (x-m[i])) * ( 1 + DDa[i]*abs(x-D[k,i]) + DDb[i]*abs(x-D[k,i])^2 )

* exp(-DDa[i]*abs(x-D[k,i])) }

163 # ----------------------------------------------------------------------#

164 func_int_Rt <- function(l,m) { integrate(func_Rt ,lower=-Inf ,upper=Inf ,i=l,k=m,

subdivisions=sub_divs ,rel.tol=rel_tol)$value }

165 # Gaussian "R_tt" expression.

166 func_Rtta <- function(x,i,k,l) { func_Rt(x,i,k) * func_tx(x,i,l) }

167
168 # ----------------------------------------------------------------------#

169 # E = E*E[f(X)]] = t(R_h) %*% beta + t(R_t) %*% e

170 # ----------------------------------------------------------------------#

171 # R_h = E_x[ h(x) | m,B ]

172 # For linear mean this trivially reduces to the mean m.
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173 # R_h <- c(1,m)

174
175 # In the general case where there are higher order terms , we integrate numerically.

176 # This is tricky because we don ’t "know" which terms of x the mean function

incorporates.

177 func_h_w1 <- function(x,i,q) { h_x_val <- matrix(0,1,i_p); h_x_val[1,i] <- x;

func_h(h_x_val)[q] * func_w_x(x,i) }

178 func_h_w2 <- function(x,i,q) { sapply(X=x,FUN=func_h_w1,i=i,q=q) }

179 func_h_indx <- function(i) { h_idx <- matrix(0,1,i_p); h_idx[1,i] <- 1; which(

func_h(h_idx) == 1)[-1] }

180
181 print(paste(" Computing R_h..."))

182
183 R_h <- 1

184 for (i in 1:i_p)

185 {

186 for (q in c(func_h_indx(i)))

187 {

188 R_h[q] <- integrate(func_h_w2 ,lower=-Inf ,upper=Inf ,i=i,q=q,subdivisions

=1000, rel.tol=1e-9)$value

189 }

190 }

191
192 # ----------------------------------------------------------------------#

193 # R_t

194 # ----------------------------------------------------------------------#

195 print(paste(" Computing R_t..."))

196
197 R_t1_temp <- 0

198 for (j in 1:i_n)

199 {

200 int_sum <- 0

201 for (i in 1:i_p)

202 {

203 int_sum[i] <- func_int_Rt(i,j)

204 }

205 R_t1_temp[j] <- prod(int_sum)

206 # R_t1[j] <- (1-nu) * prod(int_sum)

207 }

208 R_t1 <- (1-nu) * R_t1_temp

209
210 E <- t(R_h) %*% beta + t(R_t1) %*% e

211 print(paste("Emulator E : ",format(E,digits =4)))

212
213 # ----------------------------------------------------------------------#

214 # U

215 # ----------------------------------------------------------------------#

216 func_int_U_inner <- function(x,i,j) { integrate(func_int_cx,lower=-Inf ,upper=Inf

,x1=x,i=i,j=j,subdivisions=sub_divs ,rel.tol=rel_tol)$value }

217
218 func_U_inner1 <- function(x,i,j)

219 {

220 sapply(X=x,FUN=func_int_U_inner ,i=i,j=j)

221 }

222
223 print(paste(" Computing U..."))

224
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225 # U outer integral.

226 int_sum1 <- 0

227 for (j in 1:i_p)

228 {

229 ii <- 0

230 while(TRUE)

231 {

232 rel_tol1 <- rel_tol * 10^ii

233 int_test <- NULL

234 try(int_test <- integrate(func_U_inner1 ,lower=-Inf ,upper=Inf ,i=j,j=j,

subdivisions=sub_divs ,rel.tol=rel_tol1)$value ,silent=TRUE)

235 ii <- ii + 1

236
237 if (!is.null(int_test) ) break;

238 }

239 int_sum1[j] <- int_test

240 #int_sum1[j] <- integrate(func_U_inner1 ,lower=-Inf ,upper=Inf ,i=j,j=j,

subdivisions=sub_divs ,rel.tol=1e-6)$value

241 prod(int_sum1)

242 }

243 U1 <- (1-nu) * prod(int_sum1)

244
245 # ----------------------------------------------------------------------#

246 # E_Var_f(X) = (I1 - V) + (I2 - E)

247 # I1 = sigmasq * (U_tilda - sum(diag(invA %*% R_tt) + sum(diag(W %*% (R_hh - 2*R_ht

%*% G + t(G) %*% R_tt %*% G)))))

248 # I2 = t(beta) %*% R_hh %*% beta + 2*t(beta) %*% R_ht %*% e + t(e) %*% R_tt %*% e

249 # ----------------------------------------------------------------------#

250 # R_hh = E_x[ h(x)t(h(x)) | m,B ]

251 # Results from Rh * Rh.

252 # Should be the same for linear mean , irrespective of correlation function?

253 # ----------------------------------------------------------------------#

254
255 # In the general case where there are higher order terms , we integrate numerically.

256 # A bit mucky!

257 # For i=j only a single integral required.

258 func_h1 <- function(x,i,q) { h_x_val <- matrix(0,1,i_p); h_x_val[1,i] <- x; func

_h(h_x_val)[q] }

259 func_hh1a <- function(x,i,q,r) { func_h1(x,i,r) * func_h1(x,i,q) * func_w_x(x,i)

}

260 func_hh1b <- function(x,i,q,r) { sapply(X=x,FUN=func_hh1a ,i=i,q=q,r=r) }

261
262 # Some off -diagonals require integration over both respective dimensions of X so

double integrals required.

263 func_hh_w <- function(x,x1,i,j,q,r) { func_h_w2(x,j,r) * func_h_w2(x1 ,i,q) }

264 func_int_hh_w1 <- function(x,i,j,q,r)

265 {

266 integrate( func_hh_w,lower=-Inf ,upper=Inf ,x1=x,i=i,j=j,q=q,r=r,subdivisions=

sub_divs ,rel.tol=rel_tol)$value

267 }

268 func_int_hh_w2 <- function(x,i,j,q,r) { sapply(X=x,FUN=func_int_hh_w1 ,i=i,j=j,q=

q,r=r) }

269
270 # Create a temporary matrix.

