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ABSTRACT

In recent years, a growing field of research in “adaptive control system™ has resulted in a
variety of adaptive automatons whose characteristics resemble certain characteristics of
living systems and biological adaptive processes. Certainly adaptive control system is
not limited to a single channel. A multichannel adaptive control system has been
developed for many practical applications.

An adaptive algorithm called as multichannel filtered reference LMS adaptive algorithm
is reported by S.J. Elliott. But when using this algoritim, the problems are the
convergence speed may be limited by correlation between the reference signals and the
control plant must be known very precisely. For this reason we consider to remove the
correlation between input signals by using an inverse system of spectral factorisation or
spectral estimation, also we try to identify control plant by using subspace method and
remove cross talk between each channel.

In this report, based on a detailed investigation of past work, methods of multichannel
spectral factorisation have been reviewed, and their relevance to adaptive feedforward
control has been discussed. In order to achieve a good improvement for multichannel
adaptive control problem, we first discussed some theoretical topics of control system
and signal processing given as following.

1. multichannel spectral factorisation
2. multichannel spectral estimation
3. multichannel system identification
After this, we try to show some applications concern with these theoretical results.
4. spectral estimation of road noise in car and transfer function estimation in car.
5. discuss a multichannel active noise cancelling system in car.

These topics are discussed respectively in this report. Each chapter consists of basic
theory and numerical example of computer simulation.
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Chapter 1 INTRODUCTION

1.1 General Background

Geophysicists gather sounding data from acoustics, radar and seismology to estimate
and construct geophysical images. These images are used to visualise petroleum and
mineral resource prospects, subsurface water, contaminant transport (environmental
pollution), archaeology, lost treasure, even graves. In most practical situations they
operate sounders along tracks on the earth surface (or track in the ocean, air) and
record data from multiple sensors, ie. they process multichannel input data to
objectives deposited under earth surface. But can geophysicists feedback some effects
to earth (ocean, air) based on the information they find, to control earthquake, tsunami
or weather automatically? This is a problem of multichannel automatic control system.,

Doctors gather time sequence data from electrocardiogram (ECG) or brain waves to
describe work pattern of patient organ. These patterns are used to visualize movement,
position or shape of patient organ, that will help make decisions during medical
examination. In most practical measurements, they record data from multiple sensors,
i.e., they process multichannel input data to visualise the situation in a patient’s body.
Then they will give some treatment by chemical medicine or surgical operation. But
can doctors feedback some treatments based on the information they find, to control
human organ or brain automatically? This is also a problem of multichannel
automatic control system.

In recent vears, a growing field of research in “adaptive control system” has resulted
in a variety of adaptive automatons whose characteristics resemble certain
characteristics of living systems and biological adaptive processes. These adaptive
control systems have adjustable structure so that its behaviour or performance can be
improved through contact with its environment, according to some desired criterion.
Certainly adaptive control system is not limited to a single channel. A multichannel
adaptive control system can be considered as following.

For a given multichannel input signal, a multichannel adaptive control system can
adjust these parameters inside its own structure to achieve an optimum state by
means of a given cost function.

There many adaptive algorithm for signal channel adaptive control system. For
example, least mean square (I.MS) algorithm, recursive least square (RLS) algorithm




et al. Many books said that it is easy to extend these algorithms from signal channel to
multichannel, but things may not so easy as these authors expected. Although one can
write a signal channel in vector or matrix form that corresponds a multichannel signal,
but we must think about some condition for making these algorithm. The most
important difference from multichannel system is that signals might be effected each
other, for example, the input signals might have strong correlation between channels,
a control signal might not only received by its own channel but also all of other
channel, also the criterion might not describe the difference of each channel. Adaptive
control systems can adaptive themselves depending on the processed information
from signal, if it can not extract correct information, how can the system work as
expected.  Furthermore, because the correlation between individual channels,
computing complexity might increase very quickly, generally not equal to channel
number times one channel computation, it might be a power of one channel

computation.

The problem we will discuss in this report is how to design a multichannel adaptive
control system to ensure it works well and achieve a good performance.

1.2 General Block Diagram

The system block diagram of our problem is shown in Figure 1. There are four parts
in this diagram. Function of each individual part is described as following.

Adaptive controller: From reference signal vector, adaptive controller generates
control signal vector to output to plant. This part has adjustable parameters in its own
structure which will be updated by adaptive algorithm in real time.

Plant: Plant is a part to be controlled. When the control signal vector from adaptive
controller is applied, plant will process or affect it to give output signal vector that
should be a best estimation of disturbance.

Performance measure: At the performance measure point, the plant output signal
vector is combined with disturbance vector, this will result a residual error signal
vector that will be used as a performance measurement of this control system.

Adaptive algorithm: This is the most important part in adaptive system. In this part,
based on input signal vector, error signal vector and information of plant, adaptive
algorithm will give update values of adjustable parameters in adaptive controller,
according to a given cost function of performance.
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« Figure 1 General block diagram of multichannel adaptive control system

It has been suggested by S. L. Elliott" that the adaptive speed of the multichannel
controller shown in Figure 1 could be improved by preconditioning the reference
signals to extract their uncorrelated white noise components and preconditioning the
plant with the inverse of its minimum phase component as shown in Figure 2.

disturbance

reference control
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signal pre
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| processor

transfer
parameters

adaptive plant

« Figure 2 General block diagram of the preconditioned adaptive control system

The preconditioning required for the reference signals can be calculated using a
spectral factorisation of their spectral density matrix and the plant preconditioning
required the calculation of the minimum phase / all pass decomposition, or
equivalently inner/outer factorisation. These topics are discussed respectively in later
chapters of this report.




1.3 Topics of This Research

1.3.1 Digital Signal Processing Topics

For multichannel system, there are a number of input signals, generally with strong
correlation between individuals signal. So the first problem is that if the correlation
can be removed. The basic idea is to assume that the multichannel signal 13 generated
from a multichannel uncorrelated white signal. If we can find the system for this and
the inverse system exists, we can use the inverse system to get a multiple uncorrelated
white signal from given multichannel input signal and use it to drive the adaptive
system. There are several type models for the system structure, for example, moving
average (MA) model and autoregress (AR) model. The MA model describes the
spectral of input signals in a finite matrix polynomial. From the spectral expression,
we can find a system transfer function matrix, this is a problem called multichannel
spectral factorisation. Also the AR model describes the spectral matrix in an inverse
of finite matrix polynomial. From this spectral expression, we can find a system
transfer function matrix, this is a problem called multichannel spectral estimation. In
our research, we tried to discuss both topics of multichannel spectral factorisation and
multichannel spectral estimation.

1.3.2 Control Theory Topics

Multichannel adaptive control system treats a multi-input and multi-output (MIMO)
plant as control objective. The first thing is to find a MIMO transfer function of the
plant. This is a topic of system identification, especially subspace method developed
in recent year. The second thing is remove cross-talk between multiple input signals
and between multiple output signals. This problem is equivalent to inner-outer
factorisation problem in general. If we can get an inner system and an outer system
of given plant, we can try to remove inter-effect in plant by using inverse system of
inner system and outer system. That will be much effective to improve the
performance of adaptive system.

1.3.3 Application: Active Noise Control

As an application, these topic discussed above are applied to a multichannel active
noise control (ANC) problem. For the noise cancelling problem in an enclosure, in
order to achieve satisfactory performance in a relatively large dimension space, a
number of cancelling loudspeakers and a number of error sensors are used, ie., a




multichannel ANC system is necessary. The feedforward ANC system consists of a
number of reference microphones, a number of error microphones and a number of
cancelling loudspeakers, and a multiple input multiple output adaptive controller
which weight parameter matrix is able to be updated by an adaptive algorithm. In
order to cancel the primary noise, an adaptive controller gives a secondary source by
weighting each reference signal. The secondary source drives the plant, which is
acoustic propagation space, then reach the error sensors, where these combined with
the primary noise, thus resulting in the cancellation of both noises.

1.4 Outline of This Report

In this report, based on a detailed investigation of past work, we aim to find a better
solution for multichannel adaptive control problem. For this purpose, we first
discussed some theoretical topics of control system and signal processing given as
following.

1. multichannel spectral factorisation
2. multichannel spectral estimation
3. multichannel system identification
After this, we try to show some applications concern with these theoretical results.
4. spectral estimation of road noise in car and transfer function estimation in car
5. discuss a multichannel active noise cancelling system in car

Following these topics, this report is organized in seven chapters. The outline each
chapter is given as follows.

In chapter 1, a general background is given to describe the problem we will discuss in
this report. Then we show a general system block diagram to refine the problem more
precisely and also give the connection to adaptive filter, signal processing and control
theory. At end of this chapter, an outline of this report is sketched.

In chapter 2, after giving a brief background on multichannel spectral factorization,
the problem formulation in its basic form and canonical form are defined. Then some
the necessary and sufficient conditions for these problem forms are described. In
section 2, some important past works, including those of D.C. Youla, M.C. Davis,
E.A. Robinson and T. Kailath, are described briefly. In section 3, an approach via a
matrix binomial expression is provided. Basic principle is introduced with a detailed




proof. Two tlow charts are given to show the calculation procedure. Also a numerical
example is solved step by step. In section 4, an approach via a multiple input multiple
output state space equation is provided. Basic principle is introduced with a detailed
proof. This approach requires the solution to a discrete algebraic Riccati equation
(DARE). Like in section 3, the calculation procedure of this method is shown by a
flow chart and a numerical example is given also.

In chapter 3, beginning from an overview of several models for spectral estimation,
problem formulation is introduced to multichannel spectral estimation by using
autoregressive (AR) model, then it is shown that this problem can result in a normal
equation. In order to give a recursive solution of the normal equation, a Yule-Walker
algorithm is derived, and all results is got together in a summary. After that a flow
chart of the algorithm is shown for realizing the calculation procedure. Also a
numerical example is shown.

In chapter 4, identification problem for muitiple input multiple output system is
discussed. From input data and output data, subspace method can provide coefficient
matrices of state space expression of the system, of course then its multichannel
transfer function can be obtained. At first, two basic theorems are described. Then
based these theorems, the method to determine the coefficient matrices of state space
equation are shown. Also in order the performance of this method, a numerical
example is shown with comparing the output spectral of original system and

estimated system.

In chapter 5, a spectral analysis of measured 6 channel data of car noise is given. The
experiment condition and sensors position etc. are given in first section. Then spectral
factorisation and spectral estimation discussed in previous chapter is applied to a
measured 6 channel road noise data in car. It is confirmed here that the road noise can
be whitening and uncorrelated by proposed method. Also from the simultaneous
measured 2 channel input and 2 channel output data in car, the noise propagation
space is identified by a state space system. These calculated results are shown in both
numerical value and graphs.

In chapter 6, based on these results of whitening of multichannel input signals and
system identification of control plant, an active noise cancelling system is constructed.
For the assume of state space model of control plant, a adaptive control algorithm is
derived based on steep-descent method, the performance improvement comparing
with conventional method is discussed by a computer simulation.

In chapter 7, by evaluation of the contributions of our research, several conclusions
are summarized and some comments on further research are given also.




Chapter 2 MULTICHANNEL

'SPECTRAL FACTORISATION

In this chapter, after given a brief background on multichannel spectral factorization,
problem formulation for basic form and canonical form are defined. Then necessary
and sufficient condition for general spectral density function, condition for canonical
spectral factorisation and condition for canonical spectral factorisation of matrix
polynomial are described. In section 2, some important past works, including those of
D.C. Youla, M.C. Davis, E.A. Robinson and T. Kailath, are described briefly. He
proposed a canonical spectral factorization by state space model. In section 3, an
approach via a matrix binomial expression is provided, whose basic principle is
introduced with a detailed proof. This method requires some complicated calculations,
so two flow charts are given to show the calculation procedure. Also a numerical
example is solved step by step. In section 4, an approach via a multiple input multiple
output state space expression is provided. Basic principle is introduced with a detailed
proof. This approach requires the solution to a discrete algebraic Riccati equation
(DARE). The calculation procedure of this method is again shown by a flow chart
and a numerical example is given also.

2.1 Background

Spectral factorization is a problem to factorise a given spectral function into a
production of a factor function and its adjoint function. In continuous time domain,
for a given spectral density function @(s), spectral factorization is a problem to find
a stable minimum-phase function G(s) , such that ®(s) = G(s)G(-s). When two or

more channel such signals are to be operated on simultaneously, the spectral density
function is given by a matrix function @(s), whose ijth element is the cross-power

density spectrum between the ith and jth input signal. In this case spectral
factorization becomes a problem to find a stable minimum-phase matrix function

such that ®(s) = G(s)G” (—s). Also in discrete time domain, for scalar case, spectral
factorization is problem to find a stable minimum-phase function A(z) such

that S(z) = A(z)A(l/z) . Similarly, with the multichannel problem, spectral




factorization is a problem to find stable minimum-phase matrix function A(z) such

that S(z) = A(2)AT (1/z").

There are a variety of methods has been developed over the years for the computation
of spectral factorisation. Because of significant progresses in digital computer and
digital signal processing technology, spectral factorization problem in discrete time
domain is used more commonly than in continuous time domain. For scalar-valued
case, some methods named after Bauer, Levinson-Durbin, Schur, that is easy to
caleulate by digital computer have been reported. A survey of these methods is given
by A. H. Sayed and T. Kailath in 20017, which not only collects together the
somewhat scattered result but also point out various relations and connections among
them. Multichannel spectral factorisation is used to multichannel data in order to
uncover the underlying components of measured signals, which is applied in several
fields of engineering. For a general multichannel theory, the spectral factorisation
problem is considerably more difficult. One reason is the condition A(z) of becomes
more strict, particularly the condition on unit circle ie., z = ¢’* . Another reason is
due to computation complexity. There are several report on how to compute the
multichannel spectral factorisation, including E. A. Robinson’s method based on
extracting zeros and T. Kailath’s method based on discrete-time algebraic Riccati
equation (DARE), each one has its own particularly good point.

2.2 Problem Formulation

2.21 Problem Formulation of Multichannel Spectral

Factorization

For a p-channel stationary random signal vector

i (n)
y(m) =|”? :(n) 2.2.1)

¥,(n)
Wecangivea px p cross-correlation matrix

R, = Efy(n+ )y (m), (0 <i < 0) (2.2.2)




and of course,
R, =R, (w0 <i<w) (2.2.3)

From these cross-correlation coefficient matrices, the spectral matrix is defined as

S(z) = iR,.z” (2.2.4)

For finite order of above equation, i.e. for the case of
R, =0,(i>-m)or(i<m) (2.2.5)

(2.2.4) becomes following finite order equation, this is the form of power spectral
matrix we will discuss here.

S(z) = fR,.z-" (2.2.6)

Our problem is, for a given spectral matrix S(z) , we wish to determine the p-channel
minimum-phase operator A(z) such that

S(z) = A(2)A.(2) (2.2.7)
where
A=A, +Az " +A z7" (2.2.8)

is a px p matrix polynomial and Ay, A,,... A, are each px p constant matrices.

And
A =[A0/)] = AT AT 4 AT (2.2.9)

is known as the para-Hermitian conjugate of A(z)and it is said as a adjoint system
of A(z) also.




2.2.2 Problem Formulation of Multichannel

Canonical Spectral Factorization

Notice that the solution of problem formulation in last section is not unique. In fact if
a matrix polynomial A(z) is a solution of factorisation problem of (2.2.7), then for
any arbitrary unitary matrix I, which satisfy the condition of DD =1, we can see
that A(z)D is a solution of (2.2.7) also. For this reason, we prefer to change the

problem to a canonical form equivalently as following.

For a given spectral matrix expressed by a p x p matrix polynomial

S(z) = iR;Z_i

i=—m

we wish to determine the p-channel minimum-delay operator L(z) such that

S(z) =L(z)XL.(z)
where

L(z)=I,+Lyz" +....+L,z™"

m
il ;
_ ~i
=I, + E L,z
i=1

(2.2.10)

2.2.11)

is a px p matrix polynomial, T, is a px p unity matrix and L,.... L, are each

px p constant matrices.

