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ABSTRACT

For a combination of theoretical and phenomenological reasons, it is argued that the
conventional SEA coupling loss factors is not the most appropriate form of coefficient for
relating energy transfer between SEA subsystems to their vibrational states. An
alternative 'power transfer coefficient' is suggested and an experimental method for its

determination, which obviates the need to measure input powers, is proposed.
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1. INTRODUCTION

The coupling loss factor conventionally employed in Statistical Energy Analysis is

defined by analogy with the dissipation loss factor, thus:
time-average power dissipated by subsystem i =17; @ E; ,

time-average power transferred by subsystem i to subsystem j = 1;; @ E; ,
time-average power transferred by subsystem j to subsystem i = 1; @ Ej ,

in which E; represents the total time-average energy stored in subsystem i in time-
stationary vibration and @ is the centre frequency of an analysis band.

This definition produces a non-symmetric loss factor matrix:
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in which P; represents time-average input power to subsystem i. Introduction of the so--
called SEA reciprocity relation, 712 n1 = 721 n2, allows the matrix to be written in a

symmetric form, thus
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where n denotes modal density, and Ejy/n; is the average energy per mode (modal energy)

of subsystem /.



2. AN ALTERNATIVE DEFINITION

On the basis of equation (2) alone one can make out a case for defining a new set of

coefficients linking transferred and stored energy, thus:
Mljzmjconi:nﬁwnj=Mﬁ . 3)

These have previously be termed 'power transfer coefficients’ [1]. The analogous 'power
dissipation coefficients’ are M; = 1); @ n;. The latter are physically significant since they
represent the degree of modal overlap of the uncoupled modes of each subsystem. The
modal overlap factor has great significance in SEA because it influences ensemble
response statistics and also features in a recently developed indicator of strength-of-
coupling between subsystems [2, 3], If Mi/(M; MjV2 is sufficiently large, the coupling
may be said to be strong and the actual value of My then falls below the value
corresponding to the travelling wave power transmission coefficient which is

conventionally employed in SEA analysis.

A justification for the use of My; rather than 7;; and 7;; is that the former depends only
upon the linear dimensions of the interface between subsystems i and j, whereas the
coupling loss factors depend, in addition, upon the other dimensions of the subsystems, as

shown by the comparison in Table 1.

Table 1 Power transfer coefficients and equivalent coupling loss factors of spatially

uniform systems

Map Nop
One-dimensional subsystems of Taf/27 T Cgof 20 Lo,
lengths Ly and Lg
Two-dimensional plane subsystems (ko) Top27 ToB L Cgof TS o
of areas S and S and interface
length L
Three-dimensional subsystems of (keS) Top/8r2 Taf S Cecf40 Ve
volumes ¥ and Vg and interface
area S

where 748 is the diffuse field vibrational wave power transmission coefficient of the

interface and ¢z is the wave group speed of subsystem .



The power transmitted through an interface is proportional to the product of the physical
extent of the interface and the intensity of vibrational waves approaching the interface.
The intensity is equal to the product of the energy density of the waves and their group
velocity. The energy density is proportional to the modal energy [1]. It is therefore
illogical to relate the transmitted power to the toral energy of a subsystem since, for a
given value of energy density, the total energy varies in proportion to the spatial extent
(length, area or volume) of the subsystem, whereas the transmitted power is unaltered.
The awkward consequence of employing the total energy is that the associated coupling
loss factor depends upon all the linear dimensions of the subsystem, and not just on the
relevant quantity, namely the extent of the interface, as shown by Table 1. One
consequence of employing M;; is that the so-called "Smith criterion’ of coupling strength
may be expressed as Mj; << M; and M;. (However, the general validity of the criterion

has been questioned [2, 3}.)
3. EXPERIMENTAL DETERMINATION OF POWER COEFFICIENTS

Although it may be argued that the use of power transfer and dissipation coefficients
rather than coupling and dissipation loss factors is logical from a theoretical point of
view, it appears to present difficulties in terms of application of the widely used power
injection method for the experimental determination of coupling and dissipation power
parameters, via inversion of the subsystem energy matrix. This is because the modal
energies of structural subsystems cannot be directly determined from measured quantities,
whereas the total energies can be estimated from vibration velocity response’

measurements, made at a number of sampling points distributed over the spatial extent of
a subsystem, together with an estimate of the associated effective mass: £ = Mp; < v2 >,

where the brackets indicate spatial average.

However, there is, in principle, a way to overcome this problem which brings with it the
considerable advantage of avoiding the need to measure input powers in the power
injection method. The time-average input power from a harmonic point force acting on a
distributed elastic subsystem is given in terms of the velocity response at the driving point
by

1 T Tk
in which the tilde indicates 'complex amplitude' and the asterisk indicates 'complex

conjugate’. The force and velocity are related through the complex point mobility Y. In

spectral terms



Pin(w) = Sg(@) Re { Y(w) } (5a)
— Sw(@) Re { 17 @) } (5b)

= [Sw(cu)/l?(w)ﬁ] Re { ?(co)} , (5¢)

where Sg and S, are the autospectral densities of force and response velocity at the

driving point.

