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ABSTRACT iv

Abstract

Tyre/road interaction is recognised as the main source of interior and exterior
noise in vehicles at velocities over 40 km/h. Previously, the authors proposed
a linear stochastic approach to predict the tyre vibrations due to the road/tyre
interaction. A mechanical model of the tyre was connected to the road through
a series of parallel springs (Winkler model) assumed to be in contact with the
road at all the time. Such a linear model is only strictly valid for smooth road
and soft tyres. In this paper, the range of validity of the linearity assumption
is investigated and, a modified shape of the excitation matrix, that takes into
account the contact nonlinearity, is proposed. The investigation is based on a
2D numerical nonlinear model of the tyre/road contact so that the displace-
ments of the contact springs can be used to evaluate the nonlinear excitation
matrix. An approximated nonlinear excitation spectrum has been proposed
and his validity has been checked on a 2D linear tyre model.
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1 Introduction

Sandberg and Descornet [1] provided strong arguments that the low frequency
car exterior noise, below 800 Hz, is related to the tyre vibrations. However,
these authors could not find a linear relationship between the macrotexture
of the road and the external noise, which is thought to be because of the
nonlinearity between sound and profile amplitudes. Fong [2] investigated the
contact pressure induced by the road macrotexture (irregularities sized from
0.5 to 50 mm) to predict near field tyre noise. He showed that the transfer
function between contact pressure, computed by a half-space approximation,
and the near-field tyre noise are not linearly correlated with the road texture.
This suggests that the nonlinearity due to the contact between the asphalt and
the tyre is the main reason for the poor correlation between the road profile
and the interior or exterior car noise.
Rustighi and Elliott [3] proposed a two-dimensional linear model to predict
the random excitation of a tyre’s vibration due to the tyre/road interaction
in the frequency range up to 400 Hz, where the dominant vibration is two-
dimensional. The tyre was modelled as an elemental system, which permitted
the analysis of the low frequency tyre response when excited by distributed
stochastic displacements in the contact patch. A linear model was used to
calculate the contact forces from the road roughness and thus calculate the
average spectral properties of the resulting radial velocity of the tyre in one
step from the spectral properties of the road roughness. The linear contact
model assumes that the tyre is smooth and soft enough that the whole of
the tyre surface in the contact patch connects with the road. The analysis
was entirely linear in order to exploit the simple theoretical formulation of
a stochastic linear analysis and to develop a method that is computationally
efficient. Even if the tyre model can be improved and made more detailed, the
linearity in the contact model remains the main limiting assumption.
In this paper the authors investigate the possibility of extending the approach
described in [3] to representing nonlinear situations, by means of a reshaping
of the linear spectral excitation matrix. In this paper linear and nonlinear
spectral excitation matrices are computed and compared. An approximated
nonlinear excitation matrix based on fitting the root mean square (rms) values
of the nonlinear excitation matrix is then proposed. The effectiveness of the
approximation has been checked on the 2D tyre model and compared to the
results from linear and nonlinear simulations.

2 The linear tyre excitation matrix

The excitation of a tyre due to its interaction with the road, under linearity
assumptions, can be found by simple matrix multiplications [3]. A Winkler
model [4] can be used to model the interaction between tyre and road. The tyre
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is connected to the ground at Nc points, at which the excitation is transmitted
from the road to the tyre through a set of linear, uncoupled, parallel springs.
The linearity assumption implies that all contact springs touch the road at all
times. In this case, the spectral excitation matrix is related to the road profile
and can be straightforwardly computed.

2.1 The power spectrum of the road profile

The road profile is usually assumed to be a random stationary process, hence
it can be described in the wavelength domain by its power spectral density
(PSD) G(n) [5], where n is the wavenumber expressed in cycles/m. A common
description of the road profile, adopted for instance by Dodds and Robson [6],
describe G(n) as Brownian noise, G(n) = C0n

−2. Such description is very
simple but limited to wavelength between 1 and 100 m. Such wavelength
range is not appropriate to study contact problem, where the common contact
patch length Lc is usually 10 cm. When the wavelength range has to be
extended G(n) can be expressed, for example, as G(n) = C1n

−4 +C2n
−2 +C3,

as suggested by Sayers [7]. A similar spectral distribution to that proposed by
Sayers can be obtained with a piecewise linear approximation. In particular
the following piecewise linear function has been chosen:

