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ABSTRACT

This report presents the study on the stability of the response of a direct feedback
control loop using triangular piezoelectric actuators bonded on smart panels. Direct
velocity feedback control systems allow a good reduction of the transmitted sound
through light panels. However, their performance is limited by their stability at high
frequencies. Several theoretical works have shown that the triangularly shaped
actuators are more efficient than the squared ones and the effect of the dimension of
the actuator on the stability has already been discussed, however the influence of
boundary conditions has not been studied yet. In this work, the panel is considered
resiliently supported by springs in rotation and translation so that we can modify their
stiffness in order to simulate several boundary conditions from free to clamped or
simply supported. The boundary conditions have a big influence on the response of
the panel and therefore on the stability of the system. This study shows the effect of
the boundary conditions on the stability and estimate the gain applicable to the system
in order to have the best control without destabilising the system.
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1. INTRODUCTION

Acoustics in automobiles have been improved in the last few years as a consequence
of the legislation and the demand of comfort by customers [1]. However, in contrast
to the engine vibrations which are well screened today, tyre noise and aerodynamic
noise such as turbulence created by the rear-view mirrors still come through the
cockpit and create disturbances for the passengers. A major problem of acoustic
passive insulation systems is their price as well as their size and weight which are not
compatible with the constructors’ policy of decreasing cost and lightening vehicles.

There are two ways of reducing the level of sound in the cockpit, the first approach
aims to decrease the source of noise while the second aims to reduce the transmission
of this noise [2]. This study is focused on the reduction of the transmission of noise
through a light panel with active control system [2]. In contrast to passive control
methods which have been proved to be efficient in the high audio frequency range but
tend to be less effective in the low audio frequency range, where the mechanical
responses of structures are characterised by well-separated resonances, the active
system methods control low frequency vibration and sound radiation. Another
advantage of active systems is their size and weight which could be rather low.
Frequently both passive and active systems are used together to reduce transmitted
vibration and radiated sound in a large frequency range.

Active control systems can be divided into two groups: feedforward and feedback
control systems. Feedforward control systems require a reference signal well
correlated to the disturbance to be controlled. Thus they normally provide good
control effects for tonal disturbances that can be easily characterised far in advance
[3,4]. For random disturbances, feedback control schemes should be used. These
systems can provide good control performance regardless the type of disturbance to
be controlled provided the sensor and actuator transducers are collocated and dual so
that large feedback control gains can be implemented with no stability problems [5,6].
Feedback control systems for vibro-acoustic control can be classified in three
categories: a) Multiple Input Multiple Output (MIMO) systems with fully coupled
arrays of error sensor and actuators, b) Decentralised MIMO feedback control
schemes with arrays of independent sensor—actuator pairs, and ¢) Single Input Single
Output (SISO) active feedback control schemes, using distributed sensor—actuator
pairs.

Fully coupled MIMO feedback systems are difficult to implement in practice, since a
reliable model of the response functions between all sensors and actuators is required by
the controller [5, 6]. MIMO decentralised control systems have been shown to give
good control performance which are comparable to those that would be obtained from
an ideal fully coupled MIMO feedback control system [7,8]. The implementation of
decentralised MIMO system is much simpler than that of fully coupled systems, since
simple SISO feedback loops need to be implemented. Elliott at al. [9] have shown that,
provided the sensor-actuator pairs are dual and collocated [10, 11], the decentralised
MIMO system is bound to be stable if direct velocity control is implemented [12].
Therefore, the main issue of decentralised MIMO control is concerned with the design
of collocated and dual sensor—actuator pairs.

When decentralised velocity feedback loops are implemented in such a way as to
generate active damping, both the frequency average vibration and sound radiation of
the structure are reduced [8,9], provided an optimal gain is implemented such that the
damping action is maximised without pinning the structure at the control positions
[13]. The optimally tuned active dampers reduce the amplitudes of the well separated
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low frequency resonances of the structure and thus the frequency averaged vibration
and sound radiation at low frequencies.

In principle, SISO feedback control systems using distributed sensor—actuator pairs
specifically designed to minimise the most efficient radiations modes of the radiating
structure [14] form the simplest and most convenient solution for active structural
acoustic control. However, they normally require strain transducers, such as
piezoelectric transducers, which cannot be easily used in matched pairs as sensors and
actuators because feed-through effects that limit the stability of the control loop [15].

Decentralised MIMO systems, which are used on the experiments for this study,
offer a good compromise between the fully coupled MIMO and the distributed
transducers SISO control systems.

At first a system of sixteen squared piezoelectric actuators [16, 17] has been studied
giving good performances but it was limited in gain because the sensor and the
actuator pairs were not collocated so that the responses were not in phase with the
command. The second system envisaged is composed of sixteen triangular actuators
with velocity sensors at their tips placed on the edges of the panel. The first advantage
of this system is the stability because of the shape of the actuators which permit a
larger gain due to the collocation of the velocity sensor and the main damping force.
The second advantage is the fact the actuators are placed along the edges and act on
the boundary conditions so that they can be placed on transparent elements such as
windows.

Previous works by Gardonio and Elliott [18], Emo and Gardonio [19], Aoki et al.
[20] and Hong et al. [21], have investigated the stability and control effect produced
by a panel solidly clamped along the edges.

In the following study, the response of a flat light smart panel which is instead
resiliently supported and has sixteen decentralised direct velocity feedback control
systems is analysed. Each control system consists of a triangular shaped piezoelectric
actuator, whose base edge is aligned at 2mm of the border of the panel, and a velocity
sensor mounted at its tip. The signal given by the velocity sensor is fed back into the
actuator, which generates a damping force at its tip but also bending moments on its
edges and singular forces on the two other corners, which, all together, can bring the
system to be unstable. As the force at the tip of the actuator is proportional to velocity,
it can be considered as a damping force. Thus the sixteen independent control units
generate a damping effect that tends to reduce the response of the panel in
correspondence to the well-separated low frequencies resonances.

The study presented in this report is focused on the stability of one control unit in
relation to the boundary conditions. This is a key study to establish whether stable
loops can be can be designed and thus whether relatively large control gains can be
implemented in a smart panel with such a decentralised control units. The effect of
high feedback gains is to reduce efficiently the response of the panel but also could
destabilise the control system, therefore a compromise has to found in order to have
the best performances while the system remains stable.