The power input in a frequency band Aw is therefore given by

f Pi{w) do= J Si{w) Re {?(a))} dow = ‘[ [Sw(w)/if’(a))ﬂ] Re {f’(co)} do .

A Aw Aw

In many practical measurements, power is injected by means of an electrodynamic
vibration generator (shaker), supplied by a constant output voltage amplifier. It may also
be inferred from the Fourier components of transient force and velocity generated at the
point of excitation by a hammer. In the case of continuous excitation by a shaker, neither
the force nor the resulting velocity autospectra are uniform (independent of frequency)
because of interaction between the shaker and the excited structure. However, experience
shows that, in practice, the force spectrum generated by a shaker is much more uniform-
than the velocity spectrum, and the input power spectrum exhibits peaks at the resonance

frequencies of the structure at which
Re { 7(0) } 5> Im { ¥ }
and
F@2 = re {7 } |?

Hence, the dominant contributions to the spectra of both power and velocity are
associated with peaks in the Re {?(a))}, and equation (5¢) may be written

approximately
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The frequency-average value of the real part of the mobility of a spatially uniform
structure of total mass M is given by < Re { ?(w) } >o = 7 n(w)/2M, where n(w) is the

corresponding frequency-average modal density, provided that the averaging band
includes a (small) number of model resonance frequencies [4].

Hence, for such structures equation (6) may be written

M )

Cino= (P in)so -

In the application of the power injection method, a number of randomly distributed’
excitation points are selected. On the basis of the hypothesis that equation (7) holds for

non-uniform structures in terms of an (unknown) effective mass, we write
<Pip>, = <V2 jg> 2M,/mn (8)

in which the explicit frequency dependence has been dropped, < >y indicates 'space
average' and an effective mass which is related to the choice of excitation points replaces

the actual mass of the substructure.

The SEA power balance equations (1) may now be written as

-
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in which <v,2> is the space-average mean square velocity at the excitation points.

The subsystem energies may be written as £ = M,p<v2>, where <v2> is the measured

space-average mean square response velocity and M, is the effective mass associated with



the response measurements (which may not be the same as that associated with the power
input points). We shall, however, assume that these two effective masses may be equated

to yield the following equation:
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These equations contain two sets of directly measured response autospectra and require
no measurement of input power, which is one of the major sources of error in SEA

experiments.

The elements of the M matrix can be determined in the usual manner by injecting power
sequentially into each subsystem and, in each case, measuring space-average input and
response velocities on all subsystems. .Each power transfer coefficient Mj; can be
obtained from the product of the values of the two off-diagonal elements in which it
appears. The power dissipation coefficients M; can then be obtained from the values of
the diagonal elements of equation (10). No estimates of subsystem effective masses or
modal densities are required: the former is a common source of uncertainty in
experimental determination of SEA parameters. The results for a two-subsystem model

are presented explicitly in the Appendix.

This formulation has one practical disadvantage compared with the measurement of input
force and response velocity, namely that velocities at excitation and response points do
not satisfy the principle of vibrational reciprocity. Hence, this method requires twice as
many measurements as that based upon transfer mobility measurement. On the other
hand, the equations in terms of response velocities are generally better conditioned than
those in terms of total energies, because power flow is proportional to difference between

modal energies, not total energies.



4. CONCLUSION

The concept of coupling loss factor, as employed in SEA, is criticised as being dependent
upon physical quantities which do not directly influence the transmission of vibrational
power from one subsystem to another. An alternative concept, the ‘power transfer
coefficient, which takes a form similar to the modal overlap factor, is proposed. It is
suggested how this quantity may be determined by applying a variant of the conventional
power injection method. The proposed method obviates the need to measure input power
or to estimate subsystem effective masses and modal densities. The equations are better

conditioned than those based upon coupling loss factors.
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APPENDIX
TWO-SUBSYSTEM MODEL
The following approximate solutions to equations (10) for a two-subsystemn model are

based upon the assumption that <vp2>; / <v12>g >> <v9?>1 / <v12>1, which will be the
case except when the system is close to a state of equipartition of modal energy (very

strong coupling).
M1 =~ K1 [(<vi252/<v22>) [ (<ver> 1 <0 2>1) ] (A.1)
K = [(<v1252 / <ves®>) [ (<v2>1 / <ver2>) ' = (MeyMer) (mi/n) (A.2)
My = /m) (<ver2>/<wvi2>1) - M1 (A.3)
Mo =~ 2/m) (<ves?>/<vo2>)) - M1z (A4)

in which <vi2>j indicates the spatial-average mean square response velocity of subsystem

i when external excitation is applied to subsystem j.
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