271 R_hh2 <- matrix(0,i_q,i_q)

272
273 print(paste(" Computing R_hh..."))
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274
275 # Matrix is symmetrical so compute half of it , then transpose and copy.

276 for (i in 1:i_p)

277 {

278 for (q in c(func_h_indx(i)))

279 {

280 for (j in 1:i_p)

281 {

282 for (r in c(func_h_indx(j)))

283 {

284 if (i==j && q > r)

285 {

286 R_hh2[q,r] <- integrate(func_hh1b ,lower=-Inf ,upper=Inf ,i=i,q=q,r=

r,subdivisions=sub_divs ,rel.tol=rel_tol)$value

287 }

288 else if (i!=j && q > r)

289 {

290 R_hh2[q,r] <- integrate(func_h_w2 ,lower=-Inf ,upper=Inf ,i=i,q=q,

subdivisions=sub_divs ,rel.tol=rel_tol)$value *

291 integrate(func_h_w2,lower=-Inf ,upper=Inf ,i=j,q=r,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

292 #R_hh3b[q,r] <- integrate(func_int_hh_w2 ,lower=-Inf ,upper=Inf ,i=i

,j=j,q=q,r=r,subdivisions=sub_divs ,rel.tol=rel_tol)$value

293 }

294 }

295 }

296 }

297 }

298
299 # Transpose and copy.

300 R_hh1 <- R_hh2 + t(R_hh2)

301
302 # Then do the diagonal.

303 for (i in 1:i_p)

304 {

305 for (q in c(func_h_indx(i)))

306 {

307 R_hh1[q,q] <- integrate(func_hh1b ,lower=-Inf ,upper=Inf ,i=i,q=q,r=q,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

308 }

309 }

310
311 # Just copy R_h into the first column and first row to save computation.

312 # Note this only works if the first entry of func_h is 1.

313 R_hh1[,1] <- R_h

314 R_hh1[1,] <- R_h

315
316 # ----------------------------------------------------------------------#

317 # R_ht

318 # Results from Rh * Rt.

319 # ----------------------------------------------------------------------#

320 # Create the integrable functions.

321 # Very similar to func_h1 but returns 1 for non -active elements.

322 func_h2 <- function(x,q,i) { h_x_val <- matrix(1,1,i_p); h_x_val[1,i] <- x; func

_h(h_x_val)[q] }

323 func_h2a <- function(x,q,i) { sapply(X=x,FUN=func_h2 ,i=i,q=q) }

324
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325 func_R_ht1 <- function(x,q,i,x_k)

326 {

327 func_h2a(x,q,i) * func_Rt(x,i,x_k)

328 }

329
330 # This builds the "standard" R_ht for uncertainty analysis.

331 # So we integrate over all x, and the function is thus not of x or i_cond.

332 # q designates the row of the R_ht matrix.

333 func_int_R_ht1 <- function(q,x_k)

334 {

335 int_sum <- 0

336 for (i in 1:i_p)

337 {

338 int_sum[i] <- integrate(func_R_ht1 ,lower=-Inf ,upper=Inf ,q=q,i=i,x_k=x_k,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

339 }

340 prod(int_sum)

341 }

342
343 print(paste(" Computing R_ht..."))

344
345 R_ht1 <- matrix(0,i_q,i_n)

346 for (a in 1:i_n)

347 {

348 for (b in 1:i_q)

349 {

350 R_ht1[b,a] <- func_int_R_ht1(b,a)

351 }

352 }

353
354 # ----------------------------------------------------------------------#

355 # R_tt

356 # Square matrix arising from R_t * R_t.

357 # Function of x_k and x_l.

358 # ----------------------------------------------------------------------#

359 # Create an array of integratations for later use.

360 array_int_Rtt <- array(0,dim=c(i_n,i_n,i_p))

361
362 print(paste(" Computing R_tt..."))

363
364 for (a in 1:i_n)

365 {

366 print(paste(" R_tt integration col:",a))

367 for (b in 1:i_n)

368 {

369 for (i in 1:i_p)

370 {

371 ii <- 1

372 while(TRUE)

373 {

374 rel_tol1 <- rel_tol * 10^ii

375 int_test <- NULL

376 try(int_test <- integrate(func_Rtta ,lower=-Inf ,upper=Inf ,i=i,k=b,l=a

,subdivisions=sub_divs ,rel.tol=rel_tol1)$value ,silent=TRUE)

377 ii <- ii + 1

378
379 if (!is.null(int_test) ) break;
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380 }

381
382 array_int_Rtt[b,a,i] <- int_test

383 #array_int_Rtt[b,a,i] <- integrate(func_Rtta ,lower=-Inf ,upper=Inf ,i=i,k

=b,l=a,subdivisions=sub_divs ,rel.tol=1e-3)$value

384 }

385 }

386 }

387
388 R_tt1_temp <- matrix(0,i_n,i_n)

389 for (a in 1:i_n)

390 {

391 for (b in 1:i_n)

392 {

393 R_tt1_temp[b,a] <- prod(array_int_Rtt[b,a,])

394 }

395 }

396 R_tt1 <- (1-nu)^2 * R_tt1_temp

397
398 # ----------------------------------------------------------------------#

399 # Complete integrals.

400 # ----------------------------------------------------------------------#

401 # U_tilda

402 U_tilda <- 1

403
404 # V

405 V <- sigmasq[emulator_index] * (U1 - t(R_t1) %*% invA %*% R_t1 + t(R_h - t(G) %*

% R_t1) %*% W %*% (R_h - t(G) %*% R_t1))

406 print(paste("Emulator variance V : ",format(V,digits =4)))

407 # I1

408 I1 <- sigmasq[emulator_index] * (U_tilda - sum(diag(invA %*% R_tt1)) + sum(diag(

W %*% (R_hh1 - 2*R_ht1 %*% G + t(G) %*% R_tt1 %*% G))))

409 # I2

410 I2 <- t(beta) %*% R_hh1 %*% beta + 2*t(beta) %*% R_ht1 %*% e + t(e) %*% R_tt1 %*

% e

411
412 E_Var_fX <- (I1 - V) + (I2 - E^2)

413 # Print outs.

