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ABSTRACT
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by Sepehr Maleki

In this thesis the problem of fault detection and isolation for two subclasses of multidi-

mensional systems, i.e., 3-D systems and repetitive processes is investigated by extending

the geometric approach and notions of input containing conditioned invariants developed

and introduced for standard 1-D linear systems to be applicable in multidimensional sys-

tems.

The problem is investigated by designing an asymptotic observer that asymptotically

reconstructs the system state. In case of a failure, the observer continues to reconstruct

the state normally, however, the system produces a wrong state resulting in deviation

of the system state from the estimated state in the observer. Comparing the magnitude

of this deviation against a predefined threshold indicates whether a failure has occurred

in the system or not.

The fault detection and isolation problem for the aforementioned systems is formulated

in a geometric language and necessary and su�cient conditions are developed for the

solvability of this problem, and constructive methods to design observers that uniquely

can isolate the failure by exploiting the subspaces that the error lies onto. Finally, the

e�ciency of the developed technique is examined by using examples for each system.
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Chapter 1

Introduction

Modern life is becoming more and more complex that the use of autonomous machinery

for the sake of reliability, cost e�ciency, availability and safety is becoming increasingly

inevitable. Relying on such machinery requires a robust fault diagnosis algorithm that

is capable of detecting and isolating a failure once it occurs. Developing such algorithms

has received much attention in the past decades and much research e↵ort have been

focused on this task (see for example [1, 2, 3, 4, 5]).

Fault Detection and Isolation (FDI) and in general dealing with failures is a challenging

design-element in building reliable systems. Especially where it is required for these

systems to operate in environments with limited or no access such as space or remote

areas for several years. Therefore, in case of a failure, it must be detected and isolated

immediately to enable appropriate measures to be taken. One of these measures is failure

accommodation and system reconfiguration so that the system continues to operate at

a reduced level. This has been examined by two di↵erent approaches, namely, the

multiple-model approach [6, 7, 8] and the adaptive control approach [9, 10, 11, 12].

FDI for the standard 1-D linear systems has been investigated (see for example [1, 13, 14])

previously. However, the topic of multidimensional systems where information propa-

gates in more than one independent direction (rather than in one direction, normally

taken to be the time axis) continues to provide challenging problems which arise in

the continuously expanding domain of applications. For example, recent advances in

technology have given rise to applications where three dimensions are involved in the

process. These applications range from a three-dimensional task-specific robotic arm for

facilitating stroke rehabilitation [15] to new methods for distributed information pro-

cessing in Grid Sensor Networks (GSN) using the 3-D Fornasini-Marchesini (FM) model

[16, 17]. These are important applications where handling a failure upon occurrence is

crucial. For instance, if an actuator that moves the robotic arm in a certain direction

breaks down or a node in a grid sensor network dies so that local information updating

1
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becomes impossible, these failures prevent the whole system from operating and can

cause considerable damage.

An important class of multidimensional systems that represent many industrial appli-

cations is linear repetitive processes where a material or work-piece is processed by a

sequence of passes of the processing tool. During each pass, a profile is generated which

contributes to the following passes. These processes are considered to be a sub-class of

2-D systems since two indeterminates are required to specify each point - the time or the

distance along the pass, and the pass number. Industrial examples of these processes

include metal rolling, long wall coal cutting and bench mining operations, and for algo-

rithmic examples one can refer to classes of iterative learning control schemes. A failure

in these processes, can be very costly since if not detected and fixed immediately, it will

contribute to the next passes and damages the whole process.

FDI methods are mainly based on the concept of redundancy, which can be either a

hardware redundancy or analytical redundancy. The main idea behind hardware redun-

dancy is to compare duplicative signals generated by various hardware, such as multiple

measurements of the same signal by a number of sensors. The common techniques used

in this approach are the Cross Channel Monitoring (CCM) method, residual generation

using parity generation (e.g., based on sensor geometry or signal pattern), and signal

processing methods such as wavelet transformation, etc [18].

Conversely, analytical redundancy uses a mathematical model of the system together

with estimation techniques for FDI. As the analytical redundancy approach generally

does not require extra hardware, it is comparatively a more cost-e↵ective approach than

the hardware redundancy. However, the analytical redundancy is more challenging due

to the need to ensure its robustness in the presence of disturbances.

Generally, the analytical redundancy approach can be divided into quantitative model-

based methods and qualitative model-based methods. The quantitative model-based

methods, such as the observer-based methods, use explicit mathematical models and

control theories to generate residuals. Conversely, the qualitative model-based meth-

ods use Artificial Intelligence (AI) techniques, such as pattern recognition, to capture

discrepancies between observed behaviour and that predicted by a model [18].

In this thesis, a quantitative model-based approach is used to address the FDI problem.

This method is inspired by the geometric approach for FDI in 1-D systems originally in-

troduced by Massoumnia [1] wherein a geometric formulation of Beard’s failure detection

filter [14] is developed using concept of (A,C)-invariant and unobservability subspaces.

In what follows a brief overview of FDI for 1-D systems and Massoumnia’s approach to

address this problem is given. But before proceeding, the most common terminologies

in the field of model-based fault diagnosis, defined by IFAC SAFEPROCESS Technical

Committee [19], are stated.
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Definition 1.1. Fault is an unpermitted deviation of at least one characteristic property

or parameter of the system from the acceptable/usual/standard condition.

Definition 1.2. Failure is a permanent interruption of a system’s ability to perform a

required function under specified operating conditions.

Definition 1.3. Error is a deviation between a measured or computed value (of an

output variable) and the true, specified or theoretically correct value.

Definition 1.4. Residual is a fault indicator, based on a deviation between measure-

ments and model-equation-based computations.

Definition 1.5. Fault detection is the determination of the faults present in a system

and the time of detection.

Definition 1.6. Fault isolation is the determination of the kind, location and time of

detection of a fault which follows from fault detection.

1.1 FDI in 1-D Systems

An FDI process essentially consists of two stages. The first stage is residual generation

and the second involves using the residuals to make the appropriate decisions. Here, the

focus is on the residual generation aspect only which is visualised as in Figure 1.1.

System Residual
Generator

Component
Failure

Actuator
Commands

Residuals
Measurements

Figure 1.1: Block diagram of a residual generator

A residual generator takes the measurements and the commanded actuation signals as

inputs and generates a residual vector which is nominally zero or close to zero when

no failure is present, but is distinguishably di↵erent from zero when a component of

the system fails. The residual generation process is simply subtracting the outputs of

two identical sensors measuring the same quantity. A failure of either sensor corrupts

the residual and this can be used to detect the failure. The process of generating the

residuals from relationships among instantaneous outputs of sensors is usually called

direct redundancy [20].

It is also possible to generate the residuals using temporal redundancy, which is the

process of exploiting the relationship among the histories of sensor outputs and actuator
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inputs [20]. This is usually done by using a hypothesised model of the dynamics of

the system to relate sensor outputs and actuator inputs at di↵erent instants of time.

Unfortunately, most of the existing techniques exploiting temporal redundancy are tuned

to hypotheses about the mode of component failure, e.g., the actuator failure is assumed

to be a bias failure of an unknown magnitude. However, in most cases it is not possible to

enumerate a comprehensive list of possible failure modes and characterise the behaviour

of the component following each of these failures. Therefore, an approach that does not

rely on prior assumptions about the mode of component failure is highly desirable.

Based on these requirements, Beard [14] and [13] took a fundamentally di↵erent approach

to the residual generation problem. This work proposed a systematic procedure for

designing a special observer that accentuates the e↵ect of failure on the innovation (or

prediction error) of the observer. The observer is designed so that in the absence of

component failures, modelling errors, and system disturbances, the innovation vector

dies away, while if the system su↵ers a failure, the innovation starts to grow. Moreover,

the observer gain is chosen so that the direction of the innovation vector in the output

space can be used to identify the failed component.

Massoumnia uses a geometric approach to reformulate and solve the Beard-Jones detec-

tion filter problem (BJDFP) [14].

Consider the following equations to describe the nominal system model:

x(k + 1) = Ax(k) +Bu(k) +
kX

i=1

Limi(k) ,

y(k) = Cx(k) , (1.1)

where the arbitrary functions mi(k) 2 Mi are the unknown failure modes and the maps

Li : Mi �! X are the failure signatures. Obviously where no faults has occurred,

mi(k) = 0. The failure modes together with the failure signatures can be used to model

the e↵ect of actuator failures on the dynamics of the system. For example, the e↵ect of

failure on the dynamics in the ith actuator can be represented by L
1

= Bi where Bi is

the ith column of B; if the actuator is dead, then m
1

(k) = �ui(k) where ui(k) is the ith

component of u(k), while for a bias failure of the same actuator, m
1

(k) is some non-zero

constant. It is clear that the failure signature L
1

= Bi can model the e↵ect of a wide

variety of failures in the ith actuator, since the failure mode mi(k) is not restricted in

any way. Also changes in the system dynamics, i.e., changes in the A matrix, can be

modelled through appropriate choice of the failure signatures L,. Moreover, the failure

signatures are not restricted to be column vectors. The process of choosing the failure

signatures is referred to as failure modelling. A detailed discussion of failure modelling

can be found in [13, 21].
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Now consider the following full-order observer for the system (1.1):

x̂(k + 1) = (A+GC)x̂(k)�Gy(k) +Bu(k) , (1.2)

where G : Y �! X is the observer gain or the output injection matrix. Defining the

di↵erence between the system state and the estimated state by the observer as the error,

gives:

e(k + 1) = (A+GC)e(k)�
kX

i=1

Limi(k) ,

r(k) = Ce(k) , (1.3)

where r(k) := Cx̂(k) � y(k) is the generated residual or the innovation vector. More-

over, assume e(0) = 0. Now when the ith actuator fails, mi(k) 6= 0, e(k) 2 Vi :=<

A+GC|Li >, where < A+GC|Li >= B+AB+ · · ·+An�1B is the infimal A-invariant

subspace containing B, i.e., the reachable subspace of (A,B) and Li := Im Li. Further-

more, r(k) 2 CVi. Now the FDI problem reduces to finding a map G : Y �! X , such

that the family of subspaces {CVi, i 2 k} is independent; consequently the innovation

generated due to each di↵erent actuator failure can be identified by finding the projec-

tion of r(k) onto each of the independent subspaces CVi and comparing the magnitude

of this projection to a threshold.

Note that this identification procedure has almost no dependency on on the functional

behaviour of the failure modes mi(k), and this is the feature that distinguishes Mas-

soumnia’s approach to the FDI problem from many others reported in the literature

[18].

1.2 FDI in Multidimensional Systems

Advances in technology have raised a major interest in more complex multidimensional

systems and its theory applications in general disciplines of circuits, signal processing and

control areas. Therefore, FDI in these systems is of particular importance. One approach

to address this problem, is to generalise the geometric framework used by Massoumnia

for residual generation in the 1-D counterpart [1]. nD systems as in 1-D systems can

be studied either in the transform domain or the state-space form. In the first case, the

polynomial aspect is the most important and in the state-space approach, the notions of

observability, controllability and minimality play an important part. There are certain

di�culties in generalising 1-D to nD (n � 2) some of which are fundamentally algebraic in

nature, e.g., the lack of a Euclidean algorithm or the distinction in the multidimensional
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case between zero primeness, factor primeness and minor primeness. For example, in 2-D

systems theory, it becomes important to distinguish between factor primeness and zero

primeness [22]. Other problems include the apparent absence of relationships between

strongly related 1-D concepts in the nD case. For instance, concepts of controllability

and observability are already generalised to the nD case [23] but for none of these

generalisations, controllability plus observability equals minimality.

At an abstract level, multidimensional systems theory sets forth to investigate the basic

concepts as 1-D theory, e.g., observability, controllability, causality, stability and etc.

Given the di�culties in generalising 1-D systems theory, it is concluded that much of

this development must start from a basic level. For this purpose, there are a “rich”

variety of dynamical models in “n” indeterminates to start with. For instance, the FM

model [24], which was originally proposed for 2-D systems, where the propagation of the

dynamics occurs in 2 independent directions.

1.3 Problem Formulation

In this thesis, using a geometric approach it is aimed to address the FDI problem in two

di↵erent classes of multidimensional systems, namely, 3-D systems and discrete linear

repetitive processes. It should be mentioned that although these two subclasses are

considered in this thesis, the developed approach can be readily used to address the

problem in the general nD case.

For the first part of this thesis, a generalisation of FM state-space representation to the 3-

D case is used to introduce a model incorporating signatures of possible failures together

with failure modes. In the second part, a discrete unit memory linear repetitive process

state-space representation is introduced based on a general abstract model developed in

[25] that incorporates signatures of possible failures together with failure modes.

Regardless of the mathematical description of these models, the aim is to design an

asymptotic observer ⌃̂, which is considered to be another system identical to the original

system that is intended to be monitored, for the purpose of FDI in 3-D systems linear

repetitive processes. Figures 1.2 and 1.3 illustrate the block diagram of these systems

together with the asymptotic observer.

The logic behind this approach is to provide the same input of the system to the observer

and compare its output with that of the system. Then by feeding back the result through

some output-injection gains to the observer, the goal is to steer this di↵erence to zero.

Once this is achieved, since both the system and the observer have the same input,

output and dynamics, the system’s state must have been reconstructed successfully.

Now defining the di↵erence between the actual and the estimated state as the error

signal, if there are no failures in the system this error goes to zero. Once a failure
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occurs, the system produces a di↵erent output while the observer keeps producing the

output that originally the system was meant to produce. Hence, the actual state deviates

significantly from the estimated state and the error signal will not be zero anymore and

passes a pre-defined threshold indicating presence of a failure.

To isolate the detected failure, one approach is to use Massoumnia’s method by pro-

jecting the innovation vectors to independent subspaces Vi and the subspace that this

projection has a non-zero norm determines the failed component. However, since the

generated residuals are dimensionally dependent on the system’s output, there is no

chance to isolate the fault in the case where the output has a low dimension. For ex-

ample, if the output is a scalar, then there is no chance to be able to detect more than

one fault concluding fault isolation by means of residual generation is rather confining

for systems with low dimensional output.

Figure 1.2: Block diagram of a 3-D system and an asymptotic observer for FDI.

The solution developed in this thesis proceeds by projecting the error vector onto the

subspaces spanned by the failure signatures rather than the residuals. This provides

more freedom for FDI regardless of the output dimension.
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A

B

B0

xk+1(p)uk+1(p) yk+1(p)

C

yk(p)

+

A

B

B0

xk+1(p) yk+1(p)

C

yk(p)

+
^

^

^

-+

G1

G2

-+

+ e k+1(p)
-

^

Figure 1.3: Block diagram of a linear repetitive process and an asymptotic observer

for FDI.

1.4 Thesis Overview

In Chapter 2, the most commonly used classes of models for representing nD systems

(n � 2) (i.e., Roesser and Fornasini-Marchesini models) are introduced and the spe-

cific case of 3-D systems is considered based on these models. The relevant structural

properties of these systems such as reachability and observability are also reviewed.

In Chapter 3, a connection between basic concepts of linear algebra (like invariants,

changes of basis) and properties of linear dynamic systems is established. A brief

overview of conditioned invariant subspaces and their characteristics is given and a par-

ticular family of conditioned invariant subspaces which is of our interest for the purpose

of fault identification, namely, the input-containing conditioned invariants is introduced.

Moreover, the unobservability subspaces which originally were introduced in [1] are gen-

eralised to the 3-D case. Finally, the chapter is closed by establishing an LMI approach

for construction of the internally and externally stabilising output injection gains.

In Chapter 4, a geometric technique to address the FDI problem in 3-D systems is

developed.

In Chapter 5, linear repetitive processes are introduced and a state-space model along

with the abstract model in the Banach space which the stability theory is based on for

these processes is introduced. Also the concept of stability in these processes is reviewed.

Chapter 6 investigates the fault detection and isolation (FDI) problem for discrete-time

linear repetitive processes (DLRP) using a geometric approach. A 2-D model for these

systems that incorporates the failure description is proposed. Based on this model, a
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formulation of the FDI problem in geometric language is given and su�cient conditions

for solvability of the problem are developed. Finally, a FDI procedure based on an

asymptotic observer of the state is established.

1.4.1 Contributions

I. Designing an asymptotic observer that can isolate more faults as compared to

previous observers.

II. Fault detection and isolation for 3-D systems with applications in grid sensor

networks.

III. Fornasini-Marchesini representation of linear repetitive processes that enables ap-

plying a great number of already available results for these processes.

IV. Designing a stabilising gain for repetitive processes that prevents the error to travel

from pass to pass.

V. Fault detection and isolation for linear repetitive processes with industrial and

algorithmic applications.

VI. A fault detection and isolation algorithm in presence of noise.



Chapter 2

Multidimensional Systems and

Their Structural Properties

2.1 Introduction

The field of multidimensional systems has been a subject of intense research since the

early 70’s when a number of researchers such as Attasi [26], Givone and Rosser [27], and

Fronasini and Marchesini [28] introduced a two dimensional state-space representation

of linear dynamical systems where discrete signals are modelled as a function of two

independent variables. Interestingly, these models can be generalised to represent ‘n-

dimensional’ (nD) systems where n � 2 in a straightforward manner.

At first sight, comparing these models appears to be a hard task since they are based

on state-space representations having distinct structures. However, considering these

di↵erences from the realisation perspective, it turns out that the mentioned models

realise di↵erent transfer functions [24]. The recursiveness of the state equation signifies

the rationality of the transfer function; nontheless the realisation of a strictly causal

rational transfer function cannot be achieved by every model. For Example, the model

represented by Attasi in [26] can realise only the subclass of “separable filter”. However,

both Roesser and Fornasini-Marchesini models can realise the whole class of causal

rational functions in two indeterminates [28, 29].

Structural properties of two dimensional systems such as controllability and observability

have also attracted research e↵orts more recently [30, 31]. In the 2-D setting, reachability

and observability are introduced in two forms of local and global which refers to single

“local states” and the infinite set of local states lying on a “separation set” respectively

[32].

In this chapter the most commonly used class of models for representing nD systems

(n � 2) (i.e., Roesser and Fornasini-Marchesini models) is first introduced and then these

10
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models are extended to represent a three dimensional system which is used in Chapter

4 for the purpose of fault detection and isolation in three dimensional systems. The

structural properties of three dimensional systems such as observability and reachability

are also investigated and the general response formula for three dimensional systems is

derived.

2.2 2-D Roesser Model

In 1972 Givone and Roesser introduced a state-space representation known as Givone-

Roesser model for linear iterative circuits having more than one spatial dimension [27].

They used transition matrices that allowed treatment of such models in a relatively

straightforfard manner. Roesser then extended this model to introduce the Roesser

model for linear image processing where a real field is assumed rather than a finite field

which was assumed in the case of iterative circuits [33].

The intrinsic feature of Roesser model is that the partial state vector is partionioned

into n sub-vectors for nD systems. In the case of a 2-D system, these partitions are

called the horizontal and the vertical state sub-vectors. For a 2-D system, the Roesser

model is of the form

"
xh(n

1

+ 1, n
2

)

xv(n
1

, n
2

+ 1)

#
= A

"
xh(n

1

, n
2

)

xvn
1

i, n
2

)

#
+B u(n

1

, n
2

)

y(n
1

, n
2

) = C

"
xh(n

1

, n
2

)

xv(n
1

, n
2

)

#
+D u(n

1

, n
2

) , (2.1)

where n
1

, n
2

2 N, xh(n
1

+ 1, n
2

) 2 Ra, xv(n
1

, n
2

+ 1) 2 Rb, x, y and u denote the state,

output and the input of the system respectively. A, B, C, D are the matrices with the

appropriate dimensions and real constant entries.

The Roesser model presented above can be generalised to represent an nD system:
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2

6666664

x1(n
1

+ 1, n
2

, . . . , nn)

x2(n
1

, n
2

+ 1, . . . , nn)

...

xn(n
1

, n
2

, . . . , nn + 1)

3

7777775
= A

2

6666664

x1(n
1

, n
2

, . . . , nn)

x2(n
1

, n
2

, . . . , nn)

...

xn(n
1

, n
2

, . . . , nn)

3

7777775
+B u(n

1

, n
2

, . . . , nn) ,

y(n
1

, n
2

, . . . , nn) = C

2

6666664

x1(n
1

, n
2

, . . . , nn)

x2(n
1

, n
2

, . . . , nn)

...

xn(n
1

, n
2

, . . . , nn)

3

7777775
+D u(n

1

, n
2

, . . . , nn) . (2.2)

2.3 2-D Fornasini–Marchesini Model

Fornasini–Marchesini [24] is another class of models that is commonly used for realisa-

tion of multidimensional systems. The model’s approach to address algebraic realisation

problem of nD systems is to use input–output maps to obtain state-space representation

by Nerode equivalence of inputs. However such representations are of infinite dimen-

sions, thus imposing di�culties in expressing the dynamics of systems in terms of a

recursive updating equation [34]. Fornasini and Marchesini were the first to overcome

these di�culties by introducing the notion of local state and global state (Nerode state)

in the 2-D setting [34].

The local state contains the information that is used to compute the state at each step

of recursive computations while global state which is generally of infinite dimension and

provides all the past information.

Fornasini and Marchesini propose two models for the local state space updating scheme

in the 2-D setting. The most basic model has the form

x(n
1

+ 1, n
2

+ 1) =A1 x(n
1

+ 1, n
2

) +A2 x(n
1

, n
2

+ 1) +A x(n
1

, n
2

) +B u(n
1

, n
2

)

+B1 u(n
1

+ 1, n
2

) +B2 u(n
1

, n
2

+ 1), (2.3)

y(n
1

, n
2

) = C x(n
1

, n
2

) +D u(n
1

, n
2

), (2.4)

where x(n
1

, n
2

) 2 Rn is the partial state vector, u(n
1

, n
2

) the input vector at (n
1

, n
2

),

y(n
1

, n
2

) the output vector at (n
1

, n
2

) and Ai, B, Bj, C, D, i = 1, 2, 3, j = 1, 2;

are compatibly dimensioned matrices with real constant entries. The initial conditions

of such model are assigned along each 1-D propagation front as x(0, j) = x̂(j), and
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x(i, 0) = x̂(i), i, j 2 Z+. If A3 and B in (2.3) are equal to zero, the model is said to

be of second order and if B1 and B2 are equal to zero, the model is termed as first

order [35].

To demonstrate the concepts of local and global states in an updating structure, define

a partially ordered set to represent the concept of past, present and future as follows:

Definition. Let P be a partially ordered set. A cross-cut C ⇢ P is a set of incomparable

points such that if i 2 P exactly one of the following is true [36]:

I. i 2 C

II. i > j for some j 2 C

III. i < j for some j 2 C

The cross-cut C partitions the set P into three sections according to I,II and III which

are termed present, future and past respectively (see Figure 2.1). A finite dimensional

local state x is assigned to each point (n
1

, n
2

) of the Z ⇥ Z plane and the global state

Xr is defined as follows:

Xr = {x(n
1

, n
2

) : x(n
1

, n
2

) 2 X, (n
1

, n
2

) 2 Cr} . (2.5)

(r-1,    )
x(r,0)

x(0,r)

1

Past

Future

(0,r)

(1,r-1)

(r,0)

Figure 2.1: Crosscut Cr partitioning P into past, present and future

Given a cross-cut Cr ⇢ Z⇥ Z, the solution of (2.3) in the future is uniquely determined

by the global state Xr and the input values on cross-cut Cr and on the future set with

respect to Cr.
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Fornasini–Marchesini and Roesser models are not independent of each other. In fact,

introducing

⇠(h, k) = x(h, k + 1)�A
1

x(h, k) (2.6)

into the second model of Fornasini–Marchesini results in the following Roesser model

"
⇠(h+ 1, k)

x(h, k + 1)

#
=

"
A

2

A
3

+A
2

A
1

In A
1

#"
⇠(h, k)

x(h, k)

#
+

"
B

0

#
u(h, k), (2.7)

where now horizontal and vertical states are ⇠(h, k) and x(h, k) respectively. It should

be noted that fitting a Fornasini–Marchesini model into Roesser model will result in a

higher state space dimension [37].

2.4 3-D Fornasini-Marchesini Model

The second order Fornasini–Marchesini model can straightforwardly be extended to

higher dimensions. For instance, a 3-D system is described by the following first order

description:

x(n
1

+ 1, n
2

+ 1, n
3

+ 1) = A1 x(n
1

, n
2

+ 1, n
3

+ 1) +A2 x(n
1

+ 1, n
2

, n
3

+ 1)

+A3 x(n
1

+ 1, n
2

+ 1, n
3

) +B1 u(n
1

, n
2

+ 1, n
3

+ 1)

+B2 u(n
1

+ 1, n
2

, n
3

+ 1) +B3 u(n
1

+ 1, n
2

+ 1, n
3

) (2.8)

y(n
1

, n
2

, n
3

) = C x(n
1

, n
2

, n
3

) +D u(n
1

, n
2

, n
3

) , (2.9)

where x 2 Rn, u 2 Rp and y 2 Rq are respectively local state, input and the output

vectors. Then C 2 Rq⇥n, D 2 Rq⇥p, Ai 2 Rn⇥n, Bi 2 Rn⇥p and ni 2 Z , i = 1, 2, 3.

