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ABSTRACT

UNDERSTANDING THE EXTENT OF UNIVERSALITY IN PHYTOPLANKTON
SPATIAL PROPERTIES

Simon Jan van Gennip

Phytoplankton are one of the most visible signs of life in our oceans. They also are a key
component of the global carbon cycle and of the marine food web. Their complex patterns at
the sea surface are routinely seen in satellite images, though the first observations go back

centuries.

The motivation of this thesis is to explore the spatial properties of phytoplankton. Inspired by
‘universal’ theories for the dynamics of turbulence, several ones have been proposed to explain
phytoplankton patchiness as a balance between turbulent stirring by the water and biological
processes involving the phytoplankton. The thesis examines the extant theories of plankton
patchiness using a novel twin tracer approach, specifically using in situ simultaneous
Chlorophyll-a and nitrate measurements from a cruise in the North Atlantic. A significant
difference is observed between the variability spectra of the two biochemical variables, an

outcome potentially explained only by one theory.

More generally, although numerous observations testify to the existence of scaling behaviour of
phytoplankton spatial variability, the collation of these studies indicates considerable variability,
and hence uncertainty, in the power law behaviour, specifically the value of the spectral ‘slope’.
The many different techniques used to evaluate the spectrum, the different sources of data, and
the geographical and temporal limitations associated with the data all contribute to adding noise
and uncertainties in the estimates for the slope and make a comparison between studies
difficult. In this thesis, the existence of the universal scaling properties of phytoplankton are
tested over a wide range of spatial (sub-regional and regional) and temporal (few days to a year)
scales using in situ, satellite data and model output. For this purpose a robust method is
developed that reliably evaluates the spectrum of phytoplankton. A power-law behaviour in the
phytoplankton spectrum is consistently found across the sources of data used and the range of
scales studied (from 10 m to 130 km). However, stronger universality for the phytoplankton
spectrum, defined as constant or uniform slope, is undermined by the significant variability in

spectral slope that is consistently demonstrated across the spatial and temporal scales studied.
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Chapter 1: Introduction

Unlike their biosphere counterparts on land (e.g. grass), phytoplankton, the dominant plant in
the ocean, are, like their name suggests, free floating and therefore subject to advection by
ocean currents. They are additionally very small (down to 1 um) but can reach such high
abundances in blooms as to discolour water. Phytoplankton display striking spatial variability
which is routinely captured by satellite images (Figure 1.1). Its structure, made of complex
convoluted filamental patterns covering scales from as small as a millimetre to thousands of
kilometres, continually evolves over time. A long history of observations of this phenomenon
exists, dating back to the expeditions of de Ulloa and Cook in the 18™ century, yet debate

continues on what mechanisms control this heterogeneity.

Phytoplankton are a major contributor to the global carbon cycle, through their central position
in the biological carbon pump (Sanders et al., 2014), and are responsible for an estimated 50%
of global primary production (Field et al., 1998, Behrenfeld et al., 2006). At scales of 1-10 km
and 10-100 km (the submeso and mesoscale respectively), energetic features such as eddies
and fronts are strong drivers of export and primary production as they regulate lateral and
vertical transport of nutrients and biomass (Martin and Richards, 2001, Oschlies, 2002,
McGillicuddy et al., 2003, Chelton et al., 2011). Those same physical features, through stirring
and mixing combined with biological processes (e.g. such as nutrient uptake by phytoplankton
for growth and grazing by zooplankton), generate inhomogeneous distributions in the
concentration of phytoplankton and other biogeochemical tracers. This heterogeneity can affect
estimates of production and export (Levy and Martin, 2013) for which precise estimates are
needed e.g. for climate studies of the carbon cycle. Therefore, being able to understand the
considerable spatial heterogeneity associated with phytoplankton distributions is essential for
further developing our understanding of ocean biogeochemical dynamics and interactions. This

has been a motivation for this research study.

As the spatial structure of phytoplankton spans a large range of length-scales, many different
processes are involved with their influence varying over this range. The mesoscale range,
bounded by the length-scale of the largest eddy (up to few 100 km and decreasing with
increasing latitude) and the length-scale above which ocean circulation ceases to be fully three

dimensional (~1 km), has attracted much interest, notably because in this range the physics and
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the biology act on similar time-scales of order of a few days. This study is primarily focussed on

this range.

The following sections provide a context and motivation for the thesis, first by discussing
previous observations of phytoplankton patchiness, specifically through the use of spectra, and

second by describing the current theories for what controls such patchiness.

Figure 1.1: Phytoplankton bloom across the Barents Sea captured by Envisat's MEdium Resolution Imaging
Spectrometer (MERIS) on the 24t August 2011. Note the structure present across scales, with the filamental nature
of the patchiness illustrative of the role played by ocean turbulence in the pattern formation. The different colours
of the ocean reveal the density of phytoplankton population within water parcels with light blue patches being highly
concentrated. The picture is approximately 500 km by 350 km.
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1.1. Scaling and universality

The advent of the fluorimeter (Lorenzen, 1966) and the first satellite capable of measuring ocean
colour (1978) provided stepping stones for phytoplankton patchiness research. The fluorimeter,
through long transect continuous chlorophyll-a (Chl-a) measurements, revealed that
phytoplankton structure did not consist of a series of independent patches but that patches
were interconnected. Later on, ocean colour provided for the first time two dimensional
synoptic maps of Chl-a, revealing the intricate spatial structure of convoluted and filamental

patterns evocative of the action of the stirring and mixing of the flow (see Figure 1.1).

Using spectral analysis, which decomposes the variability observed in the data series into the
contribution from individual length-scales, it was found that phytoplankton variability was
present across a range of length-scales and displayed scaling properties between them. Indeed,
numerous observational studies describe the phytoplankton spectrum as following a power law
(Gower et al., 1980, Smith et al., 1988, Yoder et al., 1993, Washburn et al., 1998, Martin and
Srokosz, 2002). In other words, when plotted in log-log space, the spectrum is characterised by
a straight line. The gradient of this line or slope describes how variability is partitioned between
wavenumbers (inverse of the length-scale). This is expressed in mathematical terms as follows:
P(k) < k* where k is the wavenumber, P(k) the power function of k, and a the slope of the
line in log-log space. For phytoplankton patchiness the slope (or equivalently ‘exponent’) is
invariably negative. The steeper the line the more variability is observed at large relative to small
scales. The observations indicating such scaling behaviour cover many intervals of length-scales:
as short as 10 m— 1 km (Platt, 1972, Fasham and Pugh, 1976, Seuront et al., 1999) to the
submesoscale (1-10 km) (Smith et al., 1988) and the mesoscale (Lekan and Wilson, 1978,

Strutton et al., 1997) and many other overlapping intervals.

Inspired by ‘universal’ theories for the dynamics of turbulence, where a similar decreasing trend
of variability with decreasing length-scale is seen e.g. velocity fluctuations (Kolmogorov, 1991),
the idea of a universal spectrum for phytoplankton has been proposed. Several theories attempt
to explain phytoplankton patchiness as a balance between turbulent stirring by the water and

biological processes involving the phytoplankton.

Between the large length-scale (of order of 1000 km)at which kinetic energy is being introduced
and the short one (of order of cm) at which it is dissipated, kinetic energy decays following a
power law under the influence of the stirring and mixing of the oceanic flow (Kraichnan, 1967).

A similar transfer of variability across a range of length-scales has been proposed for

25



phytoplankton, on the assumption that forcing of phytoplankton variability occurs at a scale
larger than the range being considered. For example, for scaling behaviour at the mesoscale,

forcing would consist of winter convection which forces nutrient gradients at basin scale.

The structure imposed by the flow on passive non-reactive tracers depends on the turbulence
model advocated. Decay in a two dimensional regime (most applicable to scales greater than 1
km) follows a=-1 whilst a faster decay (more applicable to smaller scales) with a=-5/3 occurs in

a three dimensional turbulence model (Powell and Okubo, 1994).

Based on the argument that the physical time-scale associated with turbulent motion decreases
with length-scale, typically meaning that large eddies have longer time-scales than smaller
eddies, and that the time-scale of the biology remains relatively constant with scale, two regimes
have been distinguished (Denman and Platt, 1976, Denman et al., 1977). At small scales, where
the eddy time-scale is shortest, the physics dominate and therefore should dictate the spatial
distribution of phytoplankton which should therefore share the same spectral properties with
physical scalars such as temperature. In contrast, as scales become larger, a critical length-scale
exists past which the physical processes are slower than biological ones allowing the biological
processes to influence the spatial structure of phytoplankton. How biology is predicted to
change the structure imposed by the flow at this larger scales is not consistent between theories,
with biological models shown to either redden or whiten the phytoplankton spectrum (Powell
and Okubo, 1994).The transition scale or ‘knee’ at which processes decouple, has been predicted

to be within the range 0.2 — 20 km (Denman and Platt, 1976).

The notion of a competition of time-scales has fuelled several other theories which are discussed

in the next section.

Throughout this thesis, the definition for universality is that the spectrum has the same shape
everywhere at all times. The spectrum may have different slopes for different length ranges but
these ranges and slopes remain constant across region and time. This thesis explores the
hypothesis that universal scaling properties exist for phytoplankton patchiness. This research
project will focus on open ocean cases only and therefore disregard coastal shelf zones which
have their own biological and physical complexities. Both satellite colour data and high

resolution global plankton models are better suited to the open ocean.
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1.1.1. Observations in spectral slope

Combined together, observations seem to suggest that a universal explanation for
phytoplankton spatial variability does not exist. Large variability in slope is observed at both the
mesoscale — with values ranging from -1.05 (Martin and Srokosz, 2002) to -3.04 (Smith et al.,
1988) — and submesoscale — with values between -0.48 (Yoder et al., 1993) and -3.28
(Washburn et al., 1998). A more detailed review is available in Mackas et al. (1985) and Martin

(2003) .

It is not clear whether the differences observed are geographical or temporal because studies
did not take place in the same location or at the same time. No investigation of phytoplankton
patchiness exists that have taken place for one location at regular intervals over the course of
the year for example. Temporal variation have been observed over an 8-week period (Horwood,
1978) but covered only small scales (<3 km). Differences in slopes between regions have been

measured (Barale and Trees, 1987) but were obtained with data from different times of year.

Beside variability in slope values for phytoplankton, no consistency is found between spectra of
phytoplankton and physical tracers. For example, agreement with theoretical predictions would
show phytoplankton slope flattening relative to temperature at large scale (Denman and Platt,
1976). Cases for which this is observed (Lovejoy et al., 2001) are balanced by those that display
the opposite (Lekan and Wilson, 1978) or those that show no change at all (Mahadevan and
Campbell, 2002).

A general consensus regarding the structure of the patchiness of plankton is therefore difficult
to obtain. This is partly due to the scarcity of observations in space and time. It is clear that a
larger number of observations are needed. However, it is uncertain whether the differences are
due to methodological issues or because of true variability, either spatial or temporal. How much
this variability is due to the choice of method therefore needs to be determined. It therefore
seems premature to conclude non-universality in phytoplankton scaling properties on the basis

of such a small number of spectral studies.

1.1.2. Differences in methodology

Many different methods exist to estimate the spectrum of a variable. Amongst the
phytoplankton studies, one dimensional spectra (Platt and Denman, 1975), two dimensional
spectra (Gower et al., 1980), autocorrelation spectra (Mackas and Boyd, 1979), semi variograms

(Yoder et al., 1993) and structure functions (Seuront et al.,, 1999) have been used. A main
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difference is whether regularly or irregularly spaced data is used, an issue addressed in Chapter

7.

Additionally, the data can be modified in order to reduce the noise in the spectral estimation. A
finite data series is equivalent to a longer one looked at through a window for which values
outside view are equal to 0. Hence, sharp changes exist at the edges of that window. This can
introduce bias in the spectral estimations. Therefore by smoothing the start and end of the data
series to create a more gradual change, such bias can be reduced. Different windows have been
used to reduce the bias. In phytoplankton studies, data have been windowed using a Hann
window (Weber et al., 1986, Washburn et al., 1998), pre-whitening window (Mackas and Boyd,
1979) and a cosine window (Smith et al., 1988, Martin and Srokosz, 2002). While the choice of
a window can somewhat be arbitrary, it is clear that the method can affect the outcome, as
shown in Chapter 2. Whereas a question worth asking about studies in the literature is whether
a different spectral slope would have been obtained had another method been used, and
consequently whether when comparing slopes between studies we are simply comparing the

effects of different methodologies.

Furthermore, some slope estimates are obtained with limited spatial coverage, sometimes using
a single transect just tens of kilometres long. Given the noisy nature of spectral analysis (Jenkins
and Watts, 1968), do such estimates give a robust estimate of the slope? Averaging estimates
of spectral power by using a number of transects or by splitting long transects into subsets is
generally recommended for obtaining more robust values (Emery and Thomson, 2001) but this
has not always been done. Given so it is unclear how many transects are needed to obtain a
robust estimate of signals with a power-law relationship with length-scale. Different spatial
coverage also means that the slopes have been estimated over different, if overlapping, ranges

of length-scales with no consistency in ranges covered across studies.

Different sources of data are also being used for estimating the spectra of phytoplankton, mainly
Chl-a estimates obtained either from ship surveys from fluorimeter fitted on the underway
sampling system or on a towed undulating vehicle (Hodges and Rudnick, 2006), but also from
remotely sensed data from satellites (Mahadevan and Campbell, 2002) or airplanes (Yoder et
al., 1993). Bacterioplankton variability has also been investigated using flow cytometry (Martin
et al., 2008). This is of relevance because in situ and remotely sensed estimates do not
necessarily capture the same variability (Yoder et al., 1993). Estimates from satellite sensors are
averages over a pixel (typically 1 km x1 km) but in situ estimates are at a point, effectively at

scales of one metre. It is not currently known what the differences are between spectra obtained
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with point estimates — like in situ data — and average estimates — like satellite data. Therefore, a
further point is raised regarding a fair assessment of phytoplankton universal scaling properties

to date; whether spectra obtained from different types of data can be compared.

Only by developing a common approach for consistently evaluating the spectrum of
phytoplankton, the question of whether phytoplankton spectrum displays universal properties

can be addressed robustly.

1.2. Theories for patchiness

In this section the extant theories of phytoplankton are reviewed but first a broad overview of

the mechanisms involved in generating and modulating patchiness are given.

1.2.1. Broad overview

Phytoplankton need light and nutrients to build organic matter using photosynthesis. Light
requirements therefore limit their existence to the sun-lit 100 m or so surface layer of the
oceans. In many regions the surface layer sees nutrient quickly being consumed following its
upwelling from depth. Various physical processes resupply the surface layer with nutrients (Klein
and Lapeyre, 2009), acting on different time and spatial scales. Winter convection through the
wind cooling driven deepening of the mixed layer replenishes the surface layer with nutrient
rich waters at basin scale. The magnitude of this annual process increases with latitude, with
permanently stratified subtropical waters benefiting little from this process. However, it has
been argued that as much as 50 % of their annual nutrient budget for these regions is obtained
from physical processes at the mesoscale (McGillicuddy et al., 2003). For example, strong
nutrient upwelling has been observed within eddies through the shoaling of isopycnals
(McGillicuddy et al., 1998). At even smaller scale (1-10 km), eddy interactions form dynamically
active filaments and fronts capable of generating strong vertical velocities (Pollard and Regier,
1992, Pidcock et al., 2010) and driving primary production through nutrient upwelling (Strass,
1992, Allen et al.,, 2005). The availability of nutrient act as a ‘bottom up’ control on

phytoplankton structure and biomass.

A ‘top down’ control also exists through grazing by zooplankton populations. Their spatial
structure is also patchy and to a certain level reflects the spatial structure of their food source.
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Their greater ability to swim and aggregate gives them a better control on their own structure.
Most studies show zooplankton spectra to be flatter than phytoplankton (Mackas and Boyd,
1979, Horwood, 1981, Weber et al., 1986, Tsuda et al., 1993) but as mobility and behaviour vary
with size, different sized species have different spatial structure (Martin and Srokosz, 2002) with
some displaying a steeper spectral slope than phytoplankton structure. Biogeochemical models
do not capture this complexity and often only have one zooplankton component. Modelling
studies show that parameters such as grazing rates and zooplankton mortality greatly impact
the phytoplankton structure (Abraham, 1998). The effect of top down control on phytoplankton
structure is however difficult to understand due to the non-linear reaction between the two
interacting populations but also the scale at which the grazing pressure is exerted (Steele and
Henderson, 1992). The top down control is not the focus of this research study and will therefore
not be investigated. Rather, accent is placed on the bottom up control and how the different

pathways for nutrient injection may affect the phytoplankton spatial structure.

Horizontal advection, the dominant physical process at the mesoscale, redistributes the
introduced variance across length-scales through stirring and mixing. In the case of larger scale
forcing of nutrient such as winter convection, the oceanic mesoscale advection cascades large
scale variability to small scale (e.g., Abraham, 1998, Hernandez-Garcia et al., 2002). However,
such cascades can also be generated by small scale nutrient injections associated with mesoscale
and submesoscale features (Lévy, 2003). Such episodic nutrient upwelling generates strong
structure in the phytoplankton field. At such scales, this may lead to flatter slopes. It is clear that
whatever the routes used by nutrients to reach the euphotic layer and the scales at which it

does so, their impact on how phytoplankton are distributed is critical.

Beside physical drivers of patchiness, the structure of phytoplankton is also influenced by the
biological processes that alter its concentration. For phytoplankton these consist of uptake of
nutrients, growth, death and grazing by zooplankton. All biogeochemical reactive tracers are
advected by a common flow, yet as discussed below, there is no consensus on whether these
tracers can display different spatial scaling (Mahadevan and Campbell, 2002). The incomplete
understanding of these biological interactions within a turbulent flow and the difficulty of
sampling the mesoscale means much previous work has been theoretical or numerical.
Nevertheless several theories exist that predict how biological reactions affect the spatial

properties of phytoplankton and the components of its ecosystem.
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1.2.2. Theories

There are four theories that seek to explain how phytoplankton spatial variability is structured

across a range of length-scales.

The first theory (Denman and Platt, 1976, Denman et al., 1977) is based on the argument that
the time-scale associated with turbulent motion may decrease with length-scale but the
biological response time is invariant with scale. At small scales, where physical processes act
fastest, the spectral slope of phytoplankton should be identical to that of physical variables such
as temperature. In contrast, at longer length-scales, the biological processes are quickest, and
so patterns of spatial variability in phytoplankton can diverge from those of physical tracers.
More specifically it has been predicted that there is a knee in the spectrum, not mirrored in
physical variables, associated with a flattening of the phytoplankton slope at larger scales. The
knee is argued to occur where biological and physical time-scales match. The second theory
(Hernandez-Garcia et al., 2002) takes the notion of a single biological time-scale further, arguing
that it will be common to all interacting components of the planktonic ecosystem. In this
scenario the ecosystem components, whether nutrients, phytoplankton or zooplankton, are
predicted to have identical spectral slopes. This theory additionally assumes that a single time-
scale can describe the effect of the turbulent stirring. The third theory (Bracco et al., 2009)
argues that the biological time-scale associated with each constituent of the ecosystem is
determined by how quickly it responds to perturbation in its environment. Consequently,
zooplankton are argued to react more slowly than phytoplankton and accordingly predicted to
have different spectral slopes to nutrients and phytoplankton which respond on shorter time-
scales. The fourth theory (Lévy and Klein, 2004) challenges the idea of a ‘cascade’ of variability
from large scales to small scales, a central tenet in the theories for physical turbulence, which
have been used as a basis to explain power law behaviour in spectra. Although variability is still
transferred to smaller scales by stirring, the upwelling of nutrients at a range of intermediate
scales, particularly within the mesoscale and submesoscale, injects extra variability. The
response to such localized enhancement of phytoplankton growth is ephemeral and often
significantly perturbs the ecosystem relative to background conditions. A consequence is that
spectral slopes for different components of the ecosystem no longer need match (Lévy and

Klein, 2004, Lévy et al., 2005).
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1.2.3. Testing theories

Although as discussed earlier, numerous observations already exist for phytoplankton
patchiness, they have proved very variable and insufficient to distinguish between theories. The
reasons for this have already been discussed (Sections 1.1.1. and 1.1.2.). One way to avoid these
issues is to examine differences between a variety of tracers simultaneously. For example, if a
theory predicts different spectral slopes for different biochemical tracers, the theories can be
tested by simultaneously examining another component of the ecosystem that strongly

interacts with and moves like phytoplankton.

Cases exist for which phytoplankton and zooplankton structure have been compared (Mackas
and Boyd, 1979, Tsuda et al.,, 1993, Martin and Srokosz, 2002). Unlike phytoplankton,
zooplankton possess motility which result in behavioural mechanisms such as swarming, mating
or predator avoidance that influence the way zooplankton are distributed in space (Folt and
Burns, 1999). This does not make zooplankton an ideal ecosystem component alongside
phytoplankton to test the above theories because zooplankton do not behave like
phytoplankton and therefore it is not clear that they should have the same spatial properties.
Observations are once again inconclusive. Zooplankton may have more small-scale structure
than phytoplankton and therefore display a flatter spectral slope (Horwood, 1981, Weber et al.,
1986, Tsuda et al., 1993). However, cases also exist showing a zooplankton spectral slope similar
in strength (Piontkovski et al., 1997) or steeper (Martin and Srokosz, 2002) than that of
phytoplankton, suggesting the relationship between them is not simple. Additionally, different
sized zooplankton are shown to have different spectra slopes (Martin and Srokosz, 2002). With
the range of zooplankton size spanning four orders of magnitudes — from um to tens of mm —
and having varying mobility capabilities, it is not clear whether a unifying spectrum for all

zooplankton species can be expected.

Nutrients however are not motile and are advected like phytoplankton making them a more
reliable component with which to test the theories. This requires simultaneous high resolution
nitrate and Chl-a measurements. Such dataset are now available and will be used to test these

theories in this thesis (Chapter 3).
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1.3. Research objectives

This thesis aims to further understanding of the patchiness of phytoplankton in the open ocean
using a multidisciplinary approach, combining in situ and satellite observations, as well as
numerical predictions from a model. More specifically, the thesis tackles the following specific

objectives:

® To develop a robust methodology to reliably measure the spectrum of phytoplankton
(Chapter 2).

e To test extant theories of phytoplankton patchiness (Chapter 3).

¢ To evaluate whether phytoplankton power spectra in different regions of the open
ocean share the same properties (Chapter 4).

¢ Toinvestigate whether phytoplankton spectral slopes vary significantly over time-scales
of days (Chapter 5).

® To evaluate whether temporal variations over a period of months exceed variations in
slope between regions (Chapter 5).

* To measure if the difference in nitrate and phytoplankton spectral slope is consistent in
time (Chapter 5).

e To explore if there is a seasonal pattern in phytoplankton spectral slopes (Chapter 5).

e To investigate if satellite data can capture seasonal cycle in spectral slope (Chapter 6).

e Determine whether satellite and in situ data are consistent for the study of
phytoplankton patchiness (Chapter 6).

¢ To determine whether phytoplankton spectral slope is insensitive to how an area is

mapped (Chapter 6)

In Chapter 2 a method that reliably estimates the power spectra of phytoplankton and that can
be applied consistently throughout the thesis will be presented. For this, the sensitivity of the
different spectral methods against a range of power-law signals simulating phytoplankton
variability and the effect of windowing on improving the estimates is investigated. Inherent
problems such as uneven spacing, associated with dealing with real data (whether from in situ

or remote-sensing) are also covered.
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Chapter 3 tests extant phytoplankton patchiness theories using a novel twin tracer approach,
specifically using in situ simultaneous Chl-a and nitrate measurements from a cruise in the North

Atlantic.

Chapter 4 investigates the universality of phytoplankton spatial properties by evaluating
spectral slope of phytoplankton from different regions obtained using an identical methodology

and in situ Chl-a measurements

In Chapter 5, the potential existence of temporal variability in phytoplankton spatial properties
is evaluated using numerical output from a model. This chapter also tackles issues raised
concerning spatial and temporal limitations of in situ data by investigating phytoplankton

spectral properties over larger spatial and temporal scales.

The question of whether in situ and satellite give consistent results for phytoplankton patchiness
is addressed in Chapter 6 using simultaneous in situ and satellite measurements. The sensitivity
of the slope estimate to sampling method and the size of the area mapped is also examined.

Satellite data are also used to test temporal patterns observed in model spectral predictions.

In the final chapter (Chapter 7), results are synthesized and a broader view is taken to discuss
the key findings of the thesis and to relate them to the thesis’ original overarching question of
whether universal properties in phytoplankton patchiness exist and whether they can be

measured accurately.
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Chapter 2: Can the spectrum of phytoplankton be

reliably estimated?

2.1. Motivations

Why spectra?

Because bio-physical interactions are intimately connected across spatial scales (Prairie et al.,
2012) with biological and physical processes acting upon multiple scales, spectral analysis is a
particularly well suited tool with which to evaluate the spatial structure of phytoplankton. By
estimating the spectrum, which quantifies the distribution of the variability across scale, the

contribution of a range of scales towards setting that variability can be studied.

In addition, the spectrum is a valuable tool as a measure for patchiness given that phytoplankton
spatial structure has been shown to have a power law spectrum over a range of scales, and
therefore can be described with only one number - the slope of log spectrum against log

wavenumber.
Why analyse spectra?

The lack of uniformity in methodology of previous observational studies (see introduction
chapter) for estimating the power spectrum of phytoplankton has the consequence that a
rigorous comparison of phytoplankton spatial structure across regions, time, but also types of

data (e.g. in situ, satellite or models) has not previously been possible.

The development of a methodology that robustly quantifies the slope of the phytoplankton
power spectrum and is capable of processing the different types of data is therefore a
prerequisite for this research project. Given issues of noise associated with spectral analysis, the
different options available to reduce its impact and the varying nature of the different type of
data studied, a thorough investigation of the capacity and limits associated with each method is
evaluated here. In addition, given the range of potential slopes that the phytoplankton power
law signal can display, it is important to verify whether methods successfully estimate the

spectra for all such possible slope values.
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The aim, therefore, of this chapter is simply to determine how the phytoplankton spectrum can
best be reliably measured, whatever the type of data, the strength of the power law, or the

guantity of data available.

2.2. Type of data and consequence for spectral method

For this research project three types of data are studied. Firstly, data obtained from in situ
surveys are investigated (Chapter3 and 4), followed by model output (Chapter 5) and satellite
data (Chapter 6). Before developing a common analysis procedure a quick description of the

different data is necessary.

In situ data used in this study consists of surveys for which high resolution measurements are
obtained along parallel transects oriented in the North-South or East - West direction (see, for
example, Figure 2.1). Depending on the survey, between 4 and 9 transects are available.
Measurements were collected with a vehicle towed by the ship and undulating through the
water column between the surface and around 400 m depth (Figure 2.2).More details can be
found in Chapter 3 and 4 as well as the reports for cruises D321 (Allen, 2008), D369 (Zubkov,
2012) and D381 (Allen and Naveira-Garabato, 2012). Measurements are evenly spaced with an
interval of 5 m in the horizontal. The horizontal period of each undulation is approximately 4
km. If data at a specific depth are investigated, this can cause the data to be unevenly spaced

because the actual horizontal period is affected by ship motion and weather conditions.
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Figure 2.1: Typical trajectory of a ship sampling in a radiator style an area of size 130 km by 130 km. This setup was
taken from a survey during the D321 cruise in the North Atlantic in 2007 (see Chapter 3). It is used to simulate a
phytoplankton signal upon which spectral methods are tested.
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Model output analysed in this thesis (see Chapter 5) are available on a regular grid with 1/9°

resolution generating data points approximately 11.8 km apart in the x and y direction (Figure

2.3a).

The satellite data used for this study consist of 1 km resolution ‘snapshot’ images of ocean colour
from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite (Figure 2.3b). The
data can be obstructed by the presence of clouds (see Chapter 6) leaving gaps. Composite
images, products obtained from averaging data over several days, are less affected by clouds.

However, by averaging, some of the phytoplankton structure is smoothed out. These products

are therefore not considered.

~400 m

Figure 2.2: Cartoon of the collection of data using an undulating SeaSoar vehicle towed by the ship. The vehicle
traverses the water column to ~400 m depth. One full cycle has a period of ~ 4 km and generates two vertical profiles.
Data are collected every ~5 m horizontally. Selecting data for a fixed depth range, here 10 m, generates clusters of
around 20 points which are used for calculating the spectrum at 10-100 m length-scales. Averages of each of the
clusters over the entire transect (130 km), provide spatial information for length-scales 8 — 130 km.
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Figure 2.3: Example of data for model predictions (a.) and satellite measurements of Chl-a (b.). Pixels for both data
are evenly spaced with size 11.8 km and 1 km respectively. Note the presence of gaps due to clouds in the satellite

data visible as white areas.
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Although the types of data have varying uniformity, spatial coverage and resolution, a
requirement is that results across data types can be compared. This means that care is needed

when evaluating the spectrum.

The most restricting of the datasets is that collected in situ. The parallel transects only sample
finely in one direction (Figure 2.1). Because of this, and because the majority of previous studies

(Chapter 1) analyse one-dimensional spectra, this is the approach used here.