414 print("--------------------------------------------")

415 print(paste("E*[ E[f(X)] ] = E : ", format(E,digits =5)))

416 print(paste("E*[ Var[f(X)] ] = E_Var_fX : ", format(E_Var_fX ,digits =5)," (s.d.

= ",format(sqrt(E_Var_fX),digits =3),")",sep=""))

417
418 #======================================================================#

419 # Sensitivity analysis.

420 # Linear mean assumed , arbitrary correlation function.

421 #======================================================================#

422 # Interactions.

423 # ----------------------------------------------------------------------#

424 # This function generates the elements of a vector for

425 # the mean function , assuming linear mean function.

426 func_R_h1 <- function(xx,ii)

427 {

428 temp_mat <- t(matrix(rep(R_h,length(xx)),i_q,length(xx)))

429 temp_mat[,func_h_indx(ii)] <- t(apply(matrix(xx,nrow=length(xx),ncol=i_p) ,1,

func_h))[,func_h_indx(ii)]

430 temp_mat
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431 }

432
433 # Function for the conditional expectation of the mean.

434 # From this we can derive the main effects.

435 # We create functions depending on which order interactions ,

436 # because the code gets complicated!

437 # x must be a matrix of n*length(i_cond), where x is

438 # dimension length(i_cond), with n entries.

439 # ----------------------------------------------------------------------#

440 # Main effects.

441 # ----------------------------------------------------------------------#

442 # Here , x and i_cond must be 2D.

443 # R_h2 is modified for 2 conditions (might work for more but untested yet).

444 # Note that xx input must be formatted with the first "column" of xx being values

for the first conditional dimension.

445 # Second "column" for the second. I.e. not alternating.

446 func_R_h2 <- function(xx,ii)

447 {

448 n_x_vals <- length(xx)/length(ii)

449 temp_mat <- t(matrix(R_h,nrow=i_q,ncol=n_x_vals))

450 loc_count <- 1

451 for (jj in ii)

452 {

453 h_x_val <- matrix(0,nrow=n_x_vals ,ncol=i_p)

454 h_x_val[,jj] <- matrix(xx ,nrow=n_x_vals)[,loc_count]

455 temp_mat[,func_h_indx(jj)] <- t(apply(h_x_val ,1,func_h))[,func_h_indx(jj)]

456 loc_count <- loc_count + 1

457 }

458 temp_mat

459 }

460
461 # Pre -compute R_t integral to save time.

462 R_t_table <- matrix(0,nrow=i_n,ncol=i_p)

463 for (k in 1:i_n)

464 {

465 R_t_table[k,] <- sapply(X=seq_dim ,func_int_Rt ,m=k)

466 }

467
468 func_E_cond_1 <- function(x,i_cond)

469 {

470 n_x_vals <- length(x)

471 mat_R_t2a <- matrix(0,n_x_vals ,i_n)

472 int_sum <- array(0,dim=c(i_n,i_p,n_x_vals))

473 for (k in 1:i_n)

474 {

475 int_sum[k,i_cond ,] <- func_tx(x,i_cond ,k)

476
477 int_sum[k,seq_dim[-i_cond],] <- R_t_table[k,seq_dim[-i_cond]]

478 mat_R_t2a[,k] <- apply(t(int_sum[k,,]) ,1,prod)

479 }

480 R_t2e <- apply(mat_R_t2a ,1,function(xx) { xx %*% e })

481 R_h2b <- func_R_h2(x,i_cond) %*% beta

482 R_h2b + R_t2e

483 }

484
485 # ----------------------------------------------------------------------#

486 # Sensitivity variances for single conditional variable.
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487 # i) Hora & Imam importance measure.

488 # Equivalently MUCM sensitivity variance.

489 # E*[Vw] = E*[E[E[f(X)|Xw ]^2]] - E*[E[f(X)]^2]

490 # ----------------------------------------------------------------------#

491 # We create conditions for U_cond , R_hh_cond , R_ht_cond and R_tt_cond.

492 # (Not the erroneous emulator mean function , because this omits the

493 # emulator variance .)

494 # ----------------------------------------------------------------------#

495
496 # ----------------------------------------------------------------------#

497 # U_cond

498 # The conditional dimensions simply integrate to unit.

499 # This function can also be used for multiple conditionals.

500 # ----------------------------------------------------------------------#

501 # U outer integral.

502 func_U_cond <- function(i_cond)

503 {

504 int_sum1 <- 0

505 for (j in c(1:i_p)[-i_cond])

506 {

507 ii <- 0

508 while(TRUE)

509 {

510 rel_tol1 <- rel_tol * 10^ii

511 int_test <- NULL

512 try(int_test <- integrate(func_U_inner1 ,lower=-Inf ,upper=Inf ,i=j,j=j,

subdivisions=sub_divs ,rel.tol=rel_tol1)$value ,silent=TRUE)

513 ii <- ii + 1

514
515 if (!is.null(int_test) ) break;

516 }

517 int_sum1[j] <- int_test

518 #int_sum1[j] <- integrate(func_U_inner1 ,lower=-Inf ,upper=Inf ,i=j,j=j,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

519 }

520 int_sum1[i_cond] <- 1

521 (1-nu) * prod(int_sum1)

522 }

523
524 # ----------------------------------------------------------------------#

525 # R_hh_cond = E_x[ h(x)t(h(x)) | m,B,x1 ]

526 # Conditional terms only get integrated once!

527 # Remaining terms , even if they are the "same" index are integrated twice

528 # since this is a double integral.

529 # ----------------------------------------------------------------------#

530 func_R_hh_cond <- function(i_cond)

531 {

532 # Create a temporary matrix.

533 R_hh2_cond <- matrix(0,i_q,i_q)

534
535 # Matrix is symmetrical so compute half of it , then transpose and copy.