L.(2)=[L{/z)]"
=17 +L, "z +....+L

m
* i
=IP+ZLi z
i=l

is a para-Hermitian conjugate of L(z).

2.2.12)

Every such problem admits a unique result with £ >0 (where positive is meant in
sense of matrices, i.c., that ¥ is a positive-definite matrix) and L(z) a matrix

polynomial of order m in z™* that has all its roots strictly inside the unit circle, and

10



such that L(c0) =1 ,. While we have obtained the solution { X ,L(z) }, if X can be

expressed in its decomposed form of *

Y = RoRoT (2.2.13)

then we can connect S(z) = A(z)A.(z) with 8(z) = L(z)ZL.(z) by

A, = R,
A =LiR, (2.2.14)
A, =L R,

2.2.3 Condition for Spectral Factorization

Two basic properties

From the general definition of power spectral matrix given by (2.2.4), two important
basic properties can be shown as following.

para-Hermitian symmetry:
S(z) =[S(1/z)]" =8.(z) (2.2.15)

or Hermitian symmetry when z = ¢”“:

S(e’™) = [S(e’ )" (2.2.16)
Nonnegativity:
S(e)20 (- <w<7x) 2217)

where nonegativity is meant in the sense of matrices, ie., that S(¢’”) 20 is positive-

semi-definite matrix.

* This can be done by Cholesky factorization easily. In MATLAB, the fimction of Cholesky factorization expresses a symmetric

matrix & the product of a friangular matrix and its transpose 4 = R T R, where R is an upper triangular matrix.

1



These two basic properties are necessary and sufficient condition for spectral density
function, i.e. if power spectral matrix S(z) is given by (2.2.4), it will obey these two
properties. Moreover, the converse is also true: a matrix function S(z) obeying these
two properties must be a power spectral matrix given by (2.2.4), which means must
be the z-transform of matrix-valued covariance sequence.

Condition for canonical spectral factorization

From the formulation of canonical spectral factorization problem in section 2.2.2, we
can realize that L(z) must correspond to a minimum-phase system. This means

L'(z) must analytic on the unit circle. This assumption rules out the possibility of

having any zeros of S(z) on the unit circle. i.e., S(z) is assumed to be positive-

definite on the unit circle as following.
S(e”Y>0 (~x<w<7) (2.2.18)
which is equivalent to S(z) having full rank p everywhere on the unit circle, i.e.,
rank[S(e’)]=p - swsnw (2.2.19)

When this holds, i.e., when S(z) is a rational matrix function and has maximal
normal rank everywhere on the unit circle, one can show that it is always possible for
perform the following canonical spectral factorization

S(z) = L(z)EZL, (2)

where

(i) X isa positive-definite matrix ,X > 0.

(i) L{(z) is anormalized to unity at infinity, L{e) =1

(iil) L(z) is analytic on and outside the unit circle (|z[=1).
(iv) L(z)is analytic on and outside the unit circle (|z[=1).

We also can put (iit) and (iv) together as following.

12



(iii} L(z) is a rational minimum-phase function. That is, both L{(z) and L'(z) are

analytic on and outside the unit circle, or equivalently, L(z) has all its zeros and

poles strictly inside the unit circle.

At last, we should mention that normalization () =1, makes the factorization
unique
Condition for canonical spectral factorization in matrix polynomial

Recall (2.2.6) that is the is the form of power spectral matrix we will discuss here.

S(z) = ZR,.Z"
where
R =R_’

i -

such that it is nonnegative on the unit circle, S(e’?) 2 0 for —7 < @ < 7. Then the

following fact hold.
(i) If z, #0 is a zero of S(z) then zo"* is also a zero. It follows that if S(z)
has m zeros {a,} on and inside the unit circle (0 <|z |< 1), then it also has m
additional zeros {b, =a,” } on and outside the unit circle (1<} z < ).

(ii) If S(z) is strictly positive on the unit circle then L(z) has all its zeros
strictly inside the unit circle.

(iify Assume the R, are real-valued. Then the coefficient of L(z) are also real-

*

. . * -1 _
valued. Moreover if z, is a complex root of 8(z) , thenso are {z, ,z, .z, }.

13




2.3 Principal Approaches to Spectral Factorization

2.3.1 Approach by D.C. Youla?

The fundamental theorem regarding the spectral factorization of rational matrices in
continuous-time domain is contained in this paper. Using Youla’s notation, the
theorem is stated as following.

Let G(s)=G.(s) be a rational nxn para-conjugate Hermetian matrix of normal

rank » which is non-negative on the real-frequency axis s = j@ . Then, there exist an
r x n rational matrix H(s) such that

@) G(s)=H(s)H.(s)

(i) H(s) and H™'(s) are both analytic in Res >0

(iif) H(s) is unique up to within a constant, unitary # x » matrix multiplier on

the left; ic., if H,(s) also satisfies 1) and 2), H,(s)=TH(s) where T is

#x r, constant and satisfies T'T =1, .

(iv) Any factorization of the form G(s) = L(s)L. (s) in which L(s) is rxn,

rational and analytic in Res > 0, is given by L(s) = V(s)H(s), V(s) being
an arbitrary rational, regular r x r para-conjugate unitary matrix.

(v) If G(s) is analytic on the finite s = jo axis, H(s) is analytic in the right
semi-infinite strip Res > —7, 7 > 0.

(vi) If G(s) is analytic and rankG(s) is invariant on the finite s = jo axis,

H™'(5) is analytic in the right semi-infinite strip Res > -7, 7, > 0.

(vii) If G(s) isreal, H(s) and V(s) arereal and T is real orthogonal.

In this paper, several examples are given, but its computing step is not sorted out
clearly and also have some difficulty to be carried out.

14



2.3.2 Approach by M. C. Davis®

This paper presents a general factoring procedure for rational matrices in continuous

time domain. By supposing G~ (s) as a cascaded series as following,

G(5)=T,(s) - T,()T(s) (2.3.1)

where T, (s) is obtained by either of following two simple step.

(i) T.(s) is equal to the identity matrix except for one or more jth diagonal

elements 7, (s).

(i) T.(s) is equal to the identity matrix except for the off-diagonal elements of

the nthrow, £ _(s).

LI
We can use the following update equation repeatedly.
D, (s) =T,(-5)®,(s)T; (s) (23.2)

At last the spectrum matrix ®(s) of the input signals can be factored such that
D(5) = G(—5)G" (5), where G(s) is a stable minimum-phase transfer function, then

G(s) can be viewed as the system which would reproduce signals with the spectrum
®(s) when excited by n uncorrelated unit-density white noise sources.

2.3.3 Approach by E. A. Robinson?

The section 5.4 of this book is titled in “Minimum-delay factorization of multichannel
spectrum”. Here a description of Robinson’s approach is given using his notation.
From a discrete time spectral density of matrix polynomial given as following,

¥(z) = iR,zi (2.32)

i=—m

15




a method to determine the p-channel minimum-delay operator A(z) such that
¥(z) = A(2)A.(2) (2.3.4)
is described, where
A(Z)=A,+Az+. .. +A 2z 23.5)

‘T -

A(2)=[AQ/Z)]T =A, T +A Tz A 2 23.6)
The method is based on via suppose that A(z) can be written into a binomial form

A(Z)=(I1-Uz)I-U,z)--(1-U,2)A, 2.3.7)

then determine matrix U, U,---U, and A, . At last determine matrix A, A, A, .

The method given in this section can be sort out as following.
(i) find all roots of det ¥(z)=0.

(ii) choose all roots outside unity circle, and divide these roots into m group.
(iii) main loop: using each group roots to determine U; matrix in binomial form

(1-Uz2),(i=12,.m).

(iv) determine the coefficient matrix A, by Cholesky factorisation.

(v) transform binomial form into polynomial form to get

A(Z)=A,+Az+....+A Z"

2.3.4  Approach by T. Kailath®

The section 8.3 of this book is titled in “canonical spectral factorization”. In this
section, from a discrete time state space model given as following,

16



X, =Fx, +Gu,
,i20 (2.3.8)

) =

y,=Hx, +v,

where F, G and H are known constant matrices. w, and v, are zero-mean jointly

stationary vector random variables that, along with the zero-mean random variable

X, , satisfy the conditions

X, Xo 11, 0 0
wl . V=, [Q 8Ts (23.9)
v, Vlf S R|7Y

They express a discrete time spectral 8 (z) into following form.

} (2.3.10)

GQG ™ GS|(E1-FH)'H
SG° R I

$,(z) = [H(T-F)" 1{

Regarding the spectral matrix S (z) in above form, they show that its canontcal

spectral factorization can be obtained as

S(z) = L{z)R,L'(z7), L(x)=1, R, >0 (2.3.11)
where

L(z)=1+H(A-F)"'K, (2.3.12)

L7(z)=1-H(zI-F+K H)"'K, (2.3.13)

K, =(FPH+GS)R," (2.3.14)

R, =R+ HPH’ (2.3.15)

17



and P is the unique positive-semi-define solution to the discrete-time algebraic
Riceati equation (DARE)

P=FPF +GQG -K RK, (2.3.16)

Moreover, F—K H is stable, which, in addition to the stability of F, will guarantee

that L(z) is minimum-phase.

18




2.4 Solution via Binomial Approach

2.41 Principle (after Robinson’s Approach)

For a given p-channel spectral density in matrix polynomial form as following.

S(z)= ZR,.Z—I
What we wish to do is to determine the p-channel minimum-delay operator A(z)
such that

S(z2) = A(2)A.(2) (24.1)

where A(z) is am-order p x p matrix polynomial

A=A, +A 2+t A 27" (2.4.2)

and A.(z) is a adjoint polynomial of A(z), which is given by

A(D)=[AQ/ 2T =A, " +A Tz 4.+ A )T 2" (2.4.3)
Suppose we can write A(z) into its binomial factors form as following.

A2 ==V, MI-U,z7 ) (1= U,z )4, @44)

where U,,U,,--- U, are px p constant matrices. Then also we can write A.(z) as

following,

A=A, A-0,"2)--0-U,"2)1-U,"2) (24.5)

m

Hence the p-channel spectral matrix S(z) is given as
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S(z)=(I-Uz)--(I-U,zHAA, (I-U "2)---0A-U,"2) (246
Next left-multiply (2.4.5) by detS(z)S™'(z) = adjS(z), this yields

detS(2)8™ (2)S(z) = det S(2)I

. g . o . o (247
=adiS(2)A~ U,z ) - (I-U, zAA, T A-U, "z 1-U,"z)

Now the number of zeros of the polynomial is 2mp. (p is number of channels and m
is the order of A(z)). Moreover, because

detS(z) =det A(z)det A.(z)} (2.4.8)

we see that if z, is a zero of detS(z), then 1/z] is also a zero. One of this pair of
zeros goes into the construction of A(z) and the other into the construction of
A.(2). and the choice is arbitrary for each of the mp pairs of zeros of detS(z). Asa

result, there will 2™ multichannel factorisations if we exclude the case of zeros on
unit circle and other multiple zeros. In order to obtain the minimum-delay
factorisation we choose these zeros which are smaller than unity in magnitude. Divide
these mp zeros in m group, cach group has p zeros. For the first group of zero

z,,(i =1,2,...p) the adjoint factors into the product of a column ¢, and a row r;, that

is adjS(z,) = ¢,r; (cf. Section 2.4.4) which gives
0=cr,(I-Uz™")--(1-U,z )AA, (1-U,"2)--(I-U,"z) 249

Thus we have r,I-U,;z, " )=0 ie, r,(z1-U,)=0. Note that this characteristic
equation of U, and using this equation for all p zeros z,,(i =1,2,...p) in first group,
we may obtain matrix U, as a similarity transformation of its eigenvalue matrix

D = diag(zl, z, "'Zp)- {cf. Section 2.4.4).
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Then for the second group, at the next zero z,, (i = p+1,p+2,..2p), because we

also can write

adiS(z)=cr., (i=p+1,.2p) (2.4.10)

H

where ¢, is column vector and r, is row vector, then
O0=cr(I-Uz")-1-U,z YAA, (1-U,"z)(I-U,"z) (24.11)

because U, is known already, so the factor ¢.r,(I-U,z,) also becomes a product of

L

a column vector ¢, and a row vector r;, ie., ¢x;(I-U,z)=clx/, thus we have
r'(I1-U,z ) =0 ie, r,(z1-U,)=0. Note that this characteristic equation of U,
and using this equation for all p zeros z,,(i=p+1,p+2,..2p) in second group,
hence we may obtain matrix U, as a similarity transformation of its eigenvalue

matrix D, = diag(zp+1,z JROREE-2 p). (cf. Section 2.4.4).

Likewise, we can then consecutively determine U,, U,,...U,,, thereby exhausting

the mp zeros which have magnitude greater than one. Finally by let z=1 * in
following equation

S(z)=(I-U;z™")-I-U,z )AA, (I-U, 2)-([-U,"2) (2412
so we can get that

AA, T =(@-U)(I-U)"'SIO(I-U, z)-A-U,"2p" (24.13)

*if S(l) = (), we must select another z, for S(ZG) =
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then by Cholesky factorisation we can get A, and hence we obtain the required

casual-chain minimum-delay transfer function in binomial form
A(Z)=(I-Uz'YI-U,z")--(I-U,z HA, (2.4.14)

At last transform this expression into polynomial form, so that we can get the speciral
factorization A(z) expected in (2.4.2).

2.4.2 Flow Chart

Tn order to describe the calculation procedures more precisely, two flow chart are
shown in Figure 3 and Figure 4.




( begin )

Calculate adjS(z)

r

For zeros in i-th group
no. k=1

k<=p

Yes
4

k=

k-+1

Get adjS(=z)

Express adjS(z,) into ¢, *r_

Get simularity matrix
Ri=[r1',r2‘,..,rp'] and R

h 4

Geet eigenvalue matrix
D =diag(z,,z,,.. .zp)

Get matrix U, =R, DR,

( wa )

» Figure 3 Detail flow chart for calculating matrix U;
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Find all 2mp roots of determinant
equation detS(z)=0

A

Divide mp roots inside unity
circle into m groups

=i+1

Yes

v

Use ith group roots to get matrix
U, (¢f detail flow chart for Uy

No—m

A

Get coeflicient matrix A, by
Cholesky factorization

Get coefficient matrix A,A,,... A

Get final result matrix A(z)

D

« Figure 4 Flow chart of presented spectral factorization method
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2.4.3 Practical Example

Physical arrangement of acoustic system of two speakers and two microphones with
wall reflection is shown in Figure 5.