Only the in situ data provides information at the smaller ranges of scales studied (10-100
m). However, in situ, satellite and model all provide data at the larger scales (8-130 km). Given
that at larger scales in situ data points are approximately 4 km apart and measured over transect
of around 130 km long, information on variability is only complete for length-scales within the
range 8-130 km. The minimum length-scale of 8 km is obtained because a minimum of two
sampling intervals are needed to capture a cycle and estimate the level of variability for that
length-scale. However, model output are ~12 km apart which means their spectrum can only be
investigated for a minimum length-scale of 24 km and not 8 km as for satellite and in situ. This
difference was tolerated so that the already narrow range of length-scales used for in situ

spectra was not further reduced.

2.3. Simulating a phytoplankton signal with a power law spectrum

Prior to evaluating the different spectral methods, it is important to construct a phytoplankton
signal for which the spectral slope can be set so that it is known. The signal can then be used to

evaluate each spectral method and its ability to recover the pre-defined slope value.

Previous observational studies found phytoplankton variability to be a power law signal with
slope -3.3 <a< -0.5 (see Chapter 1 Section 1.1.). For this investigation, the different spectral
methods are therefore tested against signals of power-law slopes covering the entire range of

these observed values.

Knowing the slope of the spectrum and the range of length-scales covered, the simulated
phytoplankton signal can be constructed with Fourier series. Fourier series reproduce a periodic

signal f(x) by superimposing a number of sinusoidal functions, such that:

flx) = z Ajcos(wjx + ¢)),
=
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where the amplitude Ajand wavenumber w; of each wave j are determined by the chosen slope
of the power spectrum and the range of length-scales respectively. The phase ; for each
wavenumber w; however is not set by choosing the slope and is therefore chosen randomly from

a uniform distribution on [0, 2 7].

Note that the spectrum from observational data only describes the energy distribution of the
signal in wavenumber space for a limited range of length-scales, bounded by the lowest
wavenumber detectable w = 1/, = 1/130 km™ set by the length of the transect (7), and the
highest wavenumber w = 1/2A = 1/8 km set by the sampling interval (4). In reality, the signal’s
energy spans beyond this range. Energy from outside the range studied was accounted for in
the signal construction by using a wider range of wavenumbers bounded by w = 1/260 (km?)
and w = 1/0.005 (km™). The reason for the high frequency to be so high relative to the range of
length-scale evaluated in the spectrum is because the signal includes the frequencies of the in
situ data used later. Equally, given that traditional spectral techniques estimate the power at
wavenumber multiples of the lowest wavenumber sampled, w = 1/T, the resolution of the
spectrum i.e. the interval between wavenumbers, is therefore equal to 1/T. For the signal
construction, a finer resolution of 1/10T was chosen so to generate a closer approximation of a

continuous signal.

2.4. Estimating spectra of phytoplankton for evenly spaced data

The data used in this research study which satisfy the condition of being evenly spaced are model

output, cloud-free satellite data and in situ data at the smaller range of scales (10-100 m).

2.4.1. Fast Fourier Transform

One of the most common method for estimating the power spectrum of a periodic signal is the
Fast Fourier Transform (FFT) but it requires evenly spaced data. It is a computationally efficient
means of computing the discrete Fourier transform. The discrete Fourier Transform provides a
mean to represent the signal in the wavenumber domain by describing the signal’s amplitude

and phase as a function of wavenumber.
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When a signal s is sampled discretely with N data points which are separated by a regular interval
A, the discrete Fourier components S can be calculated at length-scales multiple of that interval,

with the following equivalent wavenumbers:

a)k=%. wherek =0,...,N — 1,

. 1 . . . .
with We =55, the Nyquist critical wavenumber, corresponding the highest resolved

wavenumber.

The Fourier transform of the signal generates the following components:

Sk z s.e 2mikn/N
n

N-1
n=0

The Fourier components Sx are complex numbers containing the information on the amplitude

and the phase of the signal at each wavenumber.

The spectrum of the signal is then obtained by taking the amplitude squared P (or also power)

at each wavenumber such that:

1
P(0) = P(wg) = m|50|2

1
P(wy) = m[|5k|2 + 1Sy—k|?]

Wavenumbers indexed from N/2+1 to N-1 correspond to the negative frequencies. The
symmetric properties between negative and positive wavenumbers mean that their amplitudes
squared are equal, |S;|? = |Sy_k|?. In the spectrum calculation, the wavenumbers between 1
and N/2 only are considered, so the power is multiplied by 2 to account for all the variability in

the system.

Whether in space or in wavenumber domain, the overall energy within the signal is conserved
and therefore, following Parseval’s Theorem (Jenkins and Watts, 1968), the following equation

should hold:

N 1 N

2 _ 2
D lsal? =% ) 1Sl
n=1 k=1

40



2.4.2. Reducing noise in spectra when using evenly spaced data

To reduce the level of noise in the spectra, a number of techniques exists. They either improve
the reliability of the spectral estimates for each wavenumber band (block averaging) or reduce
the leakage of energy that occurs from one wavenumber band to neighbouring ones

(windowing, pre-whitening). They are each discussed in turn.

Block averaging the data

One method for reducing the level of noise in the final spectrum is through splitting the data
series into many segments of equal length. For each of those segments, calculating the spectrum
provides a spectral estimate for each wavenumber band. A more reliable spectrum can then be
obtained by averaging these estimates for each band. The study of shorter records, however,
affects the range of length-scales covered by the spectrum. Indeed, the largest wavenumber
resolved is (1/T) for a given transect length T. By partitioning a transect into K segments, the

lowest wavenumber resolved becomes K/T.

A greater number of segments can be obtained by allowing for an overlap between segments.
The effects are dual. Firstly, a larger number of estimates for each wavenumber band is
generated, improving the final spectrum estimate. Secondly, by overlapping segments, data
points are used in more than one segment and their position within the segments changes. This
causes data points to be given equal weight when evaluating the spectrum because the position
of a point, whether central or at the margin of a transect/segment, influences the spectral
estimate. This is particularly true when data are windowed (Emery and Thomson, 2001) (see

windowing section below).

In this research study, only the smaller length-scale range (10-100 m) is evenly spaced for in situ
data. As this range is already quite narrow, in situ transects are kept intact to maintain as large
as possible a spectral range. Block averaging can still be applied to in situ data (Chapter 3 and
Chapter 4), however, because transects are available for every upward and downward profile of
the towed instrument (Figure 2.2). Hence, the spectrum can be estimated by averaging over the

available transects.

Overlapping of segments can be applied to satellite data and model predictions. The only

condition is that long enough transects are selected such that segments of 130 km long which
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are equal to the large length-scale range (8-130 km) in situ transects (see Section 2.5.), can be

extracted.

Windowing the data

The problem with obtaining data along a transect is that the data extend either side of the
section sampled and so it is as if one is looking through a window that is rectangular. The
consequence is that abrupt changes occur at the edges of the window of data and can cause the
spectral power to be biased. More specifically, the Fourier transform of a finite transect consists
of a main lobe and many side lobes of smaller amplitude. The size of these side lobes can be a

source of estimation errors and can cause power to leak into neighbouring wavenumber bands.

One strategy to address this is to reduce the sudden change at the edges by having a more
tapered shape, gradually changing the observed values from zero at the edge to their full true
value at the centre of the ‘window’. A benefit of this approach is that the resultant Fourier
transform has smaller side lobes. This technique of ‘windowing’ the data is done by convolution
of a specific window with the data transect. It effectively multiplies each data point in the series
by the value of the window at that particular position. It therefore significantly modifies each
data point according to its position in the data series. One such windows is the Hann window
which has been used in many phytoplankton spectral studies (Weber et al., 1986, Washburn et
al., 1998). It is obtained by multiplying a rectangular window wg (1) by one period of a cosine

to obtain a bell-shaped window such that:
Q
wiy(n) = wy(n) cos? (22),
and Qy = ZH/M where M is the window length in samples.

Pre-whitening

Spectral leakage can also be reduced by ‘whitening’ the data prior to the spectral estimation.
Whitening involves operating on the data so that the spectral slope becomes flatter or ‘whiter’.
If, like in the case of phytoplankton, the spectrum is originally ‘red’ i.e. dominated by low
frequency components, such a step reduces leakage of these components and therefore allows
a better estimation of weaker spectral components of higher wavenumber (Emery and

Thomson, 2001). As will be seen below, slopes less than -2 are particularly susceptible to steeper
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estimation due to leakage. Whitening is particularly recommended for signals with slopes

steeper than -2 (Coles et al., 2011).

Because the observed slope for phytoplankton spectra is typically between -3 and -0.5 first order
differencing of the data is often applied which effectively adds 2 to the slope. First order
differencing is a discrete form of differentiation. The Fourier transform of a differentiated
function is iwS(w)where w is the wavenumber and S(w) is the Fourier transform of the original
function. Hence, the spectrum of a first order differenced transect is w?|S(w)|2. The squared
wavenumber component of the spectrum is seen to add 2 to the spectral slope. If the spectrum
for the original data is required it can be recovered by dividing the first order differenced spectral

estimates by their wavenumber squared.

2.4.3. Calculating uncertainties in the slope

The slope of the spectrum is calculated by linear regression of the log of the power estimate
against the log of the wavenumber. Using a bootstrap technique the uncertainty in the spectral
slope estimate can also be estimated. Suppose there are 5 transects. By pooling spectral
estimates from all transects there are 5 estimates for each wavenumber band. If we pick
estimates from bands at random we can estimate the spectrum slope using this sub-set of the
spectral data as above. For this study, this is done by using all the estimates obtained from all
segments or transects. A multitude of subsets, here 10,000, are then generated by randomly
selecting 90% of the power spectral estimates, allowing repetition. For each subset, the average
power is calculated at each wavenumber and the slope then calculated. The mean and standard
deviation of the distribution of the 10,000 slopes from the bootstrapping gives the mean spectral
slope and its uncertainty respectively. A sensitivity test showed that using a larger number of

subsets did not affect the estimates.

2.4.4. Results

The artificial data used to illustrate the ability of the different methods to recover the spectral
slope mimics the shorter length-scale range of in situ data (see Figure 2.2), later discussed in
Chapter 3 and Chapter 4. Here the data consist of 10 repeat transects of 20 measurements each,
with data 5 metres apart, obtained over 100 m horizontal sections every ~4 km from a transect

130 km long. The estimation of the spectrum therefore spans the range 10 m - 100 m. Results
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for a satellite (Chapter 6) or model (Chapter 5) setting are qualitatively the same except for the

range of length-scales covered.

Spectral estimates are obtained using FFT. Three cases are investigated. Spectral estimates are
calculated using the raw, windowed (Hann) and pre-whitened data. By raw data is meant data
which has not been processed. Block averaging is applied to all three cases by averaging the
estimates obtained from the multiple transects. Scenarios with 10, 20 and 40 transects are
investigated. The slope value is obtained by linear regression of the logged estimates and logged
wavenumbers. An example of artificial data, spectral estimation and linear regression is

displayed in Figure 2.4.

For each signal of pre-defined slope, 50 artificial data sets are generated to evaluate the
uncertainty of the estimated slopes. A distribution of slope estimates is obtained from the 50
data sets from which the mean and standard deviation are used and plotted in Figure 2.5. An

average uncertainty for all signals with slopes -3.5<a<-0.5 is given in Table 2.1.
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Figure 2.4: Example of two simulated transects of power law signals S(x)=k* with a=-2.5 and random phase (a.) used
to test the Fast Fourier Transform (FFT) spectral analysis method. Estimated spectra (b.) are obtained using 10, 20 or
40 transects of 100 m with data points 5 m apart. FFT on its own (solid line), using a Hann window (dotted line) and
with prewhitening (dashed line) are evaluated. The mean spectra are are obtained by averaging the spectral estimates
at each wavelength. The slope is obtained by linear regression of the log mean spectral estimates over log of
wavelength.

Both FFT methods using raw data (Figure 2.5a) and windowed data (Figure 2.5b) provide
inconsistent estimates of the true signal slope. FFT with raw data cannot be trusted for
estimating signals with slope steeper than -2. Specifically, the method would not be capable of

distinguishing between signals of different power law if both are steeper than -2. This would be
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possible for signals with flatter slopes, note however that the method consistently evaluates the

slope to be flatter by approximately 0.25 (Figure 2.5a).

FFT using windowed data (Figure 2.5b) differs from FFT using raw data in that it can distinguish
between signals of different power-law regardless of their strength. The estimation of the slopes

however is not correct for the steeper slopes evaluated. This error increases for signals with

increasingly steeper slopes.

In contrast, the FFT method using whitened data (Figure 2.5c) provides a robust estimate of the
slope across the full range of exponents. When using datasets made of 10 transects, the
difference with the original slope remains below 0.07 except for the case where a signal with
slope -0.5 is estimated for which a difference of 0.21 is observed. Cases using 20 and 40 transects
were also examined. The average error decreases to 0.05 and 0.03 respectively. On the other

hand estimations for slope -0.5 are not improved.

estimated slope
estimated slope
estimated slope

original slope original slope original slope

Figure 2.5: Estimates of spectral slope for evenly spaced data using FFT on its own (a.), with Hann window (b.) and
with pre-whitening (c.). The uncertainty in slope estimates (shaded grey) corresponds to one standard deviation either

side of the mean estimate.

Uncertainties in slope estimation were evaluated in two ways. Firstly, the standard deviation of
the slope was estimated for each artificial dataset using bootstrapping. The standard deviation
associated with the slope estimate decreased from 0.16 to 0.11 to 0.07 when using 10, 20 and
40 transects (Table 2.1). Secondly, the experiment is repeated 50 times and a distribution of the
50 bootstrapped mean slopes is obtained. From this distribution, the mean slope and standard
deviation are taken to evaluate the consistency in the method. The standard deviation for the

cases of 10, 20 and 40 transects varied from 0.13, to 0.10 to 0.07 respectively.
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2.5. Estimating spectra of phytoplankton for unevenly spaced data

With unevenly spaced data, FFT cannot be used. Using interpolation to render irregularly spaced
data evenly spaced is not recommended as, beside the subjectivity that lies in the choice of
interpolation method (e.g. linear, cubic, spline), the interpolation distorts the data and
introduces noise particularly at high wavenumber (Mudelsee, 2010). However, spectral

estimation methods exists that can deal directly with unevenly spaced data.

2.5.1. Lomb Scargle Periodogram

One method suitable for calculating spectra for uneven data is called the Lomb Scargle
Periodogram (LSP) (Lomb, 1976, Scargle, 1982, Press et al., 2007). The technique consists of

estimating a spectrum using a least square fit of sine and cosine waves.

The LSP is defined by:

_ [2(s; = §) cosw(x; — 7) | N [2(s; = &) sinw(x - 1) | _

Y coszw(xj - ‘L') Y sinzw(xj - ‘L') '

Py (w)

where sj are the measurements obtained at position xj in the data series, and S is the mean

value.
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and

w = 2nf,

Tis a time shift that makes Py(w) independent of shifting the x;’s by any constant. It is defined

by the relation:

_ Xjsin2wt;
tan(2wt) = /Zj cos 20t;’

The ability to fit chosen wavelengths by least squares means that the method can be applied to
unevenly spaced data to estimate the periodogram Py for pre-defined wavenumbers w. The pre-

defined wavenumbers were chosen so that spectral variability was evaluated at length-scales
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evenly spread in log space. This is useful when evaluating the slope of the spectrum. If the
spectrum follows a power law, such a uniform distribution of estimates across log (length-scale)
allows an unbiased estimate of slope when applying a linear regression to power versus
wavenumber. Otherwise, estimates evenly spaced across length-scales in real space would lead

to a disproportionally large number of estimates at the shorter end of the scale range.

Table 2.1: Uncertainties associated with the use of different spectral method (FFT and LSP) for evenly and non-evenly
spaced data. Uncertainties correspond to the mean value from uncertainties obtained for the slope estimation of
signal with slopes -3.5<a<-0.5. For each artificial dataset, the standard deviation of the slope is calculated using
bootstrapping. The uncertainty of the mean slope is obtained by calculating the slope for 50 artificial datasets and
taking the standard deviation of the distribution. Methods are tested with raw, windowed and pre-whitened data. The
effect of the number of transects on the uncertainty of the slopes is also tested. The uncertainty of the Pre-whitening
is not applicable (N/A) to unevenly spaced data.

Raw data Windowed data (Hann) Pre-whitened data

Nb | Mean Std Uncertainty Mean Std Uncertainty Mean Std Uncertainty

tr. slope mean slope slope mean slope slope mean slope
FFT 10 0.14 0.10 0.14 0.16 0.16 0.13
(even
d 20 0.09 0.07 0.09 0.11 0.11 0.10
ata)
40 0.06 0.05 0.06 0.07 0.07 0.07
LSP 4 0.25 0.24 0.23 0.25 N/A N/A
(uneven
data) 8 0.14 0.23 0.13 0.24 N/A N/A
20 0.08 0.16 0.08 0.16 N/A N/A

2.5.2. Results

The data potentially having uneven spacing are from in situ and satellite, in the event of uneven

undulations of the sampling instrument or cloud coverage within the studied area, respectively.

To illustrate the ability of the method, an artificial phytoplankton data set is once again
generated. Again, the case study simulates an in situ scenario with the data collected by an
undulating vehicle (see Figure2.2). The data are approximately 4 km apart along a 130 km
transect. The data points are unequally spaced, mimicking the uneven undulations of the
vehicle. To simulate unevenly spaced data (analogous to that investigated in Chapter 3), a5 m

resolution data set is created with data points having a mean separation of 4 km but with a
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uniformly distributed random perturbation added, varying between -0.5 and 0.5 km and.

Scenarios with 4, 8 and 20 transects are carried out.

Two cases using LSP are studied. The first estimates the spectrum using the raw data series and
the second one uses data that has been windowed (Hann). Data cannot be whitened if they are
irregularly spaced. Spectral variability is estimated for wavenumbers 1/130 km™, 1/100 km,
1/80 km, 1/65 km™, 1/50 km™, 1/30 km™, 1/20 km™, 1/15 km™, 1/10 km™, 1/8 km™ so that
estimates are evenly spaced in log space. The power spectral slope estimates are obtained using
the bootstrapping approach detailed previously. An example of artificial data, spectral

estimation and linear regression is displayed in Figure 2.6.
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Figure 2.6: Example of two simulated transect of power law signal S(x)=k® with a=-1.8 and random phase (a.) used to
test the Lomb Scargle Periodogram (LSP) spectral analysis method. Estimated spectra (b.) are obtained using 8
transects with data points approximately 4 km apart. LSP on its own (grey) and with a Hann window (black) are
evaluated. The mean spectra are obtained by averaging the spectral estimates at each wavelength. The slope is
obtained by linear regression of the log mean spectral estimates over log of wavelength.

Neither LSP methods, using raw or windowed data, are consistent in how accurately they
estimate the slope. The first technique (Figure 2.7a) performs well for signals with slope flatter
than -2 with a reasonably consistent flatter slope estimated. The closest evaluation occurs for
slopes from -2 to -1.5, with an under evaluation of mean 0.11. For signals with flatter slope, this
difference increases gradually to 0.35 for a signal with near white spectrum of slope -0.5. For
signals with steeper slopes than -2, the difference between original and estimated slope
becomes larger than 0.25 past -2.1. Beyond signal slopes of -2.5, the estimated slope remains

around the value -2.
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Windowing the data (Figure 2.7b) does not improve the estimation. The curve of estimated
slopes also starts flattening below value -2. Whilst the technique with no windowing consistently
estimates flatter slopes, that using windowing estimates steeper slopes for original slope values
between -2.5<a<-1.25 and flatter ones for -1.25<a<0. For signals with slope past -2, the

method’s estimation stagnates around the value -2.5.

Focusing only on signals with slopes flatter than -2, a comparison of the absolute difference
between estimated and original slope shows that with windowing an average difference of 0.24

is observed. This is higher than the 0.22 observed when data is not windowed.

estimated slope
estimated slope

original slope original slope

Figure 2.7: Estimation of power spectral slope for unevenly spaced data. Estimates are calculated using Lomb Scargle
Periodogram on its own (a.) and having applied a Hann window (b.). For each signal of slope a, 50 artificial data sets
are generated to evaluate the uncertainty in the mean slope estimate. For each artificial data set, 20 transects are
used to estimate the spectral slope. The uncertainty is represented in shading using one standard deviation either side
of the mean estimate obtained from the distribution of the 50 mean slope estimates.

The standard deviation associated with the slope estimation for each run was also calculated. It
was found to be similar across the range of slope values. Using 4 transects, the averaged
standard deviation was 0.25, decreasing to 0.14 and 0.08 when using 8 and 20 transects

respectively. Uncertainties were similar using windowed data.

The fluctuation of the slopes for the 50 artificial data sets varied with the steepness of the
signal’s slope. Larger uncertainties were found for steeper signals (see shaded interval in Figure
2.7). The uncertainty is also larger when a smaller number of transects are used. For slopes

flatter than -2, one standard deviation is 0.23 to 0.21 and 0.11 for the cases with 4, 8 and 20

transects respectively.
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2.6. Discussion

A number of points with regards to future investigations, including the ones carried out in later

chapters, can be made on the basis of the above analysis.

When data is unevenly spaced, spectral slope evaluation using LSP performs reasonably well for
signals with power law behaviour weaker than -2. Overall, windowing does not improve the
estimation of the slope, therefore there is no basis for the extra processing of the data. However,
for signals with slopes steeper than -2 neither method is sensitive or accurate enough to
distinguish between them robustly. The method with no windowing is therefore preferred for

the analysis.

Similar conclusions can be made for FFT analysis of evenly spaced raw and windowed data which
are not suited for the analysis of a signal with such a wide range of possible slope values. The
first method cannot distinguish between signals with slopes steeper than -2, whilst the second
consistently over estimates the slope. However by whitening the data prior to the spectral
estimation, reliable values across the range of slopes investigated are obtained. The overall
performance of the FFT method with whitening makes it a method of choice for evaluating the

spectrum of phytoplankton for evenly spaced data.

More specifically it is now possible to discuss the relative applicability of the above methods to

the investigations in this thesis.

Comparing the power law of two signals

In the situation that the spectra of two variables are studied (e.g. nitrate and phytoplankton as

in Chapter 3), it is important that their relative slope difference can be measured accurately.

For unevenly spaced data, if both signals have slopes flatter than -2, their difference can reliably
be estimated with the LSP method, with a greater number of transects reducing the uncertainty.
If just one variable has a slope steeper than -2, the difference in slopes will be found but may be
underestimated due to the saturation of the method beyond slopes of -2. For the case where
both variables have slopes steeper than -2, the method will not be able to measure the

difference accurately.
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For evenly spaced data, the technique using FFT with whitened data will accurately capture the

difference independent of the signal’s slope steepness.

Comparing slopes across different ranges of length-scales

An additional problem that underestimation of steep slopes may cause is when a spectral slope
for one variable is estimated for two separate length-scale ranges (e.g. 10 m — 100 m and 8 km
-130 km as in Chapter 3 and 4) using different methods. What may appear as a shift in power
law behaviour between ranges of length-scales may simply be a consequence of the change in
method. For example, if the true slope is -3 for in situ data (Chapter 3 and 4) then FFT with pre-

whitening will get it right at small scales but estimate it to be about -2 for large scales.

Comparing spectra of one variable over time and geographically

Another problem occurs when the spectrum of one variable e.g. phytoplankton, is evaluated for
different regions (Chapter 4) or time of year (Chapter 6). The risk with unevenly spaced data is
that the differences in the estimated spectra with space or time may not reflect the true
variability because signals with steep slopes are poorly evaluated. The suitability of the method
will depend on the question being asked. For instance, the method is capable of revealing the
existence of variability in slope but may not be able to quantify precisely the amplitude of that

difference.

Quantity of data

Significant uncertainties can be associated with the slope estimates, as illustrated by the shaded
confidence interval in Figures 2.4 and 2.5. These uncertainties increase when smaller number of
transects are available. In the case of satellite data for which larger areas than in situ can be
studied, this can be addressed by setting a threshold for the minimum of transects required to
obtain a good approximation of the slope. In the case of in situ data, often the lack or limited

amount of data available for analysis is an inevitable feature of making measurements at sea.
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2.7. Summary

| have investigated the behaviour of the different methods for calculating spectra under
conditions similar to those to be studied in the following chapters. It has been demonstrated
that it is possible to measure phytoplankton spectra for both cases of evenly and unevenly

spaced data, if the limitations of the methods are understood.
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Chapter 3: Comparing phytoplankton and nitrate

spectra

3.1. Introduction

The complex patterns observed in marine phytoplankton distributions arise from the interplay
of biological and physical processes, but the nature of the balance remains uncertain centuries
after the first observations. Previous observations have shown a consistent trend of decreasing
variability with decreasing length-scale (see Chapter 1). Influenced by similar scaling found for
the properties of the water the phytoplankton inhabit, ‘universal’ theories have been proposed

that simultaneously explain the variability seen from meters to hundreds of kilometres.
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Figure 3.1: Area covered by the Seasoar survey during the D321 cruise in 2007 (a.). Solid lines in the inset image

correspond to transect legs or parts of transect legs for which simultaneous nitrate and chlorophyll-a measurements
are available and used for this study. Corresponding transects are also shown in the remotely-sensed Chl-a estimates

for the area (b.).
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For the purpose of reminding the reader, the following summary of the theories of

phytoplankton patchiness described in Chapter 1 is given.

The first theory (Denman and Platt, 1976, Denman et al., 1977) is based on the argument that
the time-scale associated with turbulent motion may decrease with length-scale but the
biological response time is invariant with scale. At small scales, where physical processes act

fastest, the spectral slope of phytoplankton should be identical to that of physical variables such
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as temperature. In contrast, at longer length-scales, the biological processes are quickest, and
so patterns of spatial variability in phytoplankton can diverge from those of physical tracers.
More specifically it has been predicted that there is a knee in the spectrum, not mirrored in
physical variables, associated with a flattening of the phytoplankton slope at larger scales. The
knee is argued to occur where biological and physical time-scales match. The second theory
(Hernandez-Garcia et al., 2002) takes the notion of a single biological time-scale further, arguing
that it will be common to all interacting components of the planktonic ecosystem. In this
scenario, the ecosystem components, whether nutrients, phytoplankton or zooplankton, are
predicted to have identical spectral slopes. This theory additionally assumes that a single time-
scale can describe the effect of the turbulent stirring. The third theory (Bracco et al., 2009)
argues that the biological time-scale associated with each constituent of the ecosystem is
determined by how quickly it responds to perturbation in its environment. Consequently,
zooplankton are argued to react more slowly than phytoplankton and accordingly predicted to
have different spectral slopes to nutrients and phytoplankton which respond on shorter time-
scales. The fourth theory (Lévy and Klein, 2004) challenges the idea of a ‘cascade’ of variability
from large scales to small scales, a central tenet in the theories for physical turbulence, which
have been used as a basis to explain power law behaviour in spectra. Although variability is still
transferred to smaller scales by stirring, the upwelling of nutrients at a range of intermediate
scales, particularly within the mesoscale and submesoscale, injects extra variability. The
response to such localized enhancement of phytoplankton growth is ephemeral and often
significantly perturbs the ecosystem relative to background conditions. A consequence is that
spectral slopes for different components of the ecosystem no longer need match (Lévy and

Klein, 2004, Lévy et al., 2005).

Although numerous observations already exist for phytoplankton patchiness, they have proved
very variable and unable to distinguish between theories. The theories can only be properly
tested by simultaneously examining another component of the ecosystem that strongly
interacts with and moves like phytoplankton. Comparisons with zooplankton have already been
made (Mackas and Boyd, 1979, Tsuda et al., 1993, Martin and Srokosz, 2002), but the motile
nature of zooplankton, not taken into account by the theories, makes a phytoplankton-
zooplankton comparison unsuitable for testing the above theories. Nutrients, however, are
equally subject to the ambient flow, and therefore a nutrient to phytoplankton comparison, as

carried out here, constitutes a strong test of the various theories.
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In this chapter, the extant theories are tested using a twin-tracer approach, specifically
chlorophyll-a (Chl-a) and nitrate data from the North Atlantic. Their spatial relationship is
examined by comparing the slopes of their power spectra over the ranges (10-100 m) and (8-

115 km).

3.2. Methods

3.2.1. Data

The data are from RRS Discovery cruise D321 which took place between the 24" July and 23™
August 2007 in the vicinity of Ocean Weather Station India (OWSI) (60°N 20°W). A 130 km by
130 km box was mapped, with parallel transects arranged in a radiator style running East to
West (Figure 3.1), using SeaSoar, an undulating towed vehicle. Transects were ~14 km apart and
each one took ~8 hours to survey (Pidcock et al., 2013). Weather conditions together with
SeaSoar mechanical problems meant that only two entire transects and two half transects were
successfully sampled. SeaSoar was equipped with an SUV-6 fast response (1Hz) Ultra Violet
nitrate sensor (Pidcock et al., 2010). Alongside this were standard instruments such as a
fluorimeter for measuring chlorophyll, and mini CTD for measuring temperature and salinity.
This configuration allowed nitrate measurements to be made concomitantly with Chl-a and
hydrographic measurements at a sampling rate of 1 Hz. The undulations of SeaSoar traverse the
top 400 m of the water column. The 8 knot speed of the ship during transects means that profiles

are approximately 4 km apart.