Grr(n) =


cn−2 for n1 ≤ n < n2

cn−2
2 for n2 ≤ n ≤ n3

c
(

n2

n3

)−2

n−2 for n3 < n ≤ n4

0 for n > n4;n < n1

(1)

where c is a constant that in the frequency range above 1 m wavelength has
the value suggested in [8], and n1, n2, n3 and n4 are constants that define
the frequency range. They have been chosen as: n1 = 1 cycles/m, n2 = 10
cycles/m,n3 = 200 cycles/m and n4 = 1000 cycles/m. Fig. 1 shows the
resulting PSD of the road profile. The first wavenumber range (n1 ≤ n < n2)
has the characteristics of Brownian noise as described by [6]. The curve then
assumes the characteristic of white noise in the second frequency range (n2 ≤
n ≤ n3) as described by Sayers [7]. The third frequency range (n3 < n ≤ n4)
has again the characteristic of Brownian noise.
The road profile of Eq. (1) has been normalised with respect to its rms value,
xr

rms, to define the constant c. The square of the rms value, (xr
rms)

2, can be
found by integration of Eq. (1)

(xr
rms)

2 =

∫ ∞
0

Grr(n)dn = c

[
n3 − n2

n2
2

− 1

n2

+
1

n1

+

(
n2

n3

)−2(
1

n3

− 1

n4

)]
(2)

or by its definition as the average of the signal square.
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2.2 The excitation matrix

In a linear contact model, the contact springs follow the road displacement
at all times and the linear excitation matrix Slin

dd may be found from the road
profile PSD by taking into account the time delay that there is in the excitation
between different springs. The PSD of the road in the time domain can be
found from Eq. (1) considering that the road is moving at velocity v [9]. Hence,
the linear spectral density matrix Slin

dd is given by

Slin
dd(ω) =


Srr(ω) Srr(ω) ejω

∆x12
v Srr(ω) ejω

∆x13
v · · ·

Srr(ω) e−jω
∆x12

v Srr(ω) Srr(ω) ejω
∆x23

v · · ·
Srr(ω) e−jω

∆x13
v Srr(ω) e−jω

∆x23
v Srr(ω) · · ·

...
...

...
. . .

 (3)

where Srr(ω) is the frequency-domain version of the PSD of Eq. (1), obtained
by letting ω = 2πnv, where v is the vehicle velocity. It is noteworthy that the
integral over frequency of the absolute value of each element of Slin

dd is equal to
the rms value of the road profile xr

rms. The result is obvious for the element
along the diagonal since these are the power spectra of the road profile. The
matrix Rlin, that contains such integrals, called here the linear rms excitation
matrix, is then given by

Rlin =

√∫ ∞
0

∣∣Slin
dd(ω)

∣∣ dω = xr
rmsU (4)

where U is the unitary matrix, containing one in all elements. Fig. 2(a) shows
the element of the matrix Rlin for a road of roughness xr

rms=2.5 mm. The
linear rms excitation matrix is evidently constant along the contact patch, as
expected. Fig. 2(b) shows the time delay of each element of the matrix Slin

dd of
Eq. (3). Since the distance between the contact point is growing linearly, the
time delay grows accordingly.

3 The nonlinear tyre excitation matrix

The contact between tyre and road is usually nonlinear since the tyre contact
points do not touch the road at all times. Since the system is time varying, a
quasi static time domain approach has been used to solve the problem. The
tyre has been modelled with a rigid flat surface that is pressed against the
road through an array of springs in parallel (Winkler model). The length of
the contact patch has been fixed to 10 cm [10]. The curvature of the tyre has
not been taken into account since it has been supposed that the curvature is
only related to the tyre deformation and not to the local contact deformation.
The linear springs, distributed with the same spacing as the road description,
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all have the same stiffness. When the tyre is pressed against the bedding the
equilibrium point is iteratively solved using an algorithm that calculates how
many springs are in contact and if their compression is enough to balance the
force applied to the tyre, which is assumed constant. Although the dynamics
of the vehicle could be taken into account to derive a time-varying balancing
force, this variation is only expected to be significant at comparatively low
frequencies and has not been incorporated here.
Fig. 3 shows the contact model and the quantities involved in the algorithm.
The inputs of the algorithm are the road profile, xr, and the force applied to
the tyre, F t, while the outputs are the displacement of the Nc contact springs,
xs

i (i = 1, . . . , Nc), and the tyre displacement, xt. The force applied to the tyre
has been set as the weight of a quarter of an average car (2500 N).

