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Abstract—Run-Time Management (RTM) systems are used
to control energy hooks at run-time to minimise the energy
consumption of embedded systems with single and many-core
processors. Typically, such RTM systems are aware of application
requirements and utilise workload prediction and machine learn-
ing algorithms to estimate the optimal configuration. An RTM
mechanism should not compromise the reliability or performance
of the platform it is managing. Because of the potential complexity
and interaction with the platform and its applications, we are
using rigorous design methods that allow us to master the
complexity and verify the correctness of our designs in a formal
way. The formal RTM design can be verified earlier in the devel-
opment process before implementation, which early verification
can reduce the cost of fixing potential failures which can be
very demanding in testing the system after implementation. In
addition, the formal model of a RTM system can be automatically
translated into executable code to be executed on the hardware.
Automatic code generation reduces the efforts of hand-coded
implementation and is portable across different architectures and
Operating Systems (OSs). In this paper we propose a formal
approach toward automatic generation of RTM system code, for
a video decoder application, from a verified formal model of a
RTM. The formal model of the RTM system is developed using the
Event-B formal modelling language and is verified using theorem
proving and model checking. The automatically generated RTM
system has been integrated in an embedded platform as a Linux
governor, and provides up to 4% improvement over Linux’s
default Ondemand governor.

I. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) has been
widely used to reduce the energy consumption of mobile and
embedded systems at run-time, while maintaining a required
Quality of Service (QoS) [1–5]. To manage DVFS, a Run-
Time Management (RTM) system is an essential unit in a
many-core architecture, and it needs to interact with both the
application layer (to ensure that QoS requirements are met) and
the hardware layer (to control and monitor core activities). In
addition, the RTM typically includes workload prediction and
machine learning algorithms. Therefore, ensuring an integrated
and reliable RTM system is not trivial to achieve using a
manual hand-coded implementation. Hand-coded RTM system
implementation can be error-prone, and is not portable across
different architectures and Operating Systems (OSs).

In this paper, we address the integrity and reliability of the
RTM through deployment of formal design and verification
methods. Once a system is modelled mathematically, proof

can be used to ensure the correctness and consistency of the
model. We use the Event-B formal method [6] to model and
verify a RTM system. The use of formal methods [7] helps to
reduce costs by identifying specification and design errors at
early development stages before implementation when they are
cheaper to fix. The verified Event-B model of the RTM system
can be translated into executable code which can be executed
on the hardware. Moreover, representing runtime algorithms
more abstractly allows us to target different architectures and
OS through code generation. This has the potential for future
savings allowing the same algorithm to be portable across
different architectures and OS by tailoring the code generation.

This paper reports on our initial experimentation of au-
tomatic code generation of a RTM system from Event-B
models. The RTM system performs DVFS for a video decoder
application. The RTM system is modelled by Event-B, and is
verified by theorem proving and model checking techniques.
The main contribution of this work is experimenting with
the automatic generation of RTM code through a reliable
verification approach. While the current work has considered
a single-core platform for a proof of concept, modelling and
verifying a RTM for many-core hardware is considered as a
future work.

The paper starts with related works in Section II followed
by description of RTM in Section III. Then formal design and
the Event-B model are presented in Section IV. Section V is
about verifying the formal models. The implementation includ-
ing the code generation technique is explained in Section VI.
Finally the experimental results are shown in Section VII
followed by the conclusion section.

II. RELATED WORKS

Power management hardware has been designed and im-
plemented in embedded systems to provide energy savings
and temperature stability, with Dynamic Power Management
(DPM) and DVFS being two techniques controllable from
software.The hardware implementation of these techniques has
been described by Keating et al. [8] (DPM being referred
to as Power Gating). Power management mechanisms for
control of DPM and DVFS have been widely studied in
the literature. For the case of DVFS power management,
studies can be divided into performance requirement-agnostic
and performance requirement-aware. The first are focused on
optimising the energy consumption without knowledge of the