This report is divided into three parts. In the first part is presented the general
behaviour of a simply supported panel controlled by singular force collocated to the
error sensor. In this part of the study are also introduced the tools which enable the
evaluation of the stability and the performance of the control system.

In the second part we present the study of a direct velocity feedback control loop on
a resiliently mounted plate. In this section we study the stability and control
performance of a feedback velocity control loop for several values of mounting
stiffness’s.



In the last part the performance and stability study of a smart panel resiliently
supported controlled by a decentralised velocity feedback loop using a triangular
piezoelectric actuator is given. A wide range of linear and angular mounting stiffness’

is considered here in order to observe the behaviour of the panel and the stability of
the system with reference to the rigidity of the mounting system.



2. BACKGROUND OF DIRECT VELOCITY FEEDBACK
CONTROL ON A SIMPLY SUPPORTED PLATE

In order to have a first insight of the response of the light panel with a velocity
feedback control loop, a simply supported panel controlled by a single force
collocated to the sensor is presented. The structure studied is a simply supported
rectangular aluminium thin panel to which is applied a primary force excitation at
position(xO Vo ) The control is made by a single force collocated to the error velocity

sensor at the control point who is located at position (x,, ;) in the central area of the

panel as it is presented Figure 1. The mass effects of the sensor and the actuator are
not taken in account. The gain of the feedback loop is denoted by g.

WT

S5 pr ¢ 4 SO

Figure 1: Transversal schema of the panel with primary excitation force and single
control force collocated to the sensor

First the system is modelised in order to study its behaviour, that is its stability and
its performance. The Euler Bernoulli theory has been used, which means only the
bending waves in a thin plate structure are considered. This assumption is acceptable
since the shear and rotational inertia effects become important only at very high
frequencies, around 10 kHz for this panel. In the second part of this section the tools
used to study the stability are presented and applied to our system as an example. The
third part presents the plots used to visualise the performance at one point of the plate
and the global damping effect of the system on the plate.

2.1 Modelisation

To analyse the response of the panel we need to calculate the velocity at the control
point and the kinetic energy of the panel. A mobility model has therefore been build
in order to derive the local and global responses of the panel as a superposition of the
primary and control sources active on the panel. The mobilities of finite plates can be
written in terms of a modal summation [22]. The case of a rectangular plate is
considered. The main Cartesian co-ordinate system of reference (O, X, Yy, z) is located
at the corner of the plate with the axe z axis orthogonal to the surface of the plate. The

transfer functions Y, = Y and Y, = ;‘: giving the velocity at the control position
p c

per unit primary and control forces are given by the following mobility functions:

Y . i 0 ¢m,n (xc’yc)¢m,n (xp7yp) (1)
» — JO
v/ o Ale?, (- jn,) - o’]
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A=phll, ©)

stx%y

where ¢

m,n

is the (m,n)th natural mode of the panel andw,,,

1

is the (m,n)th natural

frequencies, 7, the damping coefficient.

The natural frequencies depend on the boundary conditions and on the
characteristics of the panel. For a simply supported panel they are given by:

2 2
E I mr i niw E h, mr i niw
a)m n = — 2 = = — 2 +| — (4)
Y pshs (l_vs ) lx ly 12ps (l_vs ) lx ly
with £ is the Young modulus, 4, the height of the panel, v_ the Poisson coefficient,

p, its mass density and 7, the inertia moment. /, and /, are the length of the panel’s

edges along x and y respectively.
The natural modes also depend on the boundary conditions and are given by [22]:

¢m'n(x,y):sin[mlﬂxjsin(n;[y] (5)

The panel studied is an aluminium panel whose geometrical and physical
characteristics are summarized in table 1.

Table 1: Parameters of the panel

Parameter Value
Dimensions [, xI, =414 x314mm
Thickness h, =1mm
Mass density p, =2700kg | m’®
Young’s modulus E,=7x10°N/m?
Poisson ratio v,=0.33
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2.2. Stability

This part presents the tools to study the stability of a feedback control system and an
example of this type of analysis based on the feedback system controlling the simply
supported panel.

| /(@)
7,()

+

—»uC((D) Y (o) s —>

cec

_H |«

Figure 2: Block diagram of the active control system

The control system can be represented by a block diagram as in Figure 2. The
control command (@) is given by the signal of the sensor, which measure the

velocity at the error sensor, multiplied by the gain of the system. The velocity of the
control point is function of the two forces, the primary excitation f, force and the

control force f,. Therefore assuming the system is linear, the response of the system
will be of the form:

wczyccfc—‘rycpfp ' (6)

with £, primary excitation force and f,, control force which as a result of direct
velocity feedback loop is given by:

Je=—8W. (7)

where g, is the gain of the control system. Substituting equation (7) into equation (6),

this finally gives after some mathematical manipulations the response at the control
position can be expressed in terms of the primary excitation and control gain:

Y

Wwo=—-= , 8
‘ 1+gcch fp ( )

The system will become unstable if the denominator of the transfer function tends to
0 which means:

1+gcch :0’
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that is:
gc cc = _1 )

This indicates that the real part of the open loop transfer function has to be observed
in order to study the stability of the closed loop transfer function. In fact the system
will be bound to be unconditionally stable if Re{g Y, }>0. The instability,

conditional stability and unconditional stability is normally assessed using the Nyquist
stability criterion [23, 24].

The Nyquist stability criterion states that if the curve representing the open loop
transfer function of the system in the Nyquist plot encloses the point (-1,0), the system
is unstable. Also if a part of the curve belong to the left hand side of the Nyquist plot
(e.g. the real part of the open loop transfer function has negative values) but the curve
does not enclose the point (-1, 0), the system is conditionally stable. In this case, the
system can go unstable if the gain of the feedback loop is increased, because the size
of the loop is proportional to this gain.

In general, the stability of a feedback system is analysed by looking at the open loop
response Y, =w, /F, through its Bode and Nyquist diagrams. This observation will

allow us to know if the system is unconditionally stable, conditionally stable or
unstable and to know the highest gain we can use without destabilising the system in
case of conditional stability. We must take in account the whole range of frequencies
here since the instabilities appear in the high frequencies even if the performances are
expected in low ones.