536 for (i in 1:i_p)

537 {

538 for (q in c(func_h_indx(i)))

539 {

540 for (j in 1:i_p)

541 {
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542 for (r in c(func_h_indx(j)))

543 {

544 if (i==i_cond && i==j && q > r)

545 {

546 R_hh2_cond[q,r] <- integrate(func_hh1b ,lower=-Inf ,upper=Inf ,i=

i,q=q,r=r,subdivisions=sub_divs ,rel.tol=rel_tol)$value

547 #R_hh2_cond[q,r] <- integrate(func_h_w2 ,lower=-Inf ,upper=Inf ,i

=i,q=q,subdivisions=sub_divs ,rel.tol=rel_tol)$value *

548 # integrate(func_h_w2,lower=-Inf ,upper=Inf ,i=j,q=

r,subdivisions=sub_divs ,rel.tol=rel_tol)$value

549 }

550 else if (q > r)

551 {

552 R_hh2_cond[q,r] <- integrate(func_h_w2 ,lower=-Inf ,upper=Inf ,i=

i,q=q,subdivisions=sub_divs ,rel.tol=rel_tol)$value *

553 integrate(func_h_w2,lower=-Inf ,upper=Inf ,i=

j,q=r,subdivisions=sub_divs ,rel.tol=rel

_tol)$value

554 }

555 }

556 }

557 }

558 }

559
560 # Transpose and copy.

561 R_hh_cond <- R_hh2_cond + t(R_hh2_cond)

562
563 # Then do the diagonal.

564 for (i in 1:i_p)

565 {

566 for (q in c(func_h_indx(i)))

567 {

568 if (i==i_cond)

569 {

570 R_hh_cond[q,q] <- integrate(func_hh1b ,lower=-Inf ,upper=Inf ,i=i,q=q,r

=q,subdivisions=sub_divs ,rel.tol=rel_tol)$value

571 } else {

572 R_hh_cond[q,q] <- integrate(func_h_w2 ,lower=-Inf ,upper=Inf ,i=i,q=q,

subdivisions=sub_divs ,rel.tol=rel_tol)$value *

573 integrate(func_h_w2,lower=-Inf ,upper=Inf ,i=i,q=q,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

574 }

575 }

576 }

577
578 # Just copy R_h into the first column and first row to save computation.

579 # Note! This only works if the first entry of func_h is 1.

580 R_hh_cond[,1] <- R_h

581 R_hh_cond[1,] <- R_h

582 R_hh_cond

583 }

584
585 # ----------------------------------------------------------------------#

586 # R_ht_cond

587 #

588 # The order of integration is tricky. If q does not correspond to the conditional

dimension ,
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589 # then the element of R_ht_cond is essentially a double integral , one over h(x) and

one

590 # over t(x).

591 # ----------------------------------------------------------------------#

592 func_int_R_ht_cond1 <- function(x,q,x_k,i_cond)

593 {

594 if ( is.element(q,func_h_indx(i_cond)) )

595 {

596 int_sum <- prod(R_t_table[x_k,-i_cond])

597 int_sum_cond <- func_R_ht1(x=x,q=q,i=i_cond ,x_k=x_k)

598 } else {

599 int_sum <- R_h[q] * prod(R_t_table[x_k,-i_cond])

600 int_sum_cond <- func_Rt(x=x,i=i_cond ,k=x_k)

601 }

602 prod(int_sum) * int_sum_cond

603 }

604
605 # Wrapper for second integration.

606 func_R_ht_cond1 <- function (x,q,x_k,i_cond)

607 {

608 sapply(X=x,FUN=func_int_R_ht_cond1 ,q=q,x_k=x_k,i_cond=i_cond)

609 }

610
611 # Do the integration.

612 func_int_R_ht_cond2 <- function (q,x_k,i_cond)

613 {

614 integrate(func_R_ht_cond1 ,lower=-Inf ,upper=Inf ,q=q,x_k=x_k,i_cond=i_cond ,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

615 }

616
617 # Function to create the matrix.

618 func_R_ht_cond <- function(i_cond)

619 {

620 R_ht1 <- matrix(0,i_q,i_n)

621 for (a in 1:i_n)

622 {

623 # print(paste (" R_ht_cond col:",a))

624 for (b in 1:i_q)

625 {

626 R_ht1[b,a] <- func_int_R_ht_cond2(q=b,x_k=a,i_cond)

627 }

628 }

629 R_ht1

630 }

631
632 # ----------------------------------------------------------------------#

633 # R_tt_cond

634 # R_tt conditional on i_cond ...

635 # Function of x_k and x_l.

636 # ----------------------------------------------------------------------#

637 func_int_Rtt_cond1 <- function (x,x_k,x_l,i_cond)

638 {

639 # Use pre -computed integrals.

640 int_sum <- R_t_table[x_k,] * R_t_table[x_l,]

641 int_sum[i_cond] <- func_Rtta(x=x,i=i_cond ,k=x_k,l=x_l)

642 prod(int_sum)

643 }
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644
645 # Wrapper to integrate over the conditional.

646 func_Rtt_cond1 <- function (x,x_k,x_l,i_cond)

647 {

648 sapply(X=x,FUN=func_int_Rtt_cond1 ,x_k=x_k,x_l=x_l,i_cond=i_cond)

649 }

650
651 # Do the integration.

652 func_int_Rtt_cond2 <- function (x_k,x_l,i_cond)

653 {

654 integrate(func_Rtt_cond1 ,lower=-Inf ,upper=Inf ,x_k=x_k,x_l=x_l,i_cond=i_cond ,

subdivisions =200,rel.tol=1e-7)$value

655 }

656
657 # Now create the matrix.

658 # print(paste(" Computing R_tt_cond ..."))

659
660 func_R_tt_cond <- function(i_cond)

661 {

662 R_tt_cond_temp <- matrix(0,i_n,i_n)

663 for (a in 1:i_n)

664 {

665 # print(paste (" R_tt_cond col:",a))

666 for (b in 1:i_n)

667 {

668 R_tt_cond_temp[b,a] <- func_int_Rtt_cond2(b,a,i_cond)

669 }

670 }

671 (1-nu)^2 * R_tt_cond_temp

672 }

673
674 # ----------------------------------------------------------------------#

675 # Compute:

676 # E*[Vw] = E*[E[E[f(X)|Xw ]^2]] - E*[E[f(X)]^2]

677 # ----------------------------------------------------------------------#

678 # E*[E[f(X)]^2]

679 # ----------------------------------------------------------------------#

680 E_fX_2 <- V + E^2

681 # ----------------------------------------------------------------------#

682 # For E*[E[E[f(X)|Xw ]^2]] we loop over each dimension to get each sensitivity

variance.

683 # This method is much slower than dealing with the emulator mean and covariance

functions

684 # directly (see below).