For the sake of notational simplicity, from now on, x(n
1

, n
2

, n
3

), u(n
1

, n
2

, n
3

) and

y(n
1

, n
2

, n
3

), are denoted by x, u and y respectively. Moreover the forward shift op-

erator is defined as follows.

Definition 2.1. Denote by WT the set consisting of all trajectories from T to W. �i,

i = 1, 2, 3 are the forward shift operators �i : (Rw)Z⇥Z⇥Z ! (Rw)Z⇥Z⇥Z, i = 1, 2, 3 defined
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by

(�
1

w)(k
1

, k
2

, k
3

) := w(k
1

+ 1, k
2

, k
3

)

(�
2

w)(k
1

, k
2

, k
3

) := w(k
1

, k
2

+ 1, k
3

)

(�
3

w)(k
1

, k
2

, k
3

) := w(k
1

, k
2

, k
3

+ 1) .

The composition of i times the first shift, j times the second, and k times the third will

be denoted by �i
1

�j
2

�k
3

.

Consequently the model (2.8), equivalently can be written as:

�
1

�
2

�
3

x = A
1

�
2

�
3

x+A
2

�
1

�
3

x+A
3

�
1

�
2

x+B
1

�
2

�
3

u+B
2

�
1

�
3

u+B
3

�
1

�
2

u ,

y = Cx+Du . (2.10)

In what follows this 3-D system will be denoted by ⌃ = (A
1

, A
2

, A
3

, B
1

, B
2

, B
3

) or simply

⌃.

2.4.1 Structural Properties of 3-D FM Model

In contrast to 1-D systems, a feature of 3-D system dynamics is the increasing number of

initial local states on a separation set, which in this case is the plane C` := {(n
1

, n
2

, n
3

) 2
Z3 : n

1

+n
2

+n
3

= `}, that has to be processed as the computation evolves. Considering

the first local state that needs to be computed in the first iteration of the system,

only a finite number (in fact, the least number) of initial states is required for this

computation. However, as the system evolves and reaches the computation of states on

the next separation sets, the number of required initial states increases. It is immediate

that in general this computation cannot be performed without the knowledge of initial

conditions along their respective 1-D “propagation fronts”.

As in 2-D case, this last fact leads to the definition of the state at two di↵erent levels:

the local state, which is defined point-wise and the global state, which consists of all the

values of the local state on a propagation front. Using these facts, the system properties

like reachability and observability are also introduced in forms of weak (local) which

refers to single “local states” and strong (global) which refers to the infinite set of local

states lying on a separation set.
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Figure 2.2: Representation of separation sets C`

Before proceeding to the structural properties of 3-D systems, the concepts of the sepa-

ration plane, global state, global input, and 3-D shu✏e product are defined as follows.

Definition 2.2. For ` 2 Z the separation plane, global state and global input are defined,

respectively, as follows

C` := {(n
1

, n
2

, n
3

) 2 Z3 : n
1

+ n
2

+ n
3

= `} ,

X` := {x(n
1

, n
2

, n
3

) : (n
1

, n
2

, n
3

) 2 C`} ,

U` := {u(n
1

, n
2

, n
3

) : (n
1

, n
2

, n
3

) 2 C`} . (2.11)

The global state and input can be identified with formal power series as follows:

X` :=
i+j`X

i,j=0

x(`� i� j, i, j)zl�i�j
1

zi
2

zj
3

(2.12)

U` :=
i+j`X

i,j=0

u(`� i� j, i, j)zl�i�j
1

zi
2

zj
3

(2.13)

Shu✏e products were defined for the the 2-D case in [38], the analogous definition to be

used in the 3-D case is defined below.
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Definition 2.3. For matrices Ai, i = 1, 2, 3, the shu✏e product is defined as follows:

Ani
i

0Aj := Ani
i ,

A0

p
njAj := A

nj

j ,

Ani
i

njAj := Ai(A
ni�1

i
njAj) +Aj(A

ni
i

nj�1Aj) ,

A0

1

0

A2

0A
3

:= I (the identity matrix) ,

An1
1

0

A2

0A
3

:= An1
1

, A0

1

n2

A2

0A
3

:= An2
2

, A0

1

0

A2

n3A
3

:= An3
3

,

A0

1

1

A2

1A
3

:= A1

2

1A
3

,

A1

1

0

A2

1A
3

:= A1

1

1A
3

,

A1

1

1

A2

0A
3

:= A1

1

1A
2

,

An1
1

n2

A2

n3A
3

:= A
1

(An1�1

1

n2

A2

n3A
3

) +A
2

(An1
1

n2�1

A2

n3A
3

) +A
3

(An1
1

n2

A2

n3�1A
3

) ,

An1
1

n2

A2

n3A
3

:= 0 (the zero matrix) for ni < 0, (2.14)

where i, j 2 {1, 2, 3}, i 6= j and Ai 2 Rn⇥n.

2.4.2 Reachability

Reachability for doubly-indexed linear, stationary, finite-dimensional, dynamical sys-

tems have been introduced and discussed in [28, 33, 34, 39]. Analogous to the 2-D

counterpart, for 3-D systems the state is defined in forms of local state and global state

which necessitates introduction of local reachability and global reachability forms of this

property consequently.

Suppose the sequence of all states denoted by Xd on the separation plane Cd is given. The
question that naturally rises here is whether exists a control sequence such that starting

from zero initial conditions, i.e., X
0

, the state sequence reaches the desired state Xd at

“instance” d. This property is referred to as global (strong) reachability. In contrast,

local reachability is somewhat weaker since only the existence of a control sequence such

that the system produces the desired local state, starting from zero initial conditions, is

required.

Following [39], the 3-D state space model (2.10) is said to be

• locally reachable if, upon assuming the initial state condition X
0

= {0}, for

every desired state xd 2 Rn, there exists (n
1

, n
2

, n
3

) 2 Z3, with ` > 0, and an

input sequence u(., ., .) such that x(n
1

, n
2

, n
3

) = xd. In this case the desired state

xd is said to be reachable in ` =
�
n
1

+ n
2

+ n
3

�
steps.
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• globally reachable if, upon assuming the initial state condition X
0

= {0},
for every global sequence Xd, there exists ` 2 Z+ and a global input sequence

U
0

,U
1

, . . . ,U`�1

such that the global state X` coincides with Xd. In this case the

desired global state Xd is said to be reachable in ` steps.

It is obvious that global reachability, a much stronger property, implies local reachability.

Let X
0

= {0}. The following rational power series represents the output function of ⌃

corresponding to the input function u =
P

n1,n2,n3
u(n

1

, n
2

, n
3

)zn1
1

zn2
2

zn3
3

= 1:

s
⌃

= C(I �A
1

z
1

�A
2

z
2

�A
3

z
3

)�1(B
1

z
1

+B
2

z
2

+B
3

z
3

) .

Definition 2.4. The system ⌃ is said to be reachable if it is locally reachable for any

desired state xd in d = n
1

+ n
2

+ n
3

steps.

Let X
0

= 0. Then the following rational power series:

s⌃ = C(I �A
1

z
1

�A
2

z
2

�A
3

z
3

)�1(B
1

z
1

+B
2

z
2

+B
3

z
3

)

represents the transfer function of ⌃. This corresponds to the system response

u =
X

n1,n2,n3

u(n
1

, n
2

, n
3

)zn1
1

zn2
2

zn3
3

= 1 .

A local state xd 2 X is said to be reachable (from zero initial states) [39] if exists an

input sequence u in the ring of formal power series in three indeterminates z
1

, z
2

, z
3

over

Rn and integers n
1

> 0, n
2

> 0, and n
3

> 0 such that x(n
1

, n
2

, n
3

) = xd.

Definition 2.5. A state x 2 X is reachable for some u 2 Rn if

x =
�
(I �A

1

z
1

�A
2

z
2

�A
3

z
3

)�1(B
1

z
1

�B
2

z
2

�B
3

z
3

)u, 1
�
.

Based on this, the reachable local state-space is

XR =

⇢
x : x =

✓✓
(I � (A

1

)z
1

� (A
2

)z
2

� (A
3

)z
3

◆�1

✓
(B

1

)z
1

� (B
2

)z
2

� (B
3

)z
3

◆
u, 1

◆
,

u 2 Rn

�
.



Chapter 2 Multidimensional Systems and Their Structural Properties 19

Also defining the matrices Mn1,n2,n3 2 Rn⇥n as

Mn1,n2,n3 := coe↵((In � (A
1

)z
1

� (A
2

)z
2

� (A
3

)z
3

)�1, zn1
1

zn2
2

zn3
3

) , (2.15)

where Mn1,n2,n3 is the matrix coe�cient of zn1
1

zn2
2

zn3
3

in the series expansion of (In �
(A

1

)z
1

� (A
2

)z
2

� (A
3

)z
3

)�1, (i.e.,M
0,0,0 = 0, M

1,0,0 = A
1

, M
0,1,0 = A

2

, M
0,0,1 =

A
3

, M
2,0,0 = A2

1

, M
0,2,0 = A2

2

, M
0,0,2 = A2

3

, M
1,1,0 = A

1

A
2

+A
2

A
1

, . . . ) , the columns

of the matrix

RL :=
h
B

1

B
2

B
3

M
1,0,0B1

R0 . . . R00 . . . R000 . . . R0000 . . .
i
, (2.16)

span XR, where the sub-matrices R0, R00, R000, R0000 are defined as:

R0 :=
h
M

0,1,0B1

+M
1,0,0B2

. . . Mn1�1,n2,n3B1

+Mn1,n2�1,n3B2

i

R00 :=
h
M

0,0,1B1

+M
1,0,0B3

. . . Mn1�1,n2,n3B1

+Mn1,n2,n3�1

B
3

i

R000 :=
h
M

0,0,1B2

+M
0,1,0B3

. . . Mn1,n2�1,n3B2

+Mn1,n2,n3�1

B
3

i

R0000 :=


M

0,1,1B1

+M
1,0,1B2

+M
1,1,0B3

. . .

. . . Mn1�1,n2,n3B1

+Mn1,n2�1,n3B2

+Mn1,n2,n3�1

B
3

�
.

Moreover, by using the “shu✏e products” defined in Definition 2.3, Mn1,n2,n3 can also

be expressed in terms of shu✏e products of the matrices Ai, i = 1, 2, 3:

Mn1,n2,n3 = An1
1

n2

A2

n3A
3

.

Therefore the matrix RL equivalently can be described with the following shu✏e product

matrix:

RL :=


(An1�1

1

n2

A2

n3A
3

)B
1

+ (An1
1

n2�1

A2

n3A
3

)B
2

+ (An1
1

n2

A2

n3�1A
3

)B
3

�
0<n1+n2+n3`

n1,n2,n3�0

.

(2.17)

The respective realisation is said to be locally reachable, or simply reachable, if the

global state X = XR, that is, the system ⌃ is locally reachable if RL has full rank.
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Next the stronger notion of global reachability is considered where the 3-D system is

globally reachable if any desired global state Xd 2 X is reachable.

Recall the system model (2.10), which is rewritten in the following form:

�
1

x = (A
1

+A
2

�
1

��1

2

+A
3

�
1

��1

3

)x+ (B
1

+B
2

�
1

��1

2

+B
3

�
1

��1

3

)u . (2.18)

The initial conditions are assigned by values of the local state on the separation set C
0

where C` is defined in (2.11). Equivalently, by assigning all local states of the initial

global state X
0

:= {x(n
1

, n
2

, n
3

) : (n
1

, n
2

, n
3

) 2 C
0

}.

The action of �i, i = 1, 2, 3 on the local state x(n
1

, n
2

, n
3

) 2 X` is a shift to the next

state with respect to its corresponding propagation front. Moreover, action of �i on the

global state X` is a shift to the next global state X`+1

.

Denote by R[[z
1

, z�1

1

, z
2

, , z�1

2

, z
3

, , z�1

3

]] the set of three-variable Laurent formal power

series in the indeterminates z
1

, z
2

, z
3

with coe�cients in R. Applying the 3 � D z-

transform Z : (R)Z⇥Z⇥Z �! R[[z
1

, z�1

1

, z
2

, z�1

2

, z
3

, z�1

3

]] on (2.18) yields:

z
1

X(z
1

, z
2

, z
3

) = A(z
1

, z
2

, z
3

)X(z
1

, z
2

, z
3

) +B(z
1

, z
2

, z
3

)U(z
1

, z
2

, z
3

) , (2.19)

where, A(z
1

, z
2

, z
3

) := (A
1

+ A
2

z
1

z�1

2

+ A
3

z
1

z�1

3

), B(z
1

, z
2

, z
3

) := (B
1

+ B
2

z
1

z�1

2

+

B
3

z
1

z�1

3

). Note that action of z
1

on X(z
1

, z
2

, z
3

) is a shift to the next global state.

Iterating (2.19) along the propagation front corresponding to z
1

, gives:

X
1

(z
1

, z
2

, z
3

) =A(z
1

, z
2

, z
3

)X
0

(z
1

, z
2

, z
3

) +B(z
1

, z
2

, z
3

)U
0

(z
1

, z
2

, z
3

) ,

X
2

(z
1

, z
2

, z
3

) =A2(z
1

, z
2

, z
3

)X
0

(z
1

, z
2

, z
3

) +A(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

)U
0

(z
1

, z
2

, z
3

)

+B(z
1

, z
2

, z
3

)U
1

(z
1

, z
2

, z
3

) ,

...

X`(z1, z2, z3) =A`(z
1

, z
2

, z
3

)X
0

(z
1

, z
2

, z
3

) +A`�1(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

)U
0

(z
1

, z
2

, z
3

)

+ . . .+B(z
1

, z
2

, z
3

)U`�1

(z
1

, z
2

, z
3

) ,

which by considering X
0

= 0, can be written as:

X`(z1, z2, z3) =
`�1X

k=0

A`�1�k(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

)Uk(z1, z2, z3) ,

or the matrix representation:
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X`(z1, z2, z3) =
h
B(z

1

, z
2

, z
3

) A(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

) . . . A`�1(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

)
i

2

66664

U`�1

(z
1

, z
2

, z
3

)

U`�2

(z
1

, z
2

, z
3

)
...

U
0

(z
1

, z
2

, z
3

)

3

77775
. (2.20)

Now define the matrix

R` :=
h
B(z

1

, z
2

, z
3

) A(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

) . . . A`�1(z
1

, z
2

, z
3

)B(z
1

, z
2

, z
3

)
i
,

(2.21)

as the global reachability matrix of the 3-D system ⌃ and consider how the choice of

inputs may a↵ect the state of a given system. That is, how can the input sequence

U
0

,U
1

, . . . ,U`�1

, be chosen such that the system moves from the global state X
0

to a

desired global state Xd in ` steps. It is evident that the global state Xd is reachable in

` steps if and only if

Xd(z1, z2, z3) = Z[Xd] 2 Im R` ,

or the matrix R` has full column rank.

2.4.3 Observability

Observability of a system addresses the question of having knowledge of the output

sequence, to what extent it is possible to reconstruct the state. In this section global

observability and local observability are considered.

Definition 2.6. The 3-D state-space model (2.10) is said to be

• locally observable if, upon assuming that the initial global state X
0

consists of a

single non-zero local state x(0, 0, 0), knowledge of the non-zero pattern of the free

output evolution y`(n1

, n
2

, n
3

) in every point (n
1

, n
2

, n
3

) 2 Z3

+

enables the unique

determination of x(0, 0, 0) non-zero pattern.

• globally observable if the knowledge of the non-zero pattern of the free output

evolution y`(n1

, n
2

, n
3

) in every point (n
1

, n
2

, n
3

) 2 Z3, n
1

+ n
2

+ n
3

� 0, allows

unique determination of the non-zero pattern of the initial global state X
0

.

It is immediate that the global observability implies local observability.

Definition 2.7. The system ⌃ is said to be observable if it is locally observable.
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Definition 2.8. A state x 2 X is indistinguishable from the state 0 2 X if

C(I �A
1

z
1

�A
2

z
2

�A
3

z
3

)�1x = 0 .

The indistinguishable local state space X I is defined as:

X I :=

⇢
x : x 2 X , C(I �A

1

z
1

�A
2

z
2

�A
3

z
3

)�1x = 0

�

The subspace X I coincides with the null space of the following matrix

O` =

2

6666666666666664

C

CA
1

CA
2

CA
3

CA2

1

C(A1

1

1

A2

1A
3

)

...

CA`�1

3

3

7777777777777775

=
h
C(An1

1

n2

A2

n3A
3

)
i
0n1+n2+n3<`

n1,n2,n3�0

, (2.22)

which is termed the observability matrix in ` 2 Z+ steps. The realisation ⌃ is said to

be locally observable if X I = {0} ⇢ X or in another words O` has full rank.

Now the concept of global observability is considered. Assume initial global condition

is given by X
0

= X̄ , where X̄ is a sequence of unknown states x(n
1

, n
2

, n
3

) such that

n
1

+ n
2

+ n
3

= 0.

Then to address the global observability, the free output evolution on separation set

C`, (n1

+ n
2

+ n
3

= `), is described by means of the following power series:

Y`(z1, z2, z3) =
X

i,j2Z
y(`� i� j, i, j) z`�i�j

1

zi
2

zj
3

,

which relates it to the initial conditions on the separation set C
0

as follows:
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Y`(z1, z2, z3) =
X

i,j2Z
C x(`� i� j, i, j) z`�i�j

1

zi
2

zj
3

=
X

i,j2Z
C

p+q`X

p=0,q=0

(Ak�p�q
1

p

A2

qA
3

)x(p+ q � i� j, i� p, j � q) z`�i�j
1

zi
2

zj
3

= C
p+q`X

p=0,q=0

(Ak�p�q
1

p

A2

qA
3

)

✓ X

i,j2Z
x(p+ q � i� j, i� p, j � q)

zp+q�i�j
1

zi�p
2

zj�q
3

◆
z`�p�q
1

zp
2

zq
3

= C
p+q`X

p=0,q=0

(Ak�p�q
1

p

A2

qA
3

) z`�p�q
1

zp
2

zq
3

X
0

(z
1

, z
2

, z
3

)

= C(A
1

z
1

+A
2

z
2

+A
3

z
3

)` X
0

(z
1

, z
2

, z
3

) .

Consequently

2

664

Y
0

(z
1

, z
2

, z
3

)
...

Y`�1

(z
1

, z
2

, z
3

)

3

775 = O`(z1, z2, z3)X0

(z
1

, z
2

, z
3

) ,

where,

O` =

2

66664

C

C(A
1

z
1

+A
2

z
2

+A
3

z
3

)
...

C(A
1

z
1

+A
2

z
2

+A
3

z
3

)`�1

3

77775
,

is the global observability matrix.

2.5 General response for 3-D linear systems

In this section, the definition of the transition matrix for a 3-D system model is given

together with the solution to the second Fornasini-Marchesini model. Consider the
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linear system model (2.10), the problem can be formulated as follows: Given matrices

A
1

, A
2

, A
3

, B
1

, B
2

, and B
3

, and the input u, find a general response for (2.10).

For this purpose, define the state-transition matrix Tn1,n2,n3 for 3-D linear systems with

variable coe�cients as follows:

I. T 0,0,0 = I (the identity matrix) .

II. Tn1,n2,n3 = A
1

Tn1�1,n2,n3+A
2

Tn1,n2�1,n3+A
3

Tn1,n2,n3�1, for n
1

, n
2

, n
3

= 0, 1, ... .

III. Tn1,n2,n3 = 0 (the zero matrix), for n
1

< 0, or n
2

< 0, or n
3

< 0 .

Theorem 2.9. Consider the following boundary conditions

x(n
1

, n
2

, n0

3

) and x(n
1

, n0

2

, n
3

) and x(n0

1

, n
2

, n
3

) for

8
>>><

>>>:

n
1

= n0

1

, n0

1

+ 1, n0

1

+ 2, ...

n
2

= n0

2

, n0

2

+ 1, n0

2

+ 2, ...

n
3

= n0

3

, n0

3

+ 1, n0

3

+ 2, ...

.

(n0

1

, n0

2

, n0

3

= 0, 1, ...) (2.23)

Then a solution to the second Fornasini-Marchesini model (2.10) is given by:

x(n̄
1

, n̄
2

, n̄
3

) =
n̄1X

n1=n0
1+1

n̄2X

n2=n0
2+1

T n̄1�n1,n̄2�n2,n̄3�n0
3�1[A

3

x(n
1

, n
2

, n0

3

)

+B
3

u(n
1

, n
2

, n0

3

)]

+
n̄1X

n1=n0
1+1

n̄3X

n3=n0
1+1

T n̄1�n1,n̄2�n0
2�1,n̄3�n3 [A

2

x(n
1

, n0

2

, n
3

)

+B
2

u(n
1

, n0

2

, n
3

)]

+
n̄2X

n2=n0
2+1

n̄3X

n3=n0
3+1

T n̄1�n0
1�1,n̄2�n2,n̄3�n3 [A

1

x(n0

1

, n
2

, n
3

)

+B
1

u(n0

1

, n
2

, n
3

)]

+
n̄1X

n1=n0
1+1

n̄2X

n2=n0
2+1

n̄3X

n3=n0
3+1

[T n̄1�n1�1,n̄2�n2,n̄3�n3B
1

+ T n̄1�n1,n̄2�n2�1,n̄3�n3B
2

+ T n̄1�n1,n̄2�n2,n̄3�n3�1.

B
3

]u(n
1

, n
2

, n
3

) (2.24)

Proof. The proof follows by induction. Let n
1

= n
2

= n
3

= 0, and then from ( 2.10) it

follows that:
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x(1, 1, 1) =A
1

x(0, 1, 1) +A
2

x(1, 0, 1) +A
3

x(1, 1, 0)

+B
1

u(0, 1, 1) +B
2

u(1, 0, 1) +B
3

u(1, 1, 0) . (2.25)

This is identical to the result in (2.24) once n
1

= n
2

= n
3

= 1 and without loss of

generality the boundary conditions are taken as n0

1

= n0

2

= n0

3

= 0.

Now let n
1

= 1 and n
2

= n
3

= 0. Then from (2.10) and (2.25)

x(2, 1, 1) =A
1

A
1

x(0, 1, 1) +A
1

A
2

x(1, 0, 1)

+A
1

A
3

x(1, 1, 0) +A
1

B
1

u(0, 1, 1)

+A
1

B
2

u(1, 0, 1) +A
1

B
3

u(1, 1, 0)

+A
2

x(2, 0, 1) +A
3

x(2, 1, 0) +B
1

u(1, 1, 1)

+B
2

u(2, 0, 1) +B
3

u(2, 1, ) . (2.26)

The same result now also follows from (2.24). Similarly, the hypothesis can be proven

for n
1

= n
3

= 0, n
2

= 1 and n
1

= n
2

= 0, n
3

= 1. Assuming the hypothesis is true for

(n
1

, n
2

, n
3

), (n
1

+ 1, n
2

, n
3

), (n
1

, n
2

+ 1, n
3

), and (n
1

, n
2

, n
3

+ 1), it is next shown that

the hypothesis for (n
1

+ 1, n
2

+ 1, n
3

+ 1) is also true. From equations ( 2.10), (2.23)

and (2.24) it follows that

x(n
1

+ 1, n
2

+ 1, n
3

+ 1) = A
1

�
1

+A
2

�
2

+A
3

�
3

where
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�
1

:=
n̄1+1X

n1=1

n̄2+1X

n2=1

T n̄1�n1,n̄2�n2+1,n̄3 [A
3

x(n
1

, n
2

, 0) +B
3

u(n
1

, n
2

, 0)]

+
n̄1+1X

n1=1

n̄3+1X

n3=1

T n̄1�n1,n̄2,n̄3�n3+1[A
2

x(n
1

, 0, n
3

) +B
2

u(n
1

, 0, n
3

)]

+
n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�1,n̄2�n2+1,n̄3�n3+1[A
1

x(0, n
2

, n
3

) +B
1

u(0, n
2

, n
3

)]

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1�1,n̄2�n2+1,n̄3�n3+1B
1

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1,n̄2�n2,n̄3�n3+1B
2

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1,n̄2�n2+1,n̄3�n3B
3

u(n
1

, n
2

, n
3

) ,

�
2

:=
n̄1+1X

n1=1

n̄2+1X

n2=1

T n̄1�n1+1,n̄2�n2�1,n̄3 [A
3

x(n
1

, n
2

, 0) +B
3

u(n
1

, n
2

, 0)]

+
n̄1+1X

n1=1

n̄3+1X

n3=1

T n̄1,n̄2�n2,n̄3�n3+1[A
2

x(n
1

, 0, n
3

) +B
2

u(n
1

, 0, n
3

)]

+
n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1,n̄2�n2,n̄3�n3+1[A
1

x(0, n
2

, n
3

) +B
1

u(0, n
2

, n
3

)]

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1,n̄2�n2,n̄3�n3+1B
1

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1+1,n̄2�n2�1,n̄3�n3+1B
2

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1+1,n̄2�n2,n̄3�n3B
3

u(n
1

, n
2

, n
3

) ,
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�
3

:=
n̄1+1X

n1=1

n̄2+1X

n2=1

T n̄1�n1+1,n̄2�n2,n̄3�1[A
3

x(n
1

, n
2

, 0) +B
3

u(n
1

, n
2

, 0)]

+
n̄1+1X

n1=1

n̄3+1X

n3=1

T n̄1�n1+1,n̄2,n̄3�n3 [A
2

x(n
1

, 0, n
3

) +B
2

u(n
1

, 0, n
3

)]

+
n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1,n̄2�n2+1,n̄3�n3 [A
1

x(0, n
2

, n
3

) +B
1

u(0, n
2

, n
3

)]

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1,n̄2�n2+1,n̄3�n3B
1

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1+1,n̄2�n2,n̄3�n3B
2

u(n
1

, n
2

, n
3

)

+
n̄1+1X

n1=1

n̄2+1X

n2=1

n̄3+1X

n3=1

T n̄1�n1+1,n̄2�n2+1,n̄3�n3�1B
3

u(n
1

, n
2

, n
3

) .