Using the Bode diagram of the open loop transfer function we can observe the
evolution of the phase of Y, so that we know if it stays between -90 and +90 degrees,

if it is the case the system will be unconditionally stable, but if not, we will have to
look at the Nyquist diagram to see if the system is unstable or conditionally stable.

In this work the sensor is considered an ideal system, thus the signal it produces is
directly proportional to the velocity measured. Only the characteristics of the actuator
have been taken in account so that the stability effects of the other components such
as the accelerometer are not analysed.

Figure 3 shows the Bode diagram of the open loop sensor-actuator transfer function.
The first thing to remark is that the response is characterised by well separated
resonance in the low frequency, this is what we expected since it is those modes on
which the control system must be effective. At higher frequencies the resonances are
not so clearly separated because the natural frequencies become too close to each
other, this is why the single feedback system cannot control the higher frequencies
and thus limit the performance to the low ones.

The second thing that appears on the Bode diagram is that the phase remains
between -90 and +90 degrees, thus the system is bound to be unconditionally stable.

In Figure 4 is presented the Nyquist diagram which confirms the system is
unconditionally stable since the real part of the open loop transfer function remains
positive. This result was expected since in this study the control force is collocated to
the sensor so it cannot destabilise the system [23].

-13-
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Figure 3: Bode diagram of the transfer function of the open loop system Y., =w, | F,
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Figure 4: Nyquist diagram of the open loop transfer function Y., =w_ | F, for a
simply supported panel controlled by a single collocated force

2.3. Performance

The second issue we are interested to study is the control performances. In this case
open loop sensor actuator response function is not sufficient to study the system’s
performance. To observe the system’s performances at one point we study the closed
loop control velocity w, which is given by equation (8). This time it is sufficient to
study the low frequencies since the control effects are expected only for the first few
resonant modes.
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Figure 5: Amplitude of the response to the control point for a simply supported panel,
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(respectively thick black, grey, thin black, dotted)

The plot in Figure 5 shows that up to 3 KHz, the dynamical behaviour is
characterised by well-separated resonances like for the open loop sensor actuator
response function, some of which are responsible for the transmitted sound. In this
frequency range the modal overlap is very small, so that the panel’s behaviour is only
controlled by the resonant modes. Some of the modes do not have good radiation
efficiency and do not transmit much sound; this is the case for the second and third
mode for example.

Beyond this frequency range, the response of the panel is determined by the
contribution of many modes that are overlapping. It is therefore very hard to
distinguish the resonances at higher frequencies in the radiated power. In this
frequency range, the radiated sound power is controlled by the mass of the panel.

The behaviour below 3 kHz is the one that interests us since by controlling the
resonant modes it is possible to reduce the transmitted sound power.

Resonances can be controlled with active damping. In fact as we can see on Figure
5, the picks are lightened by the damping. That is why we use this active control to
reduce radiated power. As the control gain is raised, the damping injected on the panel
is increased and thus the resonance peaks are rounded off more and more (solid lines
in Figure 5). However, when relatively larger control gains are implemented (dotted
line in Figure 5) the picks are not lightened anymore, on the contrary the whole
response drops out. This phenomenon comes from a structural change of the system.
In fact the system tends to pin the panel at the control point [25]. The velocity of the
control point is not representative anymore in this case.
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The plot of Figure 5 represents the performance at on point, more precisely at the
control point; in order to observe the performance on the entire panel we must plot the
kinetic energy K of the panel. This quantity is given by the integral of the mass
density time the thickness of the panel time the velocity over the surface of the panel
and can be written in terms of the following modal summation:

1 i 1 . 1 .
K () :EJ' Aph|w(x,y)|2dA:Zprap a,f, =3 M, [ap +aﬁ,]H[ap +aﬁ,]fp 9)

with:
ac — ja) 2¢m,n (xc.’ yc) . (10)
A[a)m,n (1_.]773) - ]
and
-gY

-20

K| dB (rel. 1 ms Nm)

2

10 10

Frequency (Hz)

Figure 6: Kinetic energy of a simply supported panel for a single collocated control
force and the gain values: g =0, g =10, g =100, g =10° (respectively thick black,
grey, thin black, dotted)

Figure 6 shows that the kinetic energy of the panel decreases with increasing gain.
As for the velocity the low frequencies picks are lightened as we increase the gain. It
is interesting to note that for a very high value of gain a new resonance peak appears.
This peak is due to a modification of the system mentioned above for high gains itself.
This new resonance comes from the fact that the response of the simply supported
panel has been changed to that of a simply supported panel which is also pinned at the
control position. Thus the natural frequencies will not be the same as those of a
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simply supported panel. When high control gains are implemented the control system
does not efficiently control the global vibration of the panel.

It is therefore interesting to see for what gain we will have the best damping. To do
so, we plot the ratio between kinetic energy with control on kinetic energy without
control in function of the gain like shown in equation (9). This plot will show us the
best gain necessary to have the lower energy level on the panel, i.e. the best control
performance:

.[K:da)
R= j— - (12)
K, do

0

0.9

0.8

R
o
b

0.6

0.5

0.4 = :
10 10 10

Figure 7: Plot of the ratio R presenting the trim of the transmitted energy with
control on transmitted energy without control function of the gain for a simply
supported panel controlled by a single collocated force.

Figure 7 shows that as the control gain is raised from zero, the kinetic energy of the
panel goes down, as a result of the active damping action. However this trend is
inverted for gains higher than 70 because the system does not produce active damping
anymore since the panel has been pinned at the control position.
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3. DIRECT VELOCITY FEEDBACK CONTROL LOOP ON A
RESILIENTLY MOUNTED PLATE

3.1. Modelisation

The panel is not in practice simply supported neither clamped; we have to find an
alternative modelisation of the mounting since the boundary conditions are of primary
importance for the stability study of the feedback control loop. The idea to have a
compromise between the clamped panel and the simply supported panel is to take a
free panel and fix it to the frame with springs in translation and in rotation on its edges
like presented in Figure 8.

Some indications of the boundary effects have been presented by Hong et al. [21]
who has studied a feedback active control system on a resiliently mounted beam.