application requirements. The Ondemand governor [9] is a
DVFS controller in Linux that reacts to current processor
workload, adjusting Voltage and Frequency (V-F) to maintain
an idle time setting. The work of Dhiman et al. [10, 11]
presents a control algorithm that characterises workload based
on the performance monitors, adjusting the V-F according to
an energy-performance trade-off. The works of [12, 13] use
DVFS by predicting the workload of a time period, aiming to
reduce idle time by changing the V-F. Multi-core approaches
for performance requirement-agnostic DVFS include [5, 14].
Moeng et al. [5] do offline workload characterisation based
on performance counters, producing a decision tree for run-
time for optimising the energy per user instruction. Bose et
al. [14] provide a summary of multi-core DVFS, with further
guidelines for designing system-level RTM.

Performance requirement-aware studies reduce energy con-
sumption whilst aiming to preserve a performance requirement,
either provided by the application or the scheduler. Real-
time systems have this requirement, as their real-time tasks
are executed to meet their intrinsic deadline. The work of
Bhatti [4] focuses on RTM for real-time system. Soft real-
time systems have this performance requirement but with a
less strict directive, thus it is not critical if the deadline is
not met. Video decoding applications present this soft real-
time property, as the requirement is set by the frames-per-
second (FPS) required by the video, and missing the FPS
is not system critical. Work from [1–3, 15] focuses on these
applications, using workload prediction to determine the V-F
setting before the frame is computed. As a starting point for
the development of the RTM Event-B model in this paper,
the algorithm is focused on performance requirement-aware
applications, namely video decoding. The algorithm is based
on the work of [15], which uses prediction for estimating the
workload, and reinforcement learning to select the V-F setting.

Salehi et al. [16] present several Event-B modelling and
verification techniques used in the development of the RTM
of the video decoder system. While this includes more details
about the application of different modelling/verification tech-
niques, in this paper we present more detailed results about
the automatic generation of the RTM implementation code
from an Event-B model. Code generation technique has been
introduced in the Event-B formal method to bridge the gap
between abstract specifications and implementation using an
implementation level specification notion [17].

III. RUN-TIME MANAGEMENT (RTM)

The design of the RTM is described in this section,
which involves workload characterization together with the
appropriate V-F selection. Figure 1 shows the RTM adopting
a cross-layer approach, interacting with the application, OS
and hardware. Communication between layers is indicated by
arrows.

The objective of real-time applications is to complete the
execution of their workload before a predefined deadline. In
hard real-time systems, both the workload and the deadline of
the task must be known before starting processing it, so that
the scheduler can allocate the task for execution. In soft real-
time systems, tasks may or may not provide this information,
so it needs to be calculated if performance (or power) is
to be optimised. Because scheduling cannot be deterministic,
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Fig. 1. Run-Time Management system for a video decoder application: a
cross-layer approach

the completion of the task before the deadline cannot be
guaranteed. Video decoders present this behaviour as the frame
can be seen as a task, and the workload information per frame
may not be known before its decoding. The deadline can be
obtained from the FPS set by the video application. The power
minimization objective for these applications then translates in
the solution to a constrained optimization problem. The frame
workload needs to be known (to a certain extent) prior to its
processing, then decisions on the power state (V-F) have to be
taken so that they fulfil the constraint but take into account
performance variations of the application.

To achieve this soft real-time behaviour, our RTM algo-
rithm is based on [15] and works in two phases, Prediction
and Decision Making. For each frame, the RTM first predicts
the workload to be executed, and then it decides the V-F
setting so that the predicted workload can finish execution
before the frame deadline, set by the FPS. After the frame
has been executed, the RTM learns by using feedback for up-
dating its parameters for computing future frames. To achieve
the first objective, predictions of the workload for the next
frame are performed using an Exponential Weighted Moving
Average (EWMA)[18]. The EWMA algorithm is explained
in Section IV-D1. The work of [1, 12, 13] use EWMA for
their workload prediction schemes, as it is easy to implement,
lightweight at runtime and presents good performance. For the
Decision Making, Reinforcement Learning (RL) is used [19],
using the Q-Learning algorithm. The algorithm is further
explained in Section IV-E2. The methodology to design the
algorithm using formal methods is explained next.