Therefore,

x(n
1

+ 1, n
2

+ 1, n
3

+ 1) =

n̄1+1X

n1=n0
1+1

n̄2+1X

n2=n0
2+1

T n̄1�n1+1,n̄2�n2+1,n̄3�n0
3 [A

3

x(n
1

, n
2

, n0

3

) +B
3

u(n
1

, n
2

, n0

3

)]

+
n̄1+1X

n1=n0
1+1

n̄3+1X

n3=n0
1+1

T n̄1�n1+1,n̄2�n0
2,n̄3�n3+1[A

2

x(n
1

, n0

2

, n
3

) +B
2

u(n
1

, n0

2

, n
3

)]

+
n̄2+1X

n2=n0
2+1

n̄3+1X

n3=n0
3+1

T n̄1�n0
1,n̄2�n2+1,n̄3�n3+1[A

1

x(n0

1

, n
2

, n
3

) +B
1

u(n0

1

, n
2

, n
3

)]

+
n̄1+1X

n1=n0
1+1

n̄2+1X

n2=n0
2+1

n̄3+1X

n3=n0
3+1

[T n̄1�n1,n̄2�n2+1,n̄3�n3+1B
1

+ T n̄1�n1+1,n̄2�n2,n̄3�n3+1B
2

+ T n̄1�n1+1,n̄2�n2+1,n̄3�n3B
3

]u(n
1

, n
2

, n
3

) , (2.27)

and the proof is complete.

2.6 Summary

This chapter has introduced the nD systems models used in this research together with

relevant systems theoretic properties. In this work particular use will be made of models

of 3-D dynamics and their reachability and observability properties, which are distinct
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concepts for discrete dynamics. Unlike the 1-D case, there is more than one version

of these properties, e.g., local and global. However, significantly enough, their charac-

terisations express rigorous relationships both with the reachability and observability

characterisations for the standard 1-D and also the 2-D case.

Moreover, a general response formula for 3-D dynamics is developed.



Chapter 3

Geometric Approach

3.1 Introduction

The geometric approach for linear systems was first appeared in literature in the late

60’s when Basile and Marro [40, 41], Wonham and Morse [42], introduced the concepts of

controlled invariant and conditioned invariant subspaces. These invariant subspaces play

a key role in characterising important properties of linear systems such as observability

and controllability.

The essence of the geometric approach is to develop most of the mathematical support

in coordinate-free form, to take advantage of simpler and more elegant results, which

facilitate insight into the actual meaning of statements and procedures; the computa-

tional aspects are considered independently of the theory and handled by the standard

methods of matrix algebra, once a suitable coordinate system is defined. The corner-

stone of the approach is the concept of invariance of a subspace with respect to a linear

transformation [43].

This chapter explains a connection between basic concepts of linear algebra (like invari-

ants, changes of basis) and properties of linear dynamic systems. Also the conditioned

invariant subspaces and their characteristics together with a particular family of con-

ditioned invariant subspaces, namely, the input-containing conditioned invariants are

introduced which is then used for the purpose of fault identification. Moreover, the

unobservability subspaces which originally were introduced in [1] are generalised to the

3-D case. Finally, an LMI based approach is developed for construction of internally

and externally stabilising output injection gains.

The following notations are used throughout this chapter:

29
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Notation

Rm⇥n denotes the set of all m ⇥ n matrices with entries in R. R•⇥n denotes the set of

matrices with n columns and an unspecified (but finite) number of rows. If Ai 2 Rm⇥n,

i = 1, 2, 3, the matrix AH is defined by

AH :=
h
A

1

A
2

A
3

i
2 Rn⇥3n ,

and AD by

AD :=

2

64
A

1

0m⇥n 0m⇥n

0m⇥n A
2

0m⇥n

0m⇥n 0m⇥n A
3

3

75 2 R3m⇥3n .

Given A 2 Rm⇥n, its Moore-Penrose pseudo-inverse is denoted by A†.

Given a subspace V ✓ Rn, the notation V�̇V�̇V denotes the subspace of R3n defined by

V�̇V�̇V :=

8
><

>:

2

64
v
1

v
2

v
3

3

75 | vi 2 V, i = 1, 2, 3

9
>=

>;
,

and V�̇V�̇V�̇Rm denotes the subspace of R3n+m defined by

V�̇V�̇V�̇Rm :=

8
>>>><

>>>>:

2

66664

v
1

v
2

v
3

x

3

77775
| vi 2 V, i = 1, 2, 3, and x 2 Rm

9
>>>>=

>>>>;

.

3.2 Invariants

First some of preliminary geometric concepts are introduced. The basic foundation of

the geometric approach, is an invariant subspace which is defined as follows.

Definition 3.1. Consider a linear transformation A : X �! X , with X := Fn. An

A-invariant is a subspace V ✓ X such that

AV ✓ V . (3.1)

Proposition 3.2. A subspace V spanned by the columns of V is an A-invariant if and

only if there exists a matrix X such that

AV = V X . (3.2)

Proof. V is an A-invariant subspace if and only if each transformed column of V is a

linear combination of all its columns; i.e., let vi(i = 1, 2, ..., r) form the columns of the
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matrix V , then

Avi = V X ,

which proves the claim.

3.2.1 Invariants and Change of Basis

A basis of a vector space of dimension n is a sequence of n vectors {v
1

, ..., vn} by which

any vector in the space can be described uniquely as a linear combination of the ba-

sis vectors. Since for a particular problem it often occurs that working with one ba-

sis is comparatively easier than another, it is essential to be able to easily transform

coordinate-wise representations of vectors and operators taken with respect to one basis

to their equivalent representations in another basis.

Consider a linear map A : Fn �! Fm. A change of basis in Fn and Fm is defined by

two non-singular matrices P,Q whose columns are the vectors of the new bases expressed

with respect to the original ones. Suppose the new coordinates are denoted by the pair

(⇣, ⌘) and the old ones by (x, y) such that x = P ⇣ and y = Q⌘. Considering y = Ax, for

the new basis it follows

⌘ = Q�1AP ⇣ = A0⇣ ,

where A0 := Q�1AP . As a special case, if A : Fn �! Fn, such that it can be assumed

that a unique change of basis T := P = Q exists, it yields,

⌘ = T�1AT ⇣ = A0⇣ ,

where A0 := T�1AT .

It is straightforward to show that the invariance is coordinate-free. Let the columns of

V span the A-invariant subspace V ✓ Rn and W be the new basis matrix transformed

by T to the new coordinates such that W = T�1V . Multiplying (3.2) on the left hand

side yields

T�1AV = T�1V X

and since V = TT�1V , a simple manipulation gives

(T�1AT )(T�1V ) = (T�1V )X
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or

A0W = WX .

Theorem 3.3. [51] Let A : X �! X ,X := Fn be a linear map and V ✓ X be an

A-invariant subspace of dimension r. There exists a similarity transformation T such

that

A0 := T�1AT =

"
A0

11

A0
12

0 A0
22

#
, (3.3)

where A0
11

, A0
12

, and A0
22

are r ⇥ r matrices.

Proof. Consider a linear transformation T :=
h
V V 0

i
such that columns of V span the

invariant subspace V. It follows that

W := T�1V =

"
Ir

0

#
.

"
A0

11

A0
21

#
=

"
A0

11

A0
12

A0
21

A0
22

#"
Ir

0
(n�r)⇥r

#
= A0T�1V = T�1AV.

Using Proposition 3.2, it follows that

"
A0

11

A0
21

#
= T�1V| {z }2

64
Ir

0

3

75

X =

"
X

0

#

which implies A0
21

= 0.

The following lemma establishes the e↵ect of similarity transformation on eigenvalues of

the linear matrix A 2 Rn⇥n.

Lemma 3.4. The similarity transformation T 2 Rn⇥n which transforms the matrix

A 2 Rn⇥n to A0, i.e., A0 := T�1AT , does not a↵ect the eigenvalues of A.

Proof.

|�I � T�1AT | = |T�1�IT � T�1AT | = |T�1||�I �A||T | = |�I �A| .
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3.2.2 Invariants and System Structure

Let V ✓ X , then vectors v
1

, v
2

2 X are equivalent mod V, if v
1

� v
2

2 V . Each vector

v
1

2 X has its respective equivalence class w defined as

w := {v
2

: v
2

2 X , v
2

� v
1

2 V} . (3.4)

Consider two equivalent classes w
1

and w
2

. If the elements of w
1

are added with arbitrary

elements of w
2

, then all the sums belong to one and the same class w
1

+w
2

. Moreover,

products obtained from multiplying all the elements of w
1

with an arbitrary scalar ↵ 2 R
belong to the ↵w class. Therefore the set of all the equivalent classes wi, (i = 1, 2, ...)

together with the two operations defined above (addition and multiplication by a scalar)

form the linear quotient space X/V.

Definition 3.5. The linear transformation P : X �! X/V, which takes an element to

its equivalence class under a given equivalence relation such that w = Px, is said to be

the canonical projection of X on X/V.

3.2.3 Restriction of a Linear Transformation

Definition 3.6. Let A : X �! X , X := Fn be a linear transformation and V ✓ X an A-

invariant subspace. The transformation A|V : V �! V defined by A|V(x) = A(x), x 2 V
is termed as the restriction of the linear transformation A to the subspace V (see Fig. 3.1).

Figure 3.1: A|V is the restriction of the linear map A to the A-invariant subspace V

Following Theorem 3.3, if V is r dimensional, then A|V can be represented in a basis by

an r ⇥ r matrix.

It might appear that A|V would take on exactly the same values as A. However, A|V
di↵ers from A in the choice of domain and co-domain. In restricting a linear transfor-

mation, the rule of the function to a smaller subspace is also restricted.
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3.2.4 Induced Map on a Quotient Space

Let A : X �! X , X := Fn be a linear transformation and V ✓ X an A-invariant

subspace. The map induced by A on the quotient space X/V is the map � := X/V �!
X/V defined by

�({x}+ V) = {A(x)}+ V 8 {x}+ V 2 X/V ,

and denoted by A|X/V .

Following Theorem 3.3, if V and X are respectively r and n dimensional, then A|V can

be represented in a basis by an (n� r)⇥ (n� r) matrix.

Corollary 3.7. [51] Let A := X �! X , X := Fn be a linear transformation and

V
1

,V
2

✓ X be a pair of A-invariant subspaces such that V
1

� V
2

= X . There exist a

similarity transformation T such that

A0 := T�1AT =

"
A0

11

0

0 A0
22

#
, (3.5)

where A0
11

is an r ⇥ r matrix (r := dimV), the restriction of A to V
1

and A0
22

an

(n� r)⇥ (n� r) matrix, the restriction of A to V
2

.

Proof. Assume T =
h
V
1

V
2

i
, with Im V

1

= V
1

and Im V
2

= V
2

. Hence,

T�1V
1

=

"
Ir

0
(n�r)⇥r

#
, T�1V

2

=

"
0r⇥(n�r)

I
(n�r)

#
.

The rest identically follows from the proof of Theorem 3.3.

Any pair of A-invariant subspaces V
1

, V
2

, such that V
1

� V
2

= X , is said to decompose

linear transformation A : X �! X into two restrictions A|V1 and A|V2 .

3.3 Invariant Subspaces for 3-D FM Models

Following Definition 3.1 and analogous to the 2-D counterpart [44], the concept of

(A
1

, A
2

, A
3

)-invariance is first introduced and then an overview of their characterisa-

tions is given.

Definition 3.8. A subspace V ✓ Rn is (A
1

, A
2

, A
3

)-invariant if AiV ✓ V, i 2 {1, 2, 3}.
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The following result gives several characterizations of (A
1

, A
2

, A
3

)-invariance.

Proposition 3.9. Let V ✓ Rn be a subspace of dimension r, and let Q 2 R(n�r)⇥n

and V 2 Rn⇥r, respectively, be full row-rank and full column-rank matrices such that

Im (V ) = ker(Q) = V.

The following statements are equivalent:

I. V is (A
1

, A
2

, A
3

)-invariant;

II. There exist matrices Xi 2 Rr⇥r, i = 1, 2, 3, such that AiV = V Xi, or equivalently

2

64
A

1

A
2

A
3

3

75V =

2

64
V 0n⇥r 0n⇥r

0n⇥r V 0n⇥r

0n⇥r 0n⇥r V

3

75

2

64
X

1

X
2

X
3

3

75 . (3.6)

III. AH(V�̇V�̇V) ✓ V.

IV. There exist Li 2 R(n�r)⇥(n�r) such that QAi = LiQ, i = 1, 2, 3.

Proof. ((I) =) (II)) Following from the 1-D counterpart [40], V is an (A
1

, A
2

, A3)-

invariant subspace if and only if each transformed column of V is a linear combination

of all its columns; i.e., let vi(i = 1, 2, ..., r) form the columns of the matrix V , then

2

64
A

1

A
2

A
3

3

75 vi = V X.

((II) �! (I)) Trivial.

((I) =) (III)) Follows from Definition 3.8.

((III) =) (I)) By contradiction and without loss of generality assume that there exists

v 2 V such that A
1

v 62 V. Then AH

2

64
v

0

0

3

75 62 V, which is a contradiction.

((II) =) (IV )) From (3.6) it follows that QAiV = QVXi = 0, i = 1, 2, 3; consequently

the rows of QAi are a linear combination of the rows of Q.

((IV ) =) (I)) From (IV ) it follows that (QAi)V = Q(AiV) = {0}, and consequently

AiV ✓ V, i = 1, 2, 3.
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Given statement III of Proposition 3.9, the term AH-invariance is used rather than

(A
1

, A
2

, A
3

)-invariance. As for the 2-D counterpart [44], the following is another char-

acterisation of AH -invariant that will be used later in this thesis.

Theorem 3.10. Let V ✓ Rn be a subspace of dimension r. The following statements

are equivalent:

I. V is AH-invariant;

II. For any basis of Rn whose first r columns form a basis of V, there exists a similarity

transform T 2 Rn, such that linear maps represented by Âi = T�1AiT , i = 1, 2, 3

have the following matrix representation:

"
Â11

i Â12

i

0
(n�r)⇥r Â22

i

#
, i = 1, 2, 3 . (3.7)

Proof. Let T 2 Rn⇥n be a nonsingular matrix whose first r columns span V, i.e. T =h
V V 0

i
where Im (V ) = V and V 0 2 Rn⇥(n�r).

((I) =) (II)) Since V is (A
1

, A
2

, A
3

)-invariant,

AiT = Ai

h
V V 0

i
=
h
AiV AiV 0

i
=
h
V Xi AiV 0

i
, i = 1, 2, 3 ,

where Xi 2 Rr⇥r. Multiplying the last equality by T�1 on the left we obtain

Âi := T�1AiT = T�1

h
V Xi AiV 0

i
=
h
T�1V Xi T�1AiV 0

i
=:

"
Âi

11

Âi
12

Âi
21

Âi
22

#
.

Since T�1V =

"
Ir

0
(n�r)⇥r

#
, necessarily Âi

21

= 0 for i = 1, 2, 3.

((II) =) (I)) Consider a non-singular matrix T 2 Rn⇥n such that

Âi , T�1AiT =

"
Âi

11

Âi
12

0
(n�r)⇥r Âi

22

#
,

holds. Then,

Âi

"
Ir

0
(n�r)⇥r

#
=

"
Xi

0
(n�r)⇥r

#
,

holds for Xi = Âi
11

. Multiplying by T on the left yields
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AiT

"
Ir

0
(n�r)⇥r

#
= T

"
Ir

0
(n�r)⇥r

#
Xi ,

which shows that T

"
Ir

0
(n�r)⇥r

#
= V , is the basis of an (A

1

, A
2

, A
3

)-invariant subspace.

3.4 Invariants and Stability

Consider the free response system with the following state-space description:

�
1

�
2

�
3

x = A
1

�
2

�
3

x+A
2

�
1

�
3

x+A
3

�
1

�
2

x . (3.8)

Stability of such system is determined by the eigenvalues of the matrices Ai, i = 1, 2, 3.

More precisely, if all eigenvalues of Ai have values inside unit circle. It follows from

Theorem 3.10 that if V is AH -invariant, by the similarity transformation T :=
h
T
1

T
2

i
,

where Im T
1

= V, the Fornasini-Marchesini model (3.8) can be decomposed in the

following form

"
�
1

�
2

�
3

x0

�
1

�
2

�
3

x00

#
=

"
Â11

1

Â12

1

0
(n�r)⇥r Â22

1

#"
�
2

�
3

x0

�
2

�
3

x00

#
+

"
Â11

2

Â12

2

0
(n�r)⇥r Â22

2

#"
�
1

�
3

x0

�
1

�
3

x00

#

+

"
Â11

3

Â12

3

0
(n�r)⇥r Â22

3

#"
�
1

�
2

x0

�
1

�
2

x00

#
. (3.9)

Representation (3.9) is used to introduce and study the concept of internal and external

stability, first introduced for the 2-D case in [45].

If V is an (A
1

, A
2

, A
3

)-invariant subspace and the boundary conditions {x(n
1

, n
2

, n
3

) |
(n

1

, n
2

, n
3

) 2 C
0

} ⇢ V and u(n
1

, n
2

, n
3

) := 0 for all (n
1

, n
2

, n
3

) 2 Z3, then the sequence

x compatible with the equations (3.9) satisfies x(n
1

, n
2

, n
3

) 2 V for all (n
1

, n
2

, n
3

) 2 Z3

+

,

i.e., the respective state transformed by the similarity map T decomposes into

x(n
1

, n
2

, n
3

) =

"
x0(n

1

, n
2

, n
3

)

0
(n�r)⇥1

#
. (3.10)

and the motion on V is expressed by
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�
1

�
2

�
3

x0 =Â11

1

�
2

�
3

x0 + Â11

2

�
1

�
3

x0 + Â11

3

�
1

�
2

x0 .

Hence, it is only the stability of the sub-matrices Â11

i , i = 1, 2, 3 that determines the

stability of the motion on V.

Moreover, if V is an (A
1

, A
2

, A
3

)-invariant subspace and we assign boundary conditions

{x(n
1

, n
2

, n
3

) | (n
1

, n
2

, n
3

) 2 C
0

} 6⇢ V and u(n
1

, n
2

, n
3

) := 0 for all (n
1

, n
2

, n
3

) 2 Z3, so

that x00(n
1

, n
2

, n
3

) 6= 0, i.e.,

�
1

�
2

�
3

x00 = Â22

1

�
2

�
3

x00 + Â22

2

�
1

�
3

x00 + Â22

3

�
1

�
2

x00 . (3.11)

This means the projection of the state along V over any complement of V has a stable

behaviour if and only if the sub-matrices Â22

i are stable. That is, in this case the

canonical projection of the state on the quotient space X/V tends to the origin as the

system evolves.

Definition 3.11. An (A
1

, A
2

, A
3

)-invariant subspace V is internally stable if

[{x(n
1

, n
2

, n
3

) | (n
1

, n
2

, n
3

) 2 C
0

} ⇢ V] and
⇥
u(n

1

, n
2

, n
3

) := 0 for all (n
1

, n
2

, n
3

) 2 Z3

⇤

=) lim
n1,n2,n3!1

kx0(n
1

, n
2

, n
3

)k = 0 .

It follows from standard results in nD systems theory (see for example [46]) that V is

internally stable if and only if the matrices A11

i , i = 1, 2, 3 satisfy

det(In �A11

1

��A11

2

µ�A11

3

⌫) 6= 0

for all (�, µ, ⌫) 2 {(z
1

, z
2

, z
3

) 2 C3 | |zi|  1, i = 1, 2, 3} . (3.12)

Definition 3.12. An (A
1

, A
2

, A
3

)-invariant subspace V is externally stable if

[{x(n
1

, n
2

, n
3

) | (n
1

, n
2

, n
3

) 2 S
0

} * V] and
⇥
u(n

1

, n
2

, n
3

) := 0, (n
1

, n
2

, n
3

) 2 Z3

⇤

=) lim
n1,n2,n3!1

x00(n
1

, n
2

, n
3

) 2 V .

It is a matter of straightforward verification to check that V is externally stable if and

only if the triple (A22

1

, A22

2

, A22

3

) is asymptotically stable in the sense of (3.12).

The condition (3.12) is rather di�cult to check, and does not lend itself to be used for

the synthesis of stabilising controllers. These issues have spurred research activity in

the use of LMIs, see for example [47, 48]. The following result is a restatement for the

3-D case of the main result of [48].
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Proposition 3.13. If there exist positive-definite matrices Pi = P>
i 2 Rn, i = 1, 2, 3,

such that the following LMI holds:

2

64
P
1

0 0

0 P
2

0

0 0 P
3

3

75�

2

64
A>

1

A>
2

A>
3

3

75 (P
1

+ P
2

+ P
3

)
h
A

1

A
2

A
3

i
> 0 , (3.13)

then the 3-D system described by

�
1

�
2

�
3

x = A
1

�
2

�
3

x+A
2

�
1

�
3

x+A
3

�
1

�
2

x (3.14)

is asymptotically stable.

Proof. Assume by contradiction that (�, µ, ⌫) exists in {(z
1

, z
2

, z
3

) 2 C3 | |zi|  1, i =

1, 2, 3} such that det(In � A
1

� � A
2

µ � A
3

⌫) = 0; then there exists x 2 Cn \ {0} such

that (In � A
1

� � A
2

µ � A
3

⌫)x = 0, equivalently,
h
A

1

A
2

A
3

i
2

64
�In

µIn

⌫In

3

75x = x. Using

the last equality and multiplying (3.13) on the right by

2

64
�In

µIn

⌫In

3

75x and on the left by

x>
h
�In µIn ⌫In

i
, it follows that

x>
h
�In µIn ⌫In

i
2

64
P
1

0 0

0 P
2

0

0 0 P
3

3

75

2

64
�In

µIn

⌫In

3

75x� x>(P
1

+ P
2

+ P
3

)x

= x>
⇥
(��� 1)P

1

+ (µµ� 1)P
2

+ (⌫⌫ � 1)P
3

⇤
x > 0 .

This inequality however is in contradiction with (�, µ, ⌫) 2 {(z
1

, z
2

, z
3

) 2 C3 | |zi| 
1, i = 1, 2, 3}.

Remark 3.14. By using the well-known Schur complement, (3.13) can be written as:

2

666666666666664

P
1

0 0

0 P
2

0

0 0 P
3

2

6666666664

A>
1

A>
2

A>
3

3

7777777775

(P
1

+ P
2

+ P
3

)

(P
1

+ P
2

+ P
3

)

"

A
1

A
2

A
3

#
P
1

+ P
2

+ P
3

3

777777777777775

> 0 ,
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which is a linear matrix inequality and thus computationally tractable [49].

3.5 Conditioned Invariant Subspaces

Conditioned invariant (also known as (A,C)-invariant) subspaces were originally intro-

duced by Basile and Marro [40] for 1-D systems as duals for controlled invariant (also

(A,B)-invariant) subspaces. These subspaces play an important role in the geomet-

ric theory of linear systems. The role of such subspaces for solving problems of state

estimation in presence of unknown input signals was later investigated in [41].

3.5.1 Definition and Characterizations

Definition 3.15. A subspace V ✓ Rn is (AH , CD)-invariant for (2.10), if

h
A

1

A
2

A
3

i
0

B@V�̇V�̇V
\

ker

2

64
C 0 0

0 C 0

0 0 C

3

75

1

CA ✓ V .

The set of conditioned invariants is closed under intersection. A number of characteri-

zations of (AH , CD)-invariance are stated next.