The number of springs used to simulate the mounting of the panel depends on the
frequency range since the interval between two spring must be of the order of the
quarter of the wave bending length in the panel so that the number of springs will be
given by:

N = ceil(4l"fj

c

Jo \m

(13)

with B =EI, m = ph and c is the velocity of the flexural waves, f'the frequency and
[ .the length of the panel along the longest edge in x direction.

k ] ky N

o 1

&\%\v\?pr fT - TR

C

kO) k(l)

Figure 8: transversal schema of a resiliently supported panel controlled by a single
force collocated to the sensor

In order to build a fully coupled model of the panel on flexible springs with the
feedback control system, the velocities of each point of the panel’s edge where we
have a spring are ranged in a vector:

W, =10 (14)
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The vibration at each of these mounting points is determined by the action of the
primary force, the control force, and the force generated by its own springs and the
ones of the other boundary points. The same effect occurs for the vibration at the
control position which is determined by the action of the primary, control and
boundary forces. Thus the response at boundary and control points can be expressed
in terms of the following two matrix relations:

W, = chfc + Ykpfp + Ykkf (15)

Wc = chf‘c + chfp + Yckfk (16)

where Y, isamatrix 2N x1, Y, isamatrix 1x2N, Y, isamatrix 2N x2N, Y,
is @ matrix 2N x1 and f,_ is the vector with the forces exerted by the linear and
angular spring along the perimeter of the panel:

A
f, =1...
Sy

The mobility functions in the matrices Y, , Y, and Y, are given by:

Y . i ks ¢m,n (xk7yk )¢m,n (xc’yc) (17)
C = ]a) H
©T AR, A ) - o]

o ¢m,n(xk’yk)¢m,n(xp'yp)
Y, = , 18
G I °o

y . ii¢m,n (xk’yk)¢m,n (xk’yk) (19)
= ]a) '
kk m=1 n=1 A[a)"ZLH (1_ .]775) - a)z]

In this case the natural frequencies and natural modes are taken for a freely
suspended panel. Thus according to reference, the natural frequencies are given by:

Y | ER (7 2
" 1zp,a-vi )
with

Qo =G )+ GENe, 10, ) 200, 11, Pyt (m)i (n)+ @ =V, (), ()
(20)
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and

1) for the evenmode: G, =H _=J_ =0

2) for the rocking mode: G, = H_ =0
12

x 2
T

J

3) for the first mode: G, =1.506
H_=1.248
J, =5.017

4) for the following modes: G, =m +%

) e

Also the natural modes are given by:
b6 ¥)= 0, (), () (21a)

where the beam functions ¢, (x) and ¢, (v) are given by:

x 1 x 1
24cos| 7.| —==||+k, cosh| y.| —==||¢,
oo (7 mpo5 -3
Sin(ly)
k, :_—21 with tan[%y[jﬂanh(%yJ:o
Sinh(}/i]
2
for nunpair and i = (n+1)
P, =
. x 1 . x 1
2<sin| y.| ——=||+k sinh| y.| ——= 1|},
sin(lyJ
k, :—21 with tan[%yij—tanh[%yijzo
sinh| =7,
2 1
for n pairand i :g (21b)
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The forces exerted by the linear and angular springs f, can be expressed in terms of
the linear and angular velocities at the boundaries with the following matrix relation:

f, =—2w, (22)
where:
z 0
Z={ Y } (23)
0z,
isa 2N x 2N matrix with
k
Zwi = _W (24)
jo
2, =Ko (25)
jao

and k, and £k, are the stiffness in translation and in rotation of the springs

respectively.

Thus substituting equation (22) into equation (15) after some mathematical
manipulations, a response on the edges of the panel is found in term of the primary
excitation and the control force:

W, =T . f.+T,7, (26)

with:
ch = (I + Ykkz)_l ch ) (27)
Tkp = (I + Ykkz)_l Ykp : (28)

Thus substituting equation (26) into equation (16) the response at the control point is
found to be:

W, =0./.+0,1, (29)

with:
Qcc = ch - Yck Zch ! (30)
Qcp = ch - Yck Zch ' (31)

The control force is still given by:

fe=—8W. (32)

where g gain of the control system. Thus the response of the system at the control
point will be:
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In this report several cases of boundary stiffness are considered as listed in table 2 in
order to study the response of the panel with reference to the stiffness of the
mounting. The variation of the stiffness allows to simulate the comportment of the
panel from a free panel to a clamped one or a simply supported one or to use
intermediate values to simulate other mountings that better comply to real applications
of smart panels.

Table 2: several values of the stiffness in translation and in rotation for the different
studies of chapter 2

k., [N/m] k, [N/rad] panel
Case A 0 0 free
Case B 0 0 Simply supported
Case C 0 0 clamped
Case D 107t 0
Case E 107t 107t

Since the system is not really clamped or simply supported, in order to modelise
properly the system we must find the values of stiffness which give similar results to
the experiments. Thus we have to test several values of stiffness and observe the
system’s response in these cases. The results are given in case C and D for a value of

k=10"" [N/m] or [N/rad]
3.2. Stability

The tools used to study the stability of each case in this section are the same as in
the first chapter that is the Bode and the Nyquist diagram with reference to the
Nyquist stability criterion. The panel studied is the same, only the boundary
conditions are modified. For the stability we study here again the open loop sensor-
actuator response function represented this time by the function O, =Y, -Y ,ZT, .
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Figure 9: Bode diagram (a) and Nyquist diagram (b) of the open loop transfer
function Q.. =w, | F, for a free panel controlled by a single collocated force.
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Figure 10: Bode diagram (a) and Nyquist diagram (b) of the open diagram of the

open loop transfer Q.. =w, | F, for a resiliently supported panel with infinite stiffness

in translation controlled by a single collocated force
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Figure 11: Bode diagram (a) and Nyquist diagram (b) of the open loop transfer
Q.. =w, | F, for a resiliently supported panel with infinite stiffness in translation and

in rotation controlled by a single collocated force.
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Figure 12: Bode diagram (a) and Nyquist diagram (b) of the open loop transfer
Q.. =W, | F, for a resiliently supported panel with stiffness k =10" in translation

controlled by a single collocated force.
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Figure 13: Bode diagram (a) and Nyquist diagram (b) of the open loop transfer
Q.. =w,_ I F, for a resiliently supported panel with stiffness k =107 in translation

and in rotation controlled by a single collocated force.