The data used for this study were extracted from the surface mixed layer where phytoplankton
were most abundant. The mixed layer depth varied from 30-50 m. Data were used from the
depth range 15 to 25 m to avoid quenching effects on Chl-a observations. A few profiles showed
a significant increase in density with depth within this depth range. For these, only data
shallower than the point of increase were used (see also below for further discussion). Profiles
with a density difference larger than 0.1 were discarded so to minimise the presence of vertical
structure in the data. Selecting only the profiles with density difference less than 0.05 did not

change the results.
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Figure 3.2: Measurements within depth range 15-25 m for temperature T (black), nitrate NOs™ (blue) and chlorophyll-
a Chl-a (green) obtained along a transect. a): an example of a series of measurements, collected by the sampling
vehicle from one passage through the depth range 15-25 m, used for spectrum estimation for the range 10-100 m. b):
points in the graph correspond to mean values from each ascent/descent of the vehicle through the depth range used
for spectrum calculation for the range 8-115 km.

Two ranges of length-scales are investigated in this study. Data at the small scale (10-100 m)
comprise clusters of 1Hz observations as SeaSoar traverses the 15-25 m depth range on each
ascent and descent. Because observations are separated by ~4 m, no structure smaller than 8 m
can be resolved. The time taken for SeaSoar to traverse the depth range means that these
clusters of data cannot resolve structures larger than 100 m. Data at the larger spatial scale (8-
115 km) arise from taking the mean value of each of the above clusters. One full undulation of
SeaSoar took place approximately every 4 km, and so the larger scale dataset cannot resolve
structures smaller than ~8 km. The upper limit of resolution (~115 km) is set by the length of
the transects. The nature of the sampling meant that no spatial information was collected for

the scales in the range 100 m to 8 km.

3.2.2. Spectral methods

Spatial spectra were estimated for nitrate, Chl-a and temperature. The contrasting sampling

characteristics at small and large scales require different approaches to be taken for analysis.

At small scales (10-100 m), the traditional Fast Fourier Transform (FFT) was used. The regularity
of intervals between data points in each cluster, prerequisite for the application of FFT, was
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provided by the constant speed of the ship. Following results from the simulations done in
Chapter 2 (Section 2.4.4.), data were additionally “whitened” using a first order difference prior
to spectral estimation (Jenkins and Watts, 1968). The power spectrum of each variable was
obtained by grouping the power estimates derived from all cluster groups into wavelength bins

of equal width, followed by averaging (Bendat and Piersol, 1971).

At larger scales, spectral estimates were obtained using the Lomb-Scargle periodogram method
(LSP) (Press et al., 2007). This technique was used because of the irregular spacing of the data
points resulting from the occasionally uneven nature of the vehicle’s undulations. An advantage
of this method is that the wavelengths for which the power is estimated can be set.
Consequently power estimates for all transects could be calculated for a common set of
predefined wavelengths. Such a method also avoids the need to group estimates prior to
averaging. A set of wavelengths was chosen so that their logarithms were evenly spaced in log
space. After visually checking for power-law behaviour for each transect, the spectrum for each
variable was obtained by averaging the power of all four transects for each wavelength

investigated.

The slope of the spectra was obtained by applying a linear regression to the log averaged power
estimates against the log of wavelength. To give a more robust result a single regression was
done for each scale range, pooling data from all transects for the larger scales (8-115 km) and

from all clusters for the smaller scales (10-100 m).

Distributions for each slope were obtained by performing regressions on 10,000 data subsets
generated from the full spectrum using a bootstrap routine (see Chapter 2 Section 2.4.3.).
Results were unaffected when increasing the number of bootstrap generated data subsets. The
uncertainty in the slope estimates (see Table 3.1) was quantified by the standard deviation of
the above distributions. Analysis of the difference between spectral slopes followed a similar
procedure, in this case consisting of using bootstrapping to generate a distribution for the
difference between two variables’ spectral slopes. All spectra were checked so to satisfy
Parseval’s energy conservation theorem. The statistical significance of the relative difference
between two variables’ spectral slope being zero was obtained by retrieving the widest 100 (1-
a) percentiles (for the levels a=0.1, 0.05 and 0.01) of the 10 000 bootstrap runs for which the

value zero is excluded.
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3.3. Results

Examples of nitrate, Chl-a and temperature variability at small and large scales are displayed in
Figure 3.2a and 3.2b, respectively. The spectra and respective slopes for both spatial scales are
displayed in Figure 3.3. Both nitrate and Chl-a display a similar spectral shape often described as
a ‘knee’ when plotted on a logarithmic scale, which is characteristic of a shift in power law
behaviour. This shift is less pronounced for the nitrate spectrum (-1.26 for scales 8-115 km; -

1.75 for scales 10-100 m) than for phytoplankton (-0. 50 for 8-115 km; -2.64 for 10-100 m).

For both length-scale ranges studied, nitrate and Chl-a spectral slopes are different.
Distributions for the differences in slopes were obtained using a bootstrap routine (Figure 3.5).
For both 8-115 km and 10-100 m ranges, the difference in slopes was significant, at the 95 %
and 99 % confidence interval with mean difference of -0.75 and 0.90, respectively (Table 3.1).
Further evidence of this difference is available in the spectra for each transects (Figure 3.4)
where a difference is found in all four transects. Distributions of slope and slope differences are

shown in Figure 3.5.

a b.
2.
TN
—~~ \
£o) o] ca=+1.71
8 8=
3 g, i 4
-6 : \
\
, : "\ a=-2.72
o : : : o= -2.67 -8
100 10 1 0.1 0.01 100 10 1 01 0.01
km km

Figure 3.3: Mean power spectral density estimates (psd) based on all 4 SeaSoar transect sections: a) for nitrate (blue),
and chlorophyll-a (green); b) for temperature (black). Lines of best fit are obtained using parameters estimated using
bootstrapping. Note the absence of estimates within the 0.1 to 8 km range due to the sampling strategy.

The differences in the slopes of nitrate and Chl-a compared to that of temperature were also
tested. For the range 8-115 km, a mean difference of 0.45 and 1.21 is estimated. Their

distributions showed the difference to be significant at the 99% confidence interval.
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Both slopes of nitrate and phytoplankton are different to that of temperature (-1.71) for the
range 8-115 km. The data also reject the hypothesis of equal slopes for nitrate (-1.75) and
temperature (-2.73) for the range 10-100 m. However, at these smaller scales, for Chl-a (-2.64)
and temperature the difference in slopes has a distribution with mean difference of 0.09 and
standard deviation of 0.22 and so a hypothesis of equal slope for temperature and Chl-a cannot

be rejected.

Because of concerns about potential quenching effects on the fluorescence signal, the analysis
was repeated using only night time data. The results are unchanged at scales of 10-100 m. The
only significant impact is greater uncertainty in spectral slopes in the range 8-115 km. This is

inevitable given the small dataset but does not affect our conclusions.
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Figure 3.4: Power spectral density estimates (psd) of all 4 SeaSoar transects sections (a, b, ¢ and d, respectively ordered from South to North) for nitrate (blue), chlorophyll-a (green) and

temperature (black). Note the absence of estimates within the 0.1 to 8 km range due to the sampling strategy.

a.
2
8 TV~ =042
g- \“\(\\ ,
5 | a=-1.41
L 4l
a=-2.89
6
7100 10 1 01 001, 43,
km
2
0
3
g -2 :
\C-»/ a=-2.1
2 4
6
a=-2.69
7100 10 1 01 001
km

b.
0 \a=-1.39
§_2 —Pre— =013
&
g \
== = a=-1.08
6
8 =295
100 10 1 0.1 0.01
km
2 : i
0 \ -
- No=:1.18
2 2
g-
{=)]
2 4
-6
o=-3.07
100 10 1 0.1 0.01
km

C.
2 \v\\ :
0 G=1139
g_z W(x:roﬁ
D
2 4
o a=-2.46
g a=-2.18
100 10 1 0.1 0.01
km
2
0
?’5'2 a=-1.94
D
2 4
-6
8 a=-3.11
100 10 1 0.1 0.01
km

60

d.
2 N
s a=-1.42
-g " lov’b“vf-a=fo.2
2 Ny
=S ad =125
-6
" a=-2.91
100 10 1 01 001
km
2
0
?’5'2 a=-1.96
jo2]
2 4
-6
a=-2.46
-8
100 10 1 01 0.01
km



Table 3.1: a) Spectral slope for nitrate, temperature and Chl-a, with their respective r value and standard deviation. b)
Statistical properties for the distribution of the slope difference between two variables: mean and standard deviations.

Distributions were obtained from 10,000 datasets generated using a bootstrap routine with 90 % randomly selected
spectral estimates with replacement.

Range 8-115 km Range 10-100 m
Variable Slope (a) Standard r Slope Standard dev. r
dev.
a Nitrate -1.26 0.19 -0.85 -1.75 0.19 -0.96
Chl-a -0.50 0.24 -0.54 -2.64 0.17 -0.96
Temperature -1.71 0.25 -0.89 -2.73 0.15 -0.98
Slope Slope
difference difference
b Nitrate-Chl-a -0.75 0.25 0.90 0.25
Nitrate- 0.45 0.30 0.99 0.22
Temperature
Chl-a- 1.21 0.24 0.09 0.22
Temperature
a. b.
range 8-115 km range 10-100 m
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Figure 3.5: Distribution of the difference in spectral slope between nitrate (NO3) and chlorophyll-a (solid line), nitrate and

temperature (dashed), and chlorophyll-a and temperature (dotted) for the range 8-115 km (a.) and the range 10-100 m
(b.).
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3.4. Discussion

The dataset presented here is a small one, from just one location, at just one time. Nevertheless the
direct comparison afforded by simultaneous measurement of nitrate and Chl-a over multiple scales

allows a direct test of all four theories.

Restricting attention to Chl-a data for now, the observations initially seem consistent with the first
theory, in that phytoplankton (-2.64) display a similar spectral slope to temperature (-2.73) at small
scales with a relative flattening at larger scales (-0.50). For the large scale range the LSP method was
used to estimate the spectrum. Two different methods were used to obtain the spectrum of
phytoplankton, FFT with pre-whitening for the range 10-100 m and LSP for the range 8-115 km. In
Chapter 2 (Section 2.5.2.), simulations using power-law signals with slope that could be set showed
that spectral estimations using LSP had a tendency to estimate flatter slope than the original slope
of the signal. Based on these simulations, it causes the knee to be more pronounced. However, the
difference in slope between the two ranges of scales of 1.94 is greater than the potential error
introduced by the method. The presence of the knee is therefore genuine. It is also present in the
spectrum of all 4 transects. A phytoplankton spectrum with such a knee-shape has been observed
previously (Denman and Platt, 1976, Denman et al., 1977, Lovejoy et al., 2001). This is, however,
where the power of having a two tracer approach is demonstrated. If the theory does explain the
relative shapes of the temperature and phytoplankton spectra then nitrate should also have the
same spectral slope as temperature at the smaller scales. This is not the case, as the spectral slope
for nitrate (-1.75) differs from that for both phytoplankton and temperature. The potential effect of
eddies in modulating the slope of phytoplankton is raised up here. Although insufficient data is
available, different slopes for the range 8-115 km are obtained between the four transects. The
most southern transect (Figure 3.1) does not cross the eddies present in the survey area unlike the
other three following transects. The resulting phytoplankton spectrum (Figure 3.4) shows less

energy at smaller scales within that range. This is investigated further up in Chapter 6.

The mismatch in spectral slopes for phytoplankton (-0.50) and nitrate (-1.26) at larger scales means
that there is no evidence to support the second theory over any of the scales sampled. An underlying
assumption in the second theory is that all locations are typical, with single uniform numbers able
to describe the physical and biogeochemical processes. However, there is considerable evidence

that nutrient upwelling occurs frequently but intermittently at scales between 1-100 km through a
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variety of physical processes (e.g. Strass, 1992, Lévy et al., 2001, Allen et al., 2005, McGillicuddy et

al., 2007, Klein et al., 2008), producing localized perturbations of both flow and biogeochemistry.

Forcing at scales from 1-100 km is accounted for in the third theory, where the different components
of the ecosystem react to such perturbations with their own intrinsic reaction time which
consequently affects the spectral slope (Bracco et al., 2009). However, in our observations the
spectral slope is steeper for nitrate (-1.26) than for phytoplankton (-0.50) at larger scales but
relatively shallower at smaller ones (-1.75 for nitrate and -2.64 for Chl-a). Even if it could be argued
that nitrate has a different time-scale associated with it than phytoplankton it is not clear how the

relative time-scales could vary with spatial scale.

Our results are consistent with the fourth theory. The simulations of Lévy and Klein (2004) show
that the relative spectral slopes of components of the ecosystem can vary with time. It should be
noted that we can only test this theory at the larger range of scales as their simulations do not
reproduce the smaller range. Consequently a number of significant questions remain: How does
intermittent forcing at the submesoscale (1-10 km), for which growing evidence exists (Callies and
Ferrari, 2013), allow the relative slope for nitrate relative to phytoplankton to take different values,
either side of this range? What is it about ecosystem interactions that provide an explanation for
why the theory based on independent time-scales does not hold in an intermittently perturbed

scenario but a theory that includes such interactions does?
Wider implication

The benefit of consistent power-law spectral behaviour would be that variability at one scale could
be estimated from observations at a different scale in a straightforward manner. Current global
climate models that reproduce marine biogeochemistry fail to adequately represent phytoplankton
dynamics smaller than the mesoscale; effects at smaller scales are quantified by using spatial and
temporal averages over a grid-cell scale. A power-law scaling in ecosystem variables could
potentially provide a basis for parameterizations that implicitly capture phytoplankton dynamics at
sub-grid-scale. Such a principle has already been successfully implemented in global circulation
models to resolve sub-grid-scale physical processes affecting mixed layer stratification (Fox-Kemper
and Ferrari, 2008, Fox-Kemper et al., 2008, 2011). By analogy, bearing in mind the potential
importance of the mesoscale and submesoscale for ocean primary production (Lévy et al., 2012)

such an approach for a description of phytoplankton behaviour in theory would present the

63



opportunity to improve model predictions for a relatively small computational cost. However, the
only theory consistent with our results predicts continuous and significant changes in spectral slope
at the mesoscale. This currently precludes such a parameterization unless the spectral slope is
maintained at larger scales than the mesoscale such that it could still be estimated by a coarser

model.

3.5. Conclusion

In this study we have directly compared, for the first time, spectra for nitrate, phytoplankton (Chl-
a) and temperature, spanning spatial scales from 10 m to 115 km. A significant difference is observed
between nitrate and phytoplankton spectral slope for the range 8-115 km and 10 — 100 m. Only the
theory of Levy and Klein (2004) could explain the observed differences. A decoupling of
phytoplankton and temperature spectra is observed between the two ranges, with phytoplankton
slope equal to temperature for the range 10-100 m but being flatter for the range 8-115 km. This
transition, commonly seen as physics dominating at small scales (10 — 100 m) and biological
processes becoming influential at large ones (8-115 km), is challenged by the nitrate spectra. Under
physical dominance, nitrate spectra should, like phytoplankton, be equal to temperature. As it is

not, it suggests that tracers’ spectral relationship are more complex to interpret.

The observations consist of one location, and therefore cannot be used to conclude that the
difference between nitrate and phytoplankton spectral slope is typical. This is addressed in Chapter
5. More generally, phytoplankton scaling properties are found to vary across length-scales with the
presence of a knee in the spectrum. It is not known how consistent such feature is across different

regions. This is investigated in the following chapter (Chapter 4).
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Chapter 4: Phytoplankton Patchiness: is the phytoplankton

spectrum the same everywhere in the open ocean?

4.1. Introduction

In the previous Chapter, the focus was on the spatial relationship of phytoplankton with nitrate at
a particular location in the North Atlantic. There the focus was on scales of 100 km and smaller, but
nutrients influence phytoplankton patchiness on larger scales too. Nutrients are key for primary
production, and their availability in the euphotic layer divides the ocean into distinctive regions or
‘biomes’ (e.g. Sarmiento and Gruber (2006)). Large scale physical processes such as wind stress,
winter convection and Ekman transport exert a strong control on the nutrient supply into the mixed
layer and delimit these regions to first order. The subpolar gyre is nutrient rich due to Ekman
upwelling and relatively deep winter convection and has high levels of chlorophyll. In contrast, the
subtropical gyre experiences large scale downwelling and is permanently stratified and therefore
has low chlorophyll concentrations. In between, the transition region, seasonally stratified areas are

replenished with nutrients by winter mixing but stocks are exhausted before the end of the summer.

This chapter addresses the question of whether these fundamental differences in biological and

physical properties of the different open ocean regions affect the spatial structure of phytoplankton.
Specifically, the following hypothesis is tested in this chapter:

® Phytoplankton power spectra in different regions of the open ocean share the same

properties.

To address this, in situ data from the subtropical gyre, the transition region and subtropical gyre
obtained following the same sampling strategy, are analysed using the same methodology to allow
as a rigorous comparison as possible. Note that nitrate data are not available from all regions so the
focus will be on changes in the phytoplankton spectrum with region and its relationship with the

temperature spectrum.
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4.2. Methodology

4.2.1. Cruises and sampling information

In addition to the D321 cruise representative of the subpolar North Atlantic, for which a description
was given in the previous chapter, data from the cruises D369 and D381 were used for this
investigation representative of subtropical and transition regions respectively. See Figure 4.1 for

their respective location.

RRS Discovery cruise D369 took place from August 9™ to September 15™ 2011 and sampled an area
in the North Atlantic subtropical gyre centred on 26.5N, 31.00W. Three surveys using the towed
vehicle SeaSoar were conducted to sample an area of approximately 150 by 150 km. Each survey
took four consecutive days to complete. The dates for the surveys, denoted S1, S2 and S3, were 15%-
18" August, 24™-28™ August and 3™-7*" September, respectively. The surveys were carried out in a
radiator style, covering the area with parallel transects of 150 km spaced by ~20 km. S1 and S2
sampled the area with transects running from East to West, starting from the South-East corner and
North-West corner respectively. S3 on the other hand was oriented North-South and started in the
North-West corner. For this study, a total of 6, 7 and 7 full length transects were obtained for 51, 52

and S3 respectively.

RRS Discovery cruise D381 was carried out in the Porcupine Abyssal Plain area centred on 49N,
16.5W from September 14™ to October 3™ 2012 and included two SeaSoar surveys each covering a
100 km by 85 km box. The first survey (S1) had 100 km-long parallel tracks oriented East-West, the

tracks during the second one (52) were shorter (85 km) and oriented North-South.
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Figure 4.1: Location of the cruises used in this investigation. They represent biogeochemically distinct regions of the open

ocean: subtpolar gyre (D321), transition region (D381) and subtropical region (D369).
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With moorings occupying a central square of the survey area of size 30 by 30 km, the ship’s track
was slightly modified from the traditional radiator style to avoid that area (see Figure 4.2). Three
days were required to complete the first survey (19"-21% September). The second started on the
23" of September, was interrupted by a storm on the 25" September that lasted for four days and
finished on the 30t September. Due to the modified layout of the surveys, a total of 6 and 3 full

length transects for the surveys S1 and S2 respectively were available for this study.

4.2.2. Data selection
4.2.2.1. Subpolar cruise (D321)

A description of the data collection and spectral analysis of the D321 was given in Chapter 3. The
only change for the methodology used in this chapter comes from the number of transects used for
the analysis. In Chapter 3, only transects with both Chl-a and nitrate data were used. This consisted
of two full and two half transects (see Figure 3.1). As nitrate is not a focus of this chapter, this
restriction no longer applies. This means that four full and one half transects are available for this

study (Figure 4.14).

Note that estimates of phytoplankton concentration are given using the manufacturer’s
calibrations. As the interest is in the slope of the spectrum rather than its magnitude this does not
affect the aims of this study, assuming the usual linear calibration. Nevertheless, for simplicity,

fluorimeter observations will be referred to as Chl-a throughout this chapter.

4.2.2.2. Subtropical cruise (D369)

Phytoplankton were most abundant at depth with the presence of a clear Deep Chlorophyl
Maximum (DCM) and very low concentrations in the mixed layer. An example of Chl-a distribution
with depth along a transect from survey S1 is displayed in Figure 4.2. The presence of the DCM is
further illustrated by the histogram of Chl-a as a function of depth for each survey (Figure 4.3). The
DCM distribution is centred at a depth of 120 m. The DCM displays a bimodal distribution against

density for S1 and S2. S3 on the other hand is unimodal, as are all distributions against depth. Due
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to the very low values no spectra for phytoplankton were calculated for the mixed layer. Instead the

focus was on the DCM. Data were selected both for fixed depth and along isopycnals.
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Figure 4.2: D369 cruise Survey 1: Example of Chl-a contour plot for a transect oriented East-West. Phytoplankton vertical
structure clearly displays a deep chlorophyll maximum centred at 120 m depth. Black contours show density surfaces. Two
methods of data selection were used for estimating the spectrum of phytoplankton: data from along density surface 26.2
+ 0.04 kg m™3 and from fixed depth 120 + 10 m (green lines).

31 32 33
120 120 120
100 100 100 ]
> 80 > 80 > 80
 rev)  rev) =
S 60 2 60 2 60
(=2 (=2 o
£ 40 £ 4 2 4
20 20 W 20
0 ' 0 ' 0
261 262 263 261 262 263 261 262 283
density (kg.m) density (kg.m) density (kg.m™)
120 120 120
100 100 100
> 80 > 80 > 80
vy vy =
g 60 2 60 2 60
o o o
£ 40 £ 40 £ a0
20 20 20
0 l 0 l 0 l l
80 100 120 140 160 80 100 120 140 160 80 100 120 140 160
depth (m) depth (m) depth (m)

Figure 4.3: Information on phytoplankton vertical distribution during cruise D369 in the subtropical gyre for survey S1 (left),
S2 (middle) and S3 (right). Distributions against density anomaly (top) and depth (bottom) in the vicinity of the DCM are
shown.
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4.2.2.3. Transition area cruise (D381)

The transition cruise displayed a more complex phytoplankton vertical structure with elements of
both subpolar and subtropical cruises. The first survey (S1) showed highest phytoplankton
concentrations in the mixed layer for the northern part of the survey (see Figure 4.4, legs 1, 2 and
3). The southern part displayed a DCM at a depth of approximately 40 m (see Figure 4.5). The second
survey (S2) was disrupted by a storm. The Eastern part, sampled before the storm, displayed the
same dual phytoplankton structure (legs 1, 2, 3, 4, 5 and 6) as in S1. The western part (legs 7, 8 and
9) sampled after the storm, displayed a homogeneous phytoplankton structure in the mixed layer.
The storm perturbed the structure of the water column as evidenced by a cooler temperature and
denser surface waters (see Figure 4.6). The DCM is no longer present in the southern part. Spectra

were obtained for the mixed layer using data from depths 20-30 m.

17°W 16°W 15°W 17°W 16°W 15°W
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Figure 4.4: Location and cruise tracks of Transition cruise surveys S1 (a.) and S2 (b.). Note the circumventing of the central
area where moorings were installed (red squares). For S1, legs 1, 2, 3 and 6,9,10 were used to estimate the spectrum. For
S2 (b.), only legs sampled after the storm were considered (legs 7, 8 and 9).
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Figure 4.5: Examples of phytoplankton vertical structure for survey S1 of cruise D381. Highest values in the mixed layer
characterises the northern half of S1 (a.). In contrast, the southern part (b.) presents a Deep Chlorophyll Maximum at
around 40 m depth. Note the presence of quenching effect in the top 10 m in (a.).

4.2.3. Estimating Power spectra

In addition to the common sampling framework of straight transects using the SeaSoar undulating
sampler shared by all three cruises, it is necessary to establish a common spectral analysis procedure
to make a comparison between survey areas robust. As in Chapter 3, the power spectra are
calculated for two sets of range scales. For the small scale, the range was unchanged covering the
10-100 m length-scales. For the mesoscale range, the range 8 — 80 km was used instead of 8-115 km

due to shorter transects in the other two cruises.. The range 8-80 km was chosen to have a range of
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length-scales common to all cruises, given that each cruise had transects of different length (~120
km for D321, ~100 km and ~80 km for D381 and 150 km for D369). The upper boundary of 80 km
was determined by the shortest transects studied which originated from survey S2 during the
Transition cruise and was 83 km long. Transects were split into segments of 80 km with an overlap
of 80% to maximize the data available. Such splitting generates 2, 4 and 5 segments for a 100 km,
130 km and 150 km transect respectively. Data from the vertical profiles for each variable studied
were extracted for the targeted depth range, the spectra were then calculated using the mean
values from each profile. An average spectrum for each transect is then obtained by taking the mean
of all subsets’ spectral estimates at each length-scale investigated. The average spectrum for the
entire survey is itself the average of the transect averages. The method for obtaining the spectrum
at scales 10-100 m for each survey is as detailed in Chapter3. Issues specific to the individual data

sets of the several cruises are discussed next.

Subtropical cruise:

Spectra were calculated for fixed depth and along isopycnals. For fixed depth, data in all three
surveys were selected for a depth range of 120 + 10 mi.e. centred on the DCM (Figure 4.2). The 20
m span was chosen to maximize the number of data points without introducing significant vertical
structure in the phytoplankton or temperature measurements. Spectra were also calculated for
depth ranges 120 + 5 m and 120 + 20 m for comparison. Spectra using data from 120 + 10 m for
scales 8-80 km were indistinguishable from those using data from 120 + 5 m. However, selecting
data for depth range of 120 + 20 m generated a dataset with clusters spanning over 300 m of
horizontal data. Although this only slightly affected results for the range 8-80 km, it significantly
affected the shape of the spectra for the small range scale with unrealistic results showing a drop

of energy for the range 100-300 m. 120 m + 20 m data were therefore discarded.

For fixed density, data were selected for the density anomaly ranges 26.20 + 0.04 kg m™, 26.20 +
0.04 kg m3 and 26.30 + 0.04 kg m™3 for S1, S2 and S3 respectively. In addition, for S2 the spectra for
density range 26.30 * 0.04 were also estimated due to the presence of a second peak in the DCM
distribution (Figure 4.3). The range of density anomaly of 0.08 kg m was determined so that the
depth interval of the selected data did not exceed 25 m and had mean 20 m like the depth interval

of data selected for fixed depth (120 + 10 m).
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Transition cruise:

For S1, two data sets were extracted from the survey. For the northern part, data were selected
only along legs 1, 2 and 3, within the mixed layer depth for depths of 20 m +5 m. Data for the
southern part (legs 6, 9 and 10), however were selected along the isopycnals corresponding to 26.2
+0.2 kg m3. Transects 4, 5, 7 and 8 were not considered because too short. For S2 only post storm
data were analysed. Pre-storm legs were not long enough except for leg 4. Leg 4 was not considered
because it displayed a Chl-a vertical structure different to those of the post-storm legs. Data were

extracted from depths 25 m 5 m. This is deeper than S1 to be further away from quenching effects.

4.3. Results

4.3.1. Subtropical region
4.3.1.1. Biological and physical landscape

The three surveys of subtropical cruise (D369) spaced over 4 weeks provide a series of snapshots of
the biological and physical landscape of the area over that time as is illustrated by the Chl-a and
temperature contour plots of Figures 4.7, 4.8 and 4.9. A number of changes occur over the course
of the cruise. Potential temperature shows that an eddy moved westward through the survey area.
This anticyclonic eddy (Zubkov, 2012) occupies the majority of the area in S1. By S2 it only occupies
half of the area and is nearly outside of the area by S3. The passage of the eddy is associated with a
shift in DCM distributions (Figure 4.4). S1 displayed a unimodally distributed DCM centred around
waters of density anomaly 26.19 kg m3. In S2 the DCM became bimodal with a second peak
developing around density anomaly 26.3 kg m™ corresponding to the values outside the eddy. The
first peak eventually disappears with DCM becoming unimodal again but centred around 26.3 kg m-

3instead.

A clearer understanding of the DCM bimodal distribution for S2 can be obtained from Figures 4.7
and 4.8 which display phytoplankton concentrations for density surfaces 26.2 kg m3and 26.3 kg m"
3 respectively. Two non-overlapping plankton populations appear along the two density surfaces.
One lying along the density surface 26.2 kg m™ (Figure 4.6) in the western part of the area and one

along density surface 26.3 kg m? in the eastern part (Figure 4.7). Such a divide in plankton structure
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is not distinguishable when using data from fixed depth (Figure 4.8) indicating the importance of

light.

4.3.1.2. Estimation of spectrum using data from fixed depth

Across the three surveys, phytoplankton consistently display a knee in their spectrum illustrating a
shift in power law behaviour between the ranges 8-80 km and 10-100 m (Figure 4.10). This is the
same shape that characterised the phytoplankton spectrum in the subpolar cruise (D321). The
variability for the range 10-100 m does not change appreciably across surveys with slope -3.53 +
0.07, -3.52 + 0.05, -3.59 £ 0.06 for S1, S2 and S3 respectively. Flatter slopes are observed for the
range 8-80 km as well as some variability across surveys with slopes -0.36 £ 0.11, -0.83 £ 0.09 and -
0.73 £ 0.13 for S1, S2 and S3 respectively. The steepening of the spectrum between S1 and S2 is
caused by a drop in variability at the 8km length-scales end of the range rather than an increase at

the 80 km end.