IV. FORMAL DESIGN

A. Formal Methods and Event-B

In computer science, formal methods [7] are mathemati-
cally based techniques for the specification and development
of complex systems. By building a mathematically rigorous
model of a system, it is possible to verify the system’s
properties in a more thorough fashion than empirical testing,
and therefore it improves reliability and robustness of design.
Event-B [6] is a formal method for system-level modelling and
analysis. Key features of Event-B are the use of set theory and
first order logic as a modelling notation, the use of refinement
to represent systems at different abstraction levels, and the



use of mathematical proof to verify correctness of models and
consistency between refinement levels. The behaviour of an
Event-B model is defined by a collection of variables together
with a collection of guarded atomic events that modify the
variables. Formal properties are specified using invariants and
preservation of invariants by events is verified using proof
techniques.

The Rodin [20] platform is an Eclipse-based IDE for
Event-B that provides effective support for refinement and
mathematical proof.

B. Formal Design Architecture

Figure 2 illustrates our design architecture for Event-B
modelling of the RTM for a video decoder system. Event-
B refinement allows a model to be built gradually, starting
with an abstract model and then introducing successive, more
concrete refinements. As shown in Figure 2, the Event-B model
of the RTM system comprises an abstraction level, where
we focus on the main functionalities of the system, and two
levels of refinements, where the workload prediction and the
reinforcement learning algorithms are introduced respectively.
To manage the complexity of the final refinement and also
to prepare the model for code generation, the model is de-
composed into two sub-models: Controller and Environment.
The Controller sub-model consists of properties of the RTM
algorithms and the environment sub-model represents the in-
terfaces between the RTM and the application and hardware
layers (see Figure 1). By separating controller behaviour and
environment behaviour, the representation of the RTM layer
and the application and hardware layers are divided. This
structure is used for code generation configuration, where the
controller translation consists of RTM algorithms, and environ-
ment translation represents the interfaces to the application and
hardware layers. Details of this implementation are explained
in Section VI. The sub-models need some preparation before
the final step of being translated to the executable code. These
preparations are included in refinement levels of sub-models:
Controller tasking refinement and Environment tasking re-
finement. In these refinements, the control flows, sequencing
and branching of Event-B actions are defined. Also additional
translation rules are defined before attempting code generation.
These translation rules specify the translation of the Event-B
mathematical operators to corresponding C operators. Finally
the C code is generated automatically from the final refinement
models of the controller and the environment.

C. Abstraction

To present details of the Event-B abstract/refinement levels,
we benefit from a visualisation approach, called Event Re-
finement Structures (ERS) [21]. The ERS of the RTM system
is presented in Figure 3. The blue region shows the abstract
level including four actions. Each node indicates an action in
the Event-B model and the oval is the name of the system.
The nodes are read from left to right indicating the order-
ing between them. First the set fps event executes followed
by execution of select vf, execute frame and monitor actwl.
According to the specification of the system described in
Section III, first the value of FPS is provided by the application
layer and saved in the RTM, then the optimal value of V-F is
decided by the RTM, the frame is executed in the hardware
and the actual value of workload actwl is monitored.
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Fig. 2. Event-B formal design of the Run-Time Management system for a
video decoder application
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Fig. 3. Event refinement structure of the Run-Time Management system for
a video decoder application

In the top level, the value of the V-F is decided nonde-
terministically from the constant set VF. Below is the Event-
B specification of select vf event. act1 (action1) indicates the
body of the event where the value of VF is nondeterministically
assigned to a value from the set VF.