In the case A of a free panel, on Figure 9a we observe an antiresonance in the low
frequencies that is in fact the antiresonance of the first mode whose resonance is
located at 0 Hz, (it is a rigid body mode). The profile of the diagram is then quite
similar to the one obtained in the case of the simply supported panel with well
separated resonances in the low frequencies and distance between the resonance
frequencies which tend to decrease in the higher frequencies.

In case B for infinite stiffness as presented in Figure 10a as excepted we find the
same results as for the simply supported panel which is normal since the panel is
blocked in translation on its edge for infinite stiffness, the characteristics are therefore
the same than for a simply supported panel.

The case C is equivalent to the case of a clamped panel. The panel is blocked in
translation and in rotation. The plot in Figure 11a shows that resonances appear for a
higher frequency than for the simply supported panel and the plot starts with smaller
amplitude at low frequency to finally reach the same level than for the case B.

In case D the plot in Figure 12a shows that in the case of a panel supported by
stiffness in translation non infinite, the first resonance does not appear at the same
frequency than for the simply supported but since the panel is not free, it is not located
on 0 Hz. In fact the frequency of the first resonance will depend on the value of the
stiffness and will be located between 0 Hz and the frequency of the first resonance for
a simply supported panel (35 Hz for the panel of our study). At very low frequencies
before the first resonance, the slope of the modulus of the open loop sensor-actuator
response function also depends on the stiffness of the springs along the panel’s edge;
it increases from the slope for a free panel to the slope for a simply supported one
with the stiffness.
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The effect of the rotational springs will be the same; the panel properties will go
from the ones of a simply supported panel to the ones of a clamped panel as the
rotational stiffness increase. As shown Figure 13a, This implies that when the
rotational stiffness increase, the value of the frequency for the first resonance increase
so as the slope before this resonance while the amplitude in very low frequencies goes
down.

Figures 9a-13a also represent the phase of the open loop sensor actuator response
function, the phase remains between -90 and +90 degrees so that the system is
unconditionally stable. This result is confirmed by Figures 9b-13b that represent the
Nyquist plots of these functions. The real part of the open loop open loop sensor
actuator functions never turns to be negative, the system is thus unconditionally
stable.

It is important to note that the values of stiffness considered in this study are much
smaller than the ones which should be used to modelise the panel’s mounting in
reality, this allows to see the phenomena more clearly to analyse them in this section.

3.3. Performance
In this section, the performances of the feedback control loop for several stiffness of
the mounting system are analysed. In order to do so, the velocity at the control point

and the kinetic energy of the panel are plotted for each mounting case so that the
response of the control point and the global panel response can be analysed.
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Figure 14: Amplitude of the response at the control point (a) and kinetic energy of the
panel (b) for a free panel controlled by a single collocated force and some gain
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Figure 15: Amplitude of the response to the control point (a) and kinetic energy of the
panel (b) for a resiliently supported panel with infinite stiffness in translation
controlled by a single collocated force and some values of gain:

g =0, g=10, g =100, g =10° (respectively thick black, grey, thin black, dotted)
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Figure 17: Amplitude of the response to the control point (a) and kinetic energy of the
panel (b) for a resiliently supported panel with a stiffness k =10 in translation
controlled by a single collocated force and some gain values:

g =0, g=10, g =100, g =10° (respectively thick black, grey, thin black, dotted)
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Figure 18: Amplitude of the response to the control point (a) and kinetic energy of the
panel (b) for a resiliently supported panel with a stiffness k =10 in translation and
in rotation controlled by a single collocated force and some values of gain:
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For the case A, on Figure 14a we have an anti resonance in the low frequencies
without any resonance before on the plot. The first resonance is here again at 0 Hz for
the rigid body mode of the freely suspended panel so that only the antiresonance
appears on the plot. We can note that the curve is notably modified for high gain
values (doted line); this phenomenon is due to the change of the system studied. For
very high gains, the system becomes a pinned panel at the control point so that the
first resonance is moved up in frequency as it appears on the plot. But this last case is
to avoid since the control is not efficient anymore.

This modification of the system is also visible on the Figure 14b which represents
the Kkinetic energy. For very high gain values (dotted line) new resonance picks of
resonance appear; the system is not efficient for this gain values. Kinetic energy also
decrease starting from 0 Hz since the panel is free.

In case B we only have a spring in translation with an infinite stiffness, this case
correspond to a simply supported panel. The plots Figure 15 have therefore the same
shapes as those found in section 1.3. and we find again the same control properties for
high gain values.

The same phenomenon as for the case A (free panel) appears for a gain too high in
the other cases (simply supported panel, clamped panel end resiliently mounted
panel); the panel becomes too stiff at the control point and the system is modified.

The Kinetic energy in Figure 17b presents the same profile as the one of a simply
supported panel with the same characteristics except the slope is smaller in the low
frequencies. This is the result of the choice of the stiffness and the slope will depend
on its value.

The slope of the panel’s kinetic energy is again changed in case D for the closed
loop as for the open loop the slope is function of the stiffness in rotation and in
translation. We therefore have two control levers to act on the system, one in rotation
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and one in translation. We can, thanks to these levers modelise precisely the boundary
condition of the panel to study its stability.

More generally from Figures 14a,b to 18a,b we can note for all cases A to E that:

1) as the control is increased the resonance peaks are lightened until the pinning
effect changes the structure properties of the system.

2) this phenomenon is more pronounced in the lower frequencies where we expect
the control system to be efficient

3) the damping is most efficient in the case of the clamped panel

Since for the control system mounted on a resiliently supported panel the same type
of control behaviour has been observed as for the control system mounted on the
simply supported panel we shall plot the ratio R in order to check if we can find the
optimum value of gain to have the less energy transmitted possible.
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Figure 19: Plot of the ratio R presenting the trim of the transmitted energy with
control on transmitted energy without control function of the gain for a resiliently
supported panel with stiffness k =10""in translation controlled by a single collocated
force.