Wall

EEE“ Ll LM <—DI-—> +—D -——b>j:

«Figure 5 Physical arrangement of propagation between 2 loudspeakers and 2
microphones

From Figure 5, we can show the input of microphones as following.

x, (k) =¢n (k—N))+dn(k—M)+c,n(k—N,)+d,n,(k—M;) 2415
x,(k)=c,n(k—N,)+d,n (k- M) +en,(k-N)+dn, (k- M)

Applying z transform to above equations

X, (2)={cz™ +d,z"IN,(2) +{c,z7" +d,z**}IN,(2)

_ v, o, v, ” (2.4.16)
X, (&)={c,z7" +d,z7 " }N,(2)+{cz" + dz"""}N,(z)

I:X1(Z)j| _ {i Clz_N] +dlz—M1 czz_Nz +dzziMl :"iNl(z)} (2.4.17)

X,(2) e,z +d,z™ oz 4 d 2 | Ny(2)

So that the transfer fimction matrix propagation between 2 loudspeakers and 2
microphones is given as following.
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AGD) = czM+dz™ ez +d, 27"
e,z +d, 2™ ez d
(2.4.18)
3 ez™ 27" N dz™" d,z7""
c,z™ ez ™M | | dyiz™ 4z
if A =N,-N,A, =M -N,A, =M, —N,, then
A(Z) = Amin (Z)Aali (Z)
¢, cz™| |dz™ dyzzN 0 (2.4.19)
= - + -A -A -N
e,z 2 d,z® dz ™ 0 z™
where
-A ~A -A
c c,z ! diz™™ d,z™™
A ()= ? + ] : 2.4.20
i (2) i:cgz"‘ﬁ' ¢ } |:d22_A’ dlz_A2:| ( )
zM 0
Ay (2)= |: 0 (2421

0] Jo d 0 0 d
A= Tl T Tl T ey 2l (2422)
0 ¢ le, 0 0 4 d, 0

Here we suppose that A, =1,A, =1,A; =2, so that the transfer function A(z)

becomes

A (2)= o 0 + 4 & z '+ 0 4 z7
0 ¢ ¢, d, d, 0

(2.423)
| ardzt oz +dz7 | a2 ay(2)
ezt +d,zt e +dz” a,(z) a/fz)
where
al(Z)zcl -{-dlZ_] (2424)

a,(z)=c,z ' +d,z”"
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And also the para-Hermitian conjugate of A(z) becomes

A (D)= [A e 2D =[‘3 } J{ 1 ﬂzl {d 02}2
C 1 ,

1 c,

(2.4.25)
| a+dz e +dz | | a(z") a(zT)
c,2' +d,z* ¢ +dz a,(z7) a(z?)
So that we can get a power spectrum function as following.
8(2) = ADAL(2) = A o (DA 1y (DA 1 (DA e (2) (2:426)
Notice that
zM o0 |20 0
A _ (DA, (2)= =1 2427
afl( ) aﬂ'( ) { 0 Z_Nl:||: 0 ZN] ( )
then

8(2) = A iy (2)A o (2)
=_a1(z) az(z)] a1(Z_1) az(z—l) (2.4.28)
2,(2) a(2)]a,(z") alz™) -

_al (2)q, (z ™)+ a,(z)a, (z™ a,(2)a, (zH+ a,(z)a (z™ )}

L4, (2)a )+ a,(z)a, ) a,(2)a, (z7)+ a,(2)a, (z™)

then put a,(z) and a,(z) into this equation, we can get

S(Z) = Amin (Z)Amin* (Z)

I a+dz?  ezl+dz| e +dz oz +d2
N _czz_1 +d,z7 ¢ +dz” }Lzzl +d,z* ¢ +dz }
[ (c,d, +¢,d))z" +(ce, +d,d, ¢,d,z2 +(cic, +ddy)z " +(c,d, |
+¢y6, +dod,y) +(eyd, +eydy)z! +e,d)+(cc, +didy)z +dyz
c,d,z +(ce, +dd,)z" +(cyd, (e;d, +c,dy))z™ +(cic, +d 4,
+eyd)+(ce, +didy)z +dy 2’ + 0,0, +dydy)+(ed +eydy)z
(2.4.29)
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Then we will try to factor this power spectrum function by the method last time.
stepl find all roots of detS(z) =0
When parameter ¢1=0.8,c2=0.6,d1=0.6,d2=0.4, then

detS(z) = —0.1024z™" - 0.4608z 7 —0.4608z" +0.6912z""
+1.5872+0.6972z" —0.4608z> —0.4608z° —0.1024z* (2.4.30)
=0

By using a MATLAB function, we can find all roots of this determinate equation.
root =1.4142, -2.0000, 0.7071, -1.4142, -1.0000, -1.6000, -0.7071, ~0.5000

There are 3roots outside the unit circle, 3 roots inside the unit circle and also two
roots on the unit circle. We will choose all of these roots inside the unit circle and half
of these roots on the unit circle. Then divide these roots into two groups and denote

these roots as following.

Group 1: z1=-0.5000;
z2=-0.7071;

Group 2:  z3=-1.0000;
z4=0.7071;

step2-1 use z1, z2 get r1, r2 vector
At first, calculate adjoint matrix of power spectral density S(z)

adjS(z) =
[ (¢d, +c,d,)z 7 + (e + did, —edyz? (e, +dd,)z " —(e,d, |
+c,e, +d,d,) + (ed, + c,d,)z’ +e,d)~(cc, +ddy)z —cd,z’
—ed,z? —(cc, +dd,)z —(c,d, (c,d, +c,d,)z™ + (¢c, +d,d,
| +0,dy) - (e, +didy)2' - edy 2 +y0, +dydy) + (od, + 0dy)z
(2.431)
For zeros of z1=-0.5000, z2=-0.7071 in group 1, we can get
4iS(z.) -0.28 -0.28 -0.28 [1 1] (2432)
adjS(z,) = = 4.
PEIZ 028 —028] 7| -0.28
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_ ~0.007356  0.007356
adjS(z,) =
0.007356 —0.007356
—0.007356
= I -1]
0.007356
n=[ 1]
I'z:[l _1]

step2-2 use r1,r2 vector to get Uy matrix
We then assemble the matrix

R
2[1 -1

from which we can obtain the U,; matrix.

y 11 17z o1 1
U,=R'DR=—
201 =10 z|[1 -1

_[-0.60355  0.10355
| 010355  —0.60355

step3-1 use z3, z4 get r3, r4 vector

For zeros of z3=-1.0000, z4=0.7071 in group 2, we can get

adjS(zQ{O'OS O'OS}H[O.OS 0.08]

0.08 0.08 1

(2.4.33)

(2.4.34)

(24.35)

(2.4.36)

(2.4.37)

(2.4.38)

(2.4.39)

(2.4.40)
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(I—-Ulz{l)adjS(zﬁ

([ 0]_[-060355 010355 Y 1 [Ty 0g .0g] -
“llo 11| 0.10355 —0.603550—-1) 11 (24.41)

_[0.04 0.04] [0.04 i)
“10.04 0.04] |0.04

_ 3.047356 —3.047356
adjS(z,) =
~3.047356 3.047356
[ 3.047356 0 1] (24.42)
| -3.047356

(I-U,z, DadjS(z,)

1 0] [-0.6035 0.1035 1 1
_ _ . [3.0473 —3.0473](2.4.43)
0 1] | 01035 —0.6035[0.7071/) -1

[0.8926 —0.8926}={0.8926 }[1 1]

~0.8926 0.8926 | |-0.8926
r=[ 1] (2.4.44)
r,=[1 -1] (2.4.45)

step3-2 use r3,r4 vector to get U, matrix
We then assemble the matrix

R = [ﬂ - B _1 J (2.4.46)

11
R =1 (2.4.47)
211 -1
and the diagonal matrix
0
D= [Zs } (2.4.48)
0 =z,
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from which we can obtain the U, matrix.

S I A
* (2.4.49)

_[-0.1465 -0.8536
| -0.8536 —0.1465

step4 get Ag matrix by Cholesky factorization and then Ay Ax matrix
Consider A(z) =1 -U,z7)A-U,z7)A,, so that

S(z) =(I-U,z7" YT - U,z }(A,A, A -0,z YA -U,z") (2.4.50)
S(1) =1 -U)I-U,)(AA,DA-U,)A-U)) (2.4.51)
AA, =1-U)"'@-U,)"'SMA-u,) d-uy)™ (2.4.52)

Using a MATLAB function, we can get an upper triangular matrix by Cholesky
factorisation. The run results are shown as following.

A 0.8000 0 2453

1 0 0.8000 (2.4.53)
0.6000 0.6000

A =—U +U)A, = 2.4.54

= U UA, [0.6000 0.6000} (2459

A, =UUA, = 0 04000 2.4.55

2T UETT0T04000 0 0 2455

stepb get final result : transfer function
Finally, the required minimum-delay transfer function is given as following.

A(Z)=A,+A 77 +Az7

0.8000 O N 0.6000 0.6000| N 0 0.4000{ _, (2.4.56)
= Z Z
0 0.8000( |0.6000 0.6000 04000 0O
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step6 check result
From the factorisation result of step3, we can give S(z) as following.

S(z) = A(2)A.(2)
0 03200 0.7200 0.7200 1.5200 0.7200
= zi 4 27+ (2.4.57)
03200 0O 0.7200 0.7200 0.7200 1.5200

0.7200 0.7200 0 0.32001 ,
+ z + z
0.7200 0.7200 0.3200 0

Otherwise from the theoretical result, when ¢1=0.8, ¢2=0.6, d1=0.6, d2=0.4

08 01 [06 0.6 0 04
A(z) = + 27+ z? (2.4.58)
0 08| |06 06 04 0

So that

8(z) = A(2)A.(2)
0 0.3200 0.7200  0.7200 1.5200 0.7200

_ 27 4 n (2.4.59)
03200 O 0.7200 0.7200 0.7200 1.5200

0.7200 0.7200 0 0.3200| ,
+ z+ z
0.7200 0.7200 0.3200 0

This is the same as previous factorisation result (2.4.57), so that we confirmed that
(2.4.58) is a proper factorisation result of (2.4.29).

24.4 Appendix: Mathematical Proofs for Binomial

Approach
Theorem of adjA(z) =¢px;
Theroem®
Let
A(Z)=Ag+Az "+ + Az (2.4.60)

bea px p polynomial matrix. Then
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detA(z) =0 (2.4.61)

is called the determinantal equation, and its roots are denoted by z,,z,,...,Z,,, where
m is the degree of polynomial detA(z) in z. The (constant) matrix A(z,) is
obtained by substitution of any root z, for z in the polynomial matrix A(z) is
necessarily singular. When z, is an unrepeated root, then the px p matrix A(z,)
has rank p—1, and the adjugate evaluated at z=z,,adjA(z,), is a pxp matrix

with rank 1, and it is expressible as a product of the form

adjA(z)=c, (2.4.62)

where ¢, is a nonzero (constant) column vector, r; is a nonzero (constant) row vector

appropriate to given root z,

Proof

Because detA(z,)=0, px p matrix A(z;) is singular. For if A(z,) is simply
degenerate, adjA(z,) by definition cannot be null. Hence, since the product

A(z,)adjA(z,), which equals det A(z,)I is null, adjA(z,) must be a matrix of unit

rank. A square matrix A which has proportional columns and rows is rank of 1, and
conversely. Such a matrix has effectively one lincarly independent column and one
linearly independent row, and is expressible as a product of the type er where ¢ is a
nonzero column vector, r is a nonzero row vector.

Determine U matrix of binominal form

Case 1: 1-order matrix polynomial
In order to factorize a given spectral density matrix S(z) into S(z) = A(z)A.(z}, we

have supposed that A(z) can be written into a binomial factors form as following.




AZ)=I-U,zHI-U,z ") -(I-U,z7HA, (2.4.63)
where U ,U,,---U,, are px p constant matrices. Then also A.(z) can be written as
following.

A=A, (A-U,"2)--1-U,"2I-TU,"2) (2.4.64)
For the most simple case of 1-rder matrix polynomial given as following.

A(Z)=A,+Az™ (2.4.65)
we can express A(z) into binomial form

A(z)=(I- Uz A,
where
A, =-UA,

Here we will show that how to calculate matrix U . At beginning, for a given

determinantal equation detS(z) =0, suppose all of its roots z;, (i=12,..p) are

distinct, finite and nonzero. From

detS(z,)=det A(z,)detA,(z,)=0, (i=12,.p), (2.4.66)
we can get det A(z,) =0. Because A(z) = A,(I1— Uz™), so that

detA(z,) = det{T- Uz HA, |

, (=12, 24,67
_ det(z]1-U)det{A,z '} =0 2 (2:467)

Here because generally det{A,z'}# 0, then det(zXI~U)=0. This is the same

form of characteristic equation of matrix U and its eigenvalues equal to A =z,,
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(i =1,2,...p) . Furthermore we can write adjS(z,) = ¢r;, ( Note that ¢ and r, are by

no means urique ), is where ¢, is column vector and 7, is row vector, then

det 8(z,) = adjS(z,)S(z;)
=adjS(z,){I-UzHA A, (I-U"z)} (2.4.68)
=ex(I-UzDAA," (I-U"z)

This means
cr(f- Uzl.’l) =0 (2.4.69)
r(zI-U)=0 (2.4.70)

So we can see that r,,(i =1,2,...p)is left eigenvector™ of matrix U. At last if we

denote

* left eigenvector:
Any tow vector that satisfy xA=4x ,x=0 is called as left eigenvector for

cigenvalue A . Because A”x” = Ax”, we can see that x" is just the eigenvector of

matrix A”. If x, is left eigenvector of matrix A , we can make a nonsingular matrix

by using these left eigenvector as following.

X
Tl :
xm
Then from
A 0
TA=[xA - x, Al={4x - A%, 1= [x, - x,]=AT
0 Ay
So that
A=T7 AT




R=|: (2.4.71)

D = diag(4, 4, A,)) = diaglz,,2, 2, (2.4.72)

we can write matrix U as a similarity transformation R of its eigenvalue matrix D
as following.

U=R'DR (2.4.73)

Case 2: 2-order matrix polynomial
For a 2-order matrix polynomial

A(Z)=A,+Az7 +A,z7 (2.4.74)
We can express A(z) into binomial form as following.
A(2)=(1-U,z H(I-U,z A, (2.4.75)

Here, we will show that how to calculate matrix U, and U,.

At beginning, for a given determinantal equation detS(z) =0, suppose all of its roots

z, (i=12,..p, p+1,..2p) are distinct, finite and nonzero. From

i

detS(z,)=det A(z,)detA,(z,)=0, (i=12,...p,p+1,..2p) (2.4.76)
we can get det A(z,) = 0. Because A(z) =(I-U,z" XI-U,z )A,, so that

det A(z,) = det {1- Uz WI-U,z; YA, |
= det( z1 - U,) det( z,] - U,)det{ A,z *} (2.4.77)
=0

i=12,..p,p+1,..2p)
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Generally det{A,z, "} 0, so that we can get

det(zI-U) =0, (i=12,..p) (2.4.78)

det(z1-U,) =0, (i= p+1,.2p) (2.4.79)

where we divide all 2p zeros into 2 groups, the first group of p zeros (z,,i=12,...p)
are used for composing matrix U, and the second group of p zeros

(z,,i=p+1,p+2,.2p) are used for composing matrix U, .

(2.4.78) is characteristic equation of matrix U,. The ecigenvalues for U, equal to
A=z, (i=12,..p). Also (2.4.79) is characteristic equation of matrix U, .and the

eigenvalues for U, equaltod =2z, (= p+1,p+2,.2p).

S(Zr’) = A(ZI)A*(Zr‘)

. . . 2.4.80
=(I-UzYI-U,z, HAA, " 1-U,72)A-U,"z) (2430

For the first group of p zeros, because we can write adjS(z,) =1, ,(i =12,..p),

where ¢, is column vector and 1, is row vector, so that

detS(z,) = adjS(z,)8(z,)
—adiS( I -U,z YA~ U,z, DA, (-0, 2)X-U,"2)} (24381)
=er(1-U,z )1-U,z HAA, " (1-U, 2 )1-U,"z)

This means
er(I-U,z, ) =0,3F=12..p) (2.4.82)
r(z]1-U,)=0, (i =12,..p) (2.4.83)
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So we can see that t,, (i = 1,2,...p)is left eigenvector of matrix U, . This means if we

denote
31
R, =| (2.4.84)
rm
D, =diag(h, 4 A,) = diaglz,,2,z,) (2.4.85)

we can write matrix U, as a similarity transformation R, of its eigenvalue matrix

D, as following.