Event select vf b=
begin

act1 : freq :2 V F

end

D. First Refinement: Prediction Phase

1) The Algorithm (EWMA): The prediction algorithm es-
timates the workload for the next frame using a modified
form of EWMA. The EWMA algorithm is widely used in the
literature [1, 12, 13] because of its lightweight implementation.
The predictor works as an infinite impulse response filter that
generates a prediction of the future value based on the average
of the previous values weighted exponentially, where the most



recent values have greater weights than the older ones. This is
shown as:

w(n+ 1) = w(n) · �+ w̄ · (1� �) where 0  �  1 (1)

where w(n) is the current workload at time instance n mea-
sured from the hardware, w̄ is the average workload in the
time interval 0 to n, w(n + 1) is the predicted workload at
time n+1, and � is the weighting factor. After the prediction
has been set, the mean w̄(n) is updated with the prediction
according to:

w̄ = w(n+ 1) (2)

The parameter that controls the relevance of the past history
is the prediction weight �. At a high �, recent history data
is weighted more heavily than older history, and this helps
EWMA to react quickly to changes, but it becomes volatile
for random fluctuations. So as the parameter � decreases, the
older history data becomes more relevant, smoothing local
variations, reacting slower to changes [18].

2) The Event-B Model: In the abstract level, we do not
model detailed workload prediction or the decision making.
Later, in the first refinement (the green region of Figure 3),
the details of the prediction algorithm are added to the abstract
events: select vf and monitor actwl. The select vf event is
refined into two concrete events: predict wl, where the work-
load is predicted and select vf, where the value of V-F is
decided based on our prediction. monitor actwl event is also
refined into two events: monitor actwl (monitoring the actual
workload) and update avgwl (updating the average workload
according to the equation 2).

In ERS, the line types indicated that whether the corre-
sponding event is a refining event (solid line) or a new event
(dashed line). In refining the select vf event, predict wl is a
new event and the concerete select vf event is refining the
abstract select vf. The description of these events are as below:

Event predict wl b=
begin

act1 : pwl := predict(avgwl)
end

Event select vf b=
refines select vf
begin

act1 : freq := pwl ⇤ fps
end

In the predict wl event, the predict workload variable (pwl)
is assigned to the predicted value through the predict operator
from the EWMA theory. A theory is an Event-B component
where we can introduce new operators. In this development,
we have defined a theory of EWMA where the prediction
algorithm operators are defined. Later the value of freq is
calculated based on the predicted workload in select vf event.

E. Second Refinement: Decision Making

1) The Algorithm (Reinforcement Learning): Once the
workload for the future frame is predicted, the decision algo-
rithm selects a V-F pair to execute it. This selection is based on
the performance constraint in FPS given by the video applica-
tion. The decision algorithm uses Q-Learning (Reinforcement

Learning). The predicted workload corresponds exclusively
to the application that communicates with the RTM, and
does not include the system-software overheads and other
application loads in the prediction. Thus, V-F pairs cannot be
directly mapped to a predicted workload using a deterministic
algorithm.

The objective of reinforcement learning is to learn how to
make better decisions under variations. Decisions in reinforce-
ment learning terminology are known as an actions, and the
environment is represented as states. At the beginning there is
no knowledge of the system, so the decision algorithm must
start exploring decisions in different states to find the optimal
(or most suitable) action for a particular chosen state. This is
called the Exploration phase. Exploration is done by taking a
random action for a selected state. Good actions are rewarded
and bad actions are penalized. Actions in this context, are the
V-F pairs, and states are the different amounts of workload
the system may have. It is important to note that the V-F pairs
are discrete, so the best decision may not be optimal, but it
is the best among the V-F pairs available. As an example, let
the optimal frequency for a given workload be 533.35MHz;
if the CPU supports only 300MHz, 600MHz, 800MHz and
1GHz, the best decision is to execute the workload 600MHz.
The ‘best’ in the context of this paper is defined as the lowest
V-F pair that fulfills the performance requirement.