685 # ----------------------------------------------------------------------#

686 # E_E_fX_w2 <- 0

687 # U_cond <- 0

688 # array_R_hh_cond <- array(0,dim=c(i_q,i_q,i_p))

689 # array_R_ht_cond <- array(0,dim=c(i_q,i_n,i_p))

690 # array_R_tt_cond <- array(0,dim=c(i_n,i_n,i_p))

691 # sen_var1 <- 0

692 #

693 # print("--------------------------------------------")

694 # print(" Sensitivity variances ")

695 #

696 # for (i in 1:i_p)

697 # {
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698 ## U_cond.

699 # U_cond[i] <- func_U_cond(i)

700 ## R_hh_cond.

701 # print(paste (" Computing R_hh_cond #",i ,"..."))

702 # array_R_hh_cond[,,i] <- func_R_hh_cond(i)

703 ## R_ht_cond.

704 # print(paste (" Computing R_ht_cond #",i ,"..."))

705 # array_R_ht_cond[,,i] <- func_R_ht_cond(i)

706 ## R_tt_cond.

707 # print(paste (" Computing R_tt_cond #",i ,"..."))

708 # array_R_tt_cond[,,i] <- func_R_tt_cond(i)

709 ## E_E_fX_w2.

710 # E_E_fX_w2[i] <- sigmasq[emulator_index] *

711 # (

712 # U_cond[i] -

713 # sum(diag(invA %*% array_R_tt_cond[,,i])) +

714 # sum(diag(W %*% (array_R_hh_cond[,,i] - 2*array_R_ht_cond

[,,i] %*% G + t(G) %*% array_R_tt_cond[,,i] %*% G)))

715 # ) +

716 # t(e) %*% array_R_tt_cond[,,i] %*% e + 2*t(beta) %*% array_

R_ht_cond[,,i] %*% e + t(beta) %*% array_R_hh_cond[,,i] %*% beta

717 #

718 # sen_var1[i] <- E_E_fX_w2[i] - E_fX_2

719 # print(paste (" Variable ",i," : ",format(sen_var1[i],digits =5) ," (",format

(100 * sen_var1[i]/E_Var_fX ,digits =3) ,"% )"),sep ="")

720 # }

721 #

722 # ----------------------------------------------------------------------#

723 # Print summary.

724 # ----------------------------------------------------------------------#

725 # for (i in 1:i_p)

726 # {

727 # print(paste (" Variable ",i," : ",format(sen_var1[i],digits =5) ," (",format

(100 * sen_var1[i]/E_Var_fX ,digits =3) ,"% )"),sep ="")

728 # }

729 # sen_var_unexp1 <- E_Var_fX - sum(sen_var1)

730 # print("--------------------------------------------")

731 # print(" Unexplained variance ")

732 # print(

733 # paste ("E*[ Var[f(X)] ] - sum(sensitivity variances) : ",

734 # format(sen_var_unexp1 ,digits =3),

735 # " (",

736 # format (100 * sen_var_unexp1/E_Var_fX,digits =3),

737 # "% )",

738 # sep ="")

739 # )

740 #

741 #======================================================================#

742 # Alternative.

743 # Here we integrate over the margins , except the conditional(s).

744 # This function is over one marign.

745 #======================================================================#

746 func_mean_cond <- function(x,i_cond)

747 {

748 n_x_vals <- length(x)

749 mat_R_t2a <- matrix(0,n_x_vals ,i_n)

750 int_sum <- array(0,dim=c(i_n,i_p,n_x_vals))

288



D NUMERICAL INTEGRATION CODE FOR ARBITRARY (LINEAR) MEAN
AND CORRELATION FUNCTIONS

751 for (k in 1:i_n)

752 {

753 int_sum[k,i_cond ,] <- func_tx(x,i_cond ,k)

754
755 int_sum[k,seq_dim[-i_cond],] <- R_t_table[k,seq_dim[-i_cond]]

756 mat_R_t2a[,k] <- apply(t(int_sum[k,,]) ,1,prod)

757 }

758 R_t2e <- apply(mat_R_t2a ,1,function(xx) { xx %*% e })

759 R_h2b <- func_R_h2(x,i_cond) %*% beta

760 (R_h2b + R_t2e)^2

761 }

762
763 # ----------------------------------------------------------------------#

764 # Integration over the "square" of the covariance function.

765 # ----------------------------------------------------------------------#

766
767 # Functions for first and second terms.

768 func_Rt_invA_Rt <- function(xx) { sum(diag( invA %*% (xx %*% t(xx)) )) }

769 func_cov_p2 <- function(xx)

770 {

771 Rh_p2 <- xx[(i_n+1):(i_n+i_q)]

772 Rt_p2 <- xx[1:i_n]

773 sum(diag( W %*% ( (Rh_p2 - t(G) %*% Rt_p2) %*% t(Rh_p2 - t(G)

%*% Rt_p2) ) ) )

774 }

775 # Covariance function.

776 func_cov_cond <- function(x,i_cond)

777 {

778 n_x_vals <- length(x)

779 mat_R_t2a <- matrix(0,n_x_vals ,i_n)

780 int_sum <- array(0,dim=c(i_n,i_p,n_x_vals))

781 for (k in 1:i_n)

782 {

783 int_sum[k,i_cond ,] <- func_tx(x,i_cond ,k)

784
785 int_sum[k,seq_dim[-i_cond],] <- R_t_table[k,seq_dim[-i_cond]]

786 mat_R_t2a[,k] <- apply(t(int_sum[k,,]) ,1,prod)

787 }

788 # Compute part 1.

789 cov_p1 <- apply(mat_R_t2a ,1,func_Rt_invA_Rt)

790 # Compute part 2.

791 cov_p2 <- apply(X=cbind(mat_R_t2a ,func_R_h2(x,i_cond)),1,FUN=func_cov_p2 )

792 # Add together.

793 cov_p1 + cov_p2

794 }

795
796 # Create a function that can be integrated over each margin to obtain the

sensitivity variance.