3.1 The road profile

The road profile has been obtained from the piecewise linear PSD of the road
profile in Eq. (1). From this PSD it is possible to calculate an example of a
road profile in the spatial domain, by applying the inverse Fourier transform
to the magnitude of the PSD and assuming a random, uniformly distributed
phase. As a consequence of the central limit theorem, the road profile will
then have a normal distribution. Unfortunately, this is not realistic and most
roads do not have very high peaks, since they are usually rolled out [11, 12]. A
nonlinear transformation has thus been adopted to remove these peaks. Fig. 4
shows the road profile before and after the application of this transformation.
The red dotted line shows the road profile before applying the transformation,
which has got a normal distribution. The continuous blue line shows the road
profile after the transformation has been applied. This profile, xr, is used in
the nonlinear contact computation. The calculated PSD for this profile is still
a good estimation of the piecewise linear road characteristic, as shown in Fig.
1, where the blue line is the PSD of xr. The average level of the PSD has
fallen by about 3 dB from the original Gaussian profile due to the removal of
the peaks.

3.2 The nonlinear excitation matrix

As illustrated in Fig. 3, the Winkler nonlinear contact model provides the
displacement of each spring, xs

i, and that of the tyre, xt, for a given road pro-
file, xr, and a given contact stiffness kw. From now on, a frequency-domain
formulation will be used so that each displacement variable corresponds to
the Fourier transform of a long time history, although the explicit dependence
on frequency, ω, will be suppressed for notational convenience. The individ-
ual complex spring displacement spectra are grouped together in a vector,
d, equal to {xs

1, . . . , x
s
Nc
}T, and the spectral density matrix of the excitation
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displacements is then defined to be

Snl
dd = E[ddH] (5)

where E denotes the expectation operator and the superscript H denotes the
Hermitian, complex conjugate, transpose. The diagonal elements of Snl

dd cor-
respond to the power spectral densities of each of the displacements and the
off-diagonal terms correspond to cross spectral densities between the displace-
ments at different points.
Fig. 5(a) shows three auto-spectra of the nonlinear excitation spectral ma-
trix (diagonal element of Snl

dd) calculated from the nonlinear simulation with
xr

rms=2.5 mm and kw=180 kN/m. The continuous blue line refers to a point at
the edge of the contact patch, the dot-dash red line to the point in the centre
of the contact patch and the dashed green line to the point between these
two. The three lines overlap, showing that the nonlinearity does not affect the
magnitudes of the diagonal elements of the excitation matrix. The shapes of
the magnitudes of the cross spectral densities on the off-diagonal terms in Snl

dd

are also relatively unchanged from the linear cases. Fig. 5(b) shows the coher-
ences between the nonlinear contact displacements of different springs, again
for (xr

rms=2.5 mm and kw=180 kN/m). The continuous blue line represents
the coherence between two points 23 mm apart, the dashed green line to points
47 mm apart and the dot-dash red line to points 70 mm apart. Increasing the
distance between the contact points thus decreases the correlation between the
forces on the tyre.
From the nonlinear excitation matrix, Snl

dd, the square root of the integral
over frequency of the absolute value of each element can be evaluated, and it
is possible to calculate the matrix Rnl, which is called here the nonlinear rms
excitation matrix, and is defined by analogy with Rlin in Eq. (4). The diagonal
elements of the matrix are the rms value of the individual spring deformations,
while the off-diagonal term are the square root of the correlation between the
two deformations delayed in time by the distance between the two contact
points. Hence, the diagonal elements of such matrix give information on the
contact time of each spring and the off-diagonal terms are indicators of the
correlation between different displacements.
Fig. 6(a) shows Rnl for a Winkler bedding of contact stiffness kw=180 kN/m in
contact with a road profile of roughness xr

rms=2.5 mm. The diagonal elements,
shown by the dashed line, have a constant value slightly smaller than xr

rms.
This suggests that the each spring in the contact patch is almost always in
contact with the road. The elements along the “secondary diagonal” however,
show a parabolic shape. It seems that the nonlinearity in this situation causes
a slow decay with the distance from the main diagonal. Fig. 6(b) shows
the average (with frequency) of the time delay of the excitation matrix Snl