Learning is stored as values in a Q-Table, which is a lookup
table with values corresponding to all State-Action pairs. At
each decision epoch1, the decision taken for the last frame
is evaluated; the reward or penalty computed is added to the
corresponding Q-Table entry, thereby gaining experience on
the decision. This reward/penalty is calculated with a cost
function, which in this RTM context is defined as:

r =

(
100t
d if d  t

� 100(t�d)
3d if t > d

(3)

where r is the reward, t is the workload time and d is the
deadline. The rate at which actions are rewarded in the Q-
Table is determined by the Learning Rate, ↵, which determines
the relative importance of older decisions compared to the
newer ones. Initially, the decisions of the algorithm are not
optimal. However, after several epochs the confidence in the
selected action improves and the algorithm always selects the
best action in a given state. This phase of the algorithm is
called the Exploitation phase. Figure 4 shows the evolution
of the Q-Table. Initially, the values in the Q-Table are all
zeros (Figure 4(A)); subsequently, in the exploitation phase,
the ‘best’ actions are determined (in red in Figure 4(B)).

The transition from exploration to exploitation is not im-
mediate, but is a gradual change, defined as the ✏-greedy
strategy, in which the exploration-exploitation ratio (✏) is
gradually increased to reduce the random decisions in favour
of appropriate decisions2. The availability of ✏ makes ‘re-
learning’ a feasible operation, especially for dynamic systems
in which the best Action for a particular State may change
gradually. If relearning is needed, the ✏ may be reduced to
allow for more exploration to take place.

1In reinforcement learning terminology, the interval at which the algorithm
is triggered is known as the decision epoch.

2Appropriate decisions are those that reduce the energy consumption, while
satisfying the performance.
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Fig. 4. Q-Table during A) exploration and B) exploitation phases. The red
boxes represent the best Action for each State.

2) The Event-B Model: The purple region (Figure 3) shows
the second refinement, where details of reinforcement learning
are included. The select vf event is refined to include the
details of the decision making algorithm. Based on comparing
a random number, generated in ranGenerator event with the
exploration-exploitation ratio (✏), either the explore or exploit
event are executed and it is followed by updating the ✏. The
oval including xor presented an exclusive choice between its
branches. Also the monitor actwl event is refined to update the
Q-Table: update qTable event, where the workload is rewarded
or penalized.

Below is the Event-B description of the explore and exploit
events. These events are guarded based on the value of the
random variable (generated in the ranGenerator event). If
random is greater than the exploration-exploitation ratio (✏),
explore executes, otherwise exploit executes. In the body of
the explore event, the freq is assigned to a random value (was
generated in the VFGenerator). The explore event assigns freq
value into the optimal value of V-F according to the predicted
workload (pwl). optimalVF is an operation defined in a theory
where all of the necessary reinforcement learning operators are
defined.

Event explore b=
refines select vf
when

grd : random > epsilon

begin

act1 : freq := randomV F

end

Event exploit b=
refines select vf
when

grd : random  epsilon

begin

act1 : freq := optimalV F (QTable, pwl)
end

As shown in Figure 2, the final refinement is divided into
two smaller sub-models. The controller sub-model includes
the RTM actions: predict wl, ranGenerator, explore, exploit,
VFGenerator, updateE and update qTable. The environment
sub-model includes the actions to interact with the application
and hardware: set fps, execute frame and monitor actwl.

V. VERIFICATION

The correctness of an Event-B model is defined by invariant
properties. An invariant is a predicate or constraint, which
every state in the model must satisfy. More practically, every

event in the model must be shown to preserve this invariant.
This verification requirement is expressed in a number of proof
obligations (POs). In practice this verification is performed
either by model checking or theorem proving (or both). In
addition to correctness, the consistency of the refinement levels
are proved by a number of proof obligations.

The Rodin toolset provides an environment for both the-
orem proving and model checking. PO generation, automatic
proof and interactive proof are incorporated into Rodin. A user
can prove a non-discharged proof obligation manually using
the interactive proving feature of the Rodin.

Theorem proving There are different proof obligations
which are generated by the Rodin, during development of
a system [22]. The most important two of these are the
Invariant Preservation (INV) proof obligation and the Guard
Strengthening (GRD) proof obligation. The INV PO ensures
that each invariant is preserved by each event; and the GRD PO
ensures refinement consistency by ensuring that each abstract
guard is no stronger than the concrete ones in the refining
event. As a result, when a concrete event is enabled the
corresponding abstract one is also enabled.