797 func_mean_cond_w <- function(x,i_cond) { func_mean_cond(x,i_cond) * func_w_x(x,i

_cond) }

798 func_int_mean_cond <- function(i_cond) { integrate(func_mean_cond_w,lower=-Inf ,

upper=Inf ,i_cond=i_cond ,subdivisions=sub_divs ,rel.tol=rel_tol)$value }

799 func_cov_cond_w <- function(x,i_cond) { func_cov_cond(x,i_cond) * func_w_x(x,i_

cond) }

800 func_int_cov_cond <- function(i_cond) { integrate(func_cov_cond_w,lower=-Inf ,

upper=Inf ,i_cond=i_cond ,subdivisions=sub_divs ,rel.tol=rel_tol)$value }

801
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802 # ----------------------------------------------------------------------#

803 # Qucik plot of main effects.

804 # ----------------------------------------------------------------------#

805 line_cols <- c(22 ,30 ,31 ,32 ,33 ,258 ,50 ,34 ,47 ,652 ,67 ,89 ,102 ,104)

806 X11()

807 par(oma=c(0,0,0,0),mgp=c(3,1,0),mar=c(6,6,6,2) +0.1)

808 plot( NULL ,

809 xlim=c(0,1),ylim=c( -0.15 ,0.15),

810 main=expression(Main~effects~of~uncertain~parameters~on~fetch~coefficient~

H[infinity ]),

811 xlab=expression(X[w]),ylab=c("Main effect"),

812 cex.main =1.8,cex.lab=1.5,cex.axis =1.3 )

813
814 legend(x=0.1, y=-0.005, legend=param_labels , lty=c(1:6) , lwd=c(rep (2.5 ,6)), col=

c(colours ()[line_cols [1:8]] ,"black"), title=expression(WW3~parameter), ncol

=1, title.adj=0.1, bty="n",cex=1.6, y.intersp =0.6)

815
816 for (i in 1:i_p)

817 {

818 lines(seq(0,1,,100) ,(func_E_cond_1(seq(0,1,,100),i) / as.vector(E)) - 1,lty=c

(i),lwd=2.5,col=colours ()[line_cols[i]])

819 }

820
821 # ----------------------------------------------------------------------#

822 # Generate sensitivity variances.

823 # ----------------------------------------------------------------------#

824 print("--------------------------------------------")

825 print("Sensitivity variances")

826
827 E_E_fX_w2a <- 0

828 sens_var2 <- 0

829 for (i in 1:i_p)

830 {

831 E_E_fX_w2a[i] <- sigmasq[emulator_index] *

832 ( func_U_cond(i) - func_int_cov_cond(i) ) + func_int_mean_

cond(i)

833
834 sens_var2[i] <- E_E_fX_w2a[i] - E_fX_2

835 print(paste("Variable ",i," : ",format(sens_var2[i],digits =5)," (",format

(100 * sens_var2[i]/E_Var_fX ,digits =3),"% )"),sep="")

836 }

837 sen_var_unexp2 <- E_Var_fX - sum(sens_var2)

838 print("--------------------------------------------")

839 print("Unexplained variance")

840 print(

841 paste("E*[ Var[f(X)] ] - sum(sensitivity variances) : ",

842 format(sen_var_unexp2 ,digits =3),

843 " (",

844 format (100 * sen_var_unexp2/E_Var_fX ,digits =3),

845 "% )",

846 sep="")

847 )

848
849 ABC <- barplot( 100*sens_var2/E_Var_fX , plot=FALSE )

850 X11()

851 par(oma=c(0,0,0,0),mgp=c(3 ,0.25 ,0),mar=c(6,6,6,2) +0.1)

852 barplot( 100*sens_var2/E_Var_fX ,
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853 main=expression(Percentage~variance~explained),

854 horiz=FALSE ,

855 # names.arg=seq(1,i_p),

856 xlab=c("Input parameter"),

857 ylab=c("Percentage"),

858 col=colors ()[line_cols],

859 border=NA ,

860 cex.main =1.8,cex.lab=1.5,cex.axis =1.3,cex.names =1.3 )

861 axis(1, at=ABC , labels=param_labels , cex.axis =1.2, tick=FALSE , las =2)

862
863 #======================================================================#

864 # Sensivity variances for 1st order interacting variables.

865 #======================================================================#

866 # We create a function that can be integrated over each margin to obtain the

sensitivity variance for interacting variables.

867 # Note this works only for the interaction of 2 conditions.

868 # ----------------------------------------------------------------------#

869 # Function for conditional mean for two dimensions.

870 # ----------------------------------------------------------------------#

871 # Function for the conditional mean of h(x). x must be length 2.

872 func_R_h2a <- function(x,i_cond)

873 {

874 R_h_cond <- R_h

875 h_x_val <- vector("double",length=i_p)

876 h_x_val[i_cond] <- x

877 R_h_cond[func_h_indx(i_cond)] <- func_h(h_x_val)[func_h_indx(i_cond)]

878 R_h_cond

879 }

880
881 # Function for integration later. x must be length 2.

882 func_E_cond2_w <- function(x,i_cond)

883 {

884 mat_R_t2a <- 0

885 int_sum <- matrix(0,nrow=i_n,ncol=i_p)

886 for (k in 1:i_n)

887 {

888 int_sum[k,i_cond [1]] <- func_tx(x[1],i_cond[1],k)

889 int_sum[k,i_cond [2]] <- func_tx(x[2],i_cond[2],k)

890
891 # int_sum[k,seq_dim[-i_cond]] <- sapply(X=seq_dim[-i_cond],func_int_Rt ,m=k)

892 int_sum[k,seq_dim[-i_cond]] <- R_t_table[k,seq_dim[-i_cond]]

893 mat_R_t2a[k] <- prod(int_sum[k,])

894 }

895 R_t2e <- mat_R_t2a %*% e

896 R_h2b <- func_R_h2a(x,i_cond) %*% beta

897 (R_h2b + R_t2e)^2 * func_w_x(x[1],i_cond [1]) * func_w_x(x[2],i_cond [2])

898 }

899
900 # Integrable function over x1. i_cond is length 2.

901 func_E_cond2_w_vec1 <- function(x1 ,x2,i_cond)

902 {

903 X2 <- cbind(x1,rep(x2 ,length(x1)))

904 apply(X2 ,1,func_E_cond2_w,i_cond=i_cond)

905 }

906 # Then integrate.