Proposition 3.16. Let V be a r-dimensional subspace of Rn, and let Q 2 R(n�r)⇥n

and V 2 Rn⇥r be full row-, respectively full column-rank matrices such that Im (V ) =

ker(Q) = V. The following statements are equivalent:

I. V is (AH , CD)-conditioned invariant;

II. There exist � =
h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) and ⇤ 2

h
⇤
1

⇤
2

⇤
3

i
2 R(n�r)⇥3p

such that

QAH = �QD + ⇤CD , (3.15)

or equivalently there exist �i 2 R(n�r)⇥(n�r) and ⇤i 2 R(n�r)⇥p, i = 1, 2, 3 such

that

QAi = �iQ+ ⇤iC i = 1, 2, 3 .

III. There exists G =
h
G

1

G
2

G
3

i
2 Rn⇥3p such that

(AH +GCD)V�̇V�̇V ✓ V , (3.16)

or equivalently there exist Gi 2 Rn⇥p such that

(Ai +GiC)V ✓ V for i = 1, 2, 3 .
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Proof. ((I) =) (II)): Condition (I) is equivalent with

AH ker

"
QD

CD

#
✓ ker Q. (3.17)

Lemma 3.17. Let X : Rn ! Rm be a linear map, and let V ✓ Rn, V 0 ✓ Rm be subspaces

of dimension r and r0, respectively. Let Z 2 Rn�r⇥n�r, Y 2 Rm�r0⇥m�r0 be such that

ker(Z) = V and ker(Y ) = V 0. Then

XV ✓ V 0 () 9 L such that Y X = LZ.

Applying Lemma 3.17 to (3.17) gives

QAH = L

2

64
QD

CD

3

75

for some matrix L. Now partition L conformably with

2

64
QD

CD

3

75 as L =:
h
� ⇤

i
, where

� =
h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) and ⇤ 2

h
⇤
1

⇤
2

⇤
3

i
2 R(n�r)⇥3p, to conclude

that (3.15) holds.

((II) =) (III)): Let x 2 V�̇V�̇V, then QAHx = ⇤CDx + �QDx|{z}
=0

. Consequently,

(QAH � ⇤CD)x = 0. Let G0 2 Rn⇥n�r be a right-inverse of Q; it follows Q

✓
AH �

G0⇤CD

◆
x = 0. Now define G := G0⇤.

((III) =) (I)): Let x 2 V�̇V�̇V
T
kerCD. Then

✓
AH +GCD

◆
x = AHx 2 V.

3.5.2 Unobservability Subspaces

Unobservability subspaces were introduced in the 1-D case in [1]; they provide maximal

freedom when choosing the dynamics of an asymptotic observer, and consequently are

useful also in the 1-D fault isolation problem. Next the analogous 3-D concept is intro-

duced which will be used later on in the thesis to obtain necessary conditions for fault

detection and isolation.

Recall from [50, pp. 350], the definition of non-observable subspace.
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Definition 3.18. The non-observable subspace of (AH , CD) is the limiting subspace of

the sequence {Ni}i=0,... defined by

Ni :=

8
<

:

ker C if i = 0

T
j=1,2,3A

�1

j Ni�1

\ ker C if i > 0 ,

where A�1

j is the inverse image of Aj . It follows from the definition that the non-

observable subspace is (A
1

, A
2

, A
3

)-invariant in the sense of Definition 3.8; indeed, it

is the largest AH -invariant subspace contained in ker C. It follows a fortiori that it is

also an (AH , CD)-invariant. In what follows the non-observability subspace of (AH , CD)

is denoted by N (AH , CD), or simply N when it is clear which matrices AH , CD it

corresponds to.

A 3-D unobservability subspace is defined as follows.

Definition 3.19. A subspace S ✓ Rn is a (AH , CD)-unobservability subspace for (2.10),

if there exist H 2 R•⇥3p and G =
h
G

1

G
2

G
3

i
2 Rn⇥3p such that S is the non-

observable subspace of (AH +GCD, HCD).

Proposition 3.20. Let S be a (AH , CD)-unobservability subspace. Then S is an (AH , CD)-

conditioned invariant.

Proof. The non-observable subspace of (AH + GCD, HCD) is a (AH + GCD, HCD)-

invariant. From the equivalence of statement I and statement III of Proposition 3.16,

it is also an (AH , HCD)-conditioned invariant. Since for all H the inclusion ker HCD ◆
ker CD holds, it also follows that each unobservability subspace is also an (AH , CD)-

conditioned invariant.

Let L ⇢ Rn be a subspace. Then the set of all unobservability subspaces containing

L is closed under intersection (see also the discussion at the end of section 3.6), and

consequently there exists a smallest unobservability subspace containing L; denoted by

S(L)?.

Proposition 3.21. Let L ⇢ Rn be a subspace. Denote by W(L)? the smallest (AH , CD)-

conditioned invariant containing L, and by S(L)? the smallest unobservability subspace

containing L. Then S(L)? = W(L)? + N , with N the non-observability subspace of

(AH , CD).

Proof. The first step is to show that W(L)? + N is a (AH , CD)-conditioned invariant.

W(L)? is such a subspace, and consequently (see Proposition 3.16) there exists G 2
Rn⇥3p such that

(AH +GCD)W(L)?�̇W(L)?�̇W(L)? ✓ W(L)? ; (3.18)
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now since N ⇢ ker C and since N is an AH -invariant, it also holds that

(AH +GC) (W(L)? +N ) �̇ (W(L)? +N ) �̇ (W(L)? +N ) ✓ (W(L)? +N ) ;

now apply statement III of Proposition 3.16 to prove the claim.

To prove that W(L)? +N is an unobservability subspace. Let G 2 Rn⇥3p be such that

(3.18) holds, and let H 2 R•⇥p be such that ker H = CW(L)?. Then straightforward

verification confirms that W(L)? is the non-observable subspace of (AH + GCD, HC),

and is thus an unobservability subspace.

Finally, observe that W(L)? +N also contains L.

These considerations imply that S(L)?, the smallest unobservability subspace contain-

ing L, is contained in W(L)? +N . In order to prove the converse implication, assume

by contradiction that there exists x 2 Rn such that x 2 W(L)? + N , but x 62 S(L)?.
Note that since S(L)? is an (AH , CD)-conditioned invariant (Proposition 3.20) contain-

ing L, and since W(L)? is the smallest such subspace, it holds that W(L)? ⇢ S(L)?.
Consequently, x 2 N . However, it is easy to see that N , the non-observable subspace

of (AH , CD), is contained in the unobservability subspace of (AH +GCD, HCD) for all

G 2 Rn⇥3p and H 2 R•⇥3p. Consequently, N ⇢ S(L)?, yielding a contradiction.

3.5.3 Stabilising Gains and Their Construction

Statement III of Proposition 3.16 shows that analogously to the 1-D and 2-D cases, also

in the 3-D case (AH , CD)-conditioned invariance implies that an output-feedback matrix

G can be found that makes the subspace (A
1

+ G
1

C,A
2

+ G
2

C,A
3

+ G
3

C)-invariant

in the sense of Def. 3.8. In the design of asymptotic observers for fault detection, it

is important to ensure that external stability is also guaranteed. The purpose of this

section is to show that the results of [44], stating that internal and external stability can

be achieved by applying independent gain matrices, hold also for the 3-D case; and that

constructive (albeit probably conservative) procedures can be stated yielding externally

stabilising gain matrices.

3.5.3.1 Independence of Internal- and External Stability

Let V be a conditioned invariant subspace; statement III of Proposition 3.16 together

with statement IV of Proposition 3.9 imply the existence of a matrix e� =
h
f�
1

f�
2

f�
3

i

such that Q

✓
AH +GCD

◆
=
h
f�
1

f�
2

f�
3

i
QD, equivalently

QAH =
h
e� �QG

i "QD

CD

#
. (3.19)



Chapter 3 Geometric Approach 44

Denote by H any full row-rank matrix such that ker H = Im

"
QD

CD

#
; then

h
e� �QG

i
is

a solution of (3.19) if and only if there exists K such that

h
e� �QG

i
= QAH

"
QD

CD

#†
+KH . (3.20)

From statement II of Proposition 3.16 it follows that
h
� ⇤

i
= QAH

"
QD

CD

#†
+ K 0H

for some matrix K 0. Comparing this expression with (3.20) confirms that
h
� ⇤

i
�

h
e� �QG

i
= (K 0 � K)H. Now partition H as H =

h
H 0 H 00

i
, with H 0 2 R•⇥3(n�r)

and H 00 2 R•⇥3p; then

⇤ = �QG+ (K 0 �K)H 00 .

From this it follows that

G = �Q†⇤+Q†(K 0 �K)| {z }
=:K00

H 00 + ⌦ U , (3.21)

where ⌦ is a full column rank matrix such that V = ker Q = Im ⌦ and U is an arbitrary

matrix of suitable dimension.

Let S be a nonsingular matrix whose first r columns span V. Since V an (A
1

+G
1

C,A
2

+

G
2

C,A
3

+G
3

C)-invariant subspace, applying Theorem 3.10 gives

S(Ai +GiC)S�1 =

"
�11

i (K 00, U) �12

i (K 00, U)

0 �22

i (K 00, U)

#
, (3.22)

where the dependence of �11

i , �12

i and �22

i in (3.22) on U and K 00 arises from the fact

that G itself depends on these matrices, see (3.21). U and K 00 are two degrees of freedom

that can be used to assign the inner dynamics of V by modifying �11

i (K 00, U) and the

external dynamics of V by modifying �22

i (K 00, U). The following result shows that these

dynamics can be assigned independently of each other.

Proposition 3.22. For all i 2 {1, 2, 3}, the matrix �22

i (K 00, U) in (3.22) does not

depend on U , and the matrix �11

i (K 00, U) does not depend on K 00.

Proof. Let U
1

and U
2

be arbitrary matrices, and subtract the matrices (3.22) corre-

sponding to the gains �Q†⇤+Q†K 00H 00+⌦ U
1

and �Q†⇤+Q†K 00H 00+⌦ U
2

. Denoting

G0 := �Q†⇤+Q†K 00H 00, and partitioning Ui =:
h
U1

i U2

i U3

i

i
, with U j

i 2 Rr⇥p, i = 1, 2,
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j = 1, 2, 3, it is obtained:

"
�11

i (K 00, U
1

)��11

i (K 00, U
2

) �12

i (K 00, U
1

)��12

i (K 00, U
2

)

0 �22

i (K 00, U
1

)��22

i (K 00, U
2

)

#
=

S(Ai +G0
iC + ⌦U i

1

C)S�1 � S(Ai +G0
iC + ⌦U i

2

C)S�1 = S⌦(U i
1

� U i
2

)CS�1 .(3.23)

Also S can without loss of generality be assumed to be structured as S =

"
Vc

Q

#
for some

suitable matrix Vc; consequently, the second block row of (3.23) is

Q⌦|{z}
=0

(U i
1

� U i
2

)CS�1 = 0 =
h
0 �22

i (K 00, U
1

)��22

i (K 00, U
2

)
i
.

It follows that �22

i (K 00, U
1

) = �22

i (K 00, U
2

), which implies that the term �22

i (K 00, U) in

(3.22) does not depend on U .

To show that �11

i (K 00, U) does not depend on K, proceed as follows. First, partition

H 00 =:
h
H 00

1

H 00
2

H 00
3

i
with H 00

i 2 R•⇥p, i = 1, 2, 3. Then use (3.22) and S =

"
Vc

Q

#
to

conclude that

Vc(Ai �Q†⇤iC +Q†K 00H 00
i C + ⌦UC) = �11

i (K 00, U)Vc +�
12

i (K 00, U)Q . (3.24)

Now consider (3.24) for K 00
i , i = 1, 2, and subtract the first equation from the second;

after routine manipulations to obtain

Vc

✓
Q†(K 00

1

�K 00
2

)H 00
i C

◆
=

✓
�11

i (K 00
1

, U)��11

i (K 00
2

, U)

◆
Vc

+

✓
�12

i (K 00
1

, U)��12

i (K 00
2

, U)

◆
Q . (3.25)

From H

"
QD

CD

#
= H 0QD +H 00CD = 0 it follows that the subspace spanned by the rows

of H 00CD is a subspace of the row span of Q. Since Vc and Q have linearly independent

rows, from (3.25) it follows that �11

i (K 00
1

, U)��11

i (K 00
2

, U) = 0; consequently, �11

i (K,U)

in (3.22) does not depend on K.
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3.5.3.2 Construction of Stabilising Gains

Consider the problem of constructing externally stabilising gains for a given (Ai, C)-

invariant subspace, i = 1, 2, 3. As the following result shows, external stability is equiv-

alent to the existence of � =
h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) and ⇤ =

h
⇤
1

⇤
2

⇤
3

i
such

that �i has all its eigenvalues in the open unit circle.

Proposition 3.23. Let �, ⇤ satisfy (3.15). Then �i = �22

i (K 00, U), the (2, 2)-block of

(3.22).

Proof. From statement (II) of Proposition 3.16 it follows that (QAi � ⇤iC) = �iQ,

i = 1, 2, 3, and hence

Q(Ai � (Q† + V K)⇤iC) = �iQ ,

where Gi := �(Q† + V K)⇤i, Im V = V and K is an arbitrary matrix of suitable

dimensions. Now consider (3.22), and partition S as S =

"
Vc

Q

#
, as in the proof of

Proposition 3.22. The second block row of (3.22) yields

Q(Ai +GiC)S�1 =
h
0 �22

i (K 00, U)
i
= �iQS�1 .

And hence

�iQ =
h
0 �22

i (K 00, U)
i
S = �22

i (K 00, U)Q .

Since Q has full row-rank, this implies �i = �22

i (K 00, U).

The following is an immediate consequence of Proposition 3.23.

Corollary 3.24. Let V be an (A,C)-conditioned invariant subspace of dimension r, and

denote by Q 2 R(n�r)⇥n a full row rank matrix such that ker(Q) = V. V is externally

stabilizable if and only if there exists Gi 2 Rn⇥p, i = 1, 2, 3, such that Q(Ai+GiC) = �iQ

with �i 2 R(n�r)⇥(n�r) Schur, i = 1, 2, 3.

The matrix �11

i in (3.22) is related to the internal stability properties of the conditioned

invariant subspace, as the following result shows.

Proposition 3.25. Let Vc 2 Rr⇥n be such that

"
Vc

Q

#
is nonsingular, and moreover

VcV >
c = Ir. Then �11

i (K 00, U) = Vc(Ai + ⌦UC)V >
c .
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Proof. Multiply both sides of (3.22) on the right by SV >
c to obtain

S(Ai +GiC)V >
c =

"
�11

i (K 00, U) �12

i (K 00, U)

0 �22

i (K 00, U)

#
SV >

c| {z }
=


I

0

�
.

Hence,

S(Ai +GiC)V >
c =

h
�11

i (K 00, U) �12

i (K 00, U)
i
,

from which it follows that �11

i (K 00, U) = Vc(Ai +GiC)V >
c .

From (3.21), and using the fact that the columns of V >
c form an orthonormal basis for

V, it follows that VcG = ⌦U . The claim follows.

The following is an immediate consequence of Proposition 3.25.

Corollary 3.26. Let V be an (Ai, C)-invariant subspace of dimension r, i = 1, 2, 3, and

denote by Q 2 R(n�r)⇥n a full row rank matrix such that ker(Q) = V. Moreover, let

Vc 2 Rr⇥n be such that

"
Vc

Q

#
is nonsingular, and VcV >

c = Ir. V is internally stabilisable

if and only if there exist Gi 2 Rn⇥p, i = 1, 2, 3, such that the triple

(Vc(A1

+G
1

C)V >
c , Vc(A2

+G
2

C)V >
c , Vc(A3

+G
3

C)V >
c )

is stable.

To construct an internally stabilizing gain matrix G, the aim is to compute the matrix U

with aid of the result of Proposition 3.13 and try to solve the following matrix inequality

in the unknown positive-definite matrices Pi 2 Rn⇥n, i = 1, 2, 3 :

2

64
P
1

0 0

0 P
2

0

0 0 P
3

3

75�

2

64
⇣>
1

⇣>
2

⇣>
3

3

75 (P
1

+ P
2

+ P
3

)
h
⇣
1

⇣
2

⇣
3

i
> 0 , (3.26)

where ⇣i = Vc(Ai +⌦UC)V >
c . Note that (3.26) is not linear in U and Pi, i = 1, 2, 3; by

introducing auxiliary variables  
1

:= P
1

, 
2

:= P
1

+ P
2

, 
3

:= P
1

+ P
2

+ P
3

, and using
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a Schur complement argument from (3.26) it is concluded that

2

64
 

1

0 0

0  
2

0

0 0  
3

3

75�

2

64
⇣>
1

⇣>
2

⇣>
3

3

75 
3

h
⇣
1

⇣
2

⇣
3

i
> 0 (3.27)

()

2

66664

 
1

0 0 ⇣>
1

 
3

0  
2

� 
1

0 ⇣>
2

 
3

0 0  
3

� 
2

⇣>
3

 
3

 
3

⇣
1

 
3

⇣
2

 
3

⇣
3

 
3

3

77775
> 0 , (3.28)

and on introducing the auxiliary variables ⇧i :=  3

Vc⌦Ui, i = 1, 2, 3 (3.28) is equivalent

to

h
�

1

�
2

i
> 0

 
1

, 
2

, 
3

> 0 , (3.29)

where

�
1

:=

2

66664

 
1

0

0  
2

� 
1

0 0

 
3

VcA1

V >
c +⇧

1

CV >
c  

3

VcA2

V >
c +⇧

2

CV >
c

3

77775
,

�
2

:=

2

66664

0 ( 
3

VcA1

V >
c +⇧

1

CV >
c )>

0 ( 
3

VcA2

V >
c +⇧

2

CV >
c )>

 
3

� 
2

( 
3

VcA3

V >
c +⇧

3

CV >
c )>

 
3

VcA3

V >
c +⇧

3

CV >
c  

3

3

77775
.

Having found solutions  i, i = 1, 2, 3 and ⇧i to (3.29), the matrix Ui is obtained by

Ui =  
�1

3

V �1

c ⌦�1⇧i and finally U =
h
U
1

U
2

U
3

i
.

To construct an externally stabilizing gain matrix G, first compute, if it exists, � =h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) such that (3.15) holds for some ⇤ 2 R(n�r)⇥3p, and

moreover �i is Schur, i = 1, 2, 3. Then compute G as a solution to

Q(Ai +GiC) = �iQ, i = 1, 2, 3 .
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From (3.15) it follows that

h
� ⇤

i
= QAH

"
QD

CD

#†
+KH , (3.30)

where H is any full row-rank matrix such that ker(H) = Im

"
QD

CD

#
. Denote

h
V
1

V
2

V
3

V̄
i
:= QAH

"
QD

CD

#†
,

where Vi 2 R(n�r)⇥(n�r), i = 1, 2, 3, and V̄ 2 R(n�r)⇥3p. Partition H as

H =:
h
H

1

H
2

H
3

H̄
i
,

and rewrite (3.30) as

h
�
1

�
2

�
3

⇤
i
=
h
V
1

V
2

V
3

V̄
i
+K

h
H

1

H
2

H
3

H̄
i
,

from which it follows that �i = Vi +KHi, i = 1, 2, 3, and ⇤ = V̄ +KH̄.

Two cases are now possible, depending on whether or not

"
QD

CD

#
has full row-rank, or

not.

In the first case H = 0; consequently
h
� ⇤

i
= QAH

"
QD

CD

#†
, with the matrix on the

right-hand side being uniquely defined. This implies that if �i is Schur, i = 1, 2, 3, then

the corresponding G makes V externally stable. Otherwise, no G exists that makes V
externally stable.

If

"
QD

CD

#
is not full row-rank, a matrix K must be found such that �i = Vi + KHi is

asymptotically stable, i = 1, 2, 3. In finding such a K the result of Proposition 3.13 can

be used and try to solve the following matrix inequality in the unknown positive-definite

matrices Pi 2 Rn⇥n, i = 1, 2, 3:

2

64
P
1

0 0

0 P
2

0

0 0 P
3

3

75�

2

64
�>
1

�>
2

�>
3

3

75 (P
1

+ P
2

+ P
3

)
h
�
1

�
2

�
3

i
> 0 , (3.31)

where �i = Vi +KHi. Note that (3.31) is not linear in K and Pi, i = 1, 2, 3 as bilinear

terms PiK appear. By introducing the auxiliary variables �
1

:= P
1

, �
2

:= P
1

+ P
2

,
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�
3

:= P
1

+ P
2

+ P
3

, and using a Schur complement argument from (3.31) gives

2

64
�
1

0 0

0 �
2

0

0 0 �
3

3

75�

2

64
�>
1

�>
2

�>
3

3

75�
3

h
�
1

�
2

�
3

i
> 0

()

2

66664

�
1

0 0 �>
1

�
3

0 �
2

� �
1

0 �>
2

�
3

0 0 �
3

� �
2

�>
3

�
3

�
3

�
1

�
3

�
2

�
3

�
3

�
3

3

77775
> 0 , (3.32)

and on introducing the auxiliary variable ⇥ := �
3

K, (3.43) is equivalent to

2

66664

�
1

0 0 (�
3

V
1

+⇥H
1

)>

0 �
2

� �
1

0 (�
3

V
2

+⇥H
2

)>

0 0 �
3

� �
2

(�
3

V
3

+⇥H
3

)>

�
3

V
1

+⇥H
1

�
3

V
2

+⇥H
2

�
3

V
3

+⇥H
3

�
3

3

77775
> 0

�
1

,�
2

,�
3

> 0 . (3.33)

Given the solutions �i, i = 1, 2, 3 and ⇥ to (3.33), the matrix K is obtained as K =

��1

3

⇥.

3.6 Input-Containing (AH , CD)-Invariants

In the fault detection and isolation analysis later in this thesis, the concept of an input-

containing (AH , CD)-conditioned invariant will play an important role in describing the

fault dynamics of a 3-D plant. The definition is as follows.

Definition 3.27. V ⇢ Rn is an input-containing conditioned invariant subspace for (2.10)

if h
AH BH

i
((V�̇V�̇V�̇R3m) \ ker

h
CD 0

3p⇥3m

i
) ✓ V .

The following characterisations of input-containing subspaces hold.

Proposition 3.28. Let V be a r-dimensional subspace of Rn, and let Q 2 R(n�r)⇥n

and V 2 Rn⇥r be full row-, respectively full column-rank matrices such that Im (V ) =

ker(Q) = V. The following statements are equivalent:

I. The subspace V is an input-containing conditioned invariant for (2.10);

II. There exist � =
h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) and ⇤ =

h
⇤
1

⇤
2

⇤
3

i
2 R(n�r)⇥3p

such that

Q
h
AH BH

i
= �

h
QD 0

3(n�r)⇥3m

i
+ ⇤

h
CD 0

3p⇥3m

i
, (3.34)
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or equivalently there exist �i 2 R(n�r)⇥(n�r) and ⇤i 2 R(n�r)⇥p, i = 1, 2, 3 such

that

Q
h
Ai Bi

i
= �i

h
Q 0

(n�r)⇥m

i
+ ⇤i

h
C 0p⇥m

i
i = 1, 2, 3 .

III. There exists G =
h
G

1

G
2

G
3

i
2 Rn⇥3p such that

h
AH +GCD BH

i �
V�̇V�̇V�̇R3m

�
✓ V , (3.35)

or equivalently there exist Gi 2 Rn⇥p such that

h
Ai +GiC Bi

i �
V�̇Rm

�
✓ V for i = 1, 2, 3 .

Proof. ((I) =) (II)): Condition (I) is equivalent to

h
AH BH

i
ker

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#
✓ ker Q. (3.36)

As a consequence of Lemma 3.17 it follows

Q
h
AH BH

i
= L

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#

for some L 2 R(n�r)⇥3(n�r)+3p. Now partition L conformably with

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#

as L :=
h
� ⇤

i
where � =

h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) and ⇤ 2

h
⇤
1

⇤
2

⇤
3

i
2

R(n�r)⇥3p. Then it is immediate to verify that (3.34) holds.

((II) =) (III)): Let x 2 V�̇V�̇V�̇R3m, then

Q
h
AH BH

i
x = �

h
QD 0

3(n�r)⇥3m

i
x

| {z }
=0

+ ⇤
h
CD 0

3(n�r)⇥3m

i
x .

Consequently,

(Q
h
AH BH

i
� ⇤

h
CD 0

3(n�r)⇥3m

i
)x = 0 .

Let G0 2 Rn⇥(n�r) be a right-inverse of Q; It follows

Q

✓h
AH BH

i
�G0⇤

h
CD 0

2(n�r)⇥3m

i◆
x = 0 .
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Now define G := �G0⇤. Then

Q

✓h
AH +GCD BH

i◆
x = 0 ,

which proves the claim.

((III) =) (I)): Let x 2 V�̇V�̇V�̇R3m
T
ker

h
CD 0

3p⇥3m

i
. Then

h
AH +GCD BH

i
x =

h
AH BH

i
x 2 V ,

which proves (3.36). Hence (I) follows from (3).