Model Checking ProB 3 is an animator and model checker
for Event-B. ProB allows fully automatic exploration of Event-
B models, and can be used to systematically check a specifi-
cation for range of errors.

The Event-B model of the RTM was verified using Rodin
theorem proving. In the last refinement before model decom-
position, 76 POs were generated, of which %96 are proved
automatically. A manually proved PO is presented here as an
example of verification.

The prediction refinement (Section IV-D) consist of two
levels: in the first refinement an abstract representation of
prediction (Section IV-D2) is modelled and in the second
refinement it is proved that the abstract form is equivalent to
the refining prediction formula presented in Equation (1). The
abstract definition of prediction is defined in terms of the full
history of measured workloads as follows:

pwl(n) = �

n�1X

i=1

actwlhst(i)(1��)n�i+actwlhst(0)(1��)n

(4)
Here pwl(n) is the predicted workload and actwlhst(n) is the
actual work load (for the nth frame).

An invariant is defined in the refined model to specify
that this abstract prediction is equivalent to Equation (1), i.e,
the implementation of the algorithm is a correct refinement of
the abstract prediction specification. This invariant is proved
interactively with the Rodin theorem prover. Note that the
abstract variable actwlhst (actual work load history) is not part
of the refined model, it is only used for specification purposes.

We also analysed our model using ProB to ensure that
the model is deadlock free. For each new event added in the
refinements (events with dashed lines in Figure 3), we have
verified that it would not introduce a deadlock using ProB.
Also INV POs ensure that the new events keep the existing

3The ProB Animator and Model Checker: http://www.stups.uni-
duesseldorf.de/ProB/index.php5



ordering constrains between the abstract events (ordering from
left to right in Figure 3). The ordering between events are
specified as invariants, the PO associated with each invariant
ensures that its condition is preserved by each event.

VI. IMPLEMENTATION AND CODE GENERATION RESULTS

A. RTM Interface

The model of the RTM is automatically translated into
C for its implementation. To provide genericity to the RTM
model, the Controller sub-model does not take into account the
hardware/application-specific calls needed to interact with the
hardware and application layers (included in the Environment
sub-model). Therefore, an interface to provide these functions
has been designed. Figure 5 shows the modified RTM diagram
from Figure 1, where the black box represents the generic
RTM auto generated code, and the orange boxes provide the
interactions with the hardware. The translated environmental
functions are replaced by these interaction interfaces.

For this case study, in order for the generated RTM to
sit at the OS layer, it has been implemented as a Linux
Governor [9], which provides the interface and drivers to make
the V-F changes. This Governor is composed of the three
interfaces needed for the algorithm: the Frequency Changer,
the Performance Monitor and the Application Annotations.

The Frequency Changer provides the CPUFreq drivers to
change the V-F setting at the CPU. The Performance Monitor
interface allows the system to recollect the CPU Cycles
information from the hardware monitors. For the current case
study, the architecture used is the ARM Cortex-A8, which
provides Performance Monitoring registers [23]. A Loadable
Kernel Module (LKM) was designed to access these monitors.
The Application Annotations interface provides a library for
the application (video decoder) to send its performance re-
quirement (FPS) to the RTM. It also provides function calls
to trigger the Governor to start and to finish working. It also
notifies the RTM of a new frame start. This communication is
done through ioctl calls. The interface uses an API [15] with
the functions to be included in the application. After the RTM
C code is generated, it is cross-compiled with the Governor
interface to create the respective LKMs.

When the LKM is loaded, it waits for the set fps (from
the auto generated RTM) and the start governor calls to start
working. The new epoch call at every new frame triggers
the RTM algorithm for both learning (from previous frame)
and deciding the new V-F. At the end of the application, the
stop governor call ends the RTM execution.