U, =R, DR, (2.4.86)

Next for the second group of p zeros, because we can write

adjS(z)=c¢r,, (i=p+1..2p) (2.4.87)
so that
adiSzYI-U;z)=cx,(I-U,z)=cx/, (i=p+1.2p) (2.4.88)

where ¢ is column vector and 1/ is row vector, then

detS(z,) =adjS(z,)8(z,)
= adiS(z,){(1- U,z " )(I-U,z, NAA, A-U, z)1-U,"z)}

_] _1 tT *?" t:[' (2-4-89)
=¢r,(I-Uz YI-U,z; )AA, (I-U, z)I-1, z,)
=er(1-U,z, )AA, T (1-U,72)A-U,"2)
This means
er/(I-U,z7) =0 (2.4.90)
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r(zI-U,z )=0 (2.4.91)

So we can see that r/ is cigenvector of matrix U, . This means if we denote

r

R,=|: (24.92)
r,

D, = diag(A, A+ 2} = diag(z,0,2,5 7+ 2,,) (2.4.93)

we can write matrix U, as a similarity transformation R, of its eigenvalue matrix

D, as following,
U, =R, 'D,R, (2.4.94)
2.5 Solution via State Space Approach

2.51 Principle (after Kailath’s Approach)

For a spectral factorisation method that not solve zeros of matrix polynomial is
described by T. Kailath et al”. Let’s consider the vector of random processes, we
want estimate which cross-spectral density matrix, is a output of a multichannel linear
system model with white input random signal vector as shown in Figure 6. Therefore
by select a linear system model available to measured data vector, a modelling
method of random processes can be obtained. Rewrite (2.2.11) as following, which
means a moving average (MA) model is assumed for the linear system.

L(z)=I,+Lz" +...+ L,z

= IFJ + iLiz'i
i=t
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QOutput

White input .
. signal vector
signal vector ®)
u(k) Y

Linear System
Model

« Figure 6 Linear system model for multichannel spectral factorisation

When a white input signal vector u(z) is applied to this system, the output signal
vector can be given as following.

y(2) =L{z)u(z) (2.5.1)

If the spectral matrix of white input signal vector is given by

S.(z)=X (2.5.2)
then the spectral matrix of output signal vector can be expressed as following.

S, (2)=L(2)8,,(2)L.(z) =L(2)EL.(2) (2.5.3)

State space description and transfer function matrix

From (2.5.1), the input-output relation for the linear system model L(z) can be

written as
y(m)=1,+Lur-1)+...+L,u(n-m) (2.5.4)

There are of course several ways for representing this relation in state space form.
One option is the following realization. By define the coefficient matrices as

following,

F=| 7 7L " (2.5.5)




G=""|lm (2.5.6)

H=[0, 0, - 0, 1,] (2.5.7)

the moving average random signal vector y(n) can be regarded as the output of the
following state space model.

x(n+1)=Fx(n)+ Gu(n)

y(n)=Hx(n) + u(n) (2.5.8)

We can proof that the transfer function of this state space equation is L(z). (cf
section 2.5.4)
L(z)=1,+Lz" +....+L,z™"

LI (2.5.9)
=I,+ ;Liz

Note further that the transfer function L(z) must stable and have all its zeros stricily

inside the unit circle. Using the matrix inversion lemma, we can find that
L'(z)=1,-H(d,, - (F-GH)"'G (2.5.10)
S0 that the matrix (F — GH) must also have all its eigenvalues strictly inside the unit

circle.

In other words, we have shown so far that starting with a matrix polynomial 8(z)
that is strictly positive on the unit circle, there must exist a state space model of form
(2.5.8) such that

(i) F isastable matrix.
(i) (F-GH) isastable.

(iii) The entries of G determine L(z) and the variance of u(n) determines P .
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(iv) Using these three facts, and the above state space model, we can now show
how to determine the unknown matrix G and hence, the canonical factor
L(z) and the variance X .

Determine matrix G and canonical factor L(z) and variance &

To begin with, the state space model is assumed to start in (2.5.8) and, therefore, the

stability of F guarantees a stationary state vector process {x(n)}. Let C denotes its

covariance matrix,

C=E[x(m)x"" (n)] (2.5.11)
Tt then from the state (2.5.8)

Ex(n+Dx""(n+D]=FE[x(n)x” (mMIF" + GE[u(mu” (m]G™ (2.5.12)
Because

C=E[x(n)x" ()= E[x(n+Dx" (n+1)] (2.5.13)
for x is stationary process and

Efu(mu” (n)]=8_(2)=% (2.5.14)

for u is white stationary process, then covariance matrix C must satisfies the matrix

gquation
C=FCF" +GR, G (2.5.15)

It also follows from the output equation in (2.5.8) that

Ely(n)y™ (m)] =HE[x(n)x"" (m)[H" + E[u(n)u’ (n)] (2.5.16)
Because
R, = E[y(n)y " (n)] (2.5.17)




as shown in (2.5.2), then

R,=HCH" +X (2.5.18)
therefore
£=R,-HCH” (2.5.19)

Finally, we evaluate the inner product E[x(n+1)y"" ()] in two different ways. The

first way uses the state space model to conclude that

Elx(n+1y" (n)] = E[(Fx(n) + Gu(m))(Hx(n) + ()" ]
= FE[x(m)x" (W)JH” +FE[x(n)u"" (n)]+GEu(m)x " (m)H" + GE[u(mu’" (1)]
= FE[x(m)xT ()]H7 + GE[a(nu’ (n)]
=FCH" +GX
(2.5.20)

where we used the fact that u(n) and x(») are uncorrelated.

The second way to evaluate E{x(n + Dy " (n)] is the following. As the first step, by

write x(#) in block for each channel as following,

xpl(n)

x(ny=| (2.521)

and solve Efx , (n+ Dy " (n)] individually, we can show that

E[x,,(n+ Dy " (mM]=R, ., (2.5.22)

for k =1,2,...m . Then put these results together, we easily verify that




X, (n+1)

. X ,(n+l)| .
Elxn+ Dy )= £ 20D 7 )
X,,(n+1)
T (2.5.23)
Elx,(n+Dy " (m]| | R,
_| Elxa e+ DY (]| | R
E[Xpm (n+1)y*T(n)] Rl
We will denote this mp x p matrix by N,
Rm
N= R’:”“ (2.5.24)
Rl
So that we can have
Elx(n+1)y"(n)]=N (2.5.25)

This means we find that the desired inmer product E[x(n+1)y"’ (n)} is completely

determined in terms of the given coefficients of spectral matrix S(z). Combining
result of first step in (2.5.20) with result of second step in (2.5.25) we can obtain the
equality

FCH” +GE=N (2.5.26)
This gives
G=(N-FCH7)L" (2.5.27)

which express the unknown G in term of the matrix C. At last, substitute (2.5.27)
into (2.5.15)

C=FCF" +GXG"
=FCF7 +(N-FCH)Z'ZEZHT(N-FCH")"” (2.5.28)
=FCF7 + (N-FCH"YZ )" (N-FCH")”

furthermore, substitute (2.5.19) into this equation, we can obtain
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C=FCF” + (N-FCH" )R, -HCH")" " (N-FCH")"
—FCF'" + (N-FCHT)R, -HC"H")(N-FCH )"
=FCF” +(N-FCH" )R, -HCH")" (N~-FCH™)"
=FCF’ —(FCH" —N)(HCH" -R,)" (FCH” -N)""

(2.5.29)

This is a discrete algebra Riccati equation regarding matrix C.
Summary of solution

The above derivation therefore suggests the following procedure for finding X and

the coefficients matrix of L(z) with G, in the factorization S(z) = L(z)XL.(z).

(i) Define coefficient matrix of state space model in (2.5.8), that is

(i) Determine the nonnegative solution C of the discrete algebra Riccati
equation.

C=FCF”™ —(FCH" -NYHCH” -R,))'(FCH" -N)""
that results in a matrix

F,=F-(FCH” -N)(HCH" -R,)'H (2.5.30)




having all its eigenvalues strictly inside the unit circle. Such a nonnegative C

that stabilizes F, is guaranteed to exist by virtue of existence of model (2.5.8)

itself. In fact, the nonnegative stabilizing C is unique.

(iii) Then set
LZ=R,-HCH"”"

G=(N-FCH )X

where the component block of G matrix define the cocfficients matrix of L(z)

as following.
Lm‘

G= Lo m
Ll

2.5.2 Flow Chart

In order to describe the calculation procedures more precisely, a flow chart is shown
in Figure 7.




=

Prepare matrix F, H, N

y

Determine C via discrete
algebraic Riccati equation

GetP, G then L .L,,..L |

Get A, then A A, A

Get final result matrix A(z)

(D

»Figure 7 Flow chart of Riccati equation method for spectral factorisation

2.5.3 Practical Example

Let’s use the problem in section 2.4.3 again. As we have shown in (2.4.29), we can

write power spectrum function as following.
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S(2) = A(2)A.(2)

[ erdz? ezt+dyz?| o +dz ¢yt +dy 2
o,z +dyz? o +dizT |z +dyzt e +dz!
[ (e,d, +c,d,)z7 +(ce, +d,d, e, dyz72 +(c,cy +dydy)z™ +(cyd, |
+e,0, +dyd) +(ed, +c,dy)z! +c,d))+ (e, +dd,)zt +ed,yz?
e d, 2 +(ec, +ddy)z 7 +{c,d, (c,d, +¢,d,)z™ +(ce, +d,d,
+e,d) +(eje, +didy)z Fod,z’ t+ey0, +dydy) + (edy +ydy)zt
(2.5.31)

Then we wish to find a minimum-delay operator
A=A, +Az "+ A7 (2.5.32)
such that

S(z)=A(2)A.(z)

» . - 2.5.33
= (A +AZ +AZA,T HA TS AT (2:533)
step1 Prepare F, H, N matrix

0. 4
(2.5.34)

Lo )
i (2.535)

F — ‘02 02:|
IRERNAE (2.5.36)
H=[0, L] (2.5.37)
B [cld1 +e,d, ¢c, +a’]d2}

Yoloe, +did, ed +eyd, (2.538)




|0 4
Rz“[cld2 0 }

N= [Rz Rl]
step2 Determine C matrix via discrete algebra Riccati equation

0.16 0 024 024
| 0o 016 024 024
T1024 024 088 0.72

024 024 072 0.88

C

step3 Get P, G matrices then L, Lo matrix
064 0
b= [ 0 0.64]

0 05
05 0
G= 0.75 0.75
0.75 0.75

0 0.5
L2=los 0}

(.

[0.75 075
1075 075

step4 Get Ag matrix then Aq, Az matrix
08 0
A { 0 0.8:|

0.6 06
A _[0.6 0.6}

(2.5.39)

(2.5.40)

(2.5.41)

(2.5.42)

(2.5.43)

(2.5.44)

(2.5.45)

(2.5.46)

(2.5.47)




0 04
son ]
0.4 0 (2.5.48)

step5 Get final result : transfer function

Finally, the required minimum-delay transfer function is given as following.

A(z)=A,+A 27" +A,z7
0.8000 0 7 [0.6000 0.6000] , [ 0  04000] , (2.5.49)
= V4 v4
0 0.8000| |0.6000 0.6000 04000 0

step6 Check result

From result of step5, we can give spectral matrix S(z) as following.

S(z) = A(2)A, (2) =(A, + Az '+ A,z 2)A, +A, 2'+A,7zY)
=ALA, T2 H(AA, +ALA 2T+ (AA, T +AA, T +AAT)
+{(AA, " +AA z+A)TA L

(2.5.50)

8(2) = A(2)A.(z)
0 0.3200] _, [0.7200 0.7200] , [1.5200 0.7200
_ = P (25.51)
03200 0 | 0.7200 0.7200 0.7200 1.5200
0.7200 0.7200] 0  0.3200],
+ Z+ z
0.7200 0.7200] | 03200 O

Otherwise from the theoretical result, when ¢1=0.8, ¢2=0.6, d1=0.6, d2=0.4

08 0] [06 06 [0 04
A(z)= + z7+ z7 (2.5.52)
0 08| [06 06 04 0 |
08 0] [06 06], [0 04],
A.(2)= + '+ z (2.5.53)
0 08| |06 06/ |04 0]

50



S(z) = A(2)A.(2)
[0 0.3200] _, [0.7200 07200} , |1.5200 0.7200
= z 4+ z "+ (2.5.54)
103200 0 | 0.7200 0.7200 0.7200 1.5200
[0.7200 0.7200] .| 0 032000,
Z Z
107200 0.7200[ 03200 0

This is the same as previous factorization result (2.5.46). So we confirmed that
(2.5.49) is a proper factorization result of (2.5.30).

2.5.4 Appendix: Mathematical Proofs for State

Space Approach

Transfer function of state space expression

Then the moving average random signal vector y(#) can be regarded as the output of
the following state space model.

x(n +1)=Fx(n)+ Gu(n)
y(n) = Hx(n) + u(#)

where
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Indeed, the transfer function of this state space model is given by

T(z)=1,+H(zI,, -F)"G

IP
I
=i,+, -0, L]4 7
;
1 —-z71
=1,+z'o, - 0, 1, ’
Op

Then by solving the following equation,

Ip 0, Op Bpll
-1
-, L, 0, B
0, - -z'I, I,|B,,
We can get the inverse matrix
-1
IP OP OP Bpil
-
~z I, I, 0_p _ Blf,21
0, -1, I, B,
Ilp 0, 0,
Ly LY
~(m-1) ) ot
"L,z L - I,

Bp12
Bp22

pm2

I, 0
-1
0!’ Lm
0, Lo
-1 |
-z 1, I, L,
B, I, 0
B, |_|0, T
B, 0, 0
Bplm
Bp-Zm
Bpmm

So that we can get the transfer function matrix as following.

(2.5.55)

(2.5.56)

(2.5.57)
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Ilp OP OP Lm
1 I 0,|L
T()=1,+z0, - 0, I, ’ 7 dna
z 1, 2, I, | L,
Lm
[ ~(m- - L,
=Ip+zl[z( T, 1, I, 51
Ll
Lm
=1p+[z'"’1p - 2L, 27, L*?-‘
Ll

-1 —m
=1, +Lz"++L,z

=T,+» Lz’ =L(z)

i=1

(2.5.58)

Express E[x(n+1)y"" (n)] by spectral matrix

The second way to evaluate Efx(n+1)y" (n)] is the following. As the first step, by

write x(n) in block for each channel as following,

X1 (1)

x(n) = xpi(") (2.5.59)

xpm (n)
Put the x(») into output equation of (3.1.8), we can get

y(r) = Hx(n) + u(n)
Xpl (n)

=, - 0, 1 X2 |ty (2.5.60)

pop
X (1)

=X, (1) +u(n)

so that
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yr+l)y=x_,(n+)+u(n+l) (2.5.61)

therefore

X+ =y(n+1)-u(n+1) (2.5.62)

So we can conclude that

Elx,, (n+1)y" (] = E[(y(n+1) ~u(n+1)y" (n)]

" (2.5.63)
=E[y(n+Dy (mW]=R,

where we used (2.2.2).

As the second step, let’s consider Efx ,, (n +2)y " (n)] now. From state space
model in (2.5.8) we can get

x(n+2)=Fx(n+1)+Gu(n+1) (2.5.64)

Write it in block component, then we can get

xpl(n+2) 0, xp](n+1) L,
xPZ (]’l + 2) — Ip 9}7 ) po (n + 1) + Ln:q—l u(n + 1)
x (n+2 I, 0 |x, (n+l L
pm( ) P P pm( ) 1 (2_5_65)
0, L u(n+1)
xpl(r.a+]) N Lm_lu‘(n+1)
X oy (B +1) Lu(z+1)
then
X,,(n+2)=x,, (n+H)+Lur+1) (2.5.66)
so that
y(rn+2)=x_,,(n+2)+u(n+2) 2.567)

=X+ D)+ Liu(r+ D) +u(@+2)




therefore

%, (1 + D) =y(n+2) - Lu(n+1) - u(n+2) (2.5.68)

So we can conclude that

E[X oy (n+ Dy T ()] = El(y(n + 2) - Lyu(n+1) - u(n+2)y" (m)
=E[y(n+2)y" (m]=R,
(2.5.69)

By continuing this argument we easily verify that

X, (n+1}
xpz(n+1)

E[x(n+1y" (m]=E[ : v ()]
X, (n+ 1)
E[x, (n+ 1)y (m)] R,

_ E[xpz(”"jl)y'T(n)] _ RJ:n—l

(2.5.70)

Fix,(n+ Dy (1| | R,

We will denote this mp x p matrix by N, that is

N=| (2.5.71)




Chapter 3 MULTICHANNEL

SPECTRAL ESTIMATION

In this chapter, after an overview of several model for spectral estimation, the
problem is introduced of multichannel spectral estimation using autoregressive (AR)
model. This results in a set of normal equation, which can be solved recursively using
a Yule-Walker algorithm. Flow chart of the algorithm is also shown for realizing the
calculation procedure, together with a numerical example.