The temperature spectrum also displays a knee across the three surveys. Like phytoplankton, the
temperature spectrum has similar behaviour for the range of scales 10-100 m with slopes -2.73 +
0.07,-2.76 £ 0.05 and -2.98 + 0.06, and displays more variability for the range 8-80 km with slopes -
1.30+0.11,-1.37 £0.11 and -0.98 + 0.14 for S1, S2 and S3 respectively.

Note that for the range 8-80 km, the largest change in phytoplankton spectrum occurs between S1
and S2 with the slope varying from -0.36 to -0.83, whilst for temperature spectrum this large change

happens between S2 and S3 with the slope varying from -1.38 to -0.99.

Despite the variability observed in the slope steepness at the range 8-80 km, the phytoplankton-
temperature relationship remains unchanged across the three surveys. Phytoplankton display a
steeper spectrum than temperature for the range 10-100 m but a flatter one for the range 8-80 km.
The difference is significant at the 99% confidence interval for all surveys and all ranges with one
exception: for S2 for the range 8-80 km there is a difference of 0.27 + 0.18 (Table 4.1) so there is not
sufficient evidence to reject the hypothesis that the slopes are the same. Average spectra using all
3 surveys maintains these trends with the phytoplankton spectrum (-0.63 * 0.06) flatter than

temperature (-1.21 + 0.07) for the range 8-80 km and steeper at scales 10-100 m with slopes -3.54
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+ 0.03 and -2.83 £ 0.03.respectively. The spectra for the entire cruise are obtained from averaging

the estimates at each length-scale of all transects from S1, S2 and S3 (20 in total).
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Figure 4.6: Horizontal contour plots of S1 and S2 on cruise D369 for Chl-a (top) and potential temperature (bottom) along
density surface 26.2 kg m?3. The cruise tracks are overlaid as black dashed lines.
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dashed lines.
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Table 4.1:Spectral slopes and their uncertainties for phytoplankton and temperature for the surveys S1, S2 and S3 of
cruise D369 in the subtropical gyre. Results shown are for data from fixed depth 120 + 10 m. The difference between
phytoplankton and temperature slopes was also calculated. Spectral slopes using spectra averaged over the whole

cruise were also estimated.

D369 Slope 8-80 km 10-100 m

S1 Chl-a -0.36+0.11 -3.53£0.07
temperature -1.30+0.11 -2.73+£0.07

difference -0.94 £0.16 -0.80£0.10

S2 Chl-a -0.84 +£0.09 -3.52£0.05
temperature -1.37+£0.11 -2.76 £ 0.05

difference 0.53+0.14 -0.76 £ 0.07

S3 Chl-a -0.71+0.13 -3.59£0.06
temperature -0.98+0.14 -2.98 £ 0.06

difference 0.27+£0.18 -0.62 £ 0.08

average Chl-a -0.63 £ 0.06 -3.54 £ 0.03
of temperature -1.21+0.07 -2.83+£0.03
$1,82,S83 | difference 0.58£0.10 -0.71 £ 0.05
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Figure 4.9: Power spectrum of Chl-a (green) and temperature (black) for surveys S1 (a.), S2 (b.) and S3 (c.) using data
from depth of 120+10 m on cruise D369.Spectra for the entire cruise were also calculated (d.).

4.3.1.3. Estimation of spectrum using data along density surfaces

Like spectrum obtained from fixed depth data, the spectra of phytoplankton on density surfaces
consistently display a knee with slopes for the range 10-100 m steeper than for 8-80 km for all
three surveys. Equally, little variation was observed at small scale with slopes of -3.37 £ 0.10 and
-3.39 + 0.08 for S1 and S2 along density surface 26.2 kg m~3respectively, and -3.00 + 0.07 and -
3.16 £ 0.06 for S2 and S3 along density surface 26.3 kg m?. For the range 8-80 km, steeper slopes
are observed than for the spectra obtained from fixed depth data. For density 26.2 kg m?3, the
slope changes from -0.98 + 0.13 to -1.49 + 0.17 between S1 and S2. For density 26.3 kg m™, it
changes from -1.78 £ 0.10 to -1.43 £ 0.12 between S2 and S3. Note also the difference in slope
in S2 along different density surfaces.
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The phytoplankton-temperature relationship however differs compared to results using data
from fixed depth. For the range 10-100 m, the phytoplankton spectral slope is steeper than
temperature for spectra on depth or density surface. However, for the range 8-80 km, for all
three surveys, phytoplankton spectral slope cannot be distinguished from temperature slope
using data from a density surface. Differences of 0.16 + 0.17 for S1 along 26.2 kg m?3, -0.10 +
0.23 for S2 along 26.2 kg m= and -0.12 + 0.19 for S3 along 26.3 kg m™ are found (Table 4.2). The
only exception is the case of S2 along 26.3 kg m™ which shows slopes significantly different with
a difference of -0.50 + 0.19. Like spectra for data from fixed depth, the largest change in slope
for phytoplankton occurs between S1 and S2 with slopes of -0.98 and -1.48 respectively. The
largest change in slope for temperature also occurs between S1 and S2, from -1.14 to -1.39,

unlike data from fixed depth where the greatest change took place between S2 and S3.

Table 4.2: Same as Table 4.1 but for data from along density layers instead.

D369 Data slope 8-80 km 10-100 m
S1 26.2+0.04 Chl-a -0.98 £0.13 -3.37+0.10
kg m3 temperature | -1.14+0.14 -2.77 £0.06
difference 0.16 £0.17 -0.60 £0.10
S2 26.2+0.04 Chl-a -1.49+0.17 -3.39+0.08
kg m3 temperature | -1.39+0.15 -2.78 £0.05
difference -0.10+£0.23 -0.61 £0.08
S2 26.3+0.04 Chl-a -1.78 £0.10 -3.00 £ 0.07
kg m3 temperature | -1.27 +0.17 -2.84 +0.05
difference -0.50£0.19 -0.16 £ 0.08
S3 26.3+0.04 Chl-a -1.43+0.12 -3.16 £ 0.06
kg m3 temperature -1.32+0.13 -2.98 + 0.05
difference -0.12£0.19 -0.18 £ 0.07

78



a. 51 b. 82

2 ........................................................ 2_.
01 \\\\- 0
o R M IO T PN N SRS R
2 "= -0.98 3 51 ' :
— 4 S _4 'C£='5 .
g g | .
5 " a=-277 5 T a=-278
-8 1 omr3.37 8 =339
-10 : 10— : : : f
100 10 1 01 0.01 100 10 1 01 0.01
km km
c. 82 d. S3
73 O SR SRS S S S D i :
2\\-a=12? 2l T g .32 | :
5 =) \ e
s -4 a=-173\ S 41 L= =143 \ R
5 \ a=-2.84 6l \ = -2.98
_3a=_3 48 e . e =316
-10 : -10
100 10 1 01 0.01 100 10 1 01 0.01
km km

Figure 4.10: Power spectrum of Chl-a (green) and temperature (black) for S1 (a.) and S2 (b.) for data from along
density layer 26.2 kg m3, and S2 (c.) and S3 (d.) along density layer 26.3 kg m™3 for cruise D369.

4.3.2. Transition region

As described earlier, for the transition cruise (D381) the first analysis uses data for the mixed
layer. It consists of the northern part of the data from S1 (3 legs) and the western part of S2 (3
legs) (see Figure 4.4). The second analysis uses data from along a density surface. It includes the

southern three legs of S1 where a DCM is observed.
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Figure 4.11: Contour plots of phytoplankton abundance (top), potential temperature (middle) and density anomalies
for depth range 20 m +5 m for survey S1 (left) and S2 (right) of D381. Note that manufacturer’s values were used for
the phytoplankton measurements.

4.3.2.1. Mixed layer depth

The storm occurring midway through survey S2 disrupted the sampling of the area. The western
part of the area was sampled after the storm. Denser and colder waters occupy that part of the
area compared to the pre-storm part to the East and to waters sampled during survey 1 (Figure
4.6). Combined with the deepening of the density gradient, these observations indicate a vertical
mixing of surface waters with deeper ones induced by the storm. Further evidence of vertical
mixing of the storm can be observed in the concentrations of phytoplankton that were
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homogeneous in the mixed layer post-storm unlike previously observed in survey 1 where it

displayed a DCM to the South and the eastern part of S2.

For both S1 and S2, the spectra of phytoplankton are consistent with the knee shape seen in the
subpolar and subtropical regions (Figure 4.12). The spectral slopes at large scales (8-80 km) are
significantly different between the two surveys. The phytoplankton spectra is steeper for S2 (-
1.57 £ 0.21) than for S1 (-1.23 = 0.26). A more pronounced steepening is observed in
temperature with slopes of -1.48 + 0.16 for S2 and -1.14 * 0.30 for S1. Changes in spectra for
both variables are associated with variability being introduced at the larger scale end of the

range.

At small scales phytoplankton spectral slope changes little between S1 (-2.71 + 0.23v) and S2 (-
2.44 + 0.46) unlike temperature for which a significant flattening from -3.04 + 0.17 to -2.28 *
0.32 is observed (Table 4.3). This change of steepness in temperature spectra at small scale is

the most abrupt recorded for all three cruises.

Both S1 and S2 have spectra for temperature and phytoplankton that are indistinguishable at
the range 8-80 km. At the small scale range (10-100 m), temperature is steeper than
phytoplankton in S1, with a difference of 0.34 £ 0.21, and becomes flatter in S2, with a difference
of -0.16 = 0.36. This change is mainly resulting from the strong flattening of temperature

spectrum between the two surveys.
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Figure 4.12: D381, spectra of Chl-a (green) and temperature (black) using data from the mixed layer at fixed depth
15-25 m for S1 (a.) and 20-30 m for S2 (b.). Deeper depth was selected for S2 (25-35 m) to be further away from
quenching effect.
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4.3.2.2. Along density surfaces

Spectra for the southern part of the survey S1 display a clear knee with values of -1.04 + 0.44 for
the range 8-80 km and -3.12 + 0.11 for the range 10-100 m for phytoplankton. The temperature
spectrum displays the same slope (-1.06 + 0.23) for the range 8-80 km (Figure 4.13) but is flatter
for the range 10-100 m (-2.75 + 0.09). Large uncertainties are observed for phytoplankton slope
(0.44) for the range 8-80 km. A significantly larger amount of variability is observed for
temperature for the range 10-100 m compared with the case for fixed depth in the northern

part, with more than two order of magnitude difference.

Table 4.3: Spectral slopes and their uncertainties for phytoplankton and temperature for the surveys S1, S2 of D381.
The difference between phytoplankton and temperature slopes was also calculated. Two estimates were made for S1.
Data from depth 15-25 m from were used for legs 1,2 and 3 (see Figure 4.4). As legs 6, 9 and 10 displayed a Deep
Clorophyll Maximum, spectra were also calculated from data along density layer 26.2 + 0.2 kg m3,

D381 Data slope 8-80 km 10-100 m

S1 15-25m Chl-a -1.23+0.26 -2.71£0.23
temperature -1.14+£0.30 -3.05+0.17

difference 0.09 £0.25 0.34+£0.21

S2 20-30 m Chl-a -1.57+0.21 -2.44 £ 0.46
temperature -1.48 £0.16 -2.28+0.32

difference -0.08 £0.29 -0.16 £ 0.36

S1 26.2+0.2kgm?3 Chl-a -1.04+0.44 -3.12+0.11

temperature -1.06 £0.23 -2.75+£0.09

difference 0.03 +0.57 -0.37 £ 0.15
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Figure 4.13: D381, spectra of Chl-a (green) and temperature (black) using data at the bottom of the mixed layer for
S1 along density 26.2 kg m3. Leg 6, 9 and 10 were used for the spectral estimation.

4.3.3. Subpolar region

Relative to Chapter 3, for the subpolar cruise (D321) temperature and phytoplankton slopes
have changed slightly due to the larger data set used and smaller range of length-scale studied
(Figure 4.14). Compared with the results of Chapter 3, phytoplankton spectral slope changed
from -0.50 + 0.24 to -0.63 * 0.26 for the range 8-80 km, but remained similar at -2.67 + 0.13 (-
2.64 £ 0.17 in Chapter 3) for the 10-100 m range. The temperature spectrum flattened with the
slope of -1.71 + 0.25 changing to -1.48 + 0.30 for the range 8-80 km, and steepened from -2.73
+ 0.15 to-3.38 +0.20 for the range 10-100 m. Slopes for temperature and phytoplankton for
scales 10-100 m are no longer undistinguishable, with a difference of -0.74 + 0.22. For scales 8-

80 km, temperature (-1.48) remains steeper than phytoplankton (-0.63).

Like for the subtropical and transition cases, the phytoplankton spectral slope shows a shift
between the two length ranges. For both ranges, the temperature spectrum is steeper than

phytoplankton, a case not encountered in the other cruises.
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Figure 4.14: D321 survey tracks (a.) used for calculating the spectra (b.) of Chl-a (green) and temperature (black) for
a fixed depth of 15-25 m. Tracks represented in solid lines were used for the estimates. Dark blue consists of the extra
data not used in Chapter 3.

Table 4.4: Spectral estimates and their uncertainties for phytoplankton and temperature for the cruise D321. The
difference between phytoplankton and temperature slopes was also caluclated.

Data slope 8-80 km 10-100 m
D321 15-25m chla -0.63+£0.26 -2.67 £0.13
Temp -1.48 £ 0.30 -3.38+0.20
difference -0.88+0.35 -0.74+£0.22

4.4. Discussion

Are the phytoplankton spectral properties identical in all open ocean regions?

In Chapter 3, the phytoplankton power spectrum was estimated for an area of the North Atlantic
subpolar region. It revealed a spectrum with a ‘knee’ shape. The hypothesis tested in this
chapter is that the properties of the phytoplankton spectrum are consistent for all regions of the

open ocean despite their contrasting bio-physical environments. In addition to the subpolar
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gyre, the Chl-a power spectra were calculated for areas in a subtropical region and the transition

area between subpolar and subtropical regions.

The results show that for all three regions phytoplankton share the same power spectral shape
resembling a ‘knee’ in loglog-space. For the range 8-80 km, spectral slopes are consistently
flatter than those for the range 10-100 m. This is also true for the spectrum of temperature.
Selecting data for a fixed depth or along a density surface for cases presenting a Deep

Chlorophyll Maximum does not remove the presence of the knee in the spectrum.

It was mentioned in the methodology chapter (Chapter 2 Section 5.2) that the method used for
the range 8-80 km (Lomb Scargle periodogram) showed a tendency to under-evaluate the
spectral slope particularly in cases for which the original slope was steeper than -2. No surveys
here display slopes for phytoplankton or temperature spectra steeper than -1.79 for the range
8-80 km. Therefore, according to the findings of Chapter 2, the slopes calculated from the in situ

data should not suffer from significant under-estimation.

Differences in slopes between the two ranges of length-scales vary between 0.87 and 3.17 for
phytoplankton spectra. For temperature spectra, the differences range between 0.80 and 1.90.
These differences are larger than the over-estimation errors of the LSP method for signals with
slope flatter than -2. For slopes -2<a<-0.5, the LSP method estimates flatter slopes than the true
signal with error 0.22 (Chapter 2 Section 5.2.). It can be concluded that a change in power law
behaviour between the ranges 8-80 km and 10-100 m is a property that is common to all

phytoplankton spectra of the regions studied.

Even though the overall shape of the spectrum is a robust feature, the phytoplankton spectral
slope shows significant variability. This is true for both scale ranges. For instance phytoplankton
slope values between -0.36 and -1.79 for the range 8-80 km are found. For the range 10-100 m,
slope values vary between -3.39 and -2.44. Furthermore, the relationship with temperature
spectrum is also inconsistent with cases for the range 8-80 km of phytoplankton being flatter
(D369 S1), equal (D381 S1) or steeper (D369 S2) than temperature. The same occurs for the
range 10-100 m.

From these findings a number of questions arise. Following the observed variability in the
phytoplankton slope, are the differences observed a result of regional variability or is the slope

changing in time?
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Is the strongest variation in slope temporal or regional?

A stronger version of the hypothesis, that the phytoplankton spectral slope would be identical
for all regions, cannot be supported given the different slope values observed. The advantage of
cruises having multiple surveys and located in different regions of the open ocean is that it also

allows a preliminary examination of whether the variability is temporal or regional.

Quantifying the variations of the phytoplankton slope over time-scales of days to weeks is
important before evaluating whether regional differences exist. This cannot be quantified
robustly using only the 2 to 3 consecutive surveys discussed in this chapter but they can at least

give an indication of the level of temporal variation that can be expected.

Results from D369 in the subtropical region for which three consecutive surveys were made over
4 weeks during the summer indicate that phytoplankton spectra display significant variability in
slope for the range 8-80 km (Figures 4.10 and 4.11). The slope changed from -0.36 + 0.11 to -
0.84 +0.13 to -0.71 £ 0.13 when selecting data for a fixed depth. Variations in slope were also
found when using data along a density surface instead (from -0.98 + 0.13 for S1to -1.49 £ 0.17
for S2 along 26.2 kg m3, and from -1.78 + 0.10 for S2 to -1.43 + 0.12 for S3 along 26.3 kg m™).
For the 10-100 m range, the spectrum of phytoplankton displays little variation across surveys
with values centred around -3.2 using data along density surfaces and -3.5 using data for fixed

depth. The slope is always steeper than that of the temperature spectrum.

Short time-scale variations are also present for the transition area (D381) with slopes varying
from -1.23 + 0.26 to -1.57 + 0.21 for scales 8-80 km. The storm may be the driver behind the
change in slope. But given that storms happen frequently, such change may provide an
explanation for temporal variability. Extra variability compared to S1 is introduced in the S2
spectra of both temperature and phytoplankton at large scales of the 8-80 km length-scale

range.

The evidence of temporal variations in slope raises further questions that will need to be
investigated. It is important to know if short time-scale variations in phytoplankton slope are
consistent across regions or if they vary regionally. How much phytoplankton vary may be a
defining property of the phytoplankton spectrum. Characteristic traits in phytoplankton for a
region may be found in the manner that they evolves over time. Also, are variations in slope
over a short period e.g. a month, the same throughout the year or do different periods of the

year exhibit different levels of variability?
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Given the apparent magnitude of temporal variability, it is difficult to determine whether
phytoplankton spectra present regional differences on the basis of such a small number of
measurements. The mean phytoplankton slope for D369 (-0.63) is the same as for D321 for the
range 8-80 km. The phytoplankton average spectrum of the transitional area has a steeper slope
(-1.43) for the same range. Many more surveys from each of the regions are needed to conclude
that differences in estimated means are statistically robust. Obtaining an understanding of the
phytoplankton slope variability over both space and time requires the use of other types of data.
For instance, models provide high resolution data in time (order of days) that span over large
spatial (basin) and time-scales (multi-year). It may be a valuable tool to overcome such limits
and obtain an idea of the magnitude of the temporal variability relative to the difference in slope

between regions. This is investigated in Chapter 5.
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Figure 4.15: Spectra of Chl-a for each the 7 transects of survey S3 in the subtropical area (cruise D369 using. data obtained along density surface 26.3 kg m=. Transects were sampled from West
to East (see Figure 4.7). Spectra of Chla from the first 3 transects traversing the eddy are shown in red (a to c) and those from the transects further East and outside the eddy in blue (d to g).

Spectra of temperature are shown in black.
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How big an area is it necessary to sample to accurately measure the slope in the range 8-80
km? (and 10-100 m?)

The subtropical surveys show significant variability in phytoplankton spectral slope between
surveys. The area surveyed experienced the crossing of an eddy. Its signature is clearly visible in
the phytoplankton field (Figure 4.7). For example, S2 shows low concentrations of
phytoplankton within the core of the eddy and higher ones at its margin. The position of the
eddy within the survey area and the number of transects affected by its presence may impact

the estimated phytoplankton slope value for the survey.

The layout of the transects allows for the eddy contribution to be investigated. Transects in S1
and S2 traverse the eddies whilst for S3 some do not. The clearest example comes from S3 for
data obtained along density surface 26.3 kg m™ (Figure 4.7). The 7 North-South transects are
carried out beginning with the one furthest West. Only the first 3 transects cross the core of the
eddy. They display steeper phytoplankton slopes (-1.75, -1.79 and -1.76) than the following four
transects outside the eddy (-1.25, -0.87, -0.84 and -1.28) (Figure 4.15). The same steepening of

spectra for transects crossing eddies is observed for data from fixed depth.

With eddies being both ubiquitous in the ocean and exerting an influence on phytoplankton
patchiness, even if the interest is a specific length range (e.g. 8-80 km) the choice for the survey
area size may influence the final slope estimation. If multiple surveys of the same area over a
period greater than the time needed for an eddy to pass through cannot be achieved, then
sampled areas should include a larger number of eddies so that their location within the area
does not bias the results. This is only possible with larger areas. The problem is that ship based
surveys cannot sample larger areas. It takes approximately three days to map 130 km by 130 km
area. Surveys mapping a larger area, and therefore taking longer, would not be able to capture
the physical and biological environments before they change. The data is therefore not

‘synoptic’ because it contains not on spatial but also temporal information.

Whether variability in phytoplankton slope estimated for an area of ~130 km x130 km is
representative of the true phytoplankton variability at those scales cannot be properly tested
using the data studied here. Satellite data, which provide synoptic snapshots of Chl-a over large
areas, may be more suited to study this question. The effect of the size of the area surveyed on

the phytoplankton slope estimate is evaluated using satellite data in Chapter 6.
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Measuring patchiness at depth: at fixed depth or along density surfaces?

Variability induced by internal waves is potentially present when using data from a fixed depth
below the mixed layer. With horizontal mixing occurring along isopycnals, data points selected
for fixed depth are retrieved from different density layers. If phytoplankton are more uniform
with density than depth, potentially because nutrient contours typically follow density surfaces,
data from a fixed depth may, for example, result in the selection of high phytoplankton
concentration data points from the DCM alongside lower concentration ones from neighbouring
density surfaces. As internal waves have a wavelength of around 0.1-10 km, the induced
variability affects the higher end of the 10-100 m range and the lower end of the 8-80 km. This
would cause the phytoplankton slope to flatten for the range 8-80 km and steepen for the range
10-100 m. This may explain the relatively flatter phytoplankton slopes obtained for data from
fixed depth compared to slopes obtained with data from along isopycnals for the range 8-80 km.
Although measuring patchiness along isopycnals would avoid the introduction of vertical spatial
variability into horizontal spectra the example shown here (D369) demonstrates a case where
phytoplankton are better correlated with depth than density, potentially indicating light control,
and so taking density surfaces would also create what might be considered as artificial variability
at small scales. The issue of how best to quantify spectra at depth is therefore an open question.
The rest of the thesis will focus on surface spectra to address the questions raised on spectral

slope variability.

4.5. Conclusion

This chapter found that the knee shape of the phytoplankton spectrum is common to all the
regions of the open ocean investigated in this study. However it has also shown that the
spectrum may display significant variability in slope for both the scale 8-80 km and 10-100 m.
This is best illustrated by the summary figure 4.16 which shows a clear shift in slope values
between the two spatial ranges but also the presence of variability in slope within each range,
particularly at the mesoscale. The spatial and temporal limitations associated to in situ surveying
prevent from determining the source and robustness of this variability. These will be explored

in subsequent chapters.

90



3
8 2 b + “““““““““
on
Db o
+ + g
_3.); ..... i 2O« SO
+
-3.5. ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ :t ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
_4 1 1 1 1 1 1 1
Chl-a T Chl-a T
8-80 0.01-01

1/Lengthscale (km)

Figure 4.16: Summary of spectral slopes for Chl-a (blue) and temperature (red) obtained from all 3 cruises (Subpolar,
subtropical and transition region) for the range of length-scales 8-80 km and 10-100 m. Slopes obtained using data
from fixed depth and along a density surface are shown with crosses and circles, respectively.
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Chapter 5: Temporal variability in spectra

5.1. Introduction

The scaling properties of phytoplankton spatial variability have been examined in the previous
Chapters (3 & 4) using in situ observations. This revealed the presence of power-law behaviour
in phytoplankton spectra for all areas investigated. However, significant differences in spectral
slopes of phytoplankton were found for both different areas and times. For example,

phytoplankton slope values more than doubled in a matter of days at one location.

The time and space limitations of in situ sampling make it difficult to explore further the extent
of such variability. The use of a model to complement field data is particularly attractive as this
allows questions to be raised such as: how is the phytoplankton slope modulated over time?
How does this vary with location? The model of Levy et al. (2012b) is used for this investigation.
Although the model is an idealised representation of the North Atlantic, it has the advantage of
having a high spatial (1/54°) and temporal (2 days) resolution, both necessary characteristics for

this study.

This chapter therefore uses this model’s output to explore variability in spectral slopes. More

specifically, the following hypotheses are addressed in this chapter:

® Phytoplankton spectral slopes vary significantly over time-scales of days.

® Temporal variations over a period of months exceed variations in slope between
regions.

e There is a difference in nitrate and phytoplankton spectral slope which is consistent in
time.

® There is a seasonal pattern in phytoplankton spectral slopes.
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5.2. Methodology

5.2.1. Data description

To investigate the above hypotheses, a high resolution idealized model of the North Atlantic is
used. This model resolves the scales of interest at a basin scale, something not currently
achievable by global biogeochemical models. The physical model is the primitive equation ocean
model NEMO (Nucleus for European Modelling of the Ocean) (Madec, 2008) forced by analytical
zonal wind and buoyancy forcings. The model simulates a double gyre ocean basin
representative of an idealized version of the North Atlantic basin. The domain is a closed
rectangular basin of size 3180 x 2120 km with a constant depth of 4000 m centred at 30°N and
rotated by 45°. In total, 30 layers constitute the vertical structure of the model, varying in
thickness from 10 to 20 m in the upper waters to 300 m at bottom. The atmospheric physical
forcing generates a strong jet which runs diagonally across the domain separating a warm

subtropical gyre from a cooler subpolar gyre.

The LODyC Ocean Biogeochemical System for Ecosystem and Resources biogeochemical model
model (LOBSTER) (Lévy et al., 2001) is embedded within the physical model, describing the
interactions and evolution of six biogeochemical variables: phytoplankton, zooplankton,
detritus, semi-labile dissolved organic matter, nitrate and ammonium. The model is spun up for
50 years. Data for the last four are used in this study. For each year, data are obtained at a two-

day interval.

Numerical solutions for the ocean dynamics are obtained with a resolution of 1/54°. The
effective resolution of the model is of order 10 km which still captures mesoscale features and
their feedback on the system. Solutions for the biogeochemical model were obtained using the
physical solutions downgraded to 1/9° resolution. The loss of the finest scales does not alter the
passive tracers’ solutions (Lévy et al., 2012). More details can be found for the physical solutions

in Lévy et al. (2010) and for the biological system, including downscaling, in Lévy et al. (2012).

Regions investigated

As it is motivated by Chapter 4, this study uses three study areas that replicate the setting of the
in situ investigation. Areas of size 350 km by 350 km are investigated in the subpolar gyre, the
inter-gyre transition area and subtropical gyre of the idealised model basin. Their locations are

displayed in Figure 5.1.
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The subpolar region in this idealised model is defined as the region with annual Chl-a mean
values higher than 0.3 mg m™ (Figure 5.1) (Lévy et al., 2014). Within this region, the box is
selected sufficiently north to be within the highest mean nitrate concentration to be analogous
to the location of D321 cruise (60°N, 20°W) which is within the highest mean nitrate

concentration of the north east Atlantic (Sarmiento and Gruber, 2006).

The subtropical region consists of the area with annual Chl-a mean values lower than 0.15 mg
m=3. A model area analogous to the location of the D369 cruise was chosen based on low
chlorophyll concentrations for the summer period from August 9 to September 15%
corresponding to the time of the cruise. The area lies within the 0.1 mg m= Chl-a contour (Figure

5.3).

The transition area lies within the 0.15 and 0.3 mg m™ Chl-a boundaries. The area is located on
the eastern side to correspond to the D381 cruise location in the Porcupine Abyssal Plane site

(49N, 16.5W).

Surface data are analysed for all three areas selected. In the subpolar region, ocean colour data
for the area and year of the D321 cruise (2007) show a typical phytoplankton seasonal cycle with
a pronounced spring bloom occurring in April-May and an autumn bloom in September-October
(Figure 5.2a). The model annual phytoplankton cycle for the selected region reproduces the
same qualitative features of the phytoplankton cycle observed in the ocean colour data (Figure
5.2d). However, the spring and autumn blooms are more pronounced in magnitude. They also
occur earlier (March-April) for the first, and later (October-November) for the second creating a

longer period of low phytoplankton concentration in the summer period.

For the transition region, the qualitative features of the phytoplankton cycle are once again
reproduced (Figure 5.2 b and e). The model spring bloom occurs earlier than in the ocean colour
data for the year (2012) and location of the D381 cruise. The magnitude of the model

phytoplankton peak is lower than observed.