The intersection of two input-containing subspaces is also input containing; thus the

smallest input-containing subspace of (Ai, Bi, C), i = 1, 2, 3 is the intersection of all

input-containing subspaces of (Ai, Bi, C), i = 1, 2, 3. Denote by W(B)? the smallest

(AH , CD)-conditioned invariant containing im(BH) =: BH . To compute W(B)?, the

recursion (see [44, Algorithm 4.1]) can be used:

Wi :=

8
><

>:

{0}n if i = 0
h
AH BH

i ⇣
Wi�1

�̇Wi�1

�̇Wi�1

�̇R3m \ ker
h
CD 0

3p⇥3m

i⌘
i > 1 ;

(3.37)

and then W(B)? = limi!1Wi = Wn.

It is routine to show that results analogous to those for conditioned invariant subspaces

(see sections 3.5.3.1 and 3.5.3.2) hold also in the case of input-containing conditioned

invariants. Therefore, it is only required to consider the construction, if it exists, of

an external stabilising G with the internal stabilising G being constructed in the same

manner. Let V be an input-containing conditioned invariant subspace; statement III of

Proposition 3.28 together with statement IV of Proposition 3.9 imply the existence of

a matrix e� =
h
f�
1

f�
2

f�
3

i
such that

Q

✓h
AH BH

i
+G

h
CD 0

3p⇥3m

i◆
=
h
f�
1

f�
2

f�
3

i h
QD 0

3(n�r)⇥3m

i
,

equivalently,

Q
h
AH BH

i
=
h
e� �QG

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#
. (3.38)
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Denote by H any full row-rank matrix such that ker H = Im

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#
. Then

h
e� �QG

i
is a solution of (3.38) if and only if there exists K such that

h
e� �QG

i
= Q

h
AH BH

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#†
+KH . (3.39)

From statement II of Proposition 3.28 it follows that

h
� ⇤

i
= Q

h
AH BH

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#†
+K 0H ,

for some matrix K 0. Comparing this expression with (3.39) gives

h
� ⇤

i
�
h
e� �QG

i
= (K 0 �K)H .

Now partition H as H =
h
H 0 H 00

i
, with H 0 2 R•⇥3(n�r) and H 00 2 R•⇥3p; then

⇤ = �QG+ (K 0 �K)H 00 ,

from which it follows that

G = �Q†⇤+Q†(K 0 �K)| {z }
=:K00

H 00 + ⌦ U , (3.40)

where ⌦ is a full column rank matrix such that V = ker Q = Im ⌦ and U is an arbitrary

matrix of suitable dimension.

To construct an externally stabilising gain matrix G, first compute, if it exists, � =h
�
1

�
2

�
3

i
2 R(n�r)⇥3(n�r) such that (3.34) holds for some ⇤ 2 R(n�r)⇥3p, and

moreover �i is Schur, i = 1, 2, 3. Then compute G as a solution to Q(Ai +GiC) = �iQ,

i = 1, 2, 3. Note that from (3.34) it follows that

h
� ⇤

i
= Q

h
AH BH

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#†
+KH , (3.41)

where H is any full row-rank matrix such that ker(H) = Im

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#
. Denote

h
V
1

V
2

V
3

V̄
i
:= Q

h
AH BH

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#†
,
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where Vi 2 R(n�r)⇥(n�r), i = 1, 2, 3, and V̄ 2 R(n�r)⇥3p. Partition H as H :=h
H

1

H
2

H
3

H̄
i
; now rewrite (3.41) as

h
�
1

�
2

�
3

⇤
i
=
h
V
1

V
2

V
3

V̄
i
+K

h
H

1

H
2

H
3

H̄
i
,

from which it follows that �i = Vi +KHi, i = 1, 2, 3, and ⇤ = V̄ +KH̄.

Two cases are now possible, depending on whether

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#
has full row-rank,

or not.

In the first case H = 0; consequently

h
� ⇤

i
=
h
AH BH

i "QD 0
3(n�r)⇥3m

CD 0
3p⇥3m

#†
,

with the matrix on the right-hand side is uniquely defined. This implies that if �i is

Schur, i = 1, 2, 3, then the corresponding G makes V externally stable. Otherwise, no G

exists that makes V externally stable.

If

"
QD 0

3(n�r)⇥3m

CD 0
3p⇥3m

#
is not full row-rank, a matrix K must be found such that �i =

Vi+KHi is asymptotically stable, i = 1, 2, 3. To find such a K the result of Proposition

3.13 is used to solve the matrix inequality in the unknown positive-definite matrices

Pi 2 Rn⇥n, i = 1, 2, 3:

2

64
P
1

0 0

0 P
2

0

0 0 P
3

3

75�

2

64
�>
1

�>
2

�>
3

3

75 (P
1

+ P
2

+ P
3

)
h
�
1

�
2

�
3

i
> 0 , (3.42)

where �i = Vi + KHi. Note that (3.42) is not linear in K and Pi, i = 1, 2, 3; bilinear

terms PiK appear. By introducing the auxiliary variables �
1

:= P
1

, �
2

:= P
1

+ P
2

,

�
3

:= P
1

+ P
2

+ P
3

, and using the Schur complement argument from (3.31) it follows

2

64
�
1

0 0

0 �
2

0

0 0 �
3

3

75�

2

64
�>
1

�>
2

�>
3

3

75�
3

h
�
1

�
2

�
3

i
> 0

()

2

66664

�
1

0 0 �>
1

�
3

0 �
2

� �
1

0 �>
2

�
3

0 0 �
3

� �
2

�>
3

�
3

�
3

�
1

�
3

�
2

�
3

�
3

�
3

3

77775
> 0 , (3.43)
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and introducing the auxiliary variable ⇥ := �
3

K, (3.43) is equivalent to

2

66664

�
1

0 0 (�
3

V
1

+⇥H
1

)>

0 �
2

� �
1

0 (�
3

V
2

+⇥H
2

)>

0 0 �
3

� �
2

(�
3

V
3

+⇥H
3

)>

�
3

V
1

+⇥H
1

�
3

V
2

+⇥H
2

�
3

V
3

+⇥H
3

�
3

3

77775
> 0

�
1

,�
2

,�
3

> 0 . (3.44)

Given the solutions  i, i = 1, 2, 3 and ⇥ to (3.44), the matrix K is obtained by K =

��1

3

⇥.

Example 3.1. Consider the system defined by

A
1

=

2

66664

�2 �1

4

3

2

1

4

0 �15

4

0 7

4

�3 23

4

5

2

�11

4

0 �7

2

0 3

2

3

77775
, A

2

=

2

66664

�16

3

55

6

17

3

�29

6

0 �11

6

0 5

6

�34

3

139

6

35

3

�71

6

0 �5

3

0 2

3

3

77775
, A

3

=

2

66664

�7

5

�217

30

6

5

109

30

0 �59

6

0 29

6

�12

5

143

30

11

5

�71

30

0 �29

3

0 14

3

3

77775
,

B
1

= B
2

= 0
4⇥2

, B
3

=

2

66664

3 4

2 1

1 7

2 2

3

77775
, C =

2

64
1 0 �1 0

0 �2 0 1

0 0 1 0

3

75 , D = 0
3⇥2

.

The aim is to construct a stabilising output injection matrix G.

Step 1. Building the subspacesW1?
3

, andW2?
3

and using the recursion Algorithm (3.37),

W1?
3

= Im (

2

66664

�0.7071

�0.4714

�0.2357

�0.4714

3

77775
), W2?

3

= Im (

2

66664

�0.4781

�0.1195

�0.8367

�0.2390

3

77775
).

Step 2. Building W? = W1?
3

uW2?
3

:

W? =

2

66664

�0.7071 �0.4781

�0.4714 �0.1195

�0.2357 �0.8367

�0.4714 �0.2390

3

77775
,

and the kernel of

Q =

"
�0.7065 0.4837 0.1984 0.4770

0.0000 �0.6740 �0.1123 0.7302

#
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is exactly W?.

Step 3. Construct an externally and internally stabilizing output injection matrix

G =
h
G

1

G
2

G
3

i
such that W? is an (Ai +Gi)-invariant input containing subspace,

i = 1, 2, 3:

Since

h
V
1

V
2

V
3

V̄
i
= Q

h
AH BH

i "QD 0

CD DD

#†
,

h
H

1

H
2

H
3

H̄
i
= Im (

"
QD 0

CD DD

#
) ,

it yields

V
1

=

"
�0.5067 0.3078

�0.2010 0.0817

#
, V

2

=

"
�0.4432 0.8287

�0.3871 0.6125

#
, V

3

=

"
�0.4397 0.4777

�0.1709 0.1410

#
,

V̄ =

2

64
0.4600 0.8567 0.0312 1.2070 1.3950 �0.3015 0.2024 1.3879 �0.0682

0.1950 0.2608 �0.0368 0.9996 0.9918 �0.1654 0.1489 0.3942 �0.0485

3

75 ,

H
1

=

2

64
0 �0.0000

�0.4200 0.7678

0 0.0000

3

75 , H
2

=

2

64
�0.4069 0.7439

�0.0000 �0.0000

�0.1040 0.1901

3

75 , H
3

=

2

64
�0.1040 0.1901

0 0

0.4069 �0.7439

3

75 ,

H̄ =
h
H̄

1

H̄
2

H̄
3

i
,

where

H̄
1

=

2

64
�0.0000 0.0000 0.0000

�0.2967 �0.3603 �0.1272

0.0000 �0.0000 0.0000

3

75 , H̄
2

=

2

64
�0.2875 �0.3491 �0.1232

�0.0000 0.0000 �0.0000

�0.0735 �0.0892 �0.0315

3

75

H̄
3

=

2

64
�0.0735 �0.0892 �0.0315

�0.0000 �0.0000 �0.0000

0.2875 0.3491 0.1232

3

75
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Solving the LMI (3.44) for �i,  i, K and Ui, i = 1, 2, 3 gives

�
1

=

"
15.0115 �0.14006

�0.14006 15.2356

#
, �

2

=

"
22.0711 �0.42019

�0.42019 22.7433

#
,

�
3

=

"
28.2383 �1.1205

�1.1205 30.0307

#
,  

1

=

"
16.91 0

0 16.91

#
, 

2

=

"
25.365 0

0 25.365

#
,

 
3

=

"
33.82 0

0 33.82

#
, K =

"
�1.2186 �0.5864 0.4317

�0.8588 �0.1921 0.0231

#
,

U =
h
U
1

U
2

U
3

i
,

where

U
1

=

"
�0.1547 3.1568 0.6241

6.8677 10.0520 2.3804

#
, U

2

=

"
�43.1943 �49.0157 �13.9290

40.9437 49.2220 14.2804

#
,

U
3

=

"
73.3271 96.2555 32.1438

1.1131 6.3128 �0.0789

#
.

Finally the stabilising gain is

G =
h
G

1

G
2

G
3

i
,

with



Chapter 3 Geometric Approach 58

G
1

=

2

66664

�1.4980 �4.2654 �1.0348

�3.2297 �5.9039 �1.3484

5.3591 5.8468 1.4753

�2.5019 �5.0023 �1.0008

3

77775
, G

2

=

2

66664

16.6137 18.0666 4.5725

�4.8081 �6.8264 �2.0368

56.9213 66.7259 19.2758

2.6141 2.1981 1.1680

3

77775
,

G
3

=

2

66664

�47.1101 �62.5076 �20.5948

�24.0331 �34.1712 �10.2761

�41.7793 �51.2486 �18.7387

�28.9114 �40.0829 �12.3430

3

77775
.

3.7 Summary

In this chapter a review of some preliminary results of the geometric approach developed

in [51] for 1-D systems was give. The concepts and definitions were generalised for the

3-D Fornasini-Marchesini model based on the geometric concepts used in the 2-D case

in [45, 50, 44] and some generalisations thereof.

The conditioned invariants for 3-D systems were introduced and their important of

input-containing subclass was illustrated. Moreover, internal and external stability of

3-D systems under the invariance property was investigated.

Finally existance of an stabilising gain was studied and a method for their construction

was developed. The development here results in an LMI based procedure for the syn-

thesis of the asymptotic observer that reconstructs the local state of the FM model such

that the di↵erence between the estimated state and the original state tends to zero as

the system evolves.

Significant role of this chapter in FDI becomes apparent later in Chapter 4 and 6 while

addressing the problem in 3-D systems and repetitive processes respectively.



Chapter 4

Fault Detection and Isolation in

3-D Systems

4.1 Introduction

Fault detection and isolation is a crucial part of designing high reliability systems that

can in some cases be required to operate for several years often out of reach, e.g., space.

The topic of multidimensional systems continues to provide challenging problems which

arise in the continuously expanding domain of applications. For example, recent ad-

vances in technology have given rise to applications where three dimensions are involved

in the process. These applications range from a three-dimensional task-specific robotic

arm for facilitating stroke rehabilitation [15] to new methods for distributed information

processing in Grid Sensor Networks (GSN) using 3-D Fornasini-Marchesini (FM) model

[16, 17]. These are important applications where handling a failure upon occurrence is

very important. For instance, if an actuator that moves the robotic arm in a certain

direction breaks down or a node in a grid sensor network dies so that local information

updating becomes impossible, these failures prevent the whole system from operating

and can cause considerable damage.

The need for these multidimensional systems has led to and extensive study of the subject

by various researchers employing di↵erent approaches. For example, [52] considers the

fault detection and isolation problems for two-dimensional state-space models using

dead-beat observers. However, in reality designing a dead-beat observer is not always

feasible since a large gain is required to stabilise the system in a short period of time.

Moreover, there has been no research e↵ort to address the fault detection and isolation

problem specifically in 3-D systems. In this chapter the FDI problem for 3-D systems is

investigated using the geometric approach developed in Chapter 3.

59
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The nominal (i.e. fault-free) plant is assumed to be described by (2.10). To model the

dynamics of the system after a sensor or actuator failure, following Massoumnia (see [1])

the nominal model is augmented with additional terms that represent the failure modes:

�
1

�
2

�
3

x = A
1

�
2

�
3

x+A
2

�
1

�
3

x+A
3

�
1

�
2

x

+ B
1

�
2

�
3

u+
h
L1

1

. . . Lk1
1

i
�
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�
3

2

664

m1

1

...

mk1
1

3

775

+ B
2

�
1

�
3

u+
h
L1

2

. . . Lk2
2

i
�
1

�
3

2

664

m1

2

...

mk2
2

3

775

+ B
3

�
1

�
2

u+
h
L1

3

. . . Lk3
3

i
�
1

�
2

2

664

m1

3

...

mk3
3

3

775

y = Cx+
h
J1 . . . Jp0

i
2

664

n1

...

np0

3

775 , (4.1)

where mk
i 2

⇣
R`ki

⌘Z3

, nj 2 (Rpj )Z
3
, and the matrices Lk

i 2 Rn⇥`ki , i = 1, 2, 3, k =

1, . . . , ki and Jk 2 Rp⇥pk , k = 1, . . . , p are called the actuator- and the sensor failure

signatures, respectively.

Under fault-free conditions mk
i = 0 and nh = 0 for 1  i  3, 1  k  ki, and 1  h  p0,

and the model (4.1) reduces to (2.10). To model, for example, the e↵ect of a complete

failure in the j-th actuator in the i-th independent variable, set Lj
i = Bj

i where Bj
i is

the j-th column of the input matrix Bi, and mj
i = �uji . Moreover, in the case of a bias

in the j-th actuator in the i-th independent variable, mj
i is set to a positive constant

↵ 2 R+, and Lj
i = Bj

i as in the dead actuator case. Other types of failures (possibly

a↵ecting also the dynamics of the system as represented in the matrices Ai, i = 1, 2, 3)

can be accommodated in this framework; see section III of [1] for more details.

For simplicity of exposition, the following assumptions are made

Observability: The representation (2.10) is observable (in the sense of [24], p. 65);

Actuator-only faults: In (4.1) Jk = 0p⇥pk , k = 1, . . . , p0;

Unambiguous failure modes: The failure signature matrix Lk
i has full column rank,

1  i  3, 1  k  ki;
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No simultaneous failures: If there exist 1  i  3 and 1  k  ki such that m
¯k
i
6= 0,

then mh
i = 0 for i 6= i, and h 6= k.

4.2 Failure detection and identification

To perform failure detection and identification, the aim is set to design an asymptotic

observer for the nominal plant (2.10) and the failure model (4.1) that, under the as-

sumptions stated at the end of Section 4.1, takes as inputs the input and output plant

variables, and produces as output a residual which asymptotically provides information

about the presence and the location of the failure. In this section this idea is formalised

and necessary and su�cient conditions for the FDI problem to be solvable are developed.

The dynamics of the observer we will be designing are

�
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3

�
1

�
2

x̂+B
1

�
2

�
3

u+B
2

�
1

�
3

u+B
3

�
1

�
2

u

�G
1

(�
2

�
3

y � �
2

�
3
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ŷ)

ŷ = Cx̂ , (4.2)

where Gi 2 Rn⇥p, i = 1, 2, 3, are the gain matrices; x̂ is the state estimate; and ŷ = Cx̂

is the corresponding output. The di↵erence x̂ � x is termed the error vector, denoted

by e, and ŷ � y is the residual vector, denoted by r = Ce.

If no faults have occurred, the plant dynamics are described by (2.10), and consequently

the error- and the residual dynamics are described by

�
1

�
2

�
3

e = (A
1

+G
1

C)�
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�
3

e+ (A
2

+G
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C)�
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�
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e+ (A
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C)�
1

�
2

e ;

r = Ce . (4.3)

In the presence of an actuator fault described as in (4.1), subtracting (2.10) from (4.1)

and rearranging the resulting equations yields the following description of the error

dynamics:
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. (4.4)

Under the assumptions stated at the end of section 4.1, the error dynamics corresponding

to a single failure in the k-th actuator of Bi is described by

�
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e+ (A
3
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�
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e

�Lk
i �p�qm

k
i , i, p, q = 1, 2, 3, i 6= p 6= q . (4.5)
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with arbitrary boundary conditions {e(n
1

, n
2

, n
3

) | n
1

+ n
2

+ n
3

= 0}, and mk
i is an

unknown input.

Disregarding for the moment the essential property of asymptotic stability for the ob-

server (4.2), the dynamics of (4.5) are next considered under zero boundary conditions

{e(n
1

, n
2

, n
3

) = 0 | n
1

+ n
2

+ n
3

= 0}.

4.2.1 A special case: zero boundary conditions

Given the assumptions stated at the end of section 4.1, it is straightforward to verify that

under the dynamics (4.5) with zero boundary conditions, the error vector e(n
1

, n
2

, n
3

)

for n
1

+ n
2

+ n
3

= ` belongs to

Rk
i :=

✓
A

1

+G
1

C n1�m n2�m

A2+G2C

n3�m A
3

+G
3

C

◆
Li

�
,

8
<

:
m = 1 index(n) = i

m = 0 otherwise
.

(4.6)

Moreover, define the associated (G
1

, G
2

, G
3

)-dependent subspace by

Vk
i := Im (Rk

i ) , (4.7)

Then the following gives a geometric characterization of Vk
i .

Proposition 4.1. Let Vk
i be defined as in (4.7), where Rk

i is defined as in (4.6). Then

Vk?
i is the smallest (A

1

+ G
1

C,A
2

+ G
2

C,A
3

+ G
3

C)-invariant subspace containing

im (Lk
i ).

Proof. It follows from the definition of Rk
i and the fact that the subspace spanned by

Rk
i is the reachability subspace which is the smallest (A

1

+G
1

C,A
2

+G
2

C,A
3

+G
3

C)-

invariant subspace containing im (Lk
i ).

Clearly, Vk
i is an input-containing (AH , CD)-conditioned invariant for the system de-

scribed by

�
1

�
2

�
3

x = A
1

�
2

�
3

x+A
2

�
1

�
3

x+A
3

�
1

�
2

x� Lk
i �p�qm

k
i , i, p, q = 1, 2, 3, i 6= p 6= q .

containing Im Lk
i .

The FDI problem can now be stated in the geometric setting as:
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Find Gi 2 Rn⇥p, i = 1, 2, 3 such that the family Vk
i defined by (4.7) are independent.

i.e., they satisfy

Vk
i

\
0

@
X

k 6=k

Vk
i
+
X

i 6=i

X

k

Vk
i

1

A = {0} ,

for all i = 1, 2, 3, k = 1, . . . , q. Given that Vk
i is (AH , CD)-invariant in the sense of

Definition 3.15; the problem can be equivalently reformulated as follows:

FDI problem with zero boundary conditions

Find subspaces Vk
i , i = 1, 2, 3, k = 1, . . . , ki, such that

(a) There exist Gi 2 Rn⇥p, i = 1, 2, 3 such that

(Ai +GiC)Vk
i ⇢ Vk

i i = 1, 2, 3, k = 1, . . . , ki ;

(b) im(Lk
i ) ✓ Vk

i ;

(c) Vk
i

T ⇣P
k 6=k V

k
i
+
P

i 6=i

P
k Vk

i

⌘
= {0},

for all i = 1, 2, 3, k = 1, . . . , ki.

Now define Wk?
i to be the smallest (AH , CD)-invariant subspace containing im(Lk

i ); note

that Wk?
i only depends on Ai, i = 1, 2, 3, C, and Im (Lk

i ). Wk?
i can be computed in a

manner analogous to the recursion (3.37). Recall also from section 3.5.2 the definition

of Sk?
i := S(im(Lk

i ))
?, the smallest unobservability subspace containing Im (Lk

i ). The

following result shows that the considered problem is solvable if and only if the family

{Wk?
i }, or equivalently the family {Sk?

i }, satisfies condition (c).

Theorem 4.2. The following statements are equivalent:

I. The residual generation problem with zero boundary conditions is solvable;

II. The family {Wk?
i }i = 1, 2, 3;

k = 1, . . . , ki

of smallest (AH , CD)-invariant subspaces containing

im(Lk
i ) satisfies condition (c);

III. The family {Sk?
i }i = 1, 2, 3;

k = 1, . . . , ki

of smallest unobservability subspaces containing im(Lk
i )

satisfies condition (c).

Proof. ((I) =) (II)) Follows from the minimality of the Wk?
i , that satisfy Wk?

i ✓ Vk
i ,

i = 1, 2, 3, k = 1, . . . , q for any family {Vk
i } satisfying (a)� (c).
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((II) =) (I)) By definition the Wk?
i are (AH , CD)-invariant, but it must be shown that

the same Gi 2 Rn⇥p, i = 1, 2, 3, can be found such that conditions (a)� (c) are satisfied

for Wk?
i . For this purpose, write each Wk?

i as the following direct sum:

Wk?
i = Vk?

i �̇
⇣
Wk?

i

\
ker C

⌘
,

where Vk?
i is some suitable subspace of Rn, and let W k?

i 2 Rn⇥• be a basis matrix

for Wk?
i structured according to such a decomposition, i.e. W k?

i =
h
V k?
i W k?0

i

i
, with

the columns of V k?
i spanning Vk?

i and those of W k?0
i spanning Wk?

i

T
ker C. Moreover,

condition (c) is equivalent to

Vk?
i

\
0

@
X

k 6=k

Vk?
i

+
X

i 6=i

X

k

Vk?
i

1

A = {0},

for all i = 1, 2, 3, k = 1, . . . , ki. This last condition is equivalent to the matrix

h
V 1
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. . . V k1
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V 1
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. . . V k2
2

V 1

3

. . . V k3
3

i

having full column rank. Hence each of the equations

Ai

h
V 1

1

. . . V k1
1

V 1
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. . . V k2
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V 1
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3

i
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�GiC
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1

V 1
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. . . V k2
2

V 1

3

. . . V k3
3

i
, i = 1, 2, 3 ,

has a solution Gi.

((II) () (III)) Denote the non-observable subspace of (AH , CD) by N . Recall from

Proposition 3.21 that Sk?
i = Wk?

i +N . Consequently, CSk?
i = CWk?

i , thus proving that

the family {Sk?
i } satisfies condition (c) if and only if the family {Wk?

i } also satisfies this

condition.

Remark 4.3. With reference to the proof of Theorem 4.2, note that a set of gains

Gi, i = 1, 2, 3 can be computed as Gi := �AiV
⇥
(CV )>CV

⇤�1

(CV )>, where V :=h
V 1

1

. . . V k1
1

V 1

2

. . . V k2
2

V 1

3

. . . V k3
3

i
, and the columns of

h
V 1

i . . . V ki
i

i
form

a basis for Wk?
i \

�
Wk?

i

T
ker C

�
. A similar procedure yields a set of gains for the family

{Sk?
i }.

Remark 4.4. Given the current state of the art, it is unclear whether given a subspace

L, stabilising S(L)? rather than W(L)? gives any more freedom in the assignment of

the external dynamics of an asymptotic observer, as it is the case with 1-D observers.