3.1 Spectral Estimation Method Overview

The various methods of spectral estimation can be categorized into nonparametric
methods and parametric methods. Nonparametric methods are those in which the
estimate of the power spectral density (PSD) is made directly from the signal itself.
The simplest such method is the periodogram. An improved version of the
periodogram is Welch’s method. Parametric methods are those in those the signal
whose PSD we want to estimate is assumed to be output of a linear system driven by
white noise. Examples are Yule-Walker autoregressive (AR) method and Burg
method. These method estimate the PSD by first estimating the parameters
(coefficients) of linear system that hypothetically “generates™ the signal. They tend to
produce better results than classical nonparametric methods when the data length of
the available signal is relative short.

The most commonly used linear system model is the all-pole model, a filter with all
of zeros at the origin in the z-plane. The output of such a filter for white noise input is
an autoregressive (AR) process. For this reason, these methods are sometimes
referred to as AR methods of spectral estimation. The AR methods tend to adequately
describe spectra of data that is “peak”, that is, data whose PSD is large at certain
frequencies. The data in many practical applications (such as speech) tends to have
“peaky spectra” so that AR models are often useful. In addition, the AR models lead
to a system of linear equations which is relatively simple to solve.

In many practical situations the data that are available are not limited to the output of
a single channel but may well be the result of observations at the output of several
channels. It is quite common in the fields of sonar, radar and seismic exploration to
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record data from multiple sensors, With this additional information it is then possible
to estimate cross-spectra as well as auto-spectra. The cross-spectra are important in
establishing lincar filtering relationships between the time series. The multichannel
spectral estimation problem is to estimate the auto-specira of individual channels and
the cross-spectra between all pairs of channels. For a given complex multichannel

sequence
x,(n)
x(n) = ngn) (3.1.1)
x,(n)

Typically, x,(#) represents the data obscrved at output of the ith channel. The power

spectral density or cross-spectral matrix is defined as

S.:(F) SN - Su(f)

S(/) = Sz‘;(f) S”;(f) . Sz‘”:(f) (3.1.2)

Spi(f) Sp2(f) e Spp(f)
The diagonal elements S, (/) are the PSDs of the individual channels or auto-PSDs,
while the off-diagonal elements S,(f) for i # j are the cross-PSDs between x, ()

and x;(n).

3.2 Spectral Estimation via Multichannel AR Model

As we illustrated in section 2.5, the vector of random processes, we want estimate
which cross-spectral density matrix, can be assumed as a output of a multichannel
linear system model with white input random signal vector as shown in Figure 8,
which is same graph with Figure 6, but with different notation for input signal vector
and output signal vector.
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White input Output
signal vector signal vector
wik) x(k)

Linear System
Model

« Figure 8 Linear system model for multichannel spectral estimation

When a white input signal vector u(z) is applied to this system, the output signal

vector can be given as following.
y(z) =L(2)u(z)

Therefore by sclect a linear system model available to measured data vector, a
modelling method of random processes can be obtained. Here we assume a
autoregressive (AR) model as following.

D(z)=1,+ i‘A(i)z“’

L(z)=D"(z) = [Ip +iA(z‘)z"’ J (3.2.1)

By adopting a vector autoregressive (AR) model (3.2.1), vector x(#) is assumed to

evolve according to the mth-order autoregressive
x(n) =) A(k)x(n—k)+w(n) (3.2.2)
h=1

where

a, (k) aplk) - alp(k)
apy=| @®) @ @ (3.2.3)

an(l) an() - 4,

are px p matrices of multichannel AR model coefficients. The driving input signal

58



w, (1)

winy =" ;(n) (3.2.4)

w,(n)
is a set of uncorrelated white sequences with zero mean and so the covariance matrix
X = Efw(myw(n)’ | (3.2.5)

is equal to the identity matrix. Our problem is described as following.

For a given measured data of vector random processes, how can we decide it’s
coefficients matrix A(k), k=1,2,---,m of AR model, So that we can obtain an

estimation of cross-spectral density matrix.

3.3 Multichannel Yule-Walker Algorithm

3.3.1 Multichannel Yule-Walker Equations

S. M. Key® has given a detail description of determining the optimal mth order
forward and backward linear predictor for an AR(m) process.

The mth order forward predictor is
% (m)=-> A ()x(n—1) (3.3.1))
i=1

The predictor error power is defined as the sum of prediction error powers for
individual channels as following.

o’ = E[(x(n) ~%/ () (x(m) - %" ()] ] (3.32)

Alternatively, p’ may be view as the sum of diagonal clements or trace of the

covariance matrix

= E[(x(n) —%/ ()] (x(m) - =7 ()] ] (3.3.3)
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To minimize p”/ , we can usc the orthogonality principle for a vector space, then

yields
E[x‘(n—k)(x(n)—if (n))TJ=0 k=12,..,m (3.3.4)

which results in the multichannel Wiener-Hopf equations

R_ (k) =—inx(k—i)AfT () k=12,.,m (3.3.5)

i=1

The prediction error power matrix is

¥ =E l(x(n) -7 (n))* (X(n) -7 (”))T J

m . (3.3.6)
=R, (0)+ > R, (-DAT (i)

As expected, A’ ()= A(i) and £/ =T or the prediction coefficients are given by

the AR filter parameters and the prediction error power matrix is given by the
variance matrix of the white noise.

The mth order forward predictor is
X' (n) ==Y A" (Dx(n+i) (3.3.7)
i=1

The corresponding predictor error power is given as following.

ot = E[(x(n) —2 ()] (x(m) -5 (n)) J (3.3.8)

and the prediction error power matrix is

Tt = El(x(n) — ()] (x(m)-x" ()| } (3.3.9)

Using a similar development the Wiener-Hopf equation become
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R_(-k)= minx (—k DAY () k=12,..p (3.3.10)

=1
The prediction error power matrix is

%" = Efx(m) - % () {x(m) - %° @) |

n (3.3.11)
=R, (0)+ > R, (DA ()
From (3.3.5) (3.3.6) m-1 order forward predictors satisfy the equations
R, R (-D) - R,(-(m-D) I =
. —(m— ST
R,;,:(l) Rxx:(U) ) R, ( (:m 2)) Amu:l @ | {:1 (33.12)
R, (m-1) R, (m-2) - R (0) AL (m=1) 0

From equation (3.3.10) (3.3.11) m order backward predictors satisfy the equations

R_(0) R_(-1) - R, (-(m-1D)[ A, (m-1) 0
R, (m-1) R, (m-2) - R (0) I .

3.3.2 Derivation of Levinson Algorithm for

Multichannel Yule-Walker Equations

Tt is assumed the solution of m-1 order forward predictors (3.3.12)
Al (D),i=12,..,m-1

are already available. By increasing

=1
A, =Y R (m—-DALL () with A;L(0) =1 (3.3.14)
i=0

as last row to (3.3.12), we can get
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[ R.(0  R,(-D R, (-(m-1) R.(m) I [
R (D R.(2) - R, (-(m-2) R ((m-D)| AL(D 0
R_(m-1) R _(m-2) R_(0) R_(-) |[AZ (m-]) 0
| R.(m R, (m-1) R.(M R.(0) 0 | [ A
(3.3.15)
Also it is assumed the solution of m-1 order forward predictors (3.3.13)
Al (D),i=12,.,m—1
are already available. By increasing
A = ERH (- kYA (i) with A”T (0) =1 (3.3.16)
as first row to (3.3.13), we can get
[ R.(O  R.(-D R, (-(m-1)  R.(-m) o | [aA]
R.(D R.(2) - R (-(m-2) R (~(m-1)| A ,m-D) 0
R, (m-1) R (m-2) - R,(0) R.(-D AL 0
| R.(m) R, (m-1) R..(D R..(0) I | =
(3.3.17)

Multiply (3.3.17) by the L x I matrix K/', then add it to (3.3.15),
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Aﬁ = 'E{HK;T

[ R0 R (-I) - R (~(m-1) R (=m) |
R (D R.(2) « R (~(m=2)) R (~(m-1)
R_(m-1) R, (m-2) - R_.(0) R_(-1)
R R_(m—-1) - R_(1 R_(0
=) _ ”‘(m : I ”E) o =(0) (3.3.184)
1 0 =7 [ AL
AL | AL Gm-D) 0 0
< + Kf L=| ¢ [+]| : Kf
Allm-D| | A0 0 0
Lo JL 1 | LA E
- R(0) R,.(-D) - R (-(m-1) R,(-m) ]
R.(D R, (2) - R, (-(m=2)) R (~(m-1)
R (m-1) R, (m-2) - R..(0) R,.(-1)
R R_(m-1) - R_(1 R, (0
@ o (1) =(m=1) o ey «(0) (33.18b)
I s+ ALK
AT (D) + AT (m-DKZT 0
AT (m-1)+ A (DKL 0
L Kf i _Ai + zfn—lK{nT_
compare this equation with mth order forward predictor,
CR_(0)  R,(D) o Ry(-m-D) Ry-m T 1 ] [E]]
R, D R.(2) - R, (-(m=-2) R (~m-D)| AFD 0
R, (m-1) R,(m-2) - R_(0) R.(-) | A (m-1) 6
| R (m) R (m-D - R.(D R,(0) | AL(m) | [0
(3.3.19)
it must be true that the last equation on right hand gives
(3.3.20a)




KJ =z}, )'A]
Also the first equation results in
HALK

z/ =%/

m—

and the solution must satisfy

Al =

A£—1(i) + KgAfn—l (m—1)
K i=m

i=12,.,m-1

In a similar procedure we can generate the equations

T R,(0) R_ (-1 R, (~(m-1) R, (-m)
R, (1) R (2) R, (~(m-2)) R, (-(m~-1)
R, (m-1) R_(m-2) R, (0 R (-1
. R, (m) R_(m-1) R (1) R0
T 1 o0 ) =] [ AL
AL Q) Al (m=1) 0 0
3 : K/ + : b= 1 KT+
AT (m-1) AT 0 0
i 0 ] i I 1) LAL ] Py
[ R.(O) R, (-1 R (-(m-1)) R_(-m)
R_ (D R_(2) R, (~(m-2)) R_(-(m-1))
R _(m-1) R_(m-2) R_.(0) R_(-1)
R (m) R (m~1) R (1) R, (0)
] K | [Z0.KL +AL]
AT (DKL + AL (m-1) 0
Al (m=DKT + AT (D) 0
i I | IALKT+20

,J

(3.3.21b)

(3.3.22)

(3.323)

(3.3.242)

(3.3.24b)




which should represent the equations for the mth order backward predictor given as
following,.

[ R_(0) R, (-D) - Ry(~(m-1) R, (-m) | A%@m) | [0
R.(1) R 2 - R.(~(m-2) R (~(m=1)|AT(m-1)| |0
R, (m-1) R, (m=2) -  R_(0) R, (-1) A (D) 0
| R.(m) R (m-) - R RO | 1 | [=Z]
(3.3.25)

By the same argument as forward predictor, following results can be given.

Al =-E/ K (3.3.262)

K7 =—(z/,]'A" (3.3.26b)

£ =% +AKT (3.3.27)

AP (DH+KEAL (m-i) i=12,...m~]
AL (i) = { w )+ Ky A (=) 112 (33.28)
' K, i=m

Because A’ = A/ so that (3.3.26b) becomes

K =—(x/ )" A% (3.3.29)
Also by put (3.3.26a) into (3.3.22), becomes

¥/ =%/ ¥/ KUK/ =%/ ([I-KTK7) (3.3.30)
and similarly by put (3.3.20a) into (3.3.27), becomes

¥h =y 3 KIKY =% (I-KJKY) (3.3.31)




The algorithm is initialized by finding the solution for the first order linear predictors.
From (3.3.12) and (3.3.23), the first order forward predictor coefficients are given by

AT ) =K =R (0)) R () (33.32)

and from (3.3.13) and (3.3.28), the first order backward predictor coefficients are
given by

AT =K =~(R,.(0)) 'R, (-] (3333)

Also from (3.3.12), the first order forward prediction error power matrix can be given
as following.

/=R _(0)+R_ (DA (D)
=R, (0)-R,(OATDAT ) (3.334)
=R, (O-KK{)

Similarly, from (3.3.13), the first order backward prediction error power matrix can
be given as following.,

L =R_(0)+R (DA (1)
=R_(0)-R_(OHA (DA (1) (3.3.35)
=R, (O -K/K')

3.3.3 Summary of Levinson Algorithm for

Multichannel Yule-Walker Equations
Initialization:
A M =K{" =-(R.(0) ' R.(D

AT =K =R (O) R, (-]

I/ =R_(O)[-KK/)
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I’ =R (OI-KK)

Iteration for k=2,3,...,m

Reflection coefficients matrices:

m=1
N, =Y R (k—DAL (i) with AL, (0)=T

i=0
Kf = _(22»1 )71 A{

Ky = (=) Al

Predictor coeflicient matrices:

Af (1) — A{—z(i)'{‘ K{Ai—l (k - i) i=
* K/ i=k
* K: i=k

Prediction error power matrices:

=f ==f,(1-KK])

£ =2}, (- KK

1,2,..,k-1

L2,..,k-1

The solution to the multichannel Yule-Walker equation is

AN =Al (D i=12,..,m

(3.3.36)

(3.3.37)
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3.34

Flow Chart

begin

Y.

Initialization of
variable matrices
A A sigmagsigma,

k==m

Yes
¥

k=k+1

Calculate reflection
coefficient matrices

delta, K, & K

Y.

Calculate predictor
coefficient matrices
A& A

h 4

Calculate predictor
coefficient matrices
sigma, & sigma,

A

No——»

A 4

Get final solution
A, and sigma,

end

« Figure 9 Flow chart of multichannel Yule-Walk equation




3.3.5 Multichannel Spectral Estimation
For a given white noise vector with px p covariance matrix X, when apply it to a
multichannel linear system with transfer function matrix L(z), The cross-spectral
matrix of output vector is given as following.

$(z) = L(z)ZL.(2) (3.3.38)

For multichannel AR model,

L(z)= (Ip + i A(i)z"')“ (3.3.39)

where A(7),i=12,..,m are the results of multichannel Yule-Walker equation. By
evaluating S(z) on the unit circle, i.c., z=¢’*, the cross-spectral matrix is obtained

as following

S(w) = L(®)EL. (w) (3.3.40)

Furthermore, if we can get £ = GG”, then transfer function can be given by L(2)G ,

we can get S(@) from p-channel white signals with covariance matrix £ =1 .

3.3.6 Computer Simulation Exampie

Example: The process that is to be considered is a real two channel AR(1) process
with parameters of

-0.85 0.75 ] (3.3.41)

AW {— 0.65 —0.55

r=1 (3.3.42)

Results:
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Using two set 10000 point white data as input signal, from measured output data
of x1 and x2, by a MATLAB program, we can get results shown as following.

