(2015) Confined nanoscale chalcogenide phase change material and memory. University of Southampton, Physical Sciences and Engineering, Doctoral Thesis, 181pp.
Abstract
The miniaturization of memory devices has been one of the major driving forces in the exploration of ever faster, smaller and more efficient memory concepts. Among all the competitors for the next generation of non-volatile memory, phase change materials based random access memory has emerged as a leading candidate. A better understanding of nanoscale properties of phase change materials and the ability of selective depositing them into confined nanostructures are substantially important in the long march towards smaller more densely packed memory bits.
A novel top-down spacer etch technique has been developed for fabricating sub hundred nanometre phase change Ge2Sb2Te5 nanowires. Taking advantage of this technique which allows precise control over nanowire position and geometries, the contact properties between phase change material and metallic electrode in nanoscale can be quantitatively investigated. The results reveal a specific contact resistance of 7.56 x 10-5
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Electronics & Computer Science (pre 2018 reorg) > Nanoelectronics and Nanotechnology (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg) > Nanoelectronics and Nanotechnology (pre 2018 reorg)
School of Electronics and Computer Science > Electronics & Computer Science (pre 2018 reorg) > Nanoelectronics and Nanotechnology (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.