However, the result of Proposition 3.21 implies that for the former choice in the light of

Theorem 4.2, the LMI to be solved (see Section 3.5.3.2) is of smaller dimension.
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4.2.2 The general case: asymptotic observers for fault detection

The result of Theorem 4.2 is a necessary structural requirement on the system: unless

the subspaces Wk?
i (equivalently, Sk?

i ) satisfy condition (c), even in the special case of

zero error in the boundary conditions of the system, i.e. x(n
1

, n
2

, n
3

) = x̂(n
1

, n
2

, n
3

)

for all (n
1

, n
2

, n
3

) such that n
1

+ n
2

+ n
3

= 0, fault detection with an observer (4.2) is

impossible. The case in which the boundary conditions of the observer are exactly the

same as those of the plant hardly ever occurs and it is necessary to introduce stability

into problem formulation.

It is easy to verify that the sum of conditioned invariants is in general not a conditioned

invariant. However, the following result shows that this property holds for the subspaces

Wk?
i defined in Theorem 4.2 (see also Lemma 4 p. 842 of [1]).

Proposition 4.5. Let Wk?
i , i = 1, 2, 3, k = 1, . . . , ki, be the smallest (AH , CD)-invariant

subspace containing Im (Lk
i ). Denote by W? the smallest (AH , CD)-invariant subspace

containing
P

3

i=1

Pki
k=1

Im (Lk
i ). Assume that the family

�
Wk?

i

 
satisfies condition (c);

then

W? =
3X

i=1

kiX

k=1

Wk?
i . (4.8)

Proof. It is first shown that W? ✓
P

3

i=1

Pki
k=1

Wk?
i . By the argument of the impli-

cation (II) =) (I) in Theorem 4.2, it follows that there exist Gi such that Wk?
i is

(Ai+GiC)-invariant, i = 1, 2, 3. This implies that
P

3

i=1

Pki
k=1

Wk?
i is also an (AH , CD)-

invariant. Surely, this subspace contains
P

3

i=1

Pki
k=1

Im (Lk
i ), and since W? is the small-

est (AH , CD)-invariant containing it, the inclusion follows.

In order to prove the converse inclusion, observe that for all i = 1, 2, 3 and k = 1, . . . , ki,

it holds that Im (Lk
i
) ⇢

P
3

i=1

Pki
k=1

Im (Lk
i ). Since W? is (AH , CD)-invariant, it follows

that Wk?
i

⇢ W? and consequently the required inclusion also holds. This concludes the

proof.

The observer (4.2) is said to solve the asymptotic residual generation problem if for

arbitrary boundary conditions x̂|Sk
, asymptotically the residual r is either zero (if there

is no fault) or (if a fault occurs) it belongs to one, and only one, of the subspaces CWk?
i ,

thus allowing the unique identification of the fault. A su�cient condition is given in the

following result.

Theorem 4.6. Let Wk?
i , i = 1, 2, 3, k = 1, . . . , ki, be the smallest (AH , CD)-invariant

subspace containing Im (Lk
i ). Denote by W? the smallest (AH , CD)-invariant subspace

containing
P

3

i=1

Pki
k=1

Im (Lk
i ). Assume that the family

�
Wk?

i

 
satisfies condition (c),

and that W? is internally and externally stabilizable. Then there exist Gi 2 Rn⇥p,

i = 1, 2, 3, such that the observer (4.2) solves the asymptotic residual generation problem.
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Proof. Since W? is an internally and externally (AH , CD)-conditioned invariant, gain

matrices Gi 2 Rn⇥p, i = 1, 2, 3 can be determined, to construct an observer of the form

(4.2). Next, how the observer functions in the two situations when there is no fault, or

when a fault has occurred is investigated.

Assume that no fault has occurred; then the dynamics of the error are described by (4.3).

Since W? is externally stable, the dynamics of the error due to the component of the

boundary conditions x̂|S0
lying outside of W? is asymptotically stable, and consequently

tends to zero in time. Since W? is internally stable, the dynamics of the error due to

the component of the boundary conditions in W? is also asymptotically stable, and con-

sequently goes to zero. Hence, asymptotically the error vector is zero and consequently

the residual is also zero.

Now consider instead the case when one fault has occurred, for example corresponding

to the error signature Lk
i ; then the dynamics of the error is described by (4.5), with mk

i 2
⇣
R`ki

⌘Z3

nonzero. Asymptotically the error vector lies in W?; consequently the residual

corresponding to it lies in the subspace W? =
⇣P

3

i=1

Pki
k=1

Wk?
i

⌘
. Since condition (c)

holds, it is possible by projecting the error vector onto the subspaces Wk?
i to determine

which type of fault the error corresponds to.

Example 4.1. Consider a 3-D system is described by the following state-space model

matrices:
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One possibility to obtain the observer gain G =
h
G

1

G
2

G
3

i
such that the subspace

in which the error vector lies, is (Ai +GC)-invariant, is to solve the following equation:

GiC
h
L
1

L
2

L
3

L
4

L
5

L
6

i
= �Ai

h
L
1

L
2

L
3

L
4

L
5

L
6

i
, i = 1, 2, 3 ,
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which yields:

G
1

=

2

64
0.2899 0.3699 �1.0530

0.0221 0.3697 �0.2777

0.0656 �0.1356 0.1053

3

75 , G
2

=

2

64
1.0415 1.5832 �4.2389

0.4465 1.5826 �2.5160

0.8767 1.1237 �3.2991

3

75 ,

G
3

=

2

64
1.7355 2.6046 �7.0916

1.3637 2.6042 �6.0147

1.5459 2.1450 �6.0799

3

75 .

It is clear that in this case, Ai +GiC = 0. Other gains can be obtained as discussed in

Section 3.6 or using the Matlab Geometric Toolbox [53] routines such as sstar.

Next detection and isolation of both types of failures in this system are investigated.

I. Biased actuator: Consider that a bias emerges in the second actuator (i.e.,

L
2

) when the system evolution reaches the plane n
1

+ n
2

+ n
3

= 36. Figure 4.1

illustrates the error evolution corresponding to this bias.
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Figure 4.1: System’s error evolution before and after a bias

It can be seen that since the eigenvalues of Ai + GiC are assigned to zero, after

one iteration, the error immediately goes to zero and after the occurrence of the

failure, due to modelling the bias with a positive constant as discussed previously,

the error rises and maintains a constant level thereafter.

Comparing the error magnitude to a predefined threshold enables detection of

the presence of failure and diagnosis of the failure type. To identify the failed

component of the system, the error vector is projected onto the subspaces spanned

by the failure signatures. This is illustrated in Figure 4.2.
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Figure 4.2: Error vector lying in the subspace spanned by the biased actuator

II. Dead actuator: Now consider the case in which the system evolution encounters

a failure due to the complete failure of L
5

once the system reaches the 45th plane

(i.e., n
1

+n
2

+n
3

= 45). The error evolution for this scenario is shown in Figure 4.3.

Similar to the biased actuator case, since the eigenvalues of the dynamics of the

observer are set to zero, the error immediately goes to zero after one iteration.

Thereafter it remains constantly zero until it reaches the failure stage where it

gradually rises and fluctuates randomly. Note that only by comparing the error

magnitude to a threshold, it is possible to detect presence of a failure and failure

type since each failure mode produces a structurally di↵erent type of error.
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Figure 4.3: System’s error evolution before and after a complete failure
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Similar to the biased actuator scenario, by projecting the the error vector onto the

subspaces spanned by the failure signatures one can identify the failed actuator.

This is illustrated in Figures 4.4.

Figure 4.4: Error vector lying in the subspace spanned by the failed actuator

4.3 Summary

In this chapter using the geometric approach developed in Chapter 4, a framework for

FDI in 3-D systems was developed. To this purpose, a 3-D Fornasini-Marchesini model

that incorporates the failure signatures and modes is introduced. The major results of

this chapter are Theorem 4.2, which gives structural necessary conditions for the FDI to

be possible, and Theorem 4.6, which gives su�cient conditions are given for the existence

of an asymptotic observer to perform FDI.

Two types of failure have been defined and modelled: 1. Biased actuator ; 2. Dead

actuator, under each of which the system behaviour is unique, therefore enabling the

type of the failure occurred in the system to be determined.

Additionally, an example demonstrating both types of failure considered has also been

given. This illustrates how the geometric fault detection algorithms developed in this

chapter can uniquely isolate the faults considered.



Chapter 5

Linear Repetitive Processes

5.1 Introduction

Linear Repetitive Processes were first introduced as multi-pass processes in the early

70’s as a result of a work on modelling and control of metal rolling and long wall coal

cutting operations.

Repetitive processes were defined as those involving the process of a material or a work-

piece by a sequence of “sweeps” or passes of the processing tool. During each pass an

output, termed as the pass profile, is generated which then contributes to the dynamics

of the following passes. I.e., the output dynamics on any pass acts as a forcing function

on, and hence contributes to, the dynamics of the next pass. It is this interaction between

passes which leads to the unique control problem associated with these processes where

oscillations can occur in the sequence of output pass profiles that increase in amplitude

from pass to pass.

Linear repetitive processes are inherently 2-D in nature since two variables are required

to specify each point - the time or the distance along the pass and the pass number.

These processes are especially interesting since many industrial applications such as

multi-layer printing, metal rolling, long wall coal cutting and bench-mining operations

can be modelled as repetitive processes. Moreover, in recent years applications have

emerged where adopting a repetitive process setting for analysis has distinct advan-

tages over the classic alternatives, including classes of Iterative Learning Control (ILC)

laws [54] and iterative algorithms for solving non-linear dynamic optimal stabilisation

problems based on the maximum principle [55].

In this chapter a brief introduction of linear repetitive processes is given. Moreover, a

state-space representation along with the abstract Banach space [56] model, on which the

stability analysis for these processes is based, is introduced. Following [57, 58, 59, 60],

a review of the stability theory for these processes is also provided.

70
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5.2 Basic Features of Linear Repetitive Processes and Their

Mathematical Representation

Attempts to control repetitive processes using standard or 1-D techniques in general

fail, since they ignore the inherently two-dimensional information propagation in these

processes - along the pass and from pass to pass. [25, 58].

Essentially, any general model of repetitive processes should incorporate all their unique

features. For example, in the most general case, a repetitive process has non-linear

dynamics and a variable pass length. For this general case, these features then can be

outlined as follows [58]:

• A number of passes, indexed by k � 0, through a set of dynamics.

• Each pass is characterised by a pass length ↵k, and a pass profile yk(p) defined on

0  p  ↵k, where yk(p) can be a vector or a scalar quantity.

• An initial pass profile y
0

(k) defined on 0  p  ↵
0

, where ↵
0

is the initial pass

length. The function y
0

(p) together with the initial conditions on each pass form

the boundary conditions for the process.

• Each pass is subject to its own disturbances and control inputs.

• The process can be of unit memory, i.e., the dynamics on pass k + 1 explicitly

depend on the independent inputs to the pass and the pass profile on the previous

pass k.

Figure 5.1 illustrates some of these essential features.

Figure 5.1: Graphical representation of a sequence of pass profiles
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Clearly to analyse such a process would be a formidable task and thus as yet, research

e↵orts have been limited to linear processes with a constant pass length ↵ with the

justification that the practical applications mostly fall into this category [58].

5.2.1 A General Abstract Representation

A mathematical formulation of a linear repetitive process with constant pass length ↵

has been proposed in [25] based on an abstract model in a Banach space setting. Such

models include all previously studied examples such as discrete repetitive processes as

special cases and is the basis of the stability theory for these processes.

Suppose yk is regarded as a point in a suitably chosen function space. In particular,

suppose that yk 2 Ek, k � 0, where Ek denotes an appropriately chosen Banach space.

Then a general abstract model for repetitive processes can be formulated as a recursion

equation of the form

yk+1

= fk y(k) , k � 0 (5.1)

where fk+1

is an abstract mapping of Ek into Ek+1

.

Repetitive processes also exist where the current pass profile is a function of the inde-

pendent inputs to that pass and a finite number M > 1 of previous pass profiles. An

example for these processes is so-called bench-mining systems [61] and M is termed as

the memory length of the system. These processes are designated as “non-unit memory

of length ‘M” or, simply, “non-unit memory”, and are easily accommodated within the

general structure of (5.1). Essentially, all that is required is to replace this equation by

yk+1

= f̃k+1

(yk, yk�1

, · · · , yk+1�M ) . k � 0 ,

In the case of processes with linear dynamics, the following definition characterises a

so-called unit-memory linear repetitive process in a Banach space setting and forms the

basis for onward development and in particular stability theory.

Definition 5.1. [57, Def. 1.2.1] A linear repetitive process S of constant pass length

↵ > 0 consists of a Banach space E, a linear subspace W of E, and a bounded linear

operator L mapping E into itself (also denoted by L 2 B(E,E)). Then the system

dynamics are described by the following linear recursion relation

yk+1

= Lyk + bk+1

, k � 0 (5.2)
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where yk 2 E is the pass profile on pass k and bk+1

2 W. Here the term Lyk repre-

sents the contribution from pass k to pass k + 1 and bk+1

represents initial conditions,

disturbances and control input e↵ects.

In the non-unit memory case, let L(j) 2 B(E,E), 1  j  M . Then the abstract model

of a non-unit memory linear repetitive process of memory length M has the following

dynamics

yk+1

= L(1)

↵ yk + · · ·+ L(M)

↵ yk+1�M + bk+1

, k � 0 , (5.3)

where yk 2 E, bk+1

2 W ⇢ E. Note that with L ⌘ L(1), this last equation reduces to

(5.2) in the case when M = 1. Moreover, (5.3) can be regarded as a unit-memory linear

repetitive process S in the product space EM := E ⇥E ⇥ · · ·⇥E (M times) by writing

it in the following ‘companion form’ where I denotes the identity operator on E.

2

666666664

yk+2�M

...

...

...

yk+1

3

777777775

=

2

66666664

0 I 0 · · · 0

0 0 I · · · 0

0 0 0 · · · 0
...

...
...

. . . I

L(M) L(M�1) L(M�2) · · · L(1)

3

77777775

2

666666664

yk+1�M

...

...

...

yk

3

777777775

+

2

66664

0

0
...

bk+1

3

77775
, k � 0 (5.4)

and using the notation

L↵ :=

2

66666664

0 I 0 · · · 0

0 0 I · · · 0

0 0 0 · · · 0
...

...
...

. . . I

L(M) L(M�1) L(M�2) · · · L(1)

3

77777775

.

Thus results derived for the unit-memory case can be readily applied to the non-unit

memory generalisation.

The abstract model presented here is rather general and can be used to represent a vast

number of examples [57, Example 1.2.1 - 1.2.13]. For the interest of this thesis, here the

representation of discrete linear repetitive processes is investigated only.
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5.2.2 A Discrete Non-unit Memory Linear Repetitive Process Repre-

sentation

A state-space model of a discrete linear repetitive process with pass length ↵ and memory

length M is given by:

xk+1

(p+ 1) = Axk+1

(p) +Buk+1

(p) +
M�1X

j=1

Bj�1

yk+1�j(p)

yk+1

(p) = Cxk+1

(p) +Duk+1

(p) +
MX

j=1

Dj�1

yk+1�j(p) , (5.5)

where xk(p) 2 Rn, uk(p) 2 Rl, yk(p) 2 Rm are respectively the state, input and output

vectors on pass k at time instant p. A 2 Rn⇥n, B 2 Rn⇥l, C 2 Rm⇥n, Bj 2 Rn⇥m are

the state, input, output and memory matrices respectively. k denotes the pass index

while the time index along each pass is denoted by p. Each pass has a length ↵ (i.e.,

0  p  ↵). M is the memory length.

In this case, set E↵ = `m
2

[0,↵] - the space of all real m ⇥ 1 vectors of length ↵ (corre-

sponding to p = 1, 2, · · · ,↵). Then it is immediate to check that this model is a special

case of S over 1  p  ↵ with

(L(j)
↵ y)(p) :=

p�1X

h=0

CAp�1�hB
0

y(h) +Dj�1

y(p)

and over 1  p  ↵, k � 0,

bk+1

:= CApdk+1

+
p�1X

h=0

CAp�1�hBuk+1

(h) +Duk+1

(p) .

The simplest possible set of boundary conditions for model (5.5) is

xk+1

(0) = dk+1

, k � 0 ,

y
1�j(p) = ŷ

1�j(p), 1  j  M , 0  p  ↵ , (5.6)

where dk+1

is a n ⇥ 1 known constant vector, ŷ
1�j(p) , 1  j  M is a m ⇥ 1 vector

whose entries are known functions of p over 0  p  ↵.
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For simplicity of discussion, here we consider the following unit-memory repetitive model

since all the obtained results generalise in an analogous manner to the case whereM > 1:

xk+1

(p+ 1) = Axk+1

(p) +Buk+1

(p) +B
0

yk(p) ,

yk+1

(p) = Cxk+1

(p) +Duk+1

(p) +D
0

yk(p) , (5.7)

where the initial conditions are

xk+1

(0) = dk+1

, k � 0 ,

y
0

(p) = ŷ
1

(p) , 0  p  ↵ . (5.8)

It should be pointed out that the boundary conditions of (5.6) and (5.8) are the simplest

possible and cases exist (for instance see [57, Example 1.2.6]) where they are not adequate

to adequately model the underlying process dynamics (even for initial simulation and/or

control analysis). Instead, it is sometimes necessary to consider a state initial vector

sequence which is an explicit function of (in the unit memory case for simplicity) the

previous pass profile. One possible form is:

xk+1

(0) = dk+1

+
NX

j=1

Jjyk(pj) , (5.9)

where dk+1

is as in (5.6), 0  p
1

< p
2

< · · · < PN  ↵ are N sampling points along the

previous pass and Jj , 1  j  N , is an n⇥m matrix with constant entries. One case of

particular interest (the most general) is

xk+1

(0) = dk+1

+
↵�1X

j=1

Jjyk(j) . (5.10)

5.3 Stability

Stability theory for repetitive processes consists of two separate concepts - asymptotic

stability and the stronger condition of stability along the pass. This is somehow expected

since these processes, as mentioned, are governed by two independent variables in two

directions of along-the-pass and pass-to-pass.
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In this section, results of applying the stability theory for the Banach space to the discrete

form of the linear repetitive processes are presented. Consider the unit-memory state-

space model of a discrete linear repetitive process (5.7). Then the following, characterises

asymptotic stability and stability along the pass for these processes.

5.3.1 Asymptotic stability

The interesting control problem for repetitive processes is the possible presence of os-

cillations in the output sequence of pass profiles that increase in amplitude from pass

to pass. Thus, the immediate definition of asymptotic stability is to require that the

sequence of pass profiles ‘settles down’ to a so-called limit profile as k �! 1, given

any initial profile y
0

and any input sequence {uk+1

} which ‘settles down’ to a steady

disturbance u1 as k �! 1. This is depicted in Figure 5.2.

Figure 5.2: Schematic representation of asymptotic stability

Definition 5.2. The linear repetitive process S of constant finite pass length ↵ > 0 is

said to be asymptotically stable if given any pass profile y
0

and any strongly convergent

input sequence, the sequence generated by

yk+1

(p) = Cxk+1

(p) +Duk+1

(p) +D
0

yk(p) ,

converges strongly to a limit profile y1 as k �! 1.

The following result characterises asymptotic stability for discrete unit-memory linear

repetitive processes.

Theorem 5.3. [57, Corollary 2.1.3] The linear repetitive process generated by the dis-

crete unit-memory linear repetitive process (5.7) is asymptotically stable, if and only if,

r(D
0

) < 1 where r(.) denotes the spectral radius of its matrix argument.
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At first, it is kind of surprising to see that asymptotic stability is essentially independent

of the system matrices and particularly independent of the eigenvalues of the matrix A.

This is an immediate consequence of the fact that the pass length ↵ is finite, and will

change once the case of ↵ �! 1 is considered.

Asymptotic stability guarantees existence of a limit profile for the process which is

defined as follows.

Definition 5.4. [57, Def. 2.1.3] Suppose that the linear repetitive process S is asymp-

totically stable and the input sequence applied converges strongly to u1 as k �! 1.

Then the strong limit

y1 := lim
k�!1

yk

is termed the limit profile corresponding to the input sequence.

Corollary 5.5. [57] Suppose that asymptotic stability holds and the input sequence

applied {uk+1

} converges strongly as k �! 1 to u1. Then the strong limit y1 exists

corresponding to this input sequence and its state-space model is described by

x1(p+ 1) = (A+B
0

(I �D
0

)�1C)x1(p) + (B +B
0

(I �D
0

)�1D)u1(p)

y1(p) = (I �D
0

)�1Cx1(p) + (I �D
0

)�1Du1(p)

x1(0) = d1 (5.11)

where d1 is the strong limit of the sequence {dk}.

In physical terms, this implies that under asymptotic stability, the repetitive dynamics

of the process can be replaced by those of a 1-D discrete linear system once a su�ciently

large number of passes have elapsed.

5.3.1.1 Asymptotic Stability Under Dynamic Boundary Conditions

The following result characterises asymptotic stability of processes described by (5.7)

and (5.9).

Theorem 5.6. [62, Theorem 1] Suppose that the pair {A,B
0

} is controllable. Then the

discrete linear repetitive process (with D
0

= D
1

= 0) is asymptotically stable if and only

if all solutions z 2 C of

|zI �
NX

j=1

JjC(A+ z�1B
0

C)pj | = 0 (5.12)
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have modulus strictly less than unity.

Further dimension reduction is possible in some cases such as the following:

Corollary 5.7. [62, Corollary 1] Consider the discrete linear repetitive process described

by (5.7) and (5.9) in the special case when Jj = JTj , 1  j  N , where J is an n⇥m

matrix with constant entries and Tj , 1  j  N , are m ⇥ m matrices with constant

entries. Then these processes are asymptotically stable if and only if

|zI �
NX

j=1

TjC(A+ z�1B
0

C)pjJ | = 0 =) |z| < 1 .

Under conditions mentioned in Theorem 5.3, the asymptotic stability of a repetitive

process, i.e., BIBO stability over the finite pass length ↵, guarantees the existence of a

limit profile. However, the resulting limit profile could produce unacceptable along-the-

pass dynamics that makes the system unstable.

Consider the following SISO discrete unit-memory linear repetitive process over 0  p 
↵, k � 0, where � is a real scalar.

xk+1

(p+ 1) = �xk+1

(p) + uk+1

(p) + (1 + �)yk(p)

yk+1

(p) = xk+1

(p)

xk+1

(0) = 0 . (5.13)

This process is asymptotically stable since D
0

= 0 and the resulting limit profile is

described over 0  p  ↵ by

y1(p+ 1) = �y1(p) + u1(p) , (5.14)

y1(0) = 0 .

It is clear to see that if |�| � 1, the sequence of pass profiles converges in the pass-to-pass

direction (k) to an unstable 1-D discrete linear process and this occurs despite the state

matrix A is stable in the 1-D discrete linear system sense. This, gives rise to the concept

of stability along the pass which is discussed in the following section.

5.3.2 Stability Along The Pass

The problem illustrated by (5.14) is the finite pass that even an unstable 1-D discrete

linear system can only produce a bounded output for such a length. If the limit profile
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is unstable, as a 1-D discrete linear system, then obviously this is unacceptable in many

applications where tracking a reference signal is required (e.g., ILC).

Stability along the pass prevents this problem from arising by demanding the BIBO

property uniformly with respect to the pass length, and can be analysed mathematically

by letting ↵ �! 1. This leads to several sets of necessary and su�cient conditions [57]

for this property, such as the following one:

Theorem 5.8. [57, Corollary 2.2.2] Suppose that the pair {A,B
0

} is controllable and

the pair {A,C} is observable. Then a discrete linear repetitive process described (5.7)

and (5.8) is stable along the pass if and only if r(D
0

) < 1, r(A) < 1, and all eigenvalues

of G(z) = C(zI �A)�1B
0

+D
0

have modulus strictly less than unity 8 |z| = 1.

These conditions can be tested by of well-known 1-D linear systems tests. Their ap-

plication to the aforementioned example shows stability along the pass also applies a

constraint on the state dynamics of both the current pass (r(A) < 1) and, in the SISO

case for simplicity, the complete frequency response of the transfer function describing

the contribution of the previous pass profile. Also it is easy to see that stability along

the pass ensures that the resulting limit profile is stable as a 1-D discrete linear system,

that is r(A+B
0

(I �D
0

)�1C) < 1.

Stability along the pass requires that the signals involved are uniformly bounded when

both independent variables p and k can take unbounded values. Equivalently this prop-

erty should hold for any p and k in the positive quadrant of the 2-D plane, that is,

(p, k) 2 P := {(p, k) : p � 0, k � 0}.

In terms of design to track a given reference signal, such as in the ILC applications

where the information from previous passes is used to update the control signal on the

current pass to improve the performance from pass to pass by reducing the error (which

is defined on each pass as the di↵erence between a given reference signal and the process

output), stability along the pass imposes the requirement that the control law must

achieve the required level of attenuation over the complete frequency range. This, by

comparison to the 1-D linear systems case, is most likely to result in a very di�cult

design problem [60].

5.3.2.1 Stability Along The Pass Under Dynamic Boundary Conditions

The following result characterises stability along the pass under dynamic boundary con-

ditions.