0 0 23.1180 4.5267
R_(0)= 1 (0 ny (0 _ (3.3.43)
£, (0) £y (0) 45267 19.8562
1 1 16.3072  17.4581
R. (D)= ) ) 7438 (3.3.44)
1@ ) (-10.9915 13.8245
-1 -1 16.3072 —10.9915
Rxx(—]_): rll( ) l"'12( ) — (3.3.45)
r (-1 ro(-1)) (174581 13.8245
A= ( (R.(O)'R (D)T_ —0.8518 0.7477 (3346)
h x =ML 20.6478  —0.5486 o
~0.8518 ~0.6478
K™ =-(R_(O)Y'R_(1) = 3.3.47
{1 =-R O R0 (0.7477 -0.5486J (3.3.47)
—0.5581 —0.6404
KY=—(R_(0O)'R_(-D= 3.3.48
! = RO R (D [—0.7520 —0.8422J (3345)
~1.0085 —0.0070
=R, (O{I-K'K{ )= (3.3.49)
~0.0070 —0.9639

From (3.3.46), we can see a good estimation result of A(1) is achieved.

Graph of calculation results
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« Figure 10 Power spectral density of x1
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« Figure 11 Cross power spectral density of x1 and x2
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«Figure 12 Cross power spectral density of x2 and x1
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« Figure 13 Power spectral density of x2
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« Figure 14 Coherence between x1 and x2

3.4 Whitening of Multichannel Random signal:
Multichannel Prediction Error Filter

In previous section, it was seen that a multichannel random signal can be represented
as a output of a linear system driven by multichannel white noise,

White input . Output
. signal vector
signal vector &)
(k) ’

Linear System
L(z)=D"(z)

« Figure 15 AR modeli for random processes with transfer function L(z)

where the linear system has a autoregressive (AR) model transfer function matrix

given as following.

73



D(z)=1, +iA(i)z-f

L(z)=D"(2) = [Ip + iA(z’)z‘i ]

Here we think about the inverse problem. For a given multichannel random signal as
input signal, can we find a linear system which produces corresponding output of
multichannel white noise? The answer is very easy. If a multichannel random signal
can be represent by AR model of Figure 14, then its inverse system is used to get
multichannel white noise as shown in following.

Input signal White output
vector signal vector
x(k) e(k)

Linear System
D(z)

» Figure 16 Whitening filter with transfer function D(z)

Because
S(z)=L(z)XL.(z)
The spectral matrix of output signal is given by
S, (D)=L (2)8(z)L. ' (z) =L (3.4.1)

As we have mentioned, because T is a symmetrical matrix, we can decompose it into

¥ = GG, then transfer function can be given by L(w)G, from p-channel random

signal, we can get multichannel white signal with covariance matrix X =1 .
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S,.(2) = (L(z)G) 'S()(G'L.(2))
— G (2)S(z)L. 7 ()G (3.32)
=1

From transfer function matrix

D(2)=1,+> A()z"

=1, —z‘l(umz_lA(i+1)z—i] (3.4.3)
=1,- z7P(2)

where
P(z)= —mz_l A(i+1)z™ (3.4.4)

This system is called multichannel prediction error filter (MPEF)”, its block diagram
is shown in Figure 17, in which the delay operator is a diagonal matrix of delay.

x(2) &(z)

« Figure 17 Block diagram of multichannel prediction error filter

The transfer function matrix P(z) is a multichanmel FIR filter as shown in (3.3.4).

Let’s have another look of this from frequency domain.

For the first step, from Figure 17, the transfer function of whole PEF is given as
following.
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PEF(z)=1-z"P(z) (3.4.5)
Suppose that spectral density matrix of input data can be factorise as following.

S, . (z)=F(z2)F ' (z7) (3.4.6)

The optimum least squares value for P(z) can be written as

P,.(2)=1{S,.(F )" LF(2) (3.4.7)
where {}. 15 used to denote the causal part. Because

S,.(2)=z8,,(z) =2F(2)F (z7) (34.8)
SO we can get

P, (2) = {zZF(2))}.F ' (2) (3.4.9)

If the matrix of spectral factors is written as

F(z)=F,+Fz" ' +F,z7 +.. (3.4.10)
so that
{zF(z)}, =F, +F,z7' +... = z2(F(z) - F,) (3.4.11)

Thus we can get

P, (2) = z(F(z) - F)F (2) = z(I - F,F ' (2)) (3.4.12)

PEF,,(z)=1-z"P,,(z) =F,F ' (2) (3.4.13)

opt

S..(2) =PEF,,(2)S . (2)PEF,,(z ")
=FF'(2)F)F (zHFT(zE,’ (3.4.14)
—FF,
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which has no concern with z, This means that error signals are white but
correlated signal. The second step is use to decorrelate the output signal of PEF

by using inverse matrix of F,, so finally we can get a uncorrelated, unit

variance, white signal by a system shown in Figure 18.

x(z) e(z)
' PEF  (2)

« Figure 18 Degorrelation filter using prediction error filter




Chapter 4 SYSTEM

 IDENTIFICATION BY
~ SUBSPACE THEORY

In this chapter, the identification problem for a multiple input multiple output system
is discussed. From input data and output data, the subspace method can estimate the
coefficient matrices of state space expression of the system, from which its
multichannel transfer function can be obtained. At first, two basic theorems are
described. Then based on these theorems, the method to determine the coefficient
matrices of state space equation are shown. Also in order the performance of this
method, a numerical example is shown, comparing the output spectral of the original
system and the estimated system.

4.1 Basic Theorems

411 Definitions

The linear time invariant system is assumed to be represented by state space equation

given as following.

X,,; = Ax, +Bu, +w, @1.1)

y,=Cx, +Du, +v,

where x, e R”,u, e R",y,,v, e R’ and w, € R". The unknown system matrices
A,B,C,D have appropriate dimensions. The process noise w, and the
measurement noise v, are zero-mean white noise sequences, statistically

independent of the input u, . They satisfy
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E{[‘;’ffj(w; "f")H‘é E]-% o

Here, we would like to give several definitions of the system these will be useful in
description of two import theorems.

1. extended observability matrix

C
CA
I, =| CA’ (4.1.3)

CA™
2. the reversed extended controllability matrix
A = (A“B ATB .- AB B) (4.1.4)

3. the low block triangular Toeplitz matrix

D 0 0 e 0
CB D 0 I |

H,=; CAB CB D e 0 (4.1.5)

CA™B CA™7B CA™B - D

4. block Hankel matrix of input signal

u, u u u,
u, u, u, u,

Upy=| W ;- Uy, (4.1.6)
u, u o, Wy

where 0fi-1 denotes 1 column component from ug 10 ugs.

5. block Hankel matrix of output signal

79



Y{)[i—l =

Yo Y1 Y2

Y. Y. ¥
Y. Y- VY,
Yoo ¥: VYin

4.1.2 Theorem1?

A 2i row block Hanke! matrix of input signal can be shown as following.

Up = 0y w0 0y,

uz’ uz‘+l ll1‘+2

Uz Uy Wy,

This matrix can be partitioned as

U _ UD\:‘—]
oz-1 = U_p‘_1

Also a 2i row block Hankel matrix of output signal can be shown as following.

YD\Zi—l =

Yo ¥, Y
Y. Y. e
Yo ¥ Y
y[‘ Yi+1 YJ+2

Yoir Yu Yan

This matrix can be partitioned as

Yopf—l = |:

Yo;m
Yz|2:—1

Y
Y;
Y i

Yirj2

u x|

u,

i+ =2

i+ =1

Wy,

yj"l
A

yi+j—2
Yi+j—1

Yoirj2

4.1.7)

@.1.8)

(4.1.9)

(4.1.10)

@.1.11)
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The matrix input-output equations are defined in the following theorem,

YO\:'——I =" X, + H:'UU!:'—I + Yeslf-l
Yy =TX, +HUp, , + Y, 4.1.12)
X, = A')(0 + A,.U0|,-_1

where

X2 " XH—j—]) (4.1.13)

4.1.3 Theorem 219

Here we introduce the projection of the future outputs onto the past and future inputs
and the past outputs. The results can be described as a function of system mairices
and the input-output block Hankel matrices.

We define the matrix Z,,Z ., as following.

7 =Y, Ui (4.1.14a)
i 42i-1 Y0|,-_1
U,,..
i+1 =Yr+1zr—l/ ( ;;2[ 1] (4.1.14b})
ol

where A/B = AB”(BB”) 'B . The row space of A/B is equal to the projection of

Z

row space of A onto the row space of B. (4.1.14a) corresponds to the optimal

- . . 2,
prediction of Y, given Uy, , and Y, , in a sense that ”lez,._l _Zf”p is

U
P s . 0Ri-1
minimized constrained to row space Z, — row space [ Yl .
oi-1

By assume certain conditions, it can be shown that

Z = rif(i + HiUi\21'—1 (4.1.15a)
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~

Z, =I_X

i+l

+H,_ U, (4.1.15b)

i+1
where state vector is given by

X,
%..)=[0, 6, 8,]Uy, lc®™  @411s)
YOEI-1

[k

i i+] i+2

with [, 8, 6,] isa function of system matrices and X, =X, / Y -

4.2 Determine the System Order

Let T be any rank deficient matrix of which the column space coincides with that of

T',. Calculate the singular value decomposition

T 0
T = (U, Uz)[ 0‘ OJVT @2.1)

Since T is rank of n, the number of singular value different from zero will be equal
to the order of the system.

4.3 Determine the System Matrices

From theorem 2
if = r:(Zi _HiU1’|2i—1) = Fi+Zi - ri+HiU1’|2i—l (4.3.1a)
f{m = r:—l (Zm - Hi—lUf+1§21—l) = r:—IZHl - F:—lHi—lUr‘+l|2i—1 (4.3.1b)

Here only H; and H;.; are unknown. From

L
Uizt
X =AX, + BUi\t’ +| Yo (4.3.22)

82



1

Umzi-l
=CX,+DU, +| Y, (4.3.2b)
X,

i

Y,

i

where ()"L means orthogonal complement. (cf. section 4.5.3) we can get

4
)"( A B UD\Zi—l
o | o [—jX,- s (ﬂJUW + Y, @3.3)
Y, C D X
Then from
I'\Z, = Xm - FLIHi—lUHlIZi—I (43.4)

By substitute (4.3.2a) into this equation, we can get

L
U0t2i—l
FT—IZHI =AX, + BUI|r' + YOE:‘—] = r:—IHi—IUHuZi—l (4.3.5)
also using (4.3.1a) and (4.3.2b),
L
.z A B Yo
(%J = (EJ(F:Z;' - Fi+HiUi\2i—1) + (BJU:-;;‘ + YD|1‘—1 _r:—lHi—le’HiZI—l
ili 3
X,
(4.3.6)
L
o/ A K Vo
[ et 29 1 [__]]_":Zi +| —1Z Ui|2i—1 +| Z, (4.3.7)
YiEi C K, X

!

In right side of this equation, from coefficient of 1% term, A matrix and C matrix
can be obtained exactly. Then coefficient of 2nd term, which is a set of linear
equation of B and D, matrix B and matrix D can be solved in the means of least

mean square.
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4.4 Example by N4SID of MATLAB

An example as following is considered for system identification by subspace method
using the MATLAB function N4SID in system identification toolbox. This two
inputs and two output system is represented in state space model

X, =Ax, +Bu, +Kyv,

44.1)
y,=Cx, +Du, +v,
where coefficient matrices are assumed to be given as following.
0.67 0.67 0 0
-0.67 0.67 0 0
A= (4.4.2a)

0 0 =067 -0.67
0 0 0.67 -0.67

[ 0.6598  2.1256
1.9698  3.1201
B= (4.4.2b)
43171  1.2050

|-2.6436 -1.2356

[~ 0.5749 1.0751 —0.5225 0.1830
C-= (4.4.2¢)
| 0.5687 23011 07520 =-0.1721
—0.7139 1.2504
= >0 (4.4.2.d)
0.5478  0.9854

and with K as the Kalman gain matrix

02820 —0.3041
—0.7557  0.0296

K = (4.4.2¢)
0.1919  0.1317

-0.3797 0.6538

and v, and vy are independent white noise.




Create a input data and output data set of this system, the give these data to a
MATLAB function to calculate coefficient matrices of example system . When
program is Tun, a prompt of select model order is given as following. Generally we
should choose an order such the singular values for higher order comparatively small
in this picture and a default order is given in red.

S

. Defailt Choice

« Figure 19 Singular values of the system

When we select default of order=4, calculation results can be given as following.

0.6076 —0.7083 -0.1127 0.0459
0.6216  0.7184 —0.2592 -0.0921

A, = (4.4 3a)
—0.0755 0.0197 -06162 0.7431
~0.0728 —0.0126 -0.6015 —0.7105
-9.8771 -15.9830
_3.6107 -6.5498
= (4.4.3b)

° 1-6.9798 -0.6399
-48123  -1.1468




(4.43c)

e

-0.1740 0.1443  0.2975  0.1241
—0.4955 -0.0946 -0.3505 -0.0789

T (4.4.3d)
10 0 "

0.6653 —1.6501
~1.1852 —0.1693

K, = (4.4.3¢)
~0.0973 —0.1051

—-0.7805 0.6058

In order to check the performance of the results, we calculate the output signals for
both original system and estimated system with same input signals. Then we get
spectral data for both system and compare these results in graph shown in Figure 20 ~
Figure 23.
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« Figure 20 Power spectral density of channei 1
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« Figure 21 Cross-spectral density of channel 1 and channel 2
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« Figure 23 Power spectral density of channel 2

4.5 Appendix: Matrix Subspace and Projections

4.51

Definition 1: The norm of a vectorx € R", denoted by "x

Orthogonality

square root

] =x"x (4.5.1)

Suppose now that x and y are two vectors in M2, and let ¢ =x—y. By the law of

cosines for the triangle, we have

Jef ==y 1" =" +y1" ~2xllyos (4.52)
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But from definition of norm,
Ix -y = -y -y =[x -2x"y +|y[ (4.5.3)

Substitut (4.5.2) into (4.5.3) and solving for cos & yields

T
cost = ﬂ_ (454)

Rl

If the angle @ = 90", then cos@ = 0, from (4.5.4) this means that x'y=0.

Definition 2: Two vectors X,y € " are said to be orthogonal if their inner product
x'y=0.

Definition 3: Two subspaces, S1 and S2, of x e R” are said to be orthogonal

subspaces if for any x€ S, and any y € S, the vectors x and y are orthogonal. If

X,,...X, is a basis for Sl and if y,,....y, is & basis for S2 and, then S1 and S2 are

orthogonal if xifyj =0,i=1..,p.j=1...9.




4.5.2 Orthogonal Projections

«Figure 24 y is the best approximation to y of any vectorin R

The Importance of orthogonality comes from its use in deriving optimal
approximations. The optimal solutions can be expressed in the language of lincar
algebra as follows: the shortest distance between a vector and a subspace occurs
along a vector that is orthogonal to the subspace. Figure 24 shows a vector y and a

subspace R. Of all vectors that connect the plane and vector y, the vector y, is the
one with smallest norm. The vector y, is orthogonal to the subspace R. The vector

Y, is the vector in R that is the best approximation to y . The vector y , is called the

projection of y onto R.

Assume that the subspace R is defined as the subspace spanned by a given set of basis

X, X,. The question we would like to answer now is this: given a vector y and a

basis for the subspace R, how can we compute y ,, the projection of y onto R.
The answer is quit simple, and it comes from the fact “error vector”
Y. =YY, (4.5.5)

is orthogonal to the subspace R, which means that error vector must be orthogonal to
every vector in a basis for R.
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¥, X, =0,i=1..7 (4.5.6)

Because y, is a vector in subspace, so that y, can be expressed as a linear

combination of the basis x;,...,X,, that is

Y, =X + X, ..t X, (4.5.7)
or in matrix form
&
y, = Xe, whereX =[x, - x,]anda=|: (4.5.8)
o

r

So what we need to find is the expansion coefficient o that satisfy the orthogonal
conditions.

To be specific, substitute (4.5.5) into (4.5.6) we can get
(y-y,)'x,=0,i=L..r (4.5.9)

Then put (4.5.8) into this equation, we can get

(y—Xe')'x,=0,i=1,..r (4.5.10)
or

(y—-Xa' ) X=0 (4.5.11)
or

yX=a"X"X (4.5.12)

So we can solve above equation for the optimal coefficient vector as follows.

o =(X"X)"'X"y (4.5.13)
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Finally we can get the projection of y onto R as follows.
v, =Xo =X(X'"X)"'X"y =Py (4.5.14)

where the matrix P, = X(X"X) 7' X" is called the orthogonal projection matrix onto

subspace R. Also we note that all orthogonal projection matrices have two properties
as following.