B. Code Generated RTM

According to Figure 2, after decomposition, the sub-models
are refined to be prepared for translation into C code. Tasking
Event-B sub-models define the control flows between events.
Part of the controller task is as follows:

monitor_actwl;
update_avgwl;
if costFun_reward_assign
else costFun_penalty_assign;

It indicates the ordering between events monitor actwl
and update avgwl followed by a branching between cost-
Fun reward assign event and costFun penalty assign event.
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The later events are defined in the second refinement to
represent the action of calculating the reward/penalty value
(cost function) as part of updating the Q-Table.

The Event-B specification for update avgwl is as follows:

Event update avgwl b=
refines update avgwl
begin

act1 : avgwl := update(lambda, awl, avwl)
end

In the body of the event, action act updates the value of the
variable average workload. The definition of update (according
to Equation 1) is specified as an operator with three arguments
as below:

Theory EWMA
operator update
arguments

: lambda 2 Z
: avgWeight 2 Z
: nextWeight 2 Z

Formula: : (lambda ⇤ nextWeight+
(1� lambda) ⇤ avgWeight)

The Event-B notation for the costFun reward assign is as
follows:

Event costFun reward assign b=
refines costFun reward assign
when

grd : (actwl/freq)  dl

then

act : costFun reward value :=
min(1, costFun reward(actwl, freq, dl))

The costFun reward assign can executed only when its guard
(grd) holds. grd condition specifies when the finish time is less
than or equal to the deadline, means the deadline is achieved
and the Q-Table needs to be rewarded. The costFun reward is
defined as an operator in the Machine Learning (ML) theory
similar to what is described above for the update operation.

Below is part of the result of automatic code generation
corresponding to the presented controller tasking part above:



Env_monitor_actwl(&actwl);
avgwl = (lambda * actwl + (1 - lambda) * avgwl);
if (actwl / freq <= dl) {

costFun_reward_value = min(1,
(100 * actwl) / (freq * dl));

} else {
costFun_penalty_value = max(-1,

-((actwl / freq - dl) * 100) / (3* dl));
}

First the monitor actwl is translated to a call to the envi-
ronment function since monitor actwl is an environment event.
Then update avgwl is translated into the second and third lines
according to the operator definition for the update. Finally
a branching is generated on the costFun reward assign and
costFun penalty assign depending on the event guards. The
Event-B guard of the event is translated into the branching con-
dition in C. costFun reward value and costFun penalty value
are assigned according to the definition of cost function
operators in the ML theory (according to the equation 3).

VII. EXPERIMENTAL RESULTS

Experiments are conducted on the BeagleBoard-xM
(BBxM) embedded platform, which contains a TI OMAP
DM3730 [24] SoC with an ARM Cortex-A8 processor.
The platform runs Linux Operating System 3.7.10 to-
gether with the Ubuntu 12.04 distribution4. For the video
decoder case study, we used FFMPEG5 libraries, run-
ning H.264 video6 of VGA resolution (640x480) for 720
frames, which at 23.976 FPS is 30.03 seconds. In or-
der to send the Application Annotations, the H.264 de-
coder code was modified to include the API functions:
config_governor(int fps), start_governor(),
new_epoch() and stop_governor(), which use ioctl
to trigger the Governor (Section VI-A).

Power Mode Frequency Voltage (V ) Current (mA) Power (mW )

OPP50 300MHz 0.93 151.62 141.01
OPP100 600MHz 1.10 328.79 361.67
OPP130 800MHz 1.26 490.61 618.17
OPP1G 1GHz 1.35 649.64 877.01

TABLE I. DM3730 SPECIFICATIONS (ARM CORTEX-A8) [25]

A. Performance and Power Consumption

Figure 6 shows the runtime performance of the code
generated RTM, where the first plot shows the performance
throughout each frame. Maximum performance is capped at
23.976 FPS because the platform starts decoding the next
frame keeping up with the given FPS. This means that a
frame decoded under 1/23.976fps = 41.7ms will produce a
positive reward. The second plot shows the V-F decisions and
the power consumption in turn for each frame. This shows the
exploration phase of the RTM at the beginning of the video.
It can be seen during the exploration phase, low V-F settings
tend to cause performance losses. A second exploration phase
is carried out at roughly the 330th frame, so the algorithm can
take better decisions for the second half of the video, with less
performance penalties. This behaviour is comparable to the one