For the selected area in the subtropical region, unlike in situ observations, model output for
phytoplankton did not display a deep chlorophyll maximum (DCM). Rather, homogeneous
concentrations down to 70 meters depth were observed with a sharp decrease below. Given the
absence of a DCM, only surface model data were investigated. A comparison with ocean colour
data for the region covered by cruise D369 nevertheless indicates that the model reproduces

the qualitative features observed in the phytoplankton seasonal cycle (Figure 5.2 c and f).
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Figure 5.1: Model annual mean chlorophyll concentration (a.), nitrate concentration (b.) and surface temperature (c.).
Annual average chlorophyll concentrations were used to identify survey areas characteristic of subpolar (top),
transition (middle) and subtropical (bottom) regions. Contour lines represent the 0.1, 0.15 and 0.3 mg m?3
phytoplankton concentrations used to delimit the regions.

5.2.2. Spectral analysis

The spectra for temperature, nitrate and phytoplankton are calculated in this chapter. For
consistency with the in situ analysis, a one dimensional spectral analysis technique is used.
However, as the dataset presented has evenly spaced data, the Fast Fourier Transform was
chosen rather than the Lomb-Scargle periodogram. The boxes surveyed consist of areas of 32 by
32 grid cells. 32 transects of 32 data points were therefore used for estimating the spectrum for
each variable. The interval between data points corresponds to the pixel size of 11 km. Data for
each transect were pre-whitened by taking the first order difference before calculating the
power spectra. The spectral estimates were subsequently reddened by multiplying the
estimates by the squared inverse of the wavenumber (see Chapter 2) before the slope was

calculated.

Note that the slopes obtained for in situ covered the ranges of length-scales 8-80 km and 10-
100m. The latter was not studied here as it is well below the model resolution. Spectral
estimates were calculated for the range 30-150 km. Estimates between 22 km and 30 km length-
scale were discarded due to a sharp drop off in spectral power being consistently observed
across the three variables. The upper limit was increased to give a similar range of scales to in
situ. The mean power spectrum for the area is obtained by averaging the 32 estimates from each
transect at each wavenumber studied. A linear regression was fitted to the logged mean spectral

estimates and logged wavenumbers to obtain the slope of the spectrum.
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Figure 5.2: Seasonal cycle in chlorophyll concentration as a proxy for phytoplankton abundance for satellite
observations for the years in which each of the cruises in Chapter 4 took place (left) and model (right) at three sites:
subpolar (a. and d.), transition (b. and e.) and subtropical (c. and f.) regions. For each site, the relevant cruise period
(see Chapter 4) is marked in grey. The common period used for the analysis is delimited by dotted lines. The satellite
data are 8 day composites with 4 km resolution of a 5 degree box around the in situ survey areas.
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5.3. Results

5.3.1. Hypothesis 1: Phytoplankton spectral slopes vary significantly over time-scales
of days

In Chapter 4, the cruise with greatest number of surveys (D369 in the subtropical region)
revealed that the slope of phytoplankton could vary from -0.36 to -0.83 during a period lasting
6 weeks. Is such a large change due to genuine fluctuations in slope over a relatively short
amount of time or a consequence of uncertainties arising from sparse data? The above

hypothesis can be tackled using model output for which such limitations are absent.

The period of time studied for the selected area in the subtropical region corresponds to the six

week period of the cruise (9™ August-15™ September).

3500|- : 1 3500
3000+ y % 1 3000
A\ - 2500 —

2500

2000+
£

log(NO3)

1500 i

1000+

500+

L . L 0 ' L .
Q 1000 2000 3000 ) 1000 2000 3000 0 1000 2000 3000
km km km

Figure 5.3: Average phytoplankton concentration (a.), nitrate concentration (b.) and surface temperature (c.) for the
period corresponding to cruise D369 (August 9th to September 15t ) to the subtropical North Atlantic. The overlaid box
corresponds to the area selected for this study to represent the subtropical region. The contour line represents the 0.1
mg m-3 of phytoplankton concentration line for the cruise period.

Spectral slopes for phytoplankton were calculated and plotted against those from in situ
observations using data from a fixed depth (Figure 5.4). Differences clearly exist between model
and in situ results. Model phytoplankton spectral slopes for this period vary between -2.52 and
-3.71. This is much steeper than results from observations for which slopes of -0.36, -0.83 and -
0.73 were found. Differences are addressed in the Discussion Section 5.4. However, given such
differences it is difficult to directly compare slope variability observed in situ with that found in

the model.
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A comparison of the variation in slope, between model output and in situ observations, can be
attempted by normalizing their respective dispersion. This can be done using the coefficient of
variation which is the ratio between the standard deviation (o) to the mean (u) of a distribution
of sample values (here the slope values). It quantifies the extent of variability of the sample
values in relation to the mean and therefore allows variability for data with different means to

be compared.

For the model output slope estimates, the coefficient of variability (CV) can easily be estimated.
With a mean slope value of -3.17 and a standard deviation of 0.33, the CV equals to 0.10. For
the in situ data, too few observations are available to estimate the standard deviation and
therefore obtain a robust CV estimate. An alternative approach can nevertheless be used. If it is
assumed that the CV for phytoplankton slopes is well captured by the model, both in situ and
model output CVs should be equal. In that case, the CV of the model can be used to estimate
the variability in slope that should be expected for in situ observations. More specifically,
predicted variability for in situ observations is calculated by assuming that CVi, situ=CVmoder and

rearranging the formula for CV as follows:

Oin situ
CVinsitu = = CVinodel
Hin situ

= Oinsitu = Hin situ- CVmodel

Note that it is assumed that a good estimate of the mean slope for in situ observations can be
found with 3 values only. The mean in situ phytoplankton slope being equal to -0.64 and the CV
of the model estimate equal to 0.10, the predicted standard deviation of in situ slope

observations is calculated to be 0.07.

Slope values for in situ observations are -0.36, -0.73, -0.83 with mean -0.64. If slopes are
considered to be normally distributed with standard deviation of 0.07, this would mean that
only one estimate (-0.73) lies within the 95% confidence intervals or two (-0.73 and -0.83) within
the 99 % interval. Note the 95 % and 99 % confidence intervals correspond to 2 and 3 standard
deviations either side of the mean value. To first order, this would indicate that the variability
observed in situ is greater than that predicted by the model. This would also suggest that the

model may underestimate the short term temporal variability of phytoplankton slope.
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Figure 5.4: Comparison of phytoplankton spectral slope estimates over the course of the summer for in situ (green

dots) and model (green line) for the subtropical area.

5.3.2. Hypothesis 2: Temporal variations over a period of months exceed variations in
slope between regions

Analysis of in situ observations in Chapter 4 indicated that short term variability in
phytoplankton spectral slope could be significant relative to regional differences but data are

too sparse to be certain. Once again, a model allows a more thorough examination of this.

All three cruises were carried out during the post-bloom summer period (Figure 5.2). This study
focuses on a period of time in the summer which encompasses all three cruise periods. It was
also chosen to be as long as possible within the post-bloom low phytoplankton concentration
conditions of the three regions. The period studied spanned 100 days from the 1% July (Julian

Day 182) to 9" October (JD 282).

The hypothesis is tackled from two perspectives. First, | test whether there is any statistically
significant difference in slope between the regions given the temporal variability at each site.
Second, | explore whether any difference could be reliably diagnosed in practice given the
practical limitations of sampling in situ. To test the sensitivity of the results to the period of time,
the analysis is initially done for the whole summer but then repeated for a shorter period of a
month. Finally, the robustness of any regional difference in the context of temporal variability

in slope is examined over the longer period of a year.
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5.3.2.1. Variability of phytoplankton over the summer

The spectral slope of phytoplankton was calculated for each of the three regions for the 100-
day summer period, Figure 5.5. The mean slope for phytoplankton differs across the regions
(Table 5.1) with mean slopes of -2.63, -2.85 and -3.40 found for the subpolar, transition and

subtropical areas respectively.

The slope distribution for each region (Figure 5.6) shows that slopes for the subpolar area are
the least variable with a standard deviation of 0.33 compared to the transition (0.42) and the

subtropical (0.45) regions.

Slope
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Figure 5.5: Model phytoplankton spectral slope time series for the subpolar (blue), transition (green) and subtropical
regions (red) over the course of the summer.

Given the slope fluctuations for each regions, the significance of the differences in mean slope
between regions can be tested. There are differences with confidence intervals of 0.22 + 0.08,
0.55 + 0.09 and 0.77 £ 0.08 between the mean slopes of subpolar and transition regions,
transition and subtropical regions, and subpolar and subtropical regions respectively. The
corresponding 95 % confidence intervals are [0.07:0.37], [0.38:0.72] and [0.62:0.92]
respectively. Despite the temporal variability over the summer period the results therefore
reject the hypothesis that the regions display equal means at the 95 % confidence interval.
Nonetheless, the large standard deviations of the slope distributions for all three regions

illustrate the extent of short term variability in the slope time series.
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To test how well an in situ study could detect the observed differences in slope between regions,
three 30-day long periods, or ‘cruises’, from within the 100 day summer period, each sampling
one area, were compared. The cruise start date is different for each cruise but otherwise chosen
randomly. To mimic the in situ studies discussed in Chapters 3 and 4, three phytoplankton slope
estimates are taken from each cruise. These samples are taken on day 5, 15 and 25 of the cruise
period. The mean slope is calculated from the 3 values for each cruise and then the differences
in the mean slopes between regions recorded. The experiment is run 10,000 times to build a

distribution of the differences.

The experiment shows significant differences are observed in the phytoplankton slope between
the different regions. The distributions of differences have mean and standard deviation of 0.17
+ 0.40, 0.68 + 0.35 and 0.51 + 0.44 between subpolar and transition area, subpolar and
subtropical area, and transition and subtropical area respectively. The experiment indicates that
using such strategy for sampling the different regions, it is not possible to capture reliably the
regional differences in phytoplankton slope. In all cases, the hypothesis of the regions having a
mean slope difference equal to zero cannot be rejected at the 90 % confidence interval or

higher.

Table 5.1 : Summary of spectral slope statistics for phytoplankton for the period July 15t to October 9th. The mean
slope, standard deviation (SD) and standard error (SE) are recorded.

Region Mean Slope SD SE
Subpolar -2.63 0.33 0.0462
Transition (PAP) -2.85 0.42 0.0588
Subtropical -3.40 0.45 0.0630

The choice of period for this study was justified by the fact that the in situ surveys (Chapters 3
and 4) did not occur at the same time and together spanned the 100-day period. However, the
relationship between slopes of different regions varies across this period. Despite them
possessing statistically different means, the time series of the slopes for the subpolar, transition
and subtropical area display periods of overlap (Figure 5.5), particularly from mid-August
onwards. This suggests that the choice of time-scale used to study regional differences may

influence the results and that different behaviour may occur on a smaller time-scale. The
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question of whether regional differences in slope are apparent over smaller time-scales is

therefore investigated next.
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Figure 5.6: Histogram of phytoplankton slope values for the subpolar (a.), transition (b.) and subtropical region (c.)
over the course of the summer.

5.3.2.2. Monthly variations of phytoplankton slope over the summer

Over these smaller time-scales, the regional spectral slopes are once again calculated. As in the
previous sub-section, | first determine whether significant differences exists between regions
and secondly, whether these differences can be captured by cruises collecting only three
samples within the monthly period. The three cruises are now constrained to cover the entire
month. Within the cruise/month, three samples are chosen at random. Only samples obtained

at least six days apart are considered to make the selection comparable to in situ sampling.

Table 5.2: Monthly estimates for the mean and standard deviation for the phytoplankton spectral slope for the
summer months and the different regions. Mean and standard deviations are obtained from the 15 measurements
available in each month given the 2 model output every 2 days.

July August September
Subpolar -2.30£0.18 -2.58+0.17 -2.89+0.27
Transition -3.12+0.25 -2.92+0.47 -2.44 +£0.29
Subtropical -3.88 £ 0.27 -3.24+0.28 -3.08 £ 0.33
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Table 5.3: Mean differences and standard deviations in phytoplankton slope between the three regions investigated
for the months of July, August and September.

July August September
Subpolar-transition 0.82 £0.08 0.34+0.13 -0.49 £ 0.10
Subpolar-Subtropical 1.58 +£0.08 0.66 £ 0.09 0.19+0.11
Transition -Subtropical 0.76 £0.10 0.32+0.14 0.63+0.11

Results for the mean slope of each month and standard deviation are shown in Table 5.2. In July,
mean slopes of -2.30 + 0.18, -3.12 £ 0.25 and -3.88 + 0.27 are observed for the subpolar,
transition and subtropical region respectively. The difference between regions are all significant
at the 99 % confidence interval (Table 5.3) with differences and standard deviation of 0.82 +
0.08, 1.58 £ 0.08, 0.76 + 0.10 between subpolar and transition area, subpolar and subtropical
area, and transition and subtropical area respectively. For July, the cruises successfully
distinguish the differences in slope between the regions. Differences of 0.80 + 0.12, 1.56 + 0.15
and 0.76 * 0.17 are obtained when comparing subpolar and transition area, subpolar and
subtropical area and transition and subtropical area (Table 5.4). Cruises obtained the correct

relationship in each of the 10,000 simulations done.

For August, slopes of -2.58 £ 0.17, -2.92 £ 0.47 and -3.24 + 0.28 are observed for the subpolar,
transition and subtropical area respectively. Differences in slope reduce to 0.34 £ 0.13, 0.66 *
0.09 and 0.32 + 0.14 between subpolar and transition area, subpolar and subtropical area, and
transition and subtropical area respectively. They however remain significant at the 95 %
confidence interval. The cruises are successful in capturing the difference. Between subpolar
and transition (0.29 + 0.22), for 90 % of cases the correct relationship was measured. For the
difference between subpolar and subtropical regions, the correct relationship was obtained on

100 % and 95 % of cases respectively.

In September, a slope difference between regions of -0.49 + 0.10, 0.19 £ 0.11 and 0.63 £ 0.11
was observed between subpolar and transition area, subpolar and subtropical area, and
transition and subtropical area respectively. Differences are significant except between subpolar

and subtropical (0.19 £ 0.11).
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In conclusions, there exist significant differences in slope between regions. However levels of
short term variability are such that only mean differences larger than 0.5 are significant. Cruises

are nevertheless able to capture such differences with only 3 estimates.

Table 5.4: Differences in phytoplankton slope between the three regions investigated for the months of July, August
and September using cruise style surveying. Mean and standard deviation for slope difference obtained from the
distributions generated by running 10,000 simulations are given. The percentage in bracket corresponds to the portion

of measurements that correctly estimated the difference between regions.

July August September

Subpolar-Transition 0.80+0.12 0.29+0.22 -0.47 £0.19
(100%) (90%) (100%)

Subpolar-Subtropical 1.56 £ 0.15 0.66 £0.14 0.17+0.17
(100%) (100%) (80%)

Transition -Subtropical 0.76 £0.17 0.37+0.23 0.64 +£0.19
(100%) (95%) (100%)

5.3.2.3. Monthly variations of phytoplankton slope over an entire year

The mean and standard deviation for phytoplankton spectral slope were calculated for each
month for the entire year for each of the three regions (Figure 5.7) to evaluate regional

differences over the course of the year.

Monthly mean slopes show statistically significant differences between the three regions. These
were largest for the summer months. The consistently large intra monthly variability (Figure 5.8),
of on average 0.39 in the subtropical area, 0.31 in the transition area and 0.26 in the subpolar

area, means that only differences in mean slope of more than 0.23 can be distinguished robustly.

Using only three surveys for measuring the regional differences generates larger uncertainties
for the mean difference. As a results, the correct sign of the difference between regions could

be robustly obtained only for regions with monthly mean difference larger than 0.5.
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Figure 5.7: Model monthly mean phytoplankton slope estimates for the subpolar (blue), transition (green) and
subtropical area (red). Intervals delimited by one standard deviation either side of the mean are given in shaded colour.
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Figure 5.8: Comparison of inter-monthly variability in phytoplankton spectral slopes for the subpolar (blue), transition

(green) and subtropical area (red). The variability is represented by the standard deviation (SD) obtained from the
slopes values in each month.

5.3.3. Hypothesis 3: There is a difference in nitrate and phytoplankton spectral slope
which is consistent in time

Chapter 3 evaluated the nitrate (N) and phytoplankton (P) spatial relationship in the subpolar
gyre for one short period of 3 days in one year. A difference of -0.64 was measured between
nitrate and phytoplankton spectral slopes i.e. nitrate was steeper. Previous sections of this
chapter highlight the variable nature of phytoplankton spectral slope, and the question of how

this affects the nitrate-phytoplankton relationship is now addressed; in particular how
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representative the observed nitrate-phytoplankton (N-P) spectral relationship is of the
relationship between the two variables on longer time-scales. Model output allows us to
investigate this question given that there are too few in situ data to do so. Two steps are
required. First, the consistency in the model difference is explored throughout the relatively
stable summer period. If the difference is not consistent during this period then the hypothesis
is disproven. Second, the similarity in the difference in N and P slopes for the model and in situ
estimates is assessed. The cruise took place during the summer, a period of low chlorophyll
concentrations caused by the nutrient depletion of surface waters (Figure 5.4). The study aims
at evaluating the nitrate-phytoplankton slope relationship for conditions similar to those of the
cruise. The model displays an extended summer period of low chlorophyll concentration, so the
analysis covers the 82-day period from the 29%" of June to the 17" of September. The period is
shorter than for the previous study because it does not have to include periods from other

cruises.

Figure 5.9 displays the spectral slopes calculated for nitrate and phytoplankton over the course
of that period. A clear difference is apparent between slopes calculated from in situ observations
and those obtained from the model. The model slopes are steeper than those for in situ data
with model spectral slopes varying between -2 and -3 to first order. Note that the in situ spectra
for nitrate and phytoplankton have slopes of -1.29 and -0.65 respectively. By way of comparison
to a non-biological tracer, steeper slopes are also found for model temperature compared to in

situ.

Nevertheless, the focus of this hypothesis is on the difference between the spectral slopes of
nitrate and phytoplankton rather than their absolute values. Slopes of model phytoplankton and
nitrate are similar over the studied period. Cases of both phytoplankton and nitrate slope being
steeper arise (Figure 5.9). However, the phytoplankton slope is steepest for 83 % of the period.
This means that the sign of the difference is only consistent with in situ observations for 17% of

the period.

The nitrate-phytoplankton slope difference (Figure 5.10) confirms this picture. A mean
difference of 0.12 with a standard deviation of 0.21 is measured. In contrast, a difference of -
0.64 with standard deviation of 0.27 was observed for in situ (Chapter 3). Based on a normal
distribution with mean 0.12 and standard deviation 0.21, a negative N-P spectral slope in the

model would occur in 28 % of cases.
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Figure 5.9: Model slope variation for nitrate (blue), phytoplankton (green) and surface temperature (red) from the
subpolar region over the course of the summer. The grey band delimits the period of the D321 cruise. The blue, green
and red dots are the in situ nitrate, phytoplankton and temperature slope estimates respectively.
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Figure 5.10: Difference in slope for nitrate and phytoplankton (N-P) over the summer period (vertical grey dotted lines
with cruise period marked as solid grey band). Horizontal black and grey dashed lines represent mean and standard
deviation for the model respectively. Red lines represent the in situ N-P slope difference from D321 with its associated
standard deviation.

Large variations from the mean are observed in the second half of August and September. Figure
5.10 shows that within an interval of two weeks, between mid- August and early September, the
N-P slope changes sign from being strongly negative (-0.34) to strongly positive (0.54) to strongly
negative again. It is therefore clear that not only can the difference in slopes for N-P vary

significantly in time, it can also do so on the same short time-scales as the individual slope values.

Figure 5.10 also illustrates, by overlaying in situ results, that no slope difference for the model
lie within one standard deviation of the in situ mean. Assuming that the distribution of

differences in slopes is normally distributed, the statistical significance of the difference
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between in situ and model distributions for the slope difference can be estimated: the mean
difference is estimated as u =0.12 + 0.64 = 0.76 and the standard deviation as o =
v0.272 + 0.212 = 0.34, using the results from Chapter 3. In situ distributions are different at
the 95 % confidence level but equal means cannot be rejected at the 99 % confidence level.
Although this only represents a simple test and only a small amount of in situ data are available,
the results suggest that such a large difference between the slopes of phytoplankton and nitrate
in situ is not representative of the overall N-P slope relationship for this region in the model

during the summer.

5.3.4. Hypothesis 4: There is a seasonal pattern in phytoplankton spectral slopes

In previous sections it was shown that the phytoplankton slope exhibits significant temporal
variability on time-scales of the order of days and months. Here the focus is on whether there is
also variability on an annual time-scale. Because of differences between regions, time series for
the subpolar, transition and subtropical area are first studied individually. Inter-annual patterns

are also investigated later to examine the robustness of any seasonal signal.

5.3.4.1. Subpolar

For the subpolar area, Figure 5.11a indicates the presence of a pattern in both the time series
of the phytoplankton slope and the monthly variability in the slope. During the month of
January, February and March, slope values are centred around -2.95, with mean monthly slopes
of -2.86, -3.18 and -2.90 respectively. The monthly variability in slope (Figure 5.8) also remains

constant with standard deviations of 0.25, 0.25 and 0.23 respectively.

Appreciable changes in the spatial distribution of phytoplankton start to develop during the
month of April and May with the phytoplankton spectrum reaching its flattest slope, with a value
of -1.78, by mid-May. During that period larger variations develop with values of 0.31 and 0.37
for April and May respectively. The flattening of the slope is echoed in the monthly means with
values of -2.88 and -2.32 for April and May respectively. A period with flatter slopes and lower
variations follows until August. Monthly means of, -2.34, -2.30 and -2.57 are measured for June,
July and August respectively. The following three months display the lowest variability of the
year with values of 0.09, 0.18 and 0.17 respectively. The end of the year, from September to

December shows steeper values and larger monthly variability.
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Results from the three following years exhibit the same patterns (Figure 5.12). In particular
patterns in monthly variability are clearly apparent and consistent across the four years (Figure
5.13). The pattern describes a seasonal cycle with a spring peak in monthly variability during
April-May followed by a significant drop across the summer and another peak in autumn during

October-November.

A seasonal cycle is also present in the nitrate slope time series (Figure 5.11a). The cycle is
coincident with the phytoplankton seasonal cycle. It displays a flattening during the spring
bloom of a larger magnitude (from -3.44 to -1.06) followed by a more gradual flattening over

the summer.

Periodicities of a time series can be extracted using spectral analysis. Such analysis was done on
the time series for each region. For the subpolar region, in each of the four year time series a
peak was found for frequencies of 1/180 day™® with a smaller one at 1/360 day™. The nitrate
spectral slope time series (Figure 5.11) follows a similar cycle. For the year both N and P data
are available, their slope time series are highly correlated and have the same periodicities at
1/180 day? and 1/360 day™. The spectrum of the nitrate time series displays however more
variability at the two peak frequencies. These peaks support the presence of a seasonal cycle.
This cycle is dominated by the spring bloom. However, the higher peak for the nitrate slope
timeseries being at frequency 1/180 day! also shows the importance of the autumn slope

changes in setting this seasonal cycle.

5.3.4.2. Subtropical and transition areas

The time series of the phytoplankton slope in the subtropical area does not display a seasonal
cycle. Variability is more marked on a shorter time-scale. Monthly variability in slope has
standard deviation of 0.39 which is the largest for the three areas, with values of 0.31 and 0.26
for the transition and subpolar area respectively. Similar to the subpolar area, the phytoplankton
slope displays periods of larger and smaller variability (Figure 5.8). The benefit of having four
years of data is that what can appear as no particular structure using only one year, is given
more importance when reproducing in other years. For all four years, lowest variability is found

for the summer period (5.13c). A seasonal signal is also not seen in the nitrate slope time series.

No particular patterns appear in the time series of phytoplankton and nitrate slope for the

transition area (Figure 5.11). Also, comparison of time series of different years shows that no
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interannual relationship exists in the timing of the variations observed. As a consequence, the
average of the four years cancels most of these variations out which results in a mean signal

close to white noise (Figure 5.12).
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Figure 5.11: Time series of model phytoplankton spectral slope for the subpolar (a.), transition (b.) and subtropical region (c.). Four consecutive years are represented: year 1 in red, year 2 in

green, year 3 in blue and year 4 in orange. Average time series from the four years are displayed in black. Individual plots for each year are available in the Appendix A5.1 to this chapter.
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Figure 5.12: Annual cycle of spectral slope for nitrate (blue), phytoplankton (green) and temperature (red) for the
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area are overlaid in black solid and dotted lines respectively
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Figure 5.13: Model intra monthly slope variability for the subpolar (a.), transition (b.) and subtropical region (c.) for
the four consecutive years studied.

For the subtropical region, under spectral analysis of the time series the periodicities were
weaker and also varied from year to year. For year 1 and year 3 variability was the largest for a
frequency of 1/72 day™. For year 2 and year 4 it was for a frequency of 1/360 day™. The second
largest was also inconsistent with 1/120 day™, 1/72 day?, 1/51 day'and 1/45 dayfor year 1 to
4 respectively. The time series of the transition area only showed a weak peak in periodicity for
a frequency of 1/360 day®. As stated earlier, the periodicities in one year did not appear in

another and vanished in the averaged time series for the 4 years.

5.3.4.3. Phytoplankton slope relation to bloom

In the subpolar area, the springtime flattening of slope, present in every year, occurs around the
time of the phytoplankton bloom. The more precise timing of the flattening relative to the peak
in phytoplankton abundance, and what causes the flattening can be examined a little more

deeply.

The period of the spring bloom corresponds to a period of strong biological activity.
Phytoplankton concentrations increase rapidly over a matter of weeks consuming nutrients
which consequently decay rapidly (Figure 5.14). Such changes in concentrations may affect the
spatial distribution of phytoplankton and nitrate. Increasing concentrations of phytoplankton
can introduce variability into the phytoplankton spectrum at a variety of scales. Equally, as
concentrations decrease, the variability in the spectrum decreases. The issues of where in the
spectrum this variability is introduced and lost and how this affects the spectral slope are now

investigated.
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Figure 5.14: Model spectral slope variation for nitrate (a.) and phytoplankton (b.) over the course of the spring bloom
for the subpolar region for the 15t year of the four studied. Slope and mean concentration time series are represented
in solid and dashed black lines respectively. The phytoplankton concentration maximum is marked with a dashed red
line. The energy levels in the spectrum at 130 km length-scale (light blue/green) and 30 km length-scale (dark
blue/green) are also shown.

Given the power-law nature of the spectra, only a measure of the variability at either end of the
length-scale range is necessary to study changes in slope. In this study, the length-scales 30 km
and 130 km were used to represent the small and large scale respectively. In Figure 5.14 the
slope and the mean concentrations for nitrate and phytoplankton are overlaid. Spring time
series for phytoplankton for the other years are displayed in Figure 5.15. For each year the time

of the maximum phytoplankton concentration is also identified.

For year 1, the start of the flattening of the nitrate spectral slope precedes the phytoplankton
concentration peak by six days. A large change in nitrate spectral slope occurs from -3.44 at day
98 to -1.06 in twenty two days. Nitrate variability is steady before the bloom peak, but the
flattening in slope is associated with a loss of variability at both large and small scales. The

flattening is caused by a larger drop in variability at large scale relative to small scale.

In contrast, the phytoplankton slope starts flattening as levels of variability are still increasing in
the spectrum, because variability is increasing faster at small scales than large. Despite some
short term variability, it continues flattening as variability levels start dropping. Two periods for
which the phytoplankton slope flattens can be distinguished. The slope starts flattening fourteen
days before the phytoplankton maximum (day 90) for a period of thirty days from a slope of -
3.43 to -2.36. Slopes then steepen for eight days to -3.03. The second period of flattening,

starting at day 126 lasts eight days to reach the flattest slope of the annual cycle of -1.78 at day
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134. The first period corresponds to one when variability is largely increasing or stable. The

second corresponds to a period when variability is decreasing.
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Figure 5.15: Model spectral slope variations for phytoplankton for year 2 (a.), 3 (b.) and 4 (c.) over the course of the
spring bloom for the subpolar region. Slope and mean concentration time series are represented in solid and dashed
black lines respectively. The phytoplankton concentration maximum is marked with a dashed red line. The variability
in the spectrum at 130 km length-scale (light green) and 30 km length-scale (dark green) is also shown.

Nitrate model output were not available for the following three years and therefore spectral
slopes could not be obtained. The emphasis for these years is therefore examining the flattening
of the phytoplankton slope relative to the bloom peak. Unlike in year 1, in years 2, 3 and 4, the
flattening process starts after or around the phytoplankton peak in concentration and only at
the moment variability starts dropping in the spectrum. For year 1, the flattening started
fourteen days before the phytoplankton maximum whilst variability in the spectrum was still

increasing.

However, the three years display significant differences (Figure A5.1). Inyear 1, the slope transits
from being steep on average for January to March to being flat during June, July and August. In
other years, the spring period of flattening is interrupted by a long period of significant
steepening (year 2 and 4). Others display a less noisy signal (year 1 and 3). The clearest period
of flattening in slope occurs during year 3 starting from day 106 (mid-April) to 146 (end-of May)

from slope -3.68 to -1.74 but even this is interrupted by periods of steepening.