A projection matrix is symmetric: P, =P, .
A projection matrix is idempotent: P P, = P;.

4.5.3 Orthogonal Complement

Suppose we are given r linearly independent vectors in R",x,,...,X,, where r<n.

Because the set R of all linear combinations of r linearly independent vectorsx,,..., X,

is a r-dimensional subspace of R”, we can have that

R={all linear combination of Xx,,...,X,}

is a subspace of R". Given any subspace of R”, we can always define its orthogonal
complement R* as

R*={ye®R" suchthat y'x=0 forall xe R}

That is, elements of R* are orthogonal to every vector of R. From

.
X = Z & ;X ; then
i1

yszyTZaixi =ZaIyTxl, =0 (4515)
i=l i=]
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Chapter 5 ANALYSIS OF

~ MULTICHANNEL SPECTRUM
' AND TRANSFER FUNCTION

In this chapter, as a practical application, a analysis of measured data set of car noise
is reported. The experiment condition and sensors position etc. are given in first
section. Then spectral factorisation and spectral estimation discussed in previous
chapter is applied to a 2 channels road noise data, which are selected from a 6
channels measured data set in car. It is confirmed here that the road noise can be
whitening and uncorrelated by proposed method. Also from 2 channels input and 2
channels output measured data inside a car, the transfer function of between 2
loudspeakers and 2 microphones is identified by subspace method. These calculated
results are shown in both numerical values and graphs.

5.1 Measurement of Road Noise in Car

A measurement experiment of the road noise inside a car has been made by T. J.
Sutton of ISVR in 1992'Y. As a practical problem of multichannel spectral
factorisation and system identification, we will use these methods described in
previous chapters to this measured experimental data set.

51.1 Data Set of Road Noise

General experiment condition:

Vehicles: Citroen AX, was driven in 5™ gear at a steady speed of 60 kph over a rough
surface (large chippings)

Measurement of road noise sources

Number of sensors: 6 accelerometers.
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Position of sensors: In this particular front wheel drive vehicle, all six accelerometers
were placed close to the front wheel.

Filename: CITO1.mat

Accelerometer 1: RH front floor close to rear wishbone connection. (z, vertical)
Filename: CIT02.mat

Accelerometer 2: RH wishbone (body chassis). (z, vertical)

Filename: CIT03.mat

Accelerometer 3: RH hub (y, lateral)

Filename: CIT04.mat

Accelerometer 4: LH front floor close to rear wishbone connection. (z, vertical)
Filename: CIT05.mat

Accelerometer 5: LH wishbone (body chassis). (z, vertical)

Filename: CIT06.mat

Accelerometer 6: RH hub (y, lateral)

Measurement of interior noise near ears of driver

Number of sensors: 2 microphones.

Filename: CIT07.mat

Microphone 1: RH microphone (out ear position)

Filename: CIT08.mat

Microphone 2: LH microphone (out ear position)

All of 6 accelerometers and 2 microphones are sampled simultaneously with
sampling rate of 1kHz, The measurement duration is 5 minutes.

5.1.2 Data Set for Interior Response

General experiment condition:




Vehicles: Citroen AX

2 interior speakers: RH speaker, LH speaker
Number of sensors: 2 microphones.

Microphone 1: RH microphone (out ear position)
Microphone 2: LH microphone (out ear position)
Filename: tf2.mat

LH speaker is driven by white noise, LH speaker and 2 microphones are sampled
simultaneously with sampling rate of 1kI1z. The measurement duration is 77 seconds.

Column 1 time in second
Column 2 volts to LH speaker (white noise)
Column 3 RH microphone
Column 4 LH microphone
Filename: tf3.mat

RH speaker is driven by white noise, RH speaker and 2 microphones are sampled
simultaneously with sampling rate of 1kI1z. The measurement duration is 77 seconds.

Column 1 time in second
Column 2 volts to RH speaker (white noise)
Column 3 RH microphone

Column 4 LH microphone
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5.2 Spectral Analysis of Road Noise

5.2.1 Spectral Analysis of Road Noise

From Sutton’s data set, we selected accelerometer 1 and accelerometer 4 as a two
channel random signal data. By using multichannel Levinson algorithm, a 15-order
innovation system with AR model can be achieved.

AR model coefficient matrices of multichannel road noise

As we have shown in (3.2.1), the autoregressive (AR) model of a random data is
described by multichannel transfer function shown as following.

L(z)=D"(z) =(1p +iA(i)z-"J_

By a MATLAB program, The coefficient matrices are obtained as following.

-1.6099 —0.1517
A(l) =

~0.2895 —1.4837

[—3.7685 —0.1069]
A(3) =

|—0.4674 —3.3332;

[—5.3983  0.0336 |
A(5) =

|—0.6336 —4.4727 |

—5.3749  0.3880
A(7)=

-0.5717 -3.9267

—0.40831 0.5480
A(9)=

—0.3692 -2.54356

-2.2475  0.4593
A =

~0.1773 —=1.1170

A= 2.6712
"~ 102973
Ad) = [4.7637
- 0.6265
A(6) = [5.6054
05952
AS) = 4.9354
1 0.4432
3.1912
AlD=| 5969
1.5430
AUD=11 0746

0.1047
2.4969

0.0655
4.1467

—0.2568
4.4061

—0.5366
3.3777

—-0.5711
1.7629

~-0.3749
0.6944
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-0.8320 0.2184 }

0.4071 —0.1458
-0.0797 —-0.2692

A(l4)=
) {0.0095 0.1368

A(13) {

AQLS) = —0.1820  0.0900
1200121 -0.0176

Also a covariance matrix L for input white noise vector is obtained as following.

_[46.5340 8.5870
"1 85870  52.94

Comparison graph of spectral density between original signals and estimated signals.
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« Figure 25 Power spectral density of x1
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« Figure 28 Power spectral density of x2

In order to give fine selection of system order, the graph of normalized mean square
error (NMSE) vs system order is given as following.

spectral NMSE vs AR model order

nmse

order

« Figure 29 Normalized mean square error (NMSE) vs AR model order
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5.2.2 Whitening of Road Noise

As we have discussed in section 3.4, by multichannel Levinson algorithm, for a given
multichannel random signal, we can express its spectral as following.

S (2) =L(z)ZL.(z)
=L(2)GS,,(z)G"L.(2)
=A7(2)GS, (2)G"A.7(2)

where
S.(2)=1

So by using an inverse system of calculated AR model, we can get a uncorrelated
white noise with unity cross-spectral density matrix as following.

S_(2)=G"A(2)S,.(D)A.(2)G
=1

By a MATLAB program, for given 2 channel road noise, we can get a 2 channel
whitening output signal, that have no correlation each other as shown in following
Figure 30 ~ Figure 33.
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« Figure 30 Autocorrelation of u’
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« Figure 31 Cross-correlation between u1 and u2
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5.3 Interior Transfer Function in Car

5.31 System Identification by Subspace Method

From Sutton’s data set for interior transfer function, we can calculate the interior
response between loudspeakers and microphones inside the car. By a MATLAB
program, we can get coefficient matrices of state space equation of the interior
response, these results are shown as following.

System order=15
A matrix
Columns 1 through 8

0.6990 -0.7083 -0.0447 0.0186 0.0468 -0.0721 0.0444 0.0272
0.6600 0.5977 0.0842 -0.1435 -0.2862 0.2334 -0.1292 -0.0616
-0.0049 -0.0215 0.5606 -0.6745 03082 -0.2425 -0.1365 -0.1442
-0.0078 -0.0665 0.6099 0.5874 -0.0428 0.0060 -0.4649 0.1275
-0.0041 -0.0612 -0.2202 -0.0223 0.6104 0.6331 -0.4049 -0.1149
20.0211 -0.0561 0.1082 -0.3469 -0.2720 0.3240 0.0341 0.5904
0.0158 0.0606 0.1470 0.0723 03929 0.1298 0.4036 0.5383
0.0061 0.0159 -0.0549 -0.0330 0.1415 -0.3391 -0.3526 0.3317
0.0026 0.0010 -0.0008 -0.0096 0.0822 -0.1284 0.0631 -0.2470
0.0001 0.0064 -0.0194 -0.0078 -0.0043 -0.0128 -0.1666 0.1062
0.0000 -0.0054 -0.0055 0.0185 -0.0107 0.0037 0.0943 0.1532
0.0007 0.0106 0.0073 -0.0087 -0.0077 0.0409 -0.1082 -0.0309
-0.0003 -0.0045 0.0036 0.0093 0.0065 -0.0058 0.0672 -0.0160
0.0001 0.0038 -0.0162 0.0072 -0.0334 0.0290 -0.0652 0.1569
0.0006 -0.0025 -0.0005 0.0147 0.0123 -0.0101 0.0651 0.0525
Columns 9 through 15

0.0044 0.0070 -0.0108 0.0077 0.0069 -0.0002 -0.0011

-0.0047 0.0704 0.0114 0.0264 -0.0132 0.1360 0.0099

0.0213 0.1035 0.0097 0.0668 0.0159 -0.0219 -0.0669

0.0976 -0.0548 -0.0920 0.0747 -0.0097 -0.0324 -0.0976
-0.0377 -0.1271 0.0125 0.0074 -0.0533 0.0087 -0.0394

0.0965 -0.3257 -0.0517 -0.2394 0.0049 -0.2315 -0.1240

0.1438 02705 -0.1751 0.1885 0.0413 0.3076 0.0481

-0.4546 -0.2997 0.1209 -0.1734 -0.0964 02662 02573

0.6090 -0.6391 -0.1587 0.0364 -0.0856 0.1539 0.1392
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0.5440 0.3813 0.5760
-0.0310 -0.3054 0.6841
0.0265 -0.0713 -0.0175
-0.0593 -0.0958 0.1028
0.1152 -0.1227 -0.2462
-0.0293 -0.0828 0.0387

B matrix
17.0955 -24.7914
401.8829 -409.2272
46.1383 -223.0384
56.3427 99.0702
-210.9566 16.2255
285.6818 -258.9477
-224.9644 333.8203
208.4473 283.3429
58.3675 80.3301
-273.3494 -27.5378
-44.4296 -97.9605
-116.9186 -91.0131
-34.7278 56.1166
-67.4704 -66.8519
-96.9916 86.0788
C matrix
Columns 1 through 8

-0.2183 -0.2666 -0.2483
0.1765 0.2678 -0.3989

Columns 9 through 15

0.1476 0.2371 -0.1386
02089 0.0349 -0.1556

D matrix

0 0

0 0
K matrix

0.0379 -0.1698
-0.2599 -0.0865
0.0527 -0.4502
-0.0146 -0.1291
-0.1275 0.0179
-0.0467 -0.1833
-0.2151 -0.0564
0.0447 0.1332

-0.3819
0.5647
0.3344

0.0091 0.0289 0.1619
-0.0524 0.0528 -0.1644
0.7512 -0.3828 0.4994

-0.3964 0.6372 0.5607 -0.5080

0.0612
-0.2941

-0.2691
0.0381

0.2576
0.0846

-0.0292 0.2416 0.0865
0.0298 -0.2901 0.4095

-0.3931 0.0486 -0.4259 0.1147
0.2742 -0.4703 -0.2387 0.2794

0.0157 03043 -0.1014
0.0670 -0.1935 -0.2400
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0.0510 0.6015
-0.1051 0.2105
-0.0672 -0.1091
0.1062 -0.0983
0.0851 0.0383
0.0393 0.0214
-0.1084 0.0164

Comparison of transfer function
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« Figure 34 transfer function from loudspeaker 1 to microphone 1
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« Figure 35 transfer function from loudspeaker 1 to microphone 2
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» Figure 36 transfer function from loudspeaker 2 to microphone 1
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- Figure 37 transfer function from loudspeaker 2 to microphone 2

Fine system order selection

In order to give a fine method for system order selection, we calculated
NMSE( normalized mean square error) , which is defined as following, for each

system order.

nmse = <= ’:1p , with p =2,m=10000

The results is shown in Figure 38 ~ Figure 39. These results show that it is better to
select system order n=10 for a rough precision, and it is better to select system order

n=20 for a fine precision,
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curve of nmse vs order
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« Figure 38 Curve of NMSE normalized mean square error) vs system order

curve of nmse vs order (detail)

0.1
0.09
0.c8
0,07
0.08

0.05

nmse

0.04
0.03
0.02

order

» Figure 39 Detail curve of NMSE normalized mean square error) vs system order
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Chapter 6 APPLICATION TO

 MULTICHANNEL ACTIVE
NOISE CONTROL SYSTEM

In this chapter, based on these results of whitening of multichannel input signals and
system identification of control plant, an active noise control system is constructed.
For the assume of state space model of control plant, a adaptive control algorithm is
derived based on steep-descent method, the performance improvement comparing
with conventional method is discussed by a computer simulation.

6.1 Active Noise Control: Principle and Background

Active noise control (ANC) involves an electroacoustic system that cancels the
unwanted primary noise based on the principle of superposition; specifically, an
antinoise of equal amplitude and opposite phase is generated and combined with the
primary noise, thus resulting in the cancellation of both noises. The first work of
ANC system is reported by Lueg in 1936'. After that by H. F. Olson and E. G. May,
which uses a carefully designed amplifier marched to the response of the error sensor
and secondary source in 1953'. Also a feedback system is reported by Conover as a
means of reducing a transformer noise in 1956, Since the characteristics of noise
source and the environment are varying with time, therefore an ANC system must be
adaptive in order to cope with variation. A modern type of ANC system utilizing
adaptive filter, which adjusts their coefficients to minimise an error signal as a
controller, has been developed for noise cancellation in air-conditioning duct
system'>'®. Afler that ANC based on adaptive filter theory is rapidly becoming the
most effective method to reduce the noises that can otherwise be very difficult and
expensive to control. ANC system is usually classified into two categories:
feedforward system and feedback system, as shown in Figure 40(a) and 40(b).

The feedforward system requires a reference signal which is strongly related to the
primary noise. The reference signal may be taken from the source itself or by
measurement of the primary noise field. This signal is passed through an adaptive
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controller and on to the secondary loudspeaker. An error microphone measures
residual noise field due to the primary and secondary sources combined, and the
controller is adjusted to obtain the best noise reduction at the error microphone. Any
adjustment of controller coefficients can happen slowly and so the stability problems
with feedback systems are avoided. Thus it is not necessary to put secondary
toudspeaker close to the error microphone. The drawback with feedforward approach
is needed to obtain reference signal which are well related to the primary noise to be

» . O

F —— |

(@

e
£ w|

(b

« Figure 40 Two categories of ANC system (a) Feedforward system (b) Feedback system

The feedback system not requires a reference signal measured from the primary noise.
i.e., it only uses an error microphone to measure the residual noise. The controller
uses adjustable negative gain feedback loop to drive the acoustic pressure at error
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microphone to zero through secondary loudspeaker. A significant advantage of this
strategy is that no prior knowledge is required of the primary noise to be cancelled.
The main disadvantage is that for loop stability the secondary source needs to be very
close to the error microphone. Many applications are developed one after another,
such as reduction of noise radiating from the outlet of an air-conditioning duct, active
electronic mufller for automobile exhaust noise control, and active headset.