Figure 19 present the same shape for the ratio R than for the simply supported panel

so that for each value of stiffness we will have to find the best gain in order to have an
optimal control on the panel.
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4. DIRECT VELOCITY FEEDBACK USING TRIANGULARLY
SHAPED ACTUATORS

The third part of this study focuses on the response of a resiliently supported panel
controlled by 16 triangular piezoelectric actuators evenly distributed along the edge of
the panel as presented in the Figure 20. Recently analytical and experimental studies
have been developed to control structural vibration and sound radiation from flat
panel using 16 square piezoelectric actuators and accelerometer sensors pairs [18].
Each sensor-actuator pair is used to implement a decentralized direct velocity
feedback control loop. Single-sided piezoelectric actuator provides the structural
control inputs while the closely located sensor is used as error signals. These 16
independent feedback loops synthesize point damping, which efficiently reduce the
vibration and sound radiation of low frequency resonances of the panel. Thus, the
control of far field sound pressure has been achieved by introducing additional active
damping to the structure.

The smart panel with square patch actuator is used to generate “surface active
damping”, and this new type of smart panel generates “boundary active damping”.
Although a previous theoretical study has shown only a small advantage of boundary
active damping compared to surface active damping, the arrangement acting along the
boundary of the panel has great advantage in that it is not invasive. Thus this
configuration can be used in a wider class of application including glasses of the
transportation vehicles, for example.

The sensor is localised at the top of the triangles. Each control unit acts like a
skyhook damper like presented in the Figure 21, so that the system tends to create
anechoic boundary conditions that reduce reflection of waves and as consequence of
the creation of resonating modes. The triangular actuators are made of a piezoelectric
PZT ceramic, which are well adapted to active control systems since they are able to
produce relatively strong bending stresses when bonded to a system.

N
DVFB Active
u»(w)[ control loop II/IfI] Damping

T/,Z(w) m((wz'ﬁ“’(‘u) T fi@)
Figure 20: Transversal schema of the active damping and its equivalence with the
skyhook system.

Each actuator generates a force at its top which is collocated with the sensor but also
bending moments along its three edges and also two single forces at the angle of the
bases due to the fact the actuator is not perfectly aligned to the border of the panel.
These excitation components are presented Figure 22. The excitations non collocated
to the sensor will tend to destabilise the system. Therefore it will be necessary to
observe the open loop of the system to know whether the system is unconditionally
stable, unstable or conditionally stable, and in this last case what is the maximum gain
we can apply in order to have the best stable response. The stability will also depend
on the border conditions and therefore on the stiffness of the springs
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Figure 21: Panel with 16 triangular piezoelectric actuator

The system is a decentralised control system, that is each control loop, and therefore
each actuator, is working independently from the others. In other term the control
force produced by the actuator is only dependent on the signal measured at the top of
the triangle.

The characteristics of the piezoelectric actuator and the properties of the ceramic
material are summarized in table 3:

In this chapter we focus our attention on the stability and control performance of
one of the sixteen decentralised control unit.

Table 3: physical and material properties of the piezoelectric actuator

Parameter Value
Material Pz27
Base and height bxa=40x40mm
Thickness hp,r =5mm
Density Doy = 1600kg [ m?
Young’s modulus E,, =6.3x10° N/ m?
Poisson ratio Ve =029
PZT strain/charge constants dy =166x10"%m/V
d3, =166x10"m/V
dy =0mlV
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4.1. Modelisation

The transfer function Ycc between the velocity at the tip of the actuator and the
input to the piezoelectric patch is changed in order to take in account the several
effects of the piezoelectric actuator, bending moments and forces. The new expression
is given by:

0 0 ¢m,n ('xc’yc)Fm,n

Yo =jod. 2

) A[a)ri,n d-Jn,)- wz] |

(33)

with [18]:

T @ 3 () vs2 D
g :h_g(mze§1+egz>{jwdl‘gl+J.Mdlsz}+h—2“e§1 Mdb‘

m,n
s Ongy 152 Mo on,,

vsl

h. h,
+ 4?smeg1(Dm,n (xvs3’yvs3)_ Z?me??l(q)m,n (xvsl’ yvsl)+ o,, (‘x\/SZ’yVSZ ))

We should point out here that the excitation components of the piezoelectric
actuator do not have the same importance since they are moderated by the
characteristics of the actuator as shown in Figure 22. The three first terms represent
the bending moments on the left edge, the right edge and the base edge, respectively.
The fourth term represents the force at the tip of the actuator which is the most
important in amplitude and the one which interests us since it is collocated and dual
with the velocity sensor and thus should guarantee relatively high stability and control
performance. The two last terms represent the forces at the corner of the base of the
actuator which can destabilise the system since they are not collocated with the
sensor. Their amplitude is less important than the top force but a high gain can make
them important enough to destabilise the system.

Figure 22: schema of the triangular piezoelectric actuator and its several actions.
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Figure 23: transversal schema of the piezoelectric actuator stick on the panel and its
moment effects.

Table 4: several values of the stiffness in translation and in rotation for the different
studies of chapter 3

k., k,
Case A 0 0
Case B o0 0
Case C o0 o0
Case D 1072 0
Case E 1072 1072

4.2, Stability

The study of the stability in this chapter is still based on the Bode and Nyquist
diagram. As discussed above the excitation components are not all collocated to the
sensor so we may have instabilities. It will also be interesting to study each excitation
components of the actuator in order to know which of them have the most
destabilising effect and in which frequencies its effect is relevant.

The results presented in Figures 24a,b to 28a, bare for the cases (A-E) of mounting
stiffness for a control point at the top of the first triangular actuator starting from the
corner (back actuator Figure 21).
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Figure 24: Bode diagram (a) and Nyquist diagram (b) of the open loop transfer
function for a free panel controlled by a triangular piezoelectric actuator.

W, A

al o
| * * 1

ST MR
p c

(a) (b)
-;E 3
T, 20 ‘ :
1S
- of ] Jl
£ 20} ]
o 1t
R [ — ‘ ‘
T 10° 10° 10" 8
e Frequency (Hz) g°

or l Ll
8 -s00f ]
=
N -1000} g 27

-1500 : : :
2 3 4 = L L L L I
10 10 10 % -1 0 1 2 3 4
Frequency (Hz) Real(Tcc)
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The first remarkable thing on Figures 24a to 28a is that at low frequencies, the phase
of the triangular actuator is situated between -90 and +90 degrees, this means the
system remains stable in this frequency range but the phase decreases for high
frequencies. Therefore the system can turn unstable; we will have to study the Nyquist
plot of the open loop transfer to judge the stability of the system.