dd.
The time delay is again linearly increasing with the distance between points
and is hardly changed from the linear case. This agrees with the physical
interpretation of the delayed profiles.
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The nonlinearity due to the road/tyre contact relates Snl
dd and Slin

dd . If the
road profile is supposed to be characterised only by its root mean square,
xr

rms, and the contact by its stiffness, kw, the nonlinear tyre excitation, Snl
dd,

could be expressed as a function only of these two quantities. Hence, the
characterisation of this dependence of the excitation matrix with the road
roughness, xr

rms, and with the contact stiffness, kw, is now taken into account.
The objective is to get an estimate of the shape of the excitation rms matrix
Rnl as a function of road roughness and contact stiffness.
In fact, it is supposed that the matrix Rnl, combined with the phase shifts in
Eq. (3), contains all the information necessary to describe the excitation Sdd.
In other words, it has been supposed that the nonlinearity does not cause any
change in the phase of the elements of the matrix but modifies the magnitudes.
This modified excitation matrix can then be used to excite a purely linear tyre
model to approximate the effects of the contact nonlinearities, in an approach
that may be termed quasi-linear.
Rnl has been numerically computed for several values of the parameters xr

rms

and kw, the road stiffness ranging from 30 kN/m to 300 GN/m and the road
rms from 0.05 to 10 mm. Such large ranges have been chosen in order to better
understand the influence of the two variables on the matrix Snl

dd, although the
value at the ends of these ranges are unrealistic. In fact, values around 180
kN/m for the contact stiffness seem to be the most realistic [13, 14].
Fig. 7 shows the results of the mean value of the main diagonal of the rms of
the excitation matrix, E(diag(Rnl)), for different values of contact stiffness kw

and road roughness xr
rms. For low contact stiffnesses the average value along

the diagonal is almost equal to xr
rms, meaning that along the contact patch

most of the springs are always in contact with the ground. This situation
can be referred as one of weak non linearity since it causes small change in
the excitation matrix. As will shown in the next section, the shape of the
excitation matrix in this region varies only with xr

rms and is constant with kw.
For greater stiffnesses, Fig. 7 shows that for each xr

rms there is a threshold
contact stiffness above which E(diag(Rnl)) starts decreasing and the effect of
the nonlinearity is stronger as fewer and fewer springs are in contact with the
road. The weak nonlinearity threshold decreases with xr

rms, so that is possible
to draw approximately a threshold line (see green dashed line in the figure).
The interaction between the tyre and road is thus weakly nonlinear for the
most realistic contact stiffnesses at all road roughnesses below about 5 mm
rms.
Supplementary tests have also been carried out to investigate the influence of
a regular longitudinal tread on the nonlinear excitation matrix. The results
showed that in order to take into properly account for the discontinuities due
to tread, the lateral distortion of the contact elements should be taken into
account, a complication that will not be discussed here.
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4 Linearity range and approximated tyre ex-

citation matrix

The non linear excitation matrix, Snl
dd, could be predicted from an approx-

imation of the rms excitation matrix Rnl, in order to avoid calculating the
excitation from a time-domain nonlinear analysis. The validity of this ap-
proximation has been investigated for contact stiffness up to 300 kN/m, since
greater contact stiffnesses are not considered realistic. In this stiffness range
the nonlinearity is weak and the approximation is straightforward. In fact in
this stiffness range the diagonal of Snl

dd could be approximated with a constant
value equal to xr

rms. On the other hand, the values along the secondary diagonal
tend to roll down proportionally to the distance between contact points.
In order to find an approximated rms excitation matrix, Rfit, the secondary
diagonal of Rnl has been fitted with a second order polynomial curve, which
was found to fit the changes observed in the nonlinear simulations reasonably
well. The elements in the matrix have been addressed by their position in
the contact patch. In particular xd has been posed as the principal diagonal
reference system, with the origin in the middle of the diagonal, that is in the
middle of the contact patch and, yd has been posed as the secondary diagonal
reference system. A three dimensional polynomial curve with one unknown
parameter, cf , has then been chosen:

rfit(xd, yd) = xr
rms + cfy

2
d (6)