The increase and decrease of variability at large and small scale is not symmetric about the
phytoplankton maximum concentration even though the peak in variability coincides with the
peak in abundance. The increase in variability is near smooth while the decay shows episodic

injections, for instance at day 120 in year 4 or day 124 for year 3. Such jumps in variability explain
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some of the random noise observed in slope. While it might be tempting to interpret the delayed
peak in large scale variability in year 4 after one at small scale on day 120 as a cascade of
variability to other scales, in other cases (e.g. year 3, ~day 128) such peaks are coincident at both
scales. In summary, there is no consistent flattening in spectral slope after the spring peak in

phytoplankton concentration.

5.4. Discussion

A fundamental question to phytoplankton patchiness studies and one at the heart of this thesis
is whether the spectrum displays universal scaling properties. In this chapter, it is shown using
a model that the spectrum displays significant variability over temporal scales of days to weeks
and that this variability can also exceed changes in slope between regions. Variability occurs
over many temporal scales with important changes in slope over time-scale of weeks, months
and a year. There is some evidence for a seasonal pattern in the subpolar region but generally
there is no clear cause of such variability. Furthermore, variability was also shown to be present
in the relationship of slopes for phytoplankton and nitrate. Therefore, from the point of view of

the model, universal properties in the phytoplankton spectrum do not exist.

This variability is now discussed progressing through the different time-scales that are involved.
First, variability over time-scales of days is discussed, followed by time-scales of months and a

year.

In this study, model results indicate that significant short term variability, on time-scales of days
to weeks, exists in the time series of phytoplankton spectral slope. Limited information on
variability over such scales is available in situ. A comparison of slopes between model prediction
and in situ estimates showed model estimates to be significantly steeper (Section 5.3.1.).
Because model slopes are steeper than in situ ones, the variations in spectral slopes from the
model over time are greater in absolute values than in situ but are smaller using relative ones as

shown by the coefficient of variation.

Potential reasons contributing to the difference in steepness between in situ and model may
come from the data originating from different depths. In situ slopes are obtained with data
below the mixed layer which will have potential influences like light and internal waves that are

not present in surface estimates. This is illustrated in Chapter 4 where results show differences
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in variability depending on whether data are retrieved along density surfaces (to remove internal

waves) or for fixed depth (to keep the effect of light more constant).

Nevertheless, this cannot explain on its own the difference between in situ and model slopes
because in situ measurements from other regions obtained from within the mixed layer are also
flatter than model estimates (Figure 5.9). Furthermore steeper spectra in the model are

obtained for all variables studied.

Such levels of temporal variability in slope have consequences for in situ results. It is shown that
unless a sufficient number of slope measurements are made, results may not be representative
of the spatial distribution of phytoplankton for the region sampled. Furthermore, it is also shown
that these short term variations are different across the year and for different geographic
locations. Therefore, future in situ studies may require a different number of slope
measurements over the cruise duration depending on the region and time of year being
investigated to obtain the same degree of accuracy in their slope estimates. For instance, in the
subpolar area different levels of monthly variability in slope are observed during the spring and
summer time (Figure 5.13). Variability in slope changes by a factor of two between the two
periods. A larger number of samples is required when investigating the patchiness in spring

compared to summer.

The danger of under-sampling for in situ studies also impacts on their ability to effectively
compare patchiness of phytoplankton between different regions. The model shows that when
three slope measurements are made over a one month period, only regional differences in slope
larger than 0.5 can be distinguished. Furthermore, this is in the case that the same months are
being sampled. In the case of the in situ study in Chapter 4 where the 3 cruises cover the entire

summer, a geographical comparison is difficult due to the time window being too large.

Ship surveying is however not practical to investigate variations of phytoplankton patchiness
over time-scales of several months due to cost. Satellite data allow variability over such longer
time-scale to be investigated and this is studied in the next chapter (Chapter 6). Other
alternatives can be developed too, such as collecting Chl-a data using mooring arrays like the

OSMOSIS project (http://www.osmosis.ac.uk). For this project the two sets of moorings

organized in concentric squares allow variability at different length-scales to be captured which
can be used to derive a partial spectrum. This array was only instrumented for physical variables

though. More on the method and another option of using gliders are discussed in Chapter 7.
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However, the potential high frequency of such measurements over periods of months would

allow variability over time-scales of months to a year to be investigated.

The model also indicates that variability in the phytoplankton spectral slope may be present over
longer time-scales with regions displaying seasonal patterns. Results suggest that in the subpolar
region, the steepness of the slope may vary with season, possibly linked to the seasonal cycle of
phytoplankton concentration. A significant flattening starting around the phytoplankton
concentration spring peak and developing over the month of April and May is observed in the
four years investigated (Figure 5.12 and 5.15). Peaks of monthly variability in slope are also
recorded during months of highest biological activity (Figure 5.13) such as during the spring and
autumn bloom. Seasonal patterns are not present in all regions. However, provided sufficient
cloud free data are available, the existence of these patterns can partially be tested with ocean
colour data (Chapter 6). Other alternatives to explore include using ships of opportunity as a
mean to collect Chl-a data via a flow through system fitted onboard that continuously samples
the surface water. As they follow commercial routes on a regular basis across the year, a large
amount of data can potentially be collected containing both sufficient spatial resolution to
measure the mesoscale and sufficient spatial and temporal coverage to capture seasonal trends

at the regional scale. Such alternatives are discussed (Chapter 7).

The temporal trends in phytoplankton slope variations may also be analysed from the
perspective of the nitrate-phytoplankton spectral slope relationship. Results show that nitrate
and phytoplankton slope variations can show coincident changes but there is only evidence in
the subpolar region. Over short time-scales, model results however show that the difference in
their slope can vary significantly, with slopes for nitrate and phytoplankton being equal, nitrate
being steeper or flatter within a period of a month (Figure 5.10). However, currently only a small
number of cases exists for which nitrate and phytoplankton have been measured simultaneously
at the high resolution necessary to study the mesoscale. Furthermore, model results suggest
that a large number of measurements are necessary, and that therefore when only one
measurement of the relationship is made, like in Chapter 3, it cannot be considered

representative for the region.

The model additionally highlights the intricate relationship between interacting biogeochemical
variables. For instance, the flattening of phytoplankton slope during the spring bloom in the
subpolar region (Section 5.3.4.1.) is preceded by a flattening of the nitrate slope of even greater
magnitude over the same period. The nitrate spectrum flattens as a result of a larger drop in

variability at larger scale relative to small scale. One interpretation for the loss of variability at
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large scale may be by the role played by the winter convection in driving the initial spatial
variability at large scale. Consumption of winter stocks by phytoplankton removes variability at
large scale but as it is doing so, the transfer of variability to higher trophic levels is taking place.
Turbulence will also cascade the variability to smaller scales. In contrast, changes in variability
at smaller scales display a smaller amplitude. This may be explained by them being driven by
submesoscale dynamics which are relatively more constant in introducing variability across the
year compared to winter convection. Organising cruises around that time of year rather than in
the summer like in Chapter 3 and 4 may consist of a more strategic time to understand those

mechanisms.

5.5. Conclusion

In this chapter the variable nature of phytoplankton patchiness across time and geographical
regions has been studied using an idealized model. Temporal variability is present across a
variety of time-scales of days, months to a year. In the case of the subpolar region, there is some
evidence that this variability has a seasonal signal. Regional differences in slope also exist but no
strong seasonal signal is found for the subtropical and transition areas. From a model
perspective, there is no evidence for universal properties in the phytoplankton spectrum. The

next chapter explores whether this can be corroborated using satellite data.
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Chapter 6: Can remotely-sensed ocean colour bridge in

situ limitations in phytoplankton patchiness studies?

6.1. Introduction

The in situ observations analysed in Chapters 3 and 4 indicate how variable the characteristics
of phytoplankton patchiness may be. With the data being sparse and sampled at different
locations and at different times of year, it is not possible to determine, based on in situ data,
whether this variability is spatial or temporal. Models do not have these problems, but while
they provide considerable insights, particularly for relationships with other parts of the
ecosystem such as nutrients, these results must be interpreted with caution because of the

discrepancies models share with the available in situ observations (Chapter 5).

Satellites provide global coverage of the oceans, with phytoplankton mapped at approximately
1 km resolution. They offer the advantage of providing data that are synoptic, cover vast regions
and are available all year round. Except for the problem of clouds, satellite data therefore
present major advantages for evaluating temporal and spatial variation in the slope of
phytoplankton. Despite this, no direct comparison of simultaneous satellite and in situ data
derived estimates of phytoplankton spectra exists. The question of ‘How consistent are satellite

and in situ phytoplankton slope estimates?’ therefore needs to be answered.

Another issue with in situ surveys is that physical features such as eddies have a size relatively
large compared to the size of such survey areas, which are typically around 100 km by 100 km.
Often only one or two of these features can be captured within one survey. Yet eddies are known
to influence the phytoplankton field and spectrum. For instance in Chapter 3, transects from
surveys crossing eddies had a phytoplankton spectrum that was different to those that did not.
The question therefore is whether such small in situ survey areas are large enough to give a
robust estimate of the spectrum at regional scale. Understanding whether sub-regional
variability exists in the phytoplankton spectrum is essential to be able to quantify other
variability such as the changes in the spectrum for one region over time. The reduced area of
the North Atlantic represented by the idealised model analysed in Chapter 5 does not lend itself

to such a study. Satellite data, however, provide an ideal means to assess this.
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The model analysis in the previous chapter did, however, provide considerable insight into
temporal variability in spectral slopes. In particular, there was an indication that there may be a
seasonal cycle in phytoplankton slope for the subpolar gyre. Satellite records provide a means
to test this, and its possible link to the annual cycle of phytoplankton abundance,

observationally.
In summary, the following hypotheses are tested in this chapter:

e Satellite and in situ data are consistent for the study of phytoplankton patchiness.
e Phytoplankton spectral slope is insensitive to how an area is mapped

e Satellite data show seasonal cycles in spectral slope.

6.2. Methods

The satellite data used for this chapter consist of daily 1 km resolution ocean colour from the
MODIS satellite. The areas investigated were chosen so that a comparison with in situ results
(Chapters 3 and 4) could be made. They consist of areas covered by the cruises D321 in the
subpolar North East Atlantic around the Ocean Weather Station India (60°N 20°W) and D381 in
the Porcupine Abyssal Plain in the inter-gyre transition region (49°N, 16.5°W). Satellite and in
situ data are consistent in providing observations of Chl-a for use as an index for phytoplankton
abundance. Low surface phytoplankton abundance in subtropical regions (see, for example,
Chapter 4) make remotely sensed data for these regions not suitable for quantifying
phytoplankton patchiness. Satellite data from enlarged areas, of up to 400 km by 400 km,

located in the vicinity of these sites were also used to address the first two hypotheses.

The presence of a seasonal cycle in the phytoplankton spectral slope is also investigated with
satellite data for just the subpolar and the transition regions, for the same reason. The area with
coordinates 15°W-28.5°W, 54°N-60°N was investigated for the subpolar region, an area
extended to the South-West of the D321 cruise (60°N 20°W). For the transition area, it was the
area with coordinates 15°W-28.5°W, 44°N-51°N, an area extending to the West of the D381 area
(49°N, 16.5°W). Their positions were chosen so as to remain within the subpolar and transition
regions, yet provide better temporal coverage. The ocean colour data used were daily 1 km
resolution pictures from the year 2007 from the 5% April (Julian Day (JD) 95) to the 22" July (JD

203). Note that data outside these times were very sparse due to cloud cover and so analysis of
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seasonal variation is confined to this window. Subsets of approximately 400 km by 400 km within
these areas were used for the analysis. The subsets were chosen as the areas with least cloud

coverage over the period investigated.

Calculating spectra

To be consistent with the rest of the thesis, a one dimensional spectral method was applied to
the satellite data. The MODIS data provided by NEODAAS (see Acknowledgements) are on a
regular grid with pixels equidistant in degrees. This corresponds to a constant 1 km resolution
in the latitudinal direction. In the longitudinal direction the pixel size in kilometres decreases
with cosine of latitude, from 1 km at the Equator. Transects are extracted from the grid in both
the latitudinal or longitudinal direction. For each transect, data were the given latitude and
longitude coordinates of their pixels. Distance in degrees between the data points was then used
to calculate distance in kilometres. A direct consequence is that although transects in the
longitudinal direction have equally spaced data points, the interval between data points changes
with latitude with transects from higher latitudes having a smaller interval. For instance, a
transect at the equator has data points separated by 1 km whilst at 60°N the interval is 0.5 km.
In contrast, all transects taken in the latitudinal direction have the same interval of 1 km
between data points. To avoid selecting data duplicated during the processing and gridding of

the data by NEODAAS, transects at least 5 km apart are selected.

Despite the regular spacing of data pixels, spectra were evaluated as in Chapter 3 and 4 using
the Lomb-Scargle periodogram method. This was due to the presence of clouds which at times
caused the data to be unevenly spaced. The spectrum of phytoplankton was estimated for the
length-scale range 8 to 130 km to be consistent with the in situ analysis in Chapters 3 and 4. Only
transects with at least 80 % of cloud free data were considered. Transects longer than 130 km
were split into segments each 130 km long and overlapping by 50 % whose spectra were then

combined to decrease uncertainties in the slope estimates (see Chapter 2).

For the comparison of satellite data with D321 in situ data only transects coincident with the
cruise were extracted. In this case the combined spectrum was calculated using the mean
variability at each wavenumber to be consistent with the in situ method. Elsewhere, as datasets
with a larger number of segments were studied (up to 300 segments), the median variability at
each wavenumber was used instead. Doing so eliminates the effect of occasional outliers (not

present in the D321 data) which, with a power-law signal, can significantly modify the slope
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estimate when using the mean. A slightly modified bootstrap routine was therefore used, using
median rather than the mean for calculating the average spectrum. For each instance in the
bootstrapping, 90% of estimates were randomly selected (allowing repetition) from all the
estimates obtained with all the 130 km segments and the average spectrum obtained by
selecting the median value of the variability for each length-scale. The slope and its uncertainty
were obtained by taking the mean and the standard deviation of the bootstrap generated

probability distribution for the slope.

Simultaneous satellite SST data were also investigated but concerns over artefacts resulting from

processing of the data by NEODAAS (see Figure 6.1b) led to them being discarded.

6.3. Results

6.3.1. Hypothesis 1: Satellite and in situ data are consistent for the study of
phytoplankton patchiness

In order to test this hypothesis, we need an instance in which both satellite and in situ data exist
simultaneously. Fortunately D321 offers the opportunity to quantify the differences in the
phytoplankton spectrum between in situ and satellite derived data. Figure 6.1a shows an ocean
colour image from MODIS taken on August 6™ 2007, during the time of the D321 survey (5% -7t
August). The red box corresponds to the area sampled during cruise D321, with the solid green
lines representing the cruise tracks along which in situ Chl-a measurements were made. The
dynamical features, most strikingly the two counter-rotating eddies that form the dipole, are
clearly observable in the colour image. A coincident picture was not available for the D381

cruise.
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Figure 6.1: Snapshot of the MODIS satellite image taken on the 6th of August 2007: Chl-a (a.) and SST (b.). The red box
bounds the area surveyed during the D321 cruise. The green lines indicate the location of the transects planned for
the survey. Solid lines correspond to the in situ transects successfully sampled for which Chl-a estimates are available.
The dashed lines are those that could not be sampled on D321. Both solid and dashed transects are used for the
satellite data spectral analysis. Note the blurring and elongated features in b) which led to SST data being discarded.

Data for Chl-a along each marked transect can be seen in Figures 6.2a and 6.2b for in situ and
satellite measurements, respectively. The satellite captures the main features observed in the
in situ Chl-a data: the amplitude and position of the major peaks in each transect are similar to
in situ transects. Less variation is observed at small scale in the satellite data, however. This is
illustrated by smaller Chl-a changes between neighbouring data points when around the 0.2 mg

m~ concentration.

Figures 6.2c and 6.2d show the spectral estimates for each transect. Overlaid are the mean
spectrum and line of best fit used for calculating the slope. The slope of the satellite
phytoplankton spectrum has a value of -1.23. It is steeper than the in situ estimate (-0.72 — see
Chapter 3). Levels of variability at large scale for the satellite and the in situ spectra are
equivalent. In contrast, confirming the visual impression, variability at smaller scales is lower in
the satellite spectrum, particularly at length-scales smaller than 25 km. This is why a steeper
slope is found for the satellite spectrum. A potential explanation for this discrepancy comes from
the differences in the data collection process which will be discussed later on. Despite the
discrepancy in energy levels at small scale, the ability of the satellite data to reproduce the
patterns seen in the phytoplankton data gives us confidence to use it to address the second and

third hypotheses, with the awareness that it might over-estimate slope.
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Figure 6.2: Chlorophyll-a time series for the D321 area obtained with in situ (a.) and satellite data (b.). The gaps in the
satellite data time series are due to cloud coverage. The corresponding respective spectral estimates are shown in (c.)
and (d.). The different colours correspond to the time series and power spectra of the different transects carried out
during the cruise. The mean spectra are shown in bold green.

6.3.2. Hypothesis 2: Phytoplankton spectral slope is insensitive to how an area is
mapped

The advantage of having satellite data available for the exact time and location of the survey is
that alternative scenarios for the cruise location and sampling method can be investigated. For
instance, what would the spectrum of phytoplankton be had all transects been successfully
sampled? Or, would the spectrum be the same if the choice of orientation had been from North
to South rather than East to West? More generally, given the element of randomness present
when it comes to choosing a survey location, another point worth investigating is what the
phytoplankton spectrum would look like if another location in the vicinity of the D321 area was

sampled instead. The hypothesis is therefore tackled via four questions.
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6.3.2.1. Question 1: Does the number of transects matter?

In the previous section the phytoplankton spectrum was calculated with satellite data using only
transects matching those successfully sampled in situ. These consisted of only four and a half of
the nine transects originally planned (See Figure 6.1). Figure 6.3a shows the mean phytoplankton
spectrum obtained from satellite data using the 9 transects of what would have been the
complete survey. The slope of the spectrum, -1.35 + 0.14, is steeper than that obtained with the
incomplete survey using satellite data (-1.23 + 0.19) but the two are undistinguishable given the
uncertainties. However, the uncertainty in the slope is reduced with a standard deviation of 0.14
compared to 0.19 for the incomplete survey (Figure 6.4). By effectively doubling the number of

transects, the uncertainty in slope is decreased by ~30 %.

The confidence interval, which is bounded by one standard deviation of the power estimates
either side of the mean for each wavenumber band in Figure 6.3, is seen to vary with length-
scale. The shape of the confidence intervals may give the impression that the power spectra do
not follow a power-law. A closer look at the individual spectrum of each transect (see Appendix
A6.1) indicates that this is not the case and that variability in slope steepness between the

transects creates the curved shape of the uncertainty envelope.
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Figure 6.3: Average spectra obtained from satellite data for the D321 area using all 9 East-West transects originally
planned for the in situ survey (a.) and for the same area using 9 North-South transects instead (b.).

6.3.2.2. Question 2: Does the direction of transects matter?

Figure 6.3b displays the phytoplankton power spectrum resulting from when the survey is

conducted North-South instead of East-West, once again using 9 transects. The slope is steeper
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(-1.49 £ 0.16) than that obtained from data sampled in the East-West direction (-1.35 £ 0.14) but
not significantly given the uncertainties. Uncertainties in the slope, however, remain similar
(Figure 6.4). Using a t-test, a mean difference of 0.14 is measured with standard deviation of
0.071. Although a difference in the mean exists there is not sufficient evidence to reject the
hypothesis that the means are not equal. The same applies when comparing N-S slope results
with E-W results for the 4.5 transects that were actually sampled; the differences are not
significant at the 95 % confidence interval (Figure 6.4). In this case, with a study area of such

small size, the direction of sampling impacts little on the value of the mean slope estimate.
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Figure 6.4: Slope distributions for phytoplankton spectra obtained for the D321 area using in situ observations (a.) and
a series of satellite data sets (b. to d.): case using 4 East-West transects corresponding to ones sampled in situ (b.);

case of full area surveyed with 9 East-West transects (c.) and case of full area surveyed with 9 North-South transects

(d.).
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6.3.2.3. Question 3: How sensitive is the slope to the choice of location of
the survey?

To evaluate this question, an area extended from that covered by the D321 cruise has been
investigated. The satellite picture data are extracted (Figure 6.5) from the same day as the
previous study (Figure 6.1) but instead covering the area with coordinates 57.1N-61N ,23.5W-
15W i.e. approximately 400 km by 400 km centred on the original survey area. This area was
divided into subset areas of size 130 km by 130 km to match the size of the D321 survey area.
An overlap of 50 % between subsets was used for both the latitudinal and longitudinal direction.
By overlapping, a larger number of subsets are generated (30) improving the estimation of the

mean slope (see Chapter 2).

The spectrum of phytoplankton was estimated for each box using 9 equidistant transects
oriented East-West. As in Section 3.2.1., 19 subset areas were affected by the presence of
clouds. Those with cloud cover exceeding 30 % (in this case, four) were discarded. However, for
subsets with less than 30 % cloud cover, only transects with at least 80 % of cloud free data were

considered in the mean spectral estimation.

Figure 6.6 shows the distribution of the slopes obtained for the 26 subsets. Slope values ranged
between -0.95 and -1.94 with a mean slope of -1.46. The uncertainty in the slope also varied
between subsets, from 0.11 to 0.44 with a mean uncertainty of 0.20. The largest uncertainties
were recorded for subsets with the least number of transects (Figure 6.6) consistent with Section
3.2.1. In total, 5 subsets have only 5 or less transects (minimum of 3) and all but one of these
display variability in spectral slope in excess of 0.23 (Further details on the slope value,
uncertainty and number of transects used for each of the 30 subsets is available in Appendix
A6.2). Significant regional variability therefore exists in estimates of the phytoplankton slope
when using a method replicating in situ sampling. Results from a single survey may therefore

not be representative of the patchiness at regional scale.
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Figure 6.5: Ocean colour satellite image captured by MODIS. The area shown is used for comparing the spectrum of
phytoplankton from the D321 survey area (red box) to that of the wider region.
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Figure 6.6: Distribution of the phytoplankton spectral slope (a.), its uncertainty (b.) and uncertainty plotted against
number of transects in each survey (c.). Results are obtained from the satellite data displayed in Figure 6.5 using
subsets of size 130 km by 130 km. The mean of the slope is a=-1.45 and the mean uncertainty 0.20.
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6.3.2.4. Question 4: Are spectral slope and its variability a function of box

size? Or Does the size of the sampling box matter?
The variability displayed in the spectral slope of phytoplankton across the different 130 km by
130 km subsets in the previous section raises the question of whether such small areas are the
optimal size for quantifying the spectrum of a region. Even if the interest is in scales up to 130
km, does a larger area need to be sampled to get a more accurate estimate of the spectrum at

scales 130 km and less?

In addition to a survey area of size 130 km by 130 km, survey areas of dimension 200 km, 260
km, 325 km and 400 km (in the same region used to address Question 3) are now used to
evaluate the spectrum. The spectrum was estimated for the same range of length-scales (8-130
km) as before. The sizes of the survey areas were chosen to be able to split the transects within
them into 130 km segments overlapping by 50 %. By overlapping survey areas by approximately
50 %, 30, 9, 4 and 4 subsets were available for the 130 km, 200 km, 260 km and 325 km sized
survey areas. To have 4 subsets of size 325 km obliged a larger overlap between subsets. For
obvious reasons, only one set could be used when using the 400 km survey area. Within survey
areas, transects were taken along latitudinal lines. For transects longer than 130 km, transects

were subdivided into segments of 130 km overlapping by 50 %.

Two cases were investigated: the first using a constant separation between transects of 13 km
(as for in situ), the second using a constant number of 9 transects. This was done to evaluate the
effect of both using a larger area and a larger number of transects on the slope variability and
uncertainty. With the first method, increasing the box size increases the number of transects
from 9 for a box of 130 km to 119 for a box of 400 km. Therefore both increased area and
increased number of transects influence the outcome. The second method controls the number
of transects to better highlight the effect of survey area size. Results for fixed separation

distance and fixed number of transects are shown in Figures 6.7 and 6.8 respectively.

Fixed distance: Figure 6.7a shows that mean slope remains nearly constant with box size, with
values of -1.43, -1.41, -1.51, -1.48 and -1.58 for boxes of side 130 km, 200 km, 260 km, 325 km
and 400 km respectively. The significant variability in slope observed for survey areas of size 130
km reduces for larger areas investigated (Figure 6.7a). Additionally, the size of the survey area
affects both the uncertainty in slope and the variability in this uncertainty (Figure 6.7b). For
survey areas of dimension 130 km a mean uncertainty of 0.19 with maximum values attaining
0.30 is observed. Mean uncertainties decrease to 0.096, 0.083, 0.066 and 0.058 for box of size

200 km, 260 km, 325 km and 400 km respectively (Figure 6.7b).
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Nevertheless, it is not possible to say whether the reduction in slope uncertainty with increasing

box size is the result of an increase in the area surveyed or the number of transects.
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Figure 6.7: Comparison of phytoplankton spectral slope estimates (a.) and uncertainties (b.) as a function of survey
area size. Each data corresponds to one survey area within the 400 km x 400 km region displayed in Figure 6.5.
Transects in each box used are separated by 13 km.

Fixed number of transects: Results for the mean slope and the variability of the slope estimates
do not change compared to the experiment with fixed intervals (compare Figures 6.7 and 6.8).
However, the uncertainty associated with each slope value increases due to the smaller number
of transects used. Slopes for survey area sizes of 200 km, 260 km, 325 km and 400 km have
uncertainties of 0.118, 0.122, 0.116 and 0.092 respectively. Although the number of transects
was held fixed, bigger survey areas yield more 130 km segments. The number of segments does
not affect the mean slope (Figure 6.8c). As expected, the uncertainty decreases as the number

of segments increases (Figure 6.8d).

A coarse attempt to evaluate the influence of the number of segments on the uncertainty levels
is made here. The uncertainty in slope values obtained with 9 segments (only 13 estimates were
used because others had segments lost due to cloud cover) has a mean of 0.161. Assuming that
each subset is an independent sample and originating from the same slope distribution, the
uncertainty s should decrease when more segments are used. It should follow the relationship
s = g /v/n, where g is the original standard deviation of the slope distribution and n the number
of samples or segments. Using results obtained with 9 subsets, o can be estimated to be g =

s.v/n =0.161x3 = 0.482.
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Figure 6.8: Comparison of phytoplankton spectral slope estimates (a.) and uncertainties (b.) as a function of survey
area size. For each survey area, 9 transects are used. Bigger boxes provide larger transects which are divided into 130
km long segments. The relationship of slope estimate (c.) and uncertainty (d.) with the number of segments for areas
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The decrease in uncertainty can therefore be estimated when using an increasing number of
segments. The prediction is shown with the black curve in Figure 6.8d. The decrease in slope
uncertainty corresponds closely to the decrease expected due to the added number of
segments. Increasing the area does therefore not apparently contribute significantly to
decreasing the uncertainty. This could also have been measured by selecting the same number
of evenly distributed segments for different sized areas for estimating the slope uncertainty and

removing the problem of different number of transect. This was not done because it did not

consist of a realistic in situ sampling strategy.
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An additional experiment focusing only on the slope estimates using survey areas of dimension
200 km was made to evaluate further whether increasing the number of transects (here by
reducing the distance between them) reduced the variability in slope estimates. The experiment
was run with 5, 10, 15 and 25 equally spaced transects (Figure 6.9) in each 200 km x 200 km
survey area. Results are consistent Figure 6.9: increasing the number of transects reduces the
level of uncertainty in the slope estimates (Figure 6.9b) but does not reduce the variability
observed between slope estimates for different 200 km by 200 km boxes within the 400 km by
400 km area (Figure 6.9a). Spatial variability at the regional scale therefore exists and is not the

result of uncertainty in the slope values.
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Figure 6.9: Phytoplankton spectral slope estimates(a.) and uncertainty (b.) for the range 8-130 km calculated within
a 400 km by 400 km area (Figure 6.5) using overlapping survey areas of size 200 km by 200 km. Results are obtained
from surveying the survey areas with 5 (red), 10 (blue), 15 (green) and 20 (pink) equally spaced 200 km transects. The
number of segments on the x-axis corresponds to the number of 130 km segments used to estimate the spectrum. For
instance, in each cloud free 200 km transect, two 130 km segments overlapping by 50 % are potentially available for
the estimation. However, different level of cloud cover in each survey area mean that not all can be used.

6.3.3. Hypothesis 3: Satellite data show seasonal cycles in spectral slope

So far this chapter has focused on what satellite data can tell us about spatial variability in slope.
However, Chapter 5 raised questions concerning how phytoplankton spectra evolve over time.
For the subpolar region, the period of the spring bloom in the model corresponds to a transition
period in slope steepness, from steeper winter values to flatter summer ones. For the transition
region, significant temporal variability is observed but with no particular seasonal pattern. As
the model is an idealized one, we now seek to explore this issue further using satellite data.
More specifically, we explore whether there is a shift in spectral slope across the phytoplankton

spring bloom. Two steps are taken to address this question. First, the time series of the
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phytoplankton spectral slope is calculated over the spring and summer period. Second, the
causes for the variations in slope are examined by comparing the levels of variability in the

spectrum at large and small scales.