6.2 Multichannel Feedforward Active Noise Control

System

6.2.1 Basic Architecture

For the noise cancelling problem in an enclosure, in order to achieve satisfactory
performance in a large dimension space, a number of cancelling loudspeakers and a
number of error sensors are used, i.e., a multichannel ANC system is necessary. The
feedforward ANC system consists of a number of reference microphones, a number
of error microphones and a number of cancelling loudspeakers, and a multiple input
multiple output adaptive controller which weight parameter matrix is able to be
updated by an adaptive algorithm. The block diagram of basic feedforward ANC
system 1s illustrated in Figure 41.

d(k) : [N]

Correlated Secondary

Ref:erence Source (k) : [N] Error
Signal : Sensor

s(k) : [L]

Secordary Source
Propagation Space

F(H[NK]) W(k+DK.L]

Adaptive

Secordary Source h
Algorithm

Propagation Space

« Figure 41 Block diagram of feedforward ANC system
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In order to cancel the primary noise d{(k), adaptive controller gives a secondary source
by weighting each reference signal. The secondary source 1s passed to plant, which is
acoustic propagation space, then reach the error sensors, where its combined with the
primary noise, thus resulting in the cancellation of both noises. The adaptive
controller is implemented by a multiple input multiple output adaptive linear
combiner with adjustable weight parameter as shown in Figure 42.

L 4 L 4 St (k)

s2(k)

s3(k)

su(k)

si(k)

s:(K)

sa(k)

su(k)

si(k)

s2(k)

sa(k)

su(k)

b b "

« Figure 42 Diagram of multiple input multiple output adaptive linear combiner

From L-input of reference signals, the s(k)=[s, s, --- s,]" adaptive controller

gives K-output u(k)=[w, wu, - u,]" bycombine cach weight reference signal
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_ * * *

Uy =W, "S5 +W, "8+ +W,; "5
— * % *

Uy =W,y TS+ Wy "5+ kW, TS

(6.2.1)
Uy =W ¥+ Wy ¥5, 4+ Wi ¥,
By defining a K x [, weight parameter matrix as following.
Wi W o Wy
w=|ta W2 W (62.2)
Wi Wi Wi

w wU.MJ,(i= 1,2..K,j=12..L). This equation can be

where W, = [w 2

i1

write into a matrix from as following.
u(k)= W *s(k) (6.2.3)
The sound propagation space for secondary sources is described by multiple input

multiple output state equation plant model given by following equation.

x(k+1)= Ax (k) + Bu (k)
y(k)=Cx(k)+ Du (k) (6.2.4)
x(0)=10,,

where x(k) is a M degree state vector and y(k) is a N degree output vector and A, B,
C, D are coefficient matrix of state equation. When a stochastic noise vector d(k) is
added, the ANC system makes cancellation by output vector y(k), and the residual
error noise vector e(k) will be detected by error sensors, it is given by

e(k) = d(k) - y(k) (6.2.5)

Suppose that the cost function is defined by mean-square-summation of error signals
as following.

J = E[i‘ efn(k)} = Ele(k) e(i)] (6.2.6)

Our problem is to minimize this cost function by adjusting weight parameters of the
adaptive controller.
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6.2.2 Equivalent System

Here we will give an equivalent system description for feedforward ANC system
shown in Figure 41. If we rewrite the weight parameter matrix into a vector form as
following,

w:[wn Wy oom Wy Wy Wy, ot Wy oo Wy Wy o WKL]T (6.2.7)

and if we rewrite input signal vector into a matrix form as following,

5, 08 8 O 0 --- 0 0O 0 --- 0
0 0 0 s s s, 0 0 0
S(k) = : (6.2.8)
0 0 0 00 - 0 s 8, s,
we can get a alternative expression of (6.2.1).
u(k)=S(k)w (6.2.9)
From the state space equation plant model, by denote that
H,=D (6.2.10)
H, =CA"'B, where [ =1,2,3..k (6.2.11)
we can give the output vector y(k) of state equation as following.
.
yiy=[»n »n - wyl =ZHf“(k_l)
) ) =0 (6.2.12)
= > HS(k-Dw= [Z H,S(k - l)}w
=0 1=0
Here if we denote that
k
Z(ky=> HS(k-1) (6.2.13)
=0

then the output vector y(k) is described in matrix form as following.
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y(k) = Z(k)w (6.2.14)

where Z(k) is a N x KL matrix. This equation shows that output vector y(%) can be
given by a production of a pre-processed signal matrix of reference signal vector s(k)
and the weight parameter vector of adaptive controller. So that it can be considered as
a pre-process adaptive filter with KL weight parameters, The block diagram of this
equivalent system is shown in Figure 43.

Reference Pre-processed d(k) : IN]
Signal Reference Signal
s(k) : [L] Z(k): [NKL
A:[MM]
B:[M.K] _
C:IN,M] w:[KL] .
D:[N,K] Error
Sensor
Alternate System of i e(k) : [N]
Secondary Source Adaptive
Controller

Propagation Space

« Figure 43 Equivalent block diagram of Figure 41

The alternate system of secondary source propagation space can be expressed by
following extended state equation.

V(k+1)= AV(k) +BS(%)
Z(k) = CV (k) + DS(k) (6.2.15)
V(0)=0,.

where S(k) is a KxKIL matrix and V(k) is a M x KL matrix. By using
Kronecker product, this equation is able be expressed as following also.

V(k+1) = AV(k) + B®s(k)

Z(k)=CV(k)+ D®s(k) (6.2.16)
V(0)=0,.«

6.2.2 Optimal Solution

From Figure 43, the multiple input multiple output ANC problem is replaced to a pre-
process adaptive filter problem, so we can get Wiener solution easily to show optimal
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weight parameters and minimum value of cost function. By substitute (6.2.5) and
(6.2.14) into (6.2.6), the cost function can be expressed as following.

J= E[i e (k)} = Ele"e]

= E[(d-y)"(d-y)]

= E[d’d-d’'y—y"d+y"y] (6.2.17)
- ela’a]-Ela’y]- Ely"a]+ Ey7y]

= Ela7d]-2E[a"zw + w E[2"Z}w

Here, we denote that

P, = E|d"d] (6.2.18)
R, =E[d"Z] (6.2.19)
R, = E[Z"Z] (6.2.20)

Then we can rewrite cost function as following,
J=P,-2R,,w+w R, w (6.2.21)

which is a quadratic function of weight parameter vector. The differentiation of cost
function with respect to weight parameter vector can be derived as following.

%" =—2R,, +2R,,w (6.2.22)

J . . . .
From e 0, we can obtain an expression related to optimal weight parameter

vector as following.

R,w =R, (6.2.23)

Suppose that R, is a positive definite matrix, we can get the optimal weight

parameter vector, which is expressed as following.
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w =R;'R,, (6.2.24)

when weight parameter vector take its optimal value, the cost function takes its
minimum value as shown as following.

J.=P,-R,,'R}R,, (6.2.25)

And the cost function is also able to be shown as following,

J=J _ +(w-w) R, (w-w") (6.2.26)

6.2.4 Adaptive Algorithm

Based on the steepest-descent method, in order to make the cost function reach its
minimum value, the updating algorithun of the weight parameter matrix is expressed
by following formula.

wik+1)= w(k)—% uvE (6.2.27)

where £ is transient estimation of cost function J in (6.2.6), which is written as

following.
&=e’ (k)e(k) (6.2.28)
and V& denotes the gradient of &, which is given as following,

V§=%=—2%eo’c) (62.29)

Because the y(k) is already given by (6.2.15), % is given as following,

oy(k) _
= LE) (6.2.30)

So that, V& can be given as following.

V& =-2Z" (kYe(k) (6.2.31)
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By substitute this result to (6.2.26), the updating expression for weight parameters
form can be obtained as following.

wik +1) = w(k) + uZ” (k)e(k) (6.2.32)

Gathering (6.2.14) and (6.2.32) together, the adaptive algorithm can be written as
following.

V(k+1)= AV(k)+BS(k)
Z(k) = CV(k)+DS(k)
V(0) =0,

wik +1) = w(k) + pZ” (k)e(k)

This results extend filtered-X LMS algorithm to multiple input multiple output state
space plant model, and its block diagram is shown as following.

wk+1) : [KL]

Reference Pre-processed Error
Signal Reference Signal g Sensor
s(k) : [1] Z(k): [N,KL] e(k) : [M]

A[MM]
E%E w(k):[KL]
D:[NK]

Alternate System of
Secondary Source
Propagation Space

LMS Algorithm

« Figure 44 Block diagram of adaptive algorithm

Then we will have a look at convergence condition of proposed algorithm. From

(6.2.26), we can obtain a different expression of % as following,

VE=2R,,(wk)-w') (6.2.33)
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From (6.2.24) and (6.2.27) we can get that

wk+D)-w =wk)—w + uVE
= (w(k)-w")- iR, (w(k) - w") (6.2.34)
= (1 - ﬂRzz)(W(k) - W*)

So that if we denote that q(%) = W(k) — W then (6.2.34) becomes to following

equation.

qk+1) = (1- R, )Ja(k) (62.35)

Suppose that R, = QAQ™, where A = diag(4,,4,, -, 4,,) is a cigenvalue

matrix of matrix R, . Also if we denote v(k) = Q'q(k), then (6.2.35) becomes

to
v(k+1)=(1-2uA)v(k) (6.2.36)
So it is the convergence condition is
m?x[l -2u4|<1 (6.2.37)

This means that convergence coefficient & should satisfy following condition.

1
O<pu< T (6.2.38)

max

6.3 Improved Architecture of Multichannel
Feedforward Active Noise Control System

It is clear that the adaptive algorithm has great influence on the performance of ANC
system. An effective algorithm called as multichannel filtered reference LMS
adaptive algorithm is reported by S.J. Elliott'” . But when using this algorithm to
update weight parameter matrix, the convergence speed may be limited by correlation
between the reference signals. The best performance can be achieved if there is no
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correlation between individual input signal and each of input signals is white noise.
By this reason we consider that if the correlation between input signals can be
removed. An improved approach is given by Y. Tu and C. R. Fuller'®. They
proposed a adaptive decorrelation filter for preprocessing multichannel reference
signal. But double stage adaptive unit may bring about unexpected slow down of
convergence speed. As we have discussed in section 3.4, by using an inverse system
of AR model, we can get uncorrelated white noise vector from a given random signal
vector. If we can insert the inverse system in front of adaptive controller as a
decorrelation unit, the we can reform the reference signal vector to uncorrelated white
noise vector, this means the input of adaptive controller is uncorrelated signal, so that
the multichannel filtered reference LMS adaptive algorithm will works effectively.
From Figure 41, we can illustrate the block diagram of an improved ANC system
shown in Figure 45.

a() : [N]
Correlated Uncorrelated Secondary
Reference Reference Source
Signal Signal
sk : [L] s(k) - {L]

Decorrelation
Unit

Secordary Source
Propagation Space

FHN.K]) W{k+1)[K,L]

Adaptive
Algorithm

Secordary Source
Propagation Space

« Figure 45 Block diagram of feedforward ANC system with decorrelatoin unit

6.4 Simulation of Noise Control inside Car

Based on above block diagram of improved architecture of multichannel feedforward
active noise control system, we prepared a computer simulation as a numerical
example. All of data used in this example is selected from Sutton’s measured data set.
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6.4.1 Simulation Conditions

Reference signals:

Channel 1: Accelerometer 1: RH front floor close to rear wishbone connection. (z,

vertical)
Channel 2: Accelerometer 4: LI front floor close to rear wishbone connection. (z,

vertical)

Road noises:

Channel 1; Microphone 1, RH microphone (out ear position)
Channel 2: Microphone 2, LH microphone (out ear position}

Plant;

System identification results from data set for interior response by subspace method,
which is transformed into a 2-input 2-output finite impulse response of 64 tap, given
in Figure 46 ~ Figure 49.

300 T T T T T T

200

100

respanse
Q

-100

-200

time (ins)

« Figure 46 impulse response from loudspeaker 1 microphone 1
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« Figure 47 impulse response from loudspeaker 1 microphone 2

300 T T ¥ T T T

time (ms)

« Figure 48 impulse response from loudspeaker 2 microphone 2
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rasponse

300 i .‘ ; ; ;
0 10 20 30 40 50 80
time {ms)

« Figure 49 impulse response from loudspeaker 2 microphone 2

6.4.2 Simulation Results

As a evaluating parameter of convergence characteristic, a normalized mean square
error (NMSE) is used, which is defined as following.

Z(di =Y )2
NMSE=+—

i=1

Figure 50 shows the learning curve of evaluating parameter of two simulation. The
yellow line is for conventional method case. The black line is for improved method
described in section 6.3. This result graph shows an obvious improvement of
performance although that is not satisfied. The main reason is we used only 2
channels data as reference signals, whereas there are 6 channels data in Sutton’s
measured data set of car noise.
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« Figure 50 Leaming curve of 2 channel car ANC system
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Chapter 7 CONCLUSIONS |

In this report, methods of multichannel spectral factorisation has been reviewed, and
their relevance to adaptive feedforward control has been discussed.

In chapter 2 and chapter 3, some works concerning with pre-processing multichannel
reference signals have been described. In chapter 2, canonical spectral factorisation
of matrix polynomial has been described. i.e. a multichannel moving average spectral
model is assumed. For this problem, two solutions are given. The first one is
important for basic concepts, which solves the matrix polynomial equation directly
and get its minimum phase part. However, some complicated calculations are
necessary for this method and it is difficult to reconstruct minimum phase part when
zeros very near to unit circle. The second method tries to avoid solving the matrix
polynomial equation directly via a state space expression that change the problem to a
discrete algebraic Riccati equation (DARE). So by using DARE function in
MATLARB, solutions have been achieved very easily. In chapter 3, multichannel
spectral estimation problem is introduced by using autoregressive (AR) model, that
leads a normal equation of coefficient matrices and its recursive solution of Yule-
Walker algorithm is provided.

In chapter 4, some works concerning with multichannel control plant have been
described. From input data and output data of multiple input multiple output system,
subspace method for identification problem can provide coefficient matrices of state
space expression of the system, of course then its multichannel transfer function of
control plant can be obtained.

In chapter 5, based on these results of theoretical works have been applied to a
measured data set of car noise. It has been confirmed here that the road noise can be
whitening and uncorrelated by AR modelling with normal equation method, but it
was found that the Robinson and state space MA method gave many zeros very close
to the unit circle that gave a poorly conditioned solution. Also from the simultaneous
measured 2 channel input and 2 channel output data in car, the noise propagation
space can be identified very precisely.

In chapter 6, based on these results of whitening of multichannel reference signals
and system identification of control plant, an active noise cancelling system has been
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constructed. Obvious improvement of performance in comparing with conventional
method has been shown by a computer simulation.

The main conclusions of this report are:

s Performance of multichannel adaptive system is limited by correlation between
individual channels occurs in both input (reference signals) and output (control
plant) of adaptive controller.

a Spectral factorization and spectral estimation are very important, very effective
method for whitening and uncorrelating multichannel signals.

m  Subspace method has shown a precise result for multichannel system
identification and very easy to be applied to identification of sound propagation
space in car.

a  An obvious performance improvement can be achieved by employing a whiten
and uncorrelated referenced signals and precisely identified plant for
multichannel adaptive system.

For future research, two points should be mentioned here.

m Although whitening and uncorrelating has been applied to reference signals, in
order to achieve further improvement of performance, cross-talk of plant should
be removed. A theoretical related matter is inner-outer factorisation and outer-
inner factorisation, which is generalized concept of all-pass and minimum phase
factorisation of signal channel system. So from identified system state space
expression, further work to factor plant system into its inner part and outer part
should be tried. By introducing a inverse system of outer part, it is considered as
a virtual plant system with no cross-talk can be obtained and that will result good
performance for multichannel adaptive control system.

»  For systems with a large number of inputs and outputs, the centralized algorithms,
as considered in this report, are not feasible anymore. If reference signals are
white and uncorrelated, also if cross-talk of plant can be removed, a multichannel
systern can be considered as a set of signal channel system, this leads to
decentralied control problem. In this case, algorithm for adaptive controller are
just a parallel running algorithm for signal channel system, that could be realized
very simple, whereas the multichannel filtered-X LMS algorithm need very
complicated calculations. This will result many merits for practical problem
including high response time and extension of frequency limitation.
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