Theorem 5.9. [62, Theorem 2] Suppose that the pair {A,B
0

} is controllable and the

pair {A,C} is observable. Then the discrete linear repetitive process described by (5.7)

and (5.9) is stable along the pass if and only if
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I. Theorem 5.6 holds ;

II. r(A) < 1 ;

III. All eigenvalues of the transfer function matrix G(z) := C(zI �A)�1B
0

have mod-

ulus strictly less than unity 8 |z| = 1.

It is worth noting that the conditions of Theorem 5.9 can be tested via well-known 1-D

linear systems tests. The starting point of this approach is to drive a 1-D equivalent

model of the dynamics of the process [62, Sec. 4].

5.4 Stability of Discrete Linear Repetitive Processes via

2-D Spectral Methods

Recall from Section 2.3 that a first type Fornasini-Marchesini state-space model, disre-

garding the output, is given by

x(n
1

+ 1, n
2

+ 1) =A0 x(n
1

+ 1, n
2

) +A00 x(n
1

, n
2

+ 1) +A000 x(n
1

, n
2

) +B0 u(n
1

, n
2

)

+B00 u(n
1

+ 1, n
2

) +B000 u(n
1

, n
2

+ 1) . (5.15)

Considering A0 = B0 = B00 = 0 and denoting A00, A000, B000, n
1

, and n
2

by A
1

, A
2

, B, p

and k respectively, (5.15) yields the following equivalent reperesntation of (5.7):

x(p+ 1, k + 1) = A
1

x(p, k + 1) +A
2

x(p, k) +B u(p, k + 1) , (5.16)

where A
2

:= B
0

C.

Stability of the model described by (5.16) has been investigated in [38, 48, 63]. Using

the results from [48] for 2-D discrete linear systems, we state conditions for stability

along the pass for unit memory discrete linear repetitive processes in terms of matrices

with constant entries.

Proposition 5.10. The unit memory discrete linear repetitive process described by

(5.16) is stable along the pass, if there exist n ⇥ n positive definite symmetric matri-

ces P
1

and P
2

such that

"
P
1

0

0 P
2

#
�
"
A>

1

A>
2

#
(P

1

+ P
2

)
h
A

1

A
2

i
> 0 (5.17)
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Proof. The proof follows similar to that of Proposition 3.13 and is omitted.

Remark 5.11. By the well-known Schur complement, (5.17) can be written as:

2

6666666664

P
1

0

0 P
2

2

66664

A>
1

A>
2

3

77775
(P

1

+ P
2

)

(P
1

+ P
2

)

"

A
1

A
2

#
P
1

+ P
2

3

7777777775

> 0 ,

which is a linear matrix inequality and thus computationally tractable [49].

5.5 Application to Iterative Learning Control

Iterative learning control (ILC) was developed for systems defined over a finite duration

that perform the same operation over and over again with resetting to the starting

location once each operation is complete. Each execution of the task is known as a trial

in the literature and the control objective takes the form of reference trajectory yref (t)

defined over a finite interval 0  t  ↵, where ↵ < 1 denotes the trial duration or

length, which must be tracked, or followed, to a high precision. The novel feature is the

use of information from previous trials to update the control input for the next trial and

thereby sequentially improve performance from trial-to-trial.

Since the original work [64], ILC has become an established area of control systems

research, both in terms of the development of control law design algorithms (see e.g.

[65]) and their experimental validation and implementation. The survey papers [66, 67]

are one initial source for the literature, where applications span many areas, including

robotics and process/manufacturing systems. More recently, ILC algorithms first devel-

oped in the engineering domain have been used in robotic-assisted upper limb stroke

rehabilitation with supporting clinical trials [68, 69].

In application, ILC can be treated as a 2-D system where one direction of information

propagation is from trial-to-trial and the other is along the trial. The first work on using

a 2-D systems setting for the design of linear ILC laws was reported in [70]. More recently

the theory of linear repetitive processes [57] has been used to design ILC control laws

with experimental verification on a gantry robot executing a pick and place operation

that replicates many industrial applications to which ILC is applicable [69, 71, 72].

A brief overview of a recent study [73] that shows how repetitive process can be used

to analyse ILC schemes is considered in this section. The case of interest is when the

plant to be controlled can be modeled, at least for initial control-related analysis, as
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a discrete linear time-invariant system with state-space model defined by the matrices

{Ac, Bc, Cc}. In the ILC setting this is written as

ẋk(t) = Acxk(t) +Bcuk(t), 0  t  ↵

yk(t) = Ccxk(t) (5.18)

where on trial k, xk(t) 2 Rn is the state vector, yk(t) 2 Rm is the output vector,

uk(p) 2 Rr is the vector of control inputs, and ↵ < 1 is the trial duration. If the signal

to be tracked is denoted by yref (t) then ek(t) = yref (t)�yk(t) is the error on trial k and

the most basic requirement is to force the error to converge in k.

Suppose that || · || is a signal norm in a suitably chosen function space with a norm-based

topology. Then the construction of a sequence of input functions such that performance

is gradually improving with each successive trial can be refined to a convergence condi-

tion on the input and error, that is,

lim
k!1

||ek|| = 0, lim
k!1

||uk � u1|| = 0

In many applications, a digital implementation will be required and most ILC designs

assume that this is done by direct digital control, that is, sample the plant model and

design the control law in the digital domain. Consider, for simplicity, the SISO case, let

N denote the number of samples along the trial, and introduce for trial k the following

vectors

Uk =
h
uk(0) uk(1) . . . uk(N � 1)

iT

Yk =
h
yk(1) yk(2) . . . yk(N)

iT

Then the plant dynamics can be written as

Yk = HUk (5.19)

where

H =

2

66664

h
1

0 0 0

h
2

h
1

0 0
...

...
. . .

...

hN hN�1

. . . h
1

3

77775

where the hi, 1  i  N, are the system Markov parameters and, for simplicity, it is

assumed that h
1

6= 0.
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The representation of the dynamics in the form (5.19) over the finite interval enables

the ILC dynamics to be treated as a static system in RN . Now consider the phase-lead

ILC law

uk+1

(i) = uk(i) + �ek(i+ 1) (5.20)

where ek(i+ 1) is causal information since it was generated on the previous trial and is

therefore available for use on trial k + 1. Also it is easily shown that trial-to-trial error

convergence occurs under an ILC law of this form, in the SISO case for simplicity, when

|1� CB�| < 1 . (5.21)

This condition does not involve the plant state matrix and hence ILC can converge for

even unstable plants but at the possible cost of unacceptable along the trial dynamics.

Consider a gantry robot executing the following set of operations in synchronization

with a moving conveyor: i) collect an object from a location, ii) transfer it over a finite

duration, iii) place it on a moving conveyor, iv) return to the original location and then

v) repeat the previous four steps for as many objects as required. Suppose also that

the object has an open top and is filled with liquid, and/or is fragile in nature. Then

unwanted vibrations during the transfer time could have very detrimental e↵ects. Hence

in such cases there is also a need to control the along the trial dynamics.

The many designs for discrete systems based on lifting, see the relevant references in [66,

67] for a selection of these, would proceed in cases such as that outlined above by first

designing a feedback controller to stabilize the plant and/or obtain acceptable along the

trial dynamics and then apply ILC to the resulting system. An alternative is to use a

2-D systems setting, where the two directions of information are trial-to-trial and along

the trial, respectively. This approach allows one step design for the trial-to-trail and the

along the trial ILC process dynamics. An obvious starting point for this approach is

the Roesser [33] and Fornasini-Marchesini [24] state-space models. For example, in [70]

it was shown how trial-to-trial error convergence of linear ILC schemes in the discrete

domain could be examined as a stability problem in terms of a Roesser state-space model

interpretation of the dynamics.

Given that the trial length is finite by definition, it follows that ILC fits naturally into

the class of repetitive processes [57]. Repetitive processes cannot be controlled using

standard systems theory and algorithms because such an approach ignores their inherent

2-D systems structure, that is, information propagation occurs from pass-to-pass, the

k direction, and along a given pass, the p direction and also the initial conditions are

reset before the start of each new pass. To remove these deficiencies, a rigorous stability

theory has been developed [57] based on an abstract model of the dynamics in a Banach

space setting that includes a very large class of processes with linear dynamics and a

constant pass length as special cases. In terms of their dynamics, it is the pass-to-pass

coupling, noting again their unique feature, which is critical.
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The abstract model based stability theory is defined in bounded-input bounded-output

(BIBO) terms. In particular, a bounded initial pass profile is required to produce a

bounded sequence of pass profiles, where boundedness is defined in terms of the norm

on the underlying function space. Two forms termed asymptotic and along the pass,

respectively, are possible, where the former demands this property over the finite and

fixed pass length ↵ for a given example and the latter for all possible values of the pass

length.

Next it is shown how a repetitive process setting can be used to analyze ILC schemes

and, in particular, how the stability theory of these processes can be employed to develop

algorithms for control law design for trial-to-trial error convergence and along the trial

performance. The links with the design in [70] are also discussed. Given that the

repetitive process setting is used the term pass instead of trial will be used from this

point onwards.

5.5.1 ILC Analysis and Control Law Design

Consider the discrete domain and assume that the state-space model (5.18) have been

sampled by the zero-order hold method at a uniform rate Ts seconds to produce a discrete

state-space model with matrices {A,B,C}. Also, for analysis purposes only, write the

state equation of the sampled dynamics as

xk(p) = Axk(p� 1) +Buk(p� 1) (5.22)

and introduce
⌘k+1

(p+ 1) = xk+1

(p)� xk(p)

ek(p) = yref (p)� yk(p)
(5.23)

A commonly used ILC law has the structure

uk+1

(p) = uk(p) +�uk+1

(p) (5.24)

where �uk+1

(p) denotes the update added to the control signal on the previous pass to

form the corresponding signal on the current one. Consider also the case when

�uk+1

(p) = K
1

⌘k+1

(p+ 1) +K
2

ek(p+ 1) (5.25)

and introduce the notation

Â = A+BK
1

, B̂
0

= BK
2

Ĉ = �C(A+BK
1

), D̂
0

= I � CBK
2

(5.26)
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Then the ILC scheme can be written as

⌘k+1

(p+ 1) = Â⌘k+1

(p) + B̂
0

ek(p)

ek+1

(p) = Ĉ⌘k+1

(p) + D̂
0

ek(p)
(5.27)

which is a discrete linear repetitive process state-space model where ⌘k+1

(p) is the state

vector on the current pass, governing the along the pass dynamics and ek+1

(p) is the

error on the current pass. The terms B̂
0

ek(p) and D̂
0

ek(p) describe the contribution of

the error on pass k to the pass state and output dynamics, respectively, on pass k + 1.

5.6 Summary

This chapter illustrated the abstract model for representing linear repetitive processes.

It was then illustrated how this abstract representation allows the analysis of discrete

linear repetitive processes with the emphasis on the unit-memory type with constant

pass length ↵ that will be used later in Chapter 6 for the purpose of fault detection and

isolation.

Within Section 5.3, based on the rigorous stability theory in Banach space setting de-

veloped by Rogers and Owens [58], concepts of asymptotic stability and stability along

the pass for discrete linear repetitive processes was introduced. It was explained that

existence of two distinct types of stability is due to inherent dependency of these pro-

cesses on two independent variables. Asymptotic stability demands the BIBO stability

over the pass length, whereas stability along the pass as the stronger condition, is the

requirement that bounded sequences of inputs produce bounded sequence of outputs

independently of pass length. It is worth noting that examples exist where it is shown

that asymptotic stability is all that is achievable [74] or practically required [75].

In Section 5.4, it was illustrated that a unit memory linear repetitive process can be

accommodated in the 2-D model described by Fornasini-Marchesini first type. Following

[48], the stability of this model was investigated and LMI-based solutions were provided

to examine the stability along the pass in repetitive processes.

Finally, Section 5.5 represented a brief overview of iterative learning processes [73] where

it is shown how repetitive process can be used to analyse ILC schemes.



Chapter 6

Fault Detection and Isolation in

Linear Repetitive Processes

6.1 Introduction

Repetitive processes represent an extensive class of important industrial operations such

as long-wall coal cutting, metal rolling, printing, and modelling of fluid dynamics in

distribution pipelines such as gas networks [76]. In the last decade, a number of applica-

tions have emerged where adopting a repetitive process setting for analysis has certain

advantages over alternatives. Examples of these algorithmic applications include classes

of Iterative Learning Control (ILC) schemes [77] which was briefly presented in Section

5.5 and iterative algorithms for solving non-linear dynamic optimal control problems

based on the maximum principle [78]. In such applications, because of the repetitive

nature of the process, a failure unless promptly detected and fixed a↵ects not only the

current process but also the following ones. Thus fault detection and isolation (FDI) is

an important problem that needs to be addressed.

Although the FDI problem for linear systems has been studied intensively due to its

significance, and a variety of di↵erent methods have been developed to address it, there

has been no attempt to specifically investigate the problem in repetitive processes. A

comprehensive survey of various FDI techniques can be found in [18] and [79]. One

of these techniques is the geometric approach that was developed in Chapter 3 for 3-D

systems. In this chapter, this problem is investigated specifically for repetitive processes.

A 2-D model for these processes that incorporates the failure description is developed and

an asymptotic observer is constructed, similar to that of Chapter 4, that by observing

the output and the input of the system, asymptotically reconstructs the state. Once a

failure occurs, the reconstructed state starts to deviate from the actual state space. Then

by using a geometric approach, a fault detection and isolation technique is developed

that under suitable assumptions, can detect and uniquely isolate a failure.

86
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Repetetive processes were introduced in Chapter 5. Recall that repetitive processes

are a distinct class of 2-D systems characterised by a series of passes through a set

of dynamics defined over a fixed finite duration (pass length) [61]. At each pass, an

output is produced which contributes also to the dynamics of the following passes. If

it is the previous pass only which contributes to the current pass, the process is called

unit memory, whereas if the previous M pass profiles contribute to the current one, M

is the memory length.

In this chapter, for simplicity of discussion a unit-memory linear repetitive process is

used to investigate the FDI problem and we use the model (5.16), restated below, for

this purpose.

x(p+ 1, k + 1) = A
1

x(p, k + 1) +A
2

x(p, k) +B u(p, k + 1) ,

y(p, k) = Cx(p, k) , (6.1)

where A
2

:= B
0

C. The boundary conditions for this model are given by

x(p, 0) = d(p, 1) ,

x(0, k) = ŷ(0, k) ,

where the vectors d and ŷ are defined as in (5.6).

A geometric approach analogous to the one developed in Chapter 3 for 3-D systems can

be used here as a result of this modelling. Therefore only the geometric background for

these processes is given without giving the analogous proofs and the interested reader is

referred to Chapter 3 and the geometric notions and results for 2-D systems presented

in [45, 50, 44].

6.2 Geometric Background

Following Section 3.5, for the pair (Ai, C), i = 1, 2 of the discrete linear repetitive pro-

cess (6.1), a conditioned-invariant subspace V ✓ X is defined as follows:

Definition 6.1. A subspace V ✓ X is a conditioned invariant subspace if

AH(VD \ CD) ✓ V , (6.2)

where C := kerC, CD := diag(C, C), AH :=
h
A

1

A
2

i
and VD = V � V.
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Denote the family of conditioned invariant subspaces containing a given subspace L by

W(L). Clearly, the family W(L) is closed under intersection. Therefore, there exists a

smallest subspace in the family W(L), called the infimal element and denoted by W?(L).

A recursive algorithm to find the subspace W?(L) is given below [1]:

8
><

>:

W(L)0 = {0} ;

W(L)h+1 = L+A
1

✓
W(L)h \KerC

◆
+A

2

✓
W(L)h \KerC

◆
.

(6.3)

The following proposition gives the most important properties of 2-D conditioned in-

variants.

Proposition 6.2. Let V be a r-dimensional subspace of Rn, and let Q 2 R(n�r)⇥n be a

full rank matrix such that ker(Q) = V. The following statements are equivalent:

I. V is (AH , CD)-conditioned invariant;

II. There exist � =
h
�
1

�
2

i
2 R(n�r)⇥2(n�r) and ⇤ 2

h
⇤
1

⇤
2

i
2 R(n�r)⇥2m such

that

QAH = �QD + ⇤CD , (6.4)

or equivalently there exist �i 2 R(n�r)⇥(n�r) and ⇤i 2 R(n�r)⇥m, i = 1, 2 such that

QAi = �iQ+ ⇤iC i = 1, 2 .

III. There exists G =
h
G

1

G
2

i
2 Rn⇥2m such that

(AH +GCD)V � V � V ✓ V , (6.5)

or equivalently there exist Gi 2 Rn⇥m such that

(Ai +GiC)V ✓ V for i = 1, 2 .

Similarly to the 1-D case [40], the following theorem establishes a fundamental result

for the decomposition of the system matrices with respect to an invariant subspace.

Theorem 6.3. The following statements are equivalent:
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I. V ✓ Rn is an (Ai, C)-invariant subspace of dimension m, i = 1, 2.

II. There exists T 2 Rn⇥n, such that

Âi = T�1(Ai +GiC)T =

"
Âi

11

Âi
12

0
(n�m)⇥m Âi

22

#
,

where, Gi 2 Rn⇥m is the output-injection matrix.

Proof. Similar to that of [45, Theorem 2.1] and hence is omitted.

From Theorem 6.3, using a similarity transformation T 2 Rn⇥n for a conditioned invari-

ant subspace V ✓ X of the repetitive process described by (6.1), it immediately follows

that

"
x0(p+ 1, k + 1)

x00
(

p+ 1, k + 1)

#
=

"
Â11

1

Â12

1

0 Â22

1

#"
x0(p, k + 1)

x00(p, k + 1)

#
+

"
Â11

2

Â12

2

0 Â22

2

#"
x0(p, k)

x00(p, k)

#

+

"
B

0

#
u(p, k + 1) . (6.6)

Also it follows from standard results in nD systems theory (see for example [24, Prop.

3]) that V is internally stable if and only if the matrices Â11

i , i = 1, 2 satisfy

det(In � Â11

1

�� Â11

2

µ) 6= 0

for all (�, µ) 2 {(z
1

, z
2

) 2 C2 | |zi|  1, i = 1, 2} , (6.7)

and externally stable if and only if the matrices Â22

i , i = 1, 2 satisfy

det(In � Â22

1

�� Â22

2

µ) 6= 0

for all (�, µ) 2 {(z
1

, z
2

) 2 C2 | |zi|  1, i = 1, 2} . (6.8)

Definition 6.4. The system (6.1) (i.e., the pair (Ai, C)) is said to be detectable if there

exists output-injection matrices Gi such that Ai +GiC is stable.

The framework for fault isolation in this chapter depends on the concept of input-

containing conditioned invariant subspaces [44, 51].
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Definition 6.5. A subspace V ⇢ Rn is an input-containing conditioned invariant for (5.5),

if

h
AH BH

i �
(V � V � Rl) \ ker

h
CD 0

2(m⇥l)

i �
✓ V , (6.9)

where

AH :=
h
A

1

A
2

i
, BH =

h
B 0n⇥l

i
, CD :=

"
C 0

0 C

#
.

Similar to conditioned invariant subspaces, the following characterisations of input-

containing subspaces hold.

Proposition 6.6. Let V be an r-dimensional subspace of Rn, and let Q 2 R(n�r)⇥n be

a full row-rank matrix such that ker (Q) = V. The following statements are equivalent:

I. V is an input-containing conditioned invariant for (5.5) ;

II. There exist matrices � :=
h
�
1

�
2

i
and ⇤ :=

h
⇤
1

⇤
2

i
with �i 2 R(n�r)⇥(n�r)

and ⇤i 2 R(n�r)⇥m, i = 1, 2, such that

Q
h
AH BH

i
=�

h
QD 0

2(n�r)⇥2l

i
+ ⇤

h
CD 0

2(m⇥l)

i
, (6.10)

where QD :=

"
Q 0

0 Q

#
;

III. There exist a matrix G :=
h
G

1

G
2

i
with Gi 2 Rn⇥m, i = 1, 2, such that

h
AH +GCD BH

i �
V � V � Rl

�
✓ V . (6.11)

Proof. Similar to that of [44, Lemma 3.1] and hence is omitted.

Following Proposition 6.6, for an input-containing conditioned invariant subspace V,
existence of an output-injection matrix G is guaranteed. The task hence is to construct

a matrix G, if it exists, such that V is an internally and externally stable (AH +GCD)-

invariant.
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6.2.1 Construction of a Stabilising Gain G

The aim is to construct, if it exists, an output-injection G :=
h
G

1

G
2

i
such that

ker (Q) := V is an internally and externally stable input-containing (Ai + GiC,C)-

invariant subspace. From (6.10) it follows:

Q
h
AH BH

i
=
h
� ⇤

i "QD 0
2(n�r)⇥2l

CD 0
2n⇥2l

#
. (6.12)

The solution of (6.12) for � and ⇤ is given by:

h
� ⇤

i
= Q

h
AH BH

i "QD 0
2(n�r)⇥2l

CD 0
2n⇥2l

#†
+KH , (6.13)

where H is a full row rank matrix such that

ker (H) = Im

"
QD 0

2(n�r)⇥2l

CD 0
2n⇥2l

#
,

H has linearly independent rows, and K is an arbitrary matrix of compatible dimensions

which represents a first degree of freedom in construction of G that can be exploited for

external stabilisation of V.

Using (6.10), the solutions G to the equation ⇤ = �QG can be computed as G =

G
⇤

+⌦U , where G
⇤

:= �Q>(QQ>)�1⇤, the matrix ⌦ is a basis for ker (Q) and U is an

arbitrary matrix of compatible dimensions which represents a second degree of freedom

in construction of G that can be exploited for internal stabilisation of V.

Following from Theorem 6.3, for i = 1, 2, it follows that

T
h
Ai +GiC

i
T�1 =

"
�11

i (K,U) �12

i (K,U)

0 �22

i (K,U)

#
, (6.14)

where T :=

"
Tc

Q

#
, and the rows of Tc are linearly independent from those of Q. It follows

from [44, Lemma 3.2] that the choice of K a↵ects �22

i (K,U) but not �11

i (K,U) and the

choice of U a↵ects �11

i (K,U) but not t �22

i (K,U).

Proposition 6.7. Let �i, ⇤i, i = 1, 2, satisfy (6.10), Then �i = �22

i (K,U), the (2, 2)-

block of (6.14).
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Proof. Analogous to that of Proposition 3.23 and hence is omitted.

Proposition 6.8. Let �i, ⇤i, i = 1, 2, satisfy (6.10). Let TC be such that T :=

"
Tc

Q

#
is

non-singular. Then

Tc(Ai + ⌦UC)T>
c = �11

i (K,U) .

Proof. Similar to that of Proposition 3.25 and hence is omitted.

To construct a stabilising output-injection matrix G, write (6.13) as:

h
� ⇤

i
=
h
V
1

V
2

V̄
i
+K

h
H

1

H
2

H̄
i
, (6.15)

where

h
V
1

V
2

V̄
i
:= Q

h
AH B

i "QD 0
2(n�r)⇥2l

CD 0
2n⇥2l

#†
,

and

ker
h
H

1

H
2

H̄
i
= Im

"
QD 0

2(n�r)⇥2l

CD 0
2n⇥2l

#
,

are partitioned compatibly with
h
� ⇤

i
. Thus, �i = Vi + KHi, i = 1, 2, and ⇤ =

V̄ +KH̄. If

"
QD 0

2(n�r)⇥2l

C 0
2(m⇥l)

#
has full rank, there are no degrees of freedom to exploit

for stabilisation.

Computing, if it exists, an externally stabilising G for the conditioned invariant subspace

V is now considered. From the previous discussion, the problem reduces to finding

matrices K such that �i = Vi +KHi is asymptotically stable. Using Proposition 5.10,

one solution to determine K is to solve the following LMI for K:

"
� 0

0  � �

#
�
"
�>
1

�>
2

#
 
h
�
1

�
2

i
> 0 , (6.16)

for some � := P
1

> 0 and  := P
1

+ P
2

> 0. By the Schur’s complement formula and

using �i = Vi +KHi, for i = 1, 2, (6.16) is equivalent to

2

64
� 0 ( V

1

+⇥H
1

)>

0  � � ( V
2

+⇥H
2

)>

 V
1

+⇥H
1

 V
2

+⇥H
2

 

3

75 > 0 , (6.17)
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for some � > 0, > 0 and ⇥ of compatible dimensions, where ⇥ :=  K.

Similarly, another LMI can be set up and by exploiting U , the second degree of free-

dom, internally stabilisation (if possible) of the conditioned invariant subspace V can be

achieved.