where rfit(xd, yd) is the value of the element of the matrix Rfit located at
(xd, yd). The parameter cf represents the curvature of the excitation rms matrix
along the secondary diagonal. This can then be used as an indicator of the
linearity range.
The function in Eq. (6) has been fitted to the Rnl matrices generated by the
simulations for different values of kw and xr

rms. The constant cf of Eq. (6) can
then be found as function of the bedding stiffness and road roughness. Fig. 8
shows how the constant cf fitted from these results varies linearly with xr

rms but
does not depend greatly on the contact stiffness. This supports the decision
to call this region weakly nonlinear. A line, cf = mfx

r
rms, can be fitted to this

data so to obtain:
rfit(xd, yd) = xr

rms

(
1 +mfy

2
d

)
(7)

where mf is a constant equal to -14.7 m−2 if xr
rms.

From the approximated rms excitation matrix Rfit, it is then possible to find
an approximated excitation matrix to be used in a linear tyre model. This will
improve the results that can be obtained with an excitation matrix derived
from the linear model, without the complications and computational expense
of a full nonlinear analysis. The approximated excitation matrix Sfit

dd can be
found from Rfit supposing that the contact nonlinearity does not cause any
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change in the phase value of the matrix or to the shape of the spectrum. With
such a supposition the approximated excitation matrix, Sfit

dd, can be written as

Sfit
dd = Slin

dd �
(

Rfit

xr
rms

)2

(8)

where � is the element-wise product [15], and Slin
dd is a single matrix of power

and cross spectral densities, as defined in Eq. (3).

5 Validation on a 2D linear model

The different excitation matrices (linear, nonlinear and approximated) can be
applied to the linear stochastic ring model of the tyre dynamics to compute its
response [3]. The linear model used here is an elemental tyre model, connected
to the ground by a Winkler contact bedding, that is assumed to be always in
contact with the road. The vector of complex radial velocities of the tyre
elements, vT, are assumed to be related to the vector of road displacement d,
via the matrix of structural mobilities, T, so that [3]

vT = Td (9)

The spectral density matrix of the tyre’s velocities can be defined as

Svv = E
[
vTvH

T

]
(10)

Given Eq. (9) and since the tyre model is a continuous linear systems subject
to stationary random excitation, Svv may be expressed in terms of the spectral
density matrix of road displacements, Sdd, as

Svv = TSddT
H (11)

The expectation of the kinetic energy, Uke, can be calculated considering the
mass normalised mode shape matrix, Ψ, and it is given by

Uke(ω) =
1

2
trace

{
Ψ+SvvΨ

+H
}

(12)

where (·)+ is the pseudo-inverse operator.
The excitation matrices Slin

dd , Snl
dd and Sfit

dd have then been applied to the 2D
linear model with the parameters given in [3], to evaluate the accuracy of the
quasi-linear approximation on the predicted tyre vibration. Slin

dd is the linear
excitation matrix and is given by Eq. (3). Snl

dd is the non linear excitation
matrix and is obtained by calculating the auto and cross-spectra of the spring
displacements from the full nonlinear model. Sfit

dd is an approximated matrix
obtained, as in Eq. (8), from the rms approximated matrix Rfit, which in turn
is found from the constant cf of Eq. (6).
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The tyre vibration and its kinetic energy have been obtained for different exci-
tation matrices by substituting Slin

dd , Snl
dd or Sfit

dd, into Eq. (11). Fig. 9(a) shows
the kinetic energy of the tyre model under these three conditions (U lin

ke , Unl
ke

and Ufit
ke ) when kw=180 kN/m, xr

rms=2.5 mm and v= 40 km/h. The difference
between U lin

ke and Unl
ke in Fig. 9(a) is not great, supporting the supposition that

we are dealing with a weak nonlinearity. The difference is most noticeable at
around 100 Hz, that is in correspondence of the intersection of the two split
lines (f2 = cn2 ≈110 Hz). For frequencies from about 20 to 60 Hz Unl

ke is
slightly greater than U lin

ke while for high frequency Unl
ke is slightly lower than

U lin
ke . The behaviour at high frequencies can be explained by the fact that less

points are in contact, and so the auto-spectra of the excitation are slightly
lower. The behaviour of the nonlinear system at low frequency may be due to
the fact that the excitation signal are flattened, increasing the relative level
of the low frequency energies of the signal, as seen in Fig. 1. Ufit