907 func_E_cond2_w_int1 <- function(x,i_cond)

908 {
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909 integrate(func_E_cond2_w_vec1 ,lower=-Inf ,upper=Inf ,x2=x,i_cond=i_cond ,

subdivisions=sub_divs ,rel.tol=rel_tol)$value

910 }

911 # Integrable function over x1. i_cond is length 2.

912 func_E_cond2_w_vec2 <- function(x,i_cond)

913 {

914 sapply(X=x,FUN=func_E_cond2_w_int1 ,i_cond=i_cond)

915 }

916
917 # ----------------------------------------------------------------------#

918 # Function for conditional covariance for two dimensions.

919 # ----------------------------------------------------------------------#

920 # Covariance function.

921 func_cov_cond2_w <- function(x,i_cond)

922 {

923 mat_R_t2a <- 0

924 int_sum <- matrix(0,nrow=i_n,ncol=i_p)

925 for (k in 1:i_n)

926 {

927 int_sum[k,i_cond [1]] <- func_tx(x[1],i_cond[1],k)

928 int_sum[k,i_cond [2]] <- func_tx(x[2],i_cond[2],k)

929
930 int_sum[k,seq_dim[-i_cond]] <- R_t_table[k,seq_dim[-i_cond]]

931 mat_R_t2a[k] <- prod(int_sum[k,])

932 }

933 # Compute part 1.

934 cov_p1 <- func_Rt_invA_Rt(mat_R_t2a)

935 # Compute part 2.

936 cov_p2 <- func_cov_p2(c(mat_R_t2a ,func_R_h2a(x,i_cond)))

937 # Add together.

938 (cov_p1 + cov_p2) * func_w_x(x[1],i_cond [1]) * func_w_x(x[2],i_cond [2])

939 }

940
941 # Integrable function over x1. i_cond is length 2.

942 func_cov_cond2_w_vec1 <- function(x1 ,x2,i_cond)

943 {

944 X2 <- cbind(x1,rep(x2 ,length(x1)))

945 apply(X2 ,1,func_cov_cond2_w,i_cond=i_cond)

946 }

947 # Then integrate.

948 func_cov_cond2_w_int1 <- function(x,i_cond)

949 {

950 integrate(func_cov_cond2_w_vec1 ,lower=-Inf ,upper=Inf ,x2=x,i_cond=i_cond ,

subdivisions=sub_divs ,rel.tol=1e-5)$value

951 }

952 # Integrable function over x1. i_cond is length 2.

953 func_cov_cond2_w_vec2 <- function(x,i_cond)

954 {

955 sapply(X=x,FUN=func_cov_cond2_w_int1 ,i_cond=i_cond)

956 }

957
958 #======================================================================#

959 # Find one interaction.

960 # ----------------------------------------------------------------------#

961 # i_w <- c(2,3)

962 # <- integrate(func_E_cond2_w_vec2 ,lower=-Inf ,upper=Inf ,i_cond=i_w,subdivisions=

sub_divs ,rel.tol=rel_tol)$value
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963 # print(paste(" Variables",i_w[1],"&",i_w[2],":", format(int_cond2a - E^2,digits

=5)))

964 # print("--------------------------------------------")

965 #======================================================================#

966 # Loop over all 1st order interactions.

967 # Pretty slow , requires hours.

968 # ----------------------------------------------------------------------#

969 # Integrate over the "outer" conditional to obtain the complete integral.

970 int_E_cond2 <- matrix(0,i_p,i_p)

971 int_cov_cond2 <- matrix(0,i_p,i_p)

972 iw_list <- seq_dim

973 # iw_list <- c(7,8,9)

974 for (i_w1 in 1:( length(iw_list) -1))

975 {

976 for (i_w2 in (i_w1+1):length(iw_list))

977 {

978 i_w <- c(iw_list[i_w1],iw_list[i_w2])

979 if (int_cov_cond2[i_w[1],i_w[2]] == 0)

980 {

981 int_E_cond2[i_w[1],i_w[2]] <- integrate(func_E_cond2_w_vec2 ,lower=-Inf ,

upper=Inf ,i_cond=i_w,subdivisions=sub_divs ,rel.tol=1e-5)$value

982 int_cov_cond2[i_w[1],i_w[2]] <- integrate(func_cov_cond2_w_vec2 ,lower=-

Inf ,upper=Inf ,i_cond=i_w,subdivisions=sub_divs ,rel.tol=1e-5)$value

983 print(paste("Variables",i_w[1],"&",i_w[2],"(est.):", format(int_E_cond2

[i_w[1],i_w[2]] - E^2,digits =3)))

984 print("--------------------------------------------")

985 }

986 }

987 }

988
989 # Write tables.

990 # write.table(int_E_cond2 , file = "interaction_tables/int_E_cond2_1.txt", append

= FALSE)

991 # write.table(int_cov_cond2 , file = "interaction_tables/int_cov_cond2_1.txt",

append = FALSE)

992
993 E_E_fX_inter <- matrix(0,i_p,i_p)

994 E_V_w <- matrix(0,i_p,i_p)

995 var_inter <- matrix(0,i_p,i_p)

996
997 print("--------------------------------------------")

998 print("First order interaction variances.")

999 for (i_w1 in 1:( length(iw_list) -1))

1000 {

1001 for (i_w2 in (i_w1+1):length(iw_list))

1002 {

1003 i_w <- c(iw_list[i_w1],iw_list[i_w2])

1004 E_E_fX_inter[i_w[1],i_w[2]] <- sigmasq[emulator_index] * ( func_U_cond(i_w

) - int_cov_cond2[i_w[1],i_w[2]] ) + int_E_cond2[i_w[1],i_w[2]]

1005 E_V_w[i_w[1],i_w[2]] <- E_E_fX_inter[i_w[1],i_w[2]] - E_fX_2

1006 var_inter[i_w[1],i_w[2]] <- E_V_w[i_w[1],i_w[2]] - sens_var2[i_w[1]] -

sens_var2[i_w[2]]

1007 print(

1008 paste("E*[ Var_Tw ] ",

1009 i_w[1]," & ",i_w[2]," : ",

1010 format(var_inter[i_w[1],i_w[2]], digits =3),

1011 " ( ",
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1012 format( (100 / E_Var_fX) * var_inter[i_w[1],i_w[2]], digits =3),

1013 "% )",

1014 sep="")

1015 )

1016 }

1017 }

1018 print("--------------------------------------------")

1019 print("Total variance explained by interactions.")