Three boxes were investigated in the subpolar area (denoted S1, S2 and S3 - Figure 6.10) and
four in the transition region (T1, T2, T3 and T4 - Figure 6.11). Their size was chosen to limit the
influence of sub-regional variability on the phytoplankton spectral slope, as was shown in the
previous section when selecting smaller areas. Larger boxes were not used, partly to optimise
the chance of suitably less cloudy images. Additionally, as the focus is on the spring bloom and
the evolution of the phytoplankton slope relative to the phytoplankton concentration peak, the
timing of the bloom needs to be consistent across the area studied. With the timing of the
phytoplankton peak varying with latitude, the risk with taking a larger box is that data within it
are at different points in time relative to the phytoplankton peak. For instance pre-bloom
conditions may be evaluated in one corner of the box whilst in the other corner the bloom may
have already started. An illustration of how much variability exists in peak time between

different boxes is shown later in Figure 6.12 and 6.13.
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Figure 6.10: Location of the three survey areas (S1, S2 and S3) in the subpolar region (a.) used for estimating the
spectral slope evolution of phytoplankton over the course of the summer. Note the varying level of cloud cover
affecting the different boxes. Also shown (b.) is the seasonal cycle in phytoplankton mean concentration for the area
shown in (a.) with the studied period marked as dashed red lines).
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Figure 6.11: Location of the four survey areas (T1, T2, T3 and T4) in the transition region (a.) used for estimating the
spectral slope evolution of phytoplankton over the course of the summer. Also shown (b.) is the seasonal cycle in
phytoplankton mean concentration for the area shown in (a.) with the studied period marked as dashed red lines).
The colours in (a.) refer to the number of cloud free days for each pixel in the image during the period studied. It was
used to identify subsets with most cloud free data.

For both regions, images were analysed by extracting longitudinal transects. The direction of the
transects in these regions does not matter for the spectral analysis because the size of the
physical features populating them (~100 km or smaller) is smaller than the size of the transects
(400 km). Direction of sampling however, would likely matter in regions dominated by large scale
jets (e.g. Gulf Stream). A smaller interval of 5 km between transects was chosen relative to the
previous section to improve slope uncertainties. The interval however is large enough to prevent
duplicate measurements in neighbouring transects. Each transect is approximately 400 km long
and was subdivided into 130 km overlapping segments for which the phytoplankton spectrum
was estimated. In total, for a cloud free picture of a survey area, up to 325 segments can be
estimated. Nevertheless, cloud cover limited the number of segments available in all survey
areas. Only images with a minimum of 20 segments were considered for calculating the
combined spectrum of phytoplankton for that day. This minimum number was chosen to ensure
that a large enough area is covered and therefore minimising the impact of sub-regional
variability that exists within an area of size roughly 400 km by 400 km. In addition, as shown in
Figure 6.9 low uncertainties are obtained for the slope when using 20 segments. For reasons
given earlier, the combined spectrum for each daily image was obtained by selecting the median
estimate at each length-scale for which the variability was estimated. For ease of comparison,
both subpolar and subtropical regions are initially analysed for the same period. Results for the

subpolar and transition region are displayed in Figures 6.12 and 6.13 respectively.
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Figure 6.12: Time series for the areas S1 (a., b.), S2
(c., d.) and S3 (e., f.). Phytoplankton spectral slope
(green) and associated uncertainty (shaded) are
shown in (a., c., e.). All three together are shown in
(g.) with a linear regression (black) fitted to the
estimates. The seasonal cycle of phytoplankton
concentration (pink) from 8 day composite images is
also shown (a., c., e.) together with estimates from
the single day images used to calculate spectra (blue
dots). Variability at length-scales of 10 km and 100
km are displayed in dashed grey lines in (b, d, f).
Variability is always greater at 100 km. The slope and
single day phytoplankton concentration are also
shown in (b., d., f.) to aid comparison.
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Figure 6.13: Time series for survey areas T1 (a., b.), T2 (c., d.) and T3 (e,f)and T4 (g., h.) in the transition region.
Phytoplankton spectral slope (green) and associated uncertainty (shaded) are shown in (a., c., e., g.). The seasonal
cycle of phytoplankton concentration (pink) from 8 day composite images is also shown (a., c., e., g.) together with
estimates from the single day images used to calculate spectra (blue dots). Variability at lengthscales of 10 km and
100 km are displayed in dashed grey lines in (b., d., f., h.). The slope and single day phytoplankton concentration are
also shown in (b., d., f., h.) to aid comparison.
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Subpolar region:

Because of concerns over gaps caused by cloud cover, in addition to mean phytoplankton
abundance in each survey area being calculated from the daily 1 km resolution images, the
timing of the peak in phytoplankton concentration was also identified using 8 day composites of
4 km resolution images (Figure 6.12 a, c and e). For each of the survey areas there were two
peaks in abundance: on JD 140 and JD 176 for S1; on JD 104 and JD 180 for S2; on JD 120 and JD
176 for S3.

Trends in phytoplankton slope relative to the largest phytoplankton concentration peak cannot
be distinguished. Insufficient estimates are available to identify trends reliably for S1 and S3
where only two and three estimates, respectively, are available after the main peak. In S2, where
the largest peak occurs earlier (JD104), the 13 estimates post peak show a variable but
steepening slope. Extensive cloud coverage means no data are available outside the period
shown in Figure 6.12 for any of the 3 survey areas. Trends for the period, rather than relative to
the phytoplankton peak for each survey area (Figure 6.12g), show a tendency of slope to steepen
with time. This is confirmed by a linear regression fitted to the combined time series for all three
areas but a low r-squared value (0.41) suggests that the relationship is weak. Furthermore, the
differences in bloom timing between the three sites suggest that any such relationship should

be treated with caution.

Despite being potentially more exposed to sub-regional variability due to the small area covered,
estimates obtained with only 20 to 25 transects, are nevertheless largely consistent in value with
neighbouring estimates in time. For instance, in S1 the slope at JD 115 (-0.53), obtained with 23
segments, is similar to the slope at JD 122 (-0.71) obtained with 39 segments. One exception is
found for S2 at a point when three estimates are available within a period of 6 days. For JD 147
and 148 slope values of -0.99 and -0.98 are found using 116 and 33 segments respectively. For
JD 152, the slope estimate of -1.92, obtained from 23 segments only, is significantly steeper. The
image for this area shows that the spectrum was calculated using a portion of the full survey
area of only approximately 130 km by 130 km in size (Figure 6.14a). Therefore variability of slope
between sub-regions of S2 relative to the regional value may exist. In particular, the cloud free
zone in Figure 6.14a is traversed by a marked filamental feature which is perpendicular to the
direction of the transects. This can generate a steeper spectrum due to the level of energy that
is introduced at larger scales by the strong phytoplankton gradient. This measurement may
therefore not be representative of the regional value. The same is true in S3 at JD 159 (Figure

6.14b). The feature should also be compared to that studied in situ in Chapter 3.
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To first order, variability at large and small scale in the spectrum follows the changes in Chl-a
concentration in the area (Figure 6.12 b, d and f). This is true for all three areas and consistent
with the model results in Chapter 5. However, once again as in Chapter 5, this does not lead to
the slope tracking variations in mean concentrations because it is the relative change in
variability between the two length-scales that causes the changes in slope and this follows a

more random pattern.
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Figure 6.14: Example of satellite derived Chl-a in the subpolar region for S2 on JD 152 (a.) and S3 on JD 159 (b.) for
which only ~20 segments were used to estimate the phytoplankton spectra. The striking phytoplankton spatial
features dominating these images caused the slopes to differ appreciably from estimates from images before and
after.

Transition area:

As for the subpolar region, the timing of the peak in phytoplankton concentration varies
between areas but also in magnitude (Figure 6.13). For instance in T2, the South-western area,
the peak is lower with concentration 0.56 mg m= and occurs later (JD 136) than elsewhere. The
seasonal cycles in T1 and T3, covering the same latitudes, are well correlated. T4 also presents
a strong peak (JD 128) but differs from T1 and T3 by presenting a more gradual decline with
concentration, remaining above 0.5 mg m for over 40 days. As a larger number of estimates
was available due to less cloud coverage than in the subpolar region a minimum of 30 subsets

for estimating the spectrum was set.

Relative to the date of the phytoplankton peak abundance, no consistent trend in slope is
distinguishable across any of the four boxes investigated. Following the peak, cases for which

spectral slopes are steepening (T3 and T1), flattening (T2) and stagnating (T4) are all observed.
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Generally, the region as represented by the four areas displays large temporal variability in the
phytoplankton slope. These variations remain present when considering slope estimates

obtained from a minimum of 70 transects.

At both large and small scales of the spectrum, the changes in variability follow the
phytoplankton mean concentration (Figure 6.13). As with the subpolar region, the changes in
variability do not, however, introduce trends into the phytoplankton slope to correlate with the
trend in phytoplankton concentrations. In the case of T4, a drop in variability is observed at both
small and large scale of the spectrum from the phytoplankton peak at JD 128 to JD 210, but
slopes increase over that time because the drop at large scale is smaller. A similar pattern is

observed in T2.

As a further test that the number of segments does not influence the estimate of the slope
unduly, it is possible to exploit the fact that for the transition area data are available until JD
270. The comparison of time series between T3 and T4 when using a minimum of 30 and 70
segments is shown in Figure 6.15. The degree to which the variations in slope are coincident for
the two regions is not apparently affected by the number of segments. Comparison of time
series between other areas is shown in Appendix A6.3. Once again, results show that over that
significant temporal variability is present in the estimates of the phytoplankton slope over

several months.
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Figure 6.15: Phytoplankton spectral slopes for areas T3 (red) and T4 (grey) of the transition area using 30 transects
(a.) and 70 transects (b.) for the evaluation of the slope over a longer period. The variation in phytoplankton
concentration is displayed in dashed colour for both areas.

6.4. Discussion

Phytoplankton slope variability has been investigated earlier in this thesis (Chapters 4 and 5)
over a range of time-scales from a few days up to a year. For time-scales of months to a year,
variability in slope was evaluated from a model perspective with in situ data simply being too
limited in time. Both model and in situ data indicated that phytoplankton slope also presents
variability in space. In this chapter satellite data have shown that significant variability exists in
the slope of phytoplankton over time-scales of days to months and spatially at the sub-regional
scale. Combined together, satellite data further supports findings from in situ and models
challenging the idea of the existence of universal scaling properties for phytoplankton in both

space and time.
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Satellite and in situ have consistent spectra:

It has been shown, based on an area for which both satellite and in situ phytoplankton data are
available, that spatial variability seen in observations from satellite are consistent with estimates
from in situ. Satellite estimated spectral slopes for the range 8-130 km are, however, steeper

than those from in situ due to an under-evaluation of the power at small scales

Two aspects differentiate the in situ and satellite datasets that may explain the discrepancy: the
resolution of the data (1 km and 4 km for satellite and in situ data respectively) and the manner
that the data points are obtained in each data set. In situ data consist of data points
approximately 4 km apart with each data point obtained from averaging around 20 data points
collected over approximately a 100 m distance (Chapter 3). In contrast satellite data consist of

1 km averages with 1 km resolution.

A simple artificial time series replicating a phytoplankton transect can be generated by
converting into the time domain a spectrum with pre-defined power-law (see Chapter 2). From
this time series, two data sets were obtained reproducing the data collection and processing of
satellite and in situ surveying. The spectral analysis of these two data sets consistently reveals
that the spectrum obtained with the satellite-like data is steeper than that simulating the in situ
data. As seen in Chapter 2 (Section 2.4.4.), a flatter slope than the true slope is found when using
the data simulating in situ. In contrast, with simulated satellite data, a steeper slope than the
true slope is found. Decreasing the resolution of the simulated satellite data to 4 km reduces the

difference in slope with in situ but does not remove it.

The in situ — satellite comparison done to address Hypothesis 1 provides only one example and
more comparisons are needed to evaluate the robustness of the relationship. These should
cover different regions. As demonstrated above, further understanding of the effect of
resolution and averaging on the spectral slope can also be obtained from comparing satellite

data of different resolution (4 km and 1 km).

More generally, differences in slope estimates found between the two sources of data for the
same region and time imply that phytoplankton slope estimates found in the literature and
obtained from different data sources cannot be used together to argue for variability in
phytoplankton slopes. The difference could simply be an artefact from different data being used.
However, when used on its own, like is done in this chapter, satellite data can be used effectively

to examine such variability in slope. Given the spatial and temporal coverage they provide,
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satellite data therefore provide a valuable and complementary tool for patchiness studies, to

address questions that could not be answered using in situ data.

Variability in slope at sub-regional scale

Satellite data show that considerable spatial variability exists in the slope of phytoplankton at
the regional scale when using a sample the size of an in situ ship survey of 130 km by 130 km. In
the case study covering a 400 km by 400 km area, phytoplankton slope values varied between -
0.87 and -1.86. This covers a large part of the range of observed phytoplankton slope values
found in the literature (Chapter 1) potentially explaining why so much difference is observed.
Note, however that it is assumed that the magnitude of the differences observed in the satellite
spectral slopes within this region is not amplified due to the under-evaluation of the power at

small scale.

Obtaining a robust value of the regional slope can be obtained by sampling larger areas. This has
implications for in situ sampling, as discussed below. Increasing the size of the study area
reduces the variability observed in the slope. This improvement in estimation is the result of a
larger area being covered and not because more transects are sampled. The number of transects
used for the slope estimation affects the uncertainty of the slope but the uncertainty associated
with the slope estimate should not be seen as a measure of how well the regional value is
estimated. A phytoplankton slope with very low uncertainties can be obtained from a 130 km
by 130 km area if sampled with many transects, but would still not be a good estimate of the

regional slope value.

The size of physical features relative to the size of the survey area has a significant effect. For
instance, in mid-latitudes eddies typically of size 50-100 km mean that transects within a typical
130 km x 130 km survey area only sample one such feature. The spectral slope is therefore
strongly dependent on the variability induced by that eddy. Similarly spectra in neighbouring
areas are themselves being influenced by other such features, explaining the variability in slope
at sub-regional scale. Evidence of this happening is seen in both Chapter 3 for the subpolar area
and Chapter 4 for the subtropical area. Larger survey areas would admit more mesoscale
features such as eddies and therefore provide closer estimation of the regional slope value.
Ships may best be used by sampling transects with a larger distance between them, set to
exceed the size of eddies, to maximise the number of features covered within the 3 day period

necessary to keep the exercise synoptic.
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Variability in slope over time-scale of months

Temporal variability over the spring and summer period was observed in both the subpolar and
transition area of the North Atlantic. The subtropical area was not studied for reasons given in

the introduction to this chapter.

Phytoplankton slope time series for the subpolar region show that large variation exists over the
period from the end of April to July. Values range between -0.92 and -1.90. In Chapter 5, model
results suggested that during the spring bloom, the slope may change from steeper winter
values to flatter summer ones. No particular pattern is distinguishable in the slope obtained
from satellite data around the phytoplankton peak. More specifically, no flattening trend is
observed. If anything, satellite data suggest a potential steepening over that period (Figure
6.12g). Longer time-scales could not be studied in the subpolar region due to high level of cloud
coverage. However, a longer period was studied for the transition area with large variability also
observed, with values ranging between -2.10 and -0.86. Changes in slope were not correlated to

mean phytoplankton concentrations.

Care is needed when interpreting the time series of slope. The presence of cloud means that for
different days, different parts of the 400 km by 400 km survey area contribute to the slope
estimate. It also means that only a fraction of the total area is used for most slope estimates.
Given the large spatial variability in slope that exists at sub-regional scale, it is important to
ensure that the variability seen in the slope time series corresponds to temporal variability and

not to spatial variability present at sub-region.

The level of variability in the time series remains when using a larger number of segments (Figure
5.14). This gives confidence that the variability in the time series is temporal. Furthermore, the
similarities in the slope time series obtained between neighbouring 400 km by 400 km boxes
(Figure 5.14) also indicate that the variability is not the result of sub-regional spatial variability.
Satellite results therefore support those obtained from model (Chapter Section 5.3.4.) that

temporal variability exists in the slope of phytoplankton over time-scales of months.

The spatial variability at small and large length scales generally follows changes in
concentrations. The only exception seen is for one area in the transition area (Figure 6.13a and
b) for which variability in the spectrum increases over time while phytoplankton concentration
decreases. It has been shown though that this does not imply a relationship between slope and
phytoplankton abundance as it is the difference in variability between large and small scales that

counts. Phytoplankton can be forced at a number of scales, an example being by upwelling of
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nutrients associated with winter convection, eddies and filaments. The non-uniformity of forcing
across length-scales causes relative changes in variability at large and small scales creating the

variations observed in the slopes.

Impact of sub regional variability on in situ surveying

One conclusion that can be drawn from this chapter is that a reliable estimate of the regional
phytoplankton spectrum slope cannot be obtained using an in situ survey mapping an area of
130 km by 130 km. A larger area needs to be covered. However this cannot be achieved with a
single ship as sampling would take too long for it to remain synoptic. For a survey longer than 3
days too much change occurs in both the oceanic flow and the phytoplankton distributions
between the start and the end of the sampling period to obtain a representative picture of the

area and its patchiness.

If evaluating larger areas is the only manner to obtain improved estimates of the phytoplankton
slope, the question of how this can be realised with in situ approaches can be posed. One option
is that a larger number of ships are required. The case study in Section 6.3.2.4. of an area having
been evaluated by 30 survey areas can be taken as an example. It shows a mean phytoplankton
slope of -1.43 for the regions with a variability of 0.29 when sampling it with an area of 130 km
by 130 km. Let us say that an estimation of the slope within 0.1 of the regional mean value is
wanted. Using three ships sampling simultaneously three randomly chosen areas of size 130 km
by 130 km, there is a 46 % probability to obtain the desired accuracy. This increases to 52 %
when using four ships to sample four areas instead. Although a precise figure can’t be put on
the accuracy, the results of this chapter suggest a more efficient solution. Both taking data from
a wider area and keeping transects spaced by the size of the local mesoscale features have both
been shown to improve estimates. Therefore, a significant improvement could be obtained, still
using just one ship for the same period, but instead steaming round the edges of 130 km side

boxes instead of the radiator pattern used for the in situ studies discussed in Chapters 3 and 4.

6.5. Conclusion

Provided that a sufficient area is covered, temporal variations in phytoplankton slope can be

measured with satellite data reliably. Such estimates show that phytoplankton spectral slope
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displays significant temporal changes over time-scales of months. These temporal variations do
not, however, follow any particular patterns and are therefore not supporting data hypothesis
of a seasonal pattern in slope. An understanding of the temporal variations cannot be obtained
with satellite means alone as they are the result of component range of influences (e.g.
submesoscale physics) many of which are poorly captured by satellites. This clearly makes the
study of phytoplankton patchiness challenging. New sampling and surveying techniques need to
be developed, particularly in situ methods better able to investigate forcing processes. In this
chapter, it was shown that the phytoplankton slope displays large spatial variability at the
regional scale. This means that the current localised slope estimations (Chapters 3 and 4) from
one in situ survey cannot be used as a representative estimate for the region. In situ surveys

need rethinking if they are to allow the robust comparison of slopes in different regions.
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Chapter 7: Discussion

The power spectrum has proved to be a popular tool for quantifying phytoplankton patchiness.
Heterogeneities in phytoplankton spatial structure have been quantified using spectral analysis
for field and satellite observations (Mackas and Boyd, 1979, Washburn et al., 1998, Martin and
Srokosz, 2002) and for describing spatial variability of phytoplankton in model predictions
(Steele and Henderson, 1992, Lévy et al., 2001, Lévy and Klein, 2004, Bracco et al., 2009). This
thesis has shown that significant inconsistencies exist between the three approaches even

though such studies have shed considerable light on patchiness.

Essential questions remain: can a correct estimate of the phytoplankton spectrum be made?
Does a single universal spectrum for phytoplankton actually exist? Sources of uncertainty are

large and often associated with the limits of our current phytoplankton sampling capabilities.

In Section 7.1. of this Discussion chapter, | will discuss the sources of uncertainty encountered
in estimating the phytoplankton power spectrum and in Section 7.2., | will address the question

of whether a single universal spectrum for phytoplankton exists.

7.1. Can we measure what we need to measure accurately?

7.1.1. Different spectral techniques give different estimates

A major challenge in using spectral analysis for evaluating phytoplankton patchiness is the ability
to obtain a robust estimate of the true power spectrum. Results in this thesis show that a

number of factors need to be taken into consideration.

This study shows that estimating the true spectral estimate of a power-law signal like
phytoplankton is difficult, with each combination of spectral method and smoothing technique
providing differing values for the slope estimates (Chapter 2 Section 2.4.4.). Not all methods
have been evaluated here. In particular, to remain consistent with the most suitable analysis
for cruise survey data, which are disproportionally sampled in one direction, it was chosen to

use spectral methods in one dimension. Furthermore, the relatively low number of data points,
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and the short span of scales they spanned, made methods like structure functions not suited to

describe the statistics of the phytoplankton spatial variability.

The Fast Fourier Transform (FFT) has been used. This is a very popular spectral technique for
studying plankton, but it is not suited to process unevenly spaced measurements as is often the
case with phytoplankton in situ (Chapter 4) and satellite observations (Chapter 6). The Lomb
Scargle periodogram (LSP) (Chapter 3 Section 5.1.) offers an alternative method but has been
rarely applied; most studies favour interpolation to make data evenly spaced instead, but in the
process add noise in a situation where noise is already a problem. In this thesis the approach
has been to stay as close to the raw data, using the LSP unless data were evenly spaced.
However, poor implementations of the method as a routine package in programming languages
like Matlab, in contrast to FFT and interpolation functions, hinders its widespread use and
development. In particular, this does not contribute favourably to the routine use of the most

robust method to estimate the spectrum of phytoplankton in a given situation.

Furthermore, FFT does not always perform well for signals with a power law, the characteristic
of phytoplankton spatial distribution that many seek to explore. For signals that have a power
law behaviour with exponent steeper than -2, it overestimates the level of variability in spectra
with a magnitude that increases with decreasing length-scale (Chapter 2 Section 4.4.). This leads
to flatter slopes being estimated for the spectrum unless a pre-whitening step is applied prior
to the spectral estimation. Other tapering options such as applying a window, e.g. a Hann
window, did not improve results for the data studied here (Chapter 2 Sections 2.4.4. and 2.4.5.),
even though this approach has been used for several studies in the literature (Weber et al., 1986,

Washburn et al., 1998).

For the two spectral methods (FFT and LSP) and two different smoothing techniques (Hann
window and pre-whitening) tested in this thesis, large differences exists between the different
combinations when the same signal is being evaluated. Further differences may also exist with
methods not considered here (e.g. variograms, structure function, wavelet analysis). The
inconsistent ability to capture power-law signals makes a comparison of phytoplankton spectra

between studies that have used different methods problematic.

For instance, phytoplankton spectral slopes in the literature have been measured between -0.6
and -3. Although it is known to improve estimations for power-law signals, particularly for signals
with slopes of -2 and steeper, pre-whitening has not been systematically applied. With many

studies estimating the slope to be within -1.5 and -2.5 (Horwood, 1978, Weber et al., 1986, Yoder
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et al., 1993, Washburn et al., 1998, Seuront et al., 1999) much of the variability could be the
result of different methods being used. It should be acknowledged that studies used spectral
methods for their own purpose at the time and the results were not originally intended to be
used in a comparative study. Additionally, power spectra are known to be noisy (Jenkins and
Watts, 1968). The problem therefore comes if values from a variety of sources and methods are
being used to support a hypothesis that variability exists in the spectral slope of phytoplankton.
In this thesis, by designing a method which has been tested against power-law signals of
different strengths, it has been possible to quantify differences in spectral estimations between
different data sources, and ultimately to determine whether variability in the scaling properties

of phytoplankton independent of the method used.

7.1.2. Different sources of data give different spectra

In addition to the choice of method to calculate spectra, this study also shows that the type of
data also affects the estimate. By applying an identical method the differences in spectra
estimated using different sources of data could be investigated. Chapter 6 showed a case for
which both in situ and remote-sensed Chl-a based estimates were simultaneously available, but
that where a significant difference existed in the slopes of the spectra. A steeper slope was found
using satellite data (-1.23 + 0.19) than using in situ data (-0.72 + 0.27). The most notable
difference in the spectra is an under-estimation of energy below a length-scale of 25 km in the

satellite spectrum relative to the in situ one (Chapter 6).

A simulation of the effect of sampling on the slope spectrum in Chapter 6 provides an
explanation for the discrepancy. Important differences in data come from in situ data being
sample points every 4 km, and satellite data being 1 km averages at 1 km intervals. When data
is averaged over space into 1 km data points equally spaced by a 1 km interval it systematically
generates a power spectrum for the range 8-130 km length-scales with a slope steeper than
when the same data are averaged over 100 m with data points spaced by 4 km instead. Doing
the same experiment but with the 1 km average data points spaced by 4 km instead reduced the
difference but did not eliminate it. However like for in situ, the estimated slope was now flatter

than the signal’s slope.

This raised two points. First, the resolution of the data affects slope estimates. Higher resolution
data, i.e. containing information below the shortest length-scale covered, gives a better

estimation of the spectrum. A simple reason is that more points are available to evaluate the
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power at the shortest length-scale covered than if only three measurements per wave are
available, like for the in situ case. An experiment in Chapter 2 showed that flatter than true
slopes are estimated for signals simulating in situ data. The second point concerns the averaging
of the data. In situ data are effectively point estimates compared to satellite data which are
average values from within a 1 km by 1 km pixel. Chapter 4 showed that large differences in
slopes for the range 10-100 m existed between the different areas surveyed. Slope values for
this range varied between -3.7 and -2.4, when averaged over a 130 km by 130 km area. Although
this only covers part of the range below 1 km, it gives an indication of how patchy plankton are
within that range. Averaging smoothes out such variability within the pixel, possibly propagating

it into other scales.

The issue of resolution can be addressed by carrying out in situ surveys at a higher resolution
than the surveys studied in this thesis. The 4 km resolution of the data in Chapters 3 and 4 is a
consequence of measuring phytoplankton at multiple depths with the undulating vehicle.
Fluorimeters are fast-sampling enough (1 measurement per second) to provide a much higher
resolution map of an area if the instrument is deployed for a fixed depth during a survey. This
has been done before with SeaSoar (Hodges and Rudnick, 2006). A comparison of spectra for
the range 8-130 km can then be made using both high and low resolution data. The same
experiment can be conducted using satellite data with different resolution. Satellite data are
available at 4 km, 1 km and sub-kilometre resolution. Using all of these to estimate the spectrum
at 8-130 km length-scales would be another recommendation for future work to explore this

issue.

Until the differences between satellite and in situ estimates are resolved, such estimates cannot
be used together as evidence to support the existence of variability in phytoplankton scaling
properties. Nevertheless, used separately they can both reveal much about the patchiness of

phytoplankton.

7.1.3. Minimising uncertainties and capturing variability in slope estimates

This thesis has demonstrated that a number of minimum requirements are needed to obtain a

good spectrum estimation.

The number of transects carried out during a survey significantly affects the slope uncertainty

of the phytoplankton spectrum. It is therefore important that, depending on the level of
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uncertainty wanted for the estimation, a sufficient number of transects is sampled. Results for
a 130 km by 130 km area using satellite data, showed a decrease in the uncertainty of slope from

0.19 to 0.14 when using 9 transects instead of 4.5.

Low uncertainties however do not necessarily mean that the estimate is a robust estimation of
the slope at the regional scale. For this, an area sufficiently large needs to be sampled. An
analysis of a 400 km by 400 km region using satellite data showed that large spatial variability
exists in the slope estimate for the range of length-scales 8-130 km within such region when
using a sample area the size of the in situ survey analysed in Chapters 3 and 4 (approx. 130 km
by 130 km). Calculating the spectral slope for multiple in situ sized surveys within this region
produced values ranging between -0.8 and -1.9. This range, obtained at a regional scale covers
a considerable fraction of the range of slopes values previously found globally (see Chapter 1).
With the majority of in situ research studies carried out within a limited space, for practical
reasons, differences in slope estimates between different geographical regions may reflect more

the spatial variability present at regional scale than differences between regions or over time.

A reason for why the slope may vary regionally can be found in the typical contents of a
mesoscale survey area. Variability induced by the presence or absence of eddies within a survey
area was found in both subpolar (Chapter 3) and subtropical (Chapter 4) regions. For both cases,
the slopes obtained from transects that crossed the eddy were flatter than those obtained from
transects that didn’t. The large size of mesoscale features such as eddies relative to the size of
the sampling area means that the spectral slope will inevitably be influenced by such features.
Sampling larger areas, with transects spaced by a distance at least equal to the local eddy size,

will obtain a more representative estimate of the regional spectral slope.