The amplitude of the response of the triangular piezoelectric actuator shown in
Figures 24a to 28a have a lot of similarities with the equivalent amplitudes shown in
Figure 9a to 13a that represent the response at the control point for a single force.
However there is a notable difference between these figures. Drops in the amplitude
appear in high frequencies for the triangular shaped actuator. These drops are a
peculiarity of the triangular shape. They are due to the cancellation effect of the
different stresses produced by the actuator. Because these different stresses are not
applied at the same location, their effect at the sensor’s position is seen with a phase
lag, which leads to interferences that can reduce the amplitude of the response. This
phase lag can be easily evaluated, knowing that the velocity of flexural is given by:

= | Eh?
= 2 4 )
“ 7 120L—1v2)p
where f'is the frequency, £ the Young modulus,v the Poisson’s coefficient, p the
density and / the thickness of the plate.
Since the bending wavelength is given by:

Cp

QL =—t
/
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Therefore the phase lag created by a distance d is equal to:

then A
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q):

The first resonance frequencies are also not the same for the case B to E; this comes
from the value of stiffness chosen for the simulation. As said in the second chapter,
the frequency of the resonance picks depend on the value of the stiffness which as
been chosen differently in this chapter to observe clearly the influence of these of the
mounting stiffness on the stability and thus control performance.

The analysis of the Nyquist diagram confirms that the system is not unconditionally
stable anymore and could turn unstable for high gain values. The cases do not present
also the same margin gain. For the case A where the panel is free, the point (-1, 0) is
enclosed on Figure 24b, the system becomes unstable. This is due to the fact the panel
is not fixed at all. As the transversal stiffness is increased the real part of the open
loop transfer function of the system goes less in the negative parts of the plot (Figures
10b and 12b). The same phenomenon is observed when we increase the rotational
stiffness (Figures 11b and 13b), so that the most stable case is found to be the case C
of the clamped panel. The stiffness of the mounting appears to be a key element for
the stability of the system. It is to note on Figure 27b that the real part of the open
loop transfer function goes very much in the negative values, this is due to the fact the
panel is fixed to the frame by springs with very small stiffness so that it remains quite
free. In real application the stiffness is normally much more effective so that the open
loop transfer does not go as much in the negative values.

The Bode diagrams of the sensor-actuator frequency response function of each
component of the actuation (point forces at the corner and moments along three
edges) have been plotted in Figure 29 to analyse their effect on global response. Only
the case of the simply supported panel is presented here, since the conclusions are
similar for the other cases.

The phase of the response due to the point force remains between -90 and +90
degrees; this force does not bring any instability since it is collocated with the sensor.
The amplitude of the response due to the moment along the edge keeps increasing,
whereas the phase goes down at high frequencies. This phenomenon is very harmful
for the stability because it means that the amplitude at the frequencies where
instability phenomena can occur is relatively high.

The phase due to the moments of the two other edges and the ones due to the forces
on the corner at the base of the triangle also goes down at high frequencies. But the
amplitude at high frequencies is much lower than the amplitude due to the moment on
the base. Therefore these excitation components might bring instabilities as well,
although their effect is not as important as for the base moment.
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Figure 29: Bode diagrams of the open loop transfer function for a resiliently
supported panel controlled by a triangular piezoelectric actuator for an infinite
stiffness in translation for each effect of the triangular piezoelectric.

The previous analysis clearly shows that the non collocation between the sensor and
the actuators actions is responsible for instability since it causes phase lags that bring

the sensor-actuator open loop to the conditional stability domain.

The first drop in the amplitude of the global response is mainly due to the moment
produced on the base edge. The drops that can be observed at higher frequencies are

due to the combination of all moments and forces.

Figure 30 presents the laboratory set up for the measurements of open loop
functions and implementation of the feedback control loops on the panel. The
aluminium panel on which are bonded the 16 piezoelectric actuators is mounted on a
Plexiglas box in which a white sound is produced by a loudspeaker. The sensors are

accelerometers placed at the top of the triangular actuator.
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Figure 30: experimental test rig with smart panel

Figure 31 presents the measured open loop response between the sensor and the
actuator which is very close to the Figure 26 since mounting of the panel is similar to
a clamped mounting. A good modelisation of the system is therefore a resiliently
supported panel mounted with very stiff springs in rotation and translation.
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Figure 31: Measured open loop response of the panel

4.3. Performance

The performance study is based again on the observation of the velocity of the
control point and the kinetic energy of the panel. The control point is taken this time
at the top of the first actuator next to the corner in(x,, y, ) = (56,40)mm (black actuator

on Figure 21). Only the effect of one actuator is taken in account.
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panel (b) for a free panel controlled by a triangular piezoelectric actuator and some
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Figure 33: Amplitude of the response to the control point (a) and kinetic energy of the
panel (b) for a resiliently supported panel with an infinite stiffness in translation
controlled by a triangular piezoelectric actuator and some values of gain:
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panel (b) for a resiliently supported panel with an infinite stiffness in translation and
in rotation controlled by a triangular piezoelectric actuator and some values of gain:
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Figure 35: Amplitude of the response to the control point (a) and kinetic energy of the

panel (b) for a resiliently supported panel with stiffness of k=107 in translation
controlled by a triangular piezoelectric actuator and some values of gain:

g=0,g=1 g=10, g =10° (respectively thick black, grey, thin black, dotted)
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Figure 36: Amplitude of the response to the control point (a) and kinetic energy of the

panel (b) for a resiliently supported panel with stiffness of k=107 in translation and

in rotation controlled by a triangular piezoelectric actuator and some values of gain:
g=0,g=1 g=10, g =10° (respectively thick black, grey, thin black, dotted)

We can see on Figures 32 to 36 that the performances are very close to the ones of
the single force control. Also the system produces the same pinning effect observed
for the control system with the point force actuator. A notable difference in Figure 34
comes from the fact the control point is this time closer to the edge than for the study
of the chapter 2. Thus the gain will have to be chosen in consequence once more in
order to offer the best performances and stability.