1020 print(paste("Sum( E*[ Var_Tw ] ) : ",format ((100 / E_Var_fX) * sum(var_inter),

digits =3),"%"))

../code/auto unc sens analysis v1.2.R
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E Wavewath configuration details

Switch listings. See Tolman (2009a) (section 5.4 p.122) for full details.

Switch configuration used in chapter 4.

F90 SHRD NOGRB LRB4 XYG PR3 FLX2 LN1 ST2 STAB2 NL1 BT0 DB0

TR0 BS0 XX0 WNT1 WNX1 CRT1 CRX1

Switch configuration used in chapter 7.

LLG PR3 FLX2 SEED ST2 STAB2 NL1 BT1 DB0 TR0 BS0 XX0 WNX1 WNT1

CRX1 CRT1 O0 O1 O2 O3 O4 O5 O6 O7 F90 NOGRB SHRD LRB4
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F A possible approach to designing winds from

observational data: A synthetic example.

We begin by making use of a modified version of the “toy model” employed in section

3.5.5. The explicit form of the model is,

y(x|a, b, c, d) = 2.5x (1 + 0.7cos(dx)) + ax+

{
0.4 ∗ exp

(
−(x− b)

0.22

)
∗ sin(cx)

}
(F.1)

A sample of responses y for 0 < x < 1 is generated by sampling a, b, c, d from

a joint Gaussian distribution given by [a, b, c, d]T ∼ N(µTOY , CTOY ) where µTOY =

[1.0, 0.5, 15.0, 3.5]T and CTOY is a diagonal matrix with diagonal [1.0, 0.05, 10.0, 2.0]2.

y could be imagined as a wind speed directional component and x a coordinate in

space or time (although the example is only illustrative). The samples could be ob-

tained from repeated observations of a specific geographic area, time period, etc. In

figure F.1 (a) we see the “mean” response, compared with 500 samples drawn from

the aforementioned probability distribution. If we regard this data as observed,

and pretend we do not know about the source function (F.1), we can proceed to

use a principal component decomposition. This provides a set of empirical basis

functions, which lends itself to the formulation of an experimental design. After

performing the decomposition, we find the proportion of variance explained by each

component, shown in panel (b). The scores associated with each component decay

fairly quickly and 99.1% of the variance is explained by the first twelve components.

Reconstruction of the first observation in the original sample using a limited number

of components (up to 14) is shown in figure F.2. In this case we might therefore

expect to utilise the first, say, twelve components as a basis to describe the wind

with little loss of information. The next logical step is then to use the basis to

create an experiment design, based upon uncertainty as suggested by the sampled

data. Examination of the distribution of scores (or eigenvalues) for each component,

shown in figure F.3, suggests appropriate ranges for a design and input distributions

for an analysis. Proceeding to formulate a LHC sampling based design, that spans

the first twelve components, yields response profiles corresponding to design points

as shown in figure F.4. If, as we are imagining, that these responses correspond to

some kind of wind input (such as a directional component profile in space or time),

then in principle this approach might work. That is, an uncertainty analysis would

yield the probability distribution of wave conditions corresponding to the probable

variation in wind conditions. A sensitivity analysis would reveal the response of the

simulator to each principal component. However, it remains to be seen how effective

297



F A POSSIBLE APPROACH TO DESIGNING WINDS FROM
OBSERVATIONAL DATA: A SYNTHETIC EXAMPLE.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

F
(x

)

(a) Mean and sample data. Comp.1 Comp.4 Comp.7 Comp.10 Comp.13 Comp.16 Comp.19

P
ro

po
rt

io
n 

va
ria

nc
e 

ex
pl

ai
ne

d

0.
0

0.
1

0.
2

0.
3

0.
4

(b) Variance explained by successive empirical com-
ponents.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

Component 1

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

Component 2

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

Component 3

(c) First three components.

Figure F.1: Sampled response data and its decomposition into principal components.
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Figure F.2: A single sampled response, reconstructed using a limited number of modes.
Improvement is evident with the inclusion of additional modes.

this approach is when applied to realistic winds. It is unclear how many principal

components would be required to capture sufficient variance. In this synthetic case

the modes decayed fairly rapidly, but if the number of required components was

high (say > 50) this could cause computational problems, aside from any physics

or interpretation issues. Important questions remain as to whether the designed

winds are physically sensible. That is, arbitrarily specifying different weights for

each component (as arises during the design process) may create physically unre-

alistic, or even nonsensical winds. The design space may be highly complex, and

comprise many “unphysical” regions (i.e. unrealistic winds) that are separated in

unpredictable ways. This would make interpretation of the results challenging.
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Figure F.4: Response profiles corresponding to a number of design points.
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G DETAILS PERTAINING TO SIMULATION OF LAKE MICHIGAN.

G Details pertaining to simulation of Lake Michi-

gan.

G.1 Communication from GLERL on wind uncertainty.

——– Original Message ——–

Subject: Re: Historic wind data for Lake Michigan - 2005

Date: Tue, 4 Jun 2013 12:37:02 -0400

From: Gregory Lang - NOAA Federal gregory.lang@noaa.gov

To: Ben Timmermans ben.timmermans@soton.ac.uk

CC: Dave Schwab djschwab@umich.edu, Eric J Anderson Eric.J.Anderson@noaa.gov,

Gregory Lang Gregory.Lang@noaa.gov

Hi Ben,

I’ve cc’d the project lead (Dr. Eric Anderson) and the former project lead,

Dr. Dave Schwab (retired). They may have more insight to the full depth of your

questions.

The wind data is indeed sparse in areas, especially over the lake, especially in

winter, and especially over parts of Canada. We use a natural neighbor technique,

after first applying an over-water correction to land stations, based on the wind

direction.

We use NOAAPORT as our data source: http://coastwatch.glerl.noaa.gov/marobs/php/data.php?sta=9

I don’t know of particular biases with this technique. Measurement uncertainty

is always present, as we utilize many airports, automated c-man stations, and buoys.

We exclude ship and Coast Guard station data.

Greg
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