ke follows the
behaviour of the nonlinear simulation around 110 Hz quite well, which is the
range in which the nonlinearity is most evident. In the frequency range, how-
ever, Ufit

ke follows more accurately the linear simulation result. The difference
between the nonlinear and approximated nonlinear excitation is particularly
evident for frequency lower than 60 Hz, where the calculated spectral densities
will be subject to the greatest estimation error.
Fig. 9(b) shows the rms velocity distribution of the elements around the tyre,
computed by integrating the individual spectra for the elements between 60
and 1000 Hz, thus excluding the unreliable low frequencies results. The centre
of the contact area is at zero degree. Difference between linear, nonlinear and
approximated nonlinear simulations are small, but the fitted results lie between
the linear and nonlinear results and are generally closer to the nonlinear results.
It should also be observed, however, that the results from the linear model are
not a bad approximation to those from the full, nonlinear, analysis for this
weakly nonlinear case, which appears to be typical of normal conditions.

6 Conclusions

The displacement of a tyre when in contact with the road has been calculated
by applying a nonlinear contact algorithm to a Winkler bedding. The spectral
density distributions for the tyre excitation from linear and nonlinear analyses
have been investigated. It has been shown that, when the contact stiffness
is sufficiently low but still realistic, the nonlinearity change the shape of the
excitation matrix mainly along the secondary diagonal. It has also shown that
the curvature of the secondary diagonal in this weakly nonlinear range depends
mainly on the road roughness.
A modified excitation matrix for use in a fully linear stochastic road/tyre
model has then been proposed. Such an approximation appears valid for re-
alistic contact value and depends only on the road roughness. The validity
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of such an approximations has been tested numerically on a 2D tyre model.
The approximated excitation gives a good approximation of the nonlinear ex-
citation for the computation of the tyre kinetic energy above 60 Hz. However
such an approximation still underestimates the velocity of the tyre below 60
Hz compared with the nonlinear simulations.
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Figure 1: Piecewise linear approximation of the PSD of a common road profile
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nonlinear simulations (continuous blue line).
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Figure 2: Representation across the contact patch of Rlin (a) and average Slin
dd

time delay (b) calculated from the linear model for xr
rms=2.5 mm and v= 40

km/h. The main diagonal element are shown as dashed line.
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Figure 3: Schematic representation of the nonlinear contact algorithm. xr

road profile; F t static force acting on the tyre; xt displacement of the tyre; xs
i

(i = 1, . . . , Nc) displacements of the Nc spring in the contact patch.
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Figure 4: Road profile before (dotted red line) and after (continuous blue line)
the application of the nonlinear transformation to flatten the peaks on the
road profile.
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Figure 5: (a) Spectra of the nonlinear excitation spectral matrix (xr
rms=2.5

mm, kw=180 kN/m): the continuous blue line refers to a point at the edge of
the contact patch, the dot-dash red line to the point in the centre of the contact
patch and the dashed green line to the point between these two. (b) Coherences
between the nonlinear contact displacements (xr

rms=2.5 mm, kw=180 kN/m):
the continuous blue line represents the coherence between two points 23 mm
apart, the dashed green line to points 47 mm apart and the dot-dash red line
to points 70 mm apart.
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Figure 6: Representation across the contact patch of Rnl (a) and average Snl
dd

time delay (b) calculated from the linear model for xr
rms=2.5 mm and v= 40

km/h.
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Figure 7: Change of the mean value of the diagonal of the matrix Rnl with
the bedding stiffness kw for various road profiles rms xr

rms calculated from
the results of many nonlinear simulations. The green dashed line indicate
approximately the weak nonlinearity threshold. The dashed red line indicate
the maximum stiffness of interest here which is about 300 kN/m.
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Figure 8: Variation of fitted value of the parameter cf in Equation (6) with
the road roughness xr

rms. The blue points show computed points for different
contact stifnesses kw. The red line is a linear fit of the points.
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Figure 9: Average kinetic energy spectrum (a) and rms velocity around the
tyre (b) for xr

rms=2.5 mm, kw=180 kN/m and v= 40 km/h. Continuous blue
line refers to linear excitation matrix; dotted green line refers to nonlinear
excitation matrix; dashed red line refers to approximated nonlinear excitation
matrix.
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