4Nelson: https://eewiki.net/display/linuxonarm/BeagleBoard
5FFMPEG: http://www.ffmpeg.org
6Big Buck Bunny: https://peach.blender.org/

presented in [15], where exploration and exploitation phases
are present, with more variations at early stages of the runtime.
Power consumption has been estimated using Table I, which
lists the CPU power specifications for this architecture. Four
frequencies are available: 300MHz, 600MHz, 800MHz, 1GHz.
Energy consumption for this code generated architecture is
estimated to be 16µJ. Energy consumption for the code
generated RTM is lower than that of the Ondemand governor
by 4%. This is the first step for the RTM code generation,
which is continuing work to optimise its performance.
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Fig. 6. Performance and Power Consumption of the generated RTM Governor
for an H.264 Video

B. Overheads

The RTM Linux Governor implementation uses a total of
13.5kB of RAM when loaded, this including the auto generated
code and the LKM interfaces (Freq. Changer, Perf. Monitor).
The algorithm takes on average 39K clock cycles to run,
which, at lowest frequency (300MHz) would be 0.13ms of
timing overhead. Including the frequency change overheads,
the algorithm takes 188K clock cycles, which would take
0.63ms. Comparing this overhead with the video decoder, its
FPS are of 23.976 which translates to 41.7ms, so the algorithm
overhead (including frequency changes) is 1.51%.

C. Discussion

Comparing this work with our first experiment of develop-
ing a hand-coded RTM system for a video decoder application
in [15], we found out how formal modelling and automatic
code generation can reduce the effort needed at the implemen-
tation level. The development of the hand-coded RTM [15]
at kernel level was not trivial for obtaining the knowledge of
kernel drivers, interfaces and user space communication for the
platform used, plus the time needed for the development of the
algorithm. In this work we tackle this problem by separating
the RTM governor interface and the RTM algorithms, since
the RTM governor interface is developed once and can be
used for different RTM algorithms. Moreover, debugging at
kernel level is a challenging task. We overcome these issues
by formal verification at the Event-B abstraction level before
implementation, ensuring that the RTM algorithms behaviour
is correct independent of the platform. For further deployment
in a different platform, the governor interface will be modified
for that specific platform, whilst the code generated RTM
algorithms are unchanged.



VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a formal approach toward automatic
code generation of RTM systems from a verified Event-B
model. This work has several contributions, first, this is a novel
model-based method for developing RTM algorithms automat-
ically. Second, the models are formal and thus amenable to
formal verification, addressing reliability and correctness of
the models.

We have modelled a RTM system for a video decoder
application and we experiment executing our automatically
generated codes as a Linux governor. The experimental results
indicate that our model-based approach produces code with an
acceptable performance overhead. In implementation, we have
proposed a generic approach by separating the RTM interface
(includes interfaces to interact with the application and hard-
ware) and code generated RTM (includes the algorithms). Our
approach will make it easier to re-target at other architectures
and applications, since it is easier to manage and verify model
evolution than code evolution. Moreover, decomposing our
model into the controller and environment sub-models will
increase reusability by separating RTM algorithms (controller)
from hardware and application interfaces (environment). As a
future work, the objective is to deploy the code generated RTM
system into different architectures. This will be done by mod-
ifying the underlying governor interface for each architecture,
whilst the code generated RTM algorithms remain unchanged.

In order to gain a better energy saving, optimisation of the
algorithm parameters is required. This optimisation includes
the comparison of different prediction algorithms and selecting
the most efficient one. A distinct difference between the
algorithm presented here and the one in [15], is that the latter
does prediction by separating workload types, which reduces
prediction error. This feature will be addressed in further
refinement of the Event-B model. Finally, the last refinement
model can be compared with the State-of-the-Art available.
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