6.3 Failure Modelling in Discrete Linear Repetitive Pro-

cesses

Consider the unit-memory repetitive system (6.1). In what follows, it is assumed that

the process is detectable in the sense of [80, Th. 5.15]. To model the dynamics of the

system after a failure, the model is augmented with additional terms that represent the

failure modes:

x(p+ 1, k + 1) = A
1

x(p, k + 1) +A
2

x(p, k) +B u(p, k + 1)

+
h
L1 L2 · · · Ll

i

2

66664

m1(p, k + 1)

m2(p, k + 1)
...

ml(p, k + 1)

3

77775
. (6.18)

where similar to the 3-D case, mi(p, k+1) and the matrices Li, i = 1, 2, ..., l, are termed

the failure modes and signatures, respectively. Failure modes are unknown arbitrary

functions corresponding to the type of the failure in the process. In the absence of

failures, these modes are identical to zero while have some non-zero value once a failure

occurs.

Failure signatures together with the failure modes enable modelling a variety number of

failures in the process, such as actuator failures, changes in the process dynamics and

sensor failures [1]. Four specific types of failure are considered in what follows.

• Dead actuator: Suppose the i-th actuator is dead, then the failure signature Li is

the i-th column of the input matrix B, and the failure mode is mi(p, k) = �ui(p, k)

where ui(p, k) is the i-th component of the input u(p, k).

• Biased actuator: If there is a bias in the i-th actuator, the failure signature Li is the

i-th column of the input matrix B, and mi(p, k) = b where b 2 R is a non-zero constant.
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• Saturated actuator: An actuator could saturate at one of its end points if the input

is too large. This scenario can be modelled by combination of the first two cases (i.e.,

mi(p, k) = b� ui(p, k)).

• Displacement of actuators: In this case, which is the most complicated one, the

i-th actuator responds to the input in a wrong way, namely the i-th column of the

input matrix B, denoted by Bi, is changed to some di↵erent column vector Bi0 . In this

case, the failure signature is described by Li =
h
Bi Bi0

i
and is no longer a column

vector, but a matrix. The corresponding failure mode is represented by mi(p, k) =h
�ui(p, k) ui(p, k)

iT
.

For simplicity of discussion, the following assumptions are made:

• Detectability: The pairs (A
1

, C) and (A
2

, C) are detectable. This guarantees

that an asymptotic observer can be designed;

• Unambiguous failure modes: The failure signature matrix Li has full column

rank, i = 1, 2, ..., l;

• No simultaneous failures: If there exist 1  i  l such that mi(p, k) 6= 0, then

mi(p, k) = 0 for i 6= i.

Hence, the process dynamics in the i-th failure situation is modelled as:

x(p+ 1, k + 1) = A
1

x(p, k + 1) +A
2

x(p, k) +B u(p, k + 1) + Limi(p, k + 1) ,

y(p, k) = C x(p, k) . (6.19)

6.4 Fault Detection and Isolation

Consider designing a full-order observer of the following form for the nominal model

(6.19):

x̂(p+ 1, k + 1) = A
1

x̂(p, k + 1) +A
2

x̂(p, k) +Bu(p, k + 1)

�G
1

✓
y(p, k + 1)� ŷ(p, k + 1)

◆
�G

2

✓
y(p, k)� ŷ(p, k)

◆
, (6.20)
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where Gi, i = 1, 2, is the output-injection matrix. Moreover, define the error vector as

e(p + 1, k + 1) = x(p + 1, k + 1) � x̂(p + 1, k + 1). If no failure is present, the error

dynamics can be computed by subtracting (6.20) from (6.1), to give

e(p+ 1, k + 1) = (A
1

+G
1

C) e(p, k + 1) + (A
2

+G
2

C) e(p, k) , (6.21)

which assuming a su�ciently long pass, converges asymptotically to zero as p �! ↵ if

Ai +GiC, i = 1, 2 are stable matrices.

In the presence of a failure, the error dynamics is obtained by subtracting (6.20) from (6.19):

e(p+ 1, k + 1) = (A
1

+G
1

C) e(p, k + 1) + (A
2

+G
2

C) e(p, k) + Limi(p, k + 1) .

(6.22)

In case of failure, the error vector does not lie on the zero subspace even if Ai+GiC, i =

1, 2 are stable, but lies asymptotically on the reachability subspace [24] of the sys-

tem (6.22) once ↵ �! 1. Note that e(p, k + 1) represents the error corresponding

to the current pass whereas e(p, k) represents the error corresponding to the previous

pass. Denote by Li := Im Li and by V?(Li) the smallest conditioned invariant subspace

containing Li (i.e., the reachability subspace of (A
1

+ G
1

C,A
2

+ G
2

C,Li). G
2

can be

selected as G
2

= �B
0

so that the error from the previous pass is cancelled; of course,

this is just one possible choice. For the FDI scheme to work G
1

should be chosen so

as to make V?(Li) into an externally stabilisable (A
1

+ G
1

C)-invariant subspace. This

stabilisability requirement in a fault-free situation described by (6.21), guarantees the

convergence of the error to zero even if the initial error is not congruent. In the case

when one fault has occurred, for example corresponding to the error signature Li, the

dynamics of the error is described by (6.22) with mi(p, k + 1) non-zero and the error

signature asymptotically lies in V?(Li). The internal stabilisability of the conditioned

invariant is implied by the assumption that the system is detectable. One possible G
1

can be determined by solving:

�A
1

h
L1 L2 · · · Ll

i
= G

1

C
h
L1 L2 · · · Ll

i
.

Other stabilising gains, if they exist, can be computed similar to the method detailed in

Section 6.2. Additionally, the GA Toolbox for MATLAB [53] routines e.g. sstar can

be used to compute the stabilising gains.

Having derived the error dynamics in two situations of a fault-free and faulty process,

the FDI problem can be stated in geometric terms as:
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Geometric FDI Problem in Linear Repetitive Processes

Find subspaces V i, i = 1, 2, . . . , l, such that:

I. There exist stabilising gains G
1

, G
2

2 Rm⇥n, such that (A
1

+G
1

C)V i ⇢ V i and

(A
2

+G
2

C)V i ⇢ V i, i = 1, 2, . . . , l;

II. Li ✓ V i;

III. V i \ (
P

j 6=i Vj) = {0}, i = 1, 2, . . . , l.

The first condition guarantees that the subspaces V i are internally and externally stable

and invariant under the error dynamics and hence the error due to a non-zero mi(p, k)

remains inside V i. The second condition states that the subspaces V i should contain the

image of the failure signature. The last condition establishes that the subspaces have

trivial intersection, which enables unique isolation of the failure.

If conditions I, II, and III are satisfied, the procedure to construct an asymptotic observer

for the purposes of fault detection can be stated as follows:

Construction of an Asymptotic FDI Observer

1. Check the detectability of (A
1

, C
1

) and (A
2

, C). If detectable,

proceed to the next step. If not, stop ;

2. Compute the family of smallest conditioned invariant subspaces

W?(Li), i = 1, 2, . . . , l containing Li, i = 1, 2, . . . , l by using

algorithm (3.37) ;

3. Verify condition (III) for the family W?(Li). If not satisfied, stop ;

4. Find stabilising gains Gi, i = 1, 2, if they exist, such that condition

(I) holds. If not, stop .

Once the matrices Gi, i = 1, 2 have been obtained, a threshold value " > 0 can be

specified. If the norm of the error e(p, k) is greater than ", it is assumed that a fault has

occurred. The determination of an appropriate " on the basis of the fault description
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(and in a realistic situation, also on the basis of the size of disturbances and of the noise

level) is an important issue which is left as a problem for future research.

The FDI procedure essentially consists of two stages, namely, 1) fault detection that

concerns comparing the error norm to a predefined threshold; 2) fault isolation that is

carried out by projecting the error onto the subspaces spanned by the failure signatures.

This procedure is given in the following algorithm:

Algorithm 6.4.1: FDI Procedure()

1 : for k = 0 to K⇤

2 : for p = 1 to ↵

3 : if ||e(p, k)|| > "

then

4 : Compute e0(p, k), the projection of e(p, k)

onto V?(Li) ;

5 : Compute

f := arg max{||e0i(p, k)||}, i = 1, ..., l

6 : return (f) ;

7 : end if

8 : end for

9 : end for

⇤K is the number of passes.

Note that due to the assumptions, the computation of f in Step 5 is well-defined.

6.5 Example

In this section, the new fault detection and isolation technique developed in the previous

sections is applied to the metal rolling process presented in [81, p. 703]. Consider a multi-

roll roll system (Figure 6.1) consists of three separate pairs of rolls which are controlled

by separate input signals, i.e. di↵erent rolling forces. The deformation of the workpiece

takes place between these pairs of rolls with parallel axes revolving in opposite directions.

The metal strip to be rolled to a pre-specified thickness (also termed the gauge or shape)

through a series of rolls for successive reductions.
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Figure 6.1: Multi-roll rolling machine operation

A =

2

6666666666666666666664

35

36

7

72

0 0 0 0

� 5

18

35

36

0 0 0 0

35

5216

7

10432

160

163

16

163

0 0

175

2608

35

5216

� 30

163

160

163

0 0

� 8

2007

� 4

10035

67

10520

� 27

42394

�135

137

27

274

� 80

2007

� 8

2007

67

1052

� 67

1052

� 20

137

135

137

3

7777777777777777777775

, B
0

=

2

6666666666666666666664

1

26

5

63

� 13

2608

� 65

1304

60

20263

127

4289

3

7777777777777777777775

,

B = 10�3 ⇥

2

6666666666666666666664

� 5

18

0 0

�25

9

0 0

� 71

37004

� 30

163

0

� 93

4847

�300

163

0

47

41236

� 11

9214

� 20

137

72

6317

� 55

4607

�200

137

3

7777777777777777777775

, C =
h

77

223

77

2230

� 559

1023

� 183

3349

135

137

27

274

i
.



Chapter 6 Fault Detection and Isolation in Linear Repetitive Processes 99

which are computed using the following parameters:

Âi =
1

1 + a
0iT 2

"
1 T

�a
0iT 1

#
, B̂i =

c
0iT

1 + a
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"
T

1

#
,

B̂
0i =

(�b
0i + a

0ib2i)T
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1
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h
1 T

i
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a
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�
1i�2
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2

)
, b
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��

2

�
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2

,

b
0i =

��
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)
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��
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�
11

= 40N/m ,�
12

= 60N/m ,�
13
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�
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1
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2

= 20Kg ,M
3

= 30Kg

There are three actuators in the system. The input is considered to be a decreasing force

along each pass. The first 3 passes of the process each of length ↵ = 5000 are simulated

using model (6.19) and an asymptotic observer of the form (6.20) is designed. For the

gains G
1

and G
2

of the observer, G
1

is computed in a similar manner as discussed in

Section 3.5.3.2, and G
2

is chosen as G
2

:= �B
0

.

Since the simulations are carried out regardless of disturbances and noise, it is reasonable

to set our threshold to 0. We consider two types of faults happening in the system:

6.5.1 Dead actuator

The first case we consider is where one of the actuators, say the first one, is dead at pass

k
0

= 4500 at p
0

= 2. Figure 6.2(a) shows that the error vector goes to zero from some

non zero boundary conditions at the beginning. Thereafter, the error constantly stays

at zero until k
0

= 4500, p
0

= 2 is reached where the first actuator dies.
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(a) Error norm for dead actuator failure in passes 1 to 3
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Figure 6.2: Dead actuator

Now that it has become obvious that a failure has occurred, we isolate the fault. This

is done as discussed in Section 6.4 by projecting the the error vector onto subspaces
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W?(L1), W?(L2), and W?(L3). This is depicted in Figure 6.2(b). It can be seen that

at the beginning of the process the error converges to zero. After the fault happens, the

error deviates from zero and lies in W?(L1), implying that the fault has occurred in the

first actuator.

6.5.2 Biased actuator

The next case we consider is a biased actuator. Suppose one of the actuators, say the

second one, is biased. The bias enters the system at k
0

= 4000 at p
0

= 2. Figure 6.3(a)

illustrates this bias where it can be observed that the error due to non-zero initial

conditions goes to zero and then rises and constantly stays at some constant value b 2 R
after the bias enters the system.
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Then as shown in Figure 6.3(b), projecting the error vector onto subspaces W?(L1),

W?(L2), and W?(L3), reveals that the bias fault has occurred in the second actuator.

Additionally, by looking at the error signal, one can also recognise the type of the failure

(i.e., dead or biased). In case of a dead actuator as can be seen in Figure 6.2(b), the

behaviour of the error signal depends on the input signal, which is a decreasing signal on

each pass here, whereas in the case of biased actuator, the error signal does not depend

on the input and stays constantly at b 2 R after the bias enters the system. Refinements

of this sort could have importance implications in practical applications, but we will not

pursue them here.

6.6 Summary

In this chapter a geometric approach to address the FDI problem in discrete linear

repetitive processes was developed. Based on the discrete unit-memory model (5.7), a

model that incorporates failure signatures and modes was developed.

In our method, the whole system state is reconstructed instead of exploiting just the

system output for residual generation. Thus, a wider range of failures can be detected

and isolated compared to other methods used in the past (for example [1]).

At the end the e↵ectiveness of the proposed approach was illustrated by providing an

industrial example in which we detect and isolate a dead and a biased actuator for a

metal rolling application.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis investigated the FDI problem in two sub-classes of multidimensional systems

namely, 3-D systems and linear repetitive processes. A geometric model-based approach

was developed to propose a solution that upon satisfying a number of necessary and

su�cient conditions, a failure can be isolated uniquely.

The technique is although inspired by its 1-D counterpart [1], it is distinctive in the

sense that since the 1-D counterpart developed by Massoumnia is relied on the residual

generation and the residual vectors are dimensionally dependent on the system’s output

which can be of low dimensions, this imposes a restriction in the number of faults that

can be isolated. Consider the case where the output is of dimension one (i.e., a scalar), it

is easy to see that it is not possible to isolate more than one failure due to the dimension

of the output. In the proposed technique, instead, the state of the system is considered

only, which o↵ers more opportunity to address a wider class of failures.

The results developed in this thesis can only be considered preliminary for several rea-

sons. A basic issue is the “compounded weakness” inherent in stating conditions which

are only su�cient (see Theorem 4.6) for the solvability of the problem, which in turn

rely only on su�cient conditions (see Proposition 3.13) for the existence of stabilising

gains. However, one can always find a stabilising gain which assigns the eigenvalues of

the dynamics of the observer to zero as stated in Theorem 4.2 so that the error vector

immediately goes to zero if no faults are present in the system and passes a certain

threshold where a fault has occurred at the stage where the system starts running. The

issue of how conservative our conditions are, and consequently how robust with respect

to modelling errors and disturbances a fault detection scheme based on the principles

used in this report is, is of course directly linked to this problem.

103



Chapter 7 Conclusion and Future Work 104

7.2 Future Research

There are important issues that need to be addressed to make the presented approach

more realistic for application to real-life situations. One aspect to consider is that the

approach outlined in this thesis treats all independent variables to be on an equal footing,

while for some applications such as failure detection in grid sensor networks, one of the

independent variable is time. A “time-relevant” fault estimation framework is needed,

where the distinguished role of the independent variable time in the modelling of the

fault and in its estimation is recognized and exploited to provide better performance (on

time-relevant systems, see also [82, 83]).

We have also assumed that the corrective actions for failure accommodation are known.

However a possible future work could be the case where these corrective modes are

unknown and a reconfiguration model should be sought such that the system operates

at its best possible performance.

In this thesis, we assumed that the system is not a↵ected by noise. However in real life

applications, noise and disturbances are inevitable parts of a system. Therefore, one

possible future work could be the case where the system is a↵ected by noise.

The research interests in the area of multidimensional systems have been stimulated

by contributions dealing with river pollution modelling [84], modelling of a single-

carriageway tra�c flow [85], gas absorption and water stream heating [86], etc. FDI for

these systems is a very important task and can be investigated using the same approach

to detect a collision in a motorway or pollution in a river. Moreover, Iterative Learning

control as an algorithmic application of repetitive processes is another area that there

has been no previous attempts to specifically address the FDI problem therein. What is

termed as a failure in this thesis, is very general and can be expressed as any occurrence

in the system that disturbs the system’s dynamics such that the its behaviour changes.

This expression lets our technique to be applicable in an extensive range of applications

from detection and isolation of actuator failures in a plant to detection and localisation

of a leakage in pipelines. Below we outline a few of these possiblities for future work.

7.2.1 FDI for Repetitive Processes in Presence of Noise

Consider a unit-memory linear repetitive process that is a↵ected by noise. in the sequel,

we attempt to shortly investigate the FDI problem in this case.

Fault detection in presence of noise is directly linked to defining a suitable threshold

that the error signal is compared to. In general, thresholds are of two types, either fixed

or adaptive to the input, each of which has its own advantages and disadvantages. An

adaptive threshold changes according to the inputs to the system; thus, it has many

advantages over the fixed threshold. In case of the fixed threshold, if the threshold is set
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too high, sensitivity to fault detection will decrease. In contrast, choosing the threshold

too low increases the rate of false alarms. An adaptive threshold, however, does not

have these problems but one downside of using this type of threshold is the high order

of its dynamics [87]. Di↵erent methods of selecting a threshold in fault detection and

identification problems are studied in [88, 89].

Selecting an appropriate threshold " is directly related to the degree to which the system

is a↵ected by noise or disturbances. It is clear that in absence of noise (AWGN), setting

" = 0 is reasonably convincing. However, in presence of noise, an appropriate choice of

threshold, if exists, in addition to fault detection (i.e., ||ek(p) > "||) should also enable

isolating the fault uniquely.

In practice, a known class of failures can occur in the system and detection is limited by a

bounded noise signal
h
0 Nmax

i
, and a bounded model error. Hence, a priori knowledge

of the system and its behaviour under known failure classes plays an important role in

determining a reasonable threshold. It should be noted that in presence of too much

noise that considerably a↵ects the system’s behaviour, FDI is not possible. In this

section, we investigate finding a fixed threshold with an example using statistical and

geometric analysis.

Consider the linear repetitive process ⌃ with the following description:

A =

2

64
0.1 0.3 0.2

0.3 0.1 0.4
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3

75 , B =

2
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1 5
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2
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0.4 0.1 0.6

0.1 0.2 0.2

#
.

Assume that the first actuator, i.e.,
h
1 1 4

i>
, dies at k = 2, p = 40. The challenge in

selecting an appropriate threshold arises once the system is a↵ected by noise. Assume

the system ⌃ is a↵ected by Guassian noise with zero mean (i.e., noise power is equal to

its variance). The state-space model accommodating the failure signature together with

noise is described by

xk+1

(p+ 1) = A
1

xk+1

(p) +Buk+1

(p) +A
2

xk(p) + L1m1

k+1

(p) + !k+1

(p) ,

yk(p) = Cxk(p) + vk(p) , (7.1)

where ! ⇠ N (0, n!) and v ⇠ N (0, nv).
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We consider four di↵erent scenarios where n!, nv 2 {0, 0.1, 0.5, 1}. In the absence

of noise (n! = nv = 0), the error initially goes to zero but after the failure occurs, the

error norm increases significantly that suggests selecting a threshold " = 0 is a reasonable

choice. In the presence of noise however, the error due to the initial conditions does not

go to zero but approaches towards a range
h
0 einit

i
, where einit increases with the noise

power. The performance of the error signal for the three first passes of the mentioned

scenarios is depicted in Figures 7.1(a) - 7.1(d).
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Figure 7.1: Error magnitude before and after failure of the first actuator.

Note that immediately after the failure, the error norm jumps significantly. However,

with the noise increasing, the upperbound n increases as well. Hence this significance

becomes less obvious as the noise power rises. This is also shown in Table 7.2.1 where

the average error norm before the failure is compared to the error norm immediately

after the failure in 10000 simulations.
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Inp./Out. Noise Variance Magnitude Ratio ( ⇥Times )

0.1 31

0.5 6.96

1 3.74

Table 7.1: Comparison of the average error norm before the failure and the error

norm after the failure in 10000 simulations.

These experimental trials help selecting a fault detection threshold for the case of the

first actuator failure in various noise scenarios of this example. An identical procedure

can be carried out for the second actuator failure to obtain a priori knowledge of the

system corresponding to the respective failure class.

To isolate the detected failure, we plot the norm of the projection of the error to the

subspaces that contain failure signatures (i.e., W?(Li), i = 1, 2) for the first three passes

of the process (see Figure 7.2(a)). In the absence of noise, this projection goes to zero

initially but after the failure, it deviates from zero and lies on W?(L1) where the fault

has happened. Moreover, we plot the trajectories of the error vector on the second pass

where the fault has happened. From Figure 7.2(b) it is clear that these trajectories

only travel along the first actuator signature. Hence, the failed actuator can be isolated

uniquely.
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Figure 7.2: Failure isolation for the case n! = nv = 0.

Now consider the three scenarios where n!, nv 2 {0.1, 0.5, 1}. In the presence of noise,

projection of the error neither goes to zero nor lies on the failed actuator but lies at

a distance d and d0 to the failed and healthy actuator, respectively. In the presence of

noise, d ⌧ d0 should hold distinctively for FDI to perform e�ciently. After a threshold
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is passed, the error trajectories no longer travel along the failed actuator signature due

to noise but form a “tube” around it. This is illustrated in Figures 7.3(a) - 7.5(b).

It can be seen that as the noise power increases the error trajectories scatter more

across the space that fault isolation is not possible even if fault detection might be ( see

Figure 7.5(a)-7.5(b) ).
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Figure 7.3: n! = nv = 0.1
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Figure 7.4: n! = nv = 0.5
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From this example it is concluded that for FDI algorithm to work, noise should be

bounded in a specific range. Moreover, in presence of noise, the error vectors do not

stay in a subspace but form a “cone” with the vertex at origin. This can be seen

intuitively since the zero subspace is included in all of these subspaces (that forms the

vertex of the “cone”). Moreover, the axis is formed by adjoining {0} to the centroid of

the error vectos which can be obtained through well-defined algorithms (see for example

[90]). Then, the error vectors with the largest distance to the centroid determine the

slants of the cone. Choosing the appropriate threshold, if possible, is related to the

openness of the cone vertex or the radius of the base r. Figure 7.6(a)-7.6(d) shows the

directional subspaces spanned by the two actuators of the presented example together

with the error cone and the average error direction.
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Figure 7.6: Error cone for the presented example

Now we investigate the problem of finding a fixed threshold for fault isolation. For this

purpose, we first define the isolation section for each failure signature.

Definition 7.1. The smallest subspace in which a failure can be isolated uniquely with

a probability ⌘ < p  1 is called an isolation section where ⌘ is the minimum acceptable

performance of the fault isolation algorithm.

Denote the angle between the error vector and the failed actuator by ✓ and the angle

between the error vector and the healthy actuator by �. Moreover, partition the angle

between the failure signatures Lq and Lq, q, q = 1, 2, ..., l, q 6= q equally into  q and  q.

Then the breadths formed by  q’s are the isolation sections corresponding to the q-th

signature.
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In the case of this example, these isolation sections are two “cones” generated from the

rotation of a triangle with the failure signature as the axis and vertecies at origin. Slants

of the cones are determined by the breadths  q’s.

To isolate a failure, we continuously measure the angle between a failure signature and

the error vector and denote it by ⌦i, i = 1, 2, ..., l. Then the smaller ⌦i represents a

possible failure of the respective actuator. This can be used in parallel to other methods

mentioned earlier to provide a better result.

In this example,  
1

=  
2

= 63.31
2

�
. Simulating the first actuator failure 10000 times with

this threshold in various noise levels, results in the following performances of the fault

isolation algorithm:

Inp./Out. Noise Variance Success Rate

0 99.55%

0.1 91.70%

0.5 82.63%

1 76.51%

Table 7.2: Performance of the FDI algorithm with the angular threshold  /2 in 10000

simulations.

It should be noted that in the absence of noise, due to non-zero initial conditions the

success rate is not 100%. In the case where more actuators are present with non-

equal angle distribution, this approach is still adoptable, however the isolation section

will no longer be symmetric and as the angle between failure signatures decreases, the

probability of a false alarm increases.

Figure 7.7: An example of several non-symmetric isolation sections  i, i = 1, ..4

corresponding to each signature.
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Our FDI procedure is as follows:

Algorithm 7.2.1: FDI Procedure()

1 : AEN⇤ = 0;

2 : for k = 0 to K⇤⇤

3 : for p = 1 to ↵

4 : ||ek(0)|| = rand;

5 : Compute

AEN = (AEN + ||ek(p� 1)||)/p;
6 : return (AEN) ;

7 : if ||ek(p)||/AEN > "

then

8 : Compute e0k(p), the projection of ek(p)

down onto V?(Li) ;

9 : Compute

f := arg max{||e0i(p)||}, i = 1, ..., l

10 : return (f) ;

11 : Compute ⌦i, i = 1, ..., l the angle between the i-th

failure signature and the error vector ek(p);

12 : Compute

g := arg min{⌦i}, i = 1, ..., l

13 : return (g) ;

14 : end if

15 : end for

16 : end for

⇤
AEN is the Average Error Norm.

⇤⇤K is the number of passes.

Note that " is obtained from statistical analysis of the previous history of the system.

Moreover, due to the assumptions, the computation of f in Step 9 is well-defined and

Steps 11-13 are used to verify the results from Step 10.
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