Long single transects, rather than a grid, may be a good alternative approach to obtain a good
regional slope estimate. Such sampling already takes place and has been used for calculating the
spectrum of phytoplankton (Hodges and Rudnick, 2006). Whether such strategy obtains a better
estimation of the spectrum for a region needs to be tested in more detail however. The transect
should be long enough to be representative of the region of interest. A bonus is that a single
long transect provides more segments (through overlapping) than the same cumulative distance
of grid surveying, helping to reduce uncertainties in slope estimates. Such a strategy could be
tested beforehand by using satellite data. Potential in situ survey areas can then be targeted to
determine the maximum transect length beyond which larger scale gradients influence the
signal. Some regions may already be covered by transacted by regular commercial routes. Some

Ships Of Opportunity (SOOP) already carry on board fluorimeters that sample the water at a
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frequency of two measurement per minute (Hartman et al., 2014) which corresponds to
approximately one sample every 300 m. Near-coastal areas are regularly sampled in Europe

(www.ferrybox.org), with similar projects in the US and Canada (Codiga et al., 2012) for studies

on ocean acidification (Gledhill et al., 2008), variability of the Gulf Stream (Rossby et al., 2010)
and phytoplankton biomass (Halverson and Pawlowicz, 2013). Sampling along open ocean
routes also takes place on SOOPs with some routes being sampled up to 18 times a year

(http://www.aoml.noaa.gov/phod/goos/xbt network/).

7.1.4. Vertical issues

The vertical distribution of phytoplankton across the euphotic zone adds an additional layer of

complexity to measuring the spectrum of phytoplankton when it extends below the mixed layer.

Depending on the time of year and their geographical location, phytoplankton can form a Deep
Chlorophyll Maximum (DCM). Sometimes, like for the D381 survey area in Chapter 4, both

surface and subsurface concentrated distributions can occur within the same survey area.

In situ results for the subtropical gyre (Chapter 4 Section 3.3.1.), where a DCM is observed, show
that the manner in which data are selected significantly influences the estimated slope of the
phytoplankton spectrum. The slope can more than double depending on whether the data are

selected on a fixed depth or along an isopycnal (Chapter 4 Section 3.3.1.3.).

On a fixed depth, data are extracted from different density layers. As water moves
predominantly along isopycnals, the data collected can incorporate signals from internal waves.
The displacement of the phytoplankton vertical structure across a given depth as the wave lifts
and drops isopycnals transfers vertical structure into the horizontal data. Selecting data along
isopycnals removes that problem but produces another one. Phytoplankton on isopycnals may
be at different depths and hence receive different amounts of light, a major control on
phytoplankton abundance. Once again this can propagate vertical structure into the spectrum.
In Chapter 4 maximum concentrations were centred on 120 m depth and when plotted against
isopycnals present a bimodal distribution with peaks at 26.2 kg m™ and 26.3 kg m=. When

plotted against depth the distribution was unimodal, suggesting the strong influence of light.

A more practical limitation is that phytoplankton patchiness below the mixed layer cannot be

reliably captured by satellites which only measure the top few metres. Obtaining high resolution
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data at depth spanning the necessary range of scales can only be completed with towed vehicles

or gliders.

7.1.5. Chl-a is not always a good proxy for phytoplankton

Another source of uncertainty associated with measuring phytoplankton variability comes
through the use of the pigment Chlorophyll-a (Chl-a) as a proxy for phytoplankton abundance.
Chl-a has proved very popular for spatial studies of phytoplankton due to the continuous
measurements that can be obtained with a fluorimeter. The concentration of the pigment, from
which abundance is quantified, also affects the colour of the ocean and therefore can also be

estimated remotely by measuring the ocean colour.

In regions of high light availability phytoplankton have lower Chl-a to biomass content such that
Chl-a does not always correlate well with the abundance of organisms (Zubkov and Quartly,
2003) .The most striking case is for the subtropical oligotrophic regions for which only a poor
Chl-a signal exists at the surface despite the abundance of photosynthesising plankton such as
cyanobacteria e.g. Prochlorococcus. If Chl-a only captures a portion of what constitutes
phytoplankton abundance, the spectrum derived from it will not be a good indicator of the
phytoplankton spatial structure. Where Chl-a ceases to be a good proxy, other alternative
estimates need to be used. Flow cytometry has previously been used to quantify spatial
variability of microorganisms (Martin et al., 2008), but the method is time consuming to achieve
kilometre scale resolution. Recent advances in automated identification and classification of

microorganisms with FlowCam may alleviate this problem.

All the factors detailed in the above sub-sections introduce uncertainties in the slope estimate
of phytoplankton. If a consistent approach is not used for patchiness studies then the existence
of universal properties in the spectrum cannot be robustly tested as any changes in method
affects the slope estimate. Such sensitivity to differences in methodology renders comparison

of observations between research studies in the literature challenging at best.

However, by acknowledging these limitations, a robust methodology can be implemented to
investigate all aspects of universality, starting from understanding what occurs at small time and
spatial scales and using it to understand what occurs at larger ones. For instance, universality in

slope with season can only be examined once a thorough understanding of variability in slope
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at day or weekly scales is obtained. Equally, geographical differences can only be evaluated once
the degree of local variability is fully understood and it has been shown that variability in both
time and space need to be addressed simultaneously. Only by doing so can each facet defining

universality be robustly tested.

7.2. Do universal scaling properties in the spectrum of

phytoplankton even exist?

One of the characteristics that has attracted most interest in the phytoplankton spectrum is that
observations have shown scaling behaviour, such that variability varies as a power of length-

scale (giving a straight line in a log-log representation).

As described throughout this thesis, this behaviour of a linear decrease in log(variability) with
decreasing log (length-scale) is consistently found for in situ observations (Chapter 3 and 4),
satellite data (Chapter 6) and modelling studies (Chapter 5). Scaling behaviour in the
phytoplankton spectrum was found in the subtropical and subpolar gyres and intergyre
transition regions of the North Atlantic open ocean. The presence of such power-law behaviour
across regions shows that a degree of universality does exist in the spatial pattern of

phytoplankton.

It has been suggested that the detailed characteristics of such scaling properties in
phytoplankton distribution may additionally be universal (Platt and Denman, 1975, Powell and
Okubo, 1994), by analogy with similar scaling behaviour displayed by the underlying flow field.
The implication is that across space and time it is the same processes that control the spatial
variability across the range of length-scales for which the scaling is observed. The range studied
in this thesis is the mesoscale and below. The argument is that the source of heterogeneity
originates at scales larger than the largest covered in the spectrum, and that therefore
patchiness at the mesoscale and below is the result of this original heterogeneity being broken

down to smaller scales.

However, the growing evidence that the mesoscale is a regime subject to upwelling of fresh
nutrients (e.g. Strass, 1992, Lévy et al., 2001, Allen et al., 2005, McGillicuddy et al., 2007, Klein
et al., 2008), whereby extra variability at intermediate scale is introduced, is questioning the

validity of such scaling behaviour. The question of whether universality in scaling characteristics

156



of the spectrum of phytoplankton, over time and geographically, actually exists is therefore now

examined from different perspectives.
7.2.1. High frequency variability

Numerical simulations suggest there is considerable variability in the phytoplankton spectral
slope at time-scales of days to weeks (Chapter 5 Section 5.3.1. and 5.3.4.). This corroborates
indications from in situ results. In the subtropical gyre, in situ slope estimates were found to vary
considerably over the space of a month with values of -0.36, -0.84 and -0.71 found using fixed
depth data from three consecutive surveys (Chapter 4 Section 4.3.3.). Spectra obtained from
data along isopycnals also displayed strong variability with slopes of -0.98, -1.78 and -1.43. By
using a model, the potential existence of such short term variability was corroborated. Intra-
monthly variability has been shown to be present across the year and across regions. Such short
term variability is not, however, constant across the year, with significant month to month

changes.

In addition to undermining any notion of universality in phytoplankton scaling characteristics,
such variability highlights the complexity underlying the spatial structure of phytoplankton, with
rapid changes in its statistical properties. It is not clear what processes cause such variability
over days and weekly time-scales. Physical processes like eddy pumping, (McGillicuddy et al.,
1998), submesoscale upwelling and subduction of water masses (Lévy et al., 2001) all potentially
modulate the spatial distribution of phytoplankton. However, to measure their effect on the
variability of phytoplankton spectra requires simultaneous mapping of the three-dimensional
flow. This is traditionally achieved with the radiator style surveys analysed in Chapters 3 and 4

which, as discussed above, are far from optimal for estimating spectra.

Robust in situ measurements of short term variability still need to be made. The short term
variability cannot be tested with satellite data because not enough cloud free data exist within
one month for an area that is large enough (400 km by 400 km) to sufficiently minimize the noise

from spatial variability.

Gliders may offer an alternative for quantifying this temporal variability due to their ability to
operate autonomously for up to 6 months (Rudnick et al., 2012) and collect simultaneous
physical and biological parameters (Suberg et al., 2014). Gliders move up and down the water
column by changing their buoyancy with wings allowing them to move horizontally at a speed
of approximately 25 cm/s. A complete dive can reach 1000 m depth, collecting data on the way

down and up to give two vertical profiles. Typically, one dive takes 4 hours to complete. It would
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take less time, and provide finer horizontal resolution, if dives only reached 100 m depth. A large
amount of data could thus be collected every day. Additionally, their regular communication via
satellite allows their movement to be controlled so surveys using multiple gliders can therefore
be coordinated. However, their slow movement means that the gliders are exposed to strong
current and therefore following a defined transect may not always be straightforward and cause
problems of alignment between gliders and erratically spaced data. Some other Autonomous
Underwater Vehicles (AUV) e.g. Autosub have an advantage over gliders in that they move faster
through the water which means fewer of them would be required, but their cost means only a

small number of them exist for marine research.

An alternative solution for capturing and examining such high frequency variability may come
from a new perspective on an old observational technique - moorings. Part of the NERC Ocean
Surface Boundary Layer research programme OSMOSIS project, that started in 2012 at the
Porcupine Abyssal Plain (PAP) in the North Atlantic, consisted of the deployment of 2 sets of 4
mooring stations organised in two concentric squares of side 15 km and 1.5 km centred on a
central ninth mooring, continuously collecting hydrographic measurements over the course of
the year. Using a similar array with fluorimeters fitted on each mooring, possibly at different
depths, the difference in measurements between pairs of moorings would offer simultaneous
measurements of variability covering many scales from 1.5 km to 21 km. Although the spatial
coverage is limited, the many combinations provide between 2 and 8 measurements at any
instant for each of the following length-scales 1.5 km, 2.1 km, 9.6 km, 10.7 km, 11.7 km, 15 km
and 21 km. These cannot be used to calculate a power spectrum covering the full mesoscale,
but the data would offer a considerable insight into the high frequency variability of
phytoplankton structure at these scales. Furthermore, the addition of another square of
moorings with side 75 km would provide an even greater spatial coverage with data collected
across the full mesoscale and submesoscale as information on the variability of phytoplankton
would be extended to length-scales as large as 106 km. Such an approach would benefit from
the use of semi-variograms to calculate the spectrum. The technique has previously been
applied to phytoplankton patchiness (Deschamps et al., 1981, Yoder et al., 1987, Yoder et al.,
1993) . The advantage of the technique is its ability to evaluate variability for data that is
irregularly spaced in two dimensions, unlike power spectra for which methods perform best with
straight line transects. Semi-variograms quantify how much variability is expected between 2
data points at a given distance apart, say ri, for the field of interest. The more pairs of sample
points being at distance r; apart the better the estimate at that length-scale. For the OSMOSIS

double square case, 1.5 km < r; < 21 km and for each length-scale 2, 4 or 8 pairs of data points
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are available at each sample time which could be hourly. The semi-variogram may also be suited
to use with fleets of gliders. Indeed, by deploying 6 gliders, 10 combinations of pairs of
measurements are continuously being made. With gliders sampling for up to 6 months, the daily
semi-variograms obtained with such high resolution data would provide much information on

the magnitude of high frequency variability.

7.2.2. Geographical variability

Investigating geographical variability in the phytoplankton slope constitutes a difficult challenge,
and one closely linked to the short term variability discussed in the previous section. In this
thesis, most understanding of geographical variability was obtained from the model. Differences
in slope between regions are not always distinguishable due to the large temporal variability

occurring at the scale of weeks.

For the summer period when all 3 in situ surveys (Chapters 3 and 4) were carried out, model
slope standard deviations of 0.33, 0.42 and 0.53 were found in the subpolar, transition and
subtropical regions respectively. This means that unless very large differences exist between
regions, they cannot currently be detected. Even three in situ surveys within one month (like
D369 in Chapter 4) do not sufficiently eliminate such temporal variability. Model results suggests
that when three surveys are made for each cruise and when cruises in two different regions take
place simultaneously, then the difference between the regions can be correctly measured only
provided that true difference is larger than 0.5 (Chapter 5 Section 5.3.2.3.), almost as large as
previous observational estimates for the slope itself. Therefore, the observed differences

between regions discussed in this thesis may not accurately reflect any underlying relationship.

Currently in situ surveys, due to being limited in space and time, cannot quantify the sub-
regional and sub-monthly variabilities and therefore cannot be used to quantify variability on
larger time and space scales. Based on the model predictions, the high frequency variability
could explain the difference in in situ phytoplankton spectra observed between regions (Chapter
4) but replaces a potential failing of a universal scaling geographically with a potential failing of

itin time.

Measuring geographical differences in slope requires that a sufficiently large area is sampled
but also sampled frequently enough to remove both spatial and temporal variability at small

scales. This can potentially be accomplished by satellite provided sufficiently large cloud free
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images are available for both the regions compared over the period investigated. Obtaining
such favourable conditions would, however, be unusual based on the satellite study done in

Chapter 6.

7.2.3. Monthly, and seasonal variability

Further doubts have been cast on the universality of the scaling properties of the phytoplankton
spectrum over longer time-scales by this thesis because such properties have been shown to
also vary on seasonal time-scales. Even the extent of short term variability changes across the
year, with periods of high variability e.g. spring and autumn and periods of lower variability

(Chapter 5 Section 5.3.2.2.).

In the subpolar region the model suggested the existence of a seasonal cycle in the
phytoplankton slope, specifically a rapid flattening of the spectrum during the phytoplankton
bloom followed by a more gradual slow steepening over the course of the summer (Chapter 5
Section 5.4.). There was some evidence for this in for all four years investigated, though there
was considerable shorter scale variability superimposed upon it. The seasonal changes in slope
occur at a similar time to the spring bloom but the timing relative to the peak of the bloom is

inconsistent.

Although satellite observations did not give the same temporal resolution as the model, there
was still sufficient evidence to corroborate the model predictions that phytoplankton scaling
properties vary over the year (Chapter 6 Section 6.3.3.). However, there was no evidence of the
above seasonal pattern. The poor temporal resolution, because of the intermittency produced
by clouds, means that it is still not possible to reject the hypothesis of a seasonal cycle in
phytoplankton slope. The high frequency variability discussed in the previous section may alias
any seasonal signal that is present. The existence of a seasonal cycle may be better tested using
multi-year satellite data. Such an approach would increase the number of spectral slope
estimates in each month and would compensate for the poor resolution of data from a single
year. If such a seasonal cycle is a characteristic feature of phytoplankton patchiness it should
become apparent in the reconstructed annual variations of phytoplankton spectral slope
obtained from the multi-year records. The timing and abruptness of seasonal changes would not
be as clear as for a single year, though, because like the bloom itself, such a signal might vary in

timing and intensity between years.
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Changes in the spectral slope, happening during the spring period of high biological activity,
would highlight the importance of biological processes in modifying the phytoplankton spatial
structure. The impact on the spatial distribution of non-linearities in the interactions between
biogeochemical species remains difficult to understand. The motivation for further exploring the
existence of a seasonal cycle in slope comes from analysis of a single model and so the
robustness of the results needs to be tested with other models. Biogeochemical interactions,
such as the type of functional responses to grazing by zooplankton or the nature of the spectrum
relative to how nutrient upwelling is imposed, impact strongly on the spatial and relative spatial
distribution of interacting species (Abraham, 1998, Englund and Leonardsson, 2008, Martin et
al., 2008). The results may therefore be specific to this model. An illustration of this problem is
provided in Chapter 3 with existing theories disagreeing on the nature of the nitrate-
phytoplankton relationship. Future work on the robustness of these results should be carried
out using other basin scale models (e.g. Oschlies, 2002, McGillicuddy et al., 2003). To investigate
the length-scale range studied here (30-150 km), the resolution of such models (1/9° and 0.1°
respectively) resolves the mesoscale, but not the submesoscale. Even the nominal ~10 km
resolution will not be achieved due to imposed dissipation at small scales which will artificially

cause the spectrum to roll off.

Nevertheless, performing different model runs may contribute to understanding the origin of
such variability and what causes such large variations. By simply comparing the trends in
phytoplankton patchiness time series over an identical range (30-150 km) for model runs with
different grid resolutions e.g. 1/27° and 1/9°, the extent of the submesoscale contribution may

be assessed.

Ships of opportunity once again may provide a means of study in situ as several operate set
routes throughout the year. Some already accommodate multiple sensors on board to provide
underway simultaneous measurements. The temporal coverage and resolution associated with
this method of sampling provides an ideal opportunity in studying spatial variability over time-

scales of seasons that scientific cruises cannot offer.

7.2.4. Phytoplankton relationship with other tracers

Understanding of phytoplankton patchiness can also be obtained by studying the spatial
relationship between phytoplankton and the other interacting components of the ecosystem, in

particular its evolution over time. However, studies on different biogeochemical variables have

161



used observations at one time, in one location. The result is that conclusions have often been
inconsistent. For instance, no consensus emerges for the relationship between phytoplankton
and zooplankton spectral slopes (Mackas and Boyd, 1979, Piontkovski et al., 1997, Martin and
Srokosz, 2002). It may be that studies struggle to fully capture the mechanisms generating the
relative difference between tightly coupled biogeochemical components. With evidence from
this thesis that variability in space and time, at many scales exists in the spatial statistics of
phytoplankton, an important issue is how this variability compares with other components and
how their relationship evolves over time. This highlights the importance of future observations

carrying out measurements of multiple tracers in multiple locations, at multiple times.

The in situ data analysis of Chapter 3 demonstrated that nitrate and phytoplankton, although
tightly coupled biochemical species, can display distributions with different statistical
properties. Here, nitrate has a significantly steeper spectrum (- 1.29) than phytoplankton (-0.5).
Even though it was a small, single dataset such observations already enhance our understanding
of patchiness by contradicting a number of existing theories for patchiness that predict equal
slopes (Hernandez-Garcia et al., 2002, Bracco et al., 2009). Model simulations in Chapter 5
suggest that large differences in slope for phytoplankton and nitrate are not uncommon. In the
model, however, it is more likely that phytoplankton slope is steeper than nitrate over the
summer period studied in Chapter 3. It may be that the observations witness a rare event, but
it is too early to have too much confidence with such a level of detail in models. It is therefore
important to obtain more observations of the relationship in the same place and time to build

up the statistics and form a clearer view.

Models only represent an idealised view of the real world. Care is therefore needed when
interpreting their results. The dynamics of the different biogeochemical components is based
on how the interactions are defined. As mentioned in the previous section, the non-linearities
in the functional responses, such as phytoplankton growth, zooplankton grazing and mortality
can generate different relationships between the spatial distribution of phytoplankton and
zooplankton (e.g. Steele and Henderson, 1992, Martin et al., 2008) according to how they are
parameterised. For instance, white noise forcing of the zooplankton mortality term is shown to
generate a red spectra for phytoplankton and zooplankton(Steele and Henderson, 1992). This
transfer of variability across scales is the result of the non-linear interactions. However, other
types of forcing, such as on phytoplankton growth can also give a different spatial relationship
with other components of the ecosystem such as zooplankton and nitrate. Currently the

understanding of nutrient forcing is incomplete, with the relative importance of the different
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pathways (winter convection, mescoscale upwelling ...), acting on different length-scales for
upwelling nutrients not known. The spectral shape of this forcing impacts on the resulting
patchiness of plankton. Different nitrate spectra are predicted by models depending on the
dominant pathways for nitrate injection into the euphotic layer. In the case of large scale forcing
(Abraham, 1998), variance is driven across length-scales by the horizontal advection that
cascades the variability to smaller scales. On the other hand, a regime dominated by small scale
injections generates a different form of patchiness made of smaller structures (Lévy et al., 2001).
The first regime generates steeper slopes for nitrate spectra than the second one. The effect on
phytoplankton spectral slope is not so clear due the non-linear interactions. Furthermore, over
the course of the year, the influence of the different nutrient pathways varies and may therefore
modulate the distribution of phytoplankton seasonally. For instance, in the subtropical regions
the impact of small scale injection by submesoscale processes becomes gradually more
important as the nitrate stockpiles from winter mixing are depleted. Observations across this
transition would shed light on the nature and evolution of the nitrate-phytoplankton spatial

relationship.

The relationship of the phytoplankton distributions to physical fields, such as temperature and
salinity, has been found, here and elsewhere, to be inconsistent. Alternatively, numerical studies
have shown that phytoplankton spectral slope may be correlated to relative vorticity (Lévy and
Klein, 2004). Currently, satellite derived altimetry data provide geostrophic velocities maps in
1/3° grids as 8 day composites. These can only be used to evaluate whether there is a
relationship between vorticity and phytoplankton spectral slope on seasonal and annual cycles.
Furthermore, submesoscale events, at the margins of eddies or in filaments, are very localised
and ephemeral. These fine details will disappear in the average over time and space obtained
for each pixel. Such work may, however, soon become possible with future satellites (e.g.

Sentinel-3, Wavemill and SWOT) potentially providing altimetry measurements at a 2km scale.

7.3. Conclusion

Obtaining a robust measurement of phytoplankton spatial structure is challenging with many
limitations in the data contributing to adding noise and uncertainties in the estimates. It has
been shown that provided sufficient spatial coverage is available, the patchiness of
phytoplankton can be accurately quantified using power spectrum. Universal properties of the

163



phytoplankton spectrum have been tested from a model and observational (in situ and satellite)
perspective covering a large range of temporal scales, from a few days to a year, and spatial
ones, sub-regional and regional. A power-law behaviour in the phytoplankton spectrum was
consistently found across the sources of data used and the range of scales studied, 8-130 km
and 10-100m supporting to a certain degree the existence of universal properties for the
phytoplankton spectrum. However, stronger universality, in common scaling exponents for the
phytoplankton spectrum, is dented by the significant variability in slope that is consistently
observed across the spatial and temporal scales studied and present across the data and model
output used. A summary of all the results from in situ, satellite and model from this research

study in Figure 7.1 illustrates the scale of this variability.
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Figure 7.1: Spectral slope of phytoplankton using in situ, satellite observations and model output for areas in the
subpolar (SUB), transition (TRANS) and subtropical (SUBTROP) regions of the North Atlantic for length-scales covering
the mesoscale. The range of length-scales vary between types of data due to the specificity of the data sets. For in
situ, slopes for the range 10 -100 m are also calculated (diamonds). Slopes are estimated using the Fast Fourier
Transform (FFT) with whitening the data (pink) or using the Lomb Scargle Periodogram (LSP) (blue). For satellite and
model, slopes are displayed in a box with the median value (red line) and 25t and 75t percentiles (edges), the
whiskers correspond to the most extreme slope values.

Had the universality of scaling properties been confirmed, power spectra would present a
computationally cheap method for describing sub-gridscale phytoplankton variance in coarse
resolution models. Reactions in the phytoplankton ecosystem occurring below the 100 km
length-scale play a central role in the distribution of organisms such as phytoplankton and
zooplankton(Levy and Martin, 2013) suggesting at least an implicit representation of their spatial
variability at those scales is necessary. Such a ‘closure’ for parameterising phytoplankton

heterogeneity in global coarse resolution biogeochemical models could potentially improve
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mean field estimates. Two things would still get in the way of such plans. First, there is the
evidence of the presence of a critical length-scale at which a shift in power law behaviour occurs,
estimated to be within the 0.1-8 km range (Chapter 3 Section 3.3.). This shift provides a challenge
to a potential implementation, as it occurs at a length-scale which is not currently explicitly
modelled and questions such as the exact length-scale at which the shift occurs, the nature of
the shift and whether this shift occurs in all biogeochemical components remain to be answered.
Closures, accounting for variance and correlations of phytoplankton at smaller scales, are
already being carried out (Englund and Leonardsson, 2008, Wallhead et al., 2013) and showing
promising results as compared to the more usual mean field biogeochemical models. However,
none of them address the consequences of the shift in scaling behaviour seen in Chapter 3 and

elsewhere.

The understanding of patchiness is not complete. | showed that fluctuations in phytoplankton
spatial properties at the mesoscale exist. The natural following question is therefore whether
there is also structure in the manner in which these properties vary and are not simply random.
This thesis sets the groundwork for this. So far, the clearest signs of structure come from the
model study (Chapter 5) which shows a seasonal cycle in the slope of phytoplankton in the
subpolar region. It also shows that temporal differences exist in how variable phytoplankton
spatial properties are across the year in the subtropical region, with peaks of variability observed
in spring and autumn. The scale of the variability in slope highlighted in this thesis demonstrates
the need for both high resolution and global data to fully capture the phenomenon. New
approaches and technology mean that obtaining such information is at last becoming realistic.
Doing so may reveal the existence of provinces delimited by changes in phytoplankton spatial

properties or behaviour as was hinted by the model results of this thesis.

Additionally, a simple yet important reason for deepening our understanding of phytoplankton
patchiness is the testing of models. The resolution of global models keeps increasing and it is
only a matter of time before global models will resolve fully the mesoscale and submesoscale.
Yet, such models would still need to be tested. A number of metrics already exists to assess
models (Stow et al., 2009) e.g. the correlation coefficient, root mean squared error or absolute
error, but these are based on a point by point comparison of the model predictions and

observations by doing statistics on the difference at each point.

The problem is that no matter how fine resolution they become models will never predict the
position of the numerous small-scale fronts and eddies populating the oceans correctly. This

limits the use of these metrics as models explicitly resolve the highly variable mesoscale and
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smaller. Peaks and troughs of concentrations in phytoplankton are associated with eddies and
fronts meaning that metrics using point comparison will suffer from the mismatch in position of

these dynamical features.

However, if in addition to these metrics, information on the spatial properties of the
phytoplankton field between model and observations can be compared, this would increase the
quality of the model assessment. This is where the spectral slope as a metric may be a powerful
option. The spectral slope of phytoplankton indicates how the variability of the phytoplankton
field is distributed across spatial scales. A comparison between spectral slope from observations
and from the model therefore assesses how well the spatial properties are captured

independent of the position of the features that generate this variability.

If the spectral properties of phytoplankton can be quantified globally via the techniques detailed
in the discussion chapter, these can be used to validate biogeochemical models. The skill of a
model could be assessed by how well it reproduces the spectral properties of phytoplankton.
Forinstance for a given region, how close are the model mean slope, range and variance to those
obtained from observations? Given the growing importance attributed to models to support
decision making, it is essential that models about to resolve the mesoscale can be thoroughly

tested. This makes spectral slope as a metric for phytoplankton a valuable tool.

It is therefore important that further research is done to obtain a global coverage of
phytoplankton slope properties. From a wider perspective, this will also enable us to better
understand the complexity and continuously evolving spatial structure of phytoplankton across
the many spatial scales and understand how they adapt to and influence different environments.
At a time when environments are fast changing with global warming potentially affecting ocean
circulation and acidification (Intergovernmental Panel on Climate Change (IPCC), 2013),
increasing pressure is being put on the marine ecosystem. Understanding how phytoplankton is
structured may shed light on how well they will adapt to potential future changes. The position

of phytoplankton at the base of the marine food web, makes this question an essential one.
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Appendices

A5.1: Time series for the phytoplankton slope (in colour) for the subpolar area for year 1 (a.), 2 (b.), 3 (c.) and 4 (d.)

overlaid by mean slope for the 4 years (black).
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AB.1: Detail of time series for the D321 area sampled in the East-West (a.) and North-South (b.) direction. The respective
spectra for each transect are in (c.) and (d.). Mean spectra are displayed in bold green. The spectra all display a power law
as a function of length-scale.
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AB.2: Spectral analysis of satellite Chl-a data for the region surrounding the location of the D321 cruise. The area of
400 by 400 km, was subdivided into subsets of size 130 by 130 km overlapping in the latitudinal and longitudinal
direction by 50 %. Slope estimates and standard deviation are shown for each box .In brackets it is shown the number
of transects used for the analysis. The lower number of transects used is due to some transects having more than 20
% of data hidden by clouds. Cells with ‘Cloud” means the slope of phytoplankton was not calculated due to clouds
covering more than 30% of the area. Position in the table corresponds to positions on the map (Figure 6.5).

-1.39£0.24 -1.70+0.18 -1.91+0.13 -1.92+0.11
(4) (9) (9) (9)

-1.25+0.19  -1.38+0.19 -1.29+0.16 -1.71+0.16 -1.74+0.13
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A6.3:
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A) Comparison of phytoplankton spectral slopes for areas T1 (green) and T2 (blue) using 30 transects (a.) and
70 transects (b.) for the evaluation of the slope.
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