In summary, we can note on the plots of the velocity of the control point in Figures
32a,b to 36a,b the same characteristics found in the previous chapter, that is:

1) the peaks are more lightened for higher gain until the properties of the system are
modified

2) this phenomenon is more pronounced in the lower frequencies where we expect
the control system to be efficient.

3) the damping is the most efficient in the case of the clamped panel .
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5. PARAMETRICAL STUDY

The aim of velocity feedback is to generate active damping, which is particularly
effective at resonance frequencies where in fact the response of the structure is
principally controlled by damping. For a given resonance frequency, the maximum
reduction of vibration R, that can be generated by the control loop is given by ratio
between the velocity at the error sensor without control and with the maximum
control gain H,,, The ratio is given by:

— |W(wk ) max control | — 1
|W(C()k ) no control| |l + Hmax ch (a)k )| .

(34)

20

When the locus of the open loop sensor—actuator FRF crosses the real negative axis
at frequency o, the maximum control gain H,,, that guarantees stability is given by
the following formula.

Hmax :]/50 :]/

For low frequency resonances such that the locus-circles starts from the origin and
are aligned along the real positive axis, the value G¢(wx) can be approximated by the
amplitude ¢, as presented on Figure 37 where the k-th resonance circle crosses the real
axis [25]. Therefore, Equation (34) can be simplified into the following formula.

G.. ()| ==1Re|G, (@,); - (35)

IR

5
¢ —=1+6, 36
5 +6, o (36)

o

R20

where J, denotes the ratio between the amplitude of 4-th “resonant circle” ¢, and the
inverse of the maximum control gain J, in the Nyquist plot of the open loop of the
sensor—actuator FRF. This equation gives the approximate maximum reduction R, of
the error sensor velocity at the &-th resonance frequency. This formulation provides a
simple approach for the derivation of the control effectiveness at low frequency
resonances based on the predicted or measured open loop sensor—actuator frequency
response function.

The performance of the system at low frequencies is related to high amplitude of the
response in this frequency range, e.g. to big loops on the right hand side of the
Nyquist plot. At the opposite, stability is given by relatively small loops on the left
hand side of the Nyquist plot. As a consequence the criterion using the ratio between
these two values is able to assess both performance and stability: a high ratio means,
good performance and stability, and a low ratio means bad ones.
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Figure 37: Values of the parameters S6,and S, on the Nyquist plot used to calculate
the ratio R,,

5.1. Influence of the transversal spring

In this section the rotational stiffness are taken to be zero. The transversal stiffness
increase from 10~ t01073.
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Figure 38: Evolution of the ratio function of the stiffness of the springs in translation
for a stiffness in rotation equal to zero.

Figure 38 presents the plot of the ratio R,, :10I0g10[1+%) The first part of the

0

curve has a slope slightly negative which is probably due to errors in the
approximation of o, of the sampling of the simulated sensor-actuator response

function. Starting at 10~ approximately the slope is very high; the system becomes
more and more stable as the mounting axial stiffness is increased. It confirms the
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results of the chapter 3. A very stiff panel therefore will be more stable and will allow
us to implement higher control gains.

5.2. Influence of the rotational spring

In this section the transversal stiffness are taken to be infinite. The rotational
stiffness increase from 10~ to1073.

15

10
Z

Figure 39: Evolution of the ratio function of the stiffness of the springs in rotation for
an infinite stiffness in translation.

The effect of the rotational springs on the stability is negligible compared to the one
of the transversal spring. Thus the main lever on which we will have to act to improve
stability is the translation stiffness since a low rotational stiffness will not be handicap

for stability.
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6. CONCLUSION

In this work it has been shown that the triangular piezoelectric actuators can give
very good results in direct velocity feedback control of a resiliently mounted panel.

The boundary conditions and therefore the mounting of the panel to the frame have
a big influence on the performance and the stability of the control system. The
rotational and translation effect on the edge have been studied. The translation
stiffness appears to be the most important for the performances as for the stability but
the rotational stiffness also have a slight influence. A high stiffness in translation and
rotation will increase considerably the system’s stability and allow an implementation
of much higher gain value for the feedback control loop.

This study also points the fact that, even if the system remains stable for very high
gain values, a too high gain might change the system itself by pining the panel at the
control point. In this case the control is not efficient anymore, the system presents
new resonance’s frequencies and new picks. The optimum gain is to be found by a
compromise between best performance and stability.

In any case the stability will be better for very high stiffness. Then, this kind of
active system can be very interesting since the feedback loop is very simple to
implement, the complications come from the weight and size of the filters and
amplifiers which are used for the actuators since each one is driven independently.

Other parameters have an effect on the performance and the stability of the system
like the parameters of the actuator such as its weight or its dimensions also the mass
of the accelerometer can change the comportment of the system. The robustness of the
control system is also to be studied since lots of parameters might vary in practice, so
that the system remains efficient when it happens.

Although the control system could be improve, active control using triangular
shaped piezoelectric actuators can bring a significant advance in transport since the
analyse of its performance and stability gives great results and that the system on
itself is small and light. These properties constitute huge advantages in the industry of
transport rather automobile or aeronautics.
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7. FUTURE WORK

As explained in the Chapter 4 triangular shaped piezoelectric actuators can still
generates instabilities and increase vibrations on the panel instead of reducing them
for some frequencies. As this effect is connected to the boundary conditions that are
the mounting of the panel to the frame, a practical study of what mounting should be
employed to have the best performances should be carried out, as well as a study of
the materials to use for this mounting in order to have the best performances and
stability. The mounting can significantly help to stabilise the system so that high gain
could be implemented.

Other tools can be used to stabilise the system, to be even more efficient or in case
the mounting is imposed by the application. Since no spillover effects occur below
5 kHz, a low pass filter can be used with cut off frequencies situated below the first
frequency where spillover effects occur.

Another way of reducing the spillover effect is to use phase compensators that are
able to modify the Nyquist plot in such way that all loops are situated in the right hand
side of the Nyquist plot. In that case, very high gains can be used without reaching
instability.

However using such devices make system control much more complicated to use
and generally heavier which is very bad since one of the purpose of the system is to
reduce weight. Researches still need to be made for these systems to be interesting in
our case.

Another issue is the power supply of the piezoelectric actuator which usually needs
high voltages to be efficient. This is generally a problem for